TW201929311A - 金屬空氣液流二次電池 - Google Patents

金屬空氣液流二次電池 Download PDF

Info

Publication number
TW201929311A
TW201929311A TW107142208A TW107142208A TW201929311A TW 201929311 A TW201929311 A TW 201929311A TW 107142208 A TW107142208 A TW 107142208A TW 107142208 A TW107142208 A TW 107142208A TW 201929311 A TW201929311 A TW 201929311A
Authority
TW
Taiwan
Prior art keywords
electrolyte
module
opening
discharge
charging
Prior art date
Application number
TW107142208A
Other languages
English (en)
Other versions
TWI699028B (zh
Inventor
鍾孝平
李奕成
李純怡
何淑梅
吳錦貞
Original Assignee
財團法人工業技術研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院 filed Critical 財團法人工業技術研究院
Publication of TW201929311A publication Critical patent/TW201929311A/zh
Application granted granted Critical
Publication of TWI699028B publication Critical patent/TWI699028B/zh

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Hybrid Cells (AREA)

Abstract

一種金屬空氣液流二次電池,包括放電正極板模組、空氣電極模組、前殼體、充電正極板模組、中殼體、負極板以及後殼體。放電正極板模組與空氣電極模組設於前殼體的第一側,充電正極板模組則設置在前殼體的第二側與中殼體之間。負極板設在中殼體與後殼體之間。所述前殼體與中殼體都具有容納電解液的容置空間。前殼體係由第一電解液通道模組與第二電解液通道模組組合而成,其中第一電解液通道模組介於放電正極板模組與第二電解液通道模組之間。

