TW201928528A - 電壓對比度量衡標記 - Google Patents

電壓對比度量衡標記 Download PDF

Info

Publication number
TW201928528A
TW201928528A TW107144302A TW107144302A TW201928528A TW 201928528 A TW201928528 A TW 201928528A TW 107144302 A TW107144302 A TW 107144302A TW 107144302 A TW107144302 A TW 107144302A TW 201928528 A TW201928528 A TW 201928528A
Authority
TW
Taiwan
Prior art keywords
test structures
measurement mark
test
features
structures
Prior art date
Application number
TW107144302A
Other languages
English (en)
Other versions
TWI742325B (zh
Inventor
希拉 艾米爾 塔伯里
果珀 賽門 亨德立克 席林 凡
賽門 飛利浦 史賓斯 海斯汀思
布洛南 彼得森
Original Assignee
荷蘭商Asml荷蘭公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荷蘭商Asml荷蘭公司 filed Critical 荷蘭商Asml荷蘭公司
Publication of TW201928528A publication Critical patent/TW201928528A/zh
Application granted granted Critical
Publication of TWI742325B publication Critical patent/TWI742325B/zh

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70625Dimensions, e.g. line width, critical dimension [CD], profile, sidewall angle or edge roughness
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70633Overlay, i.e. relative alignment between patterns printed by separate exposures in different layers, or in the same layer in multiple exposures or stitching
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70681Metrology strategies
    • G03F7/70683Mark designs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/30Structural arrangements specially adapted for testing or measuring during manufacture or treatment, or specially adapted for reliability measurements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/30Structural arrangements specially adapted for testing or measuring during manufacture or treatment, or specially adapted for reliability measurements
    • H01L22/32Additional lead-in metallisation on a device or substrate, e.g. additional pads or pad portions, lines in the scribe line, sacrificed conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/544Marks applied to semiconductor devices or parts, e.g. registration marks, alignment structures, wafer maps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/245Detection characterised by the variable being measured
    • H01J2237/24571Measurements of non-electric or non-magnetic variables
    • H01J2237/24578Spatial variables, e.g. position, distance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54426Marks applied to semiconductor devices or parts for alignment

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Holo Graphy (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

本發明揭示一種量測標記。根據某些實施例,該量測標記包括在一基板上之一第一層中顯影的一組第一測試結構,該組第一測試結構中之每一者包含由第一導電材料製成之複數個第一特徵。該量測標記亦包括在鄰近於該第一層之一第二層中顯影的一組第二測試結構,該組第二測試結構中之每一者包含由第二導電材料製成之複數個第二特徵。該量測標記經組態以在使用一電壓對比成像法來成像時指示該組第一測試結構與該組第二測試結構中之相關聯第二測試結構之間的連接性。

