TW201924196A - 同步化多相開關轉換器之打嗝過電流保護 - Google Patents

同步化多相開關轉換器之打嗝過電流保護 Download PDF

Info

Publication number
TW201924196A
TW201924196A TW107136711A TW107136711A TW201924196A TW 201924196 A TW201924196 A TW 201924196A TW 107136711 A TW107136711 A TW 107136711A TW 107136711 A TW107136711 A TW 107136711A TW 201924196 A TW201924196 A TW 201924196A
Authority
TW
Taiwan
Prior art keywords
switching converter
signal
circuit
current
overcurrent
Prior art date
Application number
TW107136711A
Other languages
English (en)
Other versions
TWI784070B (zh
Inventor
嚴穎怡
倩 李
一丁 古
Original Assignee
美商凌力爾特控股有限責任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商凌力爾特控股有限責任公司 filed Critical 美商凌力爾特控股有限責任公司
Publication of TW201924196A publication Critical patent/TW201924196A/zh
Application granted granted Critical
Publication of TWI784070B publication Critical patent/TWI784070B/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一種多相開關轉換器包括,一第一開關轉換器電路,其包括耦合至一直流電壓源之一功率級與一控制器。該控制器包括可偵測一過電流事件之一過電流電路,並且當一偵測到該過電流事件時,將命令訊號設定為一預設低值以及提供一第一打嗝訊號。一同步電路基於該過電流電路之該命令訊號,產生一第二打嗝訊號,其該過電流電路滿足一第一參考閾值,並且該功率級之輸出電壓的取樣部分滿足一第二參考閾值。一打嗝計時器可藉由該第一打嗝訊號及該第二打嗝訊號之一觸發而啟動一打嗝脈衝,以回應於被觸發之情況。

