TW201626028A - Lens assembly - Google Patents

Lens assembly Download PDF

Info

Publication number
TW201626028A
TW201626028A TW104100032A TW104100032A TW201626028A TW 201626028 A TW201626028 A TW 201626028A TW 104100032 A TW104100032 A TW 104100032A TW 104100032 A TW104100032 A TW 104100032A TW 201626028 A TW201626028 A TW 201626028A
Authority
TW
Taiwan
Prior art keywords
lens
imaging
focal length
effective focal
imaging lens
Prior art date
Application number
TW104100032A
Other languages
Chinese (zh)
Other versions
TWI522645B (en
Inventor
詹哲泓
Original Assignee
亞太光電股份有限公司
信泰光學(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 亞太光電股份有限公司, 信泰光學(深圳)有限公司 filed Critical 亞太光電股份有限公司
Priority to TW104100032A priority Critical patent/TWI522645B/en
Priority to CN201511025020.5A priority patent/CN105759399B/en
Application granted granted Critical
Publication of TWI522645B publication Critical patent/TWI522645B/en
Publication of TW201626028A publication Critical patent/TW201626028A/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0035Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having three lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • G02B13/006Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element at least one element being a compound optical element, e.g. cemented elements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

A lens assembly includes a first lens, a second lens and a third lens, all of which are arranged in sequence from an object side to an image side along an optical axis. The first lens is a biconvex lens with positive refractive power. The third lens is with positive refractive power. The first lens and the second lens are cemented together to form a cemented lens. The cemented lens is with positive refractive power. The first and second lenses satisfy the condition of 1.2965 ≤ f12/f ≤ 1.3368, wherein f12 is an effective focal length of a combination of the first lens and the second lens, and f is an effective length of the lens assembly.

Description

成像鏡頭 Imaging lens

本發明係有關於一種成像鏡頭。 The present invention relates to an imaging lens.

目前手機鏡頭為了達到小型化、輕量化,其鏡頭中所使用的透鏡都採用塑膠材質製成。但是,使用全塑膠透鏡的鏡頭其溫度效應較大,成像品質容易受到環境溫度影響。習知的成像鏡頭已經無法滿足現今的需求,需要有另一種新架構的成像鏡頭,才能同時滿足小型化、輕量化、低溫度效應等需求。 In order to achieve miniaturization and weight reduction, the lens used in the lens of the mobile phone is made of a plastic material. However, the lens using the all-plastic lens has a large temperature effect, and the image quality is easily affected by the ambient temperature. Conventional imaging lenses are no longer able to meet today's needs, and there is a need for another new architecture imaging lens to meet the needs of miniaturization, lightweight, and low temperature effects.

有鑑於此,本發明之主要目的在於提供一種成像鏡頭,其鏡頭總長度短小、溫度效應較低,但是仍具有良好的光學性能,鏡頭解析度也能滿足要求。 In view of this, the main object of the present invention is to provide an imaging lens which has a short total lens length and a low temperature effect, but still has good optical performance, and the lens resolution can also meet the requirements.

本發明之成像鏡頭沿著光軸從物側至像側依序包括一第一透鏡、一第二透鏡及一第三透鏡。第一透鏡為雙凸透鏡具有正屈光力。第二透鏡具有負屈光力。第三透鏡具有正屈光力。第一透鏡及第二透鏡膠合成一膠合透鏡,此膠合透鏡具有正屈光力。 The imaging lens of the present invention sequentially includes a first lens, a second lens and a third lens from the object side to the image side along the optical axis. The first lens is a lenticular lens having a positive refractive power. The second lens has a negative refractive power. The third lens has a positive refractive power. The first lens and the second lens glue form a cemented lens, and the cemented lens has a positive refractive power.

其中第二透鏡為雙凹透鏡。 The second lens is a biconcave lens.

其中第三透鏡為凸凹透鏡,第三透鏡之凸面朝向物側凹面朝向像側。 The third lens is a convex-concave lens, and the convex surface of the third lens faces the object side concave surface toward the image side.

其中第一透鏡及第二透鏡滿足以下條件: 1.2965f12/f1.3368;其中,f12為第一透鏡及第二透鏡之組合有效焦距,f為成像鏡頭之有效焦距。 The first lens and the second lens satisfy the following conditions: 1.2965 f 12 /f 1.3368; wherein f 12 is a combined effective focal length of the first lens and the second lens, and f is an effective focal length of the imaging lens.