Description

電壓對比度量衡標記
本發明大體上係關於半導體器件製造期間的疊對度量衡,且更特定言之係關於一種用以基於電壓對比而量測兩個層之對準誤差及臨界尺寸的度量衡標記。
微影裝置為將所要之圖案塗覆至基板上(通常塗覆至基板之目標部分上)之機器。微影裝置可用於(例如)積體電路(IC)之製造中。在彼情況下,圖案化器件(其被替代地稱作光罩或倍縮光罩)可用以產生待形成於IC之個別層上的電路圖案。此圖案可轉印至基板(例如,矽晶圓)上之目標部分(例如,包括晶粒之部分、一個晶粒或若干晶粒)上。通常經由成像至提供於基板上之輻射敏感材料(抗蝕劑)層上來進行圖案之轉印。一般而言,單一基板將含有經順次地圖案化之鄰近目標部分之網路。已知微影裝置包括:所謂的步進器,其中藉由一次性將整個圖案曝光至目標部分上來輻照每一目標部分;及所謂的掃描器,其中藉由在給定方向(「掃描」方向)上經由輻射光束而掃描圖案同時平行或反平行於此方向而同步地掃描基板來輻照每一目標部分。亦有可能藉由將圖案壓印至基板上而將圖案自圖案化器件轉印至基板。
在微影程序中,需要頻繁地對所產生結構進行量測(例如)以用於程序控制及驗證。通常量測或判定結構之一或多個參數,例如,形成於基板中或基板上之順次層之間的疊對誤差。存在用於對在微影程序中形成之微觀結構進行量測之各種度量衡技術。此工具之一實例為經開發供微影領域中使用之光學散射計。此器件將輻射光束導向至基板之表面上之目標上,且量測經重導向輻射之一或多個屬性(例如,依據波長變化之單一反射角下的強度;依據反射角變化之一或多個波長下的強度;或依據反射角變化之偏振)以獲得一組數據,可自該組數據判定目標之所關注屬性。可藉由各種技術來執行所關注屬性之判定,諸如,藉由反覆途徑對目標結構之重建構,反覆途徑諸如,嚴密耦合波分析或有限元素方法、庫搜尋及主成份。
然而,隨著IC組件之實體大小繼續減小至小於100奈米或甚至小於10奈米,光學散射計逐漸變得無法勝任,此係因為其解析度受到光波長限制。歸因於光學解析度及器件尺寸之此偏差,亦即,歸因於光學測試結構具有不同於器件結構之間距,需要將非零偏移應用於量測結果。通常,非零偏移必須基於人工校準量測或使用其他複雜方法來估計。
本發明之實施例係關於電壓對比度量衡標記。在一些實施例中,提供一種量測標記。該量測標記包括在一基板上之一第一層中顯影的一組第一測試結構,該組第一測試結構中之每一者包含由第一導電材料製成之複數個第一特徵。該量測標記亦包括在鄰近於該第一層之一第二層中顯影的一組第二測試結構,該組第二測試結構中之每一者包含由第二導電材料製成之複數個第二特徵。該量測標記經組態以在使用一電壓對比成像法來成像時指示該組第一測試結構與該組第二測試結構中之相關聯第二測試結構之間的連接性。
在一些實施例中,提供一種量測標記。該量測標記包括在一第一間距處之第一特徵之一第一陣列及在一第二間距處之第二特徵之一第二陣列,該第一陣列及該第二陣列配置於一基板上之兩個連續層中。該量測標記經組態以用於判定該等第一特徵相對於相關聯第二特徵之間的一疊對值,或經組態以用於在使用一電壓對比成像法來成像時判定該等第一特徵或該等第二特徵之一臨界尺寸值。
在一些實施例中,提供一種系統。該系統包括用於掃描一量測標記且用於偵測自該量測標記散射之電子之一粒子束工具。該系統亦包括與該粒子束工具耦接之一控制器。該控制器包括用以進行以下操作之電路系統:自偵測到之經散射電子產生一電壓對比影像;及自所產生之電壓對比影像判定一疊對值或臨界尺寸值。
在一些實施例中,提供一種方法。該方法包括藉由一帶電粒子束掃描一量測標記之一組第一測試結構,及偵測自該量測標記散射之電子。該方法亦包括自偵測到之經散射電子產生一電壓對比影像。該方法進一步包括自所產生之電壓對比影像判定一疊對值或臨界尺寸值。
在一些實施例中,提供一種非暫時性電腦可讀媒體,其儲存在由一或多個處理器執行時致使該處理器執行一方法的指令。該方法包括藉由一帶電粒子束掃描一量測標記之一組第一測試結構,及偵測自該量測標記散射之電子。該方法亦包括自偵測到之經散射電子產生一電壓對比影像。該方法進一步包括自所產生之電壓對比影像判定一疊對值或臨界尺寸值。
現將詳細參考例示性實施例,其實例說明於附圖中。以下描述參考附圖,其中除非另外表示,否則不同圖式中之相同編號表示相同或類似元件。闡述於例示性實施例之以下描述中之實施並不表示符合本發明的所有實施。實情為,其僅為符合關於所附申請專利範圍中所列舉的本發明之態樣的裝置及方法之實例。
可藉由顯著增加IC晶片上之電路組件(諸如電晶體、電容器、二極體等)之填集密度來實現電子裝置之增強計算能力,同時減小裝置之實體大小。舉例而言,在智 慧型電話中,IC晶片(其可為拇指甲大小)可包括超過20億個電晶體,每一電晶體之大小小於人類毛髮之1/1000。並不出人意料,半導體IC製造係具有數百個個別步驟之複雜程序。甚至一個步驟中之誤差有可能顯著影響最終產品之功能。
特定言之,隨著尺寸減小,遮蔽層之數目可增長,且需要對準之特徵(線、切口等)之大小繼續縮減。舉例而言,相較於28 nm處之40個層,10 nm或7 nm處可存在80個或更多個遮蔽層。若此等層未經精確量測,則經圖案化、經沈積及經蝕刻之特徵可能並未在不同層間很好地對齊。
在本發明之一個態樣中,提供一種利用電壓對比效應之疊對標記(諸如 6 中所展示之疊對標記60)以量測兩個鄰近層之間的疊對移位,以及每一層上之特徵之臨界尺寸(CD)。疊對標記之準確度係由形成於疊對標記上之圖案之解析度判定。因此,疊對標記可由具有低解析度但具有高處理量之電子束工具掃描。
在貫穿本發明使用時,除非另外特定陳述,否則術語「或」涵蓋除不可行組合以外之所有可能組合。舉例而言,若陳述器件可包括A或B,則除非另外特定陳述或不可行,否則器件可包括A,或B,或A及B。作為第二實例,若規定器件可包括A、B或C,則除非另外特定陳述或不可行,否則器件可包括A,或B,或C,或A及B,或A及C,或B及C,或A及B及C。
1 為說明符合本發明之實施例之例示性微影裝置LA的示意圖。參考 1 ,微影裝置LA包括:源收集器模組SO;照明系統(照明器) IL,其經組態以調節輻射光束B (例如,EUV輻射);支撐結構(例如,光罩台) MT,其經建構以支撐圖案化器件(例如,光罩或倍縮光罩) MA且連接至第一定位器PM,第一定位器PM經組態準確地定位圖案化器件;基板台(例如,晶圓台) WT,其經建構以固持基板(例如,抗蝕劑塗佈晶圓) W且連接至第二定位器PW,第二定位器PW經組態以準確地定位基板;及投影系統(例如,反射投影系統) PS,其經組態以藉由圖案化器件MA將賦予至輻射光束B之圖案投影至基板W之目標部分C (例如,包含一或多個晶粒)上。
照明系統IL可包括用於導向、塑形或控制輻射的各種類型之光學組件,諸如折射、反射、磁性、電磁、靜電或其他類型之光學組件,或其任何組合。
圖案化器件支撐結構以取決於圖案化器件之定向、微影裝置之設計及其他條件(諸如,圖案化器件是否被固持於真空環境中)之方式來固持圖案化器件。圖案化器件支撐結構可使用機械、真空、靜電或其他夾持技術來固持圖案化器件。圖案化器件支撐結構可為(例如)框架或台,其可視需要而經固定或可移動。圖案化器件支撐結構可確保圖案化器件(例如)相對於投影系統處於所要位置。圖案化器件可被稱作倍縮光罩或光罩。
圖案化器件可為用以在輻射光束之橫截面中向輻射光束賦予圖案以便在基板之目標部分中產生圖案的器件。應注意,舉例而言,若被賦予至輻射光束之圖案包括相移特徵或所謂輔助特徵,則該圖案可不確切地對應於基板之目標部分中之所要圖案。通常,被賦予至輻射光束之圖案將對應於目標部分中所產生之器件(諸如積體電路)中的特定功能層。
圖案化器件可為透射的或反射的。圖案化器件之實例包括光罩、可程式化鏡面陣列,及可程式化LCD面板。光罩在微影中為吾人所熟知,且包括諸如二元、交變相移及衰減式相移之光罩類型,以及各種混合光罩類型。可程式化鏡面陣列之一實例使用小鏡面之矩陣配置,該等小鏡面中之每一者可個別地傾斜,以便使入射輻射光束在不同方向上反射。傾斜鏡面在由鏡面矩陣反射之輻射光束中賦予圖案。
投影系統可為適於正使用之曝光輻射或適於其他因素(諸如使用浸潤液體或使用真空)的任何類型之投影系統,包括折射、反射、反射折射、磁性、電磁及靜電光學系統,或其任何組合。投影系統可被稱作投影透鏡。
如此處所描繪,裝置屬於透射類型(例如,使用透射光罩)。替代地,該裝置可屬於反射類型(例如,使用如上文所提及之類型的可程式化鏡面陣列,或使用反射光罩)。
微影裝置LA可屬於具有兩個(雙載物台)或更多個台(例如,兩個或更多個基板台,兩個或更多個圖案化器件支撐結構,或基板台及度量衡台)之類型。在此類多載物台機器中,可並行地使用額外台,或可對一或多個台進行預備步驟,同時將一或多個其他台用於曝光。
微影裝置LA亦可屬於如下類型:其中基板之至少一部分可由具有相對較高折射率之液體(例如,水)覆蓋,以便填充投影系統與基板之間的空間。亦可將浸潤液體施加至微影裝置中之其他空間,例如,光罩與投影系統之間的空間。浸潤技術在此項技術中被熟知用於增大投影系統之數值孔徑。浸潤未必意謂諸如基板之結構必須浸沒於液體中,而是僅意謂液體在曝光期間位於投影系統與基板之間。
參考 1 ,照明器IL自輻射源SO接收輻射光束。舉例而言,當輻射源為準分子雷射時,輻射源與微影裝置可為分離實體。在此等狀況下,不認為源形成微影裝置之部分,且輻射光束係憑藉包括(例如)合適導向鏡面或擴束器之光束遞送系統BD而自源SO傳遞至照明器IL。在其他狀況下,舉例而言,當源為水銀燈時,源可為微影裝置之整體部分。源SO及照明器IL連同光束遞送系統BD在需要時可被稱作輻射系統。
照明器IL可包括用於調整輻射光束之角強度分佈之調整器AD。通常,可調整照明器之光瞳平面中之強度分佈的至少外部徑向範圍及內部徑向範圍(通常分別被稱作σ外部及σ內部)。另外,照明器IL可包括各種其他組件,諸如積光器IN及聚光器CO。照明器可用以調節輻射光束,以在其橫截面中具有所要均一性及強度分佈。
輻射光束B入射於圖案化器件(例如,光罩) MA上且由該圖案化器件圖案化,圖案化器件MA固持於圖案化器件支撐件(例如,光罩台MT)上。在已橫穿圖案化器件(例如,光罩) MA之情況下,輻射光束B穿過投影系統PS,投影系統PS將該光束聚焦至基板W之目標部分C上。憑藉第二定位器PW及位置感測器IF (例如,干涉器件、線性編碼器、2D編碼器或電容式感測器),基板台WTa可準確地移動(例如)以便將不同目標部分C定位於輻射光束B之路徑中。類似地,例如在自光罩庫機械擷取之後,或在掃描期間,可使用第一定位器PM及另一位置感測器( 1 中未明確描繪)以相對於輻射光束B之路徑準確地定位圖案化器件(例如,光罩) MA。一般而言,可憑藉形成第一定位器PM之部分的長衝程模組(粗略定位)及短衝程模組(精細定位)來實現圖案化器件支撐件(例如,光罩台) MT之移動。類似地,可使用形成第二定位器PW之部分的長衝程模組及短衝程模組來實現基板台WTa之移動。在步進器(相對於掃描器)之狀況下,圖案化器件支撐件(例如,光罩台) MT可僅連接至短衝程致動器,或可經固定。
可使用光罩對準標記M1、M2及基板對準標記P1、P2來對準圖案化器件(例如,光罩) MA及基板W。在本發明中,「標記」及「目標」可互換地使用。儘管所說明之基板對準標記佔據專用目標部分,但該等標記可位於目標部分之間的空間中(此等標記被稱為切割道對準標記)。類似地,在多於一個晶粒提供於圖案化器件(例如,光罩) MA上之情形中,光罩對準標記可位於該等晶粒之間。小的對準標記物亦可包括於器件特徵當中之晶粒內,在此狀況下,需要使標記物儘可能地小且無需與鄰近特徵不同的任何成像或程序條件。下文進一步描述偵測對準標記之對準系統。
所描繪裝置可用於以下模式中之至少一者中:
1. 在步進模式中,在將被賦予至輻射光束之整個圖案一次性投影至目標部分C上時,使圖案化器件支撐件(例如,光罩台) MT及基板台WTa保持基本上靜止(亦即,單次靜態曝光)。接著,使基板台WTa在X或Y方向上移位,使得可曝光不同目標部分C。在步進模式中,曝光場之最大大小限制單次靜態曝光中所成像的目標部分C之大小。
2. 在掃描模式中,在將被賦予至輻射光束之圖案投影至目標部分C上時,同步地掃描圖案化器件支撐件(例如,光罩台) MT及基板台WTa (亦即,單次動態曝光)。基板台WTa相對於圖案化器件支撐件(例如光罩台) MT之速度及方向可由投影系統PS之放大率(縮小率)及影像反轉特性判定。在掃描模式中,曝光場之最大大小限制單次動態曝光中之目標部分的寬度(在非掃描方向上),而掃描運動之長度判定目標部分之高度(在掃描方向上)。
3. 在另一模式中,在將被賦予至輻射光束之圖案投影至目標部分C上時,圖案化器件支撐件(例如,光罩台) MT保持基本上靜止,從而固持可程式化圖案化器件,且移動或掃描基板台WTa。在此模式中,通常使用脈衝式輻射源,且在基板台WTa之每一移動之後或在掃描期間之順次輻射脈衝之間根據需要而更新可程式化圖案化器件。此操作模式可易於應用於利用可程式化圖案化器件(諸如上文所提及之類型的可程式化鏡面陣列)之無光罩微影。
亦可使用對上文所描述之使用模式之組合或變化或完全不同的使用模式。
微影裝置LA屬於所謂的雙載物台類型,其具有兩個台WTa、WTb (例如,兩個基板台)以及兩個站-曝光站及量測站-在該兩個站之間可交換該等台。舉例而言,在曝光站處曝光一個台上之基板的同時,可在量測站處將另一基板裝載至另一基板台上且進行各種預備步驟。預備步驟可包括使用準位感測器LS來映射基板之表面控制,以及使用對準感測器AS來量測基板上之對準標記物之位置,該等感測器兩者係由參考框架RF支撐。若位置感測器IF在台處於量測站以及處於曝光站時不能夠量測台之位置,則可提供第二位置感測器以使能夠在兩個站處追蹤台之位置。作為另一實例,在曝光站處曝光一個台上之基板時,不具有基板之另一台可在量測站處等待(其中視情況可發生量測活動)。此另一台具有一或多個量測器件且可視情況具有其他工具(例如,清潔裝置)。當基板已完成曝光時,不具有基板之台移動至曝光站以執行例如量測,且具有基板之台移動至卸載該基板且裝載另一基板之部位(例如量測站)。此等多台配置實現裝置之處理量之相當大增加。
1 中所展示之微影裝置LA可形成微影製造單元LC(有時亦被稱作微影單元(lithocell)或微影製造叢集(lithocluster))之部分,微影製造單元LC亦包括用以對基板執行一或多個曝光前程序及曝光後程序之裝置。 2 為說明符合本發明之實施例之例示微影製造單元LC的示意圖。參考 2 ,微影製造單元LC可包括用以沈積抗蝕劑層之一或多個旋塗器SC、用以顯影經曝光抗蝕劑之一或多個顯影器DE、一或多個冷卻板CH及一或多個烘烤板BK。基板處置器或機器人RO自輸入/輸出埠I/O1、I/O2拾取基板、在不同程序器件之間移動基板且將基板遞送至微影裝置之裝載匣LB。常常被集體地稱作塗佈顯影系統(track)之此等器件係在塗佈顯影系統控制單元TCU之控制下,塗佈顯影系統控制單元TCU自身受到監督控制系統SCS控制,監督控制系統SCS亦經由微影控制單元LACU來控制微影裝置。因此,不同裝置可經操作以最大化處理量及處理效率。
為了正確且一致地曝光由微影裝置曝光之基板,需要檢測經曝光基板以量測一或多個屬性。此等屬性可包括後續層之間的疊對誤差、線厚度、臨界尺寸(CD)等。另外,如下文所描述,檢測可用以導出諸如側壁角不平衡性之程序參數。若偵測到誤差,則可對一或多個後續基板之曝光進行調整,尤其是在檢測可足夠迅速地且快速地進行而使得同一批次之另一基板仍待曝光的情況下。又,已經曝光之基板可被剝離及重工(以改良良率),或被捨棄,藉此避免對已知有缺陷之基板執行曝光。在基板之僅一些目標部分有缺陷之狀況下,可僅對良好的彼等目標部分執行另一曝光。另一可能性應為調適後續程序步驟之設定以補償誤差,例如,可調整修整蝕刻步驟之時間以補償由微影程序步驟引起的基板間CD變化。