Description

同步化多相開關轉換器之打嗝過電流保護
本文一般係關於積體電路,更具體而言,特指同步多相開關轉換器之打嗝(HICCUP)過電流保護。
於汽車與電信應用等工業應用中出現愈來愈多高電流負載。於此方面,可於該等用途中提供高電流之多相開關功率轉換器愈來愈普及。於多相方法中,設計重點可著重於一單相設計之最佳化,包括功率級與控制及/或保護方案。各相位可獨立運行,也可並聯作為高電流轉換器。
一示例係為功率模組,其中轉換器單元經過優化與模組化,使得終端用戶可受益於模組化並且已經充分驗證之建構元件於短時間內易於縮放電源。此可減少上市時間。多相配置之另一益處係為冗餘。例如,於多相轉換器之一相位失效時,次一相位可無縫接續而不中斷輸出。
當功率轉換器之輸出負載超過其預設電流限制時,控制器應採取措施保護負載。一種穩固解決方案係為打嗝模式保護。控制器偵測到過電流狀態後,立即箝位電流共享訊號並限制其輸出電流。若過電流故障存在之時間超過一預定時間,該轉換器關閉達一預設之長時間,並且於時間週期到期後重新啟動。於高電流應用中,打嗝保護策略係為優選,因為其可最小化負載處之散熱。然而,對多相轉換器採用打嗝模式保護係具有挑戰性。除非其等之功率級與控制迴路完全相同,否則多相轉換器之相異相位可能於相異水平與時間下偵測過電流狀態。此可能導致打嗝時間排序失序。其亦可能導致轉換器閂鎖於錯誤狀態。
在用於汽車應用之電流模式控制的雙相高壓升壓轉換器中,例如,電流模式控制之雙相轉換器於相位之間共享閾值電流(ITH)訊號。當發生過電流時,一旦共享電流指令ITH被一個具有略低閾值之控制器箝位,另一者將無法偵測到過電流事件並持續以全功率運行。某些轉換器添加專用通信匯流排以執行偵測,然而,附加匯流排不僅需要額外之成本與複雜性,亦會降低轉換器之整體可靠性。
於至少一層面中,一多相開關轉換器包括一第一開關轉換器電路,其包含耦合至直流電壓源之一功率級與一控制器。控制器包括可偵測過電流(OC)事件之過電流(OC)電路,並且一旦偵測到過電流事件時,設定一命令訊號為一預設低值並提供第一打嗝訊號。一同步電路可係根據滿足第一參考閾值之過電流電路的命令訊號,產生一第二打嗝訊號,以及滿足第二參考閾值之功率級的輸出電壓之一取樣部分。一打嗝計時器可由第一打嗝訊號或第二打嗝訊號所觸發,啟動一打嗝脈衝以回應經觸發之情況。
於至少一實施例中,一種用於多相開關轉換器中同步打嗝過電流保護的方法包括由過電流電路偵測過電流事件。該方法更進一步包括:回應於偵測到過電流事件,由過電流電路將命令訊號設置為預設低值並提供一第一訊號。回應於命令訊號低於第一參考閾值以及多相開關轉換器之經調節輸出電壓取樣小於第二參考閾值時,由同步電路產生第二訊號。可根據第一訊號或第二訊號其中一者,以觸發打嗝機制。過電流電路與同步電路係為控制電路之模組,該控制電路係包含於多相開關轉換器之各開關轉換器中。
又於至少一其他實施例中,具有同步打嗝過電流保護之轉換器系統包括至少二開關轉換器,利用多相順序切換脈衝以進行操作。各該至少二開關轉換器模組包括耦合至直流電壓源之功率級與控制電路,且該控制電路包括一過電流電路與一同步電路。開關轉換器模組之各過電流電路可偵測過電流事件,並且於偵測到過電流事件時,可將一命令訊號設置為一預設低值並提供一第一訊號。開關轉換器模組之各相應同步電路包括一打嗝定時器,並可產生第二訊號以回應於低於第一參考閾值之命令訊號以及小於第二參考閾值之經調節輸出電壓。打嗝定時器可由第一訊號或第二訊號其中一者啟動。
於本標的技術之至少一態樣中,描述用於多相開關轉換器的同步打嗝過電流保護之方法與配置。本標的技術提供一種穩固打嗝保護方案,不論電流共享效能、控制器間之過電流限制的匹配、相位數與控制器數量以及閉環控制帶寬以及負載條件。一旦開關轉換器電路或模組其中一者(亦指「相位」)偵測到過電流事件,則同時關閉所有相位並冷卻負載直到預設定時器到期。此期間之功耗幾乎為零。於打嗝計時器到期後,所有相位同步重新啟動。於此揭露之方案提供一多控制器至多控制器雙工通信,無需添加專用通信匯流排。由於不使用專用通信匯流排,因此降低成本並簡化實施。如本文更詳細描述,本標的技術可於多相轉換器之各種模式中實施,例如電流模式、電壓模式、無主從與主從架構模式。
圖1A、1B與1C為根據本標的技術層面,同步二相開關轉換器100A以及過電流與打嗝脈衝波形之示意圖與時序圖。然而,並非所有經描繪之組件皆可用於所有實施中,並且至少一實施可包括除了圖中所示之組件外的額外組件或不同組件。於不脫離本文所述之請求項的精神或範圍的情況下,可對組件之排列與類型進行變化。可提供附加組件、不同組件或更少組件。
圖1之同步二相開關轉換器100A為具有逐週期電流限制開關轉換器之無主從打嗝過電流保護,其中兩相位相似並共享閾值電流(ITH)訊號。同步二相開關轉換器100A包括一第一相位與第二相位,該第一相位包括一功率級110-1與一控制電路(亦指「控制器」)120-1,該第二相位包括一功率級110-2與控制器電路120-2。功率級110-1與110-2係為相似並且耦合於一供給電壓(例如,未調節之供給電壓(VDC ))並且在同步二相開關100A之輸出節點102處提供一經調節輸出電壓(Vout)。功率級110-1與110-2係為已知級,並可利用至少一開關與數個其他元件,例如電感器(或變壓器)或電容器與二極體,以提供經調節之輸出電壓。
控制電路120-1與120-2可觸發如下所述之打嗝機制,並且於結構與功能方面實質上相似。換言之,控制電路120-1與120-2具有功能類似之相似模組。為求簡潔,於此僅描述控制電路120-1。控制電路120-1包括多個模組,該模組包括比較器122、誤差放大器124、過電流電路126與同步化(同步)電路125。誤差放大器124可為互導放大器,並可將取樣自由電阻器R1與R2形成之分壓器處之經調節輸出電壓Vout的反饋(FB)電壓與參考電壓(REF1)進行比較,並產生一輸出電流,其係與經取樣電壓與參考電壓之偏差成比例。過電流電路126為可偵測過電流之過電流保護電路,一旦偵測到過電流時,可產生如下所述之過電流訊號,過電流訊號為第一打嗝觸發訊號,並且若過電流事件持續一預設時間時,則可觸發打嗝機制。過電流電路126之輸出電流為一閾值電流訊號(ITH),其被用作電流命令訊號,並且於控制電路120-1與120-2之間之節點121處共享,其係藉由補償電路140(例如,相移電路)耦合至接地電位。過電流電路126可同時限制最大閾值電流訊號ITH,以將該電流限制為預設之過電流值並防止負載受損。
比較器122將電流感測訊號(VCS )與共享電流訊號ITH進行比較,以產生工作週期脈衝(d),並將工作週期訊號提供給功率級110-1。工作週期脈衝(d)可控制功率級110之一工作週期。來自功率級110-1之電流感測訊號反映功率級110-1之瞬時波形或電感器電流、有效開關電流或飛輪開關電流的平均值。功率級110-1可包括可調變工作週期脈衝之調變器(例如,恆定頻率或可變頻率調變器)。 工作週期脈衝(d)可控制功率級110-1之工作週期。
本案所揭露之同步電路125亦可用於觸發打嗝機制。同步電路125包括一第一比較器132、一第二比較器134、一邏輯及(AND)閘136及一打嗝計時器138。第一比較器132將共享電流訊號ITH與一最小值(例如,ITH_MIN)進行比較,且第二比較器134將FB電壓與參考電壓REF2(例如,FB_MIN)進行比較。由第一與第二比較器132和134進行比較之結果經饋送至該及閘136,其產生一第二打嗝觸發訊號。基於第一與第二比較器132和134以及與及閘136之操作原理,可理解當共享電流訊號ITH小於最小值(ITH_MIN)並且FB電壓低於參考電壓(REF2,例如FB_MIN)時,產生第二打嗝觸發訊號(例如,聲稱的)。 第一觸發訊號(例如,過電流訊號)與第二觸發訊號(例如,來自及閘136之輸出訊號)經發送至邏輯或(OR)閘128。