其中第一透鏡及第二透鏡滿足以下條件:1.0308f12/TTL1.0459;其中,f12為第一透鏡及第二透鏡之組合有效焦距,TTL為第一透鏡之物側面至成像面於光軸上之距離。 The first lens and the second lens satisfy the following conditions: 1.0308 f 12 /TTL 1.0459; wherein f 12 is a combined effective focal length of the first lens and the second lens, and TTL is a distance from the object side of the first lens to the imaging surface on the optical axis.

其中第一透鏡滿足以下條件:0.5844f1/f0.6067;其中,f1為第一透鏡之有效焦距,f為成像鏡頭之有效焦距。 The first lens satisfies the following conditions: 0.5844 f 1 /f 0.6067; wherein f 1 is the effective focal length of the first lens, and f is the effective focal length of the imaging lens.

其中第二透鏡滿足以下條件:-0.7226f2/f-0.7052;其中,f2為第二透鏡之有效焦距,f為成像鏡頭之有效焦距。 Wherein the second lens satisfies the following condition: -0.7226 f 2 /f -0.7052; wherein f 2 is the effective focal length of the second lens, and f is the effective focal length of the imaging lens.

其中第三透鏡滿足以下條件:4.1071f3/f5.1124;其中,f3為第三透鏡之有效焦距,f為成像鏡頭之有效焦距。 The third lens satisfies the following conditions: 4.1071 f 3 /f 5.1124; wherein f 3 is the effective focal length of the third lens, and f is the effective focal length of the imaging lens.

其中成像鏡頭滿足以下條件:0.7824f/TTL0.7945;其中,f為成像鏡頭之有效焦距,TTL為第一透鏡之物側面至成像面於光軸上之距離。 The imaging lens satisfies the following conditions: 0.7824 f/TTL 0.7945; wherein f is the effective focal length of the imaging lens, and TTL is the distance from the object side of the first lens to the imaging plane on the optical axis.

其中第一透鏡及第二透鏡係由玻璃材質製成,第三透鏡係由塑膠材質製成。 The first lens and the second lens are made of glass material, and the third lens is made of plastic material.

其中第一透鏡之物側面及像側面至少有一面為非球面表面,第二透鏡之物側面及像側面至少有一面為非球面表面,第三透鏡之物側面及像側面皆為非球面表面。 At least one of the object side surface and the image side surface of the first lens is an aspherical surface, and at least one of the object side surface and the image side surface of the second lens is an aspherical surface, and both the object side surface and the image side surface of the third lens are aspherical surfaces.

本發明之成像鏡頭,可更包括一光圈,設置於物側與第一透鏡之間。 The imaging lens of the present invention may further include an aperture disposed between the object side and the first lens.

為使本發明之上述目的、特徵、和優點能更明顯易懂,下文特舉較佳實施例並配合所附圖式做詳細說明。 The above described objects, features, and advantages of the invention will be apparent from the description and appended claims

1、2‧‧‧成像鏡頭 1, 2‧‧‧ imaging lens

L1G、L2G‧‧‧膠合透鏡 L1G, L2G‧‧‧ cemented lens

L11、L21‧‧‧第一透鏡 L11, L21‧‧‧ first lens

L12、L22‧‧‧第二透鏡 L12, L22‧‧‧ second lens

L13、L23‧‧‧第三透鏡 L13, L23‧‧‧ third lens

ST1、ST2‧‧‧光圈 ST1, ST2‧‧ ‧ aperture

OF1、OF2‧‧‧濾光片 OF1, OF2‧‧‧ Filters

OA1、OA2‧‧‧光軸 OA1, OA2‧‧‧ optical axis

IMA1、IMA2‧‧‧成像面 IMA1, IMA2‧‧‧ imaging surface

S11、S12、S13、S14、S15‧‧‧面 S11, S12, S13, S14, S15‧‧

S16、S17、S18、S19‧‧‧面 S16, S17, S18, S19‧‧‧

S21、S22、S23、S24、S25‧‧‧面 S21, S22, S23, S24, S25‧‧‧

S26、S27、S28、S29‧‧‧面 S26, S27, S28, S29‧‧‧

第1圖係依據本發明之成像鏡頭之第一實施例的透鏡配置與光路示意圖。 1 is a schematic view showing a lens configuration and an optical path of a first embodiment of an imaging lens according to the present invention.

