TWI676819B - Camera device - Google Patents
Camera device Download PDFInfo
- Publication number
- TWI676819B TWI676819B TW108103300A TW108103300A TWI676819B TW I676819 B TWI676819 B TW I676819B TW 108103300 A TW108103300 A TW 108103300A TW 108103300 A TW108103300 A TW 108103300A TW I676819 B TWI676819 B TW I676819B
- Authority
- TW
- Taiwan
- Prior art keywords
- lens
- refractive power
- object side
- image side
- lens device
- Prior art date
Links
Landscapes
- Lenses (AREA)
Abstract
一種鏡頭裝置包括一第一透鏡、一第二透鏡、一第三透鏡、一第四透鏡、一第五透鏡、一第六透鏡及一第七透鏡。第一透鏡具有負屈光力且包括一凸面朝向一物側及一凹面朝向一像側。第二透鏡為雙凹透鏡具有負屈光力。第三透鏡具有正屈光力。第四透鏡具有屈光力且包括一凹面朝向物側。第五透鏡具有屈光力且包括一凸面朝向物側。第六透鏡具有屈光力。第七透鏡具有正屈光力。第一透鏡、第二透鏡、第三透鏡、第四透鏡、第五透鏡、第六透鏡及第七透鏡沿著一光軸從物側至像側依序排列。 A lens device includes a first lens, a second lens, a third lens, a fourth lens, a fifth lens, a sixth lens, and a seventh lens. The first lens has negative refractive power and includes a convex surface facing an object side and a concave surface facing an image side. The second lens is a biconcave lens with negative refractive power. The third lens has a positive refractive power. The fourth lens has refractive power and includes a concave surface facing the object side. The fifth lens has refractive power and includes a convex surface facing the object side. The sixth lens has refractive power. The seventh lens has a positive refractive power. The first lens, the second lens, the third lens, the fourth lens, the fifth lens, the sixth lens, and the seventh lens are sequentially arranged along the optical axis from the object side to the image side.
Description
本發明係有關於一種鏡頭裝置。 The present invention relates to a lens device.
現今應用於廣視角的鏡頭裝置之發展趨勢,除了不斷朝向大視角發展外,隨著不同的應用需求,還需同時具備畸變(Distortion)小及抗環境溫度變化的能力,習知的鏡頭裝置已經無法滿足現今的需求,需要有另一種新架構的鏡頭裝置,才能同時滿足大視角、畸變小及抗環境溫度變化的需求。 In addition to the continuous development of wide-view angle lens devices, with the different application requirements, it is also necessary to have the ability of low distortion and resistance to environmental temperature changes. Unable to meet today's needs, another lens architecture with a new architecture is required to meet the needs of large viewing angles, low distortion, and resistance to environmental temperature changes.
有鑑於此,本發明之主要目的在於提供一種鏡頭裝置,其視角較大、畸變較小、抗環境溫度變化,但是仍具有良好的光學性能。 In view of this, the main object of the present invention is to provide a lens device with a larger viewing angle, less distortion, and resistance to environmental temperature changes, but still has good optical performance.
在一實施例中,本發明之鏡頭裝置包括一第一透鏡、一第二透鏡、一第三透鏡、一第四透鏡、一第五透鏡、一第六透鏡及一第七透鏡。第一透鏡具有負屈光力且包括一凸面朝向一物側及一凹面朝向一像側。第二透鏡為雙凹透鏡具有負屈光力。第三透鏡具有正屈光力。第四透鏡具有屈光力且包括一凹面朝向物側。第五透鏡具有屈光力且包括一凸面朝向物側。第六透鏡具有屈光力。第七透鏡具有正屈光力。第一透鏡、第二透鏡、第三透鏡、第四透鏡、第五透鏡、第六透鏡及第七透鏡沿著一光 軸從物側至像側依序排列。 In one embodiment, the lens device of the present invention includes a first lens, a second lens, a third lens, a fourth lens, a fifth lens, a sixth lens, and a seventh lens. The first lens has negative refractive power and includes a convex surface facing an object side and a concave surface facing an image side. The second lens is a biconcave lens with negative refractive power. The third lens has a positive refractive power. The fourth lens has refractive power and includes a concave surface facing the object side. The fifth lens has refractive power and includes a convex surface facing the object side. The sixth lens has refractive power. The seventh lens has a positive refractive power. The first lens, the second lens, the third lens, the fourth lens, the fifth lens, the sixth lens, and the seventh lens follow a light The axes are arranged in order from the object side to the image side.
在另一實施例中,第四透鏡例如具有正屈光力。更進一步來說,第四透鏡可例如更包括一凸面朝向像側,第五透鏡例如具有負屈光力且可更包括一凹面朝向像側,及第六透鏡例如為雙凸透鏡具有正屈光力。 In another embodiment, the fourth lens has, for example, a positive refractive power. Furthermore, the fourth lens may, for example, further include a convex surface facing the image side, the fifth lens may have a negative refractive power and may further include a concave surface toward the image side, and the sixth lens, such as a lenticular lens, may have positive refractive power.
在再一實施例中,上述的第四透鏡例如具有負屈光力且可更包括一凹面朝向像側,第五透鏡例如具有正屈光力且可更包括一凸面朝向像側,及第六透鏡例如為雙凹透鏡具有負屈光力。 In still another embodiment, the fourth lens described above has, for example, a negative refractive power and can further include a concave surface toward the image side, the fifth lens has a positive refractive power and can further include a convex surface toward the image side, and the sixth lens can be a double A concave lens has negative refractive power.
在再一實施例中,鏡頭裝置滿足以下條件:f1+f2<-6mm;其中,f1為第一透鏡之一有效焦距,f2為第二透鏡之一有效焦距。 In yet another embodiment, the lens device satisfies the following conditions: f 1 + f 2 <-6 mm; where f 1 is an effective focal length of the first lens and f 2 is an effective focal length of the second lens.
在再一實施例中,鏡頭裝置滿足以下條件:CTE1+CTE2>50×10-6/℃;其中,CTE1為第一透鏡之一熱膨脹係數(Coefficient of Thermal Expansion),CTE2為第二透鏡之一熱膨脹係數。 In yet another embodiment, the lens device satisfies the following conditions: CTE 1 + CTE 2 > 50 × 10 -6 / ° C; wherein CTE 1 is a coefficient of thermal expansion of the first lens, and CTE 2 is the first Coefficient of thermal expansion of one of the two lenses.
在再一實施例中,鏡頭裝置滿足以下條件:80<Vd1+Vd2<1 4;其中,Vd1為第一透鏡之一阿貝係數,Vd2為第二透鏡之一阿貝係數。 In yet another embodiment, the lens device satisfies the following condition: 80 <Vd 1 + Vd 2 <1 4; wherein Vd 1 is an Abbe coefficient of one of the first lenses and Vd 2 is an Abbe coefficient of one of the second lenses.
在再一實施例中,第三透鏡為雙凸透鏡。 In yet another embodiment, the third lens is a lenticular lens.
在再一實施例中,第七透鏡為雙凸透鏡。 In yet another embodiment, the seventh lens is a lenticular lens.
在再一實施例中,第三透鏡與第四透鏡膠合,第五透鏡與第六透鏡膠合。 In yet another embodiment, the third lens is cemented with the fourth lens, and the fifth lens is cemented with the sixth lens.
在再一實施例中,本發明之鏡頭裝置可更包括一光圈設置於第四透鏡與第五透鏡之間。 In yet another embodiment, the lens device of the present invention may further include an aperture disposed between the fourth lens and the fifth lens.
為使本發明之上述目的、特徵、和優點能更明顯易懂,下文特舉較佳實施例並配合所附圖式做詳細說明。 In order to make the above-mentioned objects, features, and advantages of the present invention more comprehensible, preferred embodiments are described in detail below in conjunction with the accompanying drawings.