檢測裝置用以判定基板之一或多個屬性,且特定言之,判定不同基板或同一基板之不同層之一或多個屬性如何在不同層間變化或跨基板而變化。檢測裝置可整合至微影裝置LA或微影單元LC中,或可為單機器件。為了實現最快速量測,需要使檢測裝置緊接在曝光之後量測經曝光抗蝕劑層中之一或多個屬性。然而,抗蝕劑中之潛影具有極低對比度-在已曝光於輻射的抗蝕劑之部分與尚未曝光於輻射的抗蝕劑之部分之間僅存在極小折射率差-且並非所有檢測裝置皆具有足夠敏感度來進行潛影之有用量測。因此,可在曝光後烘烤步驟(PEB)之後進行量測,曝光後烘烤步驟通常為對經曝光之基板進行之第一步驟且增加抗蝕劑之經曝光部分與未經曝光部分之間的對比度。在此階段,抗蝕劑中之影像可被稱作半潛像(semi-latent)。亦有可能對經顯影抗蝕劑影像進行量測-此時,抗蝕劑之經曝光部分或未經曝光部分已被移除-或在諸如蝕刻之圖案轉印步驟之後對經顯影抗蝕劑影像進行量測。後一可能性限制有缺陷基板之重工之可能性,但(例如)出於程序控制之目的仍可提供有用資訊。
在所揭示之實施例中,檢測裝置可為光學度量衡工具,諸如散射計。 3 為說明符合本發明之實施例之例示性散射計10的示意圖。參考 3 ,散射計10包括寬頻帶(白光)輻射投影儀102,其將輻射投影至基板106上。反射輻射經傳遞至光譜儀偵測器104,該光譜儀偵測器104量測反射輻射之光譜110 (亦即,依據波長變化的強度之量測)。自此資料,可藉由與散射計10通信之控制器30來重建構引起經偵測光譜之結構或剖面。舉例而言,控制器30可藉由嚴密耦合波分析及非線性回歸或藉由與如 3 之底部處所展示之經模擬光譜之庫進行比較來執行重建構。一般而言,對於重建構,結構之一般形式為吾人所知,且自供製造結構之程序之知識來假定一些參數,從而僅留下結構之幾個參數以自散射量測資料予以判定。在各種實施例中,散射計10可組態為正入射散射計或斜入射散射計。
光學度量衡工具之解析度受光波長限制,光波長通常為幾百奈米。在所揭示之實施例中,檢測裝置亦可為帶電粒子(例如,電子)束顯微鏡,諸如具有下至小於一奈米之解析度的掃描電子顯微鏡(SEM)。 4 為說明符合所揭示實施例之例示性電子束工具20的示意圖。如 4 中所展示,電子束工具20包括機動載物台200及晶圓固持器202,晶圓固持器202由機動載物台200支撐以固持待檢測之晶圓203。電子束工具20進一步包括複合物鏡204、電子偵測器206 (其包括電子感測器表面206a及206b)、物鏡孔徑208、聚光透鏡210、光束限制孔徑212、槍孔徑214、陽極216及陰極218,其中之一或多者可與電子束工具20之光軸270對準。
在一些實施例中,複合物鏡204可包括經修改的擺動物鏡延遲浸沒透鏡(SORIL),其包括磁極片204a、控制電極204b、一偏轉器或一組偏轉器204c,以及勵磁線圈204d。電子束工具20可另外包括能量色散X射線光譜儀(EDS)偵測器(未展示)以表徵晶圓上之材料。
藉由在陽極216與陰極218之間施加電壓而自陰極218發射原始電子束220。原始電子束220穿過槍孔徑214及光束限制孔徑212,此兩者可判定進入駐存在光束限制孔徑212下方之聚光透鏡210之電子束的電流。聚光透鏡210在光束進入物鏡孔徑208之前聚焦原始電子束220,以在電子束進入複合物鏡204之前設定電子束的電流。
複合物鏡204可將原始電子束220聚焦至晶圓203上以用於檢測且可在晶圓203之表面上形成探測光點222。偏轉器204c使原始電子束220偏轉以掃描晶圓203上方之探測光點222。舉例而言,在掃描過程中,偏轉器204c可經控制以在不同時間點處依序將原始電子束220偏轉至晶圓203之頂部表面之不同部位上,以提供用於晶圓203之不同部分之影像重建構的資料。此外,偏轉器204c亦可經控制以在不同時間點處將原始電子束220偏轉至特定部位處之晶圓203之不同側上,以提供用於彼部位處之晶圓結構之立體影像重建構的資料。此外,在一些實施例中,陽極216及陰極218可經組態以產生多個原始電子束220,且電子束工具104可包括複數個偏轉器204c以同時將多個原始電子束220投影至晶圓203之不同部分/側。
當電流被施加至勵磁線圈204d上時,軸向對稱(亦即,圍繞光軸270對稱)磁場將產生於晶圓表面區域中。由原始電子束220掃描之晶圓203的一部分可浸沒於磁場中。不同電壓經施加至晶圓203、磁性物鏡204a及控制電極204b上,以接近晶圓表面產生軸向對稱之延遲電場。該電場在原始電子束220與晶圓203碰撞之前減少接近晶圓之表面衝擊原始電子束220的能量。與磁極片204a電隔離之控制電極204b控制晶圓上之軸向對稱電場以防止晶圓之微電弧作用且確保晶圓表面連同軸向對稱磁場處之適當光束聚焦。
在接收到原始電子束220後,可自晶圓203之部分發射二次電子束230。二次電子束230可由電子偵測器206之感測器表面206a及206b接收。電子偵測器206可產生表示二次電子束230之強度的信號(例如,電壓、電流等),且將信號提供至與電子偵測器206通信之控制器30。二次電子束230之強度可根據晶圓203之外部及/或內部結構變化。此外,如上文所論述,原始電子束220可投影至晶圓203之頂部表面之不同部位上,或在特定部位處的晶圓203之不同側,以產生具有不同強度之二次電子束230。因此,藉由用晶圓203之部位映射二次電子束230之強度,控制器30可重建構反映晶圓203之內部或外部結構的影像。
此外,儘管 4 展示電子束工具20使用單一原始電子束,但預期電子束工具20亦可為使用多個原始電子束之多光束檢測工具。本申請案並未限制用於電子束工具20中之原始電子束之數目。
與本發明一致,電子束工具可用以基於基板對電子束照明之電壓對比回應而量測疊對未對準及臨界尺寸。 5 為說明符合本發明之實施例之電壓對比回應模型的示意圖。參考 5 ,測試結構52經顯影於基板50之頂部上。測試結構52包括藉由絕緣材料55分離之多個特徵53、54。當電子束工具20掃描測試結構52之表面時,控制器30可產生測試結構之電壓對比影像56。特徵53短接至接地且將不保持正電荷。因而,特徵53可排斥較多二次電子,且將呈現為電壓對比影像上之明亮區。相比之下,特徵54與群組斷開,且將具有正電荷累積,此致使特徵54排斥較少二次電子,且因此在電壓對比影像上呈現為黑暗。
前述描述已描述了短路條件之存在導致對應特徵呈現為明亮,且斷路條件之存在導致對應特徵呈現為黑暗。然而,對於熟習此項技術者而言顯而易見的是,明亮及黑暗之呈現可取決於測試結構之實際處理或電子束工具之設定而改變且甚至逆轉。
6 為說明符合本發明之實施例之電壓對比度量衡標記的示意圖。 6 左側展示疊對標記60之頂部平面圖。疊對標記60包括用於判定兩個晶圓層之間在兩個不同方向上之對齊誤差(諸如邊緣置放誤差)的複數個測試結構62。儘管 6 左側僅展示頂層(在下文中亦被稱作「當前層」或「第一層」)中之測試結構,但預期緊接在頂層下方之第二層(在下文中亦被稱作「先前層」)亦包括複數個測試結構62。此外,儘管 6 左側僅展示以3×3矩陣配置之九個測試結構62,但預期所揭示之疊對標記可包括與所需數目一樣多的測試結構62。
在所說明實施例中,測試結構62為正方形的,且可具有類似於電子束工具之像素大小的大小,以便增加檢測處理量。測試結構62為彼此空間分離的,使得其不與第二層之鄰近測試結構之部分重疊。如上文所論述,測試結構62經組態以提供兩個方向(諸如彼此正交之X方向及Y方向)上之疊對資訊。每一測試結構62含有週期性結構(未展示),該週期性結構包括以間隔開之列及行配置的特徵。
6 右側展示測試結構62對電子束照明之電壓對比回應。測試結構62中之週期性特徵係由導電材料製成。在一些實施例中,導電材料可為金屬,包括但不限於銅、鎢、鎳、鈷、鉭及氮化鈦。在一些實施例中,導電材料可為半導體,包括但不限於結晶矽、多晶矽、非晶矽及矽-鍺。不同晶圓層中之特徵可使用相同類型之導電材料或不同類型之導電材料。當當前層(亦即,頂層)中之特徵連接至先前層(亦即,下部層)中之特徵時,對應測試結構62將展示為疊對標記60之電壓對比影像上之明亮區。相比之下,當當前層中之特徵與先前層中之特徵斷開時,對應測試結構62將展示為電壓對比影像上之黑暗區。如上文所論述,可使測試結構62之大小類似於或等於電子束工具20之像素大小,使得電壓對比影像之一個像素對應於測試結構62。以此方式,可改良檢測處理量。
在所揭示實施例中,測試結構62經程式化以具有不同疊對偏移值,亦即,X/Y值。舉例而言,如 6 左側所展示,測試結構62可分別在X方向及Y方向上具有不同疊對偏移值。基於疊對偏移值及電壓對比影像,可較準確地判定疊對誤差。
所揭示之疊對標記亦可用以量測臨界尺寸。 7 為說明符合本發明之實施例之電壓對比度量衡疊對標記70的示意圖。類似於疊對標記60,標記70包括複數個測試結構72。然而,不同於標記60,測試結構72經設計以在Y方向上具有不同的臨界尺寸值。每一測試結構72含有週期性結構(未展示),該週期性結構包括以間隔開之列及行配置的特徵。週期性特徵可組態有多種大小、形狀及分佈。此外,為了分離鄰近效應或隨機效應,不同測試結構72的特徵之間距可能不同。
7 展示各種疊對偏移或臨界尺寸可能致使當前層及先前層中之特徵連接或斷開之情境,此產生不同的電壓對比回應。以此方式,標記70可用以同時量測X方向上之疊對誤差及臨界尺寸。以上實施例僅係出於說明的目的。應理解,所揭示標記可經組態以具有疊對程序窗及臨界尺寸值之任何適合組合。舉例而言,一個標記可包括多個鄰近測試結構以追蹤非對稱臨界尺寸或疊對程序窗。
所揭示疊對標記可用於電子掃描工具(例如,電子束工具20)之低解析度模式,同時仍然能夠實現準確疊對/CD量測。此係因為疊對/CD量測之準確度係由疊對標記之特徵之解析度控制。通常,目前工藝水平之電子束工具使用1 nm至2 nm之光點大小來執行高解析度成像。然而,較小光點大小及因此較低的光束電流需要較長掃描時間,且因此減少系統處理量。因為所揭示之疊對標記對電子束工具之解析度的敏感度低得多,因此其可與具有約20 nm像素、200 nm像素之光點大小或甚至2 μm光點大小之電子束工具一起以極高掃描速率使用,以推斷小於nm之疊對。特定言之,較大光點大小允許較高光束電流,此可產生具有足夠信雜比及對比解析度之影像。形成於疊對標記之影像上的明亮及黑暗圖案可準確地反映疊對及CD值。因此,所揭示之疊對標記允許同時達成高解析度成像及高光束電流,藉此允許高掃描速度以改良系統處理量。
8 為說明符合本發明之實施例的疊對標記70中之經程式化疊對移位及CD變化的示意圖。參考 8 ,疊對標記70可經程式化以具有沿X方向之疊對變化及Y方向上之CD變化。變化在幾分之一奈米(例如,0.5奈米)至數奈米之範圍內。因而,標記70可在器件層級下量測疊對變化及CD。
在一些實施例中,不同標記可整合至單一「多圖案化」標記中。此意謂多個光罩之相互作用可能具有複雜的疊對及臨界尺寸相互作用,所有此等相互作用可由特定疊對移位或CD移位中不同光罩之組合研究。多圖案化標記可用於多個微影步驟之組合所產生之單一導體層,該單一導體層常用於小於22 nm之裝置中。
與本發明一致,程序窗之特徵可為二維疊對-CD圖中之區域或區。當在疊對-CD條件下在程序窗內曝光晶圓時,由晶圓製成之晶片將通常為功能性的,而當在疊對-CD條件下在程序窗外部曝光晶圓時,由晶圓製成之晶片將通常不為功能性的。
此外,用於微影程序之程序窗進一步受限制,此係因為電路設計內之不同圖案可具有不同程序窗。此等差可包括最佳焦平面位置中之移位、最佳曝光中之移位、最佳疊對部位中之移位,及焦點或曝光之允許範圍內的改變。不同圖案亦可具有不同的成功印刷準則。雖然一些非臨界特徵可容許高達+/-15%之CD變化,但對最臨界結構之容許度可僅為一半。不同圖案之故障模式亦可極為不同。一些圖案可歸因於過度CD變化而被認為係不可接受的,其他圖案歸因於其側壁輪廓之過度改變而被認為係不可接受的,且其他圖案可遭受過度線端拉回或隅角圓化。歸因於相鄰結構之相互作用,嚴重圖案故障亦係可能的。在給定特徵經印刷為經隔離結構的情況下可接受之CD變化可能造成不同局部環境中之橋接、頸縮或其他不可接受的圖案變化。
在一些實施例中,可使用隨機演算法來分別調整疊對(或間距)變化及CD變化以定量程序窗。疊對變化及CD變化之分佈可與晶圓晶片良率圖(yield map)相關。可使用統計分析來擷取關於例如疊對變化或CD變化為臨界良率限制因素或與良率波動或偏移之某些特性最高度相關的資訊。
在一些實施例中,可提供經判定程序窗作為對微影程序控制系統提供關於如何執行微影程序(例如,所有特徵之CD及層對準是否在規範內,及應調整哪些程序條件參數且調整多少以便維持微影程序及曝光工具處於最佳操作條件)之資料的回饋。如本發明中所使用,「程序條件參數」係指曝光工具參數或微影程序參數中之任一者。程序條件參數亦可為稱為至微影程序之「輸入參數」。可重複此回饋程序以確保微影程序受到緊密控制。
所揭示之電壓對比標記要求在當前層之蝕刻、填充及拋光之後執行量測,且因此可能在獲得疊對或CD資訊方面產生延遲。為了解決此問題,本發明亦提供經組合電壓對比及光學度量衡標記。 9 為說明符合本發明之實施例之經組合電壓對比及光學度量衡標記90的示意圖。參考 9 ,標記90可包括複數個電壓對比測試結構92,其組態類似於測試結構62 ( 6 )及72 ( 7 )之組態。因而,電子束工具20可掃描測試結構92且獲得測試結構92之電壓對比回應,以便判定疊對及臨界尺寸資訊。
此外,標記90可包括複數個光學測試結構94。 10 為說明符合本發明之實施例的光學測試結構94中之特徵的示意圖。參考圖10 ,四個光學測試結構94緊密定位在一起,使得其皆在散射計10之視野內(例如,在由散射計10之照明光束形成的量測光點內)。因此,四個光學測試結構94可同時被照明且由散射計10同時成像。每一光學測試結構94包括形成光柵之複數個主要特徵,該等主要特徵之間距係由散射計10之敏感度判定。亦即,間距通常由光學度量衡工具散射計10之光學件判定。因而,主要特徵之間距通常為約數百奈米。由主要特徵形成之光柵可具有不同偏置之疊對偏移以便促進量測不同晶圓層之間的疊對。由主要特徵形成之光柵亦可在其定向方面有所不同,如 10 中所展示,以便在X方向及Y方向上繞射入射輻射。雖然 10 中說明了四個光柵,但另一實施例可包括較大矩陣以獲得所要準確度。舉例而言,可使用九個測試結構94之3×3陣列。
如本文中所描述之測試結構94可為(例如)疊對目標,其經設計以供諸如YieldStar® 單機或整合式度量衡工具之度量衡工具使用;及/或為對準目標,諸如,通常供TwinScan® 微影系統使用之對準目標,疊對目標及對準目標兩者可購自ASML。
仍參考 10 ,測試結構94中之主要特徵可進一步分成複數個週期性子特徵,該等週期性子特徵之間距係由電子束20之敏感度判定。舉例而言,子特徵之間距可設定為10奈米與200奈米之間。因而,子特徵可由電子束工具20掃描且提供器件解析度下之電壓對比回應。子特徵之間距可經選擇以使得針對每一此類結構量測疊對範圍。此外,子特徵可經組態成二維的,例如在X方向及Y方向兩者上具有間距。
如上文所描述,單一標記(例如,標記90)可經設計以用於電壓對比及光學量測兩者。可使用基於電壓對比標記之量測來校準基於光學量測之量測,且反之亦然。可在ADI (顯影後檢測)時執行光學量測。可在蝕刻及拋光之後執行電壓對比量測。因此,標記90允許在進一步處理標記之後對ADI疊對及程序窗及彼窗內之位置進行光學量測。此組合允許量測程序窗,同時亦使得晶圓重工成為可能。
