TW201929259A - Light-emitting device - Google Patents

Light-emitting device Download PDF

Info

Publication number
TW201929259A
TW201929259A TW108114506A TW108114506A TW201929259A TW 201929259 A TW201929259 A TW 201929259A TW 108114506 A TW108114506 A TW 108114506A TW 108114506 A TW108114506 A TW 108114506A TW 201929259 A TW201929259 A TW 201929259A
Authority
TW
Taiwan
Prior art keywords
light
outer contour
spacing
emitting
emitting element
Prior art date
Application number
TW108114506A
Other languages
Chinese (zh)
Other versions
TWI699904B (en
Inventor
劉正強
卓亨穎
郭得山
Original Assignee
晶元光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 晶元光電股份有限公司 filed Critical 晶元光電股份有限公司
Priority to TW108114506A priority Critical patent/TWI699904B/en
Publication of TW201929259A publication Critical patent/TW201929259A/en
Application granted granted Critical
Publication of TWI699904B publication Critical patent/TWI699904B/en

Links

Landscapes

  • Led Devices (AREA)

Abstract

A light-emitting device comprises: a light-emitting stack comprising a mesa area and a lower area, and the mesa area comprises a first outer periphery; a transparent conductive layer on the mesa area of the light-emitting stack, and wherein, from a top-view of the light-emitting device, the transparent conductive layer comprises a second outer periphery in the first outer periphery, and a distance between the first outer periphery and the second outer periphery is 11~28 [mu]m.

Description

發光元件Light-emitting element

本發明係關於一種發光元件,特別是一種具有一透明導電層的發光元件。The present invention relates to a light-emitting element, and more particularly to a light-emitting element having a transparent conductive layer.

隨著半導體科技的進步,現今的光電半導體元件如雷射或發光二極體(Light Emitting Diode, LED)已被廣泛地應用在許多領域,例如通訊、照明、顯示等等,尤其發光二極體具備了高亮度與高演色性等特性,加上具有省電、體積小、低電壓驅動以及不含汞等優點,發光二極體更已廣泛地取代傳統照明技術而應用在顯示器與照明等領域。因此,提升光電半導體元件的光電轉換效率,例如如何兼顧發光二極體的發光效率以及導電能力,實為一直以來研發人員研發的重點之一。With the advancement of semiconductor technology, today's optoelectronic semiconductor components such as laser or light emitting diodes (LEDs) have been widely used in many fields, such as communication, lighting, display, etc., especially LEDs. With high brightness and high color rendering, coupled with power saving, small size, low voltage drive and mercury free, LEDs have been widely used to replace traditional lighting technology in display and lighting applications. . Therefore, improving the photoelectric conversion efficiency of the optoelectronic semiconductor component, for example, how to balance the luminous efficiency and the electrical conductivity of the light-emitting diode, has been one of the focuses of research and development by researchers.

本發明係提供一種發光元件包含:一發光疊層,包含一高台區及一凹陷區,且高台區具有一第一外輪廓;以及一透明導電層位於發光疊層之高台區上;其中,由俯視觀之,透明導電層具有一第二外輪廓位於第一外輪廓之內,且第一外輪廓與第二外輪廓之間具有一間距,間距約為11~28 μm。The invention provides a light-emitting element comprising: a light-emitting layer comprising a high-level region and a recessed region, wherein the high-level region has a first outer contour; and a transparent conductive layer is located on the high-level region of the light-emitting layer; Viewed from a top view, the transparent conductive layer has a second outer contour located within the first outer contour, and the first outer contour and the second outer contour have a spacing between about 11 and 28 μm.

以下實施例將伴隨著圖式說明本發明之概念,在圖式或說明中,相似或相同之部分係使用相同之標號,並且在圖式中,元件之形狀或厚度可擴大或縮小。需特別注意的是,圖中未繪示或說明書未描述之元件,可以是熟習此技藝之人士所知之形式。The present invention will be described with reference to the drawings, in which the same or the same reference numerals are used in the drawings or the description, and in the drawings, the shape or thickness of the elements may be enlarged or reduced. It is to be noted that elements not shown or described in the specification may be in a form known to those skilled in the art.