第2A圖係第1圖之成像鏡頭之縱向像差圖。 Fig. 2A is a longitudinal aberration diagram of the imaging lens of Fig. 1.

第2B圖係第1圖之成像鏡頭之場曲圖。 Fig. 2B is a field curvature diagram of the imaging lens of Fig. 1.

第2C圖係第1圖之成像鏡頭之畸變圖。 Fig. 2C is a distortion diagram of the imaging lens of Fig. 1.

第2D圖係第1圖之成像鏡頭之橫向色差圖。 Fig. 2D is a lateral chromatic aberration diagram of the imaging lens of Fig. 1.

第3圖係依據本發明之成像鏡頭之第二實施例的透鏡配置與光路示意圖。 Fig. 3 is a schematic view showing a lens configuration and an optical path of a second embodiment of the imaging lens according to the present invention.

第4A圖係第3圖之成像鏡頭之縱向像差圖。 Fig. 4A is a longitudinal aberration diagram of the imaging lens of Fig. 3.

第4B圖係第3圖之成像鏡頭之場曲圖。 Fig. 4B is a field curvature diagram of the imaging lens of Fig. 3.

第4C圖係第3圖之成像鏡頭之畸變圖。 Fig. 4C is a distortion diagram of the imaging lens of Fig. 3.

第4D圖係第3圖之成像鏡頭之橫向色差圖。 Fig. 4D is a lateral chromatic aberration diagram of the imaging lens of Fig. 3.

請參閱第1圖,第1圖係依據本發明之成像鏡頭之第一實施例的透鏡配置與光路示意圖。成像鏡頭1沿著光軸OA1從物側至像側依序包括一光圈ST1、一第一透鏡L11、一第二透鏡L12、一第三透鏡L13及一濾光片OF1。成像時,來自物側之光線最後成像於一成像面IMA1上。第一透鏡L11為雙凸透鏡具有正屈光力由玻璃材質製成,其物側面S12為非球面表面,像側面S13為球面表面。第二透鏡L12為雙凹透鏡具有負屈光力由玻璃材質製成,其物側面S14為球面表面,像側面S15為非球面表面。第一透鏡L11與第二透鏡L12膠合成一膠合透鏡L1G,膠合透鏡L1G具有正屈光力。第三透鏡L13為凸凹透鏡具有正屈光力由塑膠材質製成,其物 側面S16為凸面,像側面S17為凹面,物側面S16與像側面S17皆為非球面表面。濾光片OF1其物側面S18與像側面S19皆為平面。 Please refer to FIG. 1. FIG. 1 is a schematic view showing a lens configuration and an optical path of a first embodiment of an imaging lens according to the present invention. The imaging lens 1 sequentially includes an aperture ST1, a first lens L11, a second lens L12, a third lens L13, and a filter OF1 along the optical axis OA1 from the object side to the image side. At the time of imaging, the light from the object side is finally imaged on an image plane IMA1. The first lens L11 is a lenticular lens having a positive refractive power made of a glass material, the object side surface S12 being an aspherical surface, and the image side surface S13 being a spherical surface. The second lens L12 is a biconcave lens having a negative refractive power made of a glass material, the object side surface S14 being a spherical surface, and the image side surface S15 being an aspherical surface. The first lens L11 and the second lens L12 are glued into a cemented lens L1G, and the cemented lens L1G has a positive refractive power. The third lens L13 is a convex-concave lens having a positive refractive power made of a plastic material, and the object thereof The side surface S16 is a convex surface, the image side surface S17 is a concave surface, and the object side surface S16 and the image side surface S17 are both aspherical surfaces. The filter OF1 has a flat surface S18 and an image side surface S19.

另外,為使本發明之成像鏡頭能保持良好的光學性能,第一實施例中的成像鏡頭1需滿足底下六條件: In addition, in order to maintain good optical performance of the imaging lens of the present invention, the imaging lens 1 of the first embodiment is required to satisfy the following six conditions:

其中,f112為第一透鏡L11及第二透鏡L12之組合有效焦距,f1為成像鏡頭1之有效焦距,TTL1為第一透鏡L11之物側面S12至成像面IMA1於光軸OA1上之距離,f11為第一透鏡L11之有效焦距,f12為第二透鏡L12之有效焦距,f13為第三透鏡L13之有效焦距。 Wherein f1 12 is the combined effective focal length of the first lens L11 and the second lens L12, f1 is the effective focal length of the imaging lens 1, and TTL1 is the distance from the object side S12 of the first lens L11 to the imaging plane IMA1 on the optical axis OA1. F1 1 is the effective focal length of the first lens L11, f1 2 is the effective focal length of the second lens L12, and f1 3 is the effective focal length of the third lens L13.