Description

金屬空氣液流二次電池
本發明是有關於一種金屬空氣電池,且特別是有關於一種金屬空氣液流二次電池。
近來,兼具充電和放電功能之金屬空氣二次電池已逐漸受到重視並開始發展。傳統的金屬液流空氣二次電池的陰極必須兼具兩種觸媒,使其可在放電過程中進行氧還原反應(oxygen reduction reaction,ORR),將氧氣(O2 )還原成氫氧根離子(OH- );或在充電過程中進行氧氣析出反應(oxygen evolution reaction,OER)將氫氧根離子(OH- )氧化成氧氣(O2 )。
由於傳統的金屬液流空氣二次電池的電解液無法流動,在充電過程中,電鍍至負極側的金屬會形成枝晶狀結構(dendrite)進而導致金屬無法在負極表面產生均勻鍍層,且所產生的氧氣(O2 )可能會造成在雙效電極之ORR觸媒的崩解破壞;在放電過程中所產生的金屬氧化物不僅會覆蓋於負極金屬表面造成陽極鈍化,也會汙染電解液以致於增加離子傳導阻抗,在長時間操作下可能逐漸蒸發而枯竭,而影響電池的性能與壽命。
因此需要提供一種金屬液流空氣二次電池,來解決廢熱累積與電解液無法流動所衍生的問題。
本發明提供一種金屬空氣液流二次電池,能提升金屬空氣液流二次電池的性能及壽命。
本發明提供另一種金屬空氣液流二次電池,能有大幅減少氣泡的產生,以提升金屬空氣液流二次電池的性能及壽命。
本發明的金屬空氣液流二次電池,包括前殼體、放電正極板模組、空氣電極模組、後殼體、負極板、充電正極板模組以及中殼體。前殼體係由一第一電解液通道模組與一第二電解液通道模組組合而成,具有第一容置空間,以容納電解液。放電正極板模組位於前殼體的第一側,包括具有多個第一貫穿開口的放電正極板,其中第一電解液通道模組介於放電正極板模組與第二電解液通道模組之間。空氣電極模組位於放電正極板模組與前殼體之間,包括氧還原反應觸媒,與電解液接觸。後殼體位於前殼體的第二側。負極板位於後殼體與前殼體之間,與電解液接觸。充電正極板模組位於前殼體與負極板之間,包括具有第二貫穿開口的充電正極板與氧析出反應觸媒。中殼體位於充電正極板模組與該負極板之間,具有第二容置空間,以容納電解液。
本發明的另一種金屬空氣液流二次電池,包括前殼體、放電正極板模組、空氣電極模組、中殼體、負極板模組、充電正極板模組以及充電電極模組。前殼體係由第一電解液通道模組與第二電解液通道模組組合而成,具有第一容置空間,以容納電解液。放電正極板模組位於前殼體的第一側,包括具有多個第一貫穿開口的放電正極板,其中第一電解液通道模組介於放電正極板模組與第二電解液通道模組之間。空氣電極模組位於放電正極板模組與前殼體之間,包括氧還原反應觸媒,與電解液接觸。中殼體位於前殼體的第二側,具有第二容置空間,以容納電解液。負極板模組位於中殼體的第一側與前殼體之間,具有第三容置空間,以容納電解液與生成金屬之沉積。充電正極板模組位於中殼體的第二側,包括具有第二貫穿開口的充電正極板。充電電極模組位於充電正極板模組與中殼體之間,具有與電解液接觸之氧析出反應觸媒。
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。
請參考以下實施例及隨附圖式,以便更充分地了解本發明,但是本發明仍可以藉由多種不同形式來實踐,且不應將其解釋為限於本文所述之實施例。而在圖式中,為求明確起見對於各構件以及其相對尺寸可能未按實際比例繪製。另外,關於文中所使用「包含」、「包括」、「具有」等等用語,均為開放性的用語;也就是指包含但不限於。而且,文中所提到的方向性用語,例如:「上」、「下」、「左」、「右」等,僅是用以參考圖式的方向。因此,使用的方向性用語是用來說明,而並非用來限制本發明。
現將詳細地參考本發明的示範性實施例,示範性實施例的實例說明於所附圖式中。只要有可能,相同或相似的元件符號在圖式和描述中用來表示相同或相似部分。
圖1A是依照本發明的一實施例的一種金屬液流空氣二次電池的組裝結構透視圖。圖1B則是圖1A的結構之背面透視圖。
請參照圖1A和圖1B,本實施例的金屬液流空氣二次電池10基本上包括數個電池單元100,且於電池單元100中伸出放電正極集電板102、充電正極集電板104、放電負極集電板106與充電負極集電板108。此外,在電池單元100的兩端分別有正極端板110a與負極端板110b。上述電池單元100會形成具有充放電功能的金屬空氣液流二次電池10。
當放電正極集電板102與放電負極集電板106分別連接至外部負載(未繪示)時,金屬空氣液流二次電池10可進行放電操作。當充電正極集電板104與充電負極集電板108分別連接至外部負載時,金屬空氣液流二次電池10可進行充電操作。
在圖1A中,正極端板110a例如具有貫穿其本體的電解液出口112,將電解液從多數個電池單元100排出。而在圖1B中,負極端板110b配置貫穿其本體的電解液進口116,供應電解液至多數個電池單元100。
另外,正極端板110a與負極端板110b還可分別配置多個貫穿其本體的定位孔114a,以作為金屬空氣液流二次電池10的組裝定位之用,在本實施例中採用4個定位孔114a。正極端板110a與負極端板110b的周邊還分別配置有多個貫穿其本體之螺桿孔114b,在本實施例中採用12個螺桿孔114b,以作為金屬空氣液流二次電池10鎖合固定之用。
圖2A是依照本發明的另一實施例的一種金屬空氣液流二次電池的立體示意圖。圖2B是依照圖2A繪示的金屬空氣液流二次電池的正面之組裝結構爆炸圖。圖2C是圖2B的金屬空氣液流二次電池的背面之組裝結構爆炸圖。
請參照圖2A和圖2B,本實施例的金屬空氣液流二次電池可為上一實施例中的單一電池單元100,其包括放電正極板模組200、空氣電極模組300、前殼體400、充電正極板模組500、中殼體600、負極板700與後殼體800。
在本實施例中,前殼體400可為第一電解液通道模組402和第二電解液通道模組404組合而成,具有第一容置空間,以容納電解液。換言之,前殼體400的第一側400a即為第一電解液通道模組402的正面、前殼體400的第二側400b即為第二電解液通道模組404的背面。而放電正極板模組200位於前殼體400的第一側400a;空氣電極模組300位於放電正極板模組200和前殼體400之間;後殼體800位於前殼體400的第二側400b;負極板700位於後殼體800與前殼體400之間,充電正極板模組500位於前殼體400與負極板700之間;中殼體600位於充電正極板模組500與負極板700之間。
在本實施例中,放電正極板模組200至少包含一個放電正極板202,其中放電正極板202可以是使用具備良好導電性與抗腐蝕性的高導電材料所製成的板材,例如不鏽鋼或鎳(Ni)。
放電正極板202具有面對空氣側的正面202a與相對於正面202a的背面202b,且放電正極板202包括多個第一貫穿開口204,且各個第一貫穿開口204貫穿放電正極板202的正面202a與背面202b,可容許環境空氣G通過並到達空氣電極模組300。
請繼續參照圖2B,在放電正極板202的正面202a(遠離空氣電極模組300的表面)具有凸出部206a與206b,其分別設置在第一貫穿開口204的左右兩側,以分別與各個第一貫穿開口204連通。凸出部206a與206b可形成電池單元100所需反應與散熱空氣之多個空氣導引流道。如此一來,環境空氣G即可藉由強迫對流方式,從凸出部206a(或凸出部206b)進入放電正極板202之第一貫穿開口204,以供應放電反應所需氧氣並且帶走反應過程產生之廢熱,然後再由凸出部206b(或凸出部206a)排出於放電正極板202而至環境中。
請參照圖2C,在放電正極板202的背面202b,可依需求設計第一凹槽208與第二凹槽210,其中第一凹槽208設置在第一貫穿開口204的周圍。第二凹槽210設置在第一凹槽208的周圍,形成具有可容納空氣電極模組300之空間。由於放電正極板模組200還可包括一密封件212,所以第一凹槽208可形成具有可容納密封件212之空間,但本發明的放電正極板的結構不以此為限。此外,放電正極板模組200還可包括放電正極集電板214,設置在放電正極板202的一側,其中放電正極集電板214可連接相鄰電池單元100的負極板700,形成一串聯之放電電路。
請繼續參照圖2B,空氣電極模組300包括至少一個空氣電極302以及第一隔離膜304。其中第一隔離膜304的材料可以是多孔性非金屬材料,例如聚丙烯(PP)、尼龍(Nylon)、鐵氟龍(PTFE)等。空氣電極模組300具有面對放電正極板模組200的正面300a與遠離放電正極板模組200的背面300b,其中空氣電極302位於空氣電極模組300的正面300a。
空氣電極302例如是由一個多孔性導電基材(未繪示)、結合於多孔性導電基材一面的防水透氣膜(未繪示)以及結合於多孔性導電基材另一面的氧還原反應觸媒(放電反應觸媒)(未繪示)所組成。其中,空氣電極302的防水透氣膜面對放電正極板模組200。第一隔離膜304位於空氣電極模組300的背面300b,其中氧還原反應觸媒則是面對第一隔離膜304,以與電解液接觸。另外,第一隔離膜304可隔絕充電反應時所產生的金屬,直接接觸空氣電極302的氧還原反應觸媒,避免造成正負極短路,且也可隔絕放電反應所產生的氧化物汙染空氣電極302的氧還原反應觸媒,可延長空氣電極302的使用壽命。
在本實施例中,當電池單元100組裝時,空氣電極302之多孔性導電基材可與第一隔離膜304密合接觸,且與放電正極板模組200的放電正極板202接觸,而形成一條電子傳導路徑。當環境空氣G經由空氣電極302的防水透氣膜擴散進入到氧還原反應觸媒,即可發生正極放電反應。其中空氣電極302的防水透氣膜可防止電解液洩漏至環境中。
請繼續參照圖2B,本實施例的前殼體400雖然是由第一電解液通道模組402和第二電解液通道模組404組合而成,但本發明並不限於此。前殼體400也可包含其他組件。第一電解液通道模組402和第二電解液通道模組404可以是一個絕緣框體結構,例如方形,但並不限於此。在本實施例中,第一電解液通道模組402介於放電正極板模組200與第二電解液通道模組404之間,其中,第二電解液通道模組404具有與第一電解液通道模組402對應的外型,且第一電解液通道模組402和第二電解液通道模組404兩者具有實質重合的橫向截面。
在本實施例中,第一電解液通道模組402有貫穿正面402a及背面402b的第一開口406。在第一電解液通道模組402的正面402a還可有凹槽408,設置在第一開口406的周圍,凹槽408的尺寸約等於放電正極板202的外圍邊界,深度則約等於放電正極板202的厚度。因此,凹槽408可容納放電正極板模組200與空氣電極模組300之組合並可用一密封件410將其密封,而被容納在第一開口406的電解液可接觸空氣電極模組300,在放電反應時形成一條離子傳導路徑。
請參照圖2B和圖2C,於第一開口406上方與下方分別還有第二開口412及第三開口414,其中第二開口412及第三開口414分別貫穿第一電解液通道模組402的正面402a與背面402b。在圖2B中可分別用兩個密封件416設置於第二開口412及第三開口414周圍,以便組裝後作用密封電解液之用。而在第一電解液通道模組402的背面402b可具有連通第一開口406與第二開口412以及連通第一開口406與第三開口414的分配流道418。