可使用以下第一組條項進一步描述實施例。對此第一組條項中之條項的引用係對此同一組條項中之條項的引用。 1. 一種量測標記,其包含:
一組第一測試結構,其在一基板上之一第一層中顯影,該組第一測試結構中之每一者包含由第一導電材料製成之複數個第一特徵;及
一組第二測試結構,其在鄰近於該第一層之一第二層中顯影,該組第二測試結構中之每一者包含由第二導電材料製成之複數個第二特徵,
其中該量測標記經組態以在使用一電壓對比成像法來成像時指示該組第一測試結構與該組第二測試結構中之相關聯第二測試結構之間的連接性。
2. 如條項1之量測標記,其中當該第二測試結構與該組第一測試結構中之一者形成一短路時,電壓對比影像展示該組第二測試結構中之一者具有一低電壓。
3. 如條項1及2中任一項之量測標記,其中當該第二測試結構與該組第一測試結構處於一斷路中時,該電壓對比影像展示該組第二測試結構中之一者具有一高電壓。
4. 如條項1至3中任一項之量測標記,其中該組第一測試結構與該組第二測試結構之一組合經組態以在沿該基板之一表面的一第一方向上傳送疊對資訊。
5. 如條項4之量測標記,其中該組第一測試結構及該組第二測試結構中之至少一者經組態以在該第一方向上具有不同間距值。
6. 如條項4之量測標記,其中該組第一測試結構與該組第二測試結構之一組合進一步經組態以在沿該基板之一表面的一第二方向上傳送疊對資訊,該第二方向不同於該第一方向。
7. 如條項6之量測標記,其中該第二方向正交於該第一方向。
8. 如條項4之量測標記,其中該組第一測試結構與該組第二測試結構之一組合進一步經組態以在沿該基板之一表面的一第二方向上傳送臨界尺寸資訊,該第二方向不同於該第一方向。
9. 如條項4之量測標記,其中該組第一測試結構及該組第二測試結構中之至少一者在該第二方向上具有不同臨界尺寸值。
10. 如條項9之量測標記,其中該第二方向正交於該第一方向。
11. 如條項1至3中任一項之量測標記,其中該組第一測試結構及該組第二測試結構之一組合進一步經組態以在沿該基板之一表面的一方向上傳送臨界尺寸資訊。
12. 如條項11之量測標記,其中該組第一測試結構及該組第二測試結構中之至少一者在該方向上具有不同臨界尺寸值。
13. 如條項1至12中任一項之量測標記,其中該量測標記為包括該組第一測試結構及該組第二結構之一光罩。
14. 如條項1至13中任一項之量測標記,其進一步包含:
一組第三測試結構,其在該第一層中顯影,該組第三測試結構中之每一者包含複數個第三週期性特徵,該複數個第三週期性特徵之間距係由一光學度量衡工具之一敏感度判定;及
一組第四測試結構,其在該第二層中顯影,該組第四測試結構中之每一者包含複數個第四週期性特徵,該複數個第四週期性特徵之間距係由該光學度量衡工具之該敏感度判定。
15. 如條項14之量測標記,其中該組第三測試結構及該組第四測試結構中之至少一者定位於對應於該光學度量衡工具之一視野的一周邊內。
16. 如條項14及15中任一項之量測標記,其中該複數個第三週期性特徵及該複數個第四週期性特徵中之每一者進一步分成複數個子特徵,該複數個子特徵之間距係由一電子束工具之一敏感度判定。
17. 如條項16之量測標記,其中該等第三特徵之該等子特徵為第一週期性特徵,且其中該等週期性特徵之該等子特徵為第二週期性特徵。
18. 如條項14之疊對標記,其中該複數個第三週期性特徵及該複數個第四週期性特徵分別係由該第一導電材料及該第二導電材料製成。
19. 如條項1至18中任一項之疊對標記,其中該第一導電材料及該第二導電材料中之每一種包含半導體。
20. 如條項19之疊對標記,其中該半導體包含結晶矽、多晶矽、非晶矽及矽-鍺中之至少一種。
21. 如條項1至18中任一項之疊對標記,其中該第一導電材料及該第二導電材料中之每一種包含金屬。
22. 如條項21之疊對標記,其中該金屬包含銅、鎢、鎳、鈷、鉭及氮化鈦中之至少一種。
23. 一種量測標記,其包含:
在一第一間距處之第一特徵之一第一陣列及在一第二間距處之第二特徵之一第二陣列,該第一陣列及該第二陣列配置於一基板上之兩個連續層中,其中該量測標記經組態以用於判定該等第一特徵相對於相關聯第二特徵之間的一疊對值,或經組態以用於在使用一電壓對比成像法來成像時判定該等第一特徵或該等第二特徵之一臨界尺寸值。
24. 如條項23之量測標記,其中該第一間距與該第二間距係不同的。
25. 如條項23及24中任一項之量測標記,其中該第一間距及該第二間距在沿該基板之一表面的一個方向或兩個方向上變化。
26. 如條項23至25中任一項之量測標記,其中該等第一特徵之一占空比及該等第二特徵之一占空比中的至少一者經組態以具有不同值。
27. 如條項23至26中任一項之量測標記,其中該等第一特徵中之至少一者包含子特徵之一子陣列。
28. 如條項23至27中任一項之量測標記,第一特徵之該第一陣列及第二特徵之該第二陣列中的至少一者經組態以具有不同臨界尺寸。
29. 一種系統,其包含:
一電子束工具,其用於掃描如條項1之量測標記且用於偵測自該量測標記散射之電子;及
一控制器,其與該電子束工具耦接且經組態以:
自偵測到之經散射電子產生一電壓對比影像;且
自所產生之電壓對比影像判定一疊對值及/或臨界尺寸值。
30. 如條項29之系統,其中該控制器進一步經組態以:
當該電壓對比影像展示該組第二測試結構中之一者具有一低電壓時,判定該第二測試結構與該組第一測試結構中之一者形成一短路。
31. 如條項29及30中任一項之系統,其中該控制器進一步經組態以:
當該電壓對比影像展示該組第二測試結構中之一者具有一高電壓時,判定該第二測試結構與該組第一測試結構處於一斷路中。
32. 如條項29至31中任一項之系統,其中該組第一測試結構及該組第二測試結構中之至少一者經組態以在沿該基板之一表面的一第一方向上具有不同疊對偏移值。
33. 如條項29至32中任一項之系統,其中該組第一測試結構及該組第二測試結構中之至少一者經組態以在沿該基板之該表面的一第二方向上具有不同疊對偏移值,該第二方向不同於該第一方向。
34. 如條項33之系統,其中該第二方向正交於該第一方向。
35. 如條項32至34中任一項之系統,其中該控制器進一步經組態以基於該電壓對比影像及該等疊對偏移值判定疊對資訊。
36. 如條項32之系統,其中該組第一測試結構及該組第二測試結構中之至少一者在不同於該第一方向之一第二方向上具有不同臨界尺寸值。
37. 如條項36之系統,其中該第二方向正交於該第一方向。
38. 如條項36及37中任一項之系統,其中該控制器進一步經組態以基於該電壓對比影像判定臨界尺寸資訊。
39. 如條項38中任一項之系統,其中該控制器進一步經組態以基於該電壓對比影像判定臨界尺寸資訊。
40. 如條項29至39中任一項之系統,其進一步包含:
一光學度量衡工具,其用於掃描如條項14之量測標記;且
該控制器進一步經組態以基於該電壓對比影像及該光學度量衡工具之一輸出判定疊對資訊及臨界尺寸資訊中之至少一者。
41. 如條項40之系統,其中:
該複數個第三週期性特徵及該複數個第四週期性特徵中之每一者進一步分成複數個週期性子特徵,該複數個週期性子特徵之間距係由一電子束工具之一敏感度判定;
該電子束工具進一步經組態以在蝕刻該第二層之後,掃描該組第四測試結構且偵測由該組第四測試結構散射之電子;且
該控制器進一步經組態以基於該電子束工具之一輸出判定疊對資訊及臨界尺寸資訊中之至少一者。
42. 如條項43之系統,其中該複數個第三週期性特徵及該複數個第四週期性特徵分別係由該第一導電材料及該第二導電材料製成。
43. 如條項29至43中任一項之系統,其中該第一導電材料及該第二導電材料中之每一者包含半導體。
44. 如條項43之系統,其中該半導體包含結晶矽、多晶矽、非晶矽及矽-鍺中之至少一種。
45. 如條項29至43中任一項之系統,其中該第一導電材料及該第二導電材料中之每一種包含金屬。
46. 如條項45之系統,其中該金屬包含銅、鎢、鎳、鈷、鉭及氮化鈦中之至少一種。
47. 一種方法,其包含:
由一電子束工具掃描一量測標記且由該電子束工具偵測自該量測標記散射之電子,該量測標記包含:
一組第一測試結構,其在鄰近於一基板之一第一層中顯影,該組第一測試結構中之每一者包含由第一導電材料製成之複數個第一特徵;及
一組第二測試結構,其在鄰近於該第一層安置之一第二層中顯影,該組第二測試結構中之每一者包含由第二導電材料製成之複數個第二特徵;及
由一控制器基於偵測到之電子產生該組第二測試結構之一電壓對比影像;及
由該控制器基於該電壓對比影像判定該組第一測試結構與該組第二測試結構之間的連接性。
48. 如條項47之方法,其進一步包含:
當該電壓對比影像展示該組第二測試結構中之一者具有一低電壓時,判定該第二測試結構與該組第一測試結構中之一者形成一短路。
49. 如條項47及48中任一項之方法,其進一步包含:
當該電壓對比影像展示該組第二測試結構中之一者具有一高電壓時,判定該第二測試結構與該組第一測試結構處於一斷路中。
50. 如條項47至49中任一項之方法,其中該組第一測試結構及該組第二測試結構中之至少一者經組態以在沿該基板之一表面的一第一方向上具有不同疊對偏移值。
51. 如條項50之方法,其中該組第一測試結構及該組第二測試結構中之至少一者在沿該基板之該表面的一第二方向上具有不同疊對偏移值,該第二方向不同於該第一方向。
52. 如條項51之方法,其中該第二方向正交於該第一方向。
53. 如條項50至52中任一項之方法,其進一步包含:
由該控制器基於該電壓對比影像及該等疊對偏移值判定疊對資訊。
54. 如條項50之方法,其中該組第一測試結構及該組第二測試結構中之至少一者在沿該基板之該表面的一第二方向上具有不同臨界尺寸值,該第二方向不同於該第一方向。
55. 如條項54之方法,其中該第二方向正交於該第一方向。
56. 如條項54及55中任一項之方法,其進一步包含:
基於該電壓對比影像判定臨界尺寸資訊。
55. 如條項47至49中任一項之方法,其中該組第一測試結構及該組第二測試結構中之至少一者經組態以在沿該基板之一表面的一第一方向上具有不同臨界尺寸。
56. 如條項55之方法,其進一步包含:
由該控制器基於該電壓對比影像判定臨界尺寸資訊。
57. 如條項47至56中任一項之方法,其中:
該量測標記進一步包含:
一組第三測試結構,其在該第一層中顯影,該組第三測試結構中之每一者包含複數個第三特徵,該複數個第三特徵之間距係由光學度量衡工具之一敏感度判定;及
一組第四測試結構,其在該第二層中顯影,該組第四測試結構中之每一者包含複數個第四特徵,該複數個第四特徵之間距係由該光學度量衡工具之該敏感度判定;且
該方法進一步包含:
在對該第二層進行顯影後檢測期間,由該光學度量衡工具掃描該組第四測試結構且由該光學度量衡工具偵測自該組第四測試結構散射之光;及
由該控制器基於該光學度量衡工具之一輸出判定疊對資訊及臨界尺寸資訊中之至少一者。
58. 如條項57之方法,其中:
該複數個第三週期性特徵及該複數個第四週期性特徵中之每一者進一步分成複數個週期性子特徵,該複數個週期性子特徵之間距係由一電子束工具之一敏感度判定;且
該方法進一步包含:
在蝕刻該第二層之後,由電子掃描工具掃描該組第四測試結構且由該電子束工具偵測由該組第四測試結構散射之電子;及
由該控制器基於該電子束工具之一輸出判定疊對資訊及臨界尺寸資訊中之至少一者。
59. 如條項57之方法,其中該複數個第三週期性特徵及該複數個第四週期性特徵分別係由該第一導電材料及該第二導電材料製成。
60. 如條項47至59中任一項之方法,其中該第一導電材料及該第二導電材料中之每一者包含半導體。
61. 如條項60之方法,其中該半導體包含結晶矽、多晶矽、非晶矽及矽-鍺中之至少一種。
62. 如條項47至59中任一項之方法,其中該第一導電材料及該第二導電材料中之每一者包含金屬。
63. 如條項64之方法,其中該金屬包含銅、鎢、鎳、鈷、鉭及氮化鈦中之至少一種。
64. 一種非暫時性電腦可讀媒體,其儲存在由一或多個處理器執行時使該處理器執行包含以下操作之一方法的指令:
接收一電子束工具之一輸出,其中該電子束工具掃描一量測標記且偵測自該量測標記散射之電子,該量測標記包含:
一組第一測試結構,其在安置於一基板上之一第一層中顯影,該組第一測試結構中之每一者包含由第一導電材料製成之複數個第一特徵;及
一組第二測試結構,其在鄰近於該第一層安置之一第二層中顯影,該組第二測試結構中之每一者包含由第二導電材料製成之複數個第二特徵;及
基於該電子束工具之該輸出產生該組第二測試結構之一電壓對比影像;及
基於該電壓對比影像判定該組第一測試結構與該組第二測試結構之間的連接性。
65. 如條項64之媒體,其中該方法進一步包含:
當該電壓對比影像展示該組第二測試結構中之一者具有一低電壓時,判定該第二測試結構與該組第一測試結構中之一者形成一短路。
66. 如條項64及65之媒體,其中該方法進一步包含:
當該電壓對比影像展示該組第二測試結構中之一者具有一高電壓時,判定該第二測試結構與該組第一測試結構處於一斷路中。
67. 如條項64至66中任一項之媒體,其中該組第一測試結構及該組第二測試結構中之至少一者經組態以在沿該基板之一表面的一第一方向上具有不同疊對偏移值。
68. 如條項67之媒體,其中該組第一測試結構及該組第二測試結構中之至少一者經組態以在沿該基板之該表面的一第二方向上具有不同疊對偏移值,該第二方向不同於該第一方向。
69. 如條項68之媒體,其中該第二方向正交於該第一方向。
70. 如條項67至69中任一項之媒體,其中該方法進一步包含:
基於該電壓對比影像及該等疊對偏移值判定疊對資訊。
71. 如條項70之媒體,其中該組第一測試結構及該組第二測試結構中之每一者在不同於該第一方向之一第二方向上具有不同臨界尺寸值。
72. 如條項71之媒體,其中該第二方向正交於該第一方向。
73. 如條項10及71中任一項之媒體,其中該方法進一步包含:
基於該電壓對比影像判定臨界尺寸資訊。
74. 如條項64至66中任一項之媒體,其中該組第一測試結構及該組第二測試結構中之至少一者經組態以在沿該基板之一表面的一第一方向上具有不同臨界尺寸值。
75. 如條項74中任一項之媒體,其中該方法進一步包含:
基於該電壓對比影像判定臨界尺寸資訊。
76. 如條項64至75中任一項之媒體,其中:
該量測標記進一步包含:
一組第三測試結構,其在該第一層中顯影,該組第三測試結構中之每一者包含複數個第三特徵,該複數個第三特徵之間距係由光學度量衡工具之一敏感度判定;及
一組第四測試結構,其在該第二層中顯影,該組第四測試結構中之每一者包含複數個第四特徵,該複數個第四特徵之間距係由該光學度量衡工具之該敏感度判定;且
該方法進一步包含:
接收該光學度量衡工具之一輸出,其中在對該第二層進行顯影後檢測期間,該光學度量衡工具掃描該組第四測試結構且偵測自該組第四測試結構散射之光;及
基於該光學度量衡工具之一輸出判定疊對資訊及臨界尺寸資訊中之至少一者。
77. 如條項76之媒體,其中:
該複數個第三週期性特徵及該複數個第四週期性特徵中之每一者進一步分成複數個子特徵,該複數個子特徵之間距係由一電子束工具之一敏感度判定;且
該方法進一步包含:
接收電子掃描工具之一輸出,其中在蝕刻該第二層之後,該電子掃描工具掃描該組第四測試結構且偵測由該組第四測試結構散射之電子;及
基於該電子束工具之一輸出判定疊對資訊及臨界尺寸資訊中之至少一者。
可使用以下第二組條項進一步描述實施例。對此第二組條項中之條項的引用係對此同一組條項中之條項的引用。
1. 一種量測標記,其包含:
一組第一測試結構,其在一基板上之一第一層中顯影,該組第一測試結構中之每一者包含由第一導電材料製成之複數個第一特徵;及
一組第二測試結構,其在鄰近於該第一層之一第二層中顯影,該組第二測試結構中之每一者包含由第二導電材料製成之複數個第二特徵,
