TW201917156A - Far infrared ray radiant thermal carbonization equipment capable of using heat and carbides generated during a process as a heating fuel to save energy - Google Patents
Far infrared ray radiant thermal carbonization equipment capable of using heat and carbides generated during a process as a heating fuel to save energy Download PDFInfo
- Publication number
- TW201917156A TW201917156A TW106136062A TW106136062A TW201917156A TW 201917156 A TW201917156 A TW 201917156A TW 106136062 A TW106136062 A TW 106136062A TW 106136062 A TW106136062 A TW 106136062A TW 201917156 A TW201917156 A TW 201917156A
- Authority
- TW
- Taiwan
- Prior art keywords
- container
- carbonization
- waste
- far
- smoke
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10B—DESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
- C10B49/00—Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/86—Catalytic processes
- B01D53/8643—Removing mixtures of carbon monoxide or hydrocarbons and nitrogen oxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/86—Catalytic processes
- B01D53/8678—Removing components of undefined structure
- B01D53/8687—Organic components
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/72—Treatment of water, waste water, or sewage by oxidation
- C02F1/78—Treatment of water, waste water, or sewage by oxidation with ozone
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10B—DESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
- C10B51/00—Destructive distillation of solid carbonaceous materials by combined direct and indirect heating
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10B—DESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
- C10B53/00—Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10B—DESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
- C10B57/00—Other carbonising or coking processes; Features of destructive distillation processes in general
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2251/00—Reactants
- B01D2251/10—Oxidants
- B01D2251/104—Ozone
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2303/00—Specific treatment goals
- C02F2303/02—Odour removal or prevention of malodour
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/62—Plastics recycling; Rubber recycling
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Environmental & Geological Engineering (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Biomedical Technology (AREA)
- Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Combustion & Propulsion (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Water Supply & Treatment (AREA)
- Processing Of Solid Wastes (AREA)
- Gasification And Melting Of Waste (AREA)
Abstract
Description
[0001] 本發明是關於碳化設備,尤其是有關利用遠紅外線輻射熱碳化裂解廢棄物的遠紅外線輻射熱碳化設備。[0001] The present invention relates to a carbonization device, and more particularly to a far-infrared radiant heat carbonization device that uses far-infrared radiant heat to carbonize and crack waste.
[0002] 以往,廢棄物的處理是以焚化爐設備為主,其設廠及儲存使用空間大,設備投資及維護成本高,合法地目難尋且昂貴,並在處理過程中容易造成空氣污染及隨時面對民眾抗爭事件等問題。[0002] In the past, waste treatment was mainly based on incinerator equipment, which had a large plant and storage space, high equipment investment and maintenance costs, legally difficult to find and expensive, and easy to cause air pollution during the process. Facing issues such as popular protests.