請繼續參照圖2B,第二電解液通道模組404具有對應於第一電解液通道模組402的各個開口的第四開口420、第五開口422與第六開口424,其中由第一開口406與第四開口420構成前殼體400的第一中間矩形開口426;由第二開口412與第五開口422構成前殼體400的第一電解液排出歧道428;由第三開口414與第六開口424構成前殼體400的第一電解液供應歧道430。第一電解液供應歧道430與第一電解液排出歧道428分別相鄰第一中間矩形開口426,並可將電解液供應或排出,以輸送各個電池單元100內的電解液。
此外,在第二電解液通道模組404面對第一電解液通道模組402的表面還可有凹槽432,設置在第四開口420、第五開口422與第六開口424的外周,因此凹槽432可容納一密封件434,以便組裝後作用密封電解液之用。
當第一電解液通道模組402與第二電解液通道模組404組合成前殼體400時,可藉由第一隔離膜304、第一電解液通道模組402、第二電解液通道模組404和充電正極板模組500密合,且於第一中間矩形開口426定義出一個用來容納電解液的第一容置空間(未繪示)。而且,分配流道418能連通第一中間矩形開口426與第一電解液排出歧道428以及連通第一中間矩形開口426與第一電解液供應歧道430,以將第一電解液供應歧道430內的電解液輸送至第一容置空間,並將第一容置空間內的電解液由第一電解液排出歧道428輸出。進一步來說,位於第一容置空間的電解液可通過第一中間矩形開口426,與空氣電極模組300的第一隔離膜304以及充電正極板模組500接觸,進而在電池單元100提供離子傳導路徑,以進行充放電反應。
另外,請參照圖2C,在第二電解液通道模組404的背面(第二側400b)可選擇性地設置對應中殼體600的凹槽436。
然後於圖2B中,充電正極板模組500至少包括具有一第二貫穿開口502的一充電正極板504與氧析出反應觸媒(未繪示)。在本實施例中,充電正極板504可以是使用具備良好導電性與抗腐蝕性的高導電材料所製成的板材,例如不鏽鋼或鎳(Ni)。充電正極板模組500還可包括第二隔離膜506,設置在充電正極板504遠離前殼體400的一側,且面對前殼體400,用以可隔絕充電反應時所產生的金屬。第二隔離膜506的材料例如是多孔性非金屬材料,例如聚丙烯(PP)、尼龍(Nylon)、鐵氟龍(PTFE)等。
請參照圖2C,充電正極板模組500的氧析出反應觸媒508則是面對負極板700,且氧析出反應觸媒508例如不銹鋼網。另外,充電正極板模組500還可包括一充電正極集電板510設置在充電正極板504的一側,可連接相鄰的電池單元的負極板700形成一串聯的充電電路。
請繼續參照圖2B,中殼體600具有與前殼體400之第二電解液通道模組404對應的外型。在本實施例中,中殼體600例如是方形絕緣框體,且第二電解液通道模組404和中殼體600兩者具有實質重合的橫向截面。於中殼體600中包括用以形成第二容置空間的第二中間矩形開口602、第二電解液排出歧道604與第二電解液供應歧道606,其中第二電解液排出歧道604與第二電解液供應歧道606分別相鄰第二中間矩形開口602。中殼體600與充電正極板模組500及負極板700密封,以在中殼體600的第二中間矩形開口602定義出容納電解液的第二容置空間。中殼體600還可包括一凹槽608,圍繞於第二中間矩形開口602外緣並連通該第二容置空間,用以容納充電正極板模組500,而在第二中間矩形開口602的電解液可接觸充電正極板模組500,在充電反應時形成一條離子傳導路徑。上述凹槽608的尺寸約等於充電正極板模組500的外圍邊界,深度則約等於充電正極板模組500的厚度。而且,在凹槽608的外圍還具有可容納一密封件610的另一凹槽612,其可對應設在第二電解液通道模組404的背面的凹槽436(請參照圖2C)。
請繼續參照圖2B,可分別用兩個密封件614設置於第二電解液排出歧道604與第二電解液供應歧道606周圍,以便組裝後作用密封電解液之用。
在本實施例中,負極板700例如是使用具備良好導電性與抗腐蝕性的高導電材料所製成的板材,例如不鏽鋼、鎳(Ni)、錫(Sn)或上述材料任意組合。負極板700可接觸容納於中殼體600的第二中間矩形開口602中之電解液,以進行負極充放電反應。
另外,在負極板700的下側與上側分別設置放電負極集電板704及充電負極集電板702。當充電負極集電板702連接相鄰電池單元的充電正極板504時,可形成串聯之充電電路;當放電負極集電板704連接相鄰電池單元的放電正極板202時,可形成串聯之放電電路。
請繼續參照圖2B,後殼體800具有與中殼體600對應的外型。在本實施例中,後殼體800例如是方形絕緣框體,且中殼體600和後殼體800兩者具有實質重合的橫向截面。後殼體800可包括第三電解液排出歧道802和第三電解液供應歧道804。此外,後殼體800面對負極板700的表面可設有凹槽806,用以容納負極板700,凹槽806的外圍邊界相似且略大於負極板700,而其深度則約等於負極板700之厚度。如此,當負極板700與後殼體800組合時,可藉由凹槽806與負極板700密合。
本實施例中,可分別用兩個密封件808設置於第三電解液排出歧道802與第三電解液供應歧道804周圍,以便組裝後作用密封電解液之用。
也就是說,在組裝後的電池單元100中,第一電解液供應歧道430、第二電解液供應歧道606與第三電解液供應歧道804的位置是對應且連通的,以便電解液能流入第一和第二容置空間並發生充放電反應,並且第一電解液排出歧道428、第二電解液排出歧道604與第三電解液排出歧道802的位置也是對應且連通的,所以電解液能經由上述歧道排出。
若是組合數個圖2A的電池單元100,則相鄰的兩個電池單元之一的後殼體800會與另一電池單元的放電正極板模組200接觸。
圖3A是圖2B的金屬空氣液流二次電池之充電反應工作機制的示意圖。若以鋅空氣液流二次電池為例,在充電過程,由氧化鋅(ZnO)、氫氧化鉀(KOH)與水(H2 O)所組成之電解液會經由一外部幫浦輸送至電池單元100。
在圖3A中,電解液先進入後殼體800的第三電解液供應歧道804,然後電解液經由第二電解液供應歧道606導入至中殼體600之第二中間矩形開口602,並進一步流入充電正極板模組500之第二貫穿開口506與第一中間矩形開口426。
當電解液充滿第一中間矩形開口426、第二貫穿開口506與第二中間矩形開口602時,電解液即可接觸空氣電極模組300之空氣電極、充電正極板模組500之第二隔離膜506與負極板700,並形成在電池單元100中之傳導離子介質。此外,電解液也會經由第三電解液供應歧道804進入中殼體600的第二電解液供應歧道606,然後再進入前殼體400的第一電解液供應歧道430供應至下一電池單元。
詳言之,從外部經由充電正極集電板510與充電負極集電板702通入適當電流至金屬液流空氣電池,即可對各個電池單元100進行充電。在負極側,電解液中之氧化鋅(ZnO)與水(H2 O)會與從負極板700之充電負極集電板702導入之e- 共同反應,而氧化鋅(ZnO)則進一步分解成鋅離子(Zn2+ )並朝負極板700遷移。在鋅離子(Zn2+ )接觸負極板700後,鋅離子(Zn2+ )可與e- 反應形成金屬鋅(Zn)並電鍍至負極板700表面。於此同時,氫氧根離子(OH- )也會產生並朝充電正極板模組500之第二隔離膜506遷移。
在充電正極側,當來自於負極之氫氧根離子(OH- )接觸第二隔離膜506時,氫氧根離子(OH- )即可藉由不銹鋼網上之OER觸媒反應產生氧(O2 )、水(H2 O)與e- 。e- 會經由不銹鋼網傳導至充電正極板502之充電正極集電板510,然後再導入相鄰的電池單元100之負極板700的充電負極集電板702。
在充電反應過程中,電解液可不斷循環流動以使氧(O2 )隨電解液經由分配流道418進入第一電解液排出歧道428。然後,電解液與O2 會再依序流至下一電池單元的進第三電解液排出歧道802、第二電解液排出歧道604。
如此,請參照圖1A與圖1B,各個電池單元100之電解液與氧(O2 )可經由金屬液流空氣電池10之電解液出口112排出至環境,也可藉由風扇強迫對流方式排出至外部環境中。由電解液出口112排出之電解液會再經由外部幫浦輸送至電解液進口116,如此即完成電解液的循環流動。
另外,因為流動電解液可避免金屬鋅(Zn)於負極板700表面形成枝晶狀結構,故流動電解液也將有助於均勻金屬鋅(Zn)鍍層的形成。
圖3B是圖2B的金屬空氣液流二次電池之放電反應工作機制的示意圖。
請參照圖3B,電池單元100放電反應的工作機制同樣以鋅空氣液流二次電池為例。當充電反應完成並開始進行放電反應時,電解液會以如充電過程所述之方式不斷地循環流動,以充滿各個中間矩形開口、貫穿開口進而形成可傳導離子介質。
在負極側,電鍍至負極板700表面之金屬鋅(Zn)會與來自正極之氫氧根離子(OH- )共同反應。所產生之鋅離子(Zn2+ )從負極板700朝正極遷移,而e- 則從負極板700傳導至放電負極集電板704,然後再導入相鄰的電池單元100之放電正極板202之放電正極集電板214。
在放電反應過程中,電解液可不斷循環流動以使氧化鋅(ZnO)隨電解液排出金屬液流空氣電池。即能避免氧化鋅(ZnO)累積並覆蓋負極板700表面。另外,對於存在於電解液中之氧化鋅(ZnO)可藉由外部過濾方式予以排除,如此電解液即可恢復原本的離子傳導性,然後再輸送至金屬液流空氣電池。
在放電正極側,環境空氣G例如是可藉由風扇以強迫對流方式導入放電正極板202之凸出部206a所形成之流道並進入其之各個第一貫穿開口204,然後再從凸出部206b所形成之流道排出至環境。於此同時,氧(O2 )可經由擴散進入空氣電極302之防水透氣膜然後再進入觸媒,以與電解液中之水(H2 O)以及來自負極之e- 共同反應產生朝負極側遷移的氫氧根離子(OH- )。因為負極放電反應需要足夠氧氣並會產生大量廢熱,故在供應空氣至負極側時需要空氣流量同時滿足反應與散熱需求,以確保金屬液流空氣電池可產生穩定的性能輸出。
對於上述電池單元100充放電反應所需的空氣流量,可藉由下式估算:其中 Fcoolant 是反應所需空氣流量、I是電流(A)、F是法拉第常數(96485C/mol)、而 Ncell 則是電池數目。
另外,電池單元100放電反應產生的大量廢熱,也可藉由風扇以強迫對流方式排出。散熱所需空氣流量可以下式估算:其中,Fcoolant 是散熱所需空氣流量、I是電流(A)、Vo 是開路電壓(V)、V是操作電壓(V)、ρ是空氣密度(1.2kg/m3 )、CP 是空氣比熱(1000J/kg/K)、△T是空氣進出口溫差(K)、而Ncell 則是電池數目。
當藉由風扇以強迫對流方式將環境空氣G導入或第一貫穿開口206或將氧(O2 )排出第一貫穿開口206時,形成放電正極板表面產生空氣流場,減少空氣流阻,增進空氣與熱對流的效應。
圖4A和圖4B分別是依照圖3A和圖3B繪示的充放電反應的工作機制簡化圖。