當第一或第二觸發訊號之至少一者受到落實時,該邏輯或閘128之輸出係為邏輯高狀態。或邏輯或閘128的邏輯高輸出可關閉開關130,開關130將共享電流訊號ITH下拉至一低值(例如,小於ITH_MIN)並且同時啟動打嗝定時器138。將共享電流訊號ITH下拉至低值可使另一控制器電路(120-2)不論偵測到過電流與否亦啟動其打嗝定時器。此可指稱為相位之間無專用通信匯流排之通信。打嗝計時器138包括一第一電流源133與一第二電流源135。第一電流源133連接至電源電壓並為電容器C1提供充電電流。當打嗝定時器138經啟用時,第二電流源135連接至接地電位並為電容器C1提供恆定之放電電流。電容器C1之放電時間是根據電容器C1電容值與第二電流源之電流值之預設時間,並且決定打嗝持續時間,其將與以下端於過電流與打嗝脈衝之內容中論述。
圖1B之時序圖100B描繪各種電流與過電流以及打嗝脈衝之波形150、152、160與162。波形150示出經感測電流之時間變化(例如,功率級110-1之電感器電流)。波形152示出作為單相開關轉換器之時間函數的共享電流訊號ITH。如上所述,共享電流訊號ITH係受電流電路126限制於過電流限制 155。於過電流持續一預設時間(例如,過電流時間限制)之後,共用電流訊號ITH經開關130下拉,並且過電流返回至零,如波形160所示。於過電流時間限制結束時,同步電路125啟動打嗝定時器138。由波形162示出之打嗝脈衝可持續一預定時間,於此期間開關轉換器處於休眠狀態。於預定時間(例如,幾秒)後,開關轉換器甦醒並且根據需求重複該過程。
圖1C之時序圖100C描繪示例波形172、174、176、182、184、186和188,其與具有例如雙相開關轉換器電路之多相開關轉換器相關聯。波形172與174示出二相開關轉換器電路之感測電流的時間變化。波形176示出共享電流訊號ITH作為二相之時間函數。於多相開關轉換器中,當過電流發生時,一旦共享電流訊號ITH經具有略低閾值(例如175)之第一控制器箝位,則第二控制器可能由於較高閾值177而不能偵測到過電流事件,並且可能保持全力運轉。因此,在沒有本標的技術之過電流保護方案的情況下,第一與第二控制器之過電流脈衝如波形182與184所示。因此,第一控制器啟動由波形186描繪之打嗝脈衝,而第二控制器不如波形188所示啟動打嗝並繼續以全功率運轉。
本案技術標的之控制器電路(例如120-1與120-2)允許多相轉換器之多相位(例如,至少兩者)受到同步,借此,若過電流未受到至少一相位所偵測,則首先偵測到過電流之相位可下拉共享閾值電流ITH,以使所有相位啟動各別之打嗝定時器。
圖2為根據本主案技術層面之用於同步多相開關轉換器的打嗝過電流保護過程200的流程圖。如上所述,不具有本技術方案之多相開關轉換器可能陷入只有一相位啟動打嗝機制,且其他繼續以全功率運轉之情況。過程200之實施允許本標的技術的同步多相開關轉換器減輕此問題。
過程200於操作塊202開始,其中經同步之多相開關轉換器(例如,圖1A之100A)處於啟動模式。在控制操作塊204,一旦轉換器電路啟動,控制器電路(例如,圖1之120-1)即保持監視輸出電流Iout 以檢查Iout 是否高於允許之最大值(例如,Imax )。若Iout 大於Imax ,則該控制係交至操作塊208。否則,若答案為否,則於控制操作塊206處檢查兩種情況。首先,檢查輸出電壓(Vo )是否小於預定之調節值(Vreg ),其次,確定功率指令(PwrCmd)是否為低。功率命令係可為例如圖1之共享電流訊號ITH。若未滿足該等條件中之一者,則於操作塊212,轉換器電路繼續正常操作,並且控制經交至控制操作塊204。否則,若兩條件皆受到滿足,則將控制交至操作塊208。
於控制操作塊204與206中檢查到兩種條件任一者時,皆可觸發打嗝保護機制。情況之一為輸出電流Iout 高於經控制操作塊204所檢查之最大允許電流值Imax 。另一情況為控制操作塊206檢查到輸出電壓低於調節電壓,且同時功率命令訊號處於預設之低水平。當輸出電壓不低於調節電壓,或功率命令訊號非處於預設之低水平時,該控制係交至操作塊212,其中繼續電路之正常作業。
當任一情況觸發打嗝模式時,該控制器於操作塊208同時採取以下動作: 1)啟動關閉時段計時器;2)關閉功率級;以及3)強制功率命令訊號低於預設低水平(例如,使用圖1A之開關130)。功率命令訊號係可為電流模式控制器轉換器(例如,圖1A之100A)之共享電流訊號ITH,其代表電流命令,或用於電壓模式經控制之轉換器(稍後論述)的COMP訊號,其表示工作週期,或在各相之間經共享之電流共享參考訊號Vsh (稍後論述)。共享訊號為各封閉迴路控制器之現有存在訊號,但對於打嗝模式不使用專用通信匯流排。於操作塊210中設置之關閉時段(例如,等待時間)期間,控制器經重置為初始狀態,並且在關閉時段到期之後,透過將控制交至操作塊202重新嘗試啟動。
由過程200控制的所述安排為穩固打嗝保護方案,其獨立於電流共享效能、控制器間之過電流限制的匹配、相位數與控制器數量,閉環控制帶寬以及負載條件之外。一旦其中一相位偵測到過電流事件,則同時關閉所有相位並且冷卻負載直到預設計時器到期。此期間之功耗幾乎為零。於打嗝計時器到期後,所有相位同時重新啟動。如上所述,該標的方案提供了多控制器至多控制器雙工通信,而無需添加專用匯流排,此降低了成本並簡化了實行。所提出之概念適用於多相轉換器之多種模式,如關於圖3、5、6與7之實施例所描述。
圖3為根據本標的技術層面之利用閾值電流(ITH)訊號之多相開關轉換器300同步的示意圖。於所描繪之實例中,多相開關轉換器300為無主從電流模式控制之多相轉換器。多相開關轉換器300可包括多個相位,其中圖3為求簡潔僅示出三個相位,但圖3中之相位數不限於三個。多相開關轉換器300包括功率級310(例如,310-1、310-2與310-3)及控制器320(例如,320-1、320-2與320-3)。功率級310類似於如上所述之圖1之功率級110-1與110-2。控制器320具有類似結構與功能並共享該共享電流訊號ITH(例如,圖2之功率命令訊號(PwrCmd)),如上關於圖1A所述,其中該等控制器320之各節點共同耦合至補償電路340。此外,定時電容器C1於該等控制器320之間共享。控制器320-1之結構與操作類似於圖1A之控制電路120-1。因此,於此不再重複對控制器320-1之操作的詳細描述,以避免不必要之冗餘。
如上所述,控制器320-1允許同步多相開關轉換器300之多個相位。例如,共享電流訊號(ITH)路徑具有一限制器(例如,圖1A之126),其箝位最大共享電流訊號(ITH)並透過封閉電流迴路限制最大電流。一旦共享電流訊號(ITH)受到箝位,即落實過電流訊號(OC)。於一選擇性等待時段後,控制器320-1進入打嗝模式並將共享電流訊號(ITH)下拉至低水平。實際上,由於不可避免之箝位水平失配,共享電流訊號(ITH)必然受到所有相位中具有最低箝位水平之相位所箝位,而所有其他相位可能無法偵測到過電流狀態。於共享電流訊號(ITH)經箝位相位強制處於低水平時,具有較高箝位水平之該些相位偵測到反饋電壓(FB)低於參考電壓(REF1)。該情況亦可如同過電流訊號般啟動打嗝動作。功率級將被關閉,直到打嗝模式計時器到期。