[發明所欲解決之課題] [0003] 有鑑於上述已知的諸多問題,本發明人提出一種可置放於一般室內方便使用之廢棄物的遠紅外線輻射熱碳化設備,該碳化設備是利用遠紅外線的輻射熱及碳化容器以及循環水幫浦等特殊構造提供高性能的碳化裝置。 [用於解決課題的手段] [0004] 為解決以上的問題,本發明提供一種碳化裂解廢棄物的設備,係利用遠紅外線幅射熱的碳化裂解廢棄物之相同個體A與B的設備,其特徵為:在本體碳化容器內利用遠紅線材料產生的輻射熱進行加熱,使該本體碳化容器內形成整體遠紅外線輻射熱,將廢棄物等投入該本體碳化容器內,在密閉的空間內以紅外線加熱,外部則利用燃燒器加溫使上述容器內的廢棄物等在上述遠紅外線輻射熱的作用下乾燥、熱分解最終碳化,並節省能源(燃料)再利用上述乾燥、熱分解所產生的熱量、碳化物作為加熱燃料經由通道注入本體外部燃燒裝置中,對上述容器內產生的碳化物質、煙氣等進行二次燃燒以燒除殘餘的物質。 [0005] 並且,本發明中,在上述本體碳化容器內形成整體遠紅外線輻射熱,該容器位於封閉的本體內空間,使用遠紅外線陶瓷加熱層由外部燃燒器加熱該碳化容器,利用燃料加熱所產生的熱及遠紅外線輻射熱,將投入上述碳化容器內的廢棄物等乾燥、熱分解,最後碳化,並將上述碳化容器產生的碳化物質、煙氣、臭味等再經導管導入上述外部加熱裝置中燃燒,形成二次燃燒以減少上述容器內所產生的碳化物質、煙氣等,以節省能源並利用上述碳化物質(可燃性氣體)為燃料快速加溫達到碳化容器內廢棄物的碳化。 [0006] 又,本發明中,利用上述乾燥、熱分解所產生的熱量、碳化物質等經控制器並導入氣體緩衝部並作為加熱燃料注入外部燃燒裝置中燃燒,形成二次燃燒將其碳化所產生的碳化物質、煙、臭味減至最少,並再利用尾器處理燃燒裝置將上述二次燃燒未完成的剩餘物質再次燃燒,將碳化所產生的物質完全燃燒,最終由催化觸媒對廢棄物等所產生的氣化物進行消煙、除臭。 [0007] 另外,本發明中,投入上述碳化容器內的廢棄物等,經加熱產生的煙及熱分解的氣化物作為燃燒燃料經導管導入上述外部熱燒器內,以減少上述容器內所產生的碳化物質,再利用一組或二組以上的水循環裝置(水幫浦),將熱分解後的煙及氣化物冷卻使其含有油、氣之氣化物和水混合儲存於循環水箱,所含的油氣經冷卻水中凝結形成浮油存浮於裝置內,在裝置內利用臭氧機(O3
)注入臭氧以分解浮於水面上之浮油以及有機物質。 [0008] 又,本發明中,至少包括一個或一個以上水循環裝置(水幫浦),使用於裝置內由上述容器內廢棄物所產生的裂解油氣進行分解以及至少包括一個或一個以上高溫燃燒處理器以及催化觸媒的消煙除臭器,使用於裝置內由碳化容器廢棄物所產生的煙氣進行消煙、除臭。 [0009] 又,本發明中,利用上述一組或二組以上的水循環裝置(水幫浦)抽取碳化裝置本體內的煙及氣化物,使上述碳化裝置內形成負壓,避免裝置本體內漏出煙氣及臭味。 [0010] 並且,本發明中,碳化容器內置攪拌器可將廢棄物於碳化過程中加以攪拌使碳化物受熱均勻加速碳化,以節省碳化時間。 [0011] 又,本發明中,上述碳化容器所產生的碳化物質、煙、臭味等經導管導入上述外部加熱裝置中燃燒以消煙、除臭,最後利用含貴金屬及氧化鈦的主要催化劑及遠紅外線層所形成的消煙、除臭器。 [0012] 進一步說明本發明如下: 1. 用於加熱處理的碳化容器內部置放遠紅外線加熱材料,外部設置燃料加熱器,將廢棄物投入容器內,在密閉的空間內以外部燃燒加熱遠紅外線的輻射熱的加熱方法將上述容器加熱,並且利用碳化容器蒸發的物質經控制器導至外部燃燒器中燃燒,形成二次燃燒,為提升熱值及節省燃料達快速處理及量產之需求,上述該容器特殊結構將容器內廢棄物攪拌粉碎加速碳化及上述方法所產生的熱量及遠紅外線輻射熱將廢棄物加熱乾燥、熱分解最後達到碳化的目的。 [0013] 利用遠紅外線輻射熱的加熱方法,熱輻射是一種電磁波,其傳導的熱量T14
-T24
成正比,一般加熱的方法物體間的傳熱有熱傳導、對流需靠傳熱介質,則傳導的熱量與二個物體間的溫度差T1-T2成正比。 遠紅外線加熱就是將輻射熱直接對物質的加熱,乾燥,利用遠紅外線的輻射熱進行加熱乾燥等可減少空氣等介質上的能量損失,於熱授受時易使特性匹配,所謂熱是指以分子觀點看儲存於物體內部的原子間震動等動能,以紅外線加熱時,若使用有助於受熱體原子間運動的能量波段(即紅外線活性基準振動波)的輻射,則可更有效地進行加熱。例如水(H2
O)為3原子分子其基準振動數為3個,亦即OH的對稱伸縮振動為3652cm-1
(2.7um)、逆對稱伸縮振動為3756cm-1
(2.66um)、變角振動為1595cm(6.27um),水分子為輕分子結合力強,其基本吸收帶在2.7um,接近有效吸收紅外線,任何物體只要在非零度都會放射紅外線,在使用於加熱、乾燥時紅外線放射體必須形成可有效促進被加熱原子間運動的紅外線放射特性。 [0014] 一般加熱大都採用把熱風送入乾燥室的對流方式進行乾燥加熱,是把空氣加熱成對流的熱,將熱傳導到被加熱體上,如果被加熱物質產生水蒸氣其蒸氣壓高時,即使增高溫度也不易乾燥,須將有能量的水蒸氣迅速放出外部,則損失未用於乾燥的熱能,若利用紅外線加熱不會對空氣進行不必要的加熱,直接將要加熱的物質加熱,使蒸發的水蒸氣迅速煇散,有效地進行加熱。 [0015] 本發明利用外部燃燒器加熱上述紅外線的特性,用於本體內部使形成整體遠紅外線輻射熱的加熱、乾燥方法,直接加熱被加熱物體,使蒸發的水蒸氣迅速飛散,經由循環水幫抽離加速熱分解效能,使被加熱的物質迅速碳化,熱分解中蒸發的氣化物被直接導入外部燃燒器燃燒,形成二次燃燒,再經由循環水幫浦吸引冷卻,將所含有的油氣凝結浮儲於水面經臭氧機於水中注入臭氧(O3
)分解浮儲物質。 [0016] 2. 利用遠紅外線的輻射熱加熱催化觸媒,對於廢棄物所產生的氣化物進行消煙、除臭。 [0017] 使用催化觸媒可降低廢氣的處理溫度並與一般常見的VOC廢氣處理之比較如下。 使用催化觸媒加熱碳化處理的主要反應如下: VOC + O2
觸媒CO2
+ H2
O 使用催化觸媒加熱及無催化劑觸媒加熱對一般VOC之比較如下:
[0036] 圖1及圖2為本碳化裝置本體兩個相同個體A與B的遠紅外線輻射熱碳化設備,其內外壁係由耐久金屬材料製成,該內外殼之間填充輕質隔熱材料,如磁化纖維或矽酸鈣等,在該本體碳化容器(A/B-1)內部形成遠紅線陶磁發熱層(A/B-2d),利用旋轉門關閉(A/B-2),本體密封蓋(A/B-2a)卡鈎上下移動再進入利用油壓缸旋轉進入轉軸(A/B-2b),形成內部密閉空間A/B-2c)置放廢棄物。遠紅外線陶瓷層(A/B-2d)置放於上述本體內部,本發明使用遠紅外線陶瓷層,藉由外部燃燒裝置燃燒其補助燃料燃燒機(A/B-5b)可使用瓦斯或柴油燃燒機補助加熱碳化容器,使碳化容器內部陶瓷層(A/B-2e)產生遠紅外線輻射熱,使碳化容器內部空間(A/B-2c)形成整體遠紅外線的輻射熱。 [0037] 碳化容器(A/B-1)的俯視圖及透視圖如圖3表示。遠紅外線陶瓷層(A/B-2d)塗裝於碳化容器(A/B-1)的內壁,旋轉門(A/B-2)利用油壓缸經PLC (13)自動控制可將門控制開或關,將廢棄物投入容器空間內(A/B-2c),當碳化容器門關閉後,啟動外部燃燒裝置將遠紅外線層加熱(A/B-2d)透過燃燒裝置燃燒將遠紅外線陶瓷加熱(A/B-2d),將容器內廢棄物加熱至400℃,另外利用遠紅外線陶瓷層(A/B-2d)所產生的輻射熱加熱碳化容器內廢棄物,經乾燥、熱分解步驟促使氣化蒸發。利用熱效應原理加熱經(A/B-2e)煙道口進入螺旋式煙道加熱,尾氣經空冷裝置(A/B-3a)降溫進入氣體緩衝器(A/B-6),本體碳化容器所產生的蒸發物經控制器(A/B-4)控制導向,其裝置設有A與B兩個相同的個體,經導入自動替換器接頭,轉換A或B容器所產生的碳化蒸發物質再經外部燃燒裝置中燃燒,當A容器達到設定溫度時,可將A容器所產生的碳化物質及熱導入B外部燃燒裝置中燃燒,或則直接切換導入A或B經緩衝器緩衝注入燃燒裝置中燃燒(A/B-5)。