請參照第1、2圖,此分別為本發明第一實施例之發光元件100的俯視示意圖及剖視示意圖。發光元件100具有一發光疊層1及一透明導電層2設於發光疊層1上,發光疊層1包含一第一半導體層11、一第二半導體層12及一活性結構13設於第一半導體層11及第二半導體層12之間,且活性結構13及第二半導體層12依序形成於第一半導體層11上,部分之第二半導體層12及部分之活性結構13係被移除並暴露出部分之第一半導體層11,以使發光疊層1形成一凹陷區14以及凸出於凹陷區14的一高台區15。由剖視觀之,凹陷區14包含部份之第一半導體層11,高台區15則包含另一部份之第一半導體層11、活性結構13及第二半導體層12依序堆疊於第一半導體層11上。由俯視觀之,高台區15具有一第一外輪廓151,第一外輪廓151為第二半導體層12的邊界,且暴露之部分第一半導體層11係位於由第一外輪廓151圈繞的範圍之外。詳言之,由發光元件100的剖視觀之,高台區15具有一側邊S連接位於凹陷區14的第一半導體層11暴露的表面,側邊S的位置相當於第一外輪廓151。第一半導體層11及第二半導體層12分別具有不同之一第一導電性及一第二導電性,以分別提供電子與電洞,或者分別提供電洞與電子;活性結構13可以包含單異質結構(single heterostructure)、雙異質結構(double heterostructure)或多層量子井(multiple quantum wells)。第一半導體層11、第二半導體層12及活性結構13之材料為三五族化合物半導體,例如可以為:GaAs、InGaAs、AlGaAs、AlInGaAs、GaP、InGaP 、AlInP、AlGaInP、GaN、InGaN、AlGaN 、AlInGaN、AlAsSb、InGaAsP 、InGaAsN 、AlGaAsP等。在本發明實施例中,若無特別說明,上述化學表示式包含「符合化學劑量之化合物」及「非符合化學劑量之化合物」,其中,「符合化學劑量之化合物」例如為三族元素的總元素劑量與五族元素的總元素劑量相同,反之,「非符合化學劑量之化合物」例如為三族元素的總元素劑量與五族元素的總元素劑量不同。舉例而言,化學表示式為AlGaAs即代表包含三族元素鋁(Al)及/或鎵(Ga),以及包含五族元素砷(As),其中三族元素(鋁及/或鎵)的總元素劑量可以與五族元素(砷)的總元素劑量相同或相異。另外,若上述由化學表示式表示的各化合物為符合化學劑量之化合物時,AlGaAs 即代表 Alx Ga(1-x) As,其中,0≦x≦1;AlInP 代表Alx In(1-x) P,其中,0≦x≦1;AlGaInP代表(Aly Ga(1-y) )1-x Inx P,其中,0≦x≦1,0≦y≦1;AlGaN 代表Alx Ga(1-x) N,其中,0≦x≦1;AlAsSb 代表 AlAsx Sb(1-x) ,其中,0≦x≦1;InGaP代表Inx Ga1-x P,其中,0≦x≦1;InGaAsP代表Inx Ga1-x As1-y Py ,其中,0≦x≦1, 0≦y≦1;InGaAsN 代表 Inx Ga1-x As1-y Ny ,其中,0≦x≦1,0≦y≦1;AlGaAsP代表Alx Ga1-x As1-y Py ,其中,0≦x≦1,0≦y≦1;InGaAs代表Inx Ga1-x As,其中,0≦x≦1。Please refer to FIGS. 1 and 2 , which are respectively a schematic plan view and a cross-sectional view of the light-emitting element 100 according to the first embodiment of the present invention. The light emitting device 100 has a light emitting layer 1 and a transparent conductive layer 2 disposed on the light emitting layer 1. The light emitting layer 1 comprises a first semiconductor layer 11, a second semiconductor layer 12 and an active structure 13 disposed at the first Between the semiconductor layer 11 and the second semiconductor layer 12, and the active structure 13 and the second semiconductor layer 12 are sequentially formed on the first semiconductor layer 11, and part of the second semiconductor layer 12 and a portion of the active structure 13 are removed. A portion of the first semiconductor layer 11 is exposed such that the light-emitting layer 1 forms a recessed region 14 and a land portion 15 protruding from the recessed region 14. Viewed in a cross-sectional view, the recessed region 14 includes a portion of the first semiconductor layer 11, and the upper region 15 includes another portion of the first semiconductor layer 11, the active structure 13 and the second semiconductor layer 12 sequentially stacked on the first On the semiconductor layer 11. Viewed from a plan view, the elevated region 15 has a first outer contour 151, the first outer contour 151 is the boundary of the second semiconductor layer 12, and the exposed portion of the first semiconductor layer 11 is located around the first outer contour 151. Outside the scope. In detail, the high-altitude region 15 has a side S that connects the exposed surface of the first semiconductor layer 11 located in the recessed region 14 from the cross-sectional view of the light-emitting element 100, and the position of the side S corresponds to the first outer contour 151. The first semiconductor layer 11 and the second semiconductor layer 12 respectively have different first conductivity and second conductivity to respectively provide electrons and holes, or respectively provide holes and electrons; and the active structure 13 may comprise a single hetero Single heterostructure, double heterostructure or multiple quantum wells. The material of the first semiconductor layer 11, the second semiconductor layer 12 and the active structure 13 is a tri-five compound semiconductor, and may be, for example, GaAs, InGaAs, AlGaAs, AlInGaAs, GaP, InGaP, AlInP, AlGaInP, GaN, InGaN, AlGaN, AlInGaN, AlAsSb, InGaAsP, InGaAsN, AlGaAsP, and the like. In the examples of the present invention, unless otherwise specified, the chemical expressions include "chemically-accepting compounds" and "non-chemically-accepting compounds", wherein "chemically-accepting compounds" are, for example, total of tri-family elements. The elemental dose is the same as the total elemental dose of the Group 5 element. Conversely, the "non-chemically-accepting compound" such as the total elemental dose of the Group III element is different from the total elemental dose of the Group V element. For example, the chemical expression is AlGaAs, which means that the tri-group element aluminum (Al) and/or gallium (Ga), and the five-element element arsenic (As), of which the tri-group elements (aluminum and/or gallium) are total. The elemental dose may be the same as or different from the total elemental dose of the Group V element (arsenic). Further, if each of the compounds represented by the chemical expression is a chemical compound, AlGaAs represents Al x Ga (1-x) As, wherein 0 ≦ x ≦ 1; and AlInP represents Al x In (1-x ) P, wherein, 0 ≦ x ≦ 1; AlGaInP representative of (Al y Ga (1-y )) 1-x In x P, wherein, 0 ≦ x ≦ 1,0 ≦ y ≦ 1; AlGaN Representative Al x Ga ( 1-x) N, where 0≦x≦1; AlAsSb represents AlAs x Sb (1-x) , where 0≦x≦1; InGaP represents In x Ga 1-x P, where 0≦x≦1 InGaAsP represents In x Ga 1-x As 1-y P y , where 0≦x≦1, 0≦y≦1; InGaAsN represents In x Ga 1-x As 1-y N y , where 0≦x ≦1,0≦y≦1; AlGaAsP represents Al x Ga 1-x As 1-y P y , where 0≦x≦1,0≦y≦1; InGaAs represents In x Ga 1-x As, wherein 0≦x≦1.

於第一實施例中,由俯視觀之,發光疊層1具有一長邊1a及一短邊1b連接於長邊1a,短邊1b的長度與長邊1a的長度的比值較佳可約為0.15~0.45,使發光疊層1呈現一狹長型的俯視外觀,且發光元件100之發光疊層1的上表面積可進一步小於0.5 mm2 ,或者小於0.35 mm2 ,例如發光疊層1具有0.26 mm2 的上表面積。第一實施例的發光元件100由於具有小面積、狹長形發光疊層1,因此特別適用於某些領域,例如可安裝於背光單元的發光模組中,以作為手機、平板電腦、筆記型電腦等3C產品的背光單元,且當狹長形的發光疊層1搭配本發明實施例的透明導電層2時,能使電流更均勻散佈於發光疊層1中,進而增加發光元件100的發光效率,但本發明不以此為限。第一實施例的發光元件100之發光疊層1係具有相對稱的二長邊1a及相對稱的二短邊1b,且各長邊1a之兩端連接於短邊1b。此外,由俯視觀之,第一實施例的發光元件100之高台區15在沿著長邊1a的方向上具有一長度L,在沿著短邊1b的方向上具有一第一寬度W1及一第二寬度W2小於第一寬度W1。較佳的,於一實施例中的發光元件100之第一寬度W1與長度L的比值約為0.14~0.4,第二寬度W2與長度L的比值約為0.12~0.35,如此可進一步提升發光元件100的發光效率。在此需要說明的是,上述「沿著長邊1a方向」係與第1圖的y軸同方向,「沿著短邊1b方向」係與第1圖的x軸同方向。In the first embodiment, the light-emitting laminate 1 has a long side 1a and a short side 1b connected to the long side 1a, and the ratio of the length of the short side 1b to the length of the long side 1a is preferably about 0.15 to 0.45, the light-emitting laminate 1 has an elongated top view appearance, and the upper surface area of the light-emitting layer 1 of the light-emitting element 100 can be further less than 0.5 mm 2 or less than 0.35 mm 2 , for example, the light-emitting laminate 1 has 0.26 mm. The upper surface area of 2 . The light-emitting element 100 of the first embodiment has a small-area, elongated light-emitting laminate 1 and is therefore particularly suitable for use in certain fields, for example, in a light-emitting module of a backlight unit, as a mobile phone, a tablet computer, and a notebook computer. The backlight unit of the 3C product, and when the elongated light-emitting layer 1 is matched with the transparent conductive layer 2 of the embodiment of the invention, the current can be more evenly dispersed in the light-emitting layer 1, thereby increasing the luminous efficiency of the light-emitting element 100. However, the invention is not limited thereto. The light-emitting laminate 1 of the light-emitting element 100 of the first embodiment has a symmetrical two long sides 1a and a symmetrical short side 1b, and both ends of the long sides 1a are connected to the short sides 1b. Further, the top region 15 of the light-emitting element 100 of the first embodiment has a length L in the direction along the long side 1a and a first width W1 and one in the direction along the short side 1b. The second width W2 is smaller than the first width W1. Preferably, the ratio of the first width W1 to the length L of the light-emitting element 100 in one embodiment is about 0.14 to 0.4, and the ratio of the second width W2 to the length L is about 0.12 to 0.35, so that the light-emitting element can be further improved. 100 luminous efficiency. Here, the above-mentioned "direction along the long side 1a" is the same direction as the y-axis of the first drawing, and "the direction along the short side 1b" is the same direction as the x-axis of the first drawing.