請參照圖4A,其主要顯示放電正極板模組200、充電正極板模組500、負極板700與可容納電解質的空間。若以鋅空氣電池為例,在充電過程之負極板700還原反應與正極氧化反應可分別以下列化學式表示:   負極還原反應:ZnO+H2 O+2e- → Zn+2OH- 正極氧化反應:2OH- → 1/2O2 +H2 O+2e-
由以上化學式可知,負極板700電解液中的氧化鋅(ZnO)水與通過外部迴路從放電正極板模組200移動至負極板700的電子共同進行還原反應,所產生的鋅(Zn)會電鍍至負極板700金屬的表面。充電正極板模組500將氫氧根離子(OH- )釋放至電解液中,朝放電正極板模組200遷移。另外在充電正極板模組500,來自於負極板700的氫氧根離子(OH- )接觸充電正極板模組500時,可藉由充電正極板模組500上的觸媒反應產生氧氣(O2 )、水與電子。電子會傳導至放電正極板模組200,再透過外部迴路移動至負極板700。而氧氣(O2 )則可經由充電正極板模組500排出。
請繼續參照圖4B,在放電過程之負極氧化反應與正極還原反應可分別以下列化學式表示:   負極氧化反應:Zn + 2OH- → ZnO + H2 O + 2e- 正極還原反應:1/2O2 + H2 O + 2e- → 2OH-
由以上的化學式可知,負極板700中的鋅會與電解液中的氫氧根離子(OH- )共同進行氧化反應,負極板700中的鋅(Zn)會被消耗,並同時產生氧化鋅(ZnO)、水與電子。其中,電子會經由負極板700通過外部迴路從負極板700移動至放電正極板模組200。另外在放電正極板模組200,來自於空氣中之氧氣(O2 )則會與存在於電解液中的水和來自於負極板700的電子共同進行還原反應以產生氫氧根離子(OH- ),朝充電正極板模組500遷移,並以電解液中的氫氧化鉀溶液作為離子傳導介質,從放電正極板模組200遷移至負極並參與上述氧化反應。
綜上所述,本發明具有一放電正極、一充電正極與一負極配置之三極式金屬空氣液流二次電池,藉由在放電正極板模組與充電正極板模組中的貫穿開口,以對流的方式將環境空氣導入電池單元或將充放電反應時所形成的廢熱排出,且無須分別供應環境空氣作為反應與散熱用,有利於金屬液流空氣電池輕量化與降低成本,系統與操作可更為簡化。
詳細來說,本發明藉由三極式的金屬空氣液流電池,在放電反應時,有助於排除氧化鋅(ZnO)避免負極鈍化與電解液汙染,且以共用的空氣流場設計將空氣導入電池單元並帶走廢熱,有利於電池緊緻、輕量化與降低成本。另外,在充電反應時,有利於在負極表面產生均勻金屬鋅(Zn)鍍層,並排除氧(O2 ),且避免生成氧(O2 )對ORR觸媒產生負面效應。因此可提供良好的金屬空氣液流電池性能與壽命。
另外,本發明藉由在前殼體、中殼體、後殼體皆設置電解液供應歧道及電解液排出歧道,可在不過度增加電池單元的尺寸下提供通道,連通各個電池單元內部,以供應與排出電解液。因此可提供良好的金屬空氣液流電池性能與壽命。
圖5是依照本發明的另一實施例的一種金屬液流空氣二次電池的組裝結構透視圖,其中使用與圖1A及圖1B相同的元件符號來代表相同或相似的構件,且所省略的部分技術說明,如各模組的尺寸、材料、功能等均可參照圖1A及圖1B的內容。
請參照圖5,本實施例的金屬液流空氣二次電池10A基本上包含複數個電池單元100A、充電正極集電板104、放電正極集電板102、充電負極集電板108、放電負極集電板106、前端板111a與後端板111b。複數個電池單元100A是以串聯方式堆疊排列。當充電正極集電板104與充電負極集電板108分別連接至外部負載時,金屬液流空氣二次電池10A可進行充電操作,此時各電池單元110A中的充電正極集電板510是與相鄰電池單元110A之充電負極集電板707藉由外部連接而串聯(圖5中未繪示)。當放電正極集電板102與放電負極集電板106分別連接至外部負載時,金屬液流空氣二次電池10A可進行放電操作,此時各電池單元110A中之放電正極集電板214是與相鄰電池單元110A之放電負極集電板706藉由外部連接而串聯。前端板111a配置貫穿其本體之電解液進口(未繪示),以供應電解液至複數個電池單元100A。後端板111b配置貫穿其本體之電解液出口112,以從複數個電池單元100A排出電解液。另外,前端板111a與後端板111b分別配置貫穿其本體的多個定位孔114a,以作為電池組裝定位之用,在本實施例中採用4個定位孔114a。前端板111a與後端板111b也分別配置貫穿其本體的多個螺桿孔114b,在本實施例中採用12個螺桿孔114b,以作為金屬液流空氣二次電池10A鎖合固定之用。
圖6A是依照本發明的另一實施例的一種金屬空氣液流二次電池的立體示意圖,圖6B是依照圖6A繪示的金屬空氣液流二次電池的正面之組裝結構爆炸圖,圖6C是圖6B的金屬空氣液流二次電池的背面之組裝結構爆炸圖,其中使用與圖2A、圖2B及圖2C相同的元件符號來代表相同或相似的構件,且所省略的部分技術說明,如各模組的尺寸、材料、功能等均可參照圖2A、圖2B及圖2C的內容。
請對照圖2A至圖2C與圖6A至圖6C,本實例的電池單元100A與上一實施例的電池單元100相似。但要注意的是:本實施例之電池單元100A的放電正極板模組200A、負極板模組700-1及充電正極板模組500的相對位置與上一實施例之電池單元100的放電正極板模組200、負極板模組700及充電正極板模組500的相對位置不同。
請參照圖6B及圖6C,本實施例的電池單元100A包括放電正極板模組200A。放電正極板模組200A包括放電正極板202與密封件212。放電正極板202具有正面202a與相對於正面202a的背面202b,而密封件212是配置於放電正極板202的背面202b。複數個第一貫穿開口204貫穿放電正極板202的正面202a與背面202b。放電正極板202具有配置於正面202a的凸出部206a及凸出部206b。凸出部206a及凸出部206b分別配置於相鄰複數個第一貫穿開口204的左側與右側,以分別與各個第一貫穿開口204連通。凸出部206a與凸出部206b設於遠離空氣電極模組300的一表面上,可形成電池單元100A所需反應與散熱空氣之多個空氣導引流道。如此一來,環境空氣G即可藉由強迫對流方式從凸出部206a(或凸出部206b)進入放電正極板202的複數個第一貫穿開口204,以供應放電反應所需氧氣並且帶走反應過程產生的廢熱,然後再由凸出部206b(或凸出部206a)排出於放電正極板202而至環境中。
放電正極板202還具有第一凹槽208,配置於放電正極板202的背面202b。第一凹槽208配置在複數個第一貫穿開口204的周圍,以形成可容納密封件212的空間。放電正極板202還具有第二凹槽210,設置於放電正極板202的背面202b。第二凹槽210配置在第一凹槽208的周圍,以形成可容納空氣電極模組300的空間。放電正極集電板214可選擇性地配置在放電正極板202的一側,其中放電正極集電板214可連接相鄰電池單元100A的負極板模組700-1,以形成一串聯之放電電路。
要注意的是,本實施例的放電正極板模組200A還包括隔板216,設置在放電正極板202遠離前殼體400-1的一側。隔板216可隔離一電池單元100A之放電正極板模組200A的放電正極板202與相鄰之電池單元100A的充電正極板模組500,以使相鄰兩電池單元100A之的放電正極板模組200A及充電正極板模組500絕緣。
電池單元100A包括空氣電極模組300,位於放電正極板模組200與前殼體400-1之間,其包含一空氣電極302與一第一隔離膜304。空氣電極模組300具有面向放電正極板模組200的正面300a與相對於正面300a的背面300b。空氣電極302配置於空氣電極模組300的正面300a,而第一隔離膜304設置於空氣電極模組300的背面300b,以在組裝後位於空氣電極302與前殼體400-1之間。空氣電極302是由一多孔導電基材(未繪示)、一結合至多孔導電基材之一面之防水透氣膜(未繪示)以及結合至多孔導電基材之另一面之一氧還原反應觸媒(放電反應觸媒)(未繪示)所組成。其中,空氣電極302之防水透氣膜面對放電正極板模組200A,而氧還原反應觸媒則是面對第一隔離膜304,以與電解液接觸。前述進入放電正極板202之複數個第一貫穿開口204之環境空氣G可經由空氣電極302之防水透氣膜擴散進入其氧還原反應觸媒,以進行放電反應,而防水透氣膜也可避免電解液洩漏至環境。另外,第一隔離膜304可隔絕充電反應所生成金屬、直接接觸空氣電極302之氧還原反應觸媒,以避免正負極短路發生,而且其也可隔絕放電反應所生成氧化物汙染空氣電極302之氧還原反應觸媒,以延長空氣電極302之使用壽命。
電池單元100A包括前殼體400-1,是由第一電解液通道模組402和第二電解液通道模組404組合而成。在本實施例中,第一電解液通道模組402介於放電正極板模組200A與第二電解液通道模組404之間,其中,第二電解液通道模組404具有與第一電解液通道模組402對應的外型,且第一電解液通道模組402和第二電解液通道模組404兩者具有實質重合的橫向截面。
前殼體400-1中的第一電解液通道模組402有貫穿正面402a及背面402b的第一開口406。在第一電解液通道模組402的正面402a可配置凹槽408。凹槽408設置在第一開口406的周圍。凹槽408的尺寸約等於放電正極板202的外圍邊界,深度則約等於放電正極板202的厚度。因此,凹槽408可容納放電正極板模組200A與空氣電極模組300之組合並可用密封件410將其密封,而被容納在第一開口406的電解液可接觸空氣電極模組300,在放電反應時形成一條離子傳導路徑。第一電解液通道模組402於第一開口406上方與下方還分別具有第二開口412及第三開口414,其中第二開口412及第三開口414分別貫穿第一電解液通道模組402的正面402a與背面402b。在圖6B中可分別用兩個密封件416設置於第二開口412及第三開口414周圍,以便組裝後作用密封電解液之用。在第一電解液通道模組402的背面402b可具有連通第一開口406與第二開口412(或第一中間矩形開口426與第一電解液排出歧道428)以及連通第一開口406與第三開口414(或第一中間矩形開口426與第一電解液供應歧道430)的多個電解液分配流道418。
要注意的是,在本實施例中,第一電解液通道模組402還具有凹槽413,設置於背面402b。凹槽413配置在第一開口406、第二開口412、第三開口414之周圍,以形成一可容納密封件415的空間。
第二電解液通道模組404具有分別對應於第一電解液通道模組402的第一開口406、第二開口412及第三開口414的第四開口420、第五開口422與第六開口424。第一開口406與第四開口420構成前殼體400-1的第一中間矩形開口426,以形成第一容置空間。第二開口412與第五開口422構成前殼體400-1的第一電解液排出歧道428。第三開口414與第六開口424構成前殼體400-1的第一電解液供應歧道430。第一電解液供應歧道430與第一電解液排出歧道428分別相鄰接於第一中間矩形開口426,並可將第一電解液供應歧道430內的電解液輸送至第一容置空間,並將第一容置空間內的電解液由第一電解液排出歧道428輸出,以輸送各個電池單元100A內的電解液。