將碳化容器所蒸發物質與煙道產生的煙氣等注入緩衝器(A/B-6)管道(A/B-6a)連接排氣通道(7a)連至消煙、除臭器以及尾氣處理,當容器內溫度達280度時啟動攪拌器(A/B-1a)攪拌碳化容器內廢棄物加速碳化,容器內溫度達300度時啟動撒水裝置(A/B-2f)並控制撒水量及間隔加速裂解及氧化,容器內氣壓安全閥(A/B-5c)設置當容器內氣壓超過外部燃燒裝置設定值時洩氣並警報。 [0038] 第一消煙、除臭器(A/B-5)利用碳化容器內所產生蒸發物回流至外部燃燒裝置燃燒,使蒸發物再次燃燒消煙、除臭把剩餘物質減至最少,碳化容器內所產生的蒸發物為高燃值的碳氫化合物容易燃燒當為燃燒燃料可減少燃料使用量並提升碳化速度及產能。 [0039] 第二消煙、除臭器利用第一水泵(7))將上述煙氣中的碳化合物吸引,應用恆吸原理將水滴落之力量吸引煙氣跌落水槽中冷卻含有油脂成分物質浮儲於水槽中由臭氧裝置(O3 )分解並於消煙除臭。 [0040] 第三消煙、除臭器利用第二水幫浦(6)將煙氣中的碳化合物吸引,應用恆吸原理將水滴落之利量吸引煙氣跌落水槽中冷卻其冷水(10)提供冰水使含有輕分子之化合物及短鏈之物質浮儲於水槽中(9b)第二臭氧裝置(O3 )將之溶解並於消煙、除臭。 [0041] 第四尾氣燃燒裝置(12)將上述消煙、除臭剩餘物質利用燃燒器(12-a)再次將上述處理殘留物質與於燃燒使煙氣、臭氣等不良物質消失,其燃燒裝置特殊結構熱風(S)提供熱氧使碳化物容易完全燃燒並可節省燃料。 [0042] 第五消煙、除臭器(12)之作用,由內置催化觸媒催化劑(12-e),以化學方式及物理方法將容器內熱分解後的汽化物以加熱器(12-i)加熱催化,將氧化觸媒(12-e)加熱至320℃使氣化物及煙氣分解成為低分子氣化物,將微量殘留輕分子及臭味除去後排放大氣。 [0043] 以下,說明第一消煙、除臭器(A/B-5)燃燒裝置燃燒器(A/B-5a)燃燒熱分解其碳化容器內所產生的蒸發物其作用為熱分解。 [0044] 例如:塑膠類PE、PVC、矽膠等 CmHn + O2 催化劑CO2 + H2 O (CH3 )3 N + O2 催化劑CO2 + H2 O + N2 VOC + O2 催化劑CO2 + H2 O OH- 自解作用O3 + OH- → HO2 + O- 2 O3 + OH- → HO- 2 + O2 HCO- 3 + HO → CO- 3 + H2 O NH3 氧化作用 NH3 + 4O3 → NO- 3 + H3 O Br- 氧化作用 Br- + O3 → BrO- + O2 HCO- 3 氧自由基捕捉劑 HCO- 3 +HO → HCO3 + OH- CI- 氧自由基捕捉劑 CI- + OH → HOCI- SO2 -4 氧自由基捕捉劑 SOI2- 4 + OH → HSO- 4 +H2 O [0045] 其次,如上所述,第二、三消煙、除臭器(7)內之臭氧裝置(O3 )的主要為氧化還原劑,將有機成分氧化或還原其化學反應如下。 [0046] 首先,將催化觸媒(12-e)及氧化觸媒以加熱器(12-i)加熱至320℃使氣化物完全氧化分解,同時(7及9)臭氧裝置注入O3 分解有害物質如下化學反應。 O3 直接反應:污染物 + O3 → 產物或中間物 O3 間接反映:污染物 + HO →產物或中間物 O3 + H2 O +hv H2 O2 + hv 2HO O3 (HO2 - ) HO- CO + 1/2O2 催化劑 CO2 Hydrocarbons + O2 催化劑 CO + H2 O H2 +1/2 O2 催化劑 H2 O NO + H2 催化劑 1/2N2 + H2 O Hydrocarbons + NO 催化劑 N2 +H2 O + CO2 CO + H2 O 催化劑 CO2 + H2 2NO + 2CO 催化劑 N2 + 2CO2 CH2 COOH + O3 (CO2 )n + (H2 O)m H2 CCHCl + O3 H2 O + CO2 + ClCl + H2 O + NaOH NaCl+ H2 O [0047] 容器內廢棄物碳化後剩餘微量碳化物經排灰裝置(4)及排灰控制閥(4a)排入灰渣儲存桶儲存定量控制由控制閥(4b)控制排灰,利用塑膠袋或麻袋接至出灰口(4e)裝填,其灰渣經過完全碳化可當一般廢棄物處理或當土壤混合物。1 and FIG. 2 are far-infrared radiant heat carbonization equipment of two identical entities A and B of the carbonization device body, the inner and outer walls of which are made of durable metal materials, and the inner and outer shells are filled with lightweight heat-insulating materials. Such as magnetized fiber or calcium silicate, etc., a far-red line ceramic magnetic heating layer (A / B-2d) is formed inside the carbonized container (A / B-1), and the body is sealed by a revolving door (A / B-2), and the body is sealed. The hook of the cover (A / B-2a) moves up and down and then enters the rotating shaft (A / B-2b) by the rotation of the hydraulic cylinder to form an internal closed space A / B-2c) to place waste. The far-infrared ceramic layer (A / B-2d) is placed inside the above-mentioned body. The present invention uses a far-infrared ceramic layer, and its auxiliary fuel burner (A / B-5b) is burned by an external combustion device. Gas or diesel can be used. The burner assists in heating the carbonization container, so that the ceramic layer (A / B-2e) inside the carbonization container generates far-infrared radiant heat, and the internal space (A / B-2c) of the carbonization container forms the entire far-infrared radiant heat. [0037] A plan view and a perspective view of the carbonization container (A / B-1) are shown in FIG. 3. The far-infrared ceramic layer (A / B-2d) is coated on the inner wall of the carbonized container (A / B-1). The revolving door (A / B-2) can be controlled by the hydraulic