TW201915539A - Lens assembly - Google Patents

Lens assembly Download PDF

Info

Publication number
TW201915539A
TW201915539A TW106131736A TW106131736A TW201915539A TW 201915539 A TW201915539 A TW 201915539A TW 106131736 A TW106131736 A TW 106131736A TW 106131736 A TW106131736 A TW 106131736A TW 201915539 A TW201915539 A TW 201915539A
Authority
TW
Taiwan
Prior art keywords
lens
imaging
imaging lens
object side
image side
Prior art date
Application number
TW106131736A
Other languages
Chinese (zh)
Other versions
TWI735653B (en
Inventor
陳柏瑜
陳元琛
Original Assignee
信泰光學(深圳)有限公司
亞洲光學股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信泰光學(深圳)有限公司, 亞洲光學股份有限公司 filed Critical 信泰光學(深圳)有限公司
Priority to TW106131736A priority Critical patent/TWI735653B/en
Publication of TW201915539A publication Critical patent/TW201915539A/en
Application granted granted Critical
Publication of TWI735653B publication Critical patent/TWI735653B/en

Links

Abstract

A lens assembly includes a first lens, a second lens, a third lens, a fourth lens, a fifth lens and a sixth lens, all of which are arranged in sequence from an object side to an image side along an optical axis. The first lens is with refractive power and includes a convex surface facing the object side and a concave surface facing the image side. The second lens is with negative refractive power and includes a concave surface facing the object side. The third lens is with positive refractive power and includes a convex surface facing the image side. The fourth lens is with positive refractive power and includes a convex surface facing the image side. The fifth lens is a biconcave lens with negative refractive power. The sixth lens is with positive refractive power and includes a convex surface facing the object side.

Description

成像鏡頭(二十) Imaging lens (20)

本發明係有關於一種成像鏡頭。 The invention relates to an imaging lens.

習知的六片透鏡組成的成像鏡頭通常具有較長的鏡頭長度,隨著不同的應用需求,還需具備大光圈及抗環境溫度變化的能力。所以需要有另一種新架構的成像鏡頭,才能同時滿足小型化、大光圈及抗環境溫度變化的需求。 The conventional six-lens imaging lens usually has a long lens length. With different application requirements, it also needs to have a large aperture and the ability to resist environmental temperature changes. Therefore, another type of imaging lens with a new architecture is needed to meet the demands of miniaturization, large aperture, and resistance to environmental temperature changes.

有鑑於此,本發明之主要目的在於提供一種成像鏡頭,其鏡頭總長度較短、光圈值較小、解析度較高、抗環境溫度變化,但是仍具有良好的光學性能。 In view of this, the main purpose of the present invention is to provide an imaging lens which has a shorter overall lens length, a smaller aperture value, a higher resolution, and resistance to environmental temperature changes, but still has good optical performance.

本發明之成像鏡頭包括一第一透鏡、一第二透鏡、一第三透鏡、一第四透鏡、一第五透鏡及一第六透鏡。第一透鏡具有屈光力且包括一凸面朝向一物側及一凹面朝向一像側。第二透鏡具有負屈光力且包括一凹面朝向物側。第三透鏡具有正屈光力且包括一凸面朝向像側。第四透鏡具有正屈光力且包括一凸面朝向像側。第五透鏡為雙凹透鏡具有負屈光力。第六透鏡具有正屈光力且包括一凸面朝向物側。其中第一透鏡、第二透鏡、第三透鏡、第四透鏡、第五透鏡及第六透鏡沿著一光軸從物側至像側依序排列。 The imaging lens of the present invention includes a first lens, a second lens, a third lens, a fourth lens, a fifth lens and a sixth lens. The first lens has refractive power and includes a convex surface facing an object side and a concave surface facing an image side. The second lens has negative refractive power and includes a concave surface facing the object side. The third lens has positive refractive power and includes a convex surface facing the image side. The fourth lens has positive refractive power and includes a convex surface facing the image side. The fifth lens is a biconcave lens with negative refractive power. The sixth lens has positive refractive power and includes a convex surface facing the object side. The first lens, the second lens, the third lens, the fourth lens, the fifth lens, and the sixth lens are arranged in sequence along the optical axis from the object side to the image side.

其中第一透鏡之屈光力為正,第四透鏡可更包括一凸面朝向物側。 The refractive power of the first lens is positive, and the fourth lens may further include a convex surface facing the object side.

其中第一透鏡之屈光力為負,第四透鏡可更包括一凹面朝向物側。 The refractive power of the first lens is negative, and the fourth lens may further include a concave surface facing the object side.

其中成像鏡頭滿足以下條件:0.3<f3/f<2.5;0.3<f4/f<3.0;其中,f3為第三透鏡之一有效焦距,f4為第四透鏡之一有效焦距,f為成像鏡頭之一有效焦距。 The imaging lens satisfies the following conditions: 0.3<f 3 /f<2.5;0.3<f 4 /f<3.0; where f 3 is the effective focal length of one of the third lenses, f 4 is the effective focal length of one of the fourth lenses, f It is one of the effective focal lengths of the imaging lens.

其中成像鏡頭滿足以下條件:2.1<|f1/f|<4.0;-1.8<f5/f<-0.2;其中,f1為第一透鏡之一有效焦距,f5為第五透鏡之一有效焦距,f為成像鏡頭之一有效焦距。 The imaging lens satisfies the following conditions: 2.1<|f 1 /f|<4.0;-1.8<f 5 /f<-0.2; where f 1 is the effective focal length of one of the first lenses and f 5 is one of the fifth lenses Effective focal length, f is one of the effective focal lengths of the imaging lens.

其中成像鏡頭滿足以下條件:0.1<|BFL/TTL|<0.5;其中,BFL為第六透鏡之一像側面至一成像面於光軸上之一間距,TTL為第一透鏡之一物側面至成像面於光軸上之一間距。 The imaging lens satisfies the following conditions: 0.1<|BFL/TTL|<0.5; where, BFL is a distance from the image side of the sixth lens to an imaging plane on the optical axis, and TTL is the object side of the first lens to The imaging plane is spaced on the optical axis.

其中第二透鏡可更包括一凹面朝向像側,第三透鏡可更包括一凸面朝向物側,第六透鏡可更包括一凸面朝向像側。 The second lens may further include a concave surface facing the image side, the third lens may further include a convex surface facing the object side, and the sixth lens may further include a convex surface facing the image side.

其中第四透鏡與第五透鏡膠合。 The fourth lens is cemented with the fifth lens.

本發明之成像鏡頭可更包括一光圈,設置於第二透鏡與第四透鏡之間。 The imaging lens of the present invention may further include an aperture disposed between the second lens and the fourth lens.

其中第一透鏡、第二透鏡、第三透鏡、第四透鏡及第五透鏡為球面玻璃透鏡,第六透鏡為非球面玻璃透鏡。 The first lens, the second lens, the third lens, the fourth lens, and the fifth lens are spherical glass lenses, and the sixth lens is an aspheric glass lens.

為使本發明之上述目的、特徵、和優點能更明顯易懂,下文特舉較佳實施例並配合所附圖式做詳細說明。 In order to make the above objects, features, and advantages of the present invention more comprehensible, preferred embodiments are described in detail below in conjunction with the accompanying drawings.

1、2、3‧‧‧成像鏡頭 1, 2, 3‧‧‧ imaging lens

L11、L21、L31‧‧‧第一透鏡 L11, L21, L31 ‧‧‧ first lens

L12、L22、L32‧‧‧第二透鏡 L12, L22, L32 ‧‧‧ second lens

L13、L23、L33‧‧‧第三透鏡 L13, L23, L33 ‧‧‧ third lens

L14、L24、L34‧‧‧第四透鏡 L14, L24, L34 ‧‧‧ fourth lens

L15、L25、L35‧‧‧第五透鏡 L15, L25, L35 ‧‧‧ fifth lens

L16、L26、L36‧‧‧第六透鏡 L16, L26, L36 ‧‧‧ sixth lens

ST1、ST2、ST3‧‧‧光圈 ST1, ST2, ST3 ‧‧‧ aperture

OF1、OF2、OF3‧‧‧濾光片 OF1, OF2, OF3 ‧‧‧ filter

CG1、CG2、CG3‧‧‧保護玻璃 CG1, CG2, CG3‧‧‧protective glass

OA1、OA2、OA3‧‧‧光軸 OA1, OA2, OA3 ‧‧‧ optical axis

IMA1、IMA2、IMA3‧‧‧成像面 IMA1, IMA2, IMA3 ‧‧‧ imaging surface

S11、S12、S13、S14、S15、S16‧‧‧面 S11, S12, S13, S14, S15, S16

S17、S18、S19、S110、S111‧‧‧面 S17, S18, S19, S110, S111

S112、S113、S114、S115、S116‧‧‧面 S112, S113, S114, S115, S116

S21、S22、S23、S24、S25、S26‧‧‧面 S21, S22, S23, S24, S25, S26

S27、S28、S29、S210、S211‧‧‧面 S27, S28, S29, S210, S211

S212、S213、S214、S215、S216‧‧‧面 S212, S213, S214, S215, S216

S31、S32、S33、S34、S35、S36、S37‧‧‧面 S31, S32, S33, S34, S35, S36, S37

S38、S39、S310、S311、S312‧‧‧面 S38, S39, S310, S311, S312

S313、S314、S315、S316、S317‧‧‧面 S313, S314, S315, S316, S317

第1圖係依據本發明之成像鏡頭之第一實施例的透鏡配置示意圖。 FIG. 1 is a schematic diagram of a lens configuration according to the first embodiment of the imaging lens of the present invention.