其中該量測標記經組態以在使用一電壓對比成像法來成像時指示該組第一測試結構與該組第二測試結構中之相關聯第二測試結構之間的連接性。
2. 如條項1之量測標記,其中當該第二測試結構與該組第一測試結構中之一者形成一短路時,電壓對比影像展示該組第二測試結構中之一者具有一低電荷累積。
3. 如條項1及2中任一項之量測標記,其中當該第二測試結構與該組第一測試結構處於一斷路中時,該電壓對比影像展示該組第二測試結構中之一者具有一高電荷累積。
4. 如條項1至3中任一項之量測標記,其中該組第一測試結構與該組第二測試結構之一組合經組態以在沿該基板之一表面的一第一方向上傳送疊對資訊。
5. 如條項4之量測標記,其中該組第一測試結構及該組第二測試結構中之至少一者經組態以在該第一方向上具有不同間距值。
6. 如條項4之量測標記,其中該組第一測試結構與該組第二測試結構之一組合進一步經組態以在沿該基板之一表面的一第二方向上傳送疊對資訊,該第二方向不同於該第一方向。
7. 如條項6之量測標記,其中該第二方向正交於該第一方向。
8. 如條項4之量測標記,其中該組第一測試結構與該組第二測試結構之一組合進一步經組態以在沿該基板之一表面的一第二方向上傳送臨界尺寸資訊,該第二方向不同於該第一方向。
9. 如條項4之量測標記,其中該組第一測試結構及該組第二測試結構中之至少一者在該第二方向上具有不同臨界尺寸值。
10. 如條項9之量測標記,其中該第二方向正交於該第一方向。
11. 如條項1至3中任一項之量測標記,其中該組第一測試結構及該組第二測試結構之一組合進一步經組態以在沿該基板之一表面的一方向上傳送臨界尺寸資訊。
12. 如條項11之量測標記,其中該組第一測試結構及該組第二測試結構中之至少一者經組態以具有不同臨界尺寸值。
13. 如條項1至12中任一項之量測標記,其進一步包含:
一組第三測試結構,其在該第一層中顯影,該組第三測試結構中之每一者包含複數個第三週期性特徵,該複數個第三週期性特徵之間距係由一光學度量衡工具之一敏感度判定;及
一組第四測試結構,其在該第二層中顯影,該組第四測試結構中之每一者包含複數個第四週期性特徵,該複數個第四週期性特徵之間距係由該光學度量衡工具之該敏感度判定。
14. 如條項13之量測標記,其中該組第三測試結構及該組第四測試結構中之至少一者定位於對應於該光學度量衡工具之一視野的一周邊內。
15. 如條項13及14中任一項之量測標記,其中該光學度量衡工具經組態以執行基於影像之疊對量測或基於繞射之疊對量測。
16. 如條項13至15中任一項之量測標記,其中該複數個第三週期性特徵及該複數個第四週期性特徵中之每一者進一步分成複數個子特徵,該複數個子特徵之間距係由一粒子束工具之一敏感度限制。
17. 如條項16之量測標記,其中該複數個子特徵經組態以具有不同間距。
18. 如條項16及17中任一項之量測標記,其中該複數個子特徵經組態以在不同方向上具有分段及間距。
19. 如條項1至18中任一項之量測標記,其中複數個該等量測標記經整合成一個多圖案化標記,該複數個量測標記經組態以具有不同疊對移位或臨界尺寸移位。
20. 如條項16之量測標記,其中該等第三特徵之該等子特徵為第一週期性特徵,且其中該等週期性特徵之該等子特徵為第二週期性特徵。
21. 如條項14之量測標記,其中該複數個第三週期性特徵及該複數個第四週期性特徵分別係由該第一導電材料及該第二導電材料製成。
22. 如條項1至21中任一項之量測標記,其中該第一導電材料及該第二導電材料中之每一者包含半導體。
23. 如條項22之量測標記,其中該半導體包含結晶矽、多晶矽、非晶矽及矽-鍺中之至少一種。
24. 如條項1至21中任一項之量測標記,其中該第一導電材料及該第二導電材料中之每一種包含金屬。
25. 如條項24之量測標記,其中該金屬包含銅、鎢、鎳、鈷、鉭及氮化鈦中之至少一種。
26. 一種量測標記,其包含:
在一第一間距處之第一特徵之一第一陣列及在一第二間距處之第二特徵之一第二陣列,該第一陣列及該第二陣列配置於一基板上之兩個連續層中,其中該量測標記經組態以用於判定該等第一特徵相對於相關聯第二特徵之間的一疊對值,或經組態以用於在使用一電壓對比成像法來成像時判定該等第一特徵或該等第二特徵之一臨界尺寸值。
27. 如條項26之量測標記,其中該第一間距與該第二間距係不同的。
28. 如條項26及27中任一項之量測標記,其中該第一間距及該第二間距在沿該基板之一表面的一個方向或兩個方向上變化。
29. 如條項26至28中任一項之量測標記,其中該等第一特徵之一占空比及該等第二特徵之一占空比中的至少一者經組態以具有不同值。
30. 如條項26至29中任一項之量測標記,其中該等第一特徵中之至少一者包含子特徵之一子陣列。
31. 如條項26至30中任一項之量測標記,第一特徵之該第一陣列及第二特徵之該第二陣列中的至少一者經組態以具有不同臨界尺寸。
32. 一種系統,其包含:
一粒子束工具,其用於掃描一量測標記且用於偵測自該量測標記散射之電子;及
一控制器,其與該粒子束工具耦接且經組態以:
自偵測到之經散射電子產生一電壓對比影像;且
自所產生之電壓對比影像判定一疊對值及/或臨界尺寸值。
33. 如條項32之系統,其中該控制器進一步經組態以:
當該電壓對比影像展示該標記之一組第二測試結構中之一者具有一低電荷累積時,判定該第二測試結構與該標記之一組第一測試結構中之一者形成一短路。
34. 如條項32及33中任一項之系統,其中該控制器進一步經組態以:
當該電壓對比影像展示該標記之一組第二測試結構中之一者具有一高電荷累積時,判定該第二測試結構與該標記之一組第一測試結構處於一斷路中。
35. 如條項33至34中任一項之系統,其中該控制器進一步經組態以基於該電壓對比影像及該等疊對偏移值判定疊對資訊。
36. 如條項35之系統,其中該控制器進一步經組態以基於該電壓對比影像判定臨界尺寸資訊。
37. 如條項32至36中任一項之系統,其進一步包含:
一光學度量衡工具,其用於掃描該量測標記;且
該控制器進一步經組態以基於該電壓對比影像及該光學度量衡工具之一輸出判定疊對資訊及臨界尺寸資訊中之至少一者。
38. 如條項37之系統,其中該控制器進一步經組態以基於該粒子束工具之一輸出判定疊對資訊及臨界尺寸資訊中之至少一者。
39. 如條項38中任一項之系統,其中該控制器進一步經組態以:
經由該光學度量衡工具量測該量測標記以在微影時或在蝕刻之後判定該第一層及該第二層之疊對偏移;
經由該粒子束工具量測該量測標記以基於該電壓對比影像判定該第一層與該第二層之間的連接性;
由該光學度量衡工具及該粒子束工具基於量測結果判定光罩之臨界尺寸及疊對值。
40. 一種方法,其包含:
由一粒子束工具掃描一量測標記且由該粒子束工具偵測自該量測標記散射之電子,該量測標記包含:
一組第一測試結構,其在鄰近於一基板之一第一層中顯影,該組第一測試結構中之每一者包含由第一導電材料製成之複數個第一特徵;及
一組第二測試結構,其在鄰近於該第一層安置之一第二層中顯影,該組第二測試結構中之每一者包含由第二導電材料製成之複數個第二特徵;及
由一控制器基於偵測到之電子產生該組第二測試結構之一電壓對比影像;及
由該控制器基於該電壓對比影像判定該組第一測試結構與該組第二測試結構之間的連接性。
41. 如條項40之方法,其進一步包含:
當該電壓對比影像展示該組第二測試結構中之一者具有一低電荷累積時,判定該第二測試結構與該組第一測試結構中之一者形成一短路。
42. 如條項40及41中任一項之方法,其進一步包含:
當該電壓對比影像展示該組第二測試結構中之一者具有一高電荷累積時,判定該第二測試結構與該組第一測試結構處於一斷路中。
43. 如條項40至42中任一項之方法,其中該組第一測試結構及該組第二測試結構中之至少一者經組態以在沿該基板之一表面的一第一方向上具有不同疊對偏移值。
44. 如條項43之方法,其中該組第一測試結構及該組第二測試結構中之至少一者在沿該基板之該表面的一第二方向上具有不同疊對偏移值,該第二方向不同於該第一方向。
45. 如條項44之方法,其中該第二方向正交於該第一方向。
46. 如條項43至45中任一項之方法,其進一步包含:
由該控制器基於該電壓對比影像及該等疊對偏移值判定疊對資訊。
47. 如條項43之方法,其中該組第一測試結構及該組第二測試結構中之至少一者在沿該基板之該表面的一第二方向上具有不同臨界尺寸值,該第二方向不同於該第一方向。
48. 如條項47之方法,其中該第二方向正交於該第一方向。
49. 如條項47及48中任一項之方法,其進一步包含:
基於該電壓對比影像判定臨界尺寸資訊。
50. 如條項40至52中任一項之方法,其中該組第一測試結構及該組第二測試結構中之至少一者經組態以在沿該基板之一表面的一第一方向上具有不同臨界尺寸。
51. 如條項50之方法,其進一步包含:
由該控制器基於該電壓對比影像判定臨界尺寸資訊。
52. 如條項40至51中任一項之方法,其中:
該量測標記進一步包含:
一組第三測試結構,其在該第一層中顯影,該組第三測試結構中之每一者包含複數個第三特徵,該複數個第三特徵之間距係由光學度量衡工具之一敏感度判定;及
一組第四測試結構,其在該第二層中顯影,該組第四測試結構中之每一者包含複數個第四特徵,該複數個第四特徵之間距係由該光學度量衡工具之該敏感度判定;且
該方法進一步包含:
在對該第二層進行顯影後檢測期間,由該光學度量衡工具掃描該組第四測試結構且由該光學度量衡工具偵測自該組第四測試結構散射之光;及
由該控制器基於該光學度量衡工具之一輸出判定疊對資訊及臨界尺寸資訊中之至少一者。
53. 如條項52之方法,其中:
該複數個第三週期性特徵及該複數個第四週期性特徵中之每一者進一步分成複數個週期性子特徵,該複數個週期性子特徵之間距係由一粒子束工具之一敏感度判定;且
該方法進一步包含:
在蝕刻該第二層之後,由該電子掃描工具掃描該組第四測試結構且由該粒子束工具偵測由該組第四測試結構散射之電子;及
由該控制器基於該粒子束工具之一輸出判定疊對資訊及臨界尺寸資訊中之至少一者。
54. 如條項52之方法,其中該複數個第三週期性特徵及該複數個第四週期性特徵分別係由該第一導電材料及該第二導電材料製成。
55. 如條項53及54中任一項之方法,其進一步包含
經由該光學度量衡工具量測該量測標記以在微影時或在蝕刻之後判定該第一層及該第二層之疊對偏移;
經由該粒子束工具量測該量測標記以基於該電壓對比影像判定該第一層與該第二層之間的連接性;
由該光學度量衡工具及該粒子束工具基於量測結果判定光罩之臨界尺寸及疊對值。
56. 如條項53之方法,其中該複數個子特徵經組態以具有不同間距。
57. 如條項53及56中任一項之方法,其中該複數個子特徵經組態以在不同方向上具有分段及間距。
58. 如條項40至57中任一項之方法,其中複數個該等量測標記經整合成一個多圖案化標記,該複數個量測標記經組態以具有不同疊對移位或臨界尺寸移位。
59. 一種非暫時性電腦可讀媒體,其儲存可由一器件之一或多個處理器執行以致使該器件執行一方法的一組指令,該方法包含:
接收一粒子束工具之一輸出,其中該粒子束工具經組態以用於掃描一量測標記且經組態以用於偵測自該量測標記散射之電子,該量測標記包含:
一組第一測試結構,其在安置於一基板上之一第一層中顯影,該組第一測試結構中之每一者包含由第一導電材料製成之複數個第一特徵;及
一組第二測試結構,其在鄰近於該第一層安置之一第二層中顯影,該組第二測試結構中之每一者包含由第二導電材料製成之複數個第二特徵;及
基於該粒子束工具之該輸出產生該組第二測試結構之一電壓對比影像;及
基於該電壓對比影像判定該組第一測試結構與該組第二測試結構之間的連接性。
60. 如條項59之媒體,其中該組指令可由該器件之一或多個處理器執行以致使該器件進一步執行:
當該電壓對比影像展示該組第二測試結構中之一者具有一低電荷累積時,判定該第二測試結構與該組第一測試結構中之一者形成一短路。
61. 如條項59及60之媒體,其中該組指令可由該器件之一或多個處理器執行以致使該器件進一步執行:
當該電壓對比影像展示該組第二測試結構中之一者具有一高電荷累積時,判定該第二測試結構與該組第一測試結構處於一斷路中。
62. 如條項59至61中任一項之媒體,其中該組第一測試結構及該組第二測試結構中之至少一者經組態以在沿該基板之一表面的一第一方向上具有不同疊對偏移值。
63. 如條項62之媒體,其中該組第一測試結構及該組第二測試結構中之至少一者經組態以在沿該基板之該表面的一第二方向上具有不同疊對偏移值,該第二方向不同於該第一方向。
64. 如條項63之媒體,其中該第二方向正交於該第一方向。
65. 如條項62至64中任一項之媒體,其中該組指令可由該器件之一或多個處理器執行以致使該器件進一步執行:
基於該電壓對比影像及該等疊對偏移值判定疊對資訊。
66. 如條項65之媒體,其中該組第一測試結構及該組第二測試結構中之每一者在不同於該第一方向之一第二方向上具有不同臨界尺寸值。
67. 如條項66之媒體,其中該第二方向正交於該第一方向。
68. 如條項66及67中任一項之媒體,其中該組指令可由該器件之一或多個處理器執行以致使該器件進一步執行:
基於該電壓對比影像判定臨界尺寸資訊。
69. 如條項59至61中任一項之媒體,其中該組第一測試結構及該組第二測試結構中之至少一者經組態以在沿該基板之一表面的一第一方向上具有不同臨界尺寸值。
70. 如條項69中任一項之媒體,其中該組指令可由該器件之一或多個處理器執行以致使該器件進一步執行:
基於該電壓對比影像判定臨界尺寸資訊。
71. 如條項59至70中任一項之媒體,其中:
該量測標記進一步包含:
一組第三測試結構,其在該第一層中顯影,該組第三測試結構中之每一者包含複數個第三特徵,該複數個第三特徵之間距係由光學度量衡工具之一敏感度判定;及
一組第四測試結構,其在該第二層中顯影,該組第四測試結構中之每一者包含複數個第四特徵,該複數個第四特徵之間距係由該光學度量衡工具之該敏感度判定;且
該組指令可由該器件之一或多個處理器執行以致使該器件進一步執行:
接收該光學度量衡工具之一輸出,其中在對該第二層進行顯影後檢測期間,該光學度量衡工具掃描該組第四測試結構且偵測自該組第四測試結構散射之光;及
基於該光學度量衡工具之一輸出判定疊對資訊及臨界尺寸資訊中之至少一者。
72. 如條項71之媒體,其中:
該複數個第三週期性特徵及該複數個第四週期性特徵中之每一者進一步分成複數個子特徵,該複數個子特徵之間距係由一粒子束工具之一敏感度判定;且
該組指令可由該器件之一或多個處理器執行以致使該器件進一步執行:
接收電子掃描工具之一輸出,其中在蝕刻該第二層之後,該電子掃描工具掃描該組第四測試結構且偵測由該組第四測試結構散射之電子;及
基於該粒子束工具之一輸出判定疊對資訊及臨界尺寸資訊中之至少一者。
73. 如條項72之媒體,其中該組指令可由該器件之一或多個處理器執行以致使該器件進一步執行:
經由該光學度量衡工具量測該量測標記以在微影時或在蝕刻之後判定該第一層及該第二層之疊對偏移;
經由該粒子束工具量測該量測標記以基於該電壓對比影像判定該第一層與該第二層之間的連接性;
由該光學度量衡工具及該粒子束工具基於量測結果判定光罩之臨界尺寸及疊對值。
74. 如條項72之媒體,其中該複數個子特徵經組態以具有不同間距。
75. 如條項72及74中任一項之媒體,其中該複數個子特徵經組態以在不同方向上具有分段及間距。
76. 如條項59至75中任一項之媒體,其中複數個該等量測標記經整合成一個多圖案化標記,該複數個量測標記經組態以具有不同疊對移位或臨界尺寸移位。
可使用以下第三組條項進一步描述實施例。對此第三組條項中之條項的引用係對此同一組條項中之條項的引用。