利用上述透鏡與光圈ST1之設計,使得成像鏡頭1能有效的縮短鏡頭總長度、有效的修正像差、提升鏡頭解析度、降低環境溫度對成像品質的影響。 By using the above lens and aperture ST1 design, the imaging lens 1 can effectively shorten the total length of the lens, effectively correct aberrations, improve lens resolution, and reduce the influence of ambient temperature on imaging quality.

表一為第1圖中成像鏡頭1之各透鏡之相關參數表,表一資料顯示第一實施例之成像鏡頭1之有效焦距等於1.116mm、光圈值等於2.8、視角等於61.0度。 Table 1 is a table of related parameters of the lenses of the imaging lens 1 in Fig. 1. Table 1 shows that the effective focal length of the imaging lens 1 of the first embodiment is equal to 1.116 mm, the aperture value is equal to 2.8, and the viewing angle is equal to 61.0 degrees.

表一中各個透鏡之非球面表面凹陷度z由下列公式所得到:z=ch2/{1+[1-(k+1)c2h2]1/2}+Ah4+Bh6+Ch8+Dh10+Eh12 The aspherical surface depression z of each lens in Table 1 is obtained by the following formula: z = ch 2 /{1 + [1 - (k + 1) c 2 h 2 ] 1/2 } + Ah 4 + Bh 6 + Ch 8 +Dh 10 +Eh 12

其中:c:曲率;h:透鏡表面任一點至光軸之垂直距離;k:圓錐係數;A~E:非球面係數。 Where: c: curvature; h: vertical distance from any point on the lens surface to the optical axis; k: conic coefficient; A~E: aspheric coefficient.

表二為表一中各個透鏡之非球面表面之相關參數表,其中k為圓錐係數(Conic Constant)、A~E為非球面係數。 Table 2 is a table of related parameters of the aspherical surface of each lens in Table 1, where k is a conical coefficient (Conic Constant) and A~E is an aspherical coefficient.

第一實施例之成像鏡頭1其第一透鏡L11及第二透鏡L12之組合有效焦距f112=1.447mm,成像鏡頭1之有效焦距f1=1.116mm,第一透鏡L11之物側面S12至成像面IMA1於光軸OA1上之距離TTL1=1.404mm,第一透鏡L11之有效焦距f11=0.652mm,第二透鏡L12之有效焦距f12=-0.787mm,第三透鏡L13之有效焦距f13=5.705mm。由上述資料可得到f112/f1=1.2965、f112/TTL1=1.0308、f11/f1=0.5844、f12/f1=-0.7052、f13/f1=5.1124、f1/TTL1=0.7945,皆能滿足上述條件(1)至條件(6)之要求。 In the imaging lens 1 of the first embodiment, the combined effective focal length f1 12 = 1.447 mm of the first lens L11 and the second lens L12, the effective focal length f1 of the imaging lens 1 is 1.116 mm, and the object side S12 of the first lens L11 to the imaging surface The distance IMA1 is on the optical axis OA1 is TTL1=1.404 mm, the effective focal length f1 1 of the first lens L11 is 0.925 mm, the effective focal length of the second lens L12 is f1 2 = -0.778 mm, and the effective focal length of the third lens L13 is f1 3 = 5.705mm. Information obtained by the f1 12 /f1=1.2965,f1 12 /TTL1=1.0308,f1 1 /f1=0.5844,f1 2 /f1=-0.7052,f1 3 /f1=5.1124,f1/TTL1=0.7945, meet Jieneng Requirements for the above conditions (1) to (6).