1、2、3、4‧‧‧鏡頭裝置 1, 2, 3, 4‧‧‧ lens units
L11、L21、L31、L41‧‧‧第一透鏡 L11, L21, L31, L41‧‧‧First lens
L12、L22、L32、L42‧‧‧第二透鏡 L12, L22, L32, L42‧‧‧Second lens
L13、L23、L33、L43‧‧‧第三透鏡 L13, L23, L33, L43‧‧‧ Third lens
L14、L24、L34、L44‧‧‧第四透鏡 L14, L24, L34, L44‧‧‧ Fourth lens
L15、L25、L35、L45‧‧‧第五透鏡 L15, L25, L35, L45‧‧‧ fifth lens
L16、L26、L36、L46‧‧‧第六透鏡 L16, L26, L36, L46 ‧‧‧ Sixth lens
L17、L27、L37、L47‧‧‧第七透鏡 L17, L27, L37, L47‧‧‧ Seventh lens
ST1、ST2、ST3、ST4‧‧‧光圈 ST1, ST2, ST3, ST4‧‧‧ aperture
OF1、OF2、OF3、OF4‧‧‧濾光片 OF1, OF2, OF3, OF4‧‧‧ filters
OA1、OA2、OA3、OA4‧‧‧光軸 OA1, OA2, OA3, OA4‧‧‧ Optical axis
IMA1、IMA2、IMA3、IMA4‧‧‧成像面 IMA1, IMA2, IMA3, IMA4‧‧‧ imaging surface
CG1、CG2、CG3、CG4‧‧‧保護玻璃 CG1, CG2, CG3, CG4‧‧‧protective glass
S11、S21、S31、S41‧‧‧第一透鏡的像側面 S11, S21, S31, S41 ‧‧‧ the image side of the first lens
S12、S22、S32、S42‧‧‧第一透鏡的物側面 S12, S22, S32, S42 ‧‧‧ the object side of the first lens
S13、S23、S33、S43‧‧‧第二透鏡的像側面 S13, S23, S33, S43‧Image side of the second lens
S14、S24、S34、S44‧‧‧第二透鏡的物側面 S14, S24, S34, S44‧‧‧ Object side of the second lens
S15、S25、S35、S45‧‧‧第三透鏡的像側面 S15, S25, S35, S45‧Image side of the third lens
S16、S26、S36、S46‧‧‧第三透鏡、第四透鏡的接合面 S16, S26, S36, S46 ‧‧‧ Third lens, fourth lens joint surface
S17、S27、S37、S47‧‧‧第四透鏡的像側面 S17, S27, S37, S47‧Image side of the fourth lens
S18、S28、S38、S48‧‧‧光圈的面 S18, S28, S38, S48
S19、S29、S39、S49‧‧‧第五透鏡的像側面 S19, S29, S39, S49‧Image side of the fifth lens
S110、S210、S310、S410‧‧‧第五透鏡、第六透鏡的接合面 S110, S210, S310, S410 ‧‧‧ fifth lens, sixth lens joint surface
S111、S211、S311、S411‧‧‧第六透鏡的物側面 S111, S211, S311, S411‧‧‧ the object side of the sixth lens
S112、S212、S312、S412‧‧‧第七透鏡的像側面 Image side of S112, S212, S312, S412 ‧‧‧ seventh lens
S113、S213、S313、S413‧‧‧第七透鏡的物側面 S113, S213, S313, S413 ‧‧‧ the object side of the seventh lens
S114、S214、S314、S414‧‧‧濾光片的像側面 Image side of S114, S214, S314, S414‧‧‧ filters
S115、S215、S315、S415‧‧‧濾光片的物側面 Object side of S115, S215, S315, S415‧‧‧ filter
S116、S216、S316、S416‧‧‧保護玻璃的像側面 S116, S216, S316, S416‧‧‧ side of the protective glass
S117、S217、S317、S417‧‧‧保護玻璃的物側面 S117, S217, S317, S417‧‧‧ side of the protective glass
第1圖係依據本發明之鏡頭裝置之第一實施例的透鏡配置與光路示意圖。 FIG. 1 is a schematic diagram of a lens configuration and an optical path of a first embodiment of a lens device according to the present invention.
第2A圖係依據本發明之鏡頭裝置之第一實施例的場曲(Field Curvature)圖。 FIG. 2A is a Field Curvature diagram of the first embodiment of the lens device according to the present invention.
第2B圖係依據本發明之鏡頭裝置之第一實施例的畸變圖。 FIG. 2B is a distortion diagram of the first embodiment of the lens device according to the present invention.
第2C圖係依據本發明之鏡頭裝置之第一實施例,當溫度等於20℃時的調變轉換函數(Modulation Transfer Function)圖。 FIG. 2C is a diagram of a Modulation Transfer Function when the temperature is equal to 20 ° C. according to the first embodiment of the lens device according to the present invention.
第2D圖係依據本發明之鏡頭裝置之第一實施例,當溫度等於40℃時的調變轉換函數圖。 FIG. 2D is a modulation transfer function diagram when the temperature is equal to 40 ° C. according to the first embodiment of the lens device according to the present invention.
第2E圖係依據本發明之鏡頭裝置之第一實施例,當溫度等於60℃時的調變轉換函數圖。 FIG. 2E is a graph of the modulation transfer function when the temperature is equal to 60 ° C. according to the first embodiment of the lens device according to the present invention.
第2F圖係依據本發明之鏡頭裝置之第一實施例,當溫度等於-20℃時的調變轉換函數圖。 Figure 2F is a graph of the modulation transfer function when the temperature is equal to -20 ° C according to the first embodiment of the lens device according to the present invention.
第3圖係依據本發明之鏡頭裝置之第二實施例的透鏡配置與光路示意圖。 FIG. 3 is a schematic diagram of a lens configuration and an optical path of a second embodiment of a lens device according to the present invention.
第4A圖係依據本發明之鏡頭裝置之第二實施例的場曲圖。 FIG. 4A is a field curvature diagram of a second embodiment of a lens device according to the present invention.
第4B圖係依據本發明之鏡頭裝置之第二實施例的畸變圖。 FIG. 4B is a distortion diagram of the second embodiment of the lens device according to the present invention.
第4C圖係依據本發明之鏡頭裝置之第二實施例,當溫度等於20℃時的調變轉換函數圖。 FIG. 4C is a graph of a modulation transfer function when the temperature is equal to 20 ° C. according to the second embodiment of the lens device according to the present invention.
第4D圖係依據本發明之鏡頭裝置之第二實施例,當溫度等於40℃時的 調變轉換函數圖。 Figure 4D is a second embodiment of a lens device according to the present invention. Diagram of modulation transfer function.
第4E圖係依據本發明之鏡頭裝置之第二實施例,當溫度等於60℃時的調變轉換函數圖。 FIG. 4E is a modulation transfer function diagram when the temperature is equal to 60 ° C. according to the second embodiment of the lens device according to the present invention.
第4F圖係依據本發明之鏡頭裝置之第二實施例,當溫度等於-20℃時的調變轉換函數圖。 FIG. 4F is a modulation transfer function diagram when the temperature is equal to -20 ° C according to the second embodiment of the lens device according to the present invention.
第5圖係依據本發明之鏡頭裝置之第三實施例的透鏡配置與光路示意圖。 FIG. 5 is a schematic diagram of a lens configuration and an optical path of a third embodiment of a lens device according to the present invention.
第6A圖係依據本發明之鏡頭裝置之第三實施例的場曲圖。 FIG. 6A is a field curvature diagram of a third embodiment of a lens device according to the present invention.
第6B圖係依據本發明之鏡頭裝置之第三實施例的畸變圖。 FIG. 6B is a distortion diagram of a third embodiment of a lens device according to the present invention.
第6C圖係依據本發明之鏡頭裝置之第三實施例,當溫度等於20℃時的調變轉換函數圖。 FIG. 6C is a modulation transfer function diagram of the third embodiment of the lens device according to the present invention when the temperature is equal to 20 ° C.
第6D圖係依據本發明之鏡頭裝置之第三實施例,當溫度等於40℃時的調變轉換函數圖。 FIG. 6D is a modulation transfer function diagram when the temperature is equal to 40 ° C. according to the third embodiment of the lens device according to the present invention.
第6E圖係依據本發明之鏡頭裝置之第三實施例,當溫度等於60℃時的調變轉換函數圖。 FIG. 6E is a modulation transfer function diagram of the third embodiment of the lens device according to the present invention when the temperature is equal to 60 ° C.
第6F圖係依據本發明之鏡頭裝置之第三實施例,當溫度等於-20℃時的調變轉換函數圖。 FIG. 6F is a modulation transfer function diagram of the third embodiment of the lens device according to the present invention when the temperature is equal to -20 ° C.
第7圖係依據本發明之鏡頭裝置之第四實施例的透鏡配置與光路示意圖。 FIG. 7 is a schematic diagram of a lens configuration and an optical path of a fourth embodiment of a lens device according to the present invention.