1. 一種量測標記,其包含: 一組第一測試結構,其在一基板上之一第一層中顯影,該組第一測試結構中之每一者包含由第一導電材料製成之複數個第一特徵;及 一組第二測試結構,其在鄰近於該第一層之一第二層中顯影,該組第二測試結構中之每一者包含由第二導電材料製成之複數個第二特徵, 其中該量測標記經組態以在使用一電壓對比成像法來成像時指示該組第一測試結構與該組第二測試結構中之相關聯第二測試結構之間的連接性。 2. 如條項1之量測標記,其中當該組第二測試結構中之一特定測試結構與該組第一測試結構中之一特定測試結構形成一短路時,該電壓對比影像展示該組第二測試結構中之該特定測試結構具有一低電荷累積。 3. 如條項1及2中任一項之量測標記,其中當該組第二測試結構中之該特定測試結構與該組第一測試結構中之該特定測試結構處於一斷路中時,該電壓對比影像展示該組第二測試結構中之該特定測試結構具有一高電荷累積。 4. 如條項1至3中任一項之量測標記,其中該組第一測試結構中之多個測試結構與該組第二測試結構中之多個測試結構的一組合經組態以在沿該基板之一表面的一第一方向上傳送疊對資訊。 5. 如條項4之量測標記,其中該組第一測試結構中之該多個測試結構或該組第二測試結構中之該多個測試結構經組態以在該第一方向上具有不同間距值。 6. 如條項4之量測標記,其中該組第一測試結構中之該多個測試結構與該組第二測試結構中之該多個測試結構的該組合進一步經組態以在沿該基板之一表面的一第二方向上傳送疊對資訊,該第二方向不同於該第一方向。 7. 如條項6之量測標記,其中該第二方向正交於該第一方向。 8. 如條項4之量測標記,其中該組第一測試結構中之該多個測試結構與該組第二測試結構中之該多個測試結構的該組合進一步經組態以在沿該基板之一表面的一第二方向上傳送臨界尺寸資訊,該第二方向不同於該第一方向。 9. 如條項4之量測標記,其中該組第一測試結構中之該多個測試結構或該組第二測試結構中之該多個測試結構在該第二方向上具有不同臨界尺寸值。 10. 如條項9之量測標記,其中該第二方向正交於該第一方向。 11. 如條項1至3中任一項之量測標記,其中該組第一測試結構之多個測試結構與該組第二測試結構之多個測試結構的一組合進一步經組態以在沿該基板之一表面的一方向上傳送臨界尺寸資訊。 12. 如條項11之量測標記,其中該組第一測試結構中之該多個測試結構或該組第二測試結構中之該多個測試結構經組態以具有不同臨界尺寸值。 13. 如條項1至12中任一項之量測標記,其進一步包含: 一組第三測試結構,其在該第一層中顯影,該組第三測試結構中之每一者包含複數個第三週期性特徵,該複數個第三週期性特徵具有由一光學度量衡工具之一敏感度判定的一間距;及 一組第四測試結構,其在該第二層中顯影,該組第四測試結構中之每一者包含複數個第四週期性特徵,該複數個第四週期性特徵具有由該光學度量衡工具之該敏感度判定的一間距。 14. 如條項13之量測標記,其中該組第三測試結構中之多個測試結構或該組第四測試結構中之多個測試結構定位於對應於該光學度量衡工具之一視野的一周邊內。 15. 如條項13及14中任一項之量測標記,其中該光學度量衡工具經組態以執行基於影像之疊對量測或基於繞射之疊對量測。 16. 如條項13至15中任一項之量測標記,其中該複數個第三週期性特徵或該複數個第四週期性特徵中之每一者進一步分成複數個子特徵,該複數個子特徵具有由一粒子束工具之一敏感度限制的一間距。 17. 如條項16之量測標記,其中該複數個子特徵經組態以具有不同間距。 18. 如條項16及17中任一項之量測標記,其中該複數個子特徵經組態以在不同方向上具有分段或間距。 19. 如條項1至18中任一項之量測標記,其中複數個該等量測標記經整合成一個多圖案化標記,且其中該複數個量測標記經組態以具有不同疊對移位或臨界尺寸移位。 20. 如條項16之量測標記,其中該等第三週期性特徵之該等子特徵為第一週期性特徵,且該等第四週期性特徵之該等子特徵為第二週期性特徵。 21. 如條項14之量測標記,其中該複數個第三週期性特徵及該複數個第四週期性特徵分別係由該第一導電材料及該第二導電材料製成。 22. 如條項1至21中任一項之量測標記,其中該第一導電材料及該第二導電材料中之每一者包含一半導體。 23. 如條項22之量測標記,其中該半導體包含結晶矽、多晶矽、非晶矽及矽-鍺中之任一種。 24. 如條項1至21中任一項之量測標記,其中該第一導電材料及該第二導電材料中之每一種包含金屬。 25. 如條項24之量測標記,其中該金屬包含銅、鎢、鎳、鈷、鉭或氮化鈦中之任一種。 26. 一種量測標記,其包含: 在一第一間距處之第一特徵之一第一陣列及在一第二間距處之第二特徵之一第二陣列,該第一陣列及該第二陣列配置於一基板上之兩個連續層中,其中該量測標記經組態以判定該等第一特徵相對於相關聯第二特徵之間的一疊對值,或經組態以在使用一電壓對比成像法來成像時判定該等第一特徵或該等第二特徵之一臨界尺寸值。 27. 如條項26之量測標記,其中該第一間距與該第二間距係不同的。 28. 如條項26及27中任一項之量測標記,其中該第一間距及該第二間距在沿該基板之一表面的一個方向或兩個方向上變化。 29. 如條項26至28中任一項之量測標記,其中該等第一特徵之一占空比或該等第二特徵之一占空比經組態以具有不同值。 30. 如條項26至29中任一項之量測標記,其中該等第一特徵包含子特徵之一子陣列。 31. 如條項26至30中任一項之量測標記,其中第一特徵之該第一陣列之多個測試結構或第二特徵之該第二陣列之多個測試結構經組態以具有不同臨界尺寸。 32. 一種系統,其包含: 一粒子束工具,其用於掃描一量測標記且用於偵測來自該量測標記之二次電子;及 一控制器,其與該粒子束工具耦接,該控制器包括用以進行以下操作之電路系統: 自偵測到之二次電子產生一電壓對比影像;且 自所產生之電壓對比影像判定一疊對值或一臨界尺寸值。 33. 如條項32之系統,其中判定該疊對值或該臨界尺寸值包括判定該疊對值及該臨界尺寸值。 34. 如條項32及33中任一項之系統,其中該控制器包括用以進行以下操作之電路系統: 當該電壓對比影像展示該量測標記之一組第一測試結構中之一特定測試結構具有一低電荷累積時,判定該組第一測試結構中之該特定測試結構與該量測標記之一組第二測試結構中之一特定測試結構形成一短路。 35. 如條項32至34中任一項之系統,其中該控制器包括用以進行以下操作之電路系統: 當該電壓對比影像展示該量測標記之該組第一測試結構中之該特定測試結構具有一高電荷累積時,判定該組第一測試結構中之該特定測試結構與該量測標記之該組第二測試結構中之該特定測試結構處於一斷路中。 36. 如條項32至35中任一項之系統,其中該控制器包括用以基於該量測標記之該電壓對比影像或疊對偏移值判定疊對資訊之電路系統。 37. 如條項36之系統,其中該控制器包括用以基於該電壓對比影像判定臨界尺寸資訊之電路系統。 38. 如條項32至37中任一項之系統,其進一步包含: 一光學度量衡工具,其用於掃描該量測標記;且 其中該控制器進一步包括用以基於該電壓對比影像或該光學度量衡工具之一輸出判定疊對資訊或臨界尺寸資訊的電路系統。 39. 如條項38之系統,其中該控制器進一步包括用以進行以下操作之電路系統: 在對一晶圓進行顯影後檢測期間,經由該光學度量衡工具量測該量測標記以判定一基板上之一第一層及一第二層的疊對偏移; 在蝕刻或拋光該晶圓之後,經由該粒子束工具量測該量測標記以基於該電壓對比影像判定該第一層與該第二層之間的連接性;且 由該光學度量衡工具或該粒子束工具基於量測結果判定光罩之臨界尺寸或疊對值。 40. 如條項39之系統,其中該控制器進一步包括用以進行以下操作之電路系統: 基於該疊對值或該臨界尺寸值判定光罩未對準資料;且 將該光罩未對準資料發送至與該控制器耦接之一微影裝置。 41. 如條項32至40中任一項之系統,其中該控制器進一步包括用以進行以下操作之電路系統: 基於該疊對資訊或該臨界尺寸資訊判定一微影程序窗。 42. 一種方法,其包含: 藉由一帶電粒子束掃描一量測標記之一組第一測試結構且偵測來自該量測標記之二次電子; 自偵測到之二次電子產生一電壓對比影像;及 自所產生之電壓對比影像判定一疊對值或一臨界尺寸值。 43. 如條項42之方法,其中判定該疊對值或該臨界尺寸值包括判定該疊對值及該臨界尺寸值。 44. 如條項42及43中任一項之方法,其進一步包含: 當該電壓對比影像展示該量測標記之該組第一測試結構中之一特定測試結構具有一低電荷累積時,判定該組第一測試結構中之該特定測試結構與該量測標記之一組第二測試結構中之一特定測試結構形成一短路。 45. 如條項42至44中任一項之方法,其進一步包含: 當該電壓對比影像展示該量測標記之該組第一測試結構中之該特定測試結構具有一高電荷累積時,判定該組第一測試結構中之該特定測試結構與該量測標記之該組第二測試結構中之該特定測試結構處於一斷路中。 46. 如條項42至45中任一項之方法,其進一步包含: 基於該量測標記之該電壓對比影像或疊對偏移值判定疊對資訊。 47. 如條項42至46中任一項之方法,其進一步包含: 基於該電壓對比影像判定臨界尺寸資訊。 48. 如條項42至47中任一項之方法,其進一步包含: 藉由一光束掃描該量測標記且偵測自該量測標記散射之光; 自偵測到之經散射光產生一光學影像;及 基於該電壓對比影像或該光學影像判定疊對資訊或臨界尺寸資訊。 49. 如條項48之方法,其進一步包含: 在對一晶圓進行顯影後檢測期間,藉由該光束量測該量測標記以基於該光學影像判定一基板上之一第一層及一第二層的疊對偏移; 在蝕刻或拋光該晶圓之後,藉由該帶電粒子束量測該量測標記以基於該電壓對比影像判定該第一層與該第二層之間的連接性;及 基於藉由該光束或帶電粒子束獲得之量測結果判定該基板上之光罩之臨界尺寸或疊對值。 50. 如條項42至49中任一項之方法,其進一步包含: 基於該疊對值或該臨界尺寸值判定光罩未對準資料;及 基於該光罩未對準資料調整微影程序參數。 51. 如條項42至50中任一項之方法,其進一步包含: 基於該疊對資訊或臨界尺寸資訊判定一微影程序窗。 52. 一種非暫時性電腦可讀媒體,其儲存可由一器件之一或多個處理器執行以致使該器件執行一方法的一組指令,該方法包含: 藉由一帶電粒子束掃描一量測標記之一組第一測試結構且偵測來自該量測標記之二次電子; 自偵測到之二次電子產生一電壓對比影像;及 自所產生之電壓對比影像判定一疊對值或一臨界尺寸值。 53. 如條項52之媒體,其中判定該疊對值或該臨界尺寸值包括判定該疊對值及該臨界尺寸值。 54. 如條項52及53中任一項之媒體,其中該組指令可由該器件之該一或多個處理器執行以致使該器件進一步執行: 當該電壓對比影像展示該量測標記之該組第一測試結構中之一特定測試結構具有一低電荷累積時,判定該組第一測試結構中之該特定測試結構與該量測標記之一組第二測試結構中之一特定測試結構形成一短路。 55. 如條項52至54之媒體,其中該組指令可由該器件之該一或多個處理器執行以致使該器件進一步執行: 當該電壓對比影像展示該量測標記之該組第一測試結構中之該特定測試結構具有一高電荷累積時,判定該組第一測試結構中之該特定測試結構與該量測標記之該組第二測試結構中之該特定測試結構處於一斷路中。 56. 如條項52至55中任一項之媒體,其中該組指令可由該器件之該一或多個處理器執行以致使該器件進一步執行: 基於該量測標記之該電壓對比影像或疊對偏移值判定疊對資訊。 57. 如條項52至56中任一項之媒體,其中該組指令可由該器件之該一或多個處理器執行以致使該器件進一步執行: 基於該電壓對比影像判定臨界尺寸資訊。 58. 如條項52至57中任一項之媒體,其中該組指令可由該器件之該一或多個處理器執行以致使該器件進一步執行: 藉由一光束掃描該量測標記且偵測自該量測標記散射之光; 自偵測到之經散射光產生一光學影像;及 基於該電壓對比影像或該光學影像判定疊對資訊或臨界尺寸資訊。 59. 如條項58之媒體,其中該組指令可由該器件之該一或多個處理器執行以致使該器件進一步執行: 在對一晶圓進行顯影後檢測期間,藉由該光束量測該量測標記以基於該光學影像判定一基板上之一第一層及一第二層的疊對偏移; 在蝕刻或拋光該晶圓之後,藉由該帶電粒子束量測該量測標記以基於該電壓對比影像判定該第一層與該第二層之間的連接性;及 基於藉由該光束或帶電粒子束獲得之量測結果判定該基板上之光罩之臨界尺寸或疊對值。 60. 如條項52至59中任一項之媒體,其中該組指令可由該器件之該一或多個處理器執行以致使該器件進一步執行: 基於該疊對值或該臨界尺寸值判定光罩未對準資料;及 基於該光罩未對準資料調整微影程序參數。 61. 如條項52至60中任一項之媒體,其中該組指令可由該器件之該一或多個處理器執行以致使該器件進一步執行: 基於該疊對資訊或臨界尺寸資訊判定一微影程序窗。
應瞭解,本發明不限於上文所描述及在附圖中所說明之確切建構,且可在不背離本發明之範疇的情況下作出各種修改及改變。希望本發明之範疇應僅由隨附申請專利範圍限制。
10‧‧‧散射計
20‧‧‧電子束工具
30‧‧‧控制器
50‧‧‧基板
52‧‧‧測試結構
53‧‧‧特徵
54‧‧‧特徵
55‧‧‧絕緣材料
56‧‧‧電壓對比影像
60‧‧‧疊對標記
62‧‧‧測試結構
70‧‧‧標記
72‧‧‧測試結構
90‧‧‧標記
92‧‧‧電壓對比測試結構
94‧‧‧光學測試結構
102‧‧‧寬頻帶(白光)輻射投影儀
104‧‧‧光譜儀偵測器
106‧‧‧基板
110‧‧‧光譜
200‧‧‧機動載物台
202‧‧‧晶圓固持器
203‧‧‧晶圓
204‧‧‧複合物鏡
204a‧‧‧磁極片
204b‧‧‧控制電極
204c‧‧‧偏轉器
204d‧‧‧勵磁線圈
206a‧‧‧電子感測器表面
206b‧‧‧電子感測器表面
208‧‧‧物鏡孔徑
210‧‧‧聚光透鏡
212‧‧‧光束限制孔徑
214‧‧‧槍孔徑
216‧‧‧陽極
218‧‧‧陰極
220‧‧‧原始電子束
222‧‧‧探測光點
230‧‧‧二次電子束
270‧‧‧光軸
AD‧‧‧調整器
AS‧‧‧對準感測器
B‧‧‧輻射光束
BD‧‧‧光束遞送系統
BK‧‧‧烘烤板
C‧‧‧目標部分
CH‧‧‧冷卻板
CO‧‧‧聚光器
DE‧‧‧顯影器
I/O1‧‧‧輸入/輸出埠
I/O2‧‧‧輸入/輸出埠
IF‧‧‧位置感測器
IL‧‧‧照明器
IN‧‧‧積光器
LA‧‧‧微影裝置
LACU‧‧‧微影控制單元
LB‧‧‧裝載匣
LC‧‧‧微影製造單元
LS‧‧‧準位感測器
M1‧‧‧光罩對準標記
M2‧‧‧光罩對準標記
MA‧‧‧圖案化器件
MT‧‧‧光罩台/圖案化器件支撐件
P1‧‧‧基板對準標記
P2‧‧‧基板對準標記
PM‧‧‧第一定位器
PS‧‧‧投影系統
PW‧‧‧第二定位器
RF‧‧‧參考框架
RO‧‧‧機器人
SC‧‧‧旋塗器
SCS‧‧‧監督控制系統
SO‧‧‧源
TCU‧‧‧塗佈顯影系統控制單元
W‧‧‧基板
WTa‧‧‧基板台
WTb‧‧‧基板台
X‧‧‧方向
Y‧‧‧方向
1 為說明符合本發明之實施例之例示性微影裝置的示意圖。
2 為說明符合本發明之實施例之例示性微影製造單元的示意圖。
3 為說明符合本發明之實施例之例示性光學度量衡工具的示意圖。
4 為說明符合本發明之實施例之例示性電子束工具的示意圖。
5 為說明符合本發明之實施例的基板對電子束照明之電壓對比回應的示意圖。
6 為說明符合本發明之實施例之電壓對比度量衡標記的示意圖。
7 為說明符合本發明之實施例之電壓對比度量衡標記的示意圖。
8 為說明符合本發明之實施例的 7 中所展示之標記中之經程式化疊對移位及CD變化的示意圖。
9 為說明符合本發明之實施例之經組合電壓對比及光學度量衡標記的示意圖。
10 為說明符合本發明之實施例的經組合電壓對比及光學標記中之特徵的示意圖。