請繼續參照第1、2圖,發光元件100可以選擇性地包含一基板3,發光疊層1位於基板3上,於第一實施例中,第一半導體層11、活性結構13及第二半導體層12係依序堆疊於基板3上,基板3可用以支撐發光疊層1,藉此增加發光元件100整體的機械強度,但基板3的功能可以不以此為限。於第一實施例中,基板3具有一第一邊31及一第二邊32小於第一邊31,第一邊31係與發光疊層1的長邊1a相對應,且第二邊32與短邊1b相對應,由俯視觀之,基板3的形狀大致與發光疊層1相同,且基板3的輪廓大致重合發光疊層1的外輪廓,然而,在另一實施例中,基板3的輪廓亦可位於發光疊層1的外輪廓之外,本發明不以此為限。第一實施例中之基板3可以是一透明基板、一導電基板或一絕緣基板,在此並不設限。第一實施例中之發光疊層1可以透過有機金屬化學氣相沉積法(MOCVD) 、分子束磊晶法(MBE) 或氫化物氣相磊晶法 (HVPE) 等磊晶方法成長於基板3或另一成長基板上,若是在成長基板上生成的發光疊層1則可藉由基板轉移技術,將發光疊層1接合至基板3並可選擇性地移除所述成長基板或予以保留。於第一實施例中的發光元件100之發光疊層1係直接成長於基板3上,且發光疊層1及基板3之間可以選擇設有一緩衝層(圖未示),緩衝層可以包含多晶、單晶材料,例如緩衝層之材料可包含氮化鎵(GaN)、氮化鋁(AlN)、氮化鋁鎵(AlGaN)等;或者,在另一實施例中,發光疊層1透過基板轉移技術接合於基板3,緩衝層可以作為黏著層以將發光疊層1固定於透明基板3上,在此情況下,緩衝層的材料可以包含透明之高分子材料、氧化物、氮化物或氟化物等。另外,第一實施例中之基板3的材料可以為但並不限於透明絕緣材料如藍寶石(Sapphire)、鑽石(Diamond)、玻璃(Glass)、石英(Quartz)、壓克力(Acryl)、環氧樹脂(Epoxy)、氮化鋁(AlN)、或者可以為透明導電氧化物(TCO)如氧化鋅(ZnO) 、氧化銦錫(ITO)、氧化銦鋅(IZO)、氧化鎵(Ga2 O3 )、氧化鋰鎵(LiGaO2 )、氧化鋰鋁(LiAlO2 )或氧化鎂鋁(MgAl2 O4 )等,或者可以為半導體材料如碳化矽(SiC)、砷化鎵(GaAs)、磷化鎵(GaP)、磷砷化鎵(GaAsP) 、硒化鋅(ZnSe)、硒化鋅(ZnSe)或磷化銦(InP)等,或者可以為金屬材料如鋁(Al)、銅(Cu)、鉬(Mo)或鎢(W)等元素或上述元素的組合。Referring to FIGS. 1 and 2, the light-emitting element 100 can selectively include a substrate 3, and the light-emitting layer 1 is disposed on the substrate 3. In the first embodiment, the first semiconductor layer 11, the active structure 13, and the second semiconductor The layers 12 are sequentially stacked on the substrate 3, and the substrate 3 can be used to support the light-emitting laminate 1, thereby increasing the mechanical strength of the entire light-emitting element 100, but the function of the substrate 3 is not limited thereto. In the first embodiment, the substrate 3 has a first side 31 and a second side 32 which are smaller than the first side 31. The first side 31 corresponds to the long side 1a of the light emitting laminate 1, and the second side 32 is The short side 1b corresponds, and the shape of the substrate 3 is substantially the same as that of the light-emitting laminate 1 in plan view, and the outline of the substrate 3 substantially coincides with the outer contour of the light-emitting laminate 1, however, in another embodiment, the substrate 3 The outline may also be located outside the outer contour of the light-emitting laminate 1, and the invention is not limited thereto. The substrate 3 in the first embodiment may be a transparent substrate, a conductive substrate or an insulating substrate, which is not limited herein. The light-emitting layer stack 1 of the first embodiment can be grown on the substrate 3 by an epitaxial method such as metalorganic chemical vapor deposition (MOCVD), molecular beam epitaxy (MBE) or hydride vapor phase epitaxy (HVPE). Alternatively, on the other growth substrate, if the light-emitting laminate 1 is formed on the growth substrate, the light-emitting laminate 1 can be bonded to the substrate 3 by a substrate transfer technique and the growth substrate can be selectively removed or retained. The light-emitting layer 1 of the light-emitting element 100 in the first embodiment is directly grown on the substrate 3, and a buffer layer (not shown) may be selectively disposed between the light-emitting layer 1 and the substrate 3. The buffer layer may include more The material of the crystal, single crystal material, such as the buffer layer, may comprise gallium nitride (GaN), aluminum nitride (AlN), aluminum gallium nitride (AlGaN), etc.; or, in another embodiment, the light emitting layer 1 is transparent. The substrate transfer technique is bonded to the substrate 3, and the buffer layer can serve as an adhesive layer to fix the light-emitting laminate 1 on the transparent substrate 3. In this case, the material of the buffer layer may comprise a transparent polymer material, an oxide, a nitride or Fluoride, etc. In addition, the material of the substrate 3 in the first embodiment may be, but not limited to, a transparent insulating material such as Sapphire, Diamond, Glass, Quartz, Acryl, and ring. Epoxy, aluminum nitride (AlN), or may be a transparent conductive oxide (TCO) such as zinc oxide (ZnO), indium tin oxide (ITO), indium zinc oxide (IZO), gallium oxide (Ga 2 O 3 ), lithium gallium oxide (LiGaO 2 ), lithium aluminum oxide (LiAlO 2 ) or magnesium aluminum oxide (MgAl 2 O 4 ), etc., or may be a semiconductor material such as tantalum carbide (SiC), gallium arsenide (GaAs), phosphorus GaP, GaAsP, ZnSe, ZnSe or InP, or metal materials such as aluminum (Al), copper (Cu) Or an element such as molybdenum (Mo) or tungsten (W) or a combination of the above elements.