圖4為根據本標的技術層面之與利用共享電流訊號(ITH)同步的多相開關轉換器相關聯之波形410、420、430即440之時序圖。時序圖400的波形410、420、430與440,對應於例如圖3的電流模式多相開關轉換器。波形410描繪打嗝定時器之波形(例如,圖1之138)。波形420描繪共享電流ITH,且波形430與440對應於開關(例如,圖1A之130)。
圖5為根據本標的技術層面,利用COMP訊號同步之多相開關轉換器500示意圖。多相開關轉換器500為無主從電壓模式控制之多相轉換器。多相開關轉換器500可包括多個相位,其中圖5為求簡潔僅示出三個相位,但圖5中之相位數不限於三個。多相開關轉換器500包括功率級510(例如,510-1、510-2與510-3)及控制器520(例如,520-1、520-2與520-3)。功率級510類似於圖1之功率級110-1,並且除了同步電路525與於該實施例中為COMP訊號之共享功率命令訊號(圖2之PwrCmd)之外,控制器520類似於上述控制電路120-1。控制器520具有類似結構與功能,且共享COMP訊號與電流共享參考訊號Vsh (下文中稱為「共享電壓(Vsh )訊號」),其控制器520之各節點耦合一起。此外,控制器520之誤差放大器(例如,524)的輸出節點經由補償電路540一同耦合至接地電位。
取樣自輸出電壓Vo (透過由電阻器R1與R2形成之分壓器)之反饋訊號(FB)經連接至所有控制器之互導放大器(gm)(例如,524-1)的反相輸入。互導放大器COMP之輸出,以及自其所衍生出之脈衝寬度調制(PWM)工作比命令訊號,係經相互連接。將COMP訊號與位於PWM比較器522處之調變斜坡進行比較,以產生工作週期脈衝(d)。工作週期脈衝(d)可控制圖1A功率級110-1之工作週期。
為達到電流平衡目的,來自各功率級(P.S.)之電流感測訊號Vcs係經由OR-ing二極體523連接至電流共享匯流排。Vsh 將自動等於多相開關轉換器500所有相位中之最低或最高Vcs。於某些其他實施中,Vsh 可自動等於所有相位Vcs之平均值。各相位之電流共享迴路利用減法器526將其自身之Vcs與Vsh 進行比較,並且遞增調整經施加於PWM比較器522之實際COMP訊號,以使第一相位之電流在所有相位中與最低或最高電流匹配。
比較器530將電流感測訊號Vcs與最大電流限制Vcs_max進行比較。一旦電流感測訊號Vcs高於Vcs_max,即落實該過電流訊號(OC)。於預設時間後,控制器520-1利用開關537將COMP訊號拉至低水平。一旦COMP被至少一相位下拉至低水平,PWM比較器522將所有相位之工作週期設置為趨近於零。由於反饋電壓FB下降至低於REF2(例如,FB_MIN),而COMP係為低,因此多相開關轉換器500之所有相位進入打嗝模式並同時啟動打嗝定時器,而不需要通信匯流排。如關於圖3所描述,打嗝機制亦可由同步電路525啟動,其類似於圖3之同步電路325,差異僅在於比較器532係將COMP訊號與最小值(COMP_MIN)進行比較,而非比較ITH值。比較器534與邏輯及閘536之操作類似於圖1之比較器134與邏輯及閘136。
圖6為根據本標的技術層面,利用共享電壓(Vsh )訊號同步的多相開關轉換器600示意圖。多相開關轉換器600為由Vsh 訊號同步之無主從電壓模式控制的多相轉換器。多相開關轉換器600可包括多個相位,其中為求簡潔,圖6僅示出三個相位,但相位數量不限於三個。多相開關轉換器600包括功率級610(例如,610-1、610-2與610-3)及控制器620(例如,620-1、620-2與620-3)。功率級610與控制器620類似於上述圖5之功率級510與控制器520,僅同步電路625不同。於同步電路625中,第一比較器534將Vsh 訊號與Vsh_MIN 值進行比較,並且當Vsh 訊號小於Vsh_MIN 值且同時反饋電壓FB小於參考電壓時(REF2,例如,FB_MIN),及(AND)閘之輸出被置為高水平。
控制器620具有類似之結構與功能,並共享COMP訊號與Vsh 訊號,其控制器620之各節點耦合在一起。此外,控制器620之誤差放大器的輸出節點經由補償電路640一同耦合至接地電位。
Vsh 訊號自動等於多相開關轉換器600之所有相位中的最低或最高Vcs。一旦功率級610中之一個Vcs值高於最大電流限制(VC_max),則在該相位中落實過電流訊號(OC),並且控制器將訊號Vsh 下拉至低水平。一旦訊號Vsh 被至少一相位下拉至低值,多相開關轉換器600之所有其他相位認定訊號Vsh 與反饋電壓FB同時為低。根據邏輯配置,多相開關轉換器600之所有相位進入打嗝模式並同時啟動計時器。
圖7為根據本案之技術層面,利用共享電壓(Vsh)訊號同步之主從多相開關轉換器700示意圖。主從多相開關轉換器700為主從電壓模式控制之多相轉換器。主從架構為降低解決成本與尺寸之常用方法。舉例而言,具有電壓反饋迴路之單一主控制器與電源管理接口,例如電源管理匯流排(PMBus),可與數個簡單之從控制器共同作業。主從架構具有靈活性,即從相位之電流額定值不須與主相位相同。例如,主相位可於比從相位更低或更高之電流運行。
主從多相開關轉換器700包括主模組與多個從模組。主模組包括主功率級710-M與主控制器720-M。從模組包括多個從功率級,例如從功率級710-S,以及多個從控制器720,例如從控制器720-S。主功率級710-M為低電流模組,而從功率級為高電流模組。主控制器720-M類似於圖1之控制器520-1。然而,從控制器720-S比主控制器720-M更簡單。例如,從控制器720-S不具有同步電路725,並且其開關737由過電流訊號控制。可閉合開關737以下拉COMP訊號。過電流訊號由比較器730產生,其類似於如上述圖5之比較器530。
主從多相開關轉換器700建構自從相位至主相位之通信。取樣自輸出電壓Vo之反饋訊號FB連接至主控制器之互導放大器(gm)(例如,724)的反相輸入。互導放大器之輸出為COMP訊號,其定義與從控制器共享之PWM工作比命令訊號。將COMP訊號與PWM比較器722處之調變斜坡進行比較,以產生工作週期脈衝(d)。
為達電流平衡目的,來自主相位之電流感測訊號Vcs經由選擇性增益級750設置為電流指令Vsh ,且其增益等於K。從相位之電流共享迴路將其自身Vcs與Vsh 進行比較,並逐步調整其施加至PWM比較器之COMP訊號,以使各對應相位之電流與主相位之電流匹配。一旦Vcs高於最大電流限制Vcs_max,即落實過電流訊號(OC),且控制器720-S之開關737將COMP訊號下拉至一低水平。當COMP訊號被任何相位下拉至低值時,主從多相開關轉換器700所有相位之工作週期經設置為趨近於零。由於反饋電壓FB在COMP訊號為低時下降至REF2以下(例如,FB_MN),因此主控制器720-M進入打嗝模式。
應當理解,上述揭露之實施例可擴展至具有主動/被動開關電流感測之其他開關功率轉換器,以用於不同目的。
圖8為根據本案技術層面,提供多相開關轉換器示例方法800之流程圖。出於解釋目的,於此主要參考圖1A之開關轉換器100A以描述方法800。然而,方法800不限於開關轉換器100A,且方法800之至少一方塊(或操作)可由開關轉換器100A之至少一其他組件執行。進一步為了說明之目的,於此將示例方法800之塊描述為連續或線性發生。然而,示例方法800之多個方塊可並行發生。此外,示例方法800之方塊不需以所示順序執行且/或不需執行示例方法800之至少一方塊。