另外,第一實施例之成像鏡頭1的光學性能也可達到要求,這可從第2A至第2D圖看出。第2A圖所示的,是第一實施例之成像鏡頭1的縱向像差(Longitudinal Aberration)圖。第2B圖所示的,是第一實施例之成像鏡頭1的場曲(Field Curvature)圖。第2C圖所示的,是第一實施例之成像鏡頭1的畸變(Distortion)圖。第2D圖所示的,是第一實施例之成像鏡頭1的橫向色差(Lateral Color)圖。 In addition, the optical performance of the imaging lens 1 of the first embodiment can also be achieved, which can be seen from the 2A to 2D drawings. Fig. 2A is a longitudinal aberration diagram of the imaging lens 1 of the first embodiment. 2B is a Field Curvature diagram of the imaging lens 1 of the first embodiment. Fig. 2C is a distortion diagram of the imaging lens 1 of the first embodiment. 2D is a lateral color difference diagram of the imaging lens 1 of the first embodiment.

由第2A圖可看出,第一實施例之成像鏡頭1對波長為0.470μm、0.555μm、0.650μm之光線所產生的縱向像差值介於-0.0105mm至0.009mm之間。由第2B圖可看出,第一實施例之成像鏡頭1對波長為0.470 μm、0.555μm、0.650μm之光線,於子午(Tangential)方向與弧矢(Sagittal)方向之場曲介於-0.06mm至0.00mm之間。由第2C圖可看出,第一實施例之成像鏡頭1對波長為0.470μm、0.555μm、0.650μm之光線所產生的畸變介於0.0%至1.0%之間。由第2D圖可看出,第一實施例之成像鏡頭1對波長為0.470μm、0.555μm、0.650μm之光線於不同視場高度所產生的橫向色差值介於-1.0μm至0.75μm之間。顯見第一實施例之成像鏡頭1之縱向像差、場曲、畸變、橫向色差都能被有效修正,鏡頭解析度也能滿足要求,從而得到較佳的光學性能。 As can be seen from Fig. 2A, the longitudinal aberration of the imaging lens 1 of the first embodiment for light having a wavelength of 0.470 μm, 0.555 μm, and 0.650 μm is between -0.0105 mm and 0.009 mm. As can be seen from FIG. 2B, the imaging lens 1 of the first embodiment has a wavelength of 0.470. The light of μm, 0.555 μm, and 0.650 μm has a field curvature in the direction of the Tangential and the Sagittal direction between -0.06 mm and 0.00 mm. As can be seen from FIG. 2C, the imaging lens 1 of the first embodiment has a distortion of between 0.0% and 1.0% for light having a wavelength of 0.470 μm, 0.555 μm, and 0.650 μm. As can be seen from FIG. 2D, the imaging lens 1 of the first embodiment produces a lateral color difference of -1.0 μm to 0.75 μm for different wavelengths of the light having a wavelength of 0.470 μm, 0.555 μm, and 0.650 μm. between. It can be seen that the longitudinal aberration, field curvature, distortion, and lateral chromatic aberration of the imaging lens 1 of the first embodiment can be effectively corrected, and the lens resolution can also meet the requirements, thereby obtaining better optical performance.

請參閱第3圖,第3圖係依據本發明之成像鏡頭之第二實施例的透鏡配置與光路示意圖。成像鏡頭2沿著光軸OA2從物側至像側依序包括一光圈ST2、一第一透鏡L21、一第二透鏡L22、一第三透鏡L23及一濾光片OF2。成像時,來自物側之光線最後成像於一成像面IMA2上。第一透鏡L21為雙凸透鏡具有正屈光力由玻璃材質製成,其物側面S22為非球面表面,像側面S23為球面表面。第二透鏡L22為雙凹透鏡具有負屈光力由玻璃材質製成,其物側面S24為球面表面,像側面S25為非球面表面。第一透鏡L21與第二透鏡L22膠合成一膠合透鏡L2G,膠合透鏡L2G具有正屈光力。第三透鏡L23為凸凹透鏡具有正屈光力由塑膠材質製成,其物側面S26為凸面,像側面S27為凹面,物側面S26與像側面S27皆為非球面表面。濾光片OF2其物側面S28與像側面S29皆為平面。 Please refer to FIG. 3, which is a schematic diagram of a lens configuration and an optical path of a second embodiment of an imaging lens according to the present invention. The imaging lens 2 sequentially includes an aperture ST2, a first lens L21, a second lens L22, a third lens L23, and a filter OF2 from the object side to the image side along the optical axis OA2. At the time of imaging, the light from the object side is finally imaged on an image plane IMA2. The first lens L21 is a lenticular lens having a positive refractive power made of a glass material, the object side surface S22 being an aspherical surface, and the image side surface S23 being a spherical surface. The second lens L22 is a biconcave lens having a negative refractive power made of a glass material, the object side surface S24 being a spherical surface, and the image side surface S25 being an aspherical surface. The first lens L21 and the second lens L22 are glued into a cemented lens L2G, and the cemented lens L2G has a positive refractive power. The third lens L23 is a convex-concave lens having a positive refractive power made of a plastic material, the object side surface S26 being a convex surface, the image side surface S27 being a concave surface, and the object side surface S26 and the image side surface S27 being aspherical surfaces. The filter OF2 has a flat surface S28 and an image side surface S29.