cylinder through PLC (13) automatic control. Open or close, put waste into the container space (A / B-2c), when the carbonization container door is closed, start the external combustion device to heat the far-infrared layer (A / B-2d) and burn the far-infrared ceramic through the combustion device Heating (A / B-2d) to heat the waste in the container to 400 ° C. In addition, the radiant heat generated by the far-infrared ceramic layer (A / B-2d) is used to heat the waste in the carbonized container, which is promoted by the drying and thermal decomposition steps. Evaporation. The heat effect principle is used to heat the spiral flue through the (A / B-2e) flue port, and the exhaust gas is cooled by the air cooling device (A / B-3a) into the gas buffer (A / B-6). The evaporate is controlled and guided by the controller (A / B-4). Its device is equipped with two identical entities A and B. After the introduction of the automatic replacer connector, the carbonized evaporative material produced by the A or B container is converted to the outside. Combustion in the combustion device. When the A container reaches the set temperature, the carbonized material and heat generated by the A container can be introduced into the B external combustion device for combustion, or directly switched to A or B and injected into the combustion device through the buffer to burn ( A / B-5). Inject the substance evaporated from the carbonization container and the flue gas generated from the flue into the buffer (A / B-6) pipe (A / B-6a). Connect the exhaust channel (7a) to the smoke elimination, deodorizer and exhaust gas treatment. When the temperature in the container reaches 280 degrees, start the agitator (A / B-1a) to agitate the waste in the carbonization container to accelerate the carbonization. When the temperature in the container reaches 300 degrees, start the water sprinkler (A / B-2f) and control the amount of water and Accelerate cracking and oxidation at intervals. The air pressure safety valve (A / B-5c) in the container is set to deflate and alarm when the pressure in the container exceeds the set value of the external combustion device. [0038] The first smoke and deodorizer (A / B-5) uses the vapors generated in the carbonization container to return to the external combustion device for combustion, so that the vapors are reburned to eliminate smoke and deodorization to minimize the remaining substances, The vapors produced in the carbonization container are hydrocarbons with high ignition value and are easy to burn. When used as a combustion fuel, the amount of fuel used can be reduced and the carbonization speed and productivity can be increased. [0039] The second smoke and deodorizer uses the first water pump (7) to attract the carbon compounds in the smoke, and applies the principle of constant suction to attract the power of water droplets to drop the flue gas into the water tank to cool the substances containing oil and fat components. It is stored in the water tank and decomposed by the ozone device (O 3 ), and is used for deodorizing smoke. [0040] The third smoke and deodorizer uses the second water pump (6) to attract carbon compounds in the flue gas, and applies the constant suction principle to attract the profit of water droplets to the flue gas to cool the cold water (10 ) Provide ice water to