Claims (15)

  1. 一種量測標記,其包含: 一組第一測試結構,其在一基板上之一第一層中顯影,該組第一測試結構中之每一者包含由第一導電材料製成之複數個第一特徵;及 一組第二測試結構,其在鄰近於該第一層之一第二層中顯影,該組第二測試結構中之每一者包含由第二導電材料製成之複數個第二特徵, 其中該量測標記經組態以在使用一電壓對比成像法來成像時指示該組第一測試結構與該組第二測試結構中之相關聯第二測試結構之間的連接性。
  2. 如請求項1之量測標記,其中當該組第二測試結構中之一特定測試結構與該組第一測試結構中之一特定測試結構形成一短路時,電壓對比影像展示該組第二測試結構中之該特定測試結構具有一低電荷累積。
  3. 如請求項1之量測標記,其中當該組第二測試結構中之該特定測試結構與該組第一測試結構中之該特定測試結構處於一斷路中時,電壓對比影像展示該組第二測試結構中之該特定測試結構具有一高電荷累積。
  4. 如請求項1之量測標記,其中該組第一測試結構中之多個測試結構與該組第二測試結構中之多個測試結構的一組合經組態以在沿該基板之一表面的一第一方向上傳送疊對資訊。
  5. 如請求項4之量測標記,其中該組第一測試結構中之該多個測試結構或該組第二測試結構中之該多個測試結構經組態以在該第一方向上具有不同間距值。
  6. 如請求項4之量測標記,其中該組第一測試結構中之該多個測試結構與該組第二測試結構中之該多個測試結構的該組合進一步經組態以在沿該基板之一表面的一第二方向上傳送疊對資訊,該第二方向不同於該第一方向。
  7. 如請求項6之量測標記,其中該第二方向正交於該第一方向。
  8. 如請求項4之量測標記,其中該組第一測試結構中之該多個測試結構與該組第二測試結構中之該多個測試結構的該組合進一步經組態以在沿該基板之一表面的一第二方向上傳送臨界尺寸資訊,該第二方向不同於該第一方向。
  9. 如請求項4之量測標記,其中該組第一測試結構中之該多個測試結構或該組第二測試結構中之該多個測試結構在該第二方向上具有不同臨界尺寸值。
  10. 如請求項9之量測標記,其中該第二方向正交於該第一方向。
  11. 如請求項1之量測標記,其中該組第一測試結構之多個測試結構與該組第二測試結構之多個測試結構的一組合進一步經組態以在沿該基板之一表面的一方向上傳送臨界尺寸資訊。
  12. 如請求項11之量測標記,其中該組第一測試結構中之該多個測試結構或該組第二測試結構中之該多個測試結構經組態以具有不同臨界尺寸值。
  13. 如請求項1之量測標記,其進一步包含: 一組第三測試結構,其在該第一層中顯影,該組第三測試結構中之每一者包含複數個第三週期性特徵,該複數個第三週期性特徵具有由一光學度量衡工具之一敏感度判定的一間距;及 一組第四測試結構,其在該第二層中顯影,該組第四測試結構中之每一者包含複數個第四週期性特徵,該複數個第四週期性特徵具有由該光學度量衡工具之該敏感度判定的一間距。
  14. 一種系統,其包含: 一粒子束工具,其用於掃描一量測標記且用於偵測來自該量測標記之二次電子;及 一控制器,其與該粒子束工具耦接,該控制器包括用以進行以下操作之電路系統: 自該等偵測到之二次電子產生一電壓對比影像;且 自該所產生之電壓對比影像判定一疊對值或一臨界尺寸值。
  15. 一種方法,其包含: 藉由一帶電粒子束掃描一量測標記之一組第一測試結構且偵測來自該量測標記之二次電子; 自該等偵測到之二次電子產生一電壓對比影像;及 自該所產生之電壓對比影像判定一疊對值或一臨界尺寸值。
TW107144302A 2017-12-11 2018-12-10 量測標記、量測系統、及量測方法 TWI742325B (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201762597413P 2017-12-11 2017-12-11
US62/597,413 2017-12-11
US201762597933P 2017-12-12 2017-12-12
US62/597,933 2017-12-12
US201862727925P 2018-09-06 2018-09-06
US62/727,925 2018-09-06