另外,為使本發明之成像鏡頭能保持良好的光學性能,第二實施例中的成像鏡頭2需滿足底下六條件: In addition, in order to maintain good optical performance of the imaging lens of the present invention, the imaging lens 2 of the second embodiment is required to satisfy the following six conditions:

其中,f212為第一透鏡L21及第二透鏡L22之組合有效焦距,f2為成像鏡頭2之有效焦距,TTL2為第一透鏡L21之物側面S22至成像面IMA2於光軸OA2上之距離,f21為第一透鏡L21之有效焦距,f22為第二透鏡L22之有效焦距,f23為第三透鏡L23之有效焦距。 Wherein f2 12 is the combined effective focal length of the first lens L21 and the second lens L22, f2 is the effective focal length of the imaging lens 2, and TTL2 is the distance from the object side S22 of the first lens L21 to the imaging plane IMA2 on the optical axis OA2. F2 1 is the effective focal length of the first lens L21, f2 2 is the effective focal length of the second lens L22, and f2 3 is the effective focal length of the third lens L23.

利用上述透鏡與光圈ST2之設計,使得成像鏡頭2能有效的縮短鏡頭總長度、有效的修正像差、提升鏡頭解析度、降低環境溫度對成像品質的影響。 By using the above lens and aperture ST2 design, the imaging lens 2 can effectively shorten the total length of the lens, effectively correct aberrations, improve lens resolution, and reduce the influence of ambient temperature on imaging quality.

表三為第3圖中成像鏡頭2之各透鏡之相關參數表,表三資料顯示第二實施例之成像鏡頭2之有效焦距等於1.117mm、光圈值等於2.4、視角等於61.0度。 Table 3 is a table of related parameters of the lenses of the imaging lens 2 in Fig. 3. Table 3 shows that the effective focal length of the imaging lens 2 of the second embodiment is equal to 1.117 mm, the aperture value is equal to 2.4, and the viewing angle is equal to 61.0 degrees.

表三中各個透鏡之非球面表面凹陷度z由下列公式所得到:z=ch2/{1+[1-(k+1)c2h2]1/2}+Ah4+Bh6+Ch8+Dh10+Eh12 The aspherical surface depression z of each lens in Table 3 is obtained by the following formula: z = ch 2 /{1 + [1 - (k + 1) c 2 h 2 ] 1/2 } + Ah 4 + Bh 6 + Ch 8 +Dh 10 +Eh 12

其中:c:曲率;h:透鏡表面任一點至光軸之垂直距離;k:圓錐係數;A~E:非球面係數。 Where: c: curvature; h: vertical distance from any point on the lens surface to the optical axis; k: conic coefficient; A~E: aspheric coefficient.

表四為表三中各個透鏡之非球面表面之相關參數表,其中k為圓錐係數(Conic Constant)、A~E為非球面係數。 Table 4 is a table of related parameters of the aspherical surface of each lens in Table 3, where k is a conical coefficient (Conic Constant) and A~E is an aspherical coefficient.