要注意的是,在本實施例中,第二電解液通道模組404之面對第一電解液通道模組402的正面404a上可不設置圖2B的凹槽432及密封件434。
另外,在第二電解液通道模組404的背面404b(第二側400b)可選擇性地設置凹槽436。凹槽436被佈置在第四開口420的周圍。要注意的是是,凹槽436可容納一密封件417,以便組裝後作用密封電解液之用。凹槽436的尺寸約等於負極板模組700-1之外圍邊界,而其深度則約等於負極板模組700-1之厚度的一半。如此一來,凹槽436可容納負極板模組700-1,而在凹槽436中之電解液可接觸負極板模組700-1,以形成在充放電反應時之離子傳導路徑。此外,在圖6B中,在第二電解液通道模組404的背面404b(第二側400b)可選擇性地設置兩凹槽439,分別設置在第五開口422的周圍與第六開口424的周圍。兩個密封件438分別設置於兩凹槽439,以便組裝後作用密封電解液之用。
當第一電解液通道模組402與第二電解液通道模組404組合成前殼體400-1時,可藉由第一電解液通道模組402、第二電解液通道模組404和負極板模組700-1密合,在第一隔離膜304與負極板模組700-1之間會形成間隙,以允許電解液流動,且於第一中間矩形開口426定義出一個用來容納電解液的第一容置空間(未繪示)。並且,電解液分配流道418能連通第一中間矩形開口426與第一電解液排出歧道428以及連通第一中間矩形開口426與第一電解液供應歧道430,以將第一電解液供應歧道430內的電解液輸送至第一容置空間,並將第一容置空間內的電解液由第一電解液排出歧道428輸出。進一步來說,位於第一容置空間的電解液可通過第一中間矩形開口426,與空氣電極模組300的第一隔離膜304以及負極板模組700-1接觸,進而在電池單元100A中提供離子傳導路徑,以進行充放電反應。
電池單元100A包括負極板模組700-1。負極板模組700-1位於中殼體600-1的第一側與前殼體400-1之間,具有一第三容置空間,以容納電解液與生成金屬之沉積。在本實施例中,負極板模組700-1包括負極板700A與多孔金屬材料701。負極板700A具有面對第二電解液通道模組404的正面700a以及相對於正面700a的反面700b。中間矩形開口700c貫穿負極板700A之正面700a與反面700b,而中間矩形開口700c可容納多孔金屬材料701。負極板700A具有第一凸緣700d與第二凸緣700e,設置於中間矩形開口700c的周圍,且分別設置於負極板700A的正面700a與反面700b。第一凸緣700d與第二凸緣700e的外圍邊界分別約等於第二電解液通道模組404的第四開口420與第三電解液通道模組630的開口630c。在第一凸緣62與第二凸緣63間之高度約等於多孔金屬材料701之厚度。多孔金屬材料701具有多個孔隙,以作為負極板模組700-1的第三容置空間。負極板模組700-1還包括夾片703與夾片705,被分別結合至負極板700A之第一凸緣700d與第二凸緣700e。在夾片703與夾片705之間的距離是小於多孔金屬材料701的厚度。如此一來,多孔金屬材料701可藉由兩夾片703、705固定並夾緊,以形成在負極板700A與多孔金屬材料700之間的一良好的電子傳導路徑。
負極板模組700-1還包括放電負極集電板706,設置於負極板700A的一側(例如但不限於:右上側)。放電負極集電板706可連接相鄰電池單元100A之放電正極集電板214,以形成一串聯的放電電路。負極板模組700-1還包括充電負極集電板707,設置於負極板700A的一側(例如但不限於:右下側)。充電負極集電板707可連接相鄰電池單元100A之充電正極集電板510,以形成一串聯的充電電路。
另外,在負極板700A之第一凸緣700d和第二凸緣200e分別配置於第一擬平面(未繪示)及與第二擬平面(未繪示)。前殻體400-1、負極板700A與中殻體600-1在一堆疊方向上堆疊,而第一擬平面(未繪示)與第二擬平面(未繪示)在所述堆疊方向上的距離約等於第二電解液通道模組404之凹槽436的深度與第三電解液通道模組630之凹槽634的深度的和。當電解液分別由前殼體400的第一中間矩形開口426進入多孔金屬材料701時,在充電過程之生成金屬(例如但不限於:鋅)即可沉積在多孔金屬材料701的孔隙(即負極板模組700-1的第三容置空間)內,以作為稍後用於放電的金屬。
電池單元100A包括中殼體600-1,位於前殼體400-1的第二側400b,具有第二容置空間,以容納電解液。具體而言,本實施例的中殼體600-1包括第三電解液通道模組630與第四電解液通道模組640。
第三電解液通道模組630具有面對負極板模組700-1的正面630a與相對於正面630a的背面630b。第三電解液通道模組630具有第七開口630c、第八開口630d及第九開口630e,皆貫穿第三電解液通道模組630的正面630a與反面630b。第七開口630c可容納電解液。第八開口630d及第九開口630e分別位於第七開口630c的上方與第七開口630c的下方。在第三電解液通道模組630的正面630a,凹槽634配置於第七開口630c(或第二中間矩形開口602)的周圍並約等於負極板模組700-1的外圍邊界,而凹槽634的深度則約等於負極板700A的厚度的一半。如此一來,凹槽634可容納負極板模組700-1並與第二容置空間連通,而在第七開口630c中之電解液即可接觸負極板模組700-1,以形成在充放電反應時的離子傳導路徑。
第三電解液通道模組630還包括密封件631、密封件632與密封件633。在第三電解液通道模組630的正面630a,凹槽635被配置在凹槽634的外圍邊界,以形成一可容納密封件631的空間。在第三電解液通道模組630的正面630a,凹槽636及凹槽637分別被配置在第八開口630d的周圍及第九開口630e的周圍,以形成可分別容納密封件632及密封件633的空間。
第四電解液通道模組640具有面對負極板模組700-1的正面640a與相對於正面640a的反面640b。第四電解液通道模組640具有第十開口640c、第十一開口640d及第十二開口640e,皆貫穿第四電解液通道模組640的正面640a與反面640b,且分別對應且連通於第三電解液通道模組630的第七開口630c、第八開口630d及第九開口630e。第十開口640c可容納電解液。第十一開口640d及第十二開口640e分別位於第十開口640c的上方與第十開口640c的下方。第三電解液通道模組630的第七開口630c與第四電解液通道模組640的第十開口640c組成中殻體600-1的第二中間矩形開口602,以定義出一個用來容納電解液的第二容置空間(未繪示)。第三電解液通道模組630的第八開口630d與第四電解液通道模組640的第十一開口640d組成位於第二中間矩形開口602上方的第二電解液排出歧道604。第三電解液通道模組630的第九開口630e與第四電解液通道模組640的第十二開口640e組成位於第二中間矩形開口602下方的第二電解液供應歧道606。第二電解液供應歧道606與第二電解液排出歧道604可分別相鄰第二中間矩形開口602,並形成電解液之供應與排出通道以輸送電解液。其中,第一電解液供應歧道430與第二電解液供應歧道606的位置是對應且連通的,第一電解液排出歧道428與第二電解液排出歧道604的位置是對應且連通的。
在第四電解液通道模組640的正面640a,分配流道648被設置在開口640c與開口640d之間以及開口640c與開口640e之間。如此一來,電解液即可從電解液供應歧道606經由分配流道648進入第二中間矩形開口602,並經由分配流道648至電解液排出歧道604。
在第四電解液通道模組640的正面640a,凹槽644被配置在第十開口640c、第十一開口640d及第十二開口640e的周圍,以形成一可容納密封件646的空間。在第四電解液通道模組640的反面640b,凹槽645被佈置在第十開口640c的周圍並約等於充電電極模組900之充電電極910的外圍邊界,而凹槽645的深度則約等於充電電極910的厚度。如此一來,凹槽645可容納充電電極910與隔離膜920之組合,而在第十開口640c中之電解液即可接觸充電電極模組900,以形成在充電反應時之離子傳導路徑。此外,在第四電解液通道模組640的反面640b,凹槽647、凹槽649a及凹槽649b分別配置在第十開口640c、第十一開口640d及第十二開口640e的周圍,以形成可分別容納密封件641、密封件642與密封件643的空間。
本實施例的充電正極板模組500-1位於中殼體600-1的第二側,包括具有第二貫穿開口501的充電正極板504與密封件508a。充電正極板504具有面對空氣側的反面500b以及相對於反面500b的正面500a,而密封件508a則是佈置於充電正極板504的正面500a。多數個第二貫穿開口501貫穿充電正極板504的正面500a與反面500b。充電正極板504的反面500b具有凸出部503a與凸出部503b,分別設置在第二貫穿開口501的左右兩側,以分別與各個第二貫穿開口501連通。凸出部503a與凸出部503b設於遠離充電電極模組900的一表面上,可形成電池單元100A所生成氧氣的導引流道。從充電正極板504之多數個第二貫穿開口501所離開的氧氣即可藉由強迫對流方式從凸出部503a(或凸出部503b)而排出至環境。也就是說,因充電反應所生成的氧氣能順利地被排出電池單元100A外,而電池單元100A內部不易累積氣泡,而使反應面積減少。藉此,電池單元100A的性能可提升。
在充電正極板504之面向中殻體600-1的表面(即充電正極板504的正面500a),一充電正極板504之凹槽505被佈置在多數個第二貫穿開口501的周圍,以形成可容納密封件508a的空間。在充電正極板504之正面500a,充電正極板504的凹槽507被佈置在凹槽505的周圍,以形成一可容納充電電極模組900的空間。充電正極集電板510被佈置在充電正極板504之一側(例如但不限於:右下側),而一電池單元100A之充電正極集電板510可連接相鄰之另一電池單元100A的充電負極集電板707而與負極板模組700-1連接,以形成一串聯之充電電路。
充電電極模組900位於充電正極板模組500-1與中殼體600-1之間。充電電極模組900包括充電電極910、第三隔離膜920、及氧析出反應觸媒(圖未示出)。充電電極模組900具有面對充電正極板模組500-1的反面900b與相對於反面900b的正面900a。充電電極910配置於充電電極模組900之反面900b,而第三隔離膜920則配置於充電電極模組900的正面900a。充電電極910是由一用於充電反應之多孔導電材料與一結合至所述多孔導電材料之一面的防水透氣膜所組成,其中充電電極910的防水透氣膜是面對充電正極板模組500-1。經由充電電極910所生成氧氣可經由防水透氣膜擴散進入充電正極板504之複數個第二貫穿開口501以排出至環境,而充電電極910的防水透氣膜也可避免電解液洩漏至環境。另外,第三隔離膜920可隔絕充電反應所生成金屬(例如但不限於:鋅)直接接觸充電電極910的多孔導電材料,以避免正負極短路發生。此外第三隔離膜920,也可隔絕放電反應所生成氧化物汙染充電電極910的多孔導電材料,以延長充電電極910的使用壽命。氧析出反應觸媒配置於充電電極910與第四電解液通道模組640之間,以與電解液接觸來催化充電反應。