float the compounds containing light molecules and short-chain substances in the water tank (9b). The second ozone device (O 3 ) will dissolve and dissolve the smoke and deodorize. [0041] The fourth exhaust gas combustion device (12) uses the burner (12-a) to remove the above-mentioned smoke and deodorization residual substances and burns the above-mentioned treatment residual substances with the burned substances to eliminate undesirable substances such as smoke and odor, and burns them. The special structure of the device, hot air (S), provides hot oxygen to make the carbide easily burn completely and save fuel. [0042] The function of the fifth smoke and deodorizer (12) is to use a built-in catalytic catalyst (12-e) to chemically and physically decompose the vaporized substance in the container by a heater (12-i). ) Heating and catalyzing, heating the oxidation catalyst (12-e) to 320 ° C to decompose the gaseous matter and smoke into low-molecular-weight gaseous matter, and remove the traces of residual light molecules and odors and discharge them into the atmosphere. [0043] Hereinafter, the first smoke removal and deodorizer (A / B-5) combustion device burner (A / B-5a) will be thermally decomposed, and the vapor generated in the carbonization container will be thermally decomposed. [0044] For example: CmHn + O 2 catalysts such as plastic PE, PVC, silicone, etc. CO 2 + H 2 O (CH 3 ) 3 N + O 2 catalyst CO 2 + H 2 O + N 2 VOC + O 2 catalyst CO 2 + H 2 O OH- self-decomposition O 3 + OH - → HO 2 + O - 2 O 3 + OH - → HO - 2 + O 2 HCO - 3 + HO → CO - 3 + H 2 O NH 3 oxidation of NH 3 + 4O 3 → NO - 3 + H 3 O Br- oxidation of Br - + O 3 → BrO - + O 2 HCO - 3 oxygen radical scavenger HCO - 3 + HO → HCO 3 + OH - CI- oxygen radical scavenger CI - + OH → HOCI - SO 2 -4 oxygen radical scavenger SOI 2- 4 + OH → HSO - 4 + H 2 O [0045] Second, as described above, the ozone in the second and third smoke elimination and deodorizer (7) The device (O 3 ) is mainly a redox agent, and the chemical reaction of oxidizing or reducing organic components is as follows. [0046] First, the catalytic catalyst (12-e) and the oxidation catalyst are heated to 320 ° C by a heater (12-i) to completely oxidize and decompose the gaseous substances, and (7 and 9) the ozone device is injected with O 3 to decompose and is harmful. The substance reacts chemically as follows. O 3 Direct Reaction: Pollutants + O 3 → O 3 intermediate product or indirectly reflect: + HO → product or contaminant intermediate O 3 + H 2 O + hv H 2 O 2 + hv 2HO O 3 (HO 2 - ) HO-CO + 1 / 2O 2 catalyst CO 2 Hydrocarbons + O 2 catalyst CO + H 2 OH 2 + 1/2 O 2 catalyst H 2 O NO + H 2 catalyst 1 / 2N 2 + H 2 O Hydrocarbons + NO catalyst N 2 + H 2 O + CO 2 CO + H 2 O Catalyst CO 2 + H 2 2NO + 2CO Catalyst N 2 + 2CO 2 CH 2 COOH + O 3 (CO 2 ) n + (H 2 O) m H 2 CCHCl + O 3 H 2 O + CO 2 + Cl Cl + H 2 O + NaOH NaCl + H 2 O [0047] The remaining traces of carbides after the carbonization of the waste in the container are discharged into the ash slag storage barrel through the ash discharge device (4) and the ash discharge control valve (4a). The storage quantitative control is controlled by the control valve (4b). The plastic bag or sack is connected to the ash outlet (4e) for filling, and the ash residue is completely carbonized and can be treated as general waste or as soil mixture.