方法800包括利用順序切換脈衝(810)提供至少兩個開關轉換器模組。方法800更進一步包括配置各開關轉換器模組以包括用以提供輸出電壓(例如,圖1A之Vout)之一功率級(例如,圖1A之110)以及利用過電流電路(例如,圖1A之126)與同步電路(例如,圖1A之125)(820)以觸發打嗝機制之一控制電路(例如,圖1A之120)。功率級係耦合至電壓源(例如,圖1A之VDC )。過電流電路經配置以偵測過電流事件,並於偵測到過電流事件時,將命令訊號(例如,圖1A之ITH)設置為預設低值並提供一第一訊號( 例如,圖1A之OC訊號)(840)。當命令訊號低於第一參考閾值(例如,圖1A之ITH_MIN)且輸出電壓(例如,圖1A之Vout之樣本)小於第二參考閾值(例如,圖1A之REF2)(850)時,同步電路可產生一第二訊號。打嗝機制可由第一訊號或第二訊號其中一者觸發。打嗝機制包括控制功率級,以於一可編程期間停止向負載提供電力。
於某些實施方式中,方法800進一步包含配置開關轉換器模組以在電流操作模式下操作。於電流操作模式中,過電流電路可透過偵測控制器之誤差放大器的輸出電流高於預設值,以偵測過電流事件。
於至少一實施方式中,命令訊號為從控制電路之誤差放大器得出之閾值電流訊號,並且開關轉換器模組之過電流電路的輸出節點經由補償網絡耦合至接地電位。
於某些實施方式中,開關轉換器模組可在電壓操作模式下操作。於電壓操作模式中,過電流電路可透過偵測電流感測電壓大於預設電壓值以偵測過電流事件。
於至少一實施方式中,命令訊號是基於輸出電壓或控制電感器電流的訊號,例如ITH,得出的COMP電壓訊號,並且開關轉換器模組之誤差放大器的輸出節點經由補償網絡耦合至接地電位。誤差放大器之輸出節點可透過補償網路耦合至對地電位。
於至少一實施方式中,命令訊號是根據功率級之電感器的感測電流得出的共享電壓訊號,並於開關轉換器模組間共享。誤差放大器之輸出節點可以透過補償網路耦合至對地電位。
總之,用於多相開關轉換器之過電流保護的方法與電路被揭露。本案技術對於電流共享效能、控制器之間之過電流限制的匹配、相位數與/或控制器數量、封閉迴路帶寬以及負載條件方面係為相當穩固。不需要用於保護之通信匯流排。
提供先前描述是使所屬領域之技術人員能夠實踐本文中所述之各層面。對本領域技術人員而言,於該些態樣之各種修改是顯而易見的,並且於此定義的一般原理可應用於其他態樣。因此,請求項並不意欲限於本文所示之態樣,而是與語言請求項一致之全部範圍應當被賦予,其中對單元素之引用並不意欲意謂「一個且僅一個」,除非特別說明,而是「至少一個」。除非特別說明,否則術語「一些」是指至少一個。雄性中之代名詞(例如,他的)包括雌性與中性(例如,她與它的),並且反之亦然。標題和副標題,若有的話,僅為了方便使用,並不限製本標的之揭露。
述語「經配置為」、「可操作的」與「經編程為」並不意味著對象之任何特定有形或無形的修改,而是意欲可互換地使用。例如,經配置成監控操作或組件的處理器亦可表示處理器經編程為監控操作,或處理器可經操作以監控操作。同樣地,經配置為執行代碼之處理器可被解釋為經編程為執行代碼或可操作以執行代碼之處理器。
諸如「態樣」之類的片語並不意味該態樣對於標的技術是必須的,或者該態樣適用於標的技術之所有配置。與一態樣有關之揭露內容可適用於所有配置或至少一個配置。諸如一態樣之片語可指至少一個態樣,並且反之亦然。諸如「配置」之類的片語並不意味這種配置對於標的技術是必須的,或者這種配置適用於標的技術之所有配置。與配置有關之揭露可適用於所有配置或至少一個配置。諸如配置之片語可指至少一個配置,並且反之亦然。
本文使用的「示例」一詞意味著「用作示例或說明」。本文中描述為「示例」之任何態樣或設計不必被解釋為比其他態樣或設計更優選或更具優勢。
於本案揭露內容中之各元件及各層面之等效結構或功能,屬於本領域普通技術人員已知或未來可知者,係透過引用明確地併入本文,並且受請求項所引用涵蓋。此外,無論在請求項中是否明確地敘述該等揭露內容,本文所揭露內容皆非意欲貢獻於公眾。任何請求項內容均不得根據35 U.S.C §112,第六段的規定加以解釋,除非使用片語「用於…之手段」明確敘述該要素,或者在方法請求項的情況下,使用片語「用於…之步驟」來敘述該要素。此外,在說明書或請求項中使用術語「包括」、「具有」或類似術語的範圍內,該術語意欲以類似於術語「包含」之方式囊括在內,因為「包括」係於請求項中作為過渡詞。
100A‧‧‧同步二相開關轉換器
102‧‧‧輸出節點
110-1、110-2‧‧‧功率級
120-1、120-2‧‧‧控制電路
121‧‧‧節點
122‧‧‧比較器
124‧‧‧誤差放大器
125‧‧‧同步電路
126‧‧‧過電流電路
128‧‧‧或(OR)閘
130‧‧‧開關
132‧‧‧第一比較器
133‧‧‧第一電流源
134‧‧‧第二比較器
135‧‧‧第二電流源
136‧‧‧及(AND)閘
138‧‧‧打嗝計時器
140‧‧‧補償電路
100B、100C‧‧‧時序圖
150、152、160、162、172、174、176、182、184、186、188‧‧‧波形
155‧‧‧過電流限制
177‧‧‧閾值
200‧‧‧過程
202、204、206、208、210、212‧‧‧操作塊
300‧‧‧多相開關轉換器
310、310-1、310-2、310-3‧‧‧功率級
320、320-1、320-2、320-3‧‧‧控制器
340‧‧‧補償電路
400‧‧‧時序圖
410、420、440‧‧‧波形
500‧‧‧多相開關轉換器
510、510-1、510-2、510-3‧‧‧功率級
520、520-1、520-2、520-3‧‧‧控制器
522‧‧‧PWM比較器
523‧‧‧OR-ing二極體
524‧‧‧誤差放大器
525‧‧‧同步電路
526‧‧‧減法器
530、532‧‧‧比較器
534‧‧‧第一比較器
536‧‧‧及(AND)閘
537‧‧‧開關
600‧‧‧多相開關轉換器
610、610-1、610-2、610-3‧‧‧功率級
620、620-1、620-2、620-3‧‧‧控制器
625‧‧‧同步電路
640‧‧‧補償電路
700‧‧‧主從多相開關轉換器
710-M‧‧‧主功率級
710-S‧‧‧從功率級
722‧‧‧PWM比較器
724‧‧‧互導放大器
725‧‧‧同步電路
730‧‧‧比較器
737‧‧‧開關
750‧‧‧可選增益級
800‧‧‧方法
在所附請求項中闡述了本標的技術之某些特徵。然而,出於解釋的目的,於以下附圖中闡述了本標的技術之若干實施例。
圖1A、1B與1C為根據本標的技術層面,同步二相開關轉換器以及過電流與打嗝脈衝波形之示例的示意圖與時序圖。
圖2為根據本標的技術層面,一多相開關轉換器之同步打嗝過電流保護的示例過程流程圖。
圖3為根據本標的技術層面,利用閾值電流(ITH)訊號之多相開關轉換器同步的示意圖。
圖4為根據本標的技術層面,與利用閾值電流訊號同步之多相開關轉換器相關聯之波形時序圖。
圖5為根據本標的技術層面,利用COMP訊號同步之多相開關轉換器示意圖。
圖6為根據本標的技術層面,利用共享電壓(Vsh )訊號同步的多相開關轉換器示意圖。
圖7為根據本標的技術層面,利用共享電壓(Vsh )訊號同步的主從多相開關轉換器示意圖。
圖8為根據本標的技術層面,提供多相開關轉換器方法的流程圖。
國內寄存資訊 (請依寄存機構、日期、號碼順序註記) 無
國外寄存資訊 (請依寄存國家、機構、日期、號碼順序註記) 無