第二實施例之成像鏡頭2其第一透鏡L21及第二透鏡L22之組合有效焦距f212=1.493mm,成像鏡頭2之有效焦距f2=1.117mm,第一透鏡L21之物側面S22至成像面IMA2於光軸OA2上之距離TTL2=1.427mm,第一透鏡L21之有效焦距f21=0.678mm,第二透鏡L22之有效焦距f22=-0.807mm,第三透鏡L23之有效焦距f23=4.588mm。由上述資料可得到f212/f2=1.3368、f212/TTL2=1.0459、f21/f2=0.6067、f22/f2=-0.7226、f23/f2=4.1071、f2/TTL2=0.7824,皆能滿足上述條件(7)至條件(12)之要求。 The imaging lens 2 of the second embodiment has a combination of the first lens L21 and the second lens L22 having an effective focal length f2 12 = 1.493 mm, an effective focal length f2 of the imaging lens 2 = 1.117 mm, and an object side S22 of the first lens L21 to the imaging surface. The distance IMA2 is on the optical axis OA2 is TTL2=1.427 mm, the effective focal length of the first lens L21 is f2 1 = 0.778 mm, the effective focal length of the second lens L22 is f2 2 = -0.077 mm, and the effective focal length of the third lens L23 is f2 3 = 4.588mm. Information obtained by the f2 12 /f2=1.3368,f2 12 /TTL2=1.0459,f2 1 /f2=0.6067,f2 2 /f2=-0.7226,f2 3 /f2=4.1071,f2/TTL2=0.7824, meet Jieneng Requirements for the above conditions (7) to (12).

另外,第二實施例之成像鏡頭2的光學性能也可達到要求,這可從第4A至第4D圖看出。第4A圖所示的,是第二實施例之成像鏡頭2的縱向像差(Longitudinal Aberration)圖。第4B圖所示的,是第二實施例之成像鏡頭2的場曲(Field Curvature)圖。第4C圖所示的,是第二實施例之成像鏡頭2的畸變(Distortion)圖。第4D圖所示的,是第二實施例之成像鏡頭2的橫向色差(Lateral Color)圖。 In addition, the optical performance of the imaging lens 2 of the second embodiment can also be achieved, which can be seen from the 4A to 4D drawings. Fig. 4A is a longitudinal aberration diagram of the imaging lens 2 of the second embodiment. Fig. 4B is a field curvature diagram of the imaging lens 2 of the second embodiment. Fig. 4C is a distortion diagram of the imaging lens 2 of the second embodiment. Fig. 4D is a lateral chromatic aberration diagram of the imaging lens 2 of the second embodiment.

由第4A圖可看出,第二實施例之成像鏡頭2對波長為0.470μm、0.555μm、0.650μm之光線所產生的縱向像差值介於-0.0135mm至0.009mm之間。由第4B圖可看出,第二實施例之成像鏡頭2對波長為0.470μm、0.555μm、0.650μm之光線,於子午(Tangential)方向與弧矢(Sagittal)方向之場曲介於-0.08mm至0.00mm之間。由第4C圖可看出,第二實施例之成像鏡頭2對波長為0.470μm、0.555μm、0.650μm之光線所產生的畸變介於0.0%至1.2%之間。由第4D圖可看出,第二實施例之成像鏡頭2對波長為0.470μm、0.555μm、0.650μm之光線於不同視場高度所產生的橫向色差值介於-1.0μm至0.75μm之間。顯見第二實施例之成像鏡頭2之縱向像差、場曲、畸變、橫向色差都能被有效修正,鏡頭解析度也能滿 足要求,從而得到較佳的光學性能。 As can be seen from Fig. 4A, the longitudinal aberration of the imaging lens 2 of the second embodiment for light having a wavelength of 0.470 μm, 0.555 μm, and 0.650 μm is between -0.0135 mm and 0.009 mm. As can be seen from FIG. 4B, the imaging lens 2 of the second embodiment has a field curvature of -0.78 in the direction of the tangential direction and the sagittal direction for the light having a wavelength of 0.470 μm, 0.555 μm, and 0.650 μm. Between mm and 0.00 mm. As can be seen from Fig. 4C, the imaging lens 2 of the second embodiment has a distortion of between 0.0% and 1.2% for light having a wavelength of 0.470 μm, 0.555 μm, and 0.650 μm. As can be seen from FIG. 4D, the imaging lens 2 of the second embodiment has a lateral color difference of -1.0 μm to 0.75 μm for different wavelengths of the light having a wavelength of 0.470 μm, 0.555 μm, and 0.650 μm. between. It can be seen that the longitudinal aberration, curvature of field, distortion, and lateral chromatic aberration of the imaging lens 2 of the second embodiment can be effectively corrected, and the lens resolution can also be full. The requirements are sufficient to obtain better optical properties.

雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明,任何於其所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,仍可作些許的更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above preferred embodiments, it is not intended to limit the present invention, and it is possible to make some modifications without departing from the spirit and scope of the invention. And the scope of the present invention is defined by the scope of the appended claims.