[0048][0048]
A/B‧‧‧本體碳化容器A / B‧‧‧Carbonized container
A/B-1‧‧‧碳化設備本體A / B-1‧‧‧‧Carbonization equipment body
A/B-1a‧‧‧碳化設備本體攪拌裝置A / B-1a‧‧‧Carbonization equipment body stirring device
A/B-1b‧‧‧本體碳化容器碳化蒸發物出口A / B-1b‧‧‧Carbonized Evaporator Outlet
A/B-1c‧‧‧碳化設備本體煙道出口A / B-1c‧‧‧‧Carbonization equipment body flue exit
A/B-1d‧‧‧煙道夾層A / B-1d‧‧‧Layer
A/B-1e‧‧‧碳化設備本體碳化剩餘物出口A / B-1e‧‧‧Carbonization equipment body carbonization residue export
A/B-1f‧‧‧碳化剩餘物儲存桶A / B-1f‧‧‧‧Carbonized Residue Storage Bucket
A/B-2‧‧‧碳化容器密封旋臂A / B-2‧‧‧Carbonized container sealed swing arm
A/B-2a‧‧‧碳化容器密封旋轉門A / B-2a‧‧‧Carbonized container sealed revolving door
A/B-2b‧‧‧油壓缸觸動式碳化容器密封轉動套件A / B-2b‧‧‧Hydraulic Cylinder Tactile Carbonized Container Sealed Rotation Kit
A/B-2c‧‧‧碳化容器空間A / B-2c‧‧‧Carbonization container space
A/B-2d‧‧‧碳化容器內置的遠紅外線陶瓷發熱層A / B-2d‧ far-infrared ceramic heating layer built into the carbonized container
A/B-2e‧‧‧本體碳化容器煙道A / B-2e‧‧‧Body of carbonized container flue
A/B-2f‧‧‧灑水器A / B-2f‧‧‧Sprinkler
A/B-3‧‧‧本體碳化容器煙道通道安全氣壓閥A / B-3‧‧‧ body carbonized container flue channel safety air pressure valve
A/B-3a‧‧‧碳化容器煙道通道氣冷設備A / B-3a‧‧‧Carbonization container flue channel air cooling equipment
A/B-3b‧‧‧碳化容器煙道通道氣冷設備之風扇A / B-3b‧‧‧Fan channel air cooling equipment fan for carbonized container
A/B-3c‧‧‧碳化容器煙道通道氣冷設備內排流管A / B-3c ‧‧‧ Drain pipe in air cooling device of flue channel of carbonized container
A/B-4‧‧‧本體碳化容器蒸發物控制器A / B-4‧‧‧Body Carbonization Vessel Evaporator Controller
A/B-4a‧‧‧控制器第1開關A / B-4a‧‧‧controller first switch
A/B-4b‧‧‧控制器第2開關A / B-4b‧‧‧ Controller 2nd Switch
A/B-5‧‧‧本體外部燃燒裝置A / B-5‧‧‧Body external combustion device
A/B-5a‧‧‧本體外部燃燒器A / B-5a‧‧‧Body External Burner
A/B-5b‧‧‧本體碳化蒸化物緩衝部A / B-5b‧‧‧‧Carbonized vaporized buffer
A/B-5c‧‧‧本體外部燃燒器安全閥A / B-5c‧‧‧External burner safety valve
A/B-5d‧‧‧外部燃燒器內層高溫瓷磚A / B-5d‧‧‧External burner inner high temperature tile
A/B-6‧‧‧碳化蒸發物及煙氣緩衝部A / B-6‧‧‧‧Carbonized Evaporate and Flue Gas Buffer Department
A/B-6a‧‧‧連接水處理裝置管道A / B-6a‧‧‧ Connected to water treatment equipment pipeline
7‧‧‧(利用虹吸原理水的流動動力提供吸引力)第一水循環裝置7‧‧‧ (Using the siphon principle of the power of water to provide attraction) The first water circulation device
7-a‧‧‧進氣口7-a‧‧‧air inlet
7-b‧‧‧水處理循環桶7-b‧‧‧Water Treatment Circulation Bucket
7-c‧‧‧水處理循環桶內置水管7-c‧‧‧Water Treatment Circulation Bucket with Built-in Water Pipe
7-d‧‧‧第一抽水循環幫浦(馬達)7-d‧‧‧The first pumping circulation pump (motor)
7-e‧‧‧第一處理循環水箱7-e‧‧‧The first treatment circulating water tank
7-f‧‧‧臭氧機(O3)7-f‧‧‧Ozone machine (O 3 )
7-g‧‧‧水洗廢氣排出通道7-g‧‧‧washed exhaust gas discharge channel
7-h‧‧‧水位感測器7-h‧‧‧Water Level Sensor