第2A圖係依據本發明之成像鏡頭之第一實施例的縱向像差(Longitudinal Aberration)圖。 FIG. 2A is a longitudinal aberration (Longitudinal Aberration) diagram of the first embodiment of the imaging lens according to the present invention.

第2B圖係依據本發明之成像鏡頭之第一實施例的場曲圖(Field Curvature)。 FIG. 2B is a field curvature diagram of the first embodiment of the imaging lens according to the present invention.

第2C圖係依據本發明之成像鏡頭之第一實施例的畸變(Distortion)圖。 FIG. 2C is a distortion diagram of the first embodiment of the imaging lens according to the present invention.

第2D圖係依據本發明之成像鏡頭之第一實施例的橫向色差(Lateral Color)圖。 FIG. 2D is a Lateral Color diagram of the first embodiment of the imaging lens of the present invention.

第2E圖係依據本發明之成像鏡頭之第一實施例的相對照度(Relative Illumination)圖。 FIG. 2E is a diagram of the relative illumination of the first embodiment of the imaging lens according to the present invention.

第2F圖係依據本發明之成像鏡頭之第一實施例的調變轉換函數(Modulation Transfer Function)圖。 FIG. 2F is a modulation transfer function diagram of the first embodiment of the imaging lens of the present invention.

第2G圖係依據本發明之成像鏡頭之第一實施例的離焦調變轉換函數(Through Focus Modulation Transfer Function)圖。 FIG. 2G is a diagram of the Through Focus Modulation Transfer Function of the first embodiment of the imaging lens of the present invention.

第3圖係依據本發明之成像鏡頭之第二實施例的透鏡配置示意圖。 FIG. 3 is a schematic diagram of a lens configuration according to a second embodiment of the imaging lens of the present invention.

第4A圖係依據本發明之成像鏡頭之第二實施例的縱向像差(Longitudinal Aberration)圖。 FIG. 4A is a longitudinal aberration (Longitudinal Aberration) diagram of the second embodiment of the imaging lens according to the present invention.

第4B圖係依據本發明之成像鏡頭之第二實施例的場曲(Field Curvature) 圖。 FIG. 4B is a field curvature diagram of a second embodiment of the imaging lens according to the present invention.

第4C圖係依據本發明之成像鏡頭之第二實施例的畸變(Distortion)圖。 FIG. 4C is a distortion diagram of the second embodiment of the imaging lens according to the present invention.

第4D圖係依據本發明之成像鏡頭之第二實施例的橫向色差(Lateral Color)圖。 FIG. 4D is a Lateral Color diagram of the second embodiment of the imaging lens of the present invention.

第4E圖係依據本發明之成像鏡頭之第二實施例的相對照度(Relative Illumination)圖。 FIG. 4E is a relative illumination diagram of the second embodiment of the imaging lens according to the present invention.

第4F圖係依據本發明之成像鏡頭之第二實施例的調變轉換函數(Modulation Transfer Function)圖。 FIG. 4F is a modulation transfer function diagram of the second embodiment of the imaging lens of the present invention.

第4G圖係依據本發明之成像鏡頭之第二實施例的離焦調變轉換函數(Through Focus Modulation Transfer Function)圖。 FIG. 4G is a diagram of a Through Focus Modulation Transfer Function according to the second embodiment of the imaging lens of the present invention.

第5圖係依據本發明之成像鏡頭之第三實施例的透鏡配置示意圖。 FIG. 5 is a schematic diagram of a lens configuration of a third embodiment of the imaging lens according to the present invention.

第6A圖係依據本發明之成像鏡頭之第三實施例的縱向像差(Longitudinal Aberration)圖。 FIG. 6A is a longitudinal aberration (Longitudinal Aberration) diagram of the third embodiment of the imaging lens according to the present invention.

第6B圖係依據本發明之成像鏡頭之第三實施例的場曲(Field Curvature)圖。 FIG. 6B is a field curvature diagram of the third embodiment of the imaging lens according to the present invention.

第6C圖係依據本發明之成像鏡頭之第三實施例的畸變(Distortion)圖。 FIG. 6C is a distortion diagram of the third embodiment of the imaging lens according to the present invention.

第6D圖係依據本發明之成像鏡頭之第三實施例的橫向色差(Lateral Color)圖。 FIG. 6D is a Lateral Color diagram of the third embodiment of the imaging lens according to the present invention.

第6E圖係依據本發明之成像鏡頭之第三實施例的相對照度(Relative Illumination)圖。 FIG. 6E is a diagram of the relative illumination of the third embodiment of the imaging lens according to the present invention.

第6F圖係依據本發明之成像鏡頭之第三實施例的調變轉換函數(Modulation Transfer Function)圖。 FIG. 6F is a modulation transfer function diagram of the third embodiment of the imaging lens according to the present invention.

第6G圖係依據本發明之成像鏡頭之第三實施例的離焦調變轉換函數(Through Focus Modulation Transfer Function)圖。 FIG. 6G is a diagram of a Through Focus Modulation Transfer Function according to the third embodiment of the imaging lens of the present invention.

請參閱第1圖,第1圖係依據本發明之成像鏡頭之第一實施例的透鏡配置示意圖。成像鏡頭1沿著一光軸OA1從一物側至一像側依序包括一第一透鏡L11、一第二透鏡L12、一光圈ST1、一第三透鏡L13、一第四透鏡L14、一第五透鏡L15、一第六透鏡L16、一濾光片OF1及一保護玻璃CG1。成像時,來自物側之光線最後成像於一成像面IMA1上。 Please refer to FIG. 1, which is a schematic diagram of a lens configuration according to the first embodiment of the imaging lens of the present invention. The imaging lens 1 includes a first lens L11, a second lens L12, an aperture ST1, a third lens L13, a fourth lens L14, a first lens in order from an object side to an image side along an optical axis OA1 Five lenses L15, a sixth lens L16, a filter OF1 and a protective glass CG1. When imaging, the light from the object side is finally imaged on an imaging surface IMA1.

第一透鏡L11為彎月形透鏡具有正屈光力由玻璃材質製成,其物側面S11為凸面,像側面S12為凹面,物側面S11與像側面S12皆為球面表面。 The first lens L11 is a meniscus lens with a positive refractive power made of glass material, its object side S11 is convex, the image side S12 is concave, and both the object side S11 and the image side S12 are spherical surfaces.

第二透鏡L12為雙凹透鏡具有負屈光力由玻璃材質製成,其物側面S13為凹面,像側面S14為凹面,物側面S13與像側面S14皆為球面表面。 The second lens L12 is a biconcave lens made of glass material with negative refractive power, its object side S13 is concave, the image side S14 is concave, and both the object side S13 and the image side S14 are spherical surfaces.

第三透鏡L13為雙凸透鏡具有正屈光力由玻璃材質製成,其物側面S16為凸面,像側面S17為凸面,物側面S16與像側面S17皆為球面表面。 The third lens L13 is a biconvex lens with positive refractive power made of glass material, its object side S16 is convex, the image side S17 is convex, and both the object side S16 and the image side S17 are spherical surfaces.

第四透鏡L14為雙凸透鏡具有正屈光力由玻璃材質製成,其物側面S18為凸面,像側面S19為凸面,物側面S18與像側面S19皆為球面表面。 The fourth lens L14 is a biconvex lens with positive refractive power made of glass material, its object side S18 is convex, the image side S19 is convex, and both the object side S18 and the image side S19 are spherical surfaces.

第五透鏡L15為雙凹透鏡具有負屈光力由玻璃材質製成,其物側面S19為凹面,像側面S110為凹面,物側面S19與像側面S110皆為 球面表面。 The fifth lens L15 is a biconcave lens with a negative refractive power made of glass material. Its object side S19 is concave, the image side S110 is concave, and both the object side S19 and the image side S110 are spherical surfaces.