Claims (20)

  1. 一種多相開關轉換器,包含: 一第一開關轉換器電路,其包含一經耦合至一直流電壓源及一控制器之一功率級,其中該控制器包含:一過電流(OC)電路,其經配置以偵測一過電流事件,並且於偵測到該過電流事件時,將一命令訊號設定為一預設低值並提供一第一打嗝訊號;一同步電路,其經設置以根據該過電流電路之該命令訊號產生一第二打嗝訊號,該命令訊號滿足一第一參考閾值,且該功率級之一輸出電壓的一取樣部分滿足一第二參考閾值;以及一打嗝計時器,其經配置以藉由該第一打嗝訊號或該第二打嗝訊號其中一者所觸發而啟動一打嗝脈衝以回應於受觸發情況。
  2. 如請求項1所述之多相開關轉換器,其中該多相開關轉換器進一步包含至少一第二開關轉換器電路,並且經配置於一無主從模式下作業,且該至少一第二開關轉換器電路實質上類似於該第一開關轉換器電路,且其中該功率級經配置以於打嗝脈衝期間停止對一負載提供電力。
  3. 如請求項2所述之多相開關轉換器,其中該多相開關轉換器經配置於一電流模式下作業,且該命令訊號包含一閾值電流訊號,其中該閾值電流訊號於該第一開關轉換器電路與該至少一第二開關轉換器電路之間共享。
  4. 如請求項2所述之多相開關轉換器,其中該多相開關轉換器經配置以於一電壓模式下作業,且該命令訊號包含一COMP電壓訊號,其中該COMP 電壓訊號係根據該功率級之輸出電壓衍生而得,且於該第一開關轉換器電路與該至少一第二開關轉換器電路之間共享。
  5. 如請求項2所述之多相開關轉換器,其中該多相開關轉換器經配置於一電壓模式下作業,該命令訊號包含一共享電壓訊號,其中該共享電壓訊號係根據一功率級之一電感器的一感測電流衍生而得,且於該第一開關轉換器電路與該至少一第二開關轉換器電路之間共享。
  6. 如請求項1所述之多相開關轉換器,其中滿足該第一參考閾值係包含小於該第一參考閾值,且滿足該第二參考閾值包含小於該第二參考閾值,且其中該預設低值係小於該第一參考閾值,且該第二參考閾值係等於一預設調節輸出電壓。
  7. 如請求項1所述之多相開關轉換器,其中該多相開關轉換器更進一步包含至少一第二開關轉換器電路,且其中該第一開關轉換器電路包含一主模組以及該至少一第二開關轉換器電路係經配置作為從模組。
  8. 如請求項7所述之多相開關轉換器,其中該主模組經配置以於一電壓模式下作業,並且運轉於比從模組更低之電流,且該命令訊號包含根據功率級之輸出電壓衍生而得之一COMP電壓訊號,並且由該主模組與該等從模組共享。
  9. 如請求項8所述之多相開關轉換器,其中該等從模組經配置於一電壓模式下作業,且各從模組之一控制器經配置以於偵測到該功率級之一電感器的一感測電流大於一預設電流值時,將命令訊號設定為該預設低值。
  10. 如請求項1所述之多相開關轉換器,其中於一電流作業模式下,該過電流電路經配置藉由偵測該控制器之一誤差放大器的一輸出電流高於一預設電流值,以偵測過電流事件。
  11. 如請求項1所述之多相開關轉換器,其中於一電壓作業模式下,該過電流電路經配置藉由偵測一電流感測電壓大於一預設電壓值,以偵測過電流事件。
  12. 一種用於一多相開關轉換器之同步打嗝過電流保護之方法,包含以下步驟: 藉由一過電流電路,偵測一過電流事件; 回應於偵測該過電流事件,藉由該過電流電路,將一命令訊號設定為一預設低值並且提供一第一訊號; 藉由一同步電路,產生一第二訊號以回應於低於一第一參考閾值之命令訊號,且該多相開關轉換器之一調節輸出電壓之一取樣部份係小於一第二參考閾值;以及 根據該第一訊號及該第二訊號其中一者觸發一打嗝機制, 其中該過電流電路與該同步電路為一控制電路之模組,其包含於該多相開關轉換器之每一開關轉換器中。
  13. 如請求項12所述之方法,更進一步包含以下步驟:當該多相開關轉換器於一電流作業模式之下操作時,根據偵測該控制電路之一誤差放大器的一輸出電流大於一預設電流值,以藉由該過電流電路偵測該過電流事件。
  14. 如請求項13所述之方法,其中該命令訊號包含一閾值電流訊號,且該方法更進一步包含以下步驟:藉由該過電流電路,自該控制電路之一誤差放大器的一輸出電流衍生而得該閾值電流訊號。
  15. 如請求項12所述之方法,更進一步包含以下步驟:當該多相開關轉換器於一電壓作業模式之下操作時,根據偵測一電流感測電壓大於一預設電壓值,以藉由該過電流電路偵測該過電流事件。
  16. 如請求項15所述之方法,其中該命令訊號包含一COMP電壓訊號,其經共享於該多相開關轉換器之開關轉換器模組間,且該方法更進一步包含藉由該過電流電路,根據該輸出電壓衍生而得該COMP電壓訊號。
  17. 如請求項15所述之方法,其中該命令訊號包含一共享電壓訊號,其經共享於該多相開關轉換器之開關轉換器模組間,且該方法更進一步包含以下步驟:藉由該過電流電路,根據一功率級之一電感器的一感應電流衍生而得該共享電壓訊號。
  18. 一種具有同步打嗝過電流保護之轉換器系統,其包含: 至少二開關轉換器模組,其等經配置以利用多相序列開關脈衝作業; 其中該至少二開關轉換器模組各包含耦合至該直流電壓源之一功率級與一控制電路,且該控制電路包含一過電流電路與一同步電路, 其中該開關轉換器模組之各過電流電路經配置以偵測一過電流事件,且當偵測到該過電流事件時,將一命令訊號設定為一預設低值以及提供一第一訊號, 其中該開關轉換器模組之各同步電路包含一打嗝計時器,且為回應於低於一第一參考閾值之該命令訊號以及低於一第二參考閾值之該調節輸出電壓,經配置以產生一第二訊號,該打嗝計時器藉由該第一訊號或該第二訊號其中一者啟動。
  19. 如請求項18所述之系統,其中該多相開關轉換器經配置於一電壓或一電流模式下作業,其中於電壓模式下,相應之一該開關轉換器模組之一相應過電流電路經配置為透過偵測一電流感測電壓大於一預設電壓值,以偵測過電流事件。
  20. 如請求項19所述之系統,其中於一電流作業模式下,該相應過電流電路經配置為藉由偵測該控制電路之一誤差放大器的一輸出電流高於一預設電流值,以偵測該過電流事件。
TW107136711A 2017-10-26 2018-10-18 同步化多相開關轉換器之打嗝過電流保護 TWI784070B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/795,197 US10848051B2 (en) 2017-10-26 2017-10-26 Synchronizing hiccup over-current protection of multiphase switching converters
US15/795,197 2017-10-26