如第1圖和第2圖所示,第一實施例中的透明導電層2設於發光疊層1上,透明導電層2具有一第二外輪廓21形成於發光疊層1的第一外輪廓151內,換言之,由俯視觀之,第二外輪廓21係較第一外輪廓151靠近發光元件100的幾何中心C,使第二外輪廓21位於第一外輪廓151圈繞的範圍之內,且由第二外輪廓21所圍設的面積小於由第一外輪廓151所圍設的面積,即透明導電層2之一上表面積小於高台區15之一上表面積。於一實施例中,第一外輪廓151與第二外輪廓21之間具有一間距d約為11 μm ~28 μm,或者間距d為13 μm~26 μm,或者間距d為17 μm~25 μm;再一實施例中,間距d與短邊1b的比值為約0.04~0.15;又一實施例中,透明導電層2的上表面積不超過高台區15上表面積的約85%,其中較佳的,透明導電層2的上表面積不小於高台區12上表面積的約62%,如此可使電流藉由透明導電層2的設置而得以更均勻分布於發光疊層1中。較佳的,本發明又一實施例的透明導電層2的上表面積約為65%~82%的高台區18上表面積,如此可使透明導電層2具有良好的電流傳導功效,同時亦能避免產生不必要的遮光。於第一實施例中的發光元件100,由俯視觀之,第一外輪廓151與第二外輪廓21之間的最小距離在發光元件100的每一處都相同,即間距d為定值,舉例來說,靠近長邊1a的第一外輪廓151與第二外輪廓21的之間距離大致等於靠近短邊1b的第一外輪廓151與第二外輪廓21之間的距離。在第一實施例中,透明導電層2的第二外輪廓21的形狀與發光疊層1的第一外輪廓151的形狀相似,使第一外輪廓151適形地(conformably)形成與第二外輪廓21外;在另一實施例中,第二外輪廓21與第一外輪廓151的形狀可以不同,使第一外輪廓151非適形地形成於第二外輪廓21之外,本發明之第二外輪廓21的形狀並不以此為限。於第一實施例中,發光元件100之透明導電層2另具有一第二內輪廓22位於第二外輪廓21之內,由俯視觀之,第二內輪廓22可為一任意形狀,例如為圓形或橢圓形,且相對一電極墊的位置設置(電極墊的相關結構詳如下述),使電極墊下方至少部分區域不具有透明導電層2,而能夠避免電流直接由電極墊透過透明導電層2注入發光疊層1中,並使電流得以擴散到發光疊層1遠離電極墊的區域,藉此增加透明導電層2的電流擴散能力。一般的發光元件之透明導電層在發光疊層上方的覆蓋率高,例如覆蓋率大於94%,且透明導電層的輪廓與高台區的輪廓間距小,例如輪廓不大於8 μm,即便透明導電層2具有高透光率,當大部分的發光疊層被透明導電層所遮蔽時,仍會導致發光效率不佳。第一實施例所揭露的發光元件100,係在保持電流散佈能力的同時降低了透明導電層2的遮光效應,使發光元件100在發光效率上有顯著提升。以上所述的「覆蓋率」,是指一般發光元件的透明導電層的上表面積佔高台區的上表面積的百分比;另外,高台區15及透明導電層2的上表面積可在取得發光元件100的放大影像(例如:經光學顯微鏡或電子顯微鏡放大發光元件100之影像)後,再經由影像處理以分別獲得由第一外輪廓151所圈繞的面積以及由第二外輪廓21所圈繞的面積,影像處理的方式係可以透過電腦軟體積分或人工積分計算,在此係不多加限制。其中,當透明導電層2具有第二內輪廓22時,透明導電層2的上表面積為第二外輪廓21與第二內輪廓22之間的區域的上表面積。As shown in FIGS. 1 and 2, the transparent conductive layer 2 in the first embodiment is disposed on the light-emitting laminate 1, and the transparent conductive layer 2 has a second outer contour 21 formed on the first outer surface of the light-emitting laminate 1. In the outline 151, in other words, the second outer contour 21 is closer to the geometric center C of the light-emitting element 100 than the first outer contour 151, so that the second outer contour 21 is located within the range of the first outer contour 151. The area enclosed by the second outer contour 21 is smaller than the area surrounded by the first outer contour 151, that is, the surface area on one of the transparent conductive layers 2 is smaller than the upper surface area of one of the high-profile regions 15. In an embodiment, the first outer contour 151 and the second outer contour 21 have a spacing d of about 11 μm to 28 μm, or the spacing d is 13 μm to 26 μm, or the spacing d is 17 μm to 25 μm. In still another embodiment, the ratio of the pitch d to the short side 1b is about 0.04 to 0.15; in still another embodiment, the upper surface area of the transparent conductive layer 2 does not exceed about 85% of the surface area of the upper mesa 15 , of which preferred The upper surface area of the transparent conductive layer 2 is not less than about 62% of the surface area on the upper mesa 12, so that the current can be more uniformly distributed in the light-emitting laminate 1 by the arrangement of the transparent conductive layer 2. Preferably, the upper surface area of the transparent conductive layer 2 of another embodiment of the present invention is about 65% to 82% of the upper surface area of the high-area region 18, so that the transparent conductive layer 2 can have good current conduction efficiency and can also be avoided. Produces unnecessary shading. In the light-emitting element 100 in the first embodiment, the minimum distance between the first outer contour 151 and the second outer contour 21 is the same at each point of the light-emitting element 100, that is, the distance d is constant. For example, the distance between the first outer contour 151 and the second outer contour 21 near the long side 1a is substantially equal to the distance between the first outer contour 151 and the second outer contour 21 near the short side 1b. In the first embodiment, the shape of the second outer contour 21 of the transparent conductive layer 2 is similar to the shape of the first outer contour 151 of the light-emitting laminate 1, such that the first outer contour 151 is conformally formed and second. Outside the outer contour 21; in another embodiment, the shape of the second outer contour 21 and the first outer contour 151 may be different, so that the first outer contour 151 is non-conformally formed outside the second outer contour 21, the present invention The shape of the second outer contour 21 is not limited thereto. In the first embodiment, the transparent conductive layer 2 of the light-emitting element 100 further has a second inner contour 22 located within the second outer contour 21, and the second inner contour 22 may have an arbitrary shape, for example, Circular or elliptical, and disposed relative to the position of an electrode pad (the relevant structure of the electrode pad is as follows), so that at least part of the area under the electrode pad does not have the transparent conductive layer 2, and the current can be prevented from being directly transmitted by the electrode pad through the transparent conductive The layer 2 is injected into the light-emitting laminate 1 and the current is diffused to the region of the light-emitting laminate 1 remote from the electrode pad, thereby increasing the current spreading capability of the transparent conductive layer 2. The transparent conductive layer of a general light-emitting element has a high coverage over the light-emitting layer, for example, a coverage ratio of more than 94%, and a contour of the transparent conductive layer and a contour of the high-level region are small, for example, a profile of not more than 8 μm, even a transparent conductive layer. 2 has high light transmittance, and when most of the light-emitting laminate is shielded by the transparent conductive layer, the light-emitting efficiency is still poor. The light-emitting element 100 disclosed in the first embodiment reduces the light-shielding effect of the transparent conductive layer 2 while maintaining the current spreading capability, so that the light-emitting element 100 is significantly improved in luminous efficiency. The "coverage" as described above refers to the percentage of the upper surface area of the transparent conductive layer of the general light-emitting element to the upper surface area of the high-level region; in addition, the upper surface area of the high-level region 15 and the transparent conductive layer 2 can be obtained from the light-emitting element 100. After magnifying the image (for example, magnifying the image of the light-emitting element 100 by an optical microscope or an electron microscope), image processing is performed to obtain an area surrounded by the first outer contour 151 and an area surrounded by the second outer contour 21, respectively. The method of image processing can be calculated by computer soft volume or manual integration, and there is no limit to this. Wherein, when the transparent conductive layer 2 has the second inner contour 22, the upper surface area of the transparent conductive layer 2 is the upper surface area of the region between the second outer contour 21 and the second inner contour 22.