第六透鏡L16為雙凸透鏡具有正屈光力由玻璃材質製成,其物側面S111為凸面,像側面S112為凸面,物側面S111與像側面S112皆為非球面表面。 The sixth lens L16 is a biconvex lens with positive refractive power made of glass material. The object side S111 is convex, the image side S112 is convex, and both the object side S111 and the image side S112 are aspherical surfaces.

上述第四透鏡L14與第五透鏡L15互相膠合。 The fourth lens L14 and the fifth lens L15 are cemented with each other.

濾光片OF1其物側面S113與像側面S114皆為平面。 The object side S113 and the image side S114 of the filter OF1 are both flat.

保護玻璃CG1其物側面S115與像側面S116皆為平面。 The object side S115 and the image side S116 of the protective glass CG1 are both flat.

另外,第一實施例中的成像鏡頭1至少滿足底下其中一條件:2.1<|f11/f1|<4.0 (1) In addition, the imaging lens 1 in the first embodiment satisfies at least one of the following conditions: 2.1<|f1 1 /f1|<4.0 (1)

0.3<f13/f1<2.5 (2) 0.3<f1 3 /f1<2.5 (2)

0.3<f14/f1<3.0 (3) 0.3<f1 4 /f1<3.0 (3)

-1.8<f15/f1<-0.2 (4) -1.8<f1 5 /f1<-0.2 (4)

0.1<|BFL1/TTL1|<0.5 (5) 0.1<|BFL1/TTL1|<0.5 (5)

其中,f1為成像鏡頭1之一有效焦距,f11為第一透鏡L11之一有效焦距,f13為第三透鏡L13之一有效焦距,f14為第四透鏡L14之一有效焦距,f15為第五透鏡L15之一有效焦距,BFL1為第六透鏡L16之像側面S112至成像面IMA1於光軸OA1上之一間距,TTL1為第一透鏡L11之物側面S11至成像面IMA1於光軸OA1上之一間距。 Where f1 is one of the effective focal lengths of the imaging lens 1, f1 1 is one of the effective focal lengths of the first lens L11, f1 3 is one of the effective focal lengths of the third lens L13, and f1 4 is one of the effective focal lengths of the fourth lens L14, f1 5 It is one of the effective focal lengths of the fifth lens L15, BFL1 is the distance between the image side S112 of the sixth lens L16 to the imaging plane IMA1 on the optical axis OA1, and TTL1 is the object side S11 of the first lens L11 to the imaging plane IMA1 at the optical axis One pitch on OA1.

利用上述透鏡、光圈及至少滿足條件(1)至條件(5)其中一條件之設計,使得成像鏡頭1能有效的縮短鏡頭總長度、有效的縮小光圈值、提升解析度、有效的修正像差、抗環境溫度變化。 The use of the above lens and aperture and the design that satisfies at least one of the conditions (1) to (5) enables the imaging lens 1 to effectively shorten the total lens length, effectively reduce the aperture value, improve resolution, and effectively correct aberrations 3. Resistant to environmental temperature changes.

若條件(1)f11/f1的絕對值小於2.1,則使鏡頭的製造性欠佳。因此,f11/f1的絕對值至少須大於2.1,所以最佳效果範圍為2.1<|f11/f1|<4.0,符合該範圍則可在廣角光學特性與鏡頭製造性間取得較好的平衡,其中,若f11/f1的絕對值趨大,則可得到較佳的鏡頭製造性,若f11/f1的絕對值趨小,則可得到較高的周邊解像性能。 If the absolute value of the condition (1) f1 1 /f1 is less than 2.1, the manufacturability of the lens is poor. Therefore, the absolute value of f1 1 /f1 must be at least greater than 2.1, so the best effect range is 2.1<|f1 1 /f1|<4.0, and within this range, a better balance between wide-angle optical characteristics and lens manufacturability Among them, if the absolute value of f1 1 /f1 becomes larger, better lens manufacturability can be obtained, and if the absolute value of f1 1 /f1 becomes smaller, higher peripheral resolution performance can be obtained.

表一為第1圖中成像鏡頭1之各透鏡之相關參數表,表一資料顯示,第一實施例之成像鏡頭1之有效焦距等於9.600mm、光圈值等於1.6、鏡頭總長度等於20.99mm、半視場等於28.4度。 Table 1 is a table of related parameters of each lens of the imaging lens 1 in FIG. 1. The data in Table 1 shows that the effective focal length of the imaging lens 1 of the first embodiment is 9.600 mm, the aperture value is 1.6, and the total lens length is 20.99 mm. The half field of view is equal to 28.4 degrees.

表一中各個透鏡之非球面表面凹陷度z由下列公式所得到:z=ch2/{1+[1-(k+1)c2h2]1/2}+Ah4+Bh6+Ch8+Dh10+Eh12 The aspherical surface concave degree z of each lens in Table 1 is obtained by the following formula: z=ch 2 /{1+[1-(k+1)c 2 h 2 ] 1/2 }+Ah 4 +Bh 6 + Ch 8 +Dh 10 +Eh 12

其中:c:曲率;h:透鏡表面任一點至光軸之垂直距離;k:圓錐係數;A~E:非球面係數。 Among them: c: curvature; h: vertical distance from any point on the lens surface to the optical axis; k: conic coefficient; A~E: aspherical coefficient.

表二為表一中各個透鏡之非球面表面之相關參數表,其中k為圓錐係數(Conic Constant)、A~E為非球面係數。 Table 2 is the related parameter table of the aspherical surface of each lens in Table 1, where k is the conic constant and A~E are the aspherical coefficients.

表三為條件(1)至條件(5)中各參數值及條件(1)至條件(5)之計算值,由表三可知,第一實施例之成像鏡頭1皆能滿足條件(1)至條件(5)之要求。 Table 3 is the parameter values in Condition (1) to Condition (5) and the calculated values of Condition (1) to Condition (5). As can be seen from Table 3, the imaging lens 1 of the first embodiment can satisfy the condition (1) To the requirements of condition (5).

另外,第一實施例之成像鏡頭1的光學性能也可達到要求,這可從第2A至第2G圖看出。第2A圖所示的,是第一實施例之成像鏡頭1的縱向像差(Longitudinal Aberration)圖。第2B圖所示的,是第一實施例之成像鏡頭1的場曲(Field Curvature)圖。第2C圖所示的,是第一實施例之成像鏡頭1的畸變(Distortion)圖。第2D圖所示的,是第一實施例之成像鏡頭1的橫向色差(Lateral Color)圖。第2E圖所示的,是第一實施例之成像鏡頭1的相對照度(Relative Illumination)圖。第2F圖所示的,是第一實施例之成像鏡頭1的調變轉換函數(Modulation Transfer Function)圖。第2G圖所示的,是第一實施例之成像鏡頭1的離焦調變轉換函數(Through Focus Modulation Transfer Function)圖。 In addition, the optical performance of the imaging lens 1 of the first embodiment can also meet the requirements, which can be seen from FIGS. 2A to 2G. Shown in FIG. 2A is a longitudinal aberration (Longitudinal Aberration) diagram of the imaging lens 1 of the first embodiment. Shown in FIG. 2B is a field curvature diagram of the imaging lens 1 of the first embodiment. Shown in FIG. 2C is a distortion diagram of the imaging lens 1 of the first embodiment. Shown in FIG. 2D is a lateral chromatic aberration (Lateral Color) diagram of the imaging lens 1 of the first embodiment. Shown in FIG. 2E is a relative illumination (Relative Illumination) diagram of the imaging lens 1 of the first embodiment. Shown in FIG. 2F is a modulation transfer function (Modulation Transfer Function) diagram of the imaging lens 1 of the first embodiment. Shown in FIG. 2G is a diagram of the Through Focus Modulation Transfer Function of the imaging lens 1 of the first embodiment.

由第2A圖可看出,第一實施例之成像鏡頭1對波長為0.470μm、0.510μm、0.555μm、0.610μm、0.650μm之光線所產生的縱向像差值介於-0.025mm至0.035mm之間。 As can be seen from FIG. 2A, the imaging lens 1 of the first embodiment has a longitudinal aberration value between -0.025 mm and 0.035 mm for light rays with wavelengths of 0.470 μm, 0.510 μm, 0.555 μm, 0.610 μm, and 0.650 μm. between.

由第2B圖可看出,第一實施例之成像鏡頭1對波長為0.470μm、0.510μm、0.555μm、0.610μm、0.650μm之光線,於子午(Tangential)方向與弧矢(Sagittal)方向之場曲介於-0.03mm至0.035mm之間。 As can be seen from FIG. 2B, the imaging lens 1 of the first embodiment has a wavelength of 0.470 μm, 0.510 μm, 0.555 μm, 0.610 μm, and 0.650 μm in the meridional (Tangential) direction and sagittal (Sagittal) direction. The curvature of field is between -0.03mm and 0.035mm.