8‧‧‧水塔散熱裝置8‧‧‧ Water Tower Radiator
9‧‧‧第二水循環裝置9‧‧‧Second water circulation device
9-a‧‧‧第二抽水循環幫浦9-a‧‧‧Second pumping circulation pump
9-b‧‧‧第二處理循環水箱9-b‧‧‧Second treatment circulating water tank
9-c‧‧‧臭氧機(O3)9-c‧‧‧Ozone machine (O 3 )
9-d‧‧‧水洗廢氣排出通道9-d‧‧‧washed exhaust gas discharge channel
9-e‧‧‧水位感測器9-e‧‧‧ Water Level Sensor
10‧‧‧冰冷水機10‧‧‧Ice cold water machine
11‧‧‧利用虹吸原理流水通道11‧‧‧Using Siphon Principle
11-a‧‧‧廢氣跌落通道11-a‧‧‧Exhaust gas drop channel
11-b‧‧‧第三抽水循環幫浦11-b‧‧‧Third pumping circulation pump
11-c‧‧‧廢氣排出口11-c‧‧‧Exhaust gas outlet
11-d‧‧‧水位感測器11-d‧‧‧Water Level Sensor
11-e‧‧‧第三處理循環水箱11-e‧‧‧Third treatment circulating water tank
12‧‧‧尾氣燃燒裝置12‧‧‧ tail gas combustion device
12-a‧‧‧燃燒器12-a‧‧‧ burner
12-b‧‧‧冷卻水桶12-b‧‧‧cooling bucket
12-c‧‧‧冷卻水循環幫浦12-c‧‧‧Cooling water circulation pump
12-d‧‧‧水冷卻循環裝置12-d‧‧‧Water cooling circulation device
12-e‧‧‧貴重金屬觸媒床裝置12-e‧‧‧precious metal catalyst bed device
12-f‧‧‧抽氣風扇12-f‧‧‧Exhaust Fan
12-g‧‧‧最終氣體緩衝部12-g‧‧‧Final gas buffer
12-h‧‧‧煙囪對外排氣12-h‧‧‧ chimney exhaust
12-i‧‧‧觸媒床加熱器12-i‧‧‧catalyst bed heater
13‧‧‧PLC自動控制系統13‧‧‧PLC automatic control system
[0035] 圖1表示本發明的遠紅外線輻射熱碳化設備之具體實施例的各構成與流程的詳細說明剖視圖。 圖2表示本發明的遠紅外線輻射熱碳化設備之具體實施例的剖視圖。 圖3是本發明的碳化容器的詳細結構圖。 圖4是本發明的遠紅外線輻射熱碳化設備中循環水(泵)幫浦結構圖。 圖5是本發明兩個相同的碳化容器所產生碳化蒸發物控制器及緩衝器結構圖。 圖6是本發明的遠紅外線輻射熱碳化設備中的煙道氣冷裝置的結構圖。 圖7是本發明的遠紅外線輻射熱碳化設備中的緩衝器的結構圖。 圖8是本發明的遠紅外線輻射熱碳化設備中尾氣觸媒裝置結構圖。 圖9是本發明的遠紅外線輻射熱碳化設備流程圖。[0035] FIG. 1 is a detailed explanatory cross-sectional view of each structure and flow of a specific embodiment of a far-infrared radiant heat carbonization device of the present invention. FIG. 2 shows a cross-sectional view of a specific embodiment of the far-infrared radiant heat carbonization device of the present invention. FIG. 3 is a detailed configuration diagram of the carbonization container of the present invention. FIG. 4 is a structural diagram of a circulating water (pump) pump in a far-infrared radiant heat carbonization device of the present invention. Figure 5 is a structural diagram of a carbonized vapor controller and a buffer produced by two identical carbonized containers of the present invention. Fig. 6 is a structural diagram of a flue gas cooling device in a far-infrared radiant heat carbonization device of the present invention. 7 is a structural diagram of a buffer in a far-infrared radiant heat carbonization device of the present invention. FIG. 8 is a structural diagram of an exhaust gas catalyst device in a far-infrared radiant heat carbonization device of the present invention. FIG. 9 is a flowchart of a far-infrared radiant heat carbonization device of the present invention.