本發明之第一實施例的透明導電層2可以選擇透過濺鍍(sputter)形成於第二半導體層12上方,但不以此為限。於一實施例中,透明導電層2係對活性結構13之放射光具有85%以上之穿透率,以及8Ï10-4 (Ω-cm)以下的電阻率(Resistivity)。又一實施例中,透明導電層2包含一材質例如氧化銦錫(ITO)、氧化銦(InO)、氧化錫(SnO)、氧化鎘錫(CTO)、氧化銻錫(ATO)、氧化鋁鋅(AZO)、氧化鋅錫(ZTO)、氧化鎵鋅(GZO)、氧化鋅(ZnO)、磷化鎵(GaP)、氧化銦鋅(IZO)、類鑽碳薄膜(DLC)、氧化銦鎵(IGO)、氧化鎵鋁鋅(GAZO)或石墨烯(Graphene)等,或由上述任兩種以上的材料組合而成,本發明並不以此為限。The transparent conductive layer 2 of the first embodiment of the present invention may be selectively formed over the second semiconductor layer 12 by sputtering, but is not limited thereto. In one embodiment, the transparent conductive layer 2 has a transmittance of 85% or more for the emitted light of the active structure 13 and a resistivity of 8 Ï 10 -4 (Ω-cm) or less. In still another embodiment, the transparent conductive layer 2 comprises a material such as indium tin oxide (ITO), indium oxide (InO), tin oxide (SnO), cadmium tin oxide (CTO), antimony tin oxide (ATO), aluminum zinc oxide. (AZO), zinc tin oxide (ZTO), gallium zinc oxide (GZO), zinc oxide (ZnO), gallium phosphide (GaP), indium zinc oxide (IZO), diamond-like carbon film (DLC), indium gallium oxide ( IGO), gallium aluminum oxide (GAZO) or graphene (Graphene), or the like, or a combination of any two or more of the above materials, the invention is not limited thereto.

請參照表1,此為本發明不同實施例的發光元件(第A1~A4組)與對照組的發光元件的發光特性比較表,其中各實施例的發光疊層1的長邊1a為1143 μm且短邊1b為225 μm, 其中短邊長度與長邊長度的比值為0.197,由俯視觀之,本表中各實施例的發光元件呈現狹長形。對照組的第一外輪廓及第二外輪廓之間的間距為8 μm,第A1~A4組的間距d則分別為13 μm、18 μm、23 μm及28 μm,由此表可知第A1~A4組的亮度表現皆優於對照組,其中,第A3組的亮度提升效果最顯著。由此可知,在本發明不同實施例的發光元件中,當間距d為 11 μm至 28 μm,使透明導電層2上表面積佔高台區15上表面積的62%~85%時,較間距為8 μm、透明導電層上表面積佔高台區上表面積超過85%的發光元件具有更良好的發光效率。Referring to Table 1, this is a comparison table of light-emitting characteristics of light-emitting elements (groups A1 to A4) of different embodiments of the present invention and light-emitting elements of a control group, wherein the long side 1a of the light-emitting laminate 1 of each embodiment is 1143 μm. And the short side 1b is 225 μm, wherein the ratio of the length of the short side to the length of the long side is 0.197. From the top view, the light-emitting elements of the embodiments of the present table have an elongated shape. The spacing between the first outer contour and the second outer contour of the control group is 8 μm, and the spacing d of the first group A1 to A4 is 13 μm, 18 μm, 23 μm, and 28 μm, respectively. The brightness performance of the A4 group was better than that of the control group. Among them, the brightness enhancement effect of the A3 group was the most significant. Therefore, in the light-emitting element of the different embodiments of the present invention, when the pitch d is 11 μm to 28 μm, and the surface area of the transparent conductive layer 2 occupies 62% to 85% of the surface area of the high-area region 15, the spacing is 8 A light-emitting element having a surface area of more than 85% on the transparent conductive layer and having a surface area of more than 85% on the transparent conductive layer has better luminous efficiency.

請再參照表2,此為本發明又一不同實施例的發光元件以間距作為變數時的發光特性表,表2所示的發光疊層具有長邊為1016 μm且短邊為560 μm ,其中短邊長度與長邊長度的比值為0.55,由俯視觀之,本表中各實施例的發光元件不同於表1實施例中的狹長形,本表實施例之發光元件大致呈現方形。此表呈現出對照組及第B組的間距d分別為8 μm及13 μm時的發光特性,此時,對照組及第B組的透明導電層2上表面積佔高台區15上表面積分別為90.08%及84.35%,由表2所呈現的數據中,第B組的亮度表現反而不及於對照組。表2可以得知:當增加間距d時,意即降低透明導電層2的上表面積佔高台區15上表面積的比例至小於85%時,方形的發光元件亮度提升的現象並不顯著。故本發明的發光元件中,較佳的,在短邊與長邊的比值約為0.15~0.45時,若調整透明導電層2的面積為高台區15的面積的62%~85%時,具有提升發光元件發光效率的功效。Referring to Table 2, which is a table of illuminating characteristics of a luminescent element according to still another embodiment of the present invention with a pitch as a variable, the luminescent layer shown in Table 2 has a long side of 1016 μm and a short side of 560 μm. The ratio of the length of the short side to the length of the long side is 0.55. From the top view, the light-emitting elements of the embodiments of the present table are different from the elongated shape of the embodiment of Table 1, and the light-emitting elements of the embodiment of the present invention are substantially square. The table shows the luminescence properties of the control group and the group B at a distance d of 8 μm and 13 μm, respectively. At this time, the surface area of the transparent conductive layer 2 of the control group and the group B accounted for 90.08 of the surface area of the high-level region 15 respectively. % and 84.35%, from the data presented in Table 2, the brightness performance of Group B was not as good as that of the control group. As can be seen from Table 2, when the pitch d is increased, that is, when the ratio of the upper surface area of the transparent conductive layer 2 to the surface area of the high-level region 15 is less than 85%, the phenomenon in which the brightness of the square light-emitting element is improved is not remarkable. Therefore, in the light-emitting device of the present invention, preferably, when the ratio of the short side to the long side is about 0.15 to 0.45, if the area of the transparent conductive layer 2 is adjusted to be 62% to 85% of the area of the high-level region 15, Improve the luminous efficiency of the light-emitting element.