第8A圖係依據本發明之鏡頭裝置之第四實施例的場曲圖。 FIG. 8A is a field curvature diagram of a fourth embodiment of a lens device according to the present invention.
第8B圖係依據本發明之鏡頭裝置之第四實施例的畸變圖。 FIG. 8B is a distortion diagram of a fourth embodiment of a lens device according to the present invention.
第8C圖係依據本發明之鏡頭裝置之第四實施例,當溫度等於20℃時的 調變轉換函數圖。 FIG. 8C is a fourth embodiment of a lens device according to the present invention. Diagram of modulation transfer function.
第8D圖係依據本發明之鏡頭裝置之第四實施例,當溫度等於40℃時的調變轉換函數圖。 FIG. 8D is a graph of a modulation transfer function when the temperature is equal to 40 ° C. according to the fourth embodiment of the lens device according to the present invention.
第8E圖係依據本發明之鏡頭裝置之第四實施例,當溫度等於60℃時的調變轉換函數圖。 FIG. 8E is a modulation transfer function diagram when the temperature is equal to 60 ° C. according to the fourth embodiment of the lens device according to the present invention.
第8F圖係依據本發明之鏡頭裝置之第四實施例,當溫度等於-20℃時的調變轉換函數圖。 FIG. 8F is a modulation transfer function diagram of the fourth embodiment of the lens device according to the present invention when the temperature is equal to -20 ° C.
本發明提供一種鏡頭裝置,包括:一第一透鏡、一第二透鏡、一第三透鏡、一第四透鏡、一第五透鏡及一第六透鏡,並且第一透鏡、第二透鏡、第三透鏡、第四透鏡、第五透鏡、第六透鏡及第七透鏡沿著一光軸從物側至像側依序排列。第一透鏡具有負屈光力,此第一透鏡包括一凸面朝向一物側及一凹面朝向一像側。第二透鏡具有負屈光力,此第二透鏡為雙凹透鏡。第三透鏡具有正屈光力。第四透鏡具有屈光力,此第四透鏡包括一凹面朝向物側。第五透鏡具有屈光力,此第五透鏡包括一凸面朝向物側。第六透鏡具有屈光力。第七透鏡具有正屈光力。 The present invention provides a lens device including a first lens, a second lens, a third lens, a fourth lens, a fifth lens, and a sixth lens, and the first lens, the second lens, and the third lens. The lens, the fourth lens, the fifth lens, the sixth lens, and the seventh lens are sequentially arranged along an optical axis from the object side to the image side. The first lens has negative refractive power. The first lens includes a convex surface facing an object side and a concave surface facing an image side. The second lens has negative refractive power, and the second lens is a biconcave lens. The third lens has a positive refractive power. The fourth lens has refractive power, and the fourth lens includes a concave surface facing the object side. The fifth lens has refractive power, and the fifth lens includes a convex surface facing the object side. The sixth lens has refractive power. The seventh lens has a positive refractive power.
在本發明一或多個實施例中,第一透鏡例如可由塑膠材質製成,物側面可例如為非球面表面,像側面可例如為非球面表面。 In one or more embodiments of the present invention, the first lens may be made of a plastic material, for example, the object side surface may be an aspherical surface, and the image side surface may be an aspherical surface, for example.
在本發明一或多個實施例中,第二透鏡可例如由玻璃材質製成,物側面可例如為球面表面,像側面可例如為球面表面。 In one or more embodiments of the present invention, the second lens may be made of a glass material, for example, the object side surface may be a spherical surface, and the image side surface may be a spherical surface, for example.
在本發明一或多個實施例中,第三透鏡可例如由玻璃材質製成,其物側面可例如為球面表面,像側面可例如為球面表面。 In one or more embodiments of the present invention, the third lens may be made of glass material, for example, the object side surface may be a spherical surface, and the image side surface may be a spherical surface, for example.
在本發明一或多個實施例中,第四透鏡可例如由玻璃材質製成,物側面可例如為球面表面,像側面可例如為球面表面。 In one or more embodiments of the present invention, the fourth lens may be made of glass material, for example, the object side surface may be a spherical surface, and the image side surface may be, for example, a spherical surface.
在本發明一或多個實施例中,第三透鏡可例如與第四透鏡膠合,藉此可提升鏡頭裝置之解析度。 In one or more embodiments of the present invention, the third lens may be cemented with the fourth lens, for example, thereby improving the resolution of the lens device.
在本發明一或多個實施例中,第五透鏡可例如由玻璃材質製成,物側面可例如為球面表面,像側面可例如為球面表面。 In one or more embodiments of the present invention, the fifth lens may be made of glass material, for example, the object side surface may be a spherical surface, and the image side surface may be, for example, a spherical surface.
在本發明一或多個實施例中,第六透鏡可例如由玻璃材質製成,其物側面可例如為球面表面,像側面可例如為球面表面。 In one or more embodiments of the present invention, the sixth lens may be made of glass material, for example, the object side surface may be a spherical surface, and the image side surface may be a spherical surface, for example.
在本發明一或多個實施例中,第五透鏡可例如與第六透鏡膠合,藉此可提升鏡頭裝置之解析度。 In one or more embodiments of the present invention, the fifth lens may be cemented with the sixth lens, for example, thereby improving the resolution of the lens device.
在本發明一或多個實施例中,第七透鏡的物側面可例如為非球面表面,像側面可例如為非球面表面。 In one or more embodiments of the present invention, the object side surface of the seventh lens may be, for example, an aspherical surface, and the image side surface may be, for example, an aspherical surface.
在本發明中,一透鏡之非球面表面凹陷度z由下列公式所得到:z=ch2/{1+[1-(k+1)c2h2]1/2}+Ah4+Bh6+Ch8+Dh10+Eh12+Fh14+Gh16 In the present invention, the aspheric surface depression z of a lens is obtained by the following formula: z = ch 2 / {1+ [1- (k + 1) c 2 h 2 ] 1/2 } + Ah 4 + Bh 6 + Ch 8 + Dh 10 + Eh 12 + Fh 14 + Gh 16
其中,c:曲率;h:透鏡表面任一點至光軸之垂直距離;k:圓錐係數;A~G:非球面係數。 Among them, c: curvature; h: vertical distance from any point on the lens surface to the optical axis; k: conic coefficient; A ~ G: aspheric coefficient.
另外,鏡頭裝置至少滿足底下其中一條件:f1+f2<-6mm (1) In addition, the lens device meets at least one of the following conditions: f 1 + f 2 <-6mm (1)
CTE1+CTE2>50×10-6/℃ (2) CTE 1 + CTE 2 > 50 × 10 -6 / ℃ (2)
80<Vd1+Vd2<140 (3) 80 <Vd 1 + Vd 2 <140 (3)
其中,f1為第一透鏡之一有效焦距,f2為第二透鏡之一有效 焦距,CTE1為第一透鏡之一熱膨脹係數,CTE2為第二透鏡之一熱膨脹係數,Vd1為第一透鏡之一阿貝係數,Vd2為第二透鏡之一阿貝係數。使得鏡頭裝置能有效的提升視角、有效的降低畸變、有效的提升解析度、有效的抗環境溫度變化、有效的修正像差。 Among them, f 1 is an effective focal length of the first lens, f 2 is an effective focal length of the second lens, CTE 1 is a thermal expansion coefficient of the first lens, CTE 2 is a thermal expansion coefficient of the second lens, and Vd 1 is the first One lens has an Abbe coefficient, and Vd 2 is an Abbe coefficient of a second lens. The lens device can effectively improve the viewing angle, effectively reduce distortion, effectively improve resolution, effectively resist environmental temperature changes, and effectively correct aberrations.
當滿足條件(1):f1+f2<-6mm時,可使鏡頭裝置中各透鏡有效的分配屈光力,以達成設計所需,其更佳效果範圍為滿足條件:-16mm<f1+f2<-6mm。 When the condition (1) is satisfied: f 1 + f 2 <-6mm, the lenses in the lens device can effectively distribute the refractive power to achieve the design requirements, and the better effect range is to satisfy the condition: -16mm <f 1 + f 2 <-6mm.
當滿足條件(2):CTE1+CTE2>50×10-6/℃時,可有效的降低鏡頭裝置之畸變,其更佳效果範圍為滿足條件:50×10-6/℃<CTE1+CTE2<80×10-6/℃。 When the condition (2) is satisfied: CTE 1 + CTE 2 > 50 × 10 -6 / ℃, the distortion of the lens device can be effectively reduced, and the better effect range is to satisfy the condition: 50 × 10 -6 / ℃ <CTE 1 + CTE 2 <80 × 10 -6 / ° C.
當滿足條件(3):80<Vd1+Vd2<140時,可有效的提升鏡頭裝置之解析度。 When the condition (3) is satisfied: 80 <Vd 1 + Vd 2 <140, the resolution of the lens device can be effectively improved.
現詳細說明本發明之鏡頭裝置之各個實施例。 Various embodiments of the lens device of the present invention will now be described in detail.
請參閱第1圖,第1圖係依據本發明之鏡頭裝置之第一實施例的透鏡配置與光路示意圖。鏡頭裝置1沿著一光軸OA1從一物側至一像側依序包括一第一透鏡L11、一第二透鏡L12、一第三透鏡L13、一第四透鏡L14、一光圈ST1、一第五透鏡L15、一第六透鏡L16、一第七透鏡L17、一濾光片OF1及一保護玻璃CG1。成像時,來自物側之光線最後成像於一成像面IMA1上。 Please refer to FIG. 1. FIG. 1 is a schematic diagram of a lens configuration and an optical path of a first embodiment of a lens device according to the present invention. The lens device 1 includes a first lens L11, a second lens L12, a third lens L13, a fourth lens L14, an aperture ST1, and a first lens L11 in order from an object side to an image side along an optical axis OA1. The five lenses L15, a sixth lens L16, a seventh lens L17, a filter OF1, and a protective glass CG1. During imaging, the light from the object side is finally imaged on an imaging surface IMA1.
第一透鏡L11例如為彎月型透鏡,物側面S11為凸面,像側面S12為凹面。第一透鏡L11例如具有負屈光力。 The first lens L11 is, for example, a meniscus lens, the object side surface S11 is a convex surface, and the image side surface S12 is a concave surface. The first lens L11 has, for example, a negative refractive power.
第二透鏡L12例如為雙凹透鏡,物側面S13為凹面,像側 面S14為凹面。物側面S13與像側面S14皆例如為球面表面。並且,第二透鏡L12例如具有負屈光力,且例如由玻璃材質製成。 The second lens L12 is, for example, a biconcave lens, the object side surface S13 is a concave surface, and the image side The surface S14 is a concave surface. Both the object side surface S13 and the image side surface S14 are, for example, spherical surfaces. The second lens L12 has, for example, a negative refractive power and is made of, for example, a glass material.
第三透鏡L13可例如為雙凸透鏡,其物側面S15為凸面,像側面S16為凸面。物側面S15與像側面S16皆例如為球面表面。並且,第三透鏡L13例如具有正屈光力,且例如由玻璃材質製成。 The third lens L13 may be, for example, a biconvex lens, and the object side surface S15 is a convex surface, and the image side surface S16 is a convex surface. Both the object side surface S15 and the image side surface S16 are, for example, spherical surfaces. The third lens L13 has, for example, a positive refractive power, and is made of, for example, a glass material.
第四透鏡L14可例如為彎月型透鏡,其物側面S16為凹面,像側面S17為凸面。物側面S16與像側面S17皆例如為球面表面。第四透鏡L14例如具有正屈光力。 The fourth lens L14 may be, for example, a meniscus lens. The object side surface S16 is a concave surface, and the image side surface S17 is a convex surface. Both the object side surface S16 and the image side surface S17 are, for example, spherical surfaces. The fourth lens L14 has, for example, a positive refractive power.
第五透鏡L15可例如為彎月型透鏡,其物側面S19為凸面,像側面S110為凹面。物側面S19與像側面S110皆例如為球面表面。第五透鏡L15例如具有負屈光力,且例如由玻璃材質製成。 The fifth lens L15 may be, for example, a meniscus lens, and an object side surface S19 thereof is a convex surface, and an image side surface S110 is a concave surface. Both the object side surface S19 and the image side surface S110 are, for example, spherical surfaces. The fifth lens L15 has, for example, a negative refractive power, and is made of, for example, a glass material.
第六透鏡L16可例如為雙凸透鏡,其物側面S110例如為凸面,像側面S111例如為凸面。物側面S110與像側面S111皆為球面表面。第六透鏡L16例如具有正屈光力,且例如由玻璃材質製成。 The sixth lens L16 may be, for example, a biconvex lens, and an object side surface S110 thereof is, for example, a convex surface, and an image side surface S111 is, for example, a convex surface. Both the object side surface S110 and the image side surface S111 are spherical surfaces. The sixth lens L16 has, for example, a positive refractive power, and is made of, for example, a glass material.
第七透鏡L17可例如為雙凸透鏡,其物側面S112為凸面,像側面S113為凸面。第七透鏡L17具有正屈光力。第七透鏡L17可例如由玻璃材質製成。 The seventh lens L17 may be, for example, a biconvex lens, and an object side surface S112 thereof is a convex surface, and an image side surface S113 is a convex surface. The seventh lens L17 has a positive refractive power. The seventh lens L17 may be made of, for example, a glass material.
濾光片OF1的物側面S114與像側面S115皆為平面。 Both the object side S114 and the image side S115 of the filter OF1 are flat.
保護玻璃CG1的物側面S116與像側面S117皆為平面。 Both the object side surface S116 and the image side surface S117 of the cover glass CG1 are flat.
利用上述透鏡、光圈ST1及至少滿足條件(1)至條件(3)其中一條件之設計,使得鏡頭裝置1能有效的提升視角、有效的降低畸變、有效的提升解析度、有效的抗環境溫度變化、有效的修正像差。 By using the lens, the aperture ST1, and a design that meets at least one of the conditions (1) to (3), the lens device 1 can effectively improve the viewing angle, effectively reduce distortion, effectively improve resolution, and effectively resist ambient temperature Variation and effective correction of aberrations.
表一為第1圖中鏡頭裝置1之各透鏡之相關參數表,表一資料顯示,第一實施例之鏡頭裝置1之有效焦距等於0.968mm、光圈值等於2.6、鏡頭總長度等於30.0mm、視角等於149.2度。 Table 1 is the relevant parameter table of each lens of the lens device 1 in the first figure. The data in Table 1 shows that the effective focal length of the lens device 1 of the first embodiment is equal to 0.968 mm, the aperture value is equal to 2.6, the total lens length is equal to 30.0 mm, The viewing angle is equal to 149.2 degrees.
表二為表一中各個透鏡之非球面表面之相關參數表,其中k為圓錐係數(Conic Constant)、A~G為非球面係數。 Table 2 is a table of related parameters of the aspheric surface of each lens in Table 1, where k is the Conic Constant and A ~ G are aspheric coefficients.
表三為第一實施例之鏡頭裝置1之相關參數值及其對應條件(1)至條件(3)之計算值,由表三可知,第一實施例之鏡頭裝置1皆能滿足條件(1)至條件(3)之要求。 Table 3 shows the relevant parameter values of the lens device 1 of the first embodiment and the calculated values of corresponding conditions (1) to (3). As can be seen from Table 3, the lens device 1 of the first embodiment can satisfy the condition (1 ) To the requirements of condition (3).
另外,第一實施例之鏡頭裝置1的光學性能也可達到要求,這可從第2A至第2C圖看出。第2A圖所示的,是第一實施例之鏡頭裝置1的場曲圖。第2B圖所示的,是第一實施例之鏡頭裝置1的畸變圖。第2C圖所示的,是第一實施例之鏡頭裝置1於溫度等於20℃時的調變轉換函數圖。第2D圖所示的,是第一實施例之鏡頭裝置1於溫度等於40℃時的調變轉換函數圖。第2E圖所示的,是第一實施例之鏡頭裝置1於溫度等於60℃時的調變轉換函數圖。第2F圖所示的,是第一實施例之鏡頭裝置1於溫度等於-20℃時的調變轉換函數圖。 In addition, the optical performance of the lens device 1 of the first embodiment can also meet the requirements, which can be seen from FIGS. 2A to 2C. FIG. 2A is a field curvature diagram of the lens device 1 of the first embodiment. FIG. 2B is a distortion diagram of the lens device 1 of the first embodiment. FIG. 2C shows a modulation transfer function diagram of the lens device 1 of the first embodiment when the temperature is equal to 20 ° C. FIG. 2D is a modulation transfer function diagram of the lens device 1 of the first embodiment when the temperature is equal to 40 ° C. FIG. 2E shows a modulation transfer function diagram of the lens device 1 of the first embodiment when the temperature is equal to 60 ° C. Figure 2F is a graph of the modulation transfer function of the lens device 1 of the first embodiment when the temperature is equal to -20 ° C.
由第2A圖可看出,第一實施例之鏡頭裝置1對波長為0.470μm、0.510μm、0.555μm、0.610μm、0.650μm之光線,於子午(Tangential)方向與弧矢(Sagittal)方向之場曲介於-0.045mm至0.040mm之間。 It can be seen from FIG. 2A that the lens device 1 of the first embodiment has a wavelength of 0.470 μm, 0.510 μm, 0.555 μm, 0.610 μm, 0.650 μm in the direction of the Tangential and Sagittal directions. The field curvature is between -0.045mm and 0.040mm.
由第2B圖可看出,第一實施例之鏡頭裝置1對波長為0.470μm、0.510μm、0.555μm、0.610μm、0.650μm之光線所產生的畸變介於-10%至5%之間。 It can be seen from FIG. 2B that the distortion caused by the lens device 1 of the first embodiment for light having a wavelength of 0.470 μm, 0.510 μm, 0.555 μm, 0.610 μm, 0.650 μm is between -10% and 5%.
由第2C~2F圖可看出,第一實施例之鏡頭裝置1對波長範圍介於0.4700μm至0.6500μm之光線,在分別於子午方向與弧矢方向,視場角度分別為0.00度、30.00度、50.00度、60.00度、72.40度,空間頻率介於0lp/mm至150lp/mm的條件下,於溫度等於20℃時的調變轉換函數值 介於0.14至1.0之間(如第2C圖所示),於溫度等於40℃時的調變轉換函數值介於0.12至1.0之間(如第2D圖所示),於溫度等於60℃時的調變轉換函數值介於0.01至1.0之間(如第2E圖所示),於溫度等於-20℃時的調變轉換函數值介於0.13至1.0之間(如第2F圖所示)。 As can be seen from Figures 2C to 2F, the lens device 1 of the first embodiment has a pair of rays with a wavelength ranging from 0.4700 μm to 0.6500 μm in the meridional and sagittal directions, and the field angles are 0.00 degrees and 30.00, respectively. Degrees, 50.00 degrees, 60.00 degrees, 72.40 degrees, and the spatial frequency between 0 lp / mm and 150 lp / mm, at a temperature equal to 20 ° C Between 0.14 and 1.0 (as shown in Figure 2C), the value of the modulation transfer function at a temperature equal to 40 ° C is between 0.12 and 1.0 (as shown in Figure 2D), and at a temperature equal to 60 ° C The value of the modulation transfer function is between 0.01 and 1.0 (as shown in Figure 2E), and the value of the modulation transfer function at a temperature equal to -20 ° C is between 0.13 and 1.0 (as shown in Figure 2F) .
顯見第一實施例之鏡頭裝置1之場曲、畸變都能被有效修正,鏡頭解析度也能滿足要求,從而得到較佳的光學性能。 It is obvious that the field curvature and distortion of the lens device 1 of the first embodiment can be effectively corrected, and the lens resolution can also meet the requirements, thereby obtaining better optical performance.
請參閱第3圖,第3圖係依據本發明之鏡頭裝置之第二實施例的透鏡配置與光路示意圖。鏡頭裝置2沿著一光軸OA2從一物側至一像側依序包括一第一透鏡L21、一第二透鏡L22、一第三透鏡L23、一第四透鏡L24、一光圈ST2、一第五透鏡L25、一第六透鏡L26、一第七透鏡L27、一濾光片OF2及一保護玻璃CG2。成像時,來自物側之光線最後成像於一成像面IMA2上。 Please refer to FIG. 3, which is a schematic diagram of a lens configuration and an optical path of a second embodiment of a lens device according to the present invention. The lens device 2 includes a first lens L21, a second lens L22, a third lens L23, a fourth lens L24, an aperture ST2, and a first lens L21 in order from an object side to an image side along an optical axis OA2. Five lenses L25, a sixth lens L26, a seventh lens L27, a filter OF2, and a protective glass CG2. During imaging, the light from the object side is finally imaged on an imaging surface IMA2.
第一透鏡L21、第二透鏡L22、第三透鏡L23、第四透鏡L24、第五透鏡L25、第六透鏡L26、第七透鏡L27、濾光片OF2及保護玻璃CG2之表面型狀凹凸及屈光力分別與第一實施例中之第一透鏡L11、第二透鏡L12、第三透鏡L13、第四透鏡L14、第五透鏡L15、第六透鏡L16、第七透鏡L17、濾光片OF1及保護玻璃CG1相似,並且第一透鏡L21至第六透鏡L26的材質分別與第一實施例之第一透鏡L11至第六透鏡L16相似,在此皆不加以贅述。 The surface shapes of the first lens L21, the second lens L22, the third lens L23, the fourth lens L24, the fifth lens L25, the sixth lens L26, the seventh lens L27, the filter OF2, and the protective glass CG2 and the refractive power The first lens L11, the second lens L12, the third lens L13, the fourth lens L14, the fifth lens L15, the sixth lens L16, the seventh lens L17, the filter OF1, and the protective glass in the first embodiment, respectively CG1 is similar, and the materials of the first lens L21 to the sixth lens L26 are similar to those of the first lens L11 to the sixth lens L16 of the first embodiment, respectively, and will not be repeated here.
在本實施例中,第七透鏡L27可例如為塑膠材質製成。 In this embodiment, the seventh lens L27 may be made of a plastic material, for example.
利用上述透鏡、光圈ST2及至少滿足條件(1)至條件(3)其中一條件之設計,使得鏡頭裝置2能有效的提升視角、有效的降低畸變、有 效的提升解析度、有效的抗環境溫度變化、有效的修正像差。 By using the lens, the aperture ST2, and a design that satisfies at least one of the conditions (1) to (3), the lens device 2 can effectively improve the viewing angle, effectively reduce distortion, and have Effectively improve the resolution, effective resistance to environmental temperature changes, and effective correction of aberrations.
表四為第3圖中鏡頭裝置2之各透鏡之相關參數表,表四資料顯示,第二實施例之鏡頭裝置2之有效焦距等於0.966mm、光圈值等於2.6、鏡頭總長度等於30.0mm、視角等於149.2度。 Table 4 is the relevant parameter table of each lens of the lens device 2 in the third figure. The data in Table 4 shows that the effective focal length of the lens device 2 of the second embodiment is equal to 0.966mm, the aperture value is equal to 2.6, the total lens length is equal to 30.0mm, The viewing angle is equal to 149.2 degrees.
表五為表四中各個透鏡之非球面表面之相關參數表,其中k為圓錐係數、A~G為非球面係數。 Table 5 is a table of related parameters of the aspheric surface of each lens in Table 4, where k is the conic coefficient and A ~ G are aspheric coefficients.
表六為第二實施例之鏡頭裝置2之相關參數值及其對應條件(1)至條件(3)之計算值,由表六可知,第二實施例之鏡頭裝置2皆能滿足條件(1)至條件(3)之要求。 Table 6 shows the relevant parameter values of the lens device 2 of the second embodiment and the calculated values of corresponding conditions (1) to (3). As can be seen from Table 6, the lens device 2 of the second embodiment can satisfy the condition (1 ) To the requirements of condition (3).
另外,第二實施例之鏡頭裝置2的光學性能也可達到要求,這可從第4A至第4C圖看出。第4A圖所示的,是第二實施例之鏡頭裝置2的場曲圖。第4B圖所示的,是第二實施例之鏡頭裝置2的畸變圖。第4C圖所示的,是第二實施例之鏡頭裝置2於溫度等於20℃時的調變轉換函數圖。第4D圖所示的,是第二實施例之鏡頭裝置2於溫度等於40℃時的調變轉換函數圖。第4E圖所示的,是第二實施例之鏡頭裝置2於溫度等於60℃時的調變轉換函數圖。第4F圖所示的,是第二實施例之鏡頭裝置2於溫度等於-20℃時的調變轉換函數圖。 In addition, the optical performance of the lens device 2 of the second embodiment can also meet the requirements, which can be seen from FIGS. 4A to 4C. FIG. 4A is a field curvature diagram of the lens device 2 of the second embodiment. FIG. 4B is a distortion diagram of the lens device 2 of the second embodiment. FIG. 4C is a modulation transfer function diagram of the lens device 2 of the second embodiment when the temperature is equal to 20 ° C. FIG. 4D is a modulation transfer function diagram of the lens device 2 of the second embodiment when the temperature is equal to 40 ° C. FIG. 4E is a graph of the modulation transfer function of the lens device 2 of the second embodiment when the temperature is equal to 60 ° C. Figure 4F is a graph of the modulation transfer function of the lens device 2 of the second embodiment when the temperature is equal to -20 ° C.
由第4A圖可看出,第二實施例之鏡頭裝置2對波長為0.470μm、0.510μm、0.555μm、0.610μm、0.650μm之光線,於子午方向與弧矢方向之場曲介於-0.035mm至0.040mm之間。 As can be seen from Figure 4A, the lens device 2 of the second embodiment has a field curvature of -0.035 for the light rays with a wavelength of 0.470 μm, 0.510 μm, 0.555 μm, 0.610 μm, and 0.650 μm. mm to 0.040mm.
由第4B圖可看出,第二實施例之鏡頭裝置2對波長為0.470μm、0.510μm、0.555μm、0.610μm、0.650μm之光線所產生的畸變介於-10%至5%之間。 It can be seen from FIG. 4B that the distortion caused by the lens device 2 of the second embodiment for light having a wavelength of 0.470 μm, 0.510 μm, 0.555 μm, 0.610 μm, 0.650 μm is between -10% and 5%.
由第4C~4F圖可看出,第二實施例之鏡頭裝置2對波長範圍介於0.4700μm至0.6500μm之光線,在分別於子午方向與弧矢方向, 視場角度分別為0.00度、30.00度、50.00度、60.00度、72.40度,空間頻率介於0lp/mm至150lp/mm的條件下,於溫度等於20℃時的調變轉換函數值介於0.15至1.0之間(如第4C圖所示),於溫度等於40℃時的調變轉換函數值介於0.05至1.0之間(如第4D圖所示),於溫度等於60℃時的調變轉換函數值介於0.01至1.0之間(如第4E圖所示),於溫度等於-20℃時的調變轉換函數值介於0.03至1.0之間(如第4F圖所示)。 As can be seen from FIGS. 4C to 4F, the lens device 2 of the second embodiment has a pair of rays with a wavelength ranging from 0.4700 μm to 0.6500 μm in the meridional and sagittal directions, respectively. The field of view angles are 0.00 degrees, 30.00 degrees, 50.00 degrees, 60.00 degrees, 72.40 degrees, and the spatial frequency is between 0 lp / mm and 150 lp / mm. At a temperature equal to 20 ° C, the value of the modulation transfer function is 0.15. Between 1.0 and 1.0 (as shown in Figure 4C), the modulation transfer function value at a temperature equal to 40 ° C is between 0.05 and 1.0 (as shown in Figure 4D), and the modulation at a temperature equal to 60 ° C The transfer function value is between 0.01 and 1.0 (as shown in Figure 4E), and the modulation transfer function value at a temperature equal to -20 ° C is between 0.03 and 1.0 (as shown in Figure 4F).
顯見第二實施例之鏡頭裝置2之場曲、畸變都能被有效修正,鏡頭解析度也能滿足要求,從而得到較佳的光學性能。 It is obvious that the field curvature and distortion of the lens device 2 of the second embodiment can be effectively corrected, and the lens resolution can also meet the requirements, thereby obtaining better optical performance.
請參閱第5圖,第5圖係依據本發明之鏡頭裝置之第三實施例的透鏡配置與光路示意圖。鏡頭裝置3沿著一光軸OA3從一物側至一像側依序包括一第一透鏡L31、一第二透鏡L32、一第三透鏡L33、一第四透鏡L34、一光圈ST3、一第五透鏡L35、一第六透鏡L36、一第七透鏡L37、一濾光片OF3及一保護玻璃CG3。成像時,來自物側之光線最後成像於一成像面IMA3上。 Please refer to FIG. 5, which is a schematic diagram of a lens configuration and an optical path of a third embodiment of a lens device according to the present invention. The lens device 3 includes a first lens L31, a second lens L32, a third lens L33, a fourth lens L34, an aperture ST3, and a first lens L31 in order from an object side to an image side along an optical axis OA3. Five lenses L35, a sixth lens L36, a seventh lens L37, a filter OF3, and a protective glass CG3. During imaging, the light from the object side is finally imaged on an imaging surface IMA3.
第一透鏡L31、第二透鏡L32、第三透鏡L33、第七透鏡L37、濾光片OF3及保護玻璃CG3之表面型狀凹凸及屈光力分別與第一實施例中之第一透鏡L11、第二透鏡L12、第三透鏡L13、第七透鏡L17、濾光片OF1及保護玻璃CG1相似,並且第一透鏡L31至第六透鏡L36的材質分別與第一實施例之第一透鏡L11至第六透鏡L16相似,在此皆不加以贅述。 The surface shapes of the first lens L31, the second lens L32, the third lens L33, the seventh lens L37, the filter OF3, and the protective glass CG3 are respectively the same as those of the first lens L11 and the second lens in the first embodiment. The lens L12, the third lens L13, the seventh lens L17, the filter OF1, and the protective glass CG1 are similar, and the materials of the first lens L31 to the sixth lens L36 are respectively the first lens L11 to the sixth lens of the first embodiment. L16 is similar and will not be repeated here.
在本實施例中,第四透鏡L34可例如為雙凹透鏡,第四透鏡L34可例如具有負屈光力;第五透鏡L35可例如為雙凸透鏡,例如具有正屈光力;第六透鏡L36可例如為雙凹透鏡,例如具有負屈光力;第七透 鏡L37可例如為玻璃材質製成。 In this embodiment, the fourth lens L34 may be a biconcave lens, for example, the fourth lens L34 may have a negative refractive power, the fifth lens L35 may be, for example, a biconvex lens, for example, have a positive refractive power, and the sixth lens L36 may be, for example, a biconcave lens. , For example, with negative refractive power; seventh penetration The mirror L37 may be made of, for example, a glass material.
利用上述透鏡、光圈ST3及至少滿足條件(1)至條件(3)其中一條件之設計,使得鏡頭裝置3能有效的提升視角、有效的降低畸變、有效的提升解析度、有效的抗環境溫度變化、有效的修正像差。 By using the lens, the aperture ST3, and a design that meets at least one of the conditions (1) to (3), the lens device 3 can effectively improve the viewing angle, effectively reduce distortion, effectively improve resolution, and effectively resist ambient temperature Variation and effective correction of aberrations.
表七為第5圖中鏡頭裝置3之各透鏡之相關參數表,表七資料顯示,第三實施例之鏡頭裝置3之有效焦距等於0.972mm、光圈值等於2.6、鏡頭總長度等於28.338mm、視角等於149.1度。 Table 7 is a table of related parameters of each lens of the lens device 3 in FIG. 5. The data in Table 7 shows that the effective focal length of the lens device 3 of the third embodiment is equal to 0.972 mm, the aperture value is equal to 2.6, and the total lens length is equal to 28.338 mm. The viewing angle is equal to 149.1 degrees.
表八為表七中各個透鏡之非球面表面之相關參數表,其中k為圓錐係數、A~G為非球面係數。 Table 8 is a table of related parameters of the aspheric surface of each lens in Table 7, where k is the conic coefficient and A ~ G are aspheric coefficients.
表九為第三實施例之鏡頭裝置3之相關參數值及其對應條件(1)至條件(3)之計算值,由表九可知,第三實施例之鏡頭裝置3皆 能滿足條件(1)至條件(3)之要求。 Table 9 shows the relevant parameter values of the lens device 3 of the third embodiment and the corresponding values calculated from the conditions (1) to (3). As can be seen from Table 9, the lens devices 3 of the third embodiment are all Can meet the requirements of conditions (1) to (3).
另外,第三實施例之鏡頭裝置3的光學性能也可達到要求,這可從第6A至第6C圖看出。第6A圖所示的,是第三實施例之鏡頭裝置3的場曲圖。第6B圖所示的,是第三實施例之鏡頭裝置3的畸變圖。第6C圖所示的,是第三實施例之鏡頭裝置3於溫度等於20℃時的調變轉換函數圖。第6D圖所示的,是第三實施例之鏡頭裝置3於溫度等於40℃時的調變轉換函數圖。第6E圖所示的,是第三實施例之鏡頭裝置3於溫度等於60℃時的調變轉換函數圖。第6F圖所示的,是第三實施例之鏡頭裝置3於溫度等於-20℃時的調變轉換函數圖。 In addition, the optical performance of the lens device 3 of the third embodiment can also meet the requirements, which can be seen from FIGS. 6A to 6C. FIG. 6A is a field curvature diagram of the lens device 3 of the third embodiment. FIG. 6B is a distortion diagram of the lens device 3 of the third embodiment. FIG. 6C is a graph of the modulation transfer function of the lens device 3 of the third embodiment when the temperature is equal to 20 ° C. FIG. 6D is a modulation transfer function diagram of the lens device 3 of the third embodiment when the temperature is equal to 40 ° C. FIG. 6E shows a modulation transfer function diagram of the lens device 3 of the third embodiment when the temperature is equal to 60 ° C. FIG. 6F is a graph of the modulation transfer function of the lens device 3 of the third embodiment when the temperature is equal to -20 ° C.
由第6A圖可看出,第三實施例之鏡頭裝置3對波長為0.470μm、0.510μm、0.555μm、0.610μm、0.650μm之光線,於子午方向與弧矢方向之場曲介於-0.01mm至0.08mm之間。 It can be seen from FIG. 6A that the lens device 3 of the third embodiment has a field curvature in the meridional direction and the sagittal direction between -0.01 and 0.510 μm, 0.555 μm, 0.610 μm, and 0.650 μm. mm to 0.08mm.
由第6B圖可看出,第三實施例之鏡頭裝置3對波長為0.470μm、0.510μm、0.555μm、0.610μm、0.650μm之光線所產生的畸變介於-10%至5%之間。 It can be seen from FIG. 6B that the distortion caused by the lens device 3 of the third embodiment for light having a wavelength of 0.470 μm, 0.510 μm, 0.555 μm, 0.610 μm, 0.650 μm is between -10% and 5%.
由第6C~6F圖可看出,第三實施例之鏡頭裝置3對波長範圍介於0.4700μm至0.6500μm之光線,在分別於子午方向與弧矢方向,視場角度分別為0.00度、30.00度、50.00度、60.00度、72.40度,空間頻率介於0lp/mm至150lp/mm的條件下,於溫度等於20℃時的調變轉換函數值介於0.12至1.0之間(如第6C圖所示),於溫度等於40℃時的調變轉換函數值介於0.12至1.0之間(如第6D圖所示),於溫度等於60℃時的調變轉換函數值介於0.02至1.0之間(如第6E圖所示),於溫度等於-20℃時的調變轉換函數值介於0.01至1.0之間(如第6F圖所示)。 It can be seen from FIGS. 6C to 6F that the lens device 3 of the third embodiment has a pair of rays with a wavelength ranging from 0.4700 μm to 0.6500 μm in the meridional direction and the sagittal direction, and the field angles are 0.00 degrees and 30.00, respectively. Degrees, 50.00 degrees, 60.00 degrees, 72.40 degrees, and the spatial frequency between 0 lp / mm and 150 lp / mm, at a temperature equal to 20 ° C, the modulation transfer function value is between 0.12 and 1.0 (as shown in Figure 6C) (Shown), the modulation transfer function value at a temperature equal to 40 ° C is between 0.12 and 1.0 (as shown in Figure 6D), and the modulation transfer function value at a temperature equal to 60 ° C is between 0.02 and 1.0 (As shown in Figure 6E), the value of the modulation transfer function at a temperature equal to -20 ° C is between 0.01 and 1.0 (as shown in Figure 6F).
顯見第三實施例之鏡頭裝置3之場曲、畸變都能被有效修正,鏡頭解析度也能滿足要求,從而得到較佳的光學性能。 It is obvious that the field curvature and distortion of the lens device 3 of the third embodiment can be effectively corrected, and the lens resolution can also meet the requirements, thereby obtaining better optical performance.
請參閱第7圖,第7圖係依據本發明之鏡頭裝置之第四實施例的透鏡配置與光路示意圖。鏡頭裝置4沿著一光軸OA4從一物側至一像側依序包括一第一透鏡L41、一第二透鏡L42、一第三透鏡L43、一第四透鏡L44、一光圈ST4、一第五透鏡L45、一第六透鏡L46、一第七透鏡L47、一濾光片OF4及一保護玻璃CG4。成像時,來自物側之光線最後成像於一成像面IMA4上,其中:第一透鏡L41、第二透鏡L42、第三透鏡L43、第七透鏡L47、濾光片OF4及保護玻璃CG4之表面型狀凹凸及屈光力分別與第一實施例中之第一透鏡L41、第二透鏡L42、第三透鏡L43、第七透鏡L47、濾光片OF1及保護玻璃CG1相似,並且第一透鏡L41至第六透鏡L46的材質分別與第一實施例之第一透鏡L11至第六透鏡L16相似,在此皆不加以贅述。 Please refer to FIG. 7, which is a schematic diagram of a lens configuration and an optical path of a fourth embodiment of a lens device according to the present invention. The lens device 4 includes a first lens L41, a second lens L42, a third lens L43, a fourth lens L44, an aperture ST4, and a first lens L41 in order from an object side to an image side along an optical axis OA4. Five lenses L45, a sixth lens L46, a seventh lens L47, a filter OF4, and a protective glass CG4. During imaging, the light from the object side is finally imaged on an imaging surface IMA4, among which: the first lens L41, the second lens L42, the third lens L43, the seventh lens L47, the filter OF4, and the surface type of the protective glass CG4 The concave-convex shape and refractive power are similar to the first lens L41, the second lens L42, the third lens L43, the seventh lens L47, the filter OF1, and the protective glass CG1 in the first embodiment, and the first lens L41 to the sixth The material of the lens L46 is similar to that of the first lens L11 to the sixth lens L16 of the first embodiment, and will not be repeated here.
在本實施例中,第四透鏡L44可例如為雙凹透鏡,具有負 屈光力;第五透鏡L45可例如為雙凸透鏡,具有正屈光力;第六透鏡L46可例如為雙凹透鏡,具有負屈光力;第七透鏡L47可例如為塑膠材質製成。 In this embodiment, the fourth lens L44 may be, for example, a biconcave lens having a negative The fifth lens L45 may be, for example, a biconvex lens with positive refractive power; the sixth lens L46 may be, for example, a biconcave lens with negative refractive power; and the seventh lens L47 may be made of plastic material, for example.
利用上述透鏡、光圈ST4及至少滿足條件(1)至條件(3)其中一條件之設計,使得鏡頭裝置4能有效的提升視角、有效的降低畸變、有效的提升解析度、有效的抗環境溫度變化、有效的修正像差。 Utilizing the above lens, aperture ST4 and a design that satisfies at least one of the conditions (1) to (3), the lens device 4 can effectively improve the viewing angle, effectively reduce distortion, effectively improve resolution, and effectively resist ambient temperature Variation and effective correction of aberrations.
表十為第7圖中鏡頭裝置4之各透鏡之相關參數表,表十資料顯示,第四實施例之鏡頭裝置4之有效焦距等於0.976mm、光圈值等於2.6、鏡頭總長度等於29.222mm、視角等於151.1度。 Table 10 is a table of related parameters of each lens of the lens device 4 in FIG. 7. The data in Table 10 shows that the effective focal length of the lens device 4 of the fourth embodiment is equal to 0.976 mm, the aperture value is equal to 2.6, and the total lens length is equal to 29.222 mm. The viewing angle is equal to 151.1 degrees.
表十一為表十中各個透鏡之非球面表面之相關參數表,其中k為圓錐係數、A~G為非球面係數。 Table 11 is a table of related parameters of the aspheric surface of each lens in Table 10, where k is the conic coefficient and A ~ G are aspheric coefficients.
表十二為第四實施例之鏡頭裝置4之相關參數值及其對應條件(1)至條件(3)之計算值,由表十二可知,第四實施例之鏡頭裝置4皆能滿足條件(1)至條件(3)之要求。 Table 12 shows the relevant parameter values of the lens device 4 of the fourth embodiment and the calculated values of corresponding conditions (1) to (3). As can be seen from Table 12, the lens device 4 of the fourth embodiment can meet the conditions. (1) to the requirements of condition (3).
另外,第四實施例之鏡頭裝置4的光學性能也可達到要求,這可從第8A至第8C圖看出。第8A圖所示的,是第四實施例之鏡頭裝置4的場曲圖。第8B圖所示的,是第四實施例之鏡頭裝置4的畸變圖。第8C圖所示的,是第四實施例之鏡頭裝置4於溫度等於20℃時的調變轉換函數圖。第8D圖所示的,是第四實施例之鏡頭裝置4於溫度等於40℃時的調變轉換函數圖。第8E圖所示的,是第四實施例之鏡頭裝置4於溫度等於60℃時的調變轉換函數圖。第8F圖所示的,是第四實施例之鏡頭裝置4於溫度等於-20℃時的調變轉換函數圖。 In addition, the optical performance of the lens device 4 of the fourth embodiment can also meet the requirements, which can be seen from FIGS. 8A to 8C. FIG. 8A is a field curvature diagram of the lens device 4 of the fourth embodiment. FIG. 8B is a distortion diagram of the lens device 4 of the fourth embodiment. FIG. 8C shows a modulation transfer function diagram of the lens device 4 of the fourth embodiment when the temperature is equal to 20 ° C. FIG. 8D is a graph of the modulation transfer function of the lens device 4 of the fourth embodiment when the temperature is equal to 40 ° C. FIG. 8E is a graph of the modulation transfer function of the lens device 4 of the fourth embodiment when the temperature is equal to 60 ° C. FIG. 8F is a graph of the modulation transfer function of the lens device 4 of the fourth embodiment when the temperature is equal to -20 ° C.
由第8A圖可看出,第四實施例之鏡頭裝置4對波長為0.470μm、0.510μm、0.555μm、0.610μm、0.650μm之光線,於子午方向與弧矢方向之場曲介於-0.035mm至0.05mm之間。 As can be seen from FIG. 8A, the lens device 4 of the fourth embodiment has a field curvature in the meridional direction and the sagittal direction of -0.035 for light rays with a wavelength of 0.470 μm, 0.510 μm, 0.555 μm, 0.610 μm, and 0.650 μm. mm to 0.05mm.
由第8B圖可看出,第四實施例之鏡頭裝置4對波長為0.470μm、0.510μm、0.555μm、0.610μm、0.650μm之光線所產生的畸變介於-10%至5%之間。 It can be seen from FIG. 8B that the distortion caused by the lens device 4 of the fourth embodiment for light having a wavelength of 0.470 μm, 0.510 μm, 0.555 μm, 0.610 μm, 0.650 μm is between -10% and 5%.
由第8C~8F圖可看出,第四實施例之鏡頭裝置4對波長範圍介於0.4700μm至0.6500μm之光線,在分別於子午方向與弧矢方向,視場角度分別為0.00度、30.00度、50.00度、60.00度、72.40度,空間頻率介於0lp/mm至150lp/mm的條件下,於溫度等於20℃時的調變轉換函數值介於0.14至1.0之間(如第8C圖所示),於溫度等於40℃時的調變轉換函數值介於0.12至1.0之間(如第8D圖所示),於溫度等於60℃時的調變轉換函數值介於0.01至1.0之間(如第8E圖所示),於溫度等於-20℃時的調變轉換函數值介於0.01至1.0之間。 As can be seen from Figures 8C ~ 8F, the lens device 4 of the fourth embodiment has a pair of rays with a wavelength ranging from 0.4700 μm to 0.6500 μm in the meridional and sagittal directions, respectively, and the field angles are 0.00 degrees and 30.00 Degrees, 50.00 degrees, 60.00 degrees, 72.40 degrees, with a spatial frequency between 0 lp / mm and 150 lp / mm, the modulation transfer function value at a temperature equal to 20 ° C is between 0.14 and 1.0 (as shown in Figure 8C) (Shown), the value of the modulation transfer function at a temperature equal to 40 ° C is between 0.12 and 1.0 (as shown in Figure 8D), and the value of the modulation transfer function at a temperature equal to 60 ° C is between 0.01 and 1.0 (As shown in Figure 8E), the value of the modulation transfer function at a temperature equal to -20 ° C is between 0.01 and 1.0.
顯見第四實施例之鏡頭裝置4之場曲、畸變都能被有效修正,鏡頭解析度也能滿足要求,從而得到較佳的光學性能。 It is obvious that the field curvature and distortion of the lens device 4 of the fourth embodiment can be effectively corrected, and the lens resolution can also meet the requirements, thereby obtaining better optical performance.
雖然本發明已用較佳實施例揭露如上,然其並非用以限定本發明,本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed as above with preferred embodiments, it is not intended to limit the present invention. Those with ordinary knowledge in the technical field to which the present invention pertains may make various changes and modifications without departing from the spirit and scope of the present invention. Retouching, so the scope of protection of the present invention shall be determined by the scope of the attached patent application.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108103300A TWI676819B (en) | 2019-01-29 | 2019-01-29 | Camera device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108103300A TWI676819B (en) | 2019-01-29 | 2019-01-29 | Camera device |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI676819B true TWI676819B (en) | 2019-11-11 |
TW202028798A TW202028798A (en) | 2020-08-01 |
Family
ID=69188731
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108103300A TWI676819B (en) | 2019-01-29 | 2019-01-29 | Camera device |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI676819B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110941078A (en) * | 2019-12-26 | 2020-03-31 | 瑞声通讯科技(常州)有限公司 | Image pickup optical lens |
TWI828879B (en) * | 2020-03-16 | 2024-01-11 | 揚明光學股份有限公司 | Optical lens and manufacturing method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014102291A (en) * | 2012-11-16 | 2014-06-05 | Ricoh Co Ltd | Wide angle lens, imaging lens unit, imaging apparatus, and information device |
CN206505215U (en) * | 2016-12-27 | 2017-09-19 | 东莞市宇瞳光学科技股份有限公司 | The big thang-kng small-sized wide-angle lens of 2.8mm |
WO2017213110A1 (en) * | 2016-06-06 | 2017-12-14 | コニカミノルタ株式会社 | Image pickup optical system, lens unit, and image pickup device |
TW201816461A (en) * | 2016-10-28 | 2018-05-01 | 光芒光學股份有限公司 | Optical lens |
-
2019
- 2019-01-29 TW TW108103300A patent/TWI676819B/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014102291A (en) * | 2012-11-16 | 2014-06-05 | Ricoh Co Ltd | Wide angle lens, imaging lens unit, imaging apparatus, and information device |
WO2017213110A1 (en) * | 2016-06-06 | 2017-12-14 | コニカミノルタ株式会社 | Image pickup optical system, lens unit, and image pickup device |
TW201816461A (en) * | 2016-10-28 | 2018-05-01 | 光芒光學股份有限公司 | Optical lens |
CN206505215U (en) * | 2016-12-27 | 2017-09-19 | 东莞市宇瞳光学科技股份有限公司 | The big thang-kng small-sized wide-angle lens of 2.8mm |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110941078A (en) * | 2019-12-26 | 2020-03-31 | 瑞声通讯科技(常州)有限公司 | Image pickup optical lens |
CN110941078B (en) * | 2019-12-26 | 2022-01-07 | 诚瑞光学(常州)股份有限公司 | Image pickup optical lens |
TWI828879B (en) * | 2020-03-16 | 2024-01-11 | 揚明光學股份有限公司 | Optical lens and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
TW202028798A (en) | 2020-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI491915B (en) | Wide-angle lens | |
JP5905501B2 (en) | Zoom lens | |
CN103777317B (en) | Slim camera lens | |
TW201925844A (en) | Lens assembly | |
TWI722713B (en) | Wide-angle lens assembly | |
TWI693445B (en) | Wide-angle lens assembly | |
TWI690742B (en) | Lens assembly | |
TWI676819B (en) | Camera device | |
TWI556004B (en) | Lens assembly | |
TWI668480B (en) | Lens assembly | |
TWI724567B (en) | Lens assembly | |
TWI736462B (en) | Lens assembly | |
TWI687730B (en) | Lens assembly | |
TWI665486B (en) | Wide-angle lens | |
TWI716870B (en) | Lens assembly | |
TWI735653B (en) | Lens assembly | |
TWI808056B (en) | Wide-angle lens assembly | |
TWI805340B (en) | Wide-angle lens assembly | |
TW202040204A (en) | Wide-angle lens assembly | |
TWI835185B (en) | Wide-angle lens assembly | |
TWI805073B (en) | Wide-angle lens assembly | |
TWI762021B (en) | Lens assembly | |
TWI855795B (en) | Wide-angle lens assembly | |
TWI838850B (en) | Wide-angle lens assembly | |
TWI808344B (en) | Lens assembly |