由第2C圖(圖中的5條線幾乎重合,以致於看起來只有一條線)可看出,第一實施例之成像鏡頭1對波長為0.470μm、0.510μm、0.555μm、0.610μm、0.650μm之光線所產生的畸變介於-2%至0%之間。 It can be seen from Figure 2C (the five lines in the figure almost overlap, so that there seems to be only one line), the imaging lens 1 of the first embodiment has a pair of wavelengths of 0.470 μm, 0.510 μm, 0.555 μm, 0.610 μm, 0.650 The distortion produced by μm light is between -2% and 0%.

由第2D圖可看出,第一實施例之成像鏡頭1對波長為0.470μm、0.510μm、0.555μm、0.610μm、0.650μm之光線,於最大視場高度等於3.0000mm,所產生的橫向色差值介於-0.5μm至2.0μm之間。 As can be seen from the 2D image, the imaging lens 1 of the first embodiment produces a horizontal color at a maximum field of view equal to 3.000 mm for light with wavelengths of 0.470 μm, 0.510 μm, 0.555 μm, 0.610 μm, and 0.650 μm. The difference is between -0.5μm and 2.0μm.

由第2E圖可看出,第一實施例之成像鏡頭1對波長為0.555μm之光線,於Y視場介於0mm至3mm之間其相對照度介於0.82至1.0之間。 It can be seen from FIG. 2E that the imaging lens 1 of the first embodiment has a relative illuminance between 0.82 and 1.0 for the light with a wavelength of 0.555 μm in the Y field of view between 0 mm and 3 mm.

由第2F圖可看出,第一實施例之成像鏡頭1,對波長範圍介於0.4700μm至0.6500μm之光線,分別於子午(Tangential)方向與弧矢(Sagittal)方向,視場高度分別為0.0000mm、0.3000mm、0.6000mm、1.2000mm、1.5000mm、2.1000mm、2.4000mm、2.7000mm、3.0000mm,空間頻率介於0lp/mm至60lp/mm,其調變轉換函數值介於0.35至1.0之間。 As can be seen from FIG. 2F, the imaging lens 1 of the first embodiment, for the light with a wavelength range of 0.4700 μm to 0.6500 μm, respectively in the meridian (Tangential) direction and sagittal (Sagittal) direction, the field of view height is respectively 0.0000mm, 0.3000mm, 0.6000mm, 1.2000mm, 1.5000mm, 2.1000mm, 2.4000mm, 2.7000mm, 3.000mm, the spatial frequency is from 0lp/mm to 60lp/mm, and its modulation transfer function value is from 0.35 to 1.0 between.

由第2G圖可看出,第一實施例之成像鏡頭1,對波長範圍 介於0.4700μm至0.6500μm之光線,分別於子午(Tangential)方向與弧矢(Sagittal)方向,視場高度分別為0.0000mm、0.3000mm、0.6000mm、1.2000mm、1.5000mm、2.1000mm、2.4000mm、2.7000mm、3.0000mm,空間頻率等於60lp/mm時,當焦點偏移介於-0.025mm至0.021mm之間其調變轉換函數值皆大於0.2。 As can be seen from FIG. 2G, the imaging lens 1 of the first embodiment, for light with a wavelength range of 0.4700 μm to 0.6500 μm, respectively in the meridian (Tangential) direction and sagittal (Sagittal) direction, the field of view height is respectively 0.0000mm, 0.3000mm, 0.6000mm, 1.2000mm, 1.5000mm, 2.1000mm, 2.4000mm, 2.7000mm, 3.000mm, when the spatial frequency is equal to 60lp/mm, when the focus shift is between -0.025mm and 0.021mm The modulation transfer function values are all greater than 0.2.

顯見第一實施例之成像鏡頭1之縱向像差、場曲、畸變、橫向色差都能被有效修正,相對照度、鏡頭解析度、焦深也都能滿足要求,從而得到較佳的光學性能。 It is obvious that the longitudinal aberration, field curvature, distortion, and lateral chromatic aberration of the imaging lens 1 of the first embodiment can be effectively corrected, and the relative illuminance, lens resolution, and depth of focus can also meet the requirements, thereby obtaining better optical performance.

請參閱第3圖,第3圖係依據本發明之成像鏡頭之第二實施例的透鏡配置示意圖。成像鏡頭2沿著一光軸OA2從一物側至一像側依序包括一第一透鏡L21、一第二透鏡L22、一光圈ST2、一第三透鏡L23、一第四透鏡L24、一第五透鏡L25、一第六透鏡L26、一濾光片OF2及一保護玻璃CG2。成像時,來自物側之光線最後成像於一成像面IMA2上。 Please refer to FIG. 3, which is a schematic diagram of a lens configuration according to a second embodiment of the imaging lens of the present invention. The imaging lens 2 includes a first lens L21, a second lens L22, an aperture ST2, a third lens L23, a fourth lens L24, a first lens in order from an object side to an image side along an optical axis OA2 Five lenses L25, a sixth lens L26, a filter OF2 and a protective glass CG2. When imaging, the light from the object side is finally imaged on an imaging surface IMA2.

第一透鏡L21為彎月形透鏡具有正屈光力由玻璃材質製成,其物側面S21為凸面,像側面S22為凹面,物側面S21與像側面S22皆為球面表面。 The first lens L21 is a meniscus lens with a positive refractive power made of glass material, its object side S21 is convex, the image side S22 is concave, and both the object side S21 and the image side S22 are spherical surfaces.

第二透鏡L22為雙凹透鏡具有負屈光力由玻璃材質製成,其物側面S23為凹面,像側面S24為凹面,物側面S23與像側面S24皆為球面表面。 The second lens L22 is a biconcave lens made of glass material with negative refractive power, its object side S23 is concave, the image side S24 is concave, and both the object side S23 and the image side S24 are spherical surfaces.

第三透鏡L23為雙凸透鏡具有正屈光力由玻璃材質製成,其物側面S26為凸面,像側面S27為凸面,物側面S26與像側面S27皆為球面表面。 The third lens L23 is a biconvex lens with positive refractive power made of glass material, its object side S26 is convex, the image side S27 is convex, and both the object side S26 and the image side S27 are spherical surfaces.

第四透鏡L24為雙凸透鏡具有正屈光力由玻璃材質製成,其物側面S28為凸面,像側面S29為凸面,物側面S28與像側面S29皆為球面表面。 The fourth lens L24 is a biconvex lens with positive refractive power made of glass material, its object side S28 is convex, the image side S29 is convex, and both the object side S28 and the image side S29 are spherical surfaces.

第五透鏡L25為雙凹透鏡具有負屈光力由玻璃材質製成,其物側面S29為凹面,像側面S210為凹面,物側面S29與像側面S210皆為球面表面。 The fifth lens L25 is a biconcave lens made of glass material with negative refractive power. The object side S29 is concave, the image side S210 is concave, and both the object side S29 and the image side S210 are spherical surfaces.

第六透鏡L26為雙凸透鏡具有正屈光力由玻璃材質製成,其物側面S211為凸面,像側面S212為凸面,物側面S211與像側面S212皆為非球面表面。 The sixth lens L26 is a biconvex lens with positive refractive power made of glass material. The object side S211 is convex, the image side S212 is convex, and both the object side S211 and the image side S212 are aspherical surfaces.

上述第四透鏡L24與第五透鏡L25互相膠合。 The fourth lens L24 and the fifth lens L25 are cemented with each other.

濾光片OF2其物側面S213與像側面S214皆為平面。 The object side S213 and the image side S214 of the filter OF2 are both flat.

保護玻璃CG2其物側面S215與像側面S216皆為平面。 The object side S215 and the image side S216 of the protective glass CG2 are both flat.

另外,第二實施例中的成像鏡頭2至少滿足底下其中一條件:2.1<|f21/f2|<4.0 (6) In addition, the imaging lens 2 in the second embodiment satisfies at least one of the following conditions: 2.1<|f2 1 /f2|<4.0 (6)

0.3<f23/f2<2.5 (7) 0.3<f2 3 /f2<2.5 (7)

0.3<f24/f2<3.0 (8) 0.3<f2 4 /f2<3.0 (8)

-1.8<f25/f2<-0.2 (9) -1.8<f2 5 /f2<-0.2 (9)

0.1<|BFL2/TTL2|<0.5 (10) 0.1<|BFL2/TTL2|<0.5 (10)

上述f2、f21、f23、f24、f25、BFL2及TTL2之定義與第一實施例中f1、f11、f13、f14、f15、BFL1及TTL1之定義相同,在此皆不加以贅述。 The definitions of f2, f2 1 , f2 3 , f2 4 , f2 5 , BFL2 and TTL2 are the same as the definitions of f1, f1 1 , f1 3 , f1 4 , f1 5 , BFL1 and TTL1 in the first embodiment. Not to repeat them.

利用上述透鏡、光圈及至少滿足條件(6)至條件(10)其中一條件之設計,使得成像鏡頭2能有效的縮短鏡頭總長度、有效的縮小光圈值、提升解析度、有效的修正像差、抗環境溫度變化。 Using the above lens, aperture and at least one design that satisfies one of the conditions (6) to (10), the imaging lens 2 can effectively shorten the total lens length, effectively reduce the aperture value, improve resolution, and effectively correct aberrations 3. Resistant to environmental temperature changes.

若條件(7)f23/f2的值小於0.3,則使鏡頭的製造性欠佳。因此,f23/f2的值至少須大於0.3,所以最佳效果範圍為0.3<f23/f2<2.5,符合該範圍則可在廣角光學特性與鏡頭製造性間取得較好的平衡,其中,若f23/f2的值趨大,則可得到較佳的鏡頭製造性,若f23/f2的值趨小,則可得到較高的周邊解像性能。 If the value of the condition (7) f2 3 /f2 is less than 0.3, the manufacturability of the lens is poor. Therefore, the value of f2 3 /f2 must be at least greater than 0.3, so the best effect range is 0.3<f2 3 /f2<2.5, and within this range, a good balance between wide-angle optical characteristics and lens manufacturability can be achieved. If the value of f2 3 /f2 becomes larger, better lens manufacturability can be obtained, and if the value of f2 3 /f2 becomes smaller, higher peripheral resolution performance can be obtained.

表四為第3圖中成像鏡頭2之各透鏡之相關參數表,表四資料顯示,第二實施例之成像鏡頭2之有效焦距等於9.600mm、光圈值等於1.6、鏡頭總長度等於20.5mm、半視場等於28.4度。 Table 4 is a table of related parameters of each lens of the imaging lens 2 in FIG. 3. The data in Table 4 shows that the effective focal length of the imaging lens 2 of the second embodiment is 9.600 mm, the aperture value is 1.6, and the total lens length is 20.5 mm. The half field of view is equal to 28.4 degrees.

表四中各個透鏡之非球面表面凹陷度z由下列公式所得到:z=ch2/{1+[1-(k+1)c2h2]1/2}+Ah4+Bh6+Ch8+Dh10+Eh12 The aspherical surface depression degree z of each lens in Table 4 is obtained by the following formula: z=ch 2 /{1+[1-(k+1)c 2 h 2 ] 1/2 }+Ah 4 +Bh 6 + Ch 8 +Dh 10 +Eh 12

其中:c:曲率;h:透鏡表面任一點至光軸之垂直距離;k:圓錐係數;A~E:非球面係數。 Where: c: curvature; h: vertical distance from any point on the lens surface to the optical axis; k: conic coefficient; A~E: aspherical coefficient.

表五為表四中各個透鏡之非球面表面之相關參數表,其中k為圓錐係數(Conic Constant)、A~E為非球面係數。 Table 5 is the related parameter table of the aspherical surface of each lens in Table 4, where k is the conic constant and A~E are the aspherical coefficients.

表六為條件(6)至條件(10)中各參數值及條件(6)至條件(10)之計算值,由表六可知,第二實施例之成像鏡頭2皆能滿足條件(6)至條件(10)之要求。 Table 6 is the parameter values in Condition (6) to Condition (10) and the calculated values of Condition (6) to Condition (10). From Table 6, it can be seen that the imaging lens 2 of the second embodiment can satisfy the condition (6) To the requirements of condition (10).

另外,第二實施例之成像鏡頭2的光學性能也可達到要求,這可從第4A至第4G圖看出。第4A圖所示的,是第二實施例之成像鏡頭2的縱向像差(Longitudinal Aberration)圖。第4B圖所示的,是第二實施例之成像鏡頭2的場曲(Field Curvature)圖。第4C圖所示的,是第二實施例之成像鏡頭2的畸變(Distortion)圖。第4D圖所示的,是第二實施例之成像鏡頭2的橫向色差(Lateral Color)圖。第4E圖所示的,是第二實施例之成像鏡頭2 的相對照度(Relative Illumination)圖。第4F圖所示的,是第二實施例之成像鏡頭2的調變轉換函數(Modulation Transfer Function)圖。第4G圖所示的,是第二實施例之成像鏡頭2的離焦調變轉換函數(Through Focus Modulation Transfer Function)圖。 In addition, the optical performance of the imaging lens 2 of the second embodiment can also meet the requirements, which can be seen from FIGS. 4A to 4G. FIG. 4A is a longitudinal aberration (Longitudinal Aberration) diagram of the imaging lens 2 of the second embodiment. Shown in FIG. 4B is a field curvature diagram of the imaging lens 2 of the second embodiment. Shown in FIG. 4C is a distortion diagram of the imaging lens 2 of the second embodiment. FIG. 4D is a lateral chromatic aberration (Lateral Color) diagram of the imaging lens 2 of the second embodiment. Shown in FIG. 4E is a relative illumination (Relative Illumination) diagram of the imaging lens 2 of the second embodiment. Shown in FIG. 4F is a modulation transfer function (Modulation Transfer Function) diagram of the imaging lens 2 of the second embodiment. Shown in FIG. 4G is a diagram of a Through Focus Modulation Transfer Function of the imaging lens 2 of the second embodiment.

由第4A圖可看出,第二實施例之成像鏡頭2對波長為0.470μm、0.510μm、0.555μm、0.610μm、0.650μm之光線所產生的縱向像差值介於0mm至0.04mm之間。 As can be seen from FIG. 4A, the imaging lens 2 of the second embodiment has a longitudinal aberration value between 0 mm and 0.04 mm for light rays with wavelengths of 0.470 μm, 0.510 μm, 0.555 μm, 0.610 μm, and 0.650 μm. .

由第4B圖可看出,第二實施例之成像鏡頭2對波長為0.470μm、0.510μm、0.555μm、0.610μm、0.650μm之光線,於子午(Tangential)方向與弧矢(Sagittal)方向之場曲介於-0.015mm至0.045mm之間。 As can be seen from FIG. 4B, the imaging lens 2 of the second embodiment has a wavelength of 0.470 μm, 0.510 μm, 0.555 μm, 0.610 μm, and 0.650 μm in the direction of the meridian (Tangential) and sagittal (Sagittal). The field curvature is between -0.015mm and 0.045mm.

由第4C圖(圖中的5條線幾乎重合,以致於看起來只有一條線)可看出,第二實施例之成像鏡頭2對波長為0.470μm、0.510μm、0.555μm、0.610μm、0.650μm之光線所產生的畸變介於-1.9%至0%之間。 It can be seen from Figure 4C (the five lines in the figure almost coincide so that there is only one line), the imaging lens 2 of the second embodiment has a pair of wavelengths of 0.470 μm, 0.510 μm, 0.555 μm, 0.610 μm, 0.650 The distortion produced by μm light is between -1.9% and 0%.

由第4D圖可看出,第二實施例之成像鏡頭2對波長為0.470μm、0.510μm、0.555μm、0.610μm、0.650μm之光線,於最大視場高度等於3.0000mm,所產生的橫向色差值介於0μm至1.5μm之間。 It can be seen from FIG. 4D that the imaging lens 2 of the second embodiment produces a lateral color at a maximum field of view height equal to 3.000 mm for light with wavelengths of 0.470 μm, 0.510 μm, 0.555 μm, 0.610 μm, and 0.650 μm. The difference is between 0 μm and 1.5 μm.

由第4E圖可看出,第二實施例之成像鏡頭2對波長為0.555μm之光線,於Y視場介於0mm至3mm之間其相對照度介於0.85至1.0之間。 As can be seen from FIG. 4E, the imaging lens 2 of the second embodiment has a relative illuminance of 0.85 to 1.0 for the light with a wavelength of 0.555 μm in the Y field of view of 0 mm to 3 mm.

由第4F圖可看出,第二實施例之成像鏡頭2,對波長範圍介於0.4700μm至0.6500μm之光線,分別於子午(Tangential)方向與弧矢(Sagittal)方向,視場高度分別為0.0000mm、0.3000mm、0.6000mm、1.2000 mm、1.5000mm、2.1000mm、2.4000mm、2.7000mm、3.0000mm,空間頻率介於0lp/mm至60lp/mm,其調變轉換函數值介於0.31至1.0之間。 As can be seen from FIG. 4F, the imaging lens 2 of the second embodiment, for light with a wavelength range of 0.4700 μm to 0.6500 μm, respectively in the meridian (Tangential) direction and sagittal (Sagittal) direction, the field of view height is respectively 0.0000mm, 0.3000mm, 0.6000mm, 1.2000mm, 1.5000mm, 2.1000mm, 2.4000mm, 2.7000mm, 3.000mm, the spatial frequency is between 0lp/mm and 60lp/mm, and its modulation transfer function value is between 0.31 and 1.0 between.

由第4G圖可看出,第二實施例之成像鏡頭2,對波長範圍介於0.4700μm至0.6500μm之光線,分別於子午(Tangential)方向與弧矢(Sagittal)方向,視場高度分別為0.0000mm、0.3000mm、0.6000mm、1.2000mm、1.5000mm、2.1000mm、2.4000mm、2.7000mm、3.0000mm,空間頻率等於60lp/mm時,當焦點偏移介於-0.016mm至0.023mm之間其調變轉換函數值皆大於0.2。 As can be seen from FIG. 4G, the imaging lens 2 of the second embodiment, for light with a wavelength range of 0.4700 μm to 0.6500 μm, respectively in the meridional (Tangential) direction and sagittal (Sagittal) direction, the field of view height is respectively 0.0000mm, 0.3000mm, 0.6000mm, 1.2000mm, 1.5000mm, 2.1000mm, 2.4000mm, 2.7000mm, 3.000mm, when the spatial frequency is equal to 60lp/mm, when the focus shift is between -0.016mm and 0.023mm The modulation transfer function values are all greater than 0.2.

顯見第二實施例之成像鏡頭2之縱向像差、場曲、畸變、橫向色差都能被有效修正,相對照度、鏡頭解析度、焦深也都能滿足要求,從而得到較佳的光學性能。 It is obvious that the longitudinal aberration, field curvature, distortion, and lateral chromatic aberration of the imaging lens 2 of the second embodiment can be effectively corrected, and the relative illuminance, lens resolution, and focal depth can also meet the requirements, thereby obtaining better optical performance.

請參閱第5圖,第5圖係依據本發明之成像鏡頭之第三實施例的透鏡配置示意圖。成像鏡頭3沿著一光軸OA3從一物側至一像側依序包括一第一透鏡L31、一第二透鏡L32、一第三透鏡L33、一光圈ST3、一第四透鏡L34、一第五透鏡L35、一第六透鏡L36、一濾光片OF3及一保護玻璃CG3。成像時,來自物側之光線最後成像於一成像面IMA3上。 Please refer to FIG. 5, which is a schematic diagram of a lens configuration according to a third embodiment of the imaging lens of the present invention. The imaging lens 3 includes a first lens L31, a second lens L32, a third lens L33, an aperture ST3, a fourth lens L34, a first lens in order from an object side to an image side along an optical axis OA3 Five lenses L35, a sixth lens L36, a filter OF3 and a protective glass CG3. When imaging, the light from the object side is finally imaged on an imaging surface IMA3.

第一透鏡L31為彎月形透鏡具有負屈光力由玻璃材質製成,其物側面S31為凸面,像側面S32為凹面,物側面S31與像側面S32皆為球面表面。 The first lens L31 is a meniscus lens with negative refractive power and is made of glass material. Its object side S31 is convex, the image side S32 is concave, and both the object side S31 and the image side S32 are spherical surfaces.

第二透鏡L32為雙凹透鏡具有負屈光力由塑膠材質製成,其物側面S33為凹面,像側面S34為凹面,物側面S33與像側面S34皆為非球面表面。 The second lens L32 is a biconcave lens made of plastic material with negative refractive power. The object side S33 is concave, the image side S34 is concave, and both the object side S33 and the image side S34 are aspherical surfaces.

第三透鏡L33為雙凸透鏡具有正屈光力由玻璃材質製成,其物側面S35為凸面,像側面S36為凸面,物側面S35與像側面S36皆為球面表面。 The third lens L33 is a biconvex lens with positive refractive power made of glass material, its object side S35 is convex, the image side S36 is convex, and both the object side S35 and the image side S36 are spherical surfaces.

第四透鏡L34為彎月形透鏡具有正屈光力由塑膠材質製成,其物側面S38為凹面,像側面S39為凸面,物側面S38與像側面S39皆為非球面表面。 The fourth lens L34 is a meniscus lens with positive refractive power made of plastic material. Its object side S38 is concave, the image side S39 is convex, and both the object side S38 and the image side S39 are aspherical surfaces.

第五透鏡L35為雙凹透鏡具有負屈光力由塑膠材質製成,其物側面S310為凹面,像側面S311為凹面,物側面S310與像側面S311皆為非球面表面。 The fifth lens L35 is a biconcave lens made of plastic material with negative refractive power. Its object side S310 is concave, the image side S311 is concave, and both the object side S310 and the image side S311 are aspherical surfaces.

第六透鏡L36為雙凸透鏡具有正屈光力由塑膠材質製成,其物側面S312為凸面,像側面S313為凸面,物側面S312與像側面S313皆為非球面表面。 The sixth lens L36 is a biconvex lens with positive refractive power made of plastic material. Its object side S312 is convex, the image side S313 is convex, and both the object side S312 and the image side S313 are aspherical surfaces.

濾光片OF3其物側面S314與像側面S315皆為平面。 The object side S314 and the image side S315 of the filter OF3 are both flat.

保護玻璃CG3其物側面S316與像側面S317皆為平面。 The object side S316 and the image side S317 of the protective glass CG3 are flat.

另外,第三實施例中的成像鏡頭3至少滿足底下其中一條件:2.1<|f31/f3|<4.0 (11) In addition, the imaging lens 3 in the third embodiment satisfies at least one of the following conditions: 2.1<|f3 1 /f3|<4.0 (11)

0.3<f33/f3<2.5 (12) 0.3<f3 3 /f3<2.5 (12)

0.3<f34/f3<3.0 (13) 0.3<f3 4 /f3<3.0 (13)

-1.8<f35/f3<-0.2 (14) -1.8<f3 5 /f3<-0.2 (14)

0.1<|BFL3/TTL3|<0.5 (15) 0.1<|BFL3/TTL3|<0.5 (15)

上述f3、f31、f33、f34、f35、BFL3及TTL3之定義與第一實施例中f1、f11、f13、f14、f15、BFL1及TTL1之定義相同,在此皆不加以贅 述。 The definitions of f3, f3 1 , f3 3 , f3 4 , f3 5 , BFL3 and TTL3 are the same as the definitions of f1, f1 1 , f1 3 , f1 4 , f1 5 , BFL1 and TTL1 in the first embodiment. Not to repeat them.

利用上述透鏡、光圈及至少滿足條件(11)至條件(15)其中一條件之設計,使得成像鏡頭3能有效的縮短鏡頭總長度、有效的縮小光圈值、提升解析度、有效的修正像差、抗環境溫度變化。 The use of the above lens, aperture and design that satisfies at least one of the conditions (11) to (15) enables the imaging lens 3 to effectively shorten the total lens length, effectively reduce the aperture value, improve resolution, and effectively correct aberrations 3. Resistant to environmental temperature changes.

若條件(13)f34/f3的值小於0.3,則使鏡頭的製造性欠佳。因此,f34/f3的值至少須大於0.3,所以最佳效果範圍為0.3<f34/f3<3.0,符合該範圍則可在廣角光學特性與鏡頭製造性間取得較好的平衡,其中,若f34/f3的值趨大,則可得到較佳的鏡頭製造性,若f34/f3的值趨小,則可得到較高的周邊解像性能。 If the value of the condition (13) f3 4 /f3 is less than 0.3, the manufacturability of the lens is poor. Therefore, the value of f3 4 /f3 must be at least greater than 0.3, so the best effect range is 0.3<f3 4 /f3<3.0, and within this range, a better balance between wide-angle optical characteristics and lens manufacturability can be achieved. If the value of f3 4 /f3 becomes larger, better lens manufacturability can be obtained, and if the value of f3 4 /f3 becomes smaller, higher peripheral resolution performance can be obtained.

表七為第5圖中成像鏡頭3之各透鏡之相關參數表,表七資料顯示,第三實施例之成像鏡頭3之有效焦距等於1.333mm、光圈值等於2.0、鏡頭總長度等於13.501mm、半視場等於180度。 Table 7 is a table of related parameters of each lens of the imaging lens 3 in FIG. 5. The data in Table 7 shows that the effective focal length of the imaging lens 3 of the third embodiment is 1.333 mm, the aperture value is 2.0, and the total lens length is 13.501 mm. The half field of view is equal to 180 degrees.

表七中各個透鏡之非球面表面凹陷度z由下列公式所得到:z=ch2/{1+[1-(k+1)c2h2]1/2}+Ah4+Bh6+Ch8+Dh10+Eh12+Fh14 The aspherical surface depression degree z of each lens in Table 7 is obtained by the following formula: z=ch 2 /{1+[1-(k+1)c 2 h 2 ] 1/2 }+Ah 4 +Bh 6 + Ch 8 +Dh 10 +Eh 12 +Fh 14

其中:c:曲率;h:透鏡表面任一點至光軸之垂直距離;k:圓錐係數;A~F:非球面係數。 Where: c: curvature; h: vertical distance from any point on the lens surface to the optical axis; k: conic coefficient; A~F: aspherical coefficient.

表八為表七中各個透鏡之非球面表面之相關參數表,其中k 為圓錐係數(Conic Constant)、A~F為非球面係數。 Table 8 is the related parameter table of the aspherical surface of each lens in Table 7, where k is the conic constant and A~F are the aspherical coefficients.

表九為條件(11)至條件(15)中各參數值及條件(11)至條件(15)之計算值,由表九可知,第三實施例之成像鏡頭3皆能滿足條件(11)至條件(15)之要求。 Table 9 shows the parameter values in Condition (11) to Condition (15) and the calculated values of Condition (11) to Condition (15). As can be seen from Table 9, the imaging lens 3 of the third embodiment can satisfy the condition (11) To the requirements of condition (15).

另外,第三實施例之成像鏡頭3的光學性能也可達到要求,這可從第6A至第6G圖看出。第6A圖所示的,是第三實施例之成像鏡頭3的縱向像差(Longitudinal Aberration)圖。第6B圖所示的,是第三實施例之成像鏡頭3的場曲(Field Curvature)圖。第6C圖所示的,是第三實施例之成像鏡頭3的畸變(Distortion)圖。第6D圖所示的,是第三實施例之成像鏡頭3的橫向色差(Lateral Color)圖。第6E圖所示的,是第三實施例之成像鏡頭3的相對照度(Relative Illumination)圖。第6F圖所示的,是第三實施例之成像鏡頭3的調變轉換函數(Modulation Transfer Function)圖。第6G圖所示的,是第三實施例之成像鏡頭3的離焦調變轉換函數(Through Focus Modulation Transfer Function)圖。 In addition, the optical performance of the imaging lens 3 of the third embodiment can also meet the requirements, which can be seen from FIGS. 6A to 6G. FIG. 6A shows a longitudinal aberration (Longitudinal Aberration) diagram of the imaging lens 3 of the third embodiment. FIG. 6B shows a field curvature diagram of the imaging lens 3 of the third embodiment. Shown in FIG. 6C is a distortion diagram of the imaging lens 3 of the third embodiment. FIG. 6D is a lateral chromatic aberration (Lateral Color) diagram of the imaging lens 3 of the third embodiment. Shown in FIG. 6E is a relative illuminance (Relative Illumination) diagram of the imaging lens 3 of the third embodiment. Shown in FIG. 6F is a modulation transfer function (Modulation Transfer Function) diagram of the imaging lens 3 of the third embodiment. Shown in FIG. 6G is a diagram of the Through Focus Modulation Transfer Function of the imaging lens 3 of the third embodiment.

由第6A圖可看出,第三實施例之成像鏡頭3對波長為0.470μm、0.510μm、0.555μm、0.610μm、0.650μm之光線所產生的縱向像差值介於-0.015mm至0.03mm之間。 As can be seen from FIG. 6A, the imaging lens 3 of the third embodiment has a longitudinal aberration value between -0.015mm and 0.03mm for light with wavelengths of 0.470μm, 0.510μm, 0.555μm, 0.610μm, and 0.650μm. between.

由第6B圖可看出,第三實施例之成像鏡頭3對波長為0.470μm、0.510μm、0.555μm、0.610μm、0.650μm之光線,於子午(Tangential)方向與弧矢(Sagittal)方向之場曲介於-0.02mm至0.03mm之間。 It can be seen from FIG. 6B that the imaging lens 3 of the third embodiment has a wavelength of 0.470 μm, 0.510 μm, 0.555 μm, 0.610 μm, and 0.650 μm in the meridional (Tangential) direction and sagittal (Sagittal) direction. The field curvature is between -0.02mm and 0.03mm.

由第6C圖(圖中的5條線幾乎重合,以致於看起來只有一條線)可看出,第三實施例之成像鏡頭3對波長為0.470μm、0.510μm、0.555μm、0.610μm、0.650μm之光線所產生的畸變介於-100%至0%之間。 It can be seen from Fig. 6C (the five lines in the figure almost coincide so that there is only one line), the imaging lens 3 of the third embodiment has a pair of wavelengths of 0.470 μm, 0.510 μm, 0.555 μm, 0.610 μm, 0.650 The distortion produced by μm light is between -100% and 0%.

由第6D圖可看出,第三實施例之成像鏡頭3對波長為0.470μm、0.510μm、0.555μm、0.610μm、0.650μm之光線,於最大視場角度等於90.0000度,所產生的橫向色差值介於-1μm至2.5μm之間。 It can be seen from Figure 6D that the imaging lens 3 of the third embodiment produces a lateral color at a maximum field angle equal to 90.0000 degrees for light with wavelengths of 0.470 μm, 0.510 μm, 0.555 μm, 0.610 μm, and 0.650 μm. The difference is between -1μm and 2.5μm.

由第6E圖可看出,第三實施例之成像鏡頭3對波長為0.555μm之光線,於Y視場介於0度至90度之間其相對照度介於0.71至1.0之間。 It can be seen from FIG. 6E that the imaging lens 3 of the third embodiment has a relative illumination of 0.71 to 1.0 for the light with a wavelength of 0.555 μm in the Y field of view between 0 degrees and 90 degrees.

由第6F圖可看出,第三實施例之成像鏡頭3,對波長範圍介於0.4700μm至0.6500μm之光線,分別於子午(Tangential)方向與弧矢(Sagittal)方向,視場角度分別為0.00度、9.00度、36.00度、54.00度、63.00度、72.00度、81.00度、90.00度,空間頻率介於0lp/mm至60lp/mm,其調變轉換函數值介於0.65至1.0之間。 As can be seen from FIG. 6F, the imaging lens 3 of the third embodiment, for light with a wavelength range of 0.4700 μm to 0.6500 μm, respectively in the meridional (Tangential) direction and sagittal (Sagittal) direction, the field of view angles are respectively 0.00 degrees, 9.00 degrees, 36.00 degrees, 54.00 degrees, 63.00 degrees, 72.00 degrees, 81.00 degrees, 90.00 degrees, the spatial frequency is between 0lp/mm and 60lp/mm, and its modulation conversion function value is between 0.65 and 1.0.

由第6G圖可看出,第三實施例之成像鏡頭3,對波長範圍介於0.4700μm至0.6500μm之光線,分別於子午(Tangential)方向與弧矢(Sagittal)方向,視場角度分別為0.00度、9.00度、36.00度、54.00度、63.00度、72.00度、81.00度、90.00度,空間頻率等於60lp/mm時,當焦點偏移介於-0.033mm至0.034mm之間其調變轉換函數值皆大於0.2。 As can be seen from FIG. 6G, the imaging lens 3 of the third embodiment, for light with a wavelength range of 0.4700 μm to 0.6500 μm, respectively in the meridional (Tangential) direction and sagittal (Sagittal) direction, the field of view angles are respectively 0.00 degrees, 9.00 degrees, 36.00 degrees, 54.00 degrees, 63.00 degrees, 72.00 degrees, 81.00 degrees, 90.00 degrees, when the spatial frequency is equal to 60lp/mm, when the focus shift is between -0.033mm and 0.034mm, its modulation conversion The function values are all greater than 0.2.

顯見第三實施例之成像鏡頭3之縱向像差、場曲、畸變、橫向色差都能被有效修正,相對照度、鏡頭解析度、焦深也都能滿足要求,從而得到較佳的光學性能。 It is obvious that the longitudinal aberration, field curvature, distortion, and lateral chromatic aberration of the imaging lens 3 of the third embodiment can be effectively corrected, and the relative illuminance, lens resolution, and depth of focus can also meet the requirements, thereby obtaining better optical performance.

本發明符合的條件以2.1<|f1/f|<4.0、0.3<f3/f<2.5、0.3<f4/f<3.0為中心,本發明實施例的數值也落入其餘條件的範圍內。條件2.1<|f1/f|<4.0、0.3<f3/f<2.5、0.3<f4/f<3.0,可使廣角光學特性與鏡頭製造性間取得的平衡表現有助益。 The conditions met by the present invention are centered on 2.1<|f 1 /f|<4.0, 0.3<f 3 /f<2.5, 0.3<f 4 /f<3.0, and the numerical values of the embodiments of the present invention also fall within the scope of the remaining conditions Inside. Conditions 2.1<|f 1 /f|<4.0, 0.3<f 3 /f<2.5, 0.3<f 4 /f<3.0, which can help the balanced performance between wide-angle optical characteristics and lens manufacturability.

雖然本發明已以實施方式揭露如上,然其並非用以限定本發明,任何熟悉此技藝者,在不脫離本發明的精神和範圍內,當可作各種 的更動與潤飾,因此本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed as above in an embodiment, it is not intended to limit the present invention. Anyone who is familiar with this art can make various changes and modifications within the spirit and scope of the present invention, so the protection of the present invention The scope shall be determined by the scope of the attached patent application.

Claims (10)

一種成像鏡頭,包括:一第一透鏡具有屈光力,該第一透鏡包括一凸面朝向一物側以及一凹面朝向一像側;一第二透鏡具有負屈光力,該第二透鏡包括一凹面朝向該物側;一第三透鏡具有正屈光力,該第三透鏡包括一凸面朝向該像側;一第四透鏡具有正屈光力,該第四透鏡包括一凸面朝向該像側;一第五透鏡具有負屈光力,該第五透鏡為雙凹透鏡;以及一第六透鏡具有正屈光力,該第六透鏡包括一凸面朝向該物側;其中該第一透鏡、該第二透鏡、該第三透鏡、該第四透鏡、該第五透鏡以及該第六透鏡沿著一光軸從該物側至該像側依序排列。 An imaging lens includes: a first lens having refractive power, the first lens including a convex surface facing an object side and a concave surface facing an image side; a second lens having negative refractive power, the second lens including a concave surface facing the object Side; a third lens has positive refractive power, the third lens includes a convex surface toward the image side; a fourth lens has positive refractive power, the fourth lens includes a convex surface toward the image side; a fifth lens has negative refractive power, The fifth lens is a biconcave lens; and a sixth lens has positive refractive power, the sixth lens includes a convex surface facing the object side; wherein the first lens, the second lens, the third lens, the fourth lens, The fifth lens and the sixth lens are sequentially arranged along the optical axis from the object side to the image side. 如申請專利範圍第1項所述之成像鏡頭,其中該第一透鏡之屈光力為正,該第四透鏡更包括一凸面朝向該物側。 The imaging lens as described in item 1 of the patent application range, wherein the refractive power of the first lens is positive, and the fourth lens further includes a convex surface facing the object side. 如申請專利範圍第1項所述之成像鏡頭,其中該第一透鏡之屈光力為負,該第四透鏡更包括一凹面朝向該物側。 The imaging lens as described in item 1 of the patent application, wherein the first lens has a negative refractive power, and the fourth lens further includes a concave surface facing the object side. 如申請專利範圍第2項或第3項所述之成像鏡頭,其中該成像鏡頭滿足以下條件:0.3<f 3/f<2.5;0.3<f 4/f<3.0;其中,f 3為該第三透鏡之一有效焦距,f 4為該第四透鏡之一有效焦距,f為該成像鏡頭之一有效焦距。 The imaging lens as described in item 2 or item 3 of the patent application scope, wherein the imaging lens satisfies the following conditions: 0.3<f 3 /f<2.5;0.3<f 4 /f<3.0; where f 3 is the One of the three lenses has an effective focal length, f 4 is an effective focal length of the fourth lens, and f is an effective focal length of the imaging lens. 如申請專利範圍第4項所述之成像鏡頭,其中該成像鏡頭滿足以下條件:2.1<|f 1/f|<4.0;-1.8<f 5/f<-0.2;其中,f 1為該第一透鏡之一有效焦距,f 5為該第五透鏡之一有效焦距,f為該成像鏡頭之一有效焦距。 The imaging lens as described in item 4 of the patent application scope, wherein the imaging lens satisfies the following conditions: 2.1<|f 1 /f|<4.0;-1.8<f 5 /f<-0.2; where f 1 is the first One effective focal length of one lens, f 5 is one effective focal length of the fifth lens, and f is one effective focal length of the imaging lens. 如申請專利範圍第2項或第3項所述之成像鏡頭,其中該成像鏡頭滿足以下條件:0.1<|BFL/TTL|<0.5;其中,BFL為該第六透鏡之一像側面至一成像面於該光軸上之一間距,TTL為該第一透鏡之一物側面至該成像面於該光軸上之一間距。 The imaging lens as described in item 2 or item 3 of the patent application scope, wherein the imaging lens satisfies the following conditions: 0.1<|BFL/TTL|<0.5; wherein, BFL is one of the sixth lens image side to one imaging A distance between the surface and the optical axis, TTL is a distance from the object side of the first lens to the imaging surface on the optical axis. 如申請專利範圍第2項或第3項所述之成像鏡頭,其中該第二透鏡更包括一凹面朝向該像側,該第三透鏡更包括一凸面朝向該物側,該第六透鏡更包括一凸面朝向該像側。 The imaging lens as described in item 2 or 3 of the patent application, wherein the second lens further includes a concave surface facing the image side, the third lens further includes a convex surface facing the object side, and the sixth lens further includes A convex surface faces the image side. 如申請專利範圍第2項或第3項所述之成像鏡頭,其更包括一光圈,設置於該第二透鏡與該第四透鏡之間。 The imaging lens described in item 2 or item 3 of the patent application scope further includes an aperture disposed between the second lens and the fourth lens. 如申請專利範圍第1項所述之成像鏡頭,其中該第四透鏡與該第五透鏡膠合。 The imaging lens as described in item 1 of the patent application scope, wherein the fourth lens is cemented with the fifth lens. 如申請專利範圍第1項所述之成像鏡頭,其中該第一透鏡、該第二透鏡、該第三透鏡、該第四透鏡以及該第五透鏡為球面玻璃透鏡,該第六透鏡為非球面玻璃透鏡。 The imaging lens as described in item 1 of the patent application scope, wherein the first lens, the second lens, the third lens, the fourth lens, and the fifth lens are spherical glass lenses, and the sixth lens is aspheric Glass lens.
TW106131736A 2017-09-15 2017-09-15 Lens assembly TWI735653B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106131736A TWI735653B (en) 2017-09-15 2017-09-15 Lens assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106131736A TWI735653B (en) 2017-09-15 2017-09-15 Lens assembly

Publications (2)

Publication Number Publication Date
TW201915539A true TW201915539A (en) 2019-04-16
TWI735653B TWI735653B (en) 2021-08-11

Family

ID=66992206

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106131736A TWI735653B (en) 2017-09-15 2017-09-15 Lens assembly

Country Status (1)

Country Link
TW (1) TWI735653B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI801909B (en) * 2021-06-18 2023-05-11 大陸商信泰光學(深圳)有限公司 Lens assembly and optical apparatus thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101853808B1 (en) * 2010-09-07 2018-05-02 삼성전자주식회사 Wide angle lens system and photographing device
TWI447473B (en) * 2011-03-25 2014-08-01 Largan Precision Co Ltd Photographing optical lens assembly
JP5795379B2 (en) * 2011-09-29 2015-10-14 富士フイルム株式会社 Imaging lens and imaging apparatus
TWI499795B (en) * 2014-03-03 2015-09-11 Sintai Optical Shenzhen Co Ltd Wide-angle lens

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI801909B (en) * 2021-06-18 2023-05-11 大陸商信泰光學(深圳)有限公司 Lens assembly and optical apparatus thereof

Also Published As

Publication number Publication date
TWI735653B (en) 2021-08-11

Similar Documents

Publication Publication Date Title
CN109507782B (en) Imaging lens
TWI491915B (en) Wide-angle lens
US11624895B2 (en) Lens assembly
TWI671566B (en) Wide-angle lens assembly
TWI690742B (en) Lens assembly
TW201939088A (en) Lens assembly
CN107577030B (en) Wide-angle lens
TWI556004B (en) Lens assembly
TWI690725B (en) Lens assembly
TWI679447B (en) Lens assembly
TWI676819B (en) Camera device
TWI668480B (en) Lens assembly
TWI735653B (en) Lens assembly
TWI743117B (en) Lens assembly
CN107402429B (en) Imaging lens
TWI724567B (en) Lens assembly
TWI709783B (en) Wide-angle lens assembly
TW201901230A (en) Wide-angle lens (13)
TWI808056B (en) Wide-angle lens assembly
TWI595260B (en) Lens assembly
TWI805073B (en) Wide-angle lens assembly
TWI805340B (en) Wide-angle lens assembly
TWI736462B (en) Lens assembly
TW201910853A (en) Wide-angle lens
TWI752152B (en) Wide-angle lens assembly