第3圖及第4圖分別為本發明第二、三實施例之發光元件200、300的俯視示意圖,第二、三實施例的發光元件200、300中,各構件以及構件之間的關係與第一實施例的發光元件100相似,不同的是,其中,發光疊層1的第一外輪廓151與透明導電層2的第二外輪廓21之間的間距d並非為定值,且包含至少兩個不同數值,意即,發光元件200、300的第一外輪廓151與第二外輪廓21的最小距離在發光元件200、300的每一處並非相同,例如在第二實施例中,間距d包含一第一間距d1及一第二間距d2不同於第一間距d1。詳言之,如第3圖所示,本實施例之發光元件100在沿著長邊1a方向上(即圖面上的y軸方向),在一側的第一外輪廓151與第二外輪廓21之間具有第一間距d1,而在沿著短邊1b方向上(即圖面上的x軸方向),在又一側的第一外輪廓151與第二外輪廓21之間具有第二間距d2,第一間距d1與第二間距d2不同,例如本實施例的第一間距d1大於第二間距d2,或例如在另一實施例中,第二間距d2亦可大於第一間距d1,本發明並不以此為限。又舉例來說,由俯視觀之,本實施例或下述各實施例的發光疊層1均具有二長邊1a及二短邊1b,而於一實施例中,在靠近其一長邊1a的一側上,第一外輪廓151與第二外輪廓21之間具有一間距d,而在靠近另一長邊1a的一側上以及在靠近任一短邊1b的一側上,第一外輪廓151與第二外輪廓21之間具有相同的另一間距d’,且間距d’不同於間距d;在又一實施例中,在靠近任一長邊1a的一側上,第一外輪廓151與第二外輪廓21之間具有相同的一間距d,而在靠近任一短邊1b的一側上,第一外輪廓151與第二外輪廓21之間具有相同的另一間距d’,且間距d’不同於間距d;再一實施例中,靠近其一長邊1a的一側上及靠近其一短邊1b的一側上,第一外輪廓151與第二外輪廓21之間具有相同的一間距d,而在靠近另一長邊1a的一側上及靠近另一短邊1b的一側上,第一外輪廓151與第二外輪廓21之間具有相同的另一間距d’,且間距d’不同於間距d;又一實施例中,靠近任一長邊1a的一側上以及靠近任一短邊1b的一側上,第一外輪廓151與第二外輪廓21之間分別具有不同的間距d;再一實施例中,在靠近其一短邊1b的一側上,第一外輪廓151與第二外輪廓21之間具有一間距d,而在靠近另一短邊1b的一側上以及在靠近任一長邊1a的一側上,第一外輪廓151與第二外輪廓21之間具有相同的另一間距d’,且間距d’不同於間距d。3 and 4 are schematic plan views of the light-emitting elements 200 and 300 according to the second and third embodiments of the present invention, respectively, and the relationship between the members and the members in the light-emitting elements 200 and 300 of the second and third embodiments. The light-emitting element 100 of the first embodiment is similar, except that the spacing d between the first outer contour 151 of the light-emitting laminate 1 and the second outer contour 21 of the transparent conductive layer 2 is not constant and includes at least Two different values, that is to say that the minimum distance of the first outer contour 151 of the light-emitting elements 200, 300 from the second outer contour 21 is not the same at each of the light-emitting elements 200, 300, for example in the second embodiment, the spacing d includes a first spacing d1 and a second spacing d2 different from the first spacing d1. In detail, as shown in FIG. 3, the light-emitting element 100 of the present embodiment has a first outer contour 151 and a second outer side on one side in the direction along the long side 1a (i.e., the y-axis direction on the drawing). The contours 21 have a first spacing d1 between them, and in the direction along the short side 1b (ie, the x-axis direction on the drawing), between the first outer contour 151 and the second outer contour 21 on the other side. The second pitch d2 is different from the second pitch d2. For example, the first pitch d1 of the embodiment is greater than the second pitch d2, or for example, in another embodiment, the second pitch d2 may be greater than the first pitch d1. The invention is not limited thereto. For example, the light-emitting laminate 1 of the present embodiment or the following embodiments has two long sides 1a and two short sides 1b, and in one embodiment, near one long side 1a. On one side, the first outer contour 151 and the second outer contour 21 have a spacing d, and on the side close to the other long side 1a and on the side close to either short side 1b, the first The outer contour 151 and the second outer contour 21 have the same other spacing d', and the spacing d' is different from the spacing d; in yet another embodiment, on the side close to either long side 1a, the first The outer contour 151 and the second outer contour 21 have the same spacing d, and on the side close to either short side 1b, the first outer contour 151 and the second outer contour 21 have the same other spacing. d', and the spacing d' is different from the spacing d; in still another embodiment, on a side close to one of its long sides 1a and on a side close to a short side 1b thereof, the first outer contour 151 and the second outer contour 21 has the same spacing d, and on the side close to the other long side 1a and on the side close to the other short side 1b, the first outer contour 151 and the second outer contour 2 1 has the same other spacing d', and the spacing d' is different from the spacing d; in still another embodiment, on the side close to either long side 1a and on the side close to either short side 1b, An outer contour 151 and a second outer contour 21 respectively have different spacings d; in another embodiment, on a side close to a short side 1b thereof, between the first outer contour 151 and the second outer contour 21 Having a spacing d, and on the side close to the other short side 1b and on the side close to either long side 1a, the first outer contour 151 and the second outer contour 21 have the same other spacing d ', and the spacing d' is different from the spacing d.

第4圖所示為本發明第三實施例之發光元件300的俯視示意圖。本發明之實施例中的發光元件300另外包含一電極組4具有一第一電極41及一第二電極42分別電性連接於第二半導體層12及第一半導體層11,第一電極41具有一第一電極墊411且第二電極42具有一第二電極墊421,第一電極墊411與第二電極墊421設於發光疊層1的同一面,形成一水平式發光結構,然而,在其他實施例中,第一電極墊411及第二電極墊421亦可以形成於發光疊層1的相對兩面,形成一垂直式發光結構。詳言之,第三實施例中,第一電極41設於高台區15且與第二半導體層12電性連接,第二電極42設於凹陷區14且與暴露出的第一半導體層11電性連接,發光疊層1具有相對的一第一端111及一第二端112,第一端111及第二端112係位於靠近發光疊層1的二短邊1b,且第一電極墊411及第二電極墊421分別設於第一端111及第二端112上。在靠近第一電極墊411的第一外輪廓151與第二外輪廓21之間有一第三間距d3,靠近第二電極墊421的第一外輪廓151與第二外輪廓21之間有一第四間距d4,第三間距d3不同於第四間距d4。詳言之,如第4圖所示,第一外輪廓151具有一點A1,由點A1到第一電極墊411的距離相較於其他第一外輪廓151的任一點到第一電極墊411的距離短,且第二外輪廓21具有一點B1,同樣地,由點B1到第一電極墊411的距離相較於其他第二外輪廓21的任一點到第一電極墊411的距離短,而點A1與點B1之間的距離即為上述的第三間距d3;第一外輪廓151具有一點A2,由點A2到第二電極墊421的距離相較於其他第一外輪廓151的任一點到第二電極墊421的距離短,且第二外輪廓21具有一點B2,由點B2到第二電極墊421的距離相較於其他第二外輪廓21的任一點到第二電極墊421的距離短,而點A2與點B2之間的距離即為上述的第四間距d4。在本實施例中,第三間距d3大於第四間距d4,係在維持良好的電流擴散能力的前提下,進一步縮減靠近於第一端111的透明導電層2的面積,藉由部分移除遮蔽發光的透明導電層2,達到增加發光效率的功效。更詳言之,本實施例中,第三間距d3約為11~28 μm,而第四間距d4約為3~15 μm,但本發明並不以此為限,在另一實施例中,第三間距d3約為12~35 μm,而第四間距d4約為11~28 μm,亦可達成相近的效果。此外,由俯視觀看本實施例之發光元件300,第一電極墊411或第二電極墊421的輪廓係部分對齊於第一外輪廓151。本實施例藉由第一外輪廓151的形狀係與電極組4的設置位置互相搭配,可獲得良好的電流散佈能力及發光效率。Fig. 4 is a schematic plan view showing a light-emitting element 300 according to a third embodiment of the present invention. The light-emitting element 300 of the embodiment of the present invention further includes an electrode group 4 having a first electrode 41 and a second electrode 42 electrically connected to the second semiconductor layer 12 and the first semiconductor layer 11, respectively. The first electrode 41 has a first electrode pad 411 and a second electrode pad 421 having a second electrode pad 421 disposed on the same side of the light emitting laminate 1 to form a horizontal light emitting structure. In other embodiments, the first electrode pad 411 and the second electrode pad 421 may also be formed on opposite sides of the light emitting laminate 1 to form a vertical light emitting structure. In detail, in the third embodiment, the first electrode 41 is disposed on the upper region 15 and electrically connected to the second semiconductor layer 12, and the second electrode 42 is disposed in the recess region 14 and electrically connected to the exposed first semiconductor layer 11. The first layer 111 and the second end 112 are located adjacent to the two short sides 1b of the light emitting laminate 1 and the first electrode pad 411 is connected. The second electrode pads 421 are respectively disposed on the first end 111 and the second end 112. There is a third spacing d3 between the first outer contour 151 and the second outer contour 21 adjacent to the first electrode pad 411, and a fourth between the first outer contour 151 and the second outer contour 21 adjacent to the second electrode pad 421. The pitch d4 is different from the fourth pitch d4. In detail, as shown in FIG. 4, the first outer contour 151 has a point A1, and the distance from the point A1 to the first electrode pad 411 is compared with any point of the other first outer contour 151 to the first electrode pad 411. The distance is short, and the second outer contour 21 has a point B1. Similarly, the distance from the point B1 to the first electrode pad 411 is shorter than the distance from any point of the other second outer contour 21 to the first electrode pad 411. The distance between the point A1 and the point B1 is the above-described third pitch d3; the first outer contour 151 has a point A2, and the distance from the point A2 to the second electrode pad 421 is compared with any other point of the first outer contour 151. The distance to the second electrode pad 421 is short, and the second outer contour 21 has a point B2, and the distance from the point B2 to the second electrode pad 421 is compared with any other point of the second outer contour 21 to the second electrode pad 421. The distance is short, and the distance between the point A2 and the point B2 is the fourth pitch d4 described above. In this embodiment, the third pitch d3 is greater than the fourth pitch d4, and the area of the transparent conductive layer 2 close to the first end 111 is further reduced under the premise of maintaining good current spreading capability, by partially removing the shadow. The transparent transparent conductive layer 2 achieves the effect of increasing luminous efficiency. More specifically, in the embodiment, the third pitch d3 is about 11 to 28 μm, and the fourth pitch d4 is about 3 to 15 μm. However, the present invention is not limited thereto. In another embodiment, The third pitch d3 is about 12 to 35 μm, and the fourth pitch d4 is about 11 to 28 μm, and a similar effect can be achieved. Further, the outline of the first electrode pad 411 or the second electrode pad 421 is partially aligned with the first outer profile 151 when the light-emitting element 300 of the present embodiment is viewed from a plan view. In this embodiment, the shape of the first outer contour 151 and the arrangement position of the electrode group 4 are matched with each other, and good current spreading ability and luminous efficiency can be obtained.

請參照第5圖之第四實施例之發光元件400的俯視示意圖。本實施例的發光元件400中的各構件以及構件之間的關係與第一實施例的發光元件100相似,惟具有不同形態的電極組4。電極組4的第一電極41另包含一第一延伸電極412連接於第一電極墊411,第二電極42另包含一第二延伸電極422連接於第二電極墊421上,第一延伸電極412位於高台區15且第二延伸電極422位於凹陷區14,透過第一延伸電極412及第二延伸電極422係可以使外部電流更均勻地擴散至發光疊層1中。在第一至三實施例中,第一延伸電極412與第二延伸電極422係大致平行,然而,第四實施例的發光元件400則具有互相不平行或一端相近、一端遠離的第一延伸電極412及第二延伸電極422。Please refer to the top view of the light-emitting element 400 of the fourth embodiment of FIG. The members and the members in the light-emitting element 400 of the present embodiment have a relationship similar to that of the light-emitting element 100 of the first embodiment, but have electrode groups 4 of different forms. The first electrode 41 of the electrode group 4 further includes a first extension electrode 412 connected to the first electrode pad 411, and the second electrode 42 further includes a second extension electrode 422 connected to the second electrode pad 421. The first extension electrode 412 The second extension electrode 422 is located in the recessed area 14, and the external current is more uniformly diffused into the light-emitting layer 1 through the first extension electrode 412 and the second extension electrode 422. In the first to third embodiments, the first extension electrode 412 and the second extension electrode 422 are substantially parallel. However, the light-emitting element 400 of the fourth embodiment has first extension electrodes that are not parallel to each other or have one end and are separated from one end. 412 and a second extension electrode 422.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,考量到不可避免的製程誤差,上述之第一外輪廓151及第二外輪廓21的間距d可能存在一誤差範圍(例如1~2 μm),因此,當記載「間距d約為11 μm~28 μm」時,本領域具有通常知識者應能了解,間距d為9 μm~30 μm也為本發明之所涵蓋。各實施例之單獨或實施例間所揭示之部分或全部技術特徵的組合,皆屬本發明所揭示的內容,且任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed above by way of example, it is not intended to limit the present invention, and the inevitable process error may be considered. The above-mentioned first outer contour 151 and the second outer contour 21 may have a margin of error (for example, 1 to 2 μm). Therefore, when the "pitch d is about 11 μm to 28 μm", it should be understood by those skilled in the art that the pitch d is 9 μm to 30 μm, which is also covered by the present invention. Combinations of some or all of the technical features disclosed in the respective embodiments, which are disclosed in the present invention, are within the spirit and scope of the present invention without departing from the spirit and scope of the present invention. The scope of protection of the present invention is defined by the scope of the appended claims.

100、200、300、400‧‧‧發光元件100, 200, 300, 400‧‧‧Lighting elements

1‧‧‧發光疊層 1‧‧‧Lighting laminate

1a‧‧‧長邊 1a‧‧‧Longside

1b‧‧‧短邊 1b‧‧‧ Short side

11‧‧‧第一半導體層 11‧‧‧First semiconductor layer

12‧‧‧第二半導體層 12‧‧‧Second semiconductor layer

13‧‧‧活性結構 13‧‧‧Active structure

14‧‧‧凹陷區 14‧‧‧ recessed area

15‧‧‧高台區 15‧‧‧Gaotai District

151‧‧‧第一外輪廓 151‧‧‧First outline

111‧‧‧第一端 111‧‧‧ first end

112‧‧‧第二端 112‧‧‧ second end

2‧‧‧透明導電層 2‧‧‧Transparent conductive layer

21‧‧‧第二外輪廓 21‧‧‧Second outline

22‧‧‧第二內輪廓 22‧‧‧Second inner contour

3‧‧‧基板 3‧‧‧Substrate

31‧‧‧第一邊 31‧‧‧ first side

32‧‧‧第二邊 32‧‧‧ second side

4‧‧‧電極組 4‧‧‧electrode group

41‧‧‧第一電極 41‧‧‧First electrode

411‧‧‧第一電極墊 411‧‧‧First electrode pad

412‧‧‧第一延伸電極 412‧‧‧First extension electrode

42‧‧‧第二電極 42‧‧‧second electrode

421‧‧‧第二電極墊 421‧‧‧Second electrode pad

422‧‧‧第二延伸電極 422‧‧‧Second extension electrode

S‧‧‧側邊 S‧‧‧ side

d、d’‧‧‧間距 d, d’‧‧‧ spacing

d1‧‧‧第一間距 D1‧‧‧first spacing

d2‧‧‧第二間距 D2‧‧‧second spacing

d3‧‧‧第三間距 D3‧‧‧ third spacing

d4‧‧‧第四間距 D4‧‧‧fourth spacing

C‧‧‧幾何中心 C‧‧‧Geometry Center

L‧‧‧長度 L‧‧‧ length

W1‧‧‧第一寬度 W1‧‧‧ first width

W2‧‧‧第二寬度 W2‧‧‧ second width

第1圖是本發明的第一實施例之一發光元件的俯視示意圖。Fig. 1 is a schematic plan view showing a light-emitting element of a first embodiment of the present invention.

第2圖是第1圖之發光元件沿A-A’線的剖視示意圖。Fig. 2 is a schematic cross-sectional view of the light-emitting element of Fig. 1 taken along the line A-A'.

表1是本發明不同實施例的發光元件的發光特性對照表。Table 1 is a comparison table of light-emitting characteristics of light-emitting elements of different embodiments of the present invention.

表2是本發明又一不同實施例的發光元件之發光特性對照表。Table 2 is a comparison table of light-emitting characteristics of a light-emitting element according to still another embodiment of the present invention.

第3圖是本發明的第二實施例之一發光元件的俯視示意圖。Fig. 3 is a schematic plan view showing a light-emitting element of a second embodiment of the present invention.

第4圖是本發明的第三實施例之一發光元件的俯視示意圖。Fig. 4 is a schematic plan view showing a light-emitting element of a third embodiment of the present invention.

第5圖是本發明的第四實施例之一發光元件的俯視示意圖。Fig. 5 is a schematic plan view showing a light-emitting element of a fourth embodiment of the present invention.

Claims (10)

一種發光元件,包含: 一發光疊層,包含一高台區及一凹陷區,且該高台區具有一第一外輪廓;以及 一透明導電層位於該發光疊層之高台區上; 其中,由俯視觀之,該透明導電層具有一第二外輪廓位於該第一外輪廓之內,且該第一外輪廓與該第二外輪廓之間具有一間距,該間距約為11 μm~28 μm。A light-emitting element comprising: a light emitting laminate comprising a high land region and a recessed region, the high land region having a first outer contour; a transparent conductive layer is located on the upper region of the light emitting laminate; Wherein, the transparent conductive layer has a second outer contour located within the first outer contour, and a distance between the first outer contour and the second outer contour is about 11 μm. ~28 μm. 一種如請求項第1項所述的發光元件,其中,該透明導電層的上表面積不超過該高台區的上表面積之約85%。A light-emitting element according to claim 1, wherein the upper surface area of the transparent conductive layer does not exceed about 85% of the upper surface area of the elevated region. 一種如請求項第1項所述的發光元件,其中,該發光疊層具有一長邊及一短邊,該短邊與該長邊的比值約為0.15~0.45。A light-emitting element according to claim 1, wherein the light-emitting layer has a long side and a short side, and the ratio of the short side to the long side is about 0.15 to 0.45. 一種如請求項第1項所述的發光元件,其中,該發光疊層具有一長邊及一短邊,且該間距與該短邊比值約為0.04~0.15。A light-emitting element according to claim 1, wherein the light-emitting layer has a long side and a short side, and the ratio of the pitch to the short side is about 0.04 to 0.15. 一種如請求項第1項所述的發光元件,其中,該間距為一定值。A light-emitting element according to claim 1, wherein the pitch is a constant value. 一種如請求項第1項所述的發光元件,更包含一第一延伸電極位於該發光疊層之高台區上,及一第二延伸電極位於該發光疊層之凹陷區上,且該凹陷區沿該發光單元之一邊緣設置。The illuminating device of claim 1, further comprising a first extending electrode on the upper region of the illuminating stack, and a second extending electrode on the recessed portion of the illuminating stack, wherein the recessed region It is disposed along one edge of the light emitting unit. 一種如請求項第6項所述的發光元件,其中,由俯視觀之,該第二延伸電極不平行於該第一延伸電極。A light-emitting element according to claim 6, wherein the second extension electrode is not parallel to the first extension electrode by a plan view. 一種如請求項第1項所述的發光元件,其中,由俯視觀之,該透明導電層的該上表面積不小於該高台區的該上表面積之約62%。A light-emitting element according to claim 1, wherein the upper surface area of the transparent conductive layer is not less than about 62% of the upper surface area of the elevated region, as viewed from above. 一種如請求項第1項所述的發光元件,其中: 該間距包含一第一間距以及一第二間距;以及 該發光疊層具有一長邊及一短邊,且由俯視觀之,該第一間距係位於該長邊方向上,該第二間距係位於該短邊方向上,該第一間距不同於該第二間距。A light-emitting element according to claim 1, wherein: The spacing includes a first spacing and a second spacing; The light emitting laminate has a long side and a short side, and the first spacing is located in the longitudinal direction, and the second spacing is located in the short side direction, the first spacing is different from the Second spacing. 一種如請求項第1項所述的發光元件,其中: 該間距包含一第三間距以及一第四間距; 該發光元件更包含一第一電極墊及一第二電極墊分別設置於該發光疊層的相對兩端; 該第三件間距位於靠近該第一電極墊的該第一外輪廓與該第二外輪廓之間; 該第四間距位於靠近該第二電極墊的該第一外輪廓與該第二外輪廓之間;以及 該第三間距不同於該第四距。A light-emitting element according to claim 1, wherein: The spacing includes a third spacing and a fourth spacing; The light emitting device further includes a first electrode pad and a second electrode pad respectively disposed at opposite ends of the light emitting layer; The third piece spacing is located between the first outer contour and the second outer contour of the first electrode pad; The fourth pitch is located between the first outer contour and the second outer contour adjacent to the second electrode pad; The third pitch is different from the fourth distance.
TW108114506A 2017-07-31 2017-07-31 Light-emitting device TWI699904B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108114506A TWI699904B (en) 2017-07-31 2017-07-31 Light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108114506A TWI699904B (en) 2017-07-31 2017-07-31 Light-emitting device

Publications (2)

Publication Number Publication Date
TW201929259A true TW201929259A (en) 2019-07-16
TWI699904B TWI699904B (en) 2020-07-21

Family

ID=68049191

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108114506A TWI699904B (en) 2017-07-31 2017-07-31 Light-emitting device

Country Status (1)

Country Link
TW (1) TWI699904B (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI291243B (en) * 2005-06-24 2007-12-11 Epistar Corp A semiconductor light-emitting device
TWI366291B (en) * 2007-03-30 2012-06-11 Epistar Corp Semiconductor light-emitting device having stacked transparent electrodes

Also Published As

Publication number Publication date
TWI699904B (en) 2020-07-21

Similar Documents

Publication Publication Date Title
JP6934812B2 (en) Light emitting element and light emitting element array including it
CN108140700B (en) Light emitting device
US20160336482A1 (en) Light-emitting device
US10418412B2 (en) Light-emitting diode
US20130015465A1 (en) Nitride semiconductor light-emitting device
KR101763072B1 (en) LED Device For Enhancing Light Extraction Efficiency And Current Injection Efficiency
US9601667B2 (en) Light-emitting device
US9231165B2 (en) Light-emitting diode chip
US7902562B2 (en) Light emitting diode device that includes a three dimensional cloud structure and manufacturing method thereof
TW201828496A (en) Light-Emitting Diode Device
CN109494286B (en) Semiconductor device with a plurality of semiconductor chips
TWI657595B (en) Optoelectronic semiconductor device
US20150207035A1 (en) Light-Emitting Element Having a Tunneling Structure
US11784210B2 (en) Light-emitting device and manufacturing method thereof
US10600938B2 (en) Light-emitting device with tunnel junction
US20110175113A1 (en) Semiconductor light emitting device
TWI662717B (en) Light-emitting device
TWI699904B (en) Light-emitting device
KR102035630B1 (en) Light-emitting device
JP2020102629A (en) Semiconductor element
US20130049034A1 (en) Light-emitting device
US9525104B2 (en) Light-emitting diode
TWI704687B (en) Light-emitting diode
KR102531349B1 (en) Light emitting device
KR20170054909A (en) Light emitting device and method of fabricating the same