Publications (2)

Publication Number Publication Date
TW201928528A true TW201928528A (zh) 2019-07-16
TWI742325B TWI742325B (zh) 2021-10-11

Family

ID=64664290

Family Applications (2)

Application Number Title Priority Date Filing Date
TW107144302A TWI742325B (zh) 2017-12-11 2018-12-10 量測標記、量測系統、及量測方法
TW110133339A TWI790739B (zh) 2017-12-11 2018-12-10 量測標記、量測系統、及量測方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW110133339A TWI790739B (zh) 2017-12-11 2018-12-10 量測標記、量測系統、及量測方法

Country Status (5)

Country Link
US (1) US20210088917A1 (zh)
KR (2) KR20200083588A (zh)
CN (1) CN111448519A (zh)
TW (2) TWI742325B (zh)
WO (1) WO2019115391A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI798614B (zh) * 2019-12-26 2023-04-11 以色列商諾威股份有限公司 光學臨界尺寸與光反射組合裝置、系統及方法
TWI829263B (zh) * 2021-07-28 2024-01-11 日商日立全球先端科技股份有限公司 檢查裝置,檢查方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019218315B3 (de) 2019-11-27 2020-10-01 Carl Zeiss Microscopy Gmbh Verfahren zur Spannungskontrastbildgebung mit einem Korpuskularvielstrahlmikroskop, Korpuskularvielstrahlmikroskop für Spannungskontrastbildgebung und Halbleiterstrukturen zur Spannungskontrastbildgebung mit einem Korpuskularvielstrahlmikroskop
EP3842866A1 (en) * 2019-12-24 2021-06-30 ASML Netherlands B.V. Metrology method
JP7458817B2 (ja) * 2020-02-18 2024-04-01 株式会社ニューフレアテクノロジー マルチ荷電粒子ビーム描画装置及びマルチ荷電粒子ビーム描画方法
EP3971648A1 (en) * 2020-09-17 2022-03-23 ASML Netherlands B.V. Mark to be projected on an object durign a lithograhpic process and method for designing a mark
EP4134749A1 (en) * 2021-08-12 2023-02-15 ASML Netherlands B.V. Overlay measurement using balanced capacity targets

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5959459A (en) * 1996-12-10 1999-09-28 International Business Machines Corporation Defect monitor and method for automated contactless inline wafer inspection
US7655482B2 (en) * 2000-04-18 2010-02-02 Kla-Tencor Chemical mechanical polishing test structures and methods for inspecting the same
US6949765B2 (en) * 2002-11-05 2005-09-27 Chartered Semiconductor Manufacturing Ltd. Padless structure design for easy identification of bridging defects in lines by passive voltage contrast
KR100979356B1 (ko) * 2007-06-29 2010-08-31 주식회사 하이닉스반도체 반도체소자의 중첩마크 및 그 형성방법
US8736084B2 (en) * 2011-12-08 2014-05-27 Taiwan Semiconductor Manufacturing Company, Ltd. Structure and method for E-beam in-chip overlay mark
US10795268B2 (en) * 2017-09-29 2020-10-06 Taiwan Semiconductor Manufacturing Co., Ltd. Method and apparatus for measuring overlay errors using overlay measurement patterns

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI798614B (zh) * 2019-12-26 2023-04-11 以色列商諾威股份有限公司 光學臨界尺寸與光反射組合裝置、系統及方法
TWI829263B (zh) * 2021-07-28 2024-01-11 日商日立全球先端科技股份有限公司 檢查裝置,檢查方法

Also Published As

Publication number Publication date
CN111448519A (zh) 2020-07-24
KR20230022271A (ko) 2023-02-14
TWI790739B (zh) 2023-01-21
US20210088917A1 (en) 2021-03-25
TW202230034A (zh) 2022-08-01
KR20200083588A (ko) 2020-07-08
WO2019115391A1 (en) 2019-06-20
TWI742325B (zh) 2021-10-11

Similar Documents

Publication Publication Date Title
US10133191B2 (en) Method for determining a process window for a lithographic process, associated apparatuses and a computer program
TWI742325B (zh) 量測標記、量測系統、及量測方法
US10331043B2 (en) Optimization of target arrangement and associated target
US9903823B2 (en) Metrology method and apparatus
TWI575334B (zh) 檢查方法、微影裝置、光罩及基板
JP5864752B2 (ja) 焦点補正を決定する方法、リソグラフィ処理セル及びデバイス製造方法
JP5412528B2 (ja) 検査方法、検査システム、基板、およびマスク
TWI616716B (zh) 用於調適圖案化器件之設計的方法
TWI493296B (zh) 檢查方法和裝置、微影裝置、微影製程單元及元件製造方法
TWI389137B (zh) 形成一用來校正度量衡工具之基底的方法、校正基底及度量衡工具校正方法
US11022899B2 (en) Method of measuring a focus parameter relating to a structure formed using a lithographic process
US10831111B2 (en) Metrology method and lithographic method, lithographic cell and computer program
EP4191338A1 (en) Metrology calibration method
TWI810749B (zh) 監控微影製程之方法及相關裝置
EP4030236A1 (en) A method of monitoring a lithographic process and associated apparatuses
TW202318098A (zh) 監測微影程序之方法及其相關設備
KR20230136136A (ko) 측정 레시피를 결정하는 방법 및 연계된 메트롤로지방법들 및 장치들