Claims (8)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106136062A TWI648318B (en) | 2017-10-20 | 2017-10-20 | Far infrared radiation heat carbonization equipment |
CN201711265731.9A CN109694716A (en) | 2017-10-20 | 2017-12-05 | The hot carbonizing apparatus of far-infrared radiation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106136062A TWI648318B (en) | 2017-10-20 | 2017-10-20 | Far infrared radiation heat carbonization equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI648318B TWI648318B (en) | 2019-01-21 |
TW201917156A true TW201917156A (en) | 2019-05-01 |
Family
ID=65804228
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW106136062A TWI648318B (en) | 2017-10-20 | 2017-10-20 | Far infrared radiation heat carbonization equipment |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN109694716A (en) |
TW (1) | TWI648318B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10717933B2 (en) * | 2016-08-09 | 2020-07-21 | James William Masten, JR. | Non-combustion hydrocarbon gasification: an optimal infrared radiant energy thermo-physical transformation process |
TWI748622B (en) * | 2020-08-28 | 2021-12-01 | 李輝雄 | Organic matter degradation method |
CN113322089A (en) * | 2021-05-28 | 2021-08-31 | 重庆大学 | Pyrolysis and catalytic pyrolysis method for infrared rapid heating of waste plastics |
CN113930927B (en) * | 2021-09-22 | 2023-06-13 | 浙江得威德环保科技股份有限公司 | Method for preparing carbonized felt by PAN-based pre-oxidized fiber needled felt by combined power method |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7087140B1 (en) * | 2001-09-10 | 2006-08-08 | Menian Harry H | Carbonizing waste processing apparatus |
TW200837183A (en) * | 2007-03-07 | 2008-09-16 | Coral Sea Biochemistry Inc | Carbonizing device |
CN101264479B (en) * | 2007-03-15 | 2011-09-07 | 珊瑚海生化科技股份有限公司 | Carbonization device |
CN203602551U (en) * | 2013-12-03 | 2014-05-21 | 沈阳农业大学 | Stirring biomass carbonizing furnace |
CN106180117B (en) * | 2015-12-22 | 2018-08-24 | 北京林业大学 | A kind of processing equipment and method of waste |
-
2017
- 2017-10-20 TW TW106136062A patent/TWI648318B/en not_active IP Right Cessation
- 2017-12-05 CN CN201711265731.9A patent/CN109694716A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
TWI648318B (en) | 2019-01-21 |
CN109694716A (en) | 2019-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW201917156A (en) | Far infrared ray radiant thermal carbonization equipment capable of using heat and carbides generated during a process as a heating fuel to save energy | |
EP2449309B1 (en) | Waste management system | |
CN105157032B (en) | Magnetization cracking device | |
JP3602504B2 (en) | Heat treatment equipment using superheated steam | |
US20140223908A1 (en) | Waste Management System | |
CN205413887U (en) | Medical waste jointly deals with system | |
TW201224383A (en) | Material heat treatment separation and energy recovery system | |
CN102476907A (en) | Equipment and method of high-efficiency high-speed environmentally-friendly energy-saving sludge treatment system | |
JP2012063088A (en) | Drying apparatus | |
US8283512B1 (en) | Method and system for enhanced energy production from transforming, reducing and eliminating organic material and medical wastes | |
JP2005238120A (en) | Vacuum drying/carbonization device | |
CN101264479B (en) | Carbonization device | |
JP2006205027A (en) | Apparatus and method for reducing volume/weight of hydrous organic sludge or the like | |
KR101385208B1 (en) | The carbonization apparatus used microwave | |
JP2015224795A (en) | Generator for fuel gas from organic materials and utilization of heat of same | |
CN1116127C (en) | Far infrared heating carbonization apparatus | |
CN203187509U (en) | Sludge drying device | |
KR101337493B1 (en) | Pyrolysis apparatus for organic waste | |
KR100638630B1 (en) | Incineration device | |
JP2007332221A (en) | Pyrolytic treatment apparatus | |
US8512215B2 (en) | Method for enhanced energy production from transforming, reducing and eliminating organic material and medical waste | |
WO2011014094A1 (en) | Method and device for recycling moist waste matter comprising organic materials | |
TWI359194B (en) | ||
KR100909941B1 (en) | Food waste carbonizationer | |
JP3245998U (en) | Organic matter pyrolysis treatment system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |