TWI595260B - Lens assembly - Google Patents

Lens assembly Download PDF

Info

Publication number
TWI595260B
TWI595260B TW104123652A TW104123652A TWI595260B TW I595260 B TWI595260 B TW I595260B TW 104123652 A TW104123652 A TW 104123652A TW 104123652 A TW104123652 A TW 104123652A TW I595260 B TWI595260 B TW I595260B
Authority
TW
Taiwan
Prior art keywords
lens
imaging
aperture
abbe number
imaging lens
Prior art date
Application number
TW104123652A
Other languages
Chinese (zh)
Other versions
TW201704799A (en
Inventor
陳柏言
張錫齡
Original Assignee
亞太精密工業(深圳)有限公司
亞太光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 亞太精密工業(深圳)有限公司, 亞太光電股份有限公司 filed Critical 亞太精密工業(深圳)有限公司
Priority to TW104123652A priority Critical patent/TWI595260B/en
Publication of TW201704799A publication Critical patent/TW201704799A/en
Application granted granted Critical
Publication of TWI595260B publication Critical patent/TWI595260B/en

Links

Landscapes

  • Lenses (AREA)

Description

成像鏡頭 Imaging lens

本發明係有關於一種成像鏡頭。 The present invention relates to an imaging lens.

數位相機與手機不斷的往高畫素與輕量化發展,使得小型化與具有高解析度的成像鏡頭需求大增。習知的五片透鏡組成的成像鏡頭大都採用一片低阿貝係數(Abbe Number)透鏡與四片高阿貝係數(Abbe Number)透鏡組合,再搭配前置光圈,以達到成像鏡頭小型化與提高解析度之目的。唯,仍未臻完善尚有改進之處,需要有另一種架構的成像鏡頭,才能滿足現今的需求。 Digital cameras and mobile phones are constantly moving toward high-definition and lightweight, making the demand for miniaturization and high-resolution imaging lenses increasing. Most of the imaging lenses consisting of five lenses use a low Abbe number lens and four high Abbe number lenses, combined with a front aperture to achieve imaging lens miniaturization and improvement. The purpose of resolution. However, there are still improvements that still need to be improved, and an imaging lens with another architecture is needed to meet today's needs.

有鑑於此,本發明之主要目的在於提供一種成像鏡頭,其鏡頭總長度短小,但是仍具有良好的光學性能,鏡頭解析度也能滿足要求。 In view of this, the main object of the present invention is to provide an imaging lens whose lens length is short, but still has good optical performance, and the lens resolution can also meet the requirements.

本發明之成像鏡頭沿著光軸從物側至像側依序包括一第一透鏡、一第二透鏡、一光圈、一第三透鏡、一第四透鏡及一第五透鏡。第一透鏡為雙凸透鏡具有正屈光力。第二透鏡為凸凹透鏡具有負屈光力,此第二透鏡之凸面朝向物側凹面朝向像側。第三透鏡為凸凹透鏡具有負屈光力,此第三透鏡之凸面朝向物側凹面朝向像側。第四透鏡為凹凸透鏡具有正屈光力,此第四透鏡之凹面朝向物側凸面朝向像側。第五透鏡為雙凹透鏡具有負屈光力。成像鏡頭滿足以下條件:1.10<DL1/DST<10.90;其中, DL1為第一透鏡之有效直徑,DST為光圈之有效直徑。 The imaging lens of the present invention sequentially includes a first lens, a second lens, an aperture, a third lens, a fourth lens and a fifth lens from the object side to the image side along the optical axis. The first lens is a lenticular lens having a positive refractive power. The second lens has a convex-concave lens having a negative refractive power, and the convex surface of the second lens faces the object side concave surface toward the image side. The third lens has a convex-concave lens having a negative refractive power, and the convex surface of the third lens faces the object side concave surface toward the image side. The fourth lens has a positive refractive power of the meniscus lens, and the concave surface of the fourth lens faces the image side convex surface toward the image side. The fifth lens is a biconcave lens having a negative refractive power. The imaging lens satisfies the following condition: 1.10 < D L1 / D ST <10.90; wherein D L1 is the effective diameter of the first lens, and D ST is the effective diameter of the aperture.

其中成像鏡頭滿足以下條件:1.10<DL1/DL2<1.35;其中,DL1為第一透鏡之有效直徑,DL2為第二透鏡之有效直徑。 The imaging lens satisfies the following condition: 1.10<D L1 /D L2 <1.35; wherein D L1 is the effective diameter of the first lens, and D L2 is the effective diameter of the second lens.

其中第一透鏡、第四透鏡及第五透鏡之阿貝係數(Abbe Number)大於第二透鏡及第三透鏡之阿貝係數(Abbe Number)。 The Abbe Number of the first lens, the fourth lens, and the fifth lens is greater than the Abbe Number of the second lens and the third lens.

其中成像鏡頭滿足以下條件:Vd1>40,Vd2<40,Vd3<40,Vd4>40,Vd5>40;其中,Vd1為第一透鏡之阿貝係數(Abbe Number),Vd2為第二透鏡之阿貝係數(Abbe Number),Vd3為第三透鏡之阿貝係數(Abbe Number),Vd4為第四透鏡之阿貝係數(Abbe Number),Vd5為第五透鏡之阿貝係數(Abbe Number)。 The imaging lens satisfies the following conditions: Vd 1 >40, Vd 2 <40, Vd 3 <40, Vd 4 >40, Vd 5 >40; wherein Vd 1 is the Abbe Number of the first lens, Vd 2 is the Abbe Number of the second lens, Vd 3 is the Abbe Number of the third lens, Vd 4 is the Abbe Number of the fourth lens, and Vd 5 is the fifth lens Abbe Number.

其中第一透鏡、第三透鏡及第四透鏡滿足以下條件:-1.3<f/f3+f/f4-f/f1<-0.1;其中,f為成像鏡頭之有效焦距,f1為第一透鏡之有效焦距,f3為第三透鏡之有效焦距,f4為第四透鏡之有效焦距。 Wherein the first lens, the third lens and the fourth lens satisfy the following condition: -1.3<f/f 3 +f/f 4 -f/f 1 <−0.1; wherein f is an effective focal length of the imaging lens, and f 1 is The effective focal length of the first lens, f 3 is the effective focal length of the third lens, and f 4 is the effective focal length of the fourth lens.

其中第三透鏡及第四透鏡滿足以下條件:-54.97<Vd4-Vd3<43.61;其中,Vd3為第三透鏡之阿貝係數(Abbe Number),Vd4為第四透鏡之阿貝係數(Abbe Number)。 The third lens and the fourth lens satisfy the following condition: -54.97<Vd 4 -Vd 3 <43.61; wherein Vd 3 is the Abbe number of the third lens, and Vd 4 is the Abbe number of the fourth lens (Abbe Number).

其中成像鏡頭滿足以下條件:0.6<SL/TTL<0.87;其中,SL為光圈至一成像面於光軸上之距離,TTL為第一透鏡之物側面至成像面於光軸上之距離。 The imaging lens satisfies the following condition: 0.6<SL/TTL<0.87; wherein SL is the distance from the aperture to an imaging plane on the optical axis, and TTL is the distance from the object side of the first lens to the imaging plane on the optical axis.

其中第四透鏡係由玻璃材質製成。 The fourth lens is made of a glass material.

其中第一透鏡、第二透鏡、第三透鏡及第五透鏡係由塑膠材質製成。 The first lens, the second lens, the third lens and the fifth lens are made of a plastic material.

其中光圈包括一光孔,此光孔之直徑可改變大小,以使光圈之有效直徑改變大小。 The aperture includes a light aperture, and the diameter of the aperture can be changed to change the effective diameter of the aperture.

其中成像鏡頭滿足以下條件:1.4F13;其中,F為成像鏡頭之光圈值(F-number)。 The imaging lens satisfies the following conditions: 1.4 F 13; where F is the aperture value (F-number) of the imaging lens.

為使本發明之上述目的、特徵、和優點能更明顯易懂,下文特舉較佳實施例並配合所附圖式做詳細說明。 The above described objects, features, and advantages of the invention will be apparent from the description and appended claims

1、2、3‧‧‧成像鏡頭 1, 2, 3 ‧ ‧ imaging lens

L11、L21、L31‧‧‧第一透鏡 L11, L21, L31‧‧‧ first lens

L12、L22、L32‧‧‧第二透鏡 L12, L22, L32‧‧‧ second lens

L13、L23、L33‧‧‧第三透鏡 L13, L23, L33‧‧‧ third lens

L14、L24、L34‧‧‧第四透鏡 L14, L24, L34‧‧‧ fourth lens

L15、L25、L35‧‧‧第五透鏡 L15, L25, L35‧‧‧ fifth lens

ST1、ST2、ST3‧‧‧光圈 ST1, ST2, ST3‧‧ ‧ aperture

OF1、OF2、OF3‧‧‧濾光片 OF1, OF2, OF3‧‧‧ Filters

IMA1、IMA2、IMA3‧‧‧成像面 IMA1, IMA2, IMA3‧‧‧ imaging surface

OA1、OA2、OA3‧‧‧光軸 OA1, OA2, OA3‧‧‧ optical axis

S11、S12、S13、S14、S15、S16、S17‧‧‧面 S11, S12, S13, S14, S15, S16, S17‧‧

S18、S19、S110、S111、S112、S113‧‧‧面 S18, S19, S110, S111, S112, S113‧‧‧

S21、S22、S23、S24、S25、S26、S27‧‧‧面 S21, S22, S23, S24, S25, S26, S27‧‧

S28、S29、S210、S211、S212、S213‧‧‧面 S28, S29, S210, S211, S212, S213‧‧‧

S31、S32、S33、S34、S35、S36、S37‧‧‧面 S31, S32, S33, S34, S35, S36, S37‧‧

S38、S39、S310、S311、S312、S313‧‧‧面 S38, S39, S310, S311, S312, S313‧‧

第1圖係依據本發明之成像鏡頭之第一實施例的透鏡配置與光路示意圖。 1 is a schematic view showing a lens configuration and an optical path of a first embodiment of an imaging lens according to the present invention.

第2A圖係第1圖之成像鏡頭之場曲圖。 Fig. 2A is a field curvature diagram of the imaging lens of Fig. 1.

第2B圖係第1圖之成像鏡頭之畸變圖。 Fig. 2B is a distortion diagram of the imaging lens of Fig. 1.

第2C圖係第1圖之成像鏡頭之調變轉換函數圖。 Fig. 2C is a diagram of the modulation conversion function of the imaging lens of Fig. 1.

第3圖係依據本發明之成像鏡頭之第二實施例的透鏡配置與光路示意圖。 Fig. 3 is a schematic view showing a lens configuration and an optical path of a second embodiment of the imaging lens according to the present invention.

第4A圖係第3圖之成像鏡頭之場曲圖。 Fig. 4A is a field curvature diagram of the imaging lens of Fig. 3.

第4B圖係第3圖之成像鏡頭之畸變圖。 Fig. 4B is a distortion diagram of the imaging lens of Fig. 3.

第4C圖係第3圖之成像鏡頭之調變轉換函數圖。 Figure 4C is a diagram of the modulation transfer function of the imaging lens of Figure 3.

第5圖係依據本發明之成像鏡頭之第三實施例的透鏡配置與光路示意圖。 Fig. 5 is a view showing a lens configuration and an optical path of a third embodiment of the imaging lens according to the present invention.

第6A圖係第5圖之成像鏡頭之場曲圖。 Fig. 6A is a field curvature diagram of the imaging lens of Fig. 5.

第6B圖係第5圖之成像鏡頭之畸變圖。 Fig. 6B is a distortion diagram of the imaging lens of Fig. 5.

第6C圖係第5圖之成像鏡頭之調變轉換函數圖。 Fig. 6C is a diagram of the modulation conversion function of the imaging lens of Fig. 5.

請參閱第1圖,第1圖係依據本發明之成像鏡頭之第一實施例的透鏡配置與光路示意圖。成像鏡頭1沿著光軸OA1從物側至像側依序包括一第一透鏡L11、一第二透鏡L12、一光圈ST1、一第三透鏡L13、一第四透鏡L14、一第五透鏡L15及一濾光片OF1。成像時,來自物側之光線最後成像於一成像面IMA1上。第一透鏡L11具有正屈光力由塑膠材質製成,其物側面S11為凸面像側面S12為凸面,物側面S11與像側面S12皆為非球面表面。第二透鏡L12具有負屈光力由塑膠材質製成,其物側面S13為凸面像側面S14為凹面,物側面S13與像側面S14皆為非球面表面。第三透鏡L13具有負屈光力由塑膠材質製成,其物側面S16為凸面像側面S17為凹面,物側面S16與像側面S17皆為非球面表面。第四透鏡L14具有正屈光力由玻璃材質製成,其物側面S18為凹面像側面S19為凸面,物側面S18與像側面S19皆為非球面表面。第五透鏡L15具有負屈光力由塑膠材質製成,其物側面S110為凹面像側面S111為凹面,物側面S110與像側面S111皆為非球面表面。濾光片OF1之物側面S112與像側面S113皆為平面。在第一實施例中,第一透鏡L11、第四透鏡L14及第五透鏡L15的阿貝係數大於第二透鏡L12及第三透鏡L13的阿貝係數。 Please refer to FIG. 1. FIG. 1 is a schematic view showing a lens configuration and an optical path of a first embodiment of an imaging lens according to the present invention. The imaging lens 1 sequentially includes a first lens L11, a second lens L12, an aperture ST1, a third lens L13, a fourth lens L14, and a fifth lens L15 from the object side to the image side along the optical axis OA1. And a filter OF1. At the time of imaging, the light from the object side is finally imaged on an image plane IMA1. The first lens L11 has a positive refractive power made of a plastic material, and the object side surface S11 has a convex image side surface S12 as a convex surface, and the object side surface S11 and the image side surface S12 are aspherical surfaces. The second lens L12 has a negative refractive power made of a plastic material, and the object side surface S13 has a convex image side surface S14 which is a concave surface, and the object side surface S13 and the image side surface S14 are aspherical surfaces. The third lens L13 has a negative refractive power made of a plastic material, and the object side surface S16 has a convex image side surface S17 which is a concave surface, and the object side surface S16 and the image side surface S17 are both aspherical surfaces. The fourth lens L14 has a positive refractive power made of a glass material, and the object side surface S18 has a concave image side surface S19 which is a convex surface, and the object side surface S18 and the image side surface S19 are aspherical surfaces. The fifth lens L15 has a negative refractive power made of a plastic material, and the object side surface S110 has a concave image side surface S111 which is a concave surface, and the object side surface S110 and the image side surface S111 are aspherical surfaces. Both the object side surface S112 and the image side surface S113 of the filter OF1 are flat. In the first embodiment, the Abbe coefficients of the first lens L11, the fourth lens L14, and the fifth lens L15 are larger than the Abbe coefficients of the second lens L12 and the third lens L13.

另外,為使本發明之成像鏡頭能保持良好的光學性能,第一實施例中的成像鏡頭1需滿足底下十一條件: In addition, in order to maintain good optical performance of the imaging lens of the present invention, the imaging lens 1 of the first embodiment is required to satisfy the following eleven conditions:

1.10<D1L11/D1ST1<10.90 (1) 1.10<D1 L11 /D1 ST1 <10.90 (1)

1.10<D1L11/D1L12<1.35 (2) 1.10<D1 L11 /D1 L12 <1.35 (2)

Vd11>40 (3) Vd1 1 >40 (3)

Vd12<40 (4) Vd1 2 <40 (4)

Vd13<40 (5) Vd1 3 <40 (5)

Vd14>40 (6) Vd1 4 >40 (6)

Vd15>40 (7) Vd1 5 >40 (7)

-1.3<f1/f13+f1/f14-f1/f11<-0.1 (8) -1.3<f1/f1 3 +f1/f1 4 -f1/f1 1 <-0.1 (8)

-54.97<Vd14-Vd13<43.61 (9) -54.97<Vd1 4 -Vd1 3 <43.61 (9)

0.6<SL1/TTL1<0.87 (10) 0.6<SL1/TTL1<0.87 (10)

其中,D1L11為第一透鏡L11之有效直徑,D1L12為第二透鏡L12之有效直徑,D1ST1為光圈ST1之有效直徑,上述第一透鏡L11之有效直徑D1L11是指從第一透鏡L11的一邊緣通過第一透鏡L11之中心點至另一邊緣的直線長度,第二透鏡L12之有效直徑D1L12是指從第二透鏡L12的一邊緣通過第二透鏡L12之中心點至另一邊緣的直線長度,而光圈ST1之有效直徑D1ST1是指光圈ST1的一光孔之直徑。Vd11為第一透鏡L11之阿貝係數(Abbe Number),Vd12為第二透鏡L12之阿貝係數(Abbe Number),Vd13為第三透鏡L13之阿貝係數(Abbe Number),Vd14為第四透鏡L14之阿貝係數(Abbe Number),Vd15為第五透鏡L15之阿貝係數(Abbe Number),f1為成像鏡頭1之有效焦距,f11為第一透鏡L11之有效焦距,f13為第三透鏡L13之有效焦距,f14為第四透鏡L14之有效焦距,SL1為光圈ST1至成像面IMA1於光軸OA1上之距離,TTL1為第一透鏡L11之物側面S11至成像面IMA1於光軸OA1上之距離。 Wherein D1 L11 is the effective diameter of the first lens L11, D1 L12 is the effective diameter of the second lens L12, D1 ST1 is the effective diameter of the aperture ST1, and the effective diameter D1 L11 of the first lens L11 is from the first lens L11 One edge passes through the linear length from the center point of the first lens L11 to the other edge, and the effective diameter D1 L12 of the second lens L12 means from one edge of the second lens L12 through the center point of the second lens L12 to the other edge The linear length of the aperture ST1 and the effective diameter D1 ST1 of the aperture ST1 refer to the diameter of a light aperture of the aperture ST1. Vd1 1 is the Abbe Number of the first lens L11, Vd1 2 is the Abbe Number of the second lens L12, and Vd1 3 is the Abbe Number of the third lens L13, Vd1 4 The Abbe Number of the fourth lens L14, Vd1 5 is the Abbe Number of the fifth lens L15, f1 is the effective focal length of the imaging lens 1, and f1 1 is the effective focal length of the first lens L11. F1 3 is the effective focal length of the third lens L13, f1 4 is the effective focal length of the fourth lens L14, SL1 is the distance from the aperture ST1 to the imaging plane IMA1 on the optical axis OA1, and TTL1 is the object side S11 of the first lens L11 to the imaging The distance of the face IMA1 on the optical axis OA1.

利用上述透鏡與光圈ST1之設計,使得成像鏡頭1能有效的縮短鏡頭總長度、有效的修正像差、提升鏡頭解析度。 With the design of the above lens and aperture ST1, the imaging lens 1 can effectively shorten the total length of the lens, effectively correct aberrations, and improve lens resolution.

表一為第1圖中成像鏡頭1之各透鏡之相關參數表,表一資料顯示第一實施例之成像鏡頭1之有效焦距等於4.914mm、光圈值等於1.6、鏡頭總長度等於5.515mm、視角等於120°、第一透鏡L11的有效直徑等於2.68mm、第二透鏡L12的有效直徑等於2.030mm、光圈ST1的有效直徑等於1.998mm。 Table 1 is a table of related parameters of the lenses of the imaging lens 1 in Fig. 1. Table 1 shows that the effective focal length of the imaging lens 1 of the first embodiment is equal to 4.914 mm, the aperture value is equal to 1.6, and the total length of the lens is equal to 5.515 mm. Equal to 120°, the effective diameter of the first lens L11 is equal to 2.68 mm, the effective diameter of the second lens L12 is equal to 2.030 mm, and the effective diameter of the aperture ST1 is equal to 1.998 mm.

表一中各個透鏡之非球面表面凹陷度z由下列公式所得到:z=ch2/{1+[1-(k+1)c2h2]1/2}+Ah4+Bh6+Ch8+Dh10+Eh12+Fh14+Gh16 The aspherical surface depression z of each lens in Table 1 is obtained by the following formula: z = ch 2 /{1 + [1 - (k + 1) c 2 h 2 ] 1/2 } + Ah 4 + Bh 6 + Ch 8 +Dh 10 +Eh 12 +Fh 14 +Gh 16

其中:c:曲率;h:透鏡表面任一點至光軸之垂直距離;k:圓錐係數;A~G:非球面係數。 Where: c: curvature; h: vertical distance from any point on the lens surface to the optical axis; k: conic coefficient; A~G: aspheric coefficient.

表二為表一中各個透鏡之非球面表面之相關參數表,其中k為圓錐係數(Conic Constant)、A~G為非球面係數。 Table 2 is a table of related parameters of the aspherical surface of each lens in Table 1, where k is a conical coefficient (Conic Constant) and A~G is an aspherical coefficient.

第一實施例之成像鏡頭1,其第一透鏡L11的有效直徑D1L11=2.68mm,第二透鏡L12的有效直徑D1L12=2.030mm,光圈ST1的有效直徑D1ST1=1.998mm,第一透鏡L11之阿貝係數(Abbe Number)Vd11=56.1,第二透鏡L12之阿貝係數(Abbe Number)Vd12=21.5,第三透鏡L13之阿貝係數(Abbe Number)Vd13=21.5,第四透鏡L14之阿貝係數(Abbe Number)Vd14=40.3,第五透鏡L15之阿貝係數(Abbe Number)Vd15=56.1,成像鏡頭1之有效焦距f1=4.914mm,第一透鏡L11之有效焦距f11=3.0183mm, 第三透鏡L13之有效焦距f13=-13.9211mm,第四透鏡L14之有效焦距f14=3.9326mm,光圈ST1至成像面IMA1於光軸OA1上之距離SL1=3.778mm,第一透鏡L11之物側面S11至成像面IMA1於光軸OA1上之距離TTL1=5.515mm,由上述資料可得到D1L11/D1ST1=1.34、D1L11/D1L12=1.32、Vd11=56.1、Vd12=21.5、Vd13=21.5、Vd14=40.3、Vd15=56.1、f1/f13+f1/f14-f1/f11=-0.7314、Vd14-Vd13=18.8、SL1/TTL1=0.685、F1=1.6皆能滿足上述條件(1)至條件(11)之要求。 The imaging lens 1 of the first embodiment has an effective diameter D1 L11 of the first lens L11 = 2.68 mm, an effective diameter D1 L12 of the second lens L12 = 2.030 mm, and an effective diameter D1 ST1 of the aperture ST1 = 1.998 mm, the first lens The Abbe Number of V11 is Vd1 1 = 56.1, the Abbe Number of the second lens L12 is Vd1 2 = 21.5, and the Abbe Number of the third lens L13 is Vd1 3 = 21.5, and the fourth The Abbe Number of the lens L14 is Vd1 4 = 40.3, the Abbe Number of the fifth lens L15 is Vd1 5 = 56.1, the effective focal length of the imaging lens 1 is f1 = 4.914 mm, and the effective focal length of the first lens L11 F1 1 =3.0183 mm, the effective focal length f1 3 of the third lens L13 is -13.9211 mm, the effective focal length of the fourth lens L14 is f1 4 =3.9326 mm, and the distance from the aperture ST1 to the imaging plane IMA1 on the optical axis OA1 is SL1=3.778 mm The distance from the object side surface S11 of the first lens L11 to the imaging surface IMA1 on the optical axis OA1 is TTL1=5.515 mm, and D1 L11 /D1 ST1 =1.34, D1 L11 /D1 L12 =1.32, Vd1 1 =56.1 can be obtained from the above data. , Vd1 2 = 21.5, Vd1 3 = 21.5, Vd1 4 = 40.3, Vd1 5 = 56.1, f1/f1 3 + f1/f1 4 - f1/f1 1 = -0.7314, Vd1 4 - Vd1 3 = 18.8, SL1/TTL1 =0 .685 and F1=1.6 can satisfy the requirements of the above conditions (1) to (11).

另外,第一實施例之成像鏡頭1的光學性能也可達到要求,這可從第2A至第2C圖看出。第2A圖所示的,是第一實施例之成像鏡頭1的場曲(Field Curvature)圖。第2B圖所示的,是第一實施例之成像鏡頭1的畸變(Distortion)圖。第2C圖所示的,是第一實施例之成像鏡頭1的調變轉換函數(Modulation Transfer Function)圖。 In addition, the optical performance of the imaging lens 1 of the first embodiment can also be achieved, which can be seen from the 2A to 2C drawings. 2A is a Field Curvature diagram of the imaging lens 1 of the first embodiment. Fig. 2B is a distortion diagram of the imaging lens 1 of the first embodiment. 2C is a modulation transfer function diagram of the imaging lens 1 of the first embodiment.

由第2A圖可看出,第一實施例之成像鏡頭1對波長為0.435μm、0.555μm、0.650μm之光線所產生的子午(Tangential)方向與弧矢(Sagittal)方向場曲介於-0.16mm至0.06mm之間。由第2B圖可看出,第一實施例之成像鏡頭1對波長為0.435μm、0.555μm、0.650μm之光線所產生的畸變介於0.0%至1.4%之間。由第2C圖可看出,第一實施例之成像鏡頭1對波長範圍介於0.435μm至0.650μm之光線,分別於子午(Tangential)方向與弧矢(Sagittal)方向,視場高度分別為0.000mm、0.6864mm、1.3728mm、2.4024mm、3.4320mm,空間頻率介於0lp/mm至446lp/mm,其調變轉換函數值介於0.0至1.0之間。顯見第一實施例之成像鏡頭1之場曲、畸變都能被有效修正,鏡頭解析度也能滿足要求,從而得到較佳的光學性能。 As can be seen from FIG. 2A, the imaging lens 1 of the first embodiment has a field of the Tangential direction and the Sagittal direction of the light having a wavelength of 0.435 μm, 0.555 μm, and 0.650 μm, which is between -0.16. Between mm and 0.06 mm. As can be seen from FIG. 2B, the imaging lens 1 of the first embodiment has a distortion of between 0.0% and 1.4% for light having a wavelength of 0.435 μm, 0.555 μm, and 0.650 μm. As can be seen from FIG. 2C, the imaging lens 1 of the first embodiment has a wavelength range of 0.435 μm to 0.650 μm in the direction of the Tangential direction and the Sagittal direction, respectively, and the field of view height is 0.000. Mm, 0.6864mm, 1.3728mm, 2.4024mm, 3.4320mm, the spatial frequency is between 0lp/mm and 446lp/mm, and the modulation transfer function value is between 0.0 and 1.0. It can be seen that the field curvature and distortion of the imaging lens 1 of the first embodiment can be effectively corrected, and the lens resolution can also meet the requirements, thereby obtaining better optical performance.

上述第一實施例中,當光圈ST1的有效直徑改變大小,分別調整為2.348mm、1.458mm、0.954mm、0.246mm時,成像鏡頭1之光圈值將分別變為1.4、2.4、3.4、13,其相對之D1L11/D1ST1之最大值等於2.68/0.246=10.894、最小值等於2.68/2.348=1.141,皆能滿足上述條件(1)之要求,經由改變光圈ST1的有效直徑大小,可以控制成像鏡頭1之入光量,使成像面IMA1之照度改變。另一方面,改變光圈ST1的有效直徑可控制景深,當光圈ST1的有效直徑越大,景深越淺,當光圈ST1的有效直徑越小,景深越深。 In the above first embodiment, when the effective diameter of the aperture ST1 is changed to be 2.340 mm, 1.458 mm, 0.954 mm, and 0.246 mm, the aperture values of the imaging lens 1 are changed to 1.4, 2.4, 3.4, and 13, respectively. The relative value of D1 L11 /D1 ST1 is equal to 2.68/0.246=10.894, and the minimum value is equal to 2.68/2.348=1.141, which can meet the requirements of the above condition (1), and can control imaging by changing the effective diameter of the aperture ST1. The amount of light entering the lens 1 changes the illumination of the imaging surface IMA1. On the other hand, changing the effective diameter of the aperture ST1 can control the depth of field. When the effective diameter of the aperture ST1 is larger, the depth of field is shallower, and the smaller the effective diameter of the aperture ST1, the deeper the depth of field.

請參閱第3圖,第3圖係依據本發明之成像鏡頭之第二實施例的透鏡配置與光路示意圖。成像鏡頭2沿著光軸OA2從物側至像側依序包括一第一透鏡L21、一第二透鏡L22、一光圈ST2、一第三透鏡L23、一第四透鏡L24、一第五透鏡L25及一濾光片OF2。成像時,來自物側之光線最後成像於一成像面IMA2上。第一透鏡L21具有正屈光力由塑膠材質製成,其物側面S21為凸面像側面S22為凸面,物側面S21與像側面S22皆為非球面表面。第二透鏡L22具有負屈光力由塑膠材質製成,其物側面S23為凸面像側面S24為凹面,物側面S23與像側面S24皆為非球面表面。第三透鏡L23具有負屈光力由塑膠材質製成,其物側面S26為凸面像側面S27為凹面,物側面S26與像側面S27皆為非球面表面。第四透鏡L24具有正屈光力由玻璃材質製成,其物側面S28為凹面像側面S29為凸面,物側面S28與像側面S29皆為非球面表面。第五透鏡L25具有負屈光力由塑膠材質製成,其物側面S210為凹面像側面S211為凹面,物側面S210與像側面S211皆為非球面表面。濾光片OF2之物側面S212與像側面S213皆為平面。在 第二實施例中,第一透鏡L21、第四透鏡L24及第五透鏡L25的阿貝係數大於第二透鏡L22及第三透鏡L23的阿貝係數。 Please refer to FIG. 3, which is a schematic diagram of a lens configuration and an optical path of a second embodiment of an imaging lens according to the present invention. The imaging lens 2 sequentially includes a first lens L21, a second lens L22, an aperture ST2, a third lens L23, a fourth lens L24, and a fifth lens L25 from the object side to the image side along the optical axis OA2. And a filter OF2. At the time of imaging, the light from the object side is finally imaged on an image plane IMA2. The first lens L21 has a positive refractive power made of a plastic material, and the object side surface S21 has a convex image side surface S22 as a convex surface, and the object side surface S21 and the image side surface S22 are aspherical surfaces. The second lens L22 has a negative refractive power made of a plastic material, and the object side surface S23 has a convex surface side surface S24 which is a concave surface, and the object side surface S23 and the image side surface S24 are aspherical surfaces. The third lens L23 has a negative refractive power made of a plastic material, and the object side surface S26 has a convex image side surface S27 which is a concave surface, and the object side surface S26 and the image side surface S27 are both aspherical surfaces. The fourth lens L24 has a positive refractive power made of a glass material, and the object side surface S28 has a concave image side surface S29 as a convex surface, and the object side surface S28 and the image side surface S29 are aspherical surfaces. The fifth lens L25 has a negative refractive power made of a plastic material, and the object side surface S210 has a concave image side surface S211 as a concave surface, and the object side surface S210 and the image side surface S211 are aspherical surfaces. Both the object side surface S212 and the image side surface S213 of the filter OF2 are flat. in In the second embodiment, the Abbe coefficients of the first lens L21, the fourth lens L24, and the fifth lens L25 are larger than the Abbe coefficients of the second lens L22 and the third lens L23.

另外,為使本發明之成像鏡頭能保持良好的光學性能,第二實施例中的成像鏡頭2需滿足底下十一條件: In addition, in order to maintain good optical performance of the imaging lens of the present invention, the imaging lens 2 of the second embodiment is required to satisfy the following eleven conditions:

1.10<D2L21/D2ST2<10.90 (12) 1.10<D2 L21 /D2 ST2 <10.90 (12)

1.10<D2L21/D2L22<1.35 (13) 1.10<D2 L21 /D2 L22 <1.35 (13)

Vd21>40 (14) Vd2 1 >40 (14)

Vd22<40 (15) Vd2 2 <40 (15)

Vd23<40 (16) Vd2 3 <40 (16)

Vd24>40 (17) Vd2 4 >40 (17)

Vd25>40 (18) Vd2 5 >40 (18)

-1.3<f2/f23+f2/f24-f2/f21<-0.1 (19) -1.3<f2/f2 3 +f2/f2 4 -f2/f2 1 <-0.1 (19)

-54.97<Vd24-Vd23<43.61 (20) -54.97<Vd2 4 -Vd2 3 <43.61 (20)

0.6<SL2/TTL2<0.87 (21) 0.6<SL2/TTL2<0.87 (21)

其中,D2L21為第一透鏡L21之有效直徑,D2L22為第二透鏡L22之有效直徑,D2ST2為光圈ST2之有效直徑,上述第一透鏡L21之有效直徑D2L21是指從第一透鏡L21的一邊緣通過第一透鏡L21之中心點至另一邊緣的直線長度,第二透鏡L22之有效直徑D2L22是指從第二透鏡L22的一邊緣通過第二透鏡L22之中心點至另一邊緣的直線長度,而光圈ST2之有效直徑D2ST2是指光圈ST2的一光孔之直徑。Vd21為第一透鏡L21之阿貝係數(Abbe Number),Vd22為第二透鏡L22之阿貝係數(Abbe Number),Vd23 為第三透鏡L23之阿貝係數(Abbe Number),Vd24為第四透鏡L24之阿貝係數(Abbe Number),Vd25為第五透鏡L25之阿貝係數(Abbe Number),f2為成像鏡頭2之有效焦距,f21為第一透鏡L21之有效焦距,f23為第三透鏡L23之有效焦距,f24為第四透鏡L24之有效焦距,SL2為光圈ST2至成像面IMA2於光軸OA2上之距離,TTL2為第一透鏡L21之物側面S21至成像面IMA2於光軸OA2上之距離。 Wherein D2 L21 is the effective diameter of the first lens L21, D2 L22 is the effective diameter of the second lens L22, D2 ST2 is the effective diameter of the aperture ST2, and the effective diameter D2 L21 of the first lens L21 is from the first lens L21 One edge passes through the linear length from the center point of the first lens L21 to the other edge, and the effective diameter D2 L22 of the second lens L22 means from one edge of the second lens L22 through the center point of the second lens L22 to the other edge The linear length of the aperture ST2 and the effective diameter D2 ST2 of the aperture ST2 refer to the diameter of a light aperture of the aperture ST2. Vd2 1 is the Abbe Number of the first lens L21, Vd2 2 is the Abbe Number of the second lens L22, and Vd2 3 is the Abbe Number of the third lens L23, Vd2 4 It is the Abbe Number of the fourth lens L24, Vd2 5 is the Abbe Number of the fifth lens L25, f2 is the effective focal length of the imaging lens 2, and f2 1 is the effective focal length of the first lens L21. F2 3 is the effective focal length of the third lens L23, f2 4 is the effective focal length of the fourth lens L24, SL2 is the distance from the aperture ST2 to the imaging plane IMA2 on the optical axis OA2, and TTL2 is the object side S21 of the first lens L21 to imaging The distance of the face IMA2 on the optical axis OA2.

利用上述透鏡與光圈ST2之設計,使得成像鏡頭2能有效的縮短鏡頭總長度、有效的修正像差、提升鏡頭解析度。 The design of the lens and the aperture ST2 described above enables the imaging lens 2 to effectively shorten the total length of the lens, effectively correct aberrations, and improve lens resolution.

表三為第3圖中成像鏡頭2之各透鏡之相關參數表,表三資料顯示第二實施例之成像鏡頭2之有效焦距等於4.837mm、光圈值等於1.6、鏡頭總長度等於5.493mm、視角等於120°、第一透鏡L21的有效直徑等於2.74mm、第二透鏡L22的有效直徑等於2.314mm、光圈ST2的有效直徑等於2.052mm。 Table 3 is a table of related parameters of the lenses of the imaging lens 2 in FIG. 3, and Table 3 shows that the effective focal length of the imaging lens 2 of the second embodiment is equal to 4.837 mm, the aperture value is equal to 1.6, the total length of the lens is equal to 5.493 mm, and the viewing angle is Equal to 120°, the effective diameter of the first lens L21 is equal to 2.74 mm, the effective diameter of the second lens L22 is equal to 2.314 mm, and the effective diameter of the aperture ST2 is equal to 2.052 mm.

表三中各個透鏡之非球面表面凹陷度z由下列公式所得到:z=ch2/{1+[1-(k+1)c2h2]1/2}+Ah4+Bh6+Ch8+Dh10+Eh12+Fh14+Gh16 The aspherical surface depression z of each lens in Table 3 is obtained by the following formula: z = ch 2 /{1 + [1 - (k + 1) c 2 h 2 ] 1/2 } + Ah 4 + Bh 6 + Ch 8 +Dh 10 +Eh 12 +Fh 14 +Gh 16

其中:c:曲率;h:透鏡表面任一點至光軸之垂直距離;k:圓錐係數;A~G:非球面係數。 Where: c: curvature; h: vertical distance from any point on the lens surface to the optical axis; k: conic coefficient; A~G: aspheric coefficient.

表四為表三中各個透鏡之非球面表面之相關參數表,其中k 為圓錐係數(Conic Constant)、A~G為非球面係數。 Table 4 is the relevant parameter table of the aspherical surface of each lens in Table 3, where k It is a conical coefficient (Conic Constant) and A~G is an aspheric coefficient.

第二實施例之成像鏡頭2,其第一透鏡L21的有效直徑 D2L21=2.74mm,第二透鏡L22的有效直徑D2L22=2.314mm,光圈ST2的有效直徑D2ST2=2.052mm第一透鏡L21之阿貝係數(Abbe Number)Vd21=56.1,第二透鏡L22之阿貝係數(Abbe Number)Vd22=21.5,第三透鏡L23之阿貝係數(Abbe Number)Vd23=35,第四透鏡L24之阿貝係數(Abbe Number)Vd24=50,第五透鏡L25之阿貝係數(Abbe Number)Vd25=56.1,成像鏡頭2之有效焦距f2=4.837mm,第一透鏡L21之有效焦距f21=3.0152mm,第三透鏡L23之有效焦距f23=-14.3156mm,第四透鏡L24之有效焦距f24=3.9271mm,光圈ST2至成像面IMA2於光軸OA2上之距離SL2=3.897mm,第一透鏡L21之物側面S21至成像面IMA2於光軸OA2上之距離TTL2=5.493mm,由上述資料可得到D2L21/D2ST2=1.34、D2L21/D2L22=1.18、Vd21=56.1、Vd22=21.5、Vd23=35、Vd24=50、Vd25=56.1、f2/f23+f2/f24-f2/f21=-0.71、Vd24-Vd23=15、SL2/TTL2=0.709、F2=1.6皆能滿足上述條件(12)至條件(22)之要求。 The imaging lens 2 of the second embodiment has an effective diameter D2 L21 of the first lens L21 = 2.74 mm, an effective diameter D2 L22 of the second lens L22 = 2.314 mm, and an effective diameter D2 ST2 of the aperture ST2 = 2.052 mm of the first lens L21 Abbe Number Vd2 1 = 56.1, Abbe Number of the second lens L22 Vd2 2 = 21.5, Abbe Number of the third lens L23 Vd2 3 = 35, fourth lens The Abbe Number of L24 is Vd2 4 = 50, the Abbe Number of the fifth lens L25 is Vd2 5 = 56.1, the effective focal length of the imaging lens 2 is f2 = 4.837 mm, and the effective focal length f2 of the first lens L21 1 = 3.0152 mm, the effective focal length of the third lens L23 is f2 3 = -14.3156 mm, the effective focal length of the fourth lens L24 is f2 4 = 3.9271 mm, and the distance from the aperture ST2 to the imaging plane IMA2 on the optical axis OA2 is SL2 = 3.997 mm. The distance from the object side surface S21 of the first lens L21 to the imaging surface IMA2 on the optical axis OA2 is TTL2=5.493 mm, and D2 L21 /D2 ST2 =1.34, D2 L21 /D2 L22 =1.18, Vd2 1 =56.1, can be obtained from the above data. Vd2 2 = 21.5, Vd2 3 = 35, Vd2 4 = 50, Vd2 5 = 56.1, f2 / f2 3 + f2 / f2 4 - f2 / f2 1 = -0.71, Vd2 4 - Vd2 3 = 15, SL2 / TTL2 = 0.709, F2=1.6 It can meet the requirements of the above conditions (12) to (22).

另外,第二實施例之成像鏡頭2的光學性能也可達到要求,這可從第4A至第4C圖看出。第4A圖所示的,是第二實施例之成像鏡頭2的場曲(Field Curvature)圖。第4B圖所示的,是第二實施例之成像鏡頭2的畸變(Distortion)圖。第4C圖所示的,是第二實施例之成像鏡頭2的調變轉換函數(Modulation Transfer Function)圖。 In addition, the optical performance of the imaging lens 2 of the second embodiment can also be achieved, which can be seen from Figs. 4A to 4C. Fig. 4A is a field curvature diagram of the imaging lens 2 of the second embodiment. Fig. 4B is a distortion diagram of the imaging lens 2 of the second embodiment. 4C is a modulation transfer function diagram of the imaging lens 2 of the second embodiment.

由第4A圖可看出,第二實施例之成像鏡頭2對波長為0.470μm、0.555μm、0.650μm之光線所產生的子午(Tangential)方向與弧矢(Sagittal)方向場曲介於-0.020mm至0.035mm之間。由第4B圖可看出,第二實施例之成像鏡頭2對波長為0.470μm、0.555μm、0.650μm之光線所產生的畸變介於0.0%至0.6%之間。由第4C圖可看出,第二實施例之成像鏡 頭2對波長範圍介於0.470μm至0.650μm之光線,分別於子午(Tangential)方向與弧矢(Sagittal)方向,視場高度分別為0.000mm、0.6864mm、1.3728mm、2.4024mm、3.4320mm,空間頻率介於0lp/mm至446lp/mm,其調變轉換函數值介於0.0至1.0之間。顯見第二實施例之成像鏡頭2之場曲、畸變都能被有效修正,鏡頭解析度也能滿足要求,從而得到較佳的光學性能。 As can be seen from FIG. 4A, the imaging lens 2 of the second embodiment has a meridional direction and a sagittal direction field curvature of -0.020 for light having a wavelength of 0.470 μm, 0.555 μm, and 0.650 μm. Between mm and 0.035 mm. As can be seen from Fig. 4B, the imaging lens 2 of the second embodiment has a distortion of between 0.0% and 0.6% for light having a wavelength of 0.470 μm, 0.555 μm, and 0.650 μm. As can be seen from FIG. 4C, the imaging mirror of the second embodiment The first two pairs of light having a wavelength range of 0.470 μm to 0.650 μm are respectively in the direction of the tangential direction and the Sagittal direction, and the field of view heights are 0.000 mm, 0.6864 mm, 1.3728 mm, 2.4024 mm, and 3.4320 mm, respectively. The spatial frequency is between 0 lp/mm and 446 lp/mm, and the modulation transfer function value is between 0.0 and 1.0. It can be seen that the field curvature and distortion of the imaging lens 2 of the second embodiment can be effectively corrected, and the lens resolution can also meet the requirements, thereby obtaining better optical performance.

上述第二實施例中,當光圈ST2的有效直徑改變大小,分別調整為2.222mm、1.41mm、0.98mm、0.252mm時,成像鏡頭2之光圈值將分別變為1.4、2.4、3.4、13,其相對之D2L21/D2ST2之最大值等於2.74/0.252=10.873、最小值等於2.74/2.222=1.233,皆能滿足上述條件(12)之要求,經由改變光圈ST2的有效直徑大小,可以控制成像鏡頭2之入光量,使成像面IMA2之照度改變。另一方面,改變光圈ST2的有效直徑可控制景深,當光圈ST2的有效直徑越大,景深越淺,當光圈ST2的有效直徑越小,景深越深。 In the second embodiment described above, when the effective diameter of the aperture ST2 is changed to be 2.222 mm, 1.41 mm, 0.98 mm, and 0.252 mm, the aperture values of the imaging lens 2 are changed to 1.4, 2.4, 3.4, and 13, respectively. The relative value of D2 L21 /D2 ST2 is equal to 2.74/0.252=10.873, and the minimum value is equal to 2.74/2.222=1.233, which can meet the requirements of the above condition (12). By changing the effective diameter of the aperture ST2, the imaging can be controlled. The amount of light entering the lens 2 causes the illumination of the imaging surface IMA2 to change. On the other hand, changing the effective diameter of the aperture ST2 can control the depth of field. When the effective diameter of the aperture ST2 is larger, the depth of field is shallower, and the smaller the effective diameter of the aperture ST2, the deeper the depth of field.

請參閱第5圖,第5圖係依據本發明之成像鏡頭之第三實施例的透鏡配置與光路示意圖。成像鏡頭3沿著光軸OA3從物側至像側依序包括一第一透鏡L31、一第二透鏡L32、一光圈ST3、一第三透鏡L33、一第四透鏡L34、一第五透鏡L35及一濾光片OF3。成像時,來自物側之光線最後成像於一成像面IMA3上。第一透鏡L31具有正屈光力由塑膠材質製成,其物側面S31為凸面像側面S32為凸面,物側面S31與像側面S32皆為非球面表面。第二透鏡L32具有負屈光力由塑膠材質製成,其物側面S33為凸面像側面S34為凹面,物側面S33與像側面S34皆為非球面表面。第三透鏡L33具有負屈光力由塑膠材質製成,其物側面S36為凸面像側面S37 為凹面,物側面S36與像側面S37皆為非球面表面。第四透鏡L34具有正屈光力由玻璃材質製成,其物側面S38為凹面像側面S39為凸面,物側面S38與像側面S39皆為非球面表面。第五透鏡L35具有負屈光力由塑膠材質製成,其物側面S310為凹面像側面S311為凹面,物側面S310與像側面S311皆為非球面表面。濾光片OF3之物側面S312與像側面S313皆為平面。在第三實施例中,第一透鏡L31、第四透鏡L34及第五透鏡L35的阿貝係數大於第二透鏡L32及第三透鏡L33的阿貝係數。 Please refer to FIG. 5, which is a schematic diagram of a lens configuration and an optical path of a third embodiment of an imaging lens according to the present invention. The imaging lens 3 sequentially includes a first lens L31, a second lens L32, an aperture ST3, a third lens L33, a fourth lens L34, and a fifth lens L35 from the object side to the image side along the optical axis OA3. And a filter OF3. At the time of imaging, the light from the object side is finally imaged on an image plane IMA3. The first lens L31 has a positive refractive power made of a plastic material, and the object side surface S31 has a convex image side surface S32 as a convex surface, and the object side surface S31 and the image side surface S32 are aspherical surfaces. The second lens L32 has a negative refractive power made of a plastic material, and the object side surface S33 has a convex image side surface S34 as a concave surface, and the object side surface S33 and the image side surface S34 are aspherical surfaces. The third lens L33 has a negative refractive power made of a plastic material, and the object side surface S36 is a convex image side surface S37. For the concave surface, both the object side surface S36 and the image side surface S37 are aspherical surfaces. The fourth lens L34 has a positive refractive power made of a glass material, and the object side surface S38 has a concave image side surface S39 as a convex surface, and the object side surface S38 and the image side surface S39 are aspherical surfaces. The fifth lens L35 has a negative refractive power made of a plastic material, and the object side surface S310 has a concave image side surface S311 as a concave surface, and the object side surface S310 and the image side surface S311 are aspherical surfaces. Both the object side surface S312 and the image side surface S313 of the filter OF3 are flat. In the third embodiment, the Abbe coefficients of the first lens L31, the fourth lens L34, and the fifth lens L35 are larger than the Abbe coefficients of the second lens L32 and the third lens L33.

另外,為使本發明之成像鏡頭能保持良好的光學性能,第三實施例中的成像鏡頭3需滿足底下十一條件: In addition, in order to maintain good optical performance of the imaging lens of the present invention, the imaging lens 3 of the third embodiment is required to satisfy the following eleven conditions:

1.10<D3L31/D3ST3<10.90 (23) 1.10<D3 L31 /D3 ST3 <10.90 (23)

1.10<D3L31/D3L32<1.35 (24) 1.10<D3 L31 /D3 L32 <1.35 (24)

Vd31>40 (25) Vd3 1 >40 (25)

Vd32<40 (26) Vd3 2 <40 (26)

Vd33<40 (27) Vd3 3 <40 (27)

Vd34>40 (28) Vd3 4 >40 (28)

Vd35>40 (29) Vd3 5 >40 (29)

-1.3<f3/f33+f3/f34-f3/f31<-0.1 (30) -1.3<f3/f3 3 +f3/f3 4 -f3/f3 1 <-0.1 (30)

-54.97<Vd34-Vd33<43.61 (31) -54.97<Vd3 4 -Vd3 3 <43.61 (31)

0.6<SL3/TTL3<0.87 (32) 0.6<SL3/TTL3<0.87 (32)

其中,D3L31為第一透鏡L31之有效直徑,D3L32為第二透鏡L32之有效直徑,D3ST3為光圈ST3之有效直徑,上述第一透鏡L31之有效 直徑D3L31是指從第一透鏡L31的一邊緣通過第一透鏡L31之中心點至另一邊緣的直線長度,第二透鏡L32之有效直徑D3L32是指從第二透鏡L32的一邊緣通過第二透鏡L32之中心點至另一邊緣的直線長度,而光圈ST3之有效直徑D3ST3是指光圈ST3的一光孔之直徑。Vd31為第一透鏡L31之阿貝係數(Abbe Number),Vd32為第二透鏡L32之阿貝係數(Abbe Number),Vd33為第三透鏡L33之阿貝係數(Abbe Number),Vd34為第四透鏡L34之阿貝係數(Abbe Number),Vd35為第五透鏡L35之阿貝係數(Abbe Number),f3為成像鏡頭3之有效焦距,f31為第一透鏡L31之有效焦距,f33為第三透鏡L33之有效焦距,f34為第四透鏡L34之有效焦距,SL3為光圈ST3至成像面IMA3於光軸OA3上之距離,TTL3為第一透鏡L31之物側面S31至成像面LMA3於光軸OA3上之距離。 Wherein D3 L31 is the effective diameter of the first lens L31, D3 L32 is the effective diameter of the second lens L32, D3 ST3 is the effective diameter of the aperture ST3, and the effective diameter D3 L31 of the first lens L31 is from the first lens L31. One edge passes through the linear length from the center point of the first lens L31 to the other edge, and the effective diameter D3 L32 of the second lens L32 means from one edge of the second lens L32 through the center point of the second lens L32 to the other edge The length of the straight line, and the effective diameter D3 ST3 of the aperture ST3 refers to the diameter of a light hole of the aperture ST3. Vd3 1 is the Abbe Number of the first lens L31, Vd3 2 is the Abbe Number of the second lens L32, and Vd3 3 is the Abbe Number of the third lens L33, Vd3 4 It is the Abbe Number of the fourth lens L34, Vd3 5 is the Abbe Number of the fifth lens L35, f3 is the effective focal length of the imaging lens 3, and f3 1 is the effective focal length of the first lens L31. F3 3 is the effective focal length of the third lens L33, f3 4 is the effective focal length of the fourth lens L34, SL3 is the distance from the aperture ST3 to the imaging plane IMA3 on the optical axis OA3, and TTL3 is the object side S31 of the first lens L31 to imaging The distance of the face LMA3 on the optical axis OA3.

利用上述透鏡與光圈ST3之設計,使得成像鏡頭3能有效的縮短鏡頭總長度、有效的修正像差、提升鏡頭解析度。 The design of the lens and the aperture ST3 described above enables the imaging lens 3 to effectively shorten the total length of the lens, effectively correct aberrations, and improve lens resolution.

表五為第5圖中成像鏡頭3之各透鏡之相關參數表,表五資料顯示第三實施例之成像鏡頭3之有效焦距等於4.885mm、光圈值等於1.6、鏡頭總長度等於5.494mm、視角等於120°、第一透鏡L31的有效直徑等於2.59mm、第二透鏡L32的有效直徑等於2.268mm、光圈ST3的有效直徑等於2.084mm。 Table 5 is a table of related parameters of the lenses of the imaging lens 3 in FIG. 5. Table 5 shows that the effective focal length of the imaging lens 3 of the third embodiment is equal to 4.885 mm, the aperture value is equal to 1.6, and the total length of the lens is 5.494 mm. Equal to 120°, the effective diameter of the first lens L31 is equal to 2.59 mm, the effective diameter of the second lens L32 is equal to 2.268 mm, and the effective diameter of the aperture ST3 is equal to 2.084 mm.

表五中各個透鏡之非球面表面凹陷度z由下列公式所得到:z=ch2/{1+[1-(k+1)c2h2]1/2}+Ah4+Bh6+Ch8+Dh10+Eh12+Fh14+Gh16 The aspherical surface depression z of each lens in Table 5 is obtained by the following formula: z = ch 2 /{1 + [1 - (k + 1) c 2 h 2 ] 1/2 } + Ah 4 + Bh 6 + Ch 8 +Dh 10 +Eh 12 +Fh 14 +Gh 16

其中: c:曲率;h:透鏡表面任一點至光軸之垂直距離;k:圓錐係數;A~G:非球面係數。 among them: c: curvature; h: vertical distance from any point on the lens surface to the optical axis; k: conic coefficient; A~G: aspheric coefficient.

表六為表五中各個透鏡之非球面表面之相關參數表,其中k為圓錐係數(Conic Constant)、A~G為非球面係數。 Table 6 is the relevant parameter table of the aspherical surface of each lens in Table 5, where k is the conic coefficient (Conic Constant) and A~G is the aspherical coefficient.

第三實施例之成像鏡頭3,其第一透鏡L31的有效直徑D3L31=2.59mm,第二透鏡L32的有效直徑D3L32=2.268mm,光圈ST3的有效直徑D3ST3=2.084mm,第一透鏡L31之阿貝係數(Abbe Number)Vd31=56.1,第二透鏡L32之阿貝係數(Abbe Number)Vd32=21.5,第三透鏡L33之阿貝係數(Abbe Number)Vd33=21.5,第四透鏡L34之阿貝係數(Abbe Number)Vd34=60,第五透鏡L35之阿貝係數(Abbe Number)Vd35=56.1,成像鏡頭3之有效焦距f3=4.885mm,第一透鏡L31之有效焦距f31=3.017mm,第三透鏡L33之有效焦距f33=-14.362mm,第四透鏡L34之有效焦距f34=3.913mm,光圈ST3至成像面IMA3於光軸OA3上之距離SL3=3.911mm,第一透鏡L31之物側面S31至成像面IMA3於光軸OA3上之距離TTL3=5.494mm,由上述資料可得到D3L31/D3ST3=1.24、D3L31/D3L32=1.14、Vd31=56.1、Vd32=21.5、Vd33=21.5、Vd34=60、Vd35=56.1、f3/f33+f3/f34-f3/f31=-0.7111、Vd34-Vd33=38.5、SL3/TTL3=0.711、F3=1.6皆能滿足上述條件(23)至條件(33)之要求。 The imaging lens 3 of the third embodiment has an effective diameter D3 L31 of the first lens L31 = 2.59 mm, an effective diameter D3 L32 of the second lens L32 = 2.268 mm, and an effective diameter D3 ST3 of the aperture ST3 = 2.084 mm, the first lens The Abbe Number of L31 is Vd3 1 = 56.1, the Abbe Number of the second lens L32 is Vd3 2 = 21.5, and the Abbe Number of the third lens L33 is Vd3 3 = 21.5, and the fourth The Abbe Number of the lens L34 is Vd3 4 = 60, the Abbe Number of the fifth lens L35 is Vd3 5 = 56.1, the effective focal length of the imaging lens 3 is f3 = 4.885 mm, and the effective focal length of the first lens L31 F3 1 = 3.017 mm, effective focal length f3 3 of the third lens L33 = -14.362 mm, effective focal length f3 4 of the fourth lens L34 = 3.913 mm, distance from the aperture ST3 to the imaging plane IMA3 on the optical axis OA3 SL3 = 3.911 mm The distance from the object side surface S31 of the first lens L31 to the imaging surface IMA3 on the optical axis OA3 is TTL3=5.494 mm, and D3 L31 /D3 ST3 =1.24, D3 L31 /D3 L32 =1.14, Vd3 1 =56.1 can be obtained from the above data. , Vd3 2 = 21.5, Vd3 3 = 21.5, Vd3 4 = 60, Vd3 5 = 56.1, f3 / f3 3 + f3 / f3 4 - f3 / f3 1 = -0.7111, Vd3 4 - Vd3 3 = 38.5, SL3 / TTL3 =0.711, F 3 = 1.6 can meet the requirements of the above conditions (23) to (33).

另外,第三實施例之成像鏡頭3的光學性能也可達到要求,這可從第6A至第6C圖看出。第6A圖所示的,是第三實施例之成像鏡頭3的場曲(Field Curvature)圖。第6B圖所示的,是第三實施例之成像鏡頭3的畸變(Distortion)圖。第6C圖所示的,是第三實施例之成像鏡頭3的調變轉 換函數(Modulation Transfer Function)圖。 Further, the optical performance of the imaging lens 3 of the third embodiment can also be achieved, which can be seen from Figs. 6A to 6C. Fig. 6A is a field curvature diagram of the imaging lens 3 of the third embodiment. Fig. 6B is a distortion diagram of the imaging lens 3 of the third embodiment. FIG. 6C is a modulation conversion of the imaging lens 3 of the third embodiment. Modulation Transfer Function diagram.

由第6A圖可看出,第三實施例之成像鏡頭3對波長為0.470μm、0.555μm、0.650μm之光線所產生的子午(Tangential)方向與弧矢(Sagittal)方向場曲介於-0.04mm至0.06mm之間。由第6B圖可看出,第三實施例之成像鏡頭3對波長為0.470μm、0.555μm、0.650μm之光線所產生的畸變介於-0.2%至0.4%之間。由第6C圖可看出,第三實施例之成像鏡頭3對波長範圍介於0.470μm至0.650μm之光線,分別於子午(Tangential)方向與弧矢(Sagittal)方向,視場高度分別為0.000mm、0.6864mm、1.3728mm、2.4024mm、3.4320mm,空間頻率介於0lp/rmm至446lp/mm,其調變轉換函數值介於0.0至1.0之間。顯見第三實施例之成像鏡頭3之場曲、畸變都能被有效修正,鏡頭解析度也能滿足要求,從而得到較佳的光學性能。 As can be seen from FIG. 6A, the imaging lens 3 of the third embodiment has a field of the Tangential direction and the sagittal direction of the light having a wavelength of 0.470 μm, 0.555 μm, and 0.650 μm between -0.04. Between mm and 0.06 mm. As can be seen from Fig. 6B, the distortion of the imaging lens 3 of the third embodiment for light having a wavelength of 0.470 μm, 0.555 μm, and 0.650 μm is between -0.2% and 0.4%. As can be seen from Fig. 6C, the imaging lens 3 of the third embodiment has a wavelength range of 0.470 μm to 0.650 μm in the direction of the Tangential direction and the Sagittal direction, respectively, and the field of view height is 0.000. Mm, 0.6864mm, 1.3728mm, 2.4024mm, 3.4320mm, the spatial frequency is between 0lp/rmm and 446lp/mm, and the modulation transfer function value is between 0.0 and 1.0. It can be seen that the field curvature and distortion of the imaging lens 3 of the third embodiment can be effectively corrected, and the lens resolution can also meet the requirements, thereby obtaining better optical performance.

上述第三實施例中,當光圈ST3的有效直徑改變大小,分別調整為2.258mm、1.434mm、0.996mm、0.256mm時,成像鏡頭3之光圈值將分別變為1.4、2.4、3.4、13,其相對之D3L31/D3ST3之最大值等於2.59/0.256=10.117、最小值等於2.59/2.258=1.147,皆能滿足上述條件(23)之要求,經由改變光圈ST1的有效直徑大小,可以控制成像鏡頭1之入光量,使成像面IMA1之照度改變。另一方面,改變光圈ST1的有效直徑可控制景深,當光圈ST1的有效直徑越大,景深越淺,當光圈ST1的有效直徑越小,景深越深。 In the third embodiment described above, when the effective diameter of the aperture ST3 is changed to be 2.258 mm, 1.344 mm, 0.996 mm, and 0.256 mm, the aperture values of the imaging lens 3 are changed to 1.4, 2.4, 3.4, and 13, respectively. The relative value of D3 L31 /D3 ST3 is equal to 2.59/0.256=10.117, and the minimum value is equal to 2.59/2.258=1.147, which can meet the requirements of the above condition (23). By changing the effective diameter of the aperture ST1, the imaging can be controlled. The amount of light entering the lens 1 changes the illumination of the imaging surface IMA1. On the other hand, changing the effective diameter of the aperture ST1 can control the depth of field. When the effective diameter of the aperture ST1 is larger, the depth of field is shallower, and the smaller the effective diameter of the aperture ST1, the deeper the depth of field.

1‧‧‧成像鏡頭 1‧‧‧ imaging lens

L11‧‧‧第一透鏡 L11‧‧‧ first lens

L12‧‧‧第二透鏡 L12‧‧‧ second lens

L13‧‧‧第三透鏡 L13‧‧‧ third lens

L14‧‧‧第四透鏡 L14‧‧‧4th lens

L15‧‧‧第五透鏡 L15‧‧‧ fifth lens

ST1‧‧‧光圈 ST1‧‧‧ aperture

OF1‧‧‧濾光片 OF1‧‧‧Filter

OA1‧‧‧光軸 OA1‧‧‧ optical axis

IMA1‧‧‧成像面 IMA1‧‧‧ imaging surface

S11、S12、S13、S14、S15‧‧‧面 S11, S12, S13, S14, S15‧‧

S16、S17、S18、S19、S110‧‧‧面 S16, S17, S18, S19, S110‧‧‧

S111、S112、S113‧‧‧面 S111, S112, S113‧‧‧

Claims (11)

一種成像鏡頭,沿著光軸從物側至像側依序包括:一第一透鏡,該第一透鏡為雙凸透鏡具有正屈光力;一第二透鏡,該第二透鏡為凸凹透鏡具有負屈光力,該第二透鏡之凸面朝向該物側凹面朝向該像側;一光圈;一第三透鏡,該第三透鏡為凸凹透鏡具有負屈光力,該第三透鏡之凸面朝向該物側凹面朝向該像側;一第四透鏡,該第四透鏡為凹凸透鏡具有正屈光力,該第四透鏡之凹面朝向該物側凸面朝向該像側;以及一第五透鏡,該第五透鏡為雙凹透鏡具有負屈光力;其中該成像鏡頭滿足以下條件:1.10<DL1/DST<10.90其中,DL1為該第一透鏡之有效直徑,DST為該光圈之有效直徑。 An imaging lens includes, in order from the object side to the image side along the optical axis, a first lens having a positive refractive power and a second lens having a negative refractive power, wherein the second lens has a negative refractive power. The convex surface of the second lens faces the object side concave surface toward the image side; an aperture; a third lens, wherein the third lens has a convex-concave lens having a negative refractive power, and the convex surface of the third lens faces the object side concave surface toward the image side a fourth lens, the fourth lens having a positive refractive power, a concave surface of the fourth lens facing the object side convex surface toward the image side; and a fifth lens having a negative refractive power of the double concave lens; Wherein the imaging lens satisfies the following condition: 1.10<D L1 /D ST <10.90 wherein D L1 is the effective diameter of the first lens, and D ST is the effective diameter of the aperture. 如申請專利範圍第1項所述之成像鏡頭,其中該成像鏡頭滿足以下條件:1.10<DL1/DL2<1.35其中,DL1為該第一透鏡之有效直徑,DL2為該第二透鏡之有效直徑。 The imaging lens of claim 1, wherein the imaging lens satisfies the following condition: 1.10<D L1 /D L2 <1.35 wherein D L1 is an effective diameter of the first lens, and D L2 is the second lens Effective diameter. 如申請專利範圍第1項所述之成像鏡頭,其中該第一透鏡、該第四透鏡以及該第五透鏡之阿貝係數(Abbe Number)大於該第二透鏡以及該第三透鏡之阿貝係數(Abbe Number)。 The imaging lens of claim 1, wherein an Abbe Number of the first lens, the fourth lens, and the fifth lens is greater than an Abbe number of the second lens and the third lens (Abbe Number). 如申請專利範圍第1項所述之成像鏡頭,其中該成像鏡頭滿足以下條件:Vd1>40 Vd2<40 Vd3<40 Vd4>40 Vd5>40其中,Vd1為該第一透鏡之阿貝係數(Abbe Number),Vd2為該第二透鏡之阿貝係數(Abbe Number),Vd3為該第三透鏡之阿貝係數(Abbe Number),Vd4為該第四透鏡之阿貝係數(Abbe Number),Vd5為該第五透鏡之阿貝係數(Abbe Number)。 The imaging lens of claim 1, wherein the imaging lens satisfies the following condition: Vd 1 >40 Vd 2 <40 Vd 3 <40 Vd 4 >40 Vd 5 >40, wherein Vd 1 is the first lens Abbe Number, Vd 2 is the Abbe Number of the second lens, Vd 3 is the Abbe Number of the third lens, and Vd 4 is the fourth lens Abbe Number, Vd 5 is the Abbe Number of the fifth lens. 如申請專利範圍第1項所述之成像鏡頭,其中該第一透鏡、該第三透鏡以及該第四透鏡滿足以下條件:-1.3<f/f3+f/f4-f/f1<-0.1其中,f為該成像鏡頭之有效焦距,f1為該第一透鏡之有效焦距,f3為該第三透鏡之有效焦距,f4為該第四透鏡之有效焦距。 The imaging lens of claim 1, wherein the first lens, the third lens, and the fourth lens satisfy the following condition: -1.3 < f / f 3 + f / f 4 - f / f 1 < -0.1 where f is the effective focal length of the imaging lens, f 1 is the effective focal length of the first lens, f 3 is the effective focal length of the third lens, and f 4 is the effective focal length of the fourth lens. 如申請專利範圍第1項所述之成像鏡頭,其中該第三透鏡以及該第四透鏡滿足以下條件:-54.97<Vd4-Vd3<43.61其中,Vd3為該第三透鏡之阿貝係數(Abbe Number),Vd4為該第四透鏡之阿貝係數(Abbe Number)。 The imaging lens of claim 1, wherein the third lens and the fourth lens satisfy the following condition: -54.97 < Vd 4 - Vd 3 < 43.61 wherein Vd 3 is the Abbe coefficient of the third lens (Abbe Number), Vd 4 is the Abbe Number of the fourth lens. 如申請專利範圍第1項所述之成像鏡頭,其中該成像鏡頭滿足以下條件:0.6<SL/TTL<0.87其中,SL為該光圈至一成像面於該光軸上之距離,TTL為該第一透鏡之物側面至該成像面於該光軸上之距離。 The imaging lens of claim 1, wherein the imaging lens satisfies the following condition: 0.6 <SL/TTL<0.87, wherein SL is the distance from the aperture to an imaging surface on the optical axis, and the TTL is the first The distance from the side of a lens to the imaging surface on the optical axis. 如申請專利範圍第1項所述之成像鏡頭,其中該第四透鏡係由玻璃材質製成。 The imaging lens of claim 1, wherein the fourth lens is made of a glass material. 如申請專利範圍第1項所述之成像鏡頭,其中該第一透鏡、該第二透鏡、該第三透鏡以及該第五透鏡係由塑膠材質製成。 The imaging lens of claim 1, wherein the first lens, the second lens, the third lens, and the fifth lens are made of a plastic material. 如申請專利範圍第1項所述之成像鏡頭,其中該光圈包括一光孔,該光孔之直徑可改變大小,以使該光圈之有效直徑改變大小。 The imaging lens of claim 1, wherein the aperture comprises a light aperture, the diameter of the aperture being sized to vary the effective diameter of the aperture. 如申請專利範圍第10項所述之成像鏡頭,其中該成像鏡頭滿足以下條件:1.4F13其中,F為該成像鏡頭之光圈值(F-number)。 The imaging lens of claim 10, wherein the imaging lens satisfies the following conditions: 1.4 F 13 where F is the aperture value (F-number) of the imaging lens.
TW104123652A 2015-07-22 2015-07-22 Lens assembly TWI595260B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW104123652A TWI595260B (en) 2015-07-22 2015-07-22 Lens assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104123652A TWI595260B (en) 2015-07-22 2015-07-22 Lens assembly

Publications (2)

Publication Number Publication Date
TW201704799A TW201704799A (en) 2017-02-01
TWI595260B true TWI595260B (en) 2017-08-11

Family

ID=58609063

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104123652A TWI595260B (en) 2015-07-22 2015-07-22 Lens assembly

Country Status (1)

Country Link
TW (1) TWI595260B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI750615B (en) * 2020-01-16 2021-12-21 大立光電股份有限公司 Image capturing optical lens assembly, imaging apparatus and electronic device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010113717A1 (en) * 2009-03-31 2010-10-07 カンタツ株式会社 Image pickup lens for solid-state image pickup element
US20140071334A1 (en) * 2012-09-07 2014-03-13 Sanyo Electric Co., Ltd. Imaging lens and imaging device
TW201428333A (en) * 2012-11-26 2014-07-16 Digital Optics Corp Japan G K Image pickup optical system and image pickup device using the same
US20150062726A1 (en) * 2013-08-30 2015-03-05 Fujifilm Corporation Imaging lens and imaging apparatus including the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010113717A1 (en) * 2009-03-31 2010-10-07 カンタツ株式会社 Image pickup lens for solid-state image pickup element
US20140071334A1 (en) * 2012-09-07 2014-03-13 Sanyo Electric Co., Ltd. Imaging lens and imaging device
TW201428333A (en) * 2012-11-26 2014-07-16 Digital Optics Corp Japan G K Image pickup optical system and image pickup device using the same
US20150062726A1 (en) * 2013-08-30 2015-03-05 Fujifilm Corporation Imaging lens and imaging apparatus including the same

Also Published As

Publication number Publication date
TW201704799A (en) 2017-02-01

Similar Documents

Publication Publication Date Title
TWI491915B (en) Wide-angle lens
US10133034B2 (en) Projection lens assembly
TWI476436B (en) Lens assembly
US10859795B2 (en) Lens assembly
CN106371197B (en) Imaging lens
TWI518357B (en) Lens assembly
TWI526712B (en) Lens assembly
TWI766956B (en) Lens assembly
CN108957708B (en) Telescope lens
CN110261994B (en) Imaging lens
TWI491913B (en) Lens assembly
TWI690725B (en) Lens assembly
TWI556004B (en) Lens assembly
CN108345086B (en) Imaging lens
TWI595260B (en) Lens assembly
TW201706657A (en) Wide-angle lens
TWI709783B (en) Wide-angle lens assembly
TWI735653B (en) Lens assembly
TWI808056B (en) Wide-angle lens assembly
TWI518358B (en) Lens assembly
TW201626028A (en) Lens assembly
TWI790224B (en) Lens assembly
CN115308877B (en) Large wide-angle low-distortion full-picture unmanned aerial vehicle imaging lens
TWI683148B (en) Telephoto lens assembly
TWI674436B (en) Projection lens