圖7A是圖6B的金屬空氣液流二次電池之充電反應工作機制的示意圖。圖8A是圖7A所繪示的充電反應的工作機制簡化圖。若以鋅空氣液流二次電池為例,在充電過程,由氧化鋅(ZnO)、氫氧化鉀(KOH)與水(H2 O)所組成的電解液會經由外部幫浦輸送至金屬液流空氣二次電池10A之電解液進口(未繪示),然後再依序分配至各電池單元100A。在各電池單元100A中,電解液先進入中殼體600-1的第二電解液供應歧道606,電解液亦會進入前殼體400-1的第一電解液供應歧道430,分別經由第四電解液通道模組640的分配流道648與第一電解液通道模組402的分配流道418,導入至中殼體600-1的第二中間矩形開口602與前殼體400-1的第一中間矩形開口426;接著,流向負極板模組700-1之負極板700A的中間矩形開口700c,然後再流入多孔金屬材料701之孔隙。當電解液充滿中殼體600-1的第二中間矩形開口602、前殼體400-1的第一中間矩形開口426及負極板700A的中間矩形開口700c,電解液即可接觸空氣電極模組300之空氣電極302、充電電極模組900之充電電極910與負極板模組700-1之多孔金屬材料701,並形成在電池單元100A中之傳導離子介質。
從外部經由金屬液流空氣二次電池10A之充電正極集電板104與充電負極集電板108通入適當電流即可對各電池單元100A進行充電。在電池單元100A之負極側,電解液中之氧化鋅(ZnO)與水(H2 O)會與從負極板700A之充電負極集電板707導入之e- 共同反應,而氧化鋅(ZnO)則進一步分解成鋅離子(Zn2+ )並朝多孔金屬材料701遷移。在鋅離子(Zn2+ )接觸多孔金屬材料701後,鋅離子(Zn2+ )即可與e- 反應形成鋅(Zn)並沉積至多孔金屬材料701之孔隙。於此同時,氫氧根離子(OH- )也會產生並朝充電電極模組900之充電電極910遷移。在充電正極側,當來自於負極側之氫氧根離子(OH- )接觸充電電極910時,氫氧根離子(OH- )將反應產生氧(O2 )、水(H2 O)與e- 。e- 會經由充電電極910傳導至充電正極板504之充電正極集電板510,然後再導入相鄰電池單元100A之負極板700A之充電負極集電板707。
特別是,經由充電電極910所生成氧(O2 )可經由充電電極模組900之防水透氣膜擴散進入充電正極板504之多數個第二貫穿開口501,然後再藉由風扇以強迫對流方式排出至環境。如此一來,即可解決生成氧(O2 )可能累積在電池單元100A中以致電解液無法有效接觸充電電極910之問題,進而提升金屬空氣電流電池10A的性能。
第一中間矩形開口426及第二中間矩形開口602中的電解液會經由第一電解液通道模組402的電解液分配流道418及第四電解液通道模組640的電解液分配流道648進入前殻體400-1的第一電解液排出歧道428及中殻體600-1的第二電解液排出歧道604。如此一來,各電池單元100A之電解液即可經由金屬液流空氣二次電池10A之電解液出口112排出至外部。由電解液出口112排出之電解液會再經由外部幫浦輸送至電解液進口(未繪示),如此即完成電解液的循環流動。
圖7B是圖6B的金屬空氣液流二次電池之放電反應工作機制的示意圖。圖8B是圖7B所繪示的放電反應的工作機制簡化圖。當充電反應完成並開始進行放電反應時,電解液會以如充電過程所述之方式不斷地循環流動,以充滿各中間矩形開口426、602、700c,進而形成可傳導離子之介質。在負極側,沉積至多孔金屬材料701之孔隙的鋅(Zn)會與來自正極側的氫氧根離子(OH- )共同反應。所產生之鋅離子(Zn2+ )從多孔金屬材料701朝正極側遷移,而e- 則從負極板700A傳導至放電負極集電板706,然後再導入相鄰電池單元100A之放電正極板202的放電正極集電板214。鋅離子(Zn2+ )會與氫氧根離子(OH- )進一步反應產生氧化鋅(ZnO)與水(H2 O),而部分無法溶解於電解液中之氧化鋅(ZnO)將以固體形式存在於多孔金屬材料701之孔隙或電解液中。此固體的氧化鋅(ZnO)的產生不僅會覆蓋多孔金屬材料701以致於造成負極鈍化,而且也會汙染電解液以致於增加離子傳導阻抗。此兩種現象分別導致負極放電反應與離子傳導變差,故電池性能將下降甚至是停止運作。為克服此問題,在放電反應過程中,電解液可不斷循環流動以使氧化鋅(ZnO)隨電解液排出金屬液流空氣二次電池10A外。如此一來,便能避免氧化鋅(ZnO)累積與負極鈍化。另外,對於存在於電解液中之氧化鋅(ZnO)可藉由外部過濾方式予以排除,如此電解液即可恢復原本的離子傳導性,然後再輸送至金屬液流空氣二次電池10A。在放電正極側,空氣可藉由風扇以強迫對流方式導入放電正極板202之複數個第一貫穿開口204,然後再排出至環境。於此同時,氧氣(O2 )可經由擴散進入空氣電極302之防水透氣膜然後再進入觸媒,以與電解液中之水(H2 O)及來自負極側之e- 共同反應產生朝負極側遷移之氫氧根離子(OH- )。因為負極放電反應需要足夠氧氣並會產生大量廢熱,故在供應空氣至負極側時需考慮空氣流量是否可同時滿足反應與散熱需求,以確保電池單元100A可產生穩定的輸出。
綜上所述,在本實施例中,放電正極板模組200A位於前殼體400-1的第一側,中殼體600-1位於前殼體400-1的第二側,負極板模組700-1位於中殼體600-1的第一側與前殼體400-1之間,充電正極板模組500-1位於中殼體600-1的第二側,且充電電極模組900位於充電正極板模組500-1與中殼體600-1之間,因此,氧氣可藉由風扇有效排出,而電解液的液面能維持穩定,即電池單元100A的反應面積大致上維持不變。如此一來,金屬空氣液流二次電池10A的充電電壓能穩定、放電電壓及庫倫效率能提升,以下配合圖9說明之。
圖9示出本發明另一實施例之金屬空氣液流二次電池10A之電壓與時間的關係,其中曲線S15示出充電時間為15分鐘之情況下金屬空氣液流二次電池10A之電壓與時間的關係,曲線S30示出充電時間為30分鐘之情況下金屬空氣液流二次電池10A之電壓與時間的關係,而曲線S60示出充電時間為60分鐘之情況下金屬空氣液流二次電池10A之電壓與時間的關係。請參照圖9,金屬空氣液流二次電池10A的充電電壓可長時間在2.00~2.13 V之間維持穩定;金屬空氣液流二次電池10A的放電電壓可提升至 0.90~0.55 V;金屬空氣液流二次電池10A的庫倫效率可提升81%~90%。
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。
10、10A‧‧‧金屬空氣電流電池
100、100A‧‧‧電池單元
102‧‧‧放電正極集電板
104‧‧‧充電正極集電板
106‧‧‧放電負極集電板
108‧‧‧充電負極集電板
110a‧‧‧正極端板
110b‧‧‧負極端板
111a‧‧‧前端板
111b‧‧‧後端板
112‧‧‧電解液出口
114a‧‧‧定位孔
114b‧‧‧螺桿孔
116‧‧‧電解液進口
200、200A‧‧‧放電正極板模組
202‧‧‧放電正極板
202a、300a、402a、404a、630a、640a、500a、700a、900a‧‧‧正面
202b、300b、402b、404b、630b、640b、500b、700b、900b‧‧‧背面
204‧‧‧第一貫穿開口
206a、206b‧‧‧凸出部
208‧‧‧第一凹槽
210‧‧‧第二凹槽
212‧‧‧密封件
214‧‧‧放電正極集電板
216‧‧‧隔板
300‧‧‧空氣電極模組
302‧‧‧空氣電極
304‧‧‧第一隔離膜
400、400-1‧‧‧前殼體
400a‧‧‧第一側
400b‧‧‧第二側
402‧‧‧第一電解液通道模組
404‧‧‧第二電解液通道模組
406‧‧‧第一開口
408、413、432、436、439、608、612、634、635、636、637、644、645、647、649a、649b、806‧‧‧凹槽
410、415、416、417、434、437、438、508a、610、614、631、632、633、641、642、643、646、808‧‧‧密封件
412‧‧‧第二開口
414‧‧‧第三開口
418、648‧‧‧分配流道
420‧‧‧第四開口
422‧‧‧第五開口
424‧‧‧第六開口
426‧‧‧第一中間矩形開口
428‧‧‧第一電解液排出歧道
430‧‧‧第一電解液供應歧道
500、500-1‧‧‧充電正極板模組
501、502‧‧‧第二貫穿開口
503a、503b‧‧‧凸出部
504‧‧‧充電正極板
505、507‧‧‧凹槽
506‧‧‧第二隔離膜
508‧‧‧氧析出反應觸媒
510‧‧‧充電正極集電板
600、600-1‧‧‧中殼體
602‧‧‧第二中間矩形開口
604‧‧‧第二電解液排出歧道
606‧‧‧第二電解液供應歧道
630‧‧‧第三電解液通道模組
630c‧‧‧第七開口
630d‧‧‧第八開口
630e‧‧‧第九開口
640‧‧‧第四電解液通道模組
640c‧‧‧第十開口
640d‧‧‧第十一開口
640e‧‧‧第十二開口
700、700A‧‧‧負極板
700c‧‧‧中間矩形開口
700d、700e‧‧‧凸緣
700-1‧‧‧負極板模組
701‧‧‧多孔金屬材料
702、707‧‧‧充電負極集電板
703、705‧‧‧夾片
704、706‧‧‧放電負極集電板
800‧‧‧後殼體
802‧‧‧第三電解液排出歧道
804‧‧‧第三電解液供應歧道
900‧‧‧充電電極模組
910‧‧‧充電電極
920‧‧‧第三隔離膜
G‧‧‧環境空氣
圖1A是依照本發明的一實施例的一種金屬空氣液流二次電池的組裝結構透視圖。 圖1B是圖1A的結構之背面透視圖。 圖2A是依照本發明的另一實施例的一種金屬空氣液流二次電池的立體示意圖。 圖2B是依照圖2A繪示的金屬空氣液流二次電池的正面之組裝結構爆炸圖。 圖2C是圖2B的金屬空氣液流二次電池的背面之組裝結構爆炸圖。 圖3A是圖2B的金屬空氣液流二次電池之充電反應工作機制的示意圖。 圖3B是圖2B的金屬空氣液流二次電池之放電反應工作機制的示意圖。 圖4A是圖3A所繪示的充電反應的工作機制簡化圖。 圖4B是圖3B所繪示的放電反應的工作機制簡化圖。 圖5是依照本發明的另一實施例的一種金屬液流空氣二次電池的組裝結構透視圖。 圖6A是依照本發明的另一實施例的一種金屬空氣液流二次電池的立體示意圖。 圖6B是依照圖6A繪示的金屬空氣液流二次電池的正面之組裝結構爆炸圖。 圖6C是圖6B的金屬空氣液流二次電池的背面之組裝結構爆炸圖。 圖7A是圖6B的金屬空氣液流二次電池之充電反應工作機制的示意圖。 圖7B是圖6B的金屬空氣液流二次電池之放電反應工作機制的示意圖。 圖8A是圖7A所繪示的充電反應的工作機制簡化圖。 圖8B是圖7B所繪示的放電反應的工作機制簡化圖。 圖9示出本發明另一實施例之金屬空氣液流二次電池之電壓與時間的關係。