Publications (2)

Publication Number Publication Date
TW201924196A true TW201924196A (zh) 2019-06-16
TWI784070B TWI784070B (zh) 2022-11-21

Family

ID=66244413

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107136711A TWI784070B (zh) 2017-10-26 2018-10-18 同步化多相開關轉換器之打嗝過電流保護

Country Status (3)

Country Link
US (1) US10848051B2 (zh)
CN (1) CN109713644B (zh)
TW (1) TWI784070B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI731674B (zh) * 2020-05-11 2021-06-21 宏碁股份有限公司 具有動態輸出之電源供應器

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10848051B2 (en) 2017-10-26 2020-11-24 Analog Devices International Unlimited Company Synchronizing hiccup over-current protection of multiphase switching converters
CN112865499B (zh) * 2021-01-29 2022-05-17 成都芯源系统有限公司 多相开关变换器及其控制器和控制方法
CN113809907B (zh) * 2021-09-26 2023-05-12 深圳市斯康达电子有限公司 一种基于模拟控制的主从并机均流方法
US11522356B1 (en) 2021-10-26 2022-12-06 Appleton Grp Llc Power supply overcurrent event recovery method and system
US20230223851A1 (en) * 2022-01-11 2023-07-13 Mediatek Inc. Apparatus and method for controlling transient boost circuit of voltage regulator through feedback signals obtained by differential sensing applied to output capacitor

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4928200A (en) 1987-04-02 1990-05-22 Cherry Semiconductor Corporation Overcurrent protection for switching mode power converter
US6411483B1 (en) 1999-11-24 2002-06-25 Enterasys Networks, Inc. Hiccup-mode current protection circuit for switching regulator
US6631064B2 (en) 2001-02-06 2003-10-07 Semiconductor Components Industries Llc Apparatus and method for providing overcurrent protection for switch-mode power supplies
US6680837B1 (en) 2001-06-14 2004-01-20 Analog Devices, Inc. Hiccup-mode short circuit protection circuit and method for linear voltage regulators
US6574124B2 (en) * 2001-09-13 2003-06-03 Netpower Technologies, Inc. Plural power converters with individual conditioned error signals shared on a current sharing bus
US6548992B1 (en) 2001-10-18 2003-04-15 Innoveta Technologies, Inc. Integrated power supply protection circuit
JP3620497B2 (ja) * 2001-12-03 2005-02-16 株式会社村田製作所 スイッチング電源装置
US7116563B2 (en) 2004-05-19 2006-10-03 Semtech Corporation Dual mode over-current protection for switching mode power converter
US7254000B1 (en) 2005-06-20 2007-08-07 Nexem, Inc. Over voltage protection scheme for synchronous buck converter
ITMI20052051A1 (it) 2005-10-27 2007-04-28 St Microelectronics Srl Dispositivo di controllo di un convertitore a commutazione con circuito di protezione contro le sovraccorenti e relativo convertitore a commutazione
US7706151B2 (en) 2006-05-01 2010-04-27 Texas Instruments Incorporated Method and apparatus for multi-phase power conversion
JP2008005567A (ja) * 2006-06-20 2008-01-10 Sanken Electric Co Ltd スイッチング電源装置
TWM310520U (en) 2006-10-24 2007-04-21 Universal Scient Ind Co Ltd Over current protection circuit for power suppliers
US7733672B2 (en) * 2006-11-29 2010-06-08 Linear Technology Corporation Programmable conduction mode control for switching circuits
JP4979536B2 (ja) * 2007-10-15 2012-07-18 パナソニック株式会社 スイッチング電源装置
US8737024B2 (en) * 2010-02-26 2014-05-27 General Electric Company Self-adjustable overcurrent protection threshold circuit, a method for generating a compensated threshold signal and a power supply employing the circuit or method
JP5494009B2 (ja) 2010-03-01 2014-05-14 株式会社村田製作所 スイッチング制御回路及びスイッチング電源装置
KR101510181B1 (ko) * 2010-09-06 2015-04-10 삼성전자 주식회사 전원공급회로
US8693218B2 (en) 2011-05-25 2014-04-08 Delta Electronics, Inc. Power adapter and method of controlling power adapter operated in energy saving mode
CN102280861A (zh) * 2011-08-01 2011-12-14 广州金升阳科技有限公司 一种开关电源输出短路保护电路
CN102946195B (zh) * 2011-08-15 2016-04-20 美国亚德诺半导体公司 开关调节器及其控制方法
CN202856323U (zh) * 2012-01-17 2013-04-03 上海新进半导体制造有限公司 一种Hiccup模式短路保护电路
GB2514969B (en) * 2012-03-30 2018-10-10 Murata Manufacturing Co Switching power supply apparatus
US8879217B2 (en) 2012-06-29 2014-11-04 Infineon Technologies Austria Ag Switching regulator with negative current limit protection
CN102751856B (zh) 2012-07-19 2015-04-08 成都芯源系统有限公司 具有过流保护功能的多相开关变换器及其控制方法
KR102084801B1 (ko) * 2014-03-10 2020-03-05 매그나칩 반도체 유한회사 스위치 제어 회로, 스위치 제어 방법 및 이를 이용한 변환기
US9478977B2 (en) 2014-05-27 2016-10-25 Skyworks Solutions, Inc. Overcurrent protection device and overcurrent protection method for electronic modules
JP6301756B2 (ja) 2014-06-30 2018-03-28 ローム株式会社 過電流検出回路およびそれを利用したホスト、過電流検出方法
CN203932980U (zh) * 2014-06-30 2014-11-05 中国电子科技集团公司第四十三研究所 具有自动重启和软启动功能的电源短路保护系统
GB2530316B (en) * 2014-09-19 2017-04-26 Murata Manufacturing Co Power overload protection using hiccup mode
CN105763033B (zh) * 2014-12-18 2019-03-15 台达电子工业股份有限公司 电源系统及其控制方法
CN104660022B (zh) 2015-02-02 2017-06-13 昂宝电子(上海)有限公司 为电源变换器提供过流保护的系统和方法
CN106786395B (zh) * 2016-12-09 2019-12-06 芯洲科技(北京)有限公司 一种保护电路及方法
US10848051B2 (en) 2017-10-26 2020-11-24 Analog Devices International Unlimited Company Synchronizing hiccup over-current protection of multiphase switching converters

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI731674B (zh) * 2020-05-11 2021-06-21 宏碁股份有限公司 具有動態輸出之電源供應器

Also Published As

Publication number Publication date
CN109713644A (zh) 2019-05-03
US10848051B2 (en) 2020-11-24
US20190131866A1 (en) 2019-05-02
TWI784070B (zh) 2022-11-21
CN109713644B (zh) 2022-11-08

Similar Documents

Publication Publication Date Title
TWI784070B (zh) 同步化多相開關轉換器之打嗝過電流保護
JP6714039B2 (ja) 同期フライバック変換器における使用のための二次コントローラ、電力変換器、および同期フライバック変換器を制御する方法
JP6175147B2 (ja) ソフトスタート回路および技法
US8299773B2 (en) System and method for limiting input-current surge in a switching mode power supply
US6118675A (en) Method and apparatus for controlling power transfer in a flyback converter by modulating the power switch off time during transient conditions
US9337739B2 (en) Power controller with over power protection
US6552917B1 (en) System and method for regulating multiple outputs in a DC-DC converter
TWI414140B (zh) 二次側電源控制器及形成電源系統之二次側控制器之方法
US8913406B2 (en) Paralleled power converters with auto-stagger start-up
US8193798B1 (en) Buck regulators with adjustable clock frequency to achieve dropout voltage reduction
US9595885B2 (en) Isolated switching mode power supply and the method thereof
US9866122B2 (en) Hybrid boost-bypass function in two-stage converter
CN110858753A (zh) 具有次级侧整流电压感测的隔离开关模式功率转换器的前馈增强反馈控制
TW201141023A (en) Power supply controller and method
US10931203B2 (en) Synchronizing multiple controllers in a power converter
EP3499696B1 (en) Switching power supply and method for operating a switched-mode power supply
US7561450B2 (en) Protection device for a converter and related method
Hwu et al. Applying a counter-based PWM control scheme to an FPGA-based SR forward converter
US8054652B2 (en) Systems and methods for off-time control in a voltage converter
Yan et al. Hiccup mode overcurrent protection scheme for decentralized multiphase current mode dc-dc converters
KR20090105229A (ko) 전하공유를 이용한 병렬 연결 스위칭 컨버터
US9112369B2 (en) Switched-mode power supply device and aircraft including at least one such device
Huang et al. Half-bridge controller with optimized pre-biased start-up
WO2018074169A1 (ja) 電源システム
US9614436B2 (en) Circuit and method for dynamic switching frequency adjustment in a power converter