Claims (22)

  1. 一種金屬空氣液流二次電池,包括: 一前殼體,係由一第一電解液通道模組與一第二電解液通道模組組合而成,具有一第一容置空間,以容納一電解液; 一放電正極板模組,位於該前殼體的一第一側,包括具有多數個第一貫穿開口的一放電正極板,其中該第一電解液通道模組介於該放電正極板模組與該第二電解液通道模組之間; 一空氣電極模組,位於該放電正極板模組與該前殼體之間,包括一氧還原反應觸媒,與該電解液接觸; 一後殼體,位於該前殼體的一第二側; 一負極板,位於該後殼體與該前殼體之間,與該電解液接觸; 一充電正極板模組,位於該前殼體與該負極板之間,包括具有一第二貫穿開口的一充電正極板與一氧析出反應觸媒;以及 一中殼體,位於該充電正極板模組與該負極板之間,具有一第二容置空間,以容納該電解液。
  2. 如申請專利範圍第1項所述的金屬空氣液流二次電池,其中該放電正極板更包括多數個凸出部,設於遠離該空氣電極模組的一表面上,以形成多數個空氣導引流道,分別與該些第一貫穿開口連通。
  3. 如申請專利範圍第1項所述的金屬空氣液流二次電池,其中該空氣電極模組,包括 一空氣電極,面對該放電正極板模組;以及 一第一隔離膜,設置在該空氣電極與該前殼體之間,且該氧還原反應觸媒面對該第一隔離膜。
  4. 如申請專利範圍第1項所述的金屬空氣液流二次電池,其中該第一電解液通道模組包括一第一開口以及位於該第一開口上方與下方的一第二開口及一第三開口、該前殼體的該第二電解液通道模組包括分別對應於該第一電解液通道模組的該第一開口、該第二開口及該第三開口的一第四開口、一第五開口與一第六開口,且該前殼體更包括: 一第一中間矩形開口,係由該第一開口與該第四開口所構成,以形成該第一容置空間; 一第一電解液供應歧道與第一電解液排出歧道,分別相鄰該第一中間矩形開口,其中該第一電解液供應歧道係由該第三開口與該第六開口構成,且該第一電解液排出歧道係由該第二開口與該第五開口構成;以及 多數個分配流道,位在該第一電解液通道模組的背面,連通該第一中間矩形開口與該第一電解液供應歧道以及連通該第一中間矩形開口與該第一電解液排出歧道,以將該第一電解液供應歧道內的該電解液輸送至該第一容置空間,並將該第一容置空間內的該電解液由該第一電解液排出歧道輸出。
  5. 如申請專利範圍第1項所述的金屬空氣液流二次電池,其中該前殼體更包括一凹槽,位於該第一電解液通道模組,用以容納該空氣電極模組與該放電正極板模組。
  6. 如申請專利範圍第4項所述的金屬空氣液流二次電池,其中該中殼體包括: 一第二中間矩形開口,以形成該第二容置空間;以及 一第二電解液供應歧道與一第二電解液排出歧道,分別相鄰該第二中間矩形開口; 其中,該第一電解液供應歧道與該第二電解液供應歧道的位置是對應且連通的,該第一電解液排出歧道與該第二電解液排出歧道的位置是對應且連通的。
  7. 如申請專利範圍第6項所述的金屬空氣液流二次電池,其中該中殼體更包括一凹槽,圍繞於該第二中間矩形開口外緣並連通該第二容置空間,以容納該充電正極板模組。
  8. 如申請專利範圍第4項所述的金屬空氣液流二次電池,其中該後殼體包括一第三電解液排出歧道和一第三電解液供應歧道,該第一電解液供應歧道與該第三電解液供應歧道的位置是對應且連通的,該第一電解液排出歧道與該第三電解液排出歧道的位置是對應且連通的。
  9. 如申請專利範圍第1項所述的金屬空氣液流二次電池,其中該充電正極板模組更包括一第二隔離膜,設置在該充電正極板遠離該前殼體的一側。
  10. 如申請專利範圍第1項所述的金屬空氣液流二次電池,其中該後殼體更包括一凹槽,用以容納該負極板。
  11. 一種金屬空氣液流二次電池包括: 多數個電池單元,其中各個電池單元包括如申請專利範圍第1項至第10項中所述的金屬液流二次電池,相鄰的兩個電池單元之一的該後殼體與另一的該放電正極板模組接觸。
  12. 一種金屬空氣液流二次電池,包括: 一前殼體,係由一第一電解液通道模組與一第二電解液通道模組組合而成,具有一第一容置空間,以容納一電解液; 一放電正極板模組,位於該前殼體的一第一側,包括具有多數個第一貫穿開口的一放電正極板,其中該第一電解液通道模組介於該放電正極板模組與該第二電解液通道模組之間; 一空氣電極模組,位於該放電正極板模組與該前殼體之間,包括一氧還原反應觸媒,與該電解液接觸; 一中殼體,位於該前殼體的一第二側,具有一第二容置空間,以容納該電解液; 一負極板模組,位於該中殼體的一第一側與該前殼體之間,具有一第三容置空間,以容納該電解液與生成金屬之沉積; 一充電正極板模組,位於該中殼體的一第二側,包括具有一第二貫穿開口的一充電正極板;以及 一充電電極模組,位於該充電正極板模組與該中殼體之間,具有與該電解液接觸之氧析出反應觸媒。
  13. 如申請專利範圍第12項所述的金屬空氣液流二次電池,其中該放電正極板更包括多數個凸出部,設於遠離該空氣電極模組的一表面上,以形成多數個空氣導引流道,分別與該些第一貫穿開口連通。
  14. 如申請專利範圍第12項所述的金屬空氣液流二次電池,其中該空氣電極模組包括: 一空氣電極,面對該放電正極板模組;以及 一第一隔離膜,設置在該空氣電極與該前殼體之間,且該氧還原反應觸媒面對該第一隔離膜。
  15. 如申請專利範圍第12所述的金屬空氣液流二次電池,其中該第一電解液通道模組包括一第一開口以及位於該第一開口上方與下方的一第二開口及一第三開口、該前殼體的該第二電解液通道模組包括分別對應於該第一電解液通道模組的該第一開口、該第二開口及該第三開口的一第四開口、一第五開口與一第六開口,且該前殼體更包括: 一第一中間矩形開口,係由該第一開口與該第四開口所構成,以形成該第一容置空間; 一第一電解液供應歧道與第一電解液排出歧道,分別相鄰該第一中間矩形開口,其中該第一電解液供應歧道係由該第三開口與該第六開口構成,且該第一電解液排出歧道係由該第二開口與該第五開口構成;以及 多數個分配流道,位在該第一電解液通道模組的背面,連通該第一中間矩形開口與該第一電解液供應歧道以及連通該第一中間矩形開口與該第一電解液排出歧道,以將該第一電解液供應歧道內的該電解液輸送至該第一容置空間,並將該第一容置空間內的該電解液由該第一電解液排出歧道輸出。
  16. 如申請專利範圍第12項所述的金屬空氣液流二次電池,其中該前殼體更包括一凹槽,位於該第一電解液通道模組,用以容納該空氣電極模組與該放電正極板模組。
  17. 如申請專利範圍第15項所述的金屬空氣液流二次電池,其中該中殼體包括: 一第二中間矩形開口,以形成該第二容置空間;以及 一第二電解液供應歧道與一第二電解液排出歧道,分別相鄰該第二中間矩形開口; 其中,該第一電解液供應歧道與該第二電解液供應歧道的位置是對應且連通的,該第一電解液排出歧道與該第二電解液排出歧道的位置是對應且連通的。
  18. 如申請專利範圍第17項所述的金屬空氣液流二次電池,其中該中殼體更包括一凹槽,圍繞於該第二中間矩形開口周圍並連通該第二容置空間,以容納該負極板模組。
  19. 如申請專利範圍第12項所述的金屬空氣液流二次電池,其中該放電正極板模組更包括一隔板,設置在該放電正極板遠離該前殼體的一側。
  20. 如申請專利範圍第12項所述的金屬空氣液流二次電池,其中該負極板模組包括多孔金屬材料。
  21. 如申請專利範圍第12項所述的金屬空氣液流二次電池,其中該充電正極板更包括多數個凸出部,設於遠離該充電電極模組的一表面上,以形成多數個氧氣導引流道,分別與該些第二貫穿開口連通。
  22. 如申請專利範圍第12項所述的金屬空氣液流二次電池,其中該充電電極模組更包括一充電電極與一第三隔離膜,該充電電極模組具有面對該充電正極板模組的一反面與相對於該反面的一正面,該充電電極配置於該充電電極模組之該反面,而該第三隔離膜配置於該充電電極模組的該正面。
TW107142208A 2017-12-22 2018-11-27 金屬空氣液流二次電池 TWI699028B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
TW106145204 2017-12-22
??106145204 2017-12-22
TW106145204 2017-12-22

Publications (2)

Publication Number Publication Date
TW201929311A true TW201929311A (zh) 2019-07-16
TWI699028B TWI699028B (zh) 2020-07-11

Family

ID=68049177

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107142208A TWI699028B (zh) 2017-12-22 2018-11-27 金屬空氣液流二次電池

Country Status (1)

Country Link
TW (1) TWI699028B (zh)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012156972A1 (en) * 2011-05-16 2012-11-22 Phinergy Ltd. Zinc-air battery
TWI550936B (zh) * 2016-02-18 2016-09-21 財團法人工業技術研究院 金屬空氣液流二次電池

Also Published As

Publication number Publication date
TWI699028B (zh) 2020-07-11

Similar Documents

Publication Publication Date Title
WO2017142042A1 (ja) フロー電池
US9178207B2 (en) Electrochemical cell system with a progressive oxygen evolving electrode / fuel electrode
JP5734989B2 (ja) 流れ管理システムを備えた電気化学電池
US4871627A (en) Multi-cell metal/air battery
CA1257325A (en) Lightweight bipolar metal-gas battery
EP1239530A2 (en) Solid polymer electrolyte fuel cell assembly, fuel cell stack, and method of supplying reaction gas in the fuel cell assembly
US20130177786A1 (en) Lithium accumulator
US4957830A (en) Rechargeable metal oxide-hydrogen battery
US20140154554A1 (en) Battery module
WO2018117192A1 (ja) フロー電池
JP5157405B2 (ja) 燃料電池用のターミナルプレートと燃料電池
KR101807378B1 (ko) 부식을 제어하기 위한 전기화학 장치 및 방법
TWI699028B (zh) 金屬空氣液流二次電池
TWI550936B (zh) 金屬空氣液流二次電池
JP7248776B2 (ja) 二次電池
WO2014175117A1 (ja) 金属空気電池
JP2015220024A (ja) 金属空気電池本体及び金属空気電池
US20220238904A1 (en) Redox flow battery
JP2018170231A (ja) フロー電池
US11158862B2 (en) Fuel cell with multiple electric connectors
JP2006059679A (ja) 燃料電池スタック
US20230187736A1 (en) Metal-air battery module
JP2017084650A (ja) 金属空気組電池
CN110088974B (zh) 电池槽及具备其的金属空气电池
US20190348729A1 (en) Electrochemical cell having orthogonal arrangement of electrodes