1‧‧‧成像鏡頭 1‧‧‧ imaging lens

L1G‧‧‧膠合透鏡 L1G‧‧‧ cemented lens

L11‧‧‧第一透鏡 L11‧‧‧ first lens

L12‧‧‧第二透鏡 L12‧‧‧ second lens

L13‧‧‧第三透鏡 L13‧‧‧ third lens

ST1‧‧‧光圈 ST1‧‧‧ aperture

OF1‧‧‧濾光片 OF1‧‧‧Filter

OA1‧‧‧光軸 OA1‧‧‧ optical axis

IMA1‧‧‧成像面 IMA1‧‧‧ imaging surface

S11、S12、S13、S14、S15‧‧‧面 S11, S12, S13, S14, S15‧‧

S16、S17、S18、S19‧‧‧面 S16, S17, S18, S19‧‧‧

Claims (11)

一種成像鏡頭,沿著光軸從物側至像側依序包括:一第一透鏡,該第一透鏡為雙凸透鏡具有正屈光力;一第二透鏡,該第二透鏡為雙凹透鏡具有負屈光力;以及一第三透鏡,該第三透鏡具有正屈光力;其中該第一透鏡以及該第二透鏡膠合成一膠合透鏡,該膠合透鏡具有正屈光力;其中該第一透鏡以及該第二透鏡滿足以下條件:1.2965f12/f1.3368其中,f12為該第一透鏡以及該第二透鏡之組合有效焦距,f為該成像鏡頭之有效焦距。 An imaging lens sequentially includes, from the object side to the image side along the optical axis, a first lens having a positive refractive power and a second lens having a negative refractive power; the second lens having a negative refractive power; And a third lens having a positive refractive power; wherein the first lens and the second lens are combined to form a cemented lens, the cemented lens having a positive refractive power; wherein the first lens and the second lens satisfy the following conditions :1.2965 f 12 /f 1.3368, wherein f 12 is a combined effective focal length of the first lens and the second lens, and f is an effective focal length of the imaging lens. 如申請專利範圍第1項所述之成像鏡頭,其中該第二透鏡為雙凹透鏡。 The imaging lens of claim 1, wherein the second lens is a biconcave lens. 如申請專利範圍第1項所述之成像鏡頭,其中該第三透鏡為凸凹透鏡,該第三透鏡之凸面朝向該物側凹面朝向該像側。 The imaging lens of claim 1, wherein the third lens is a convex-concave lens, and a convex surface of the third lens faces the object side concave surface toward the image side. 如申請專利範圍第1項所述之成像鏡頭,其中該第一透鏡以及該第二透鏡滿足以下條件:1.0308f12/TTL1.0459其中,f12為該第一透鏡以及該第二透鏡之組合有效焦距,TTL為該第一透鏡之物側面至一成像面於該光軸上之距離。 The imaging lens of claim 1, wherein the first lens and the second lens satisfy the following condition: 1.0308 f 12 /TTL 1.0459, wherein f 12 is a combined effective focal length of the first lens and the second lens, and TTL is a distance from an object side of the first lens to an imaging surface on the optical axis. 如申請專利範圍第1項所述之成像鏡頭,其中該第一透鏡滿足以下條件:0.5844f1/f0.6067 其中,f1為該第一透鏡之有效焦距,f為該成像鏡頭之有效焦距。 The imaging lens of claim 1, wherein the first lens satisfies the following condition: 0.5844 f 1 /f 0.6067 wherein f 1 is the effective focal length of the first lens, and f is the effective focal length of the imaging lens. 如申請專利範圍第1項所述之成像鏡頭,其中該第二透鏡滿足以下條件:-0.7226f2/f-0.7052其中,f2為該第二透鏡之有效焦距,f為該成像鏡頭之有效焦距。 The imaging lens of claim 1, wherein the second lens satisfies the following condition: -0.7226 f 2 /f -0.7052, where f 2 is the effective focal length of the second lens, and f is the effective focal length of the imaging lens. 如申請專利範圍第1項所述之成像鏡頭,其中該第三透鏡滿足以下條件:4.1071f3/f5.1124其中,f3為該第三透鏡之有效焦距,f為該成像鏡頭之有效焦距。 The imaging lens of claim 1, wherein the third lens satisfies the following condition: 4.1071 f 3 /f 5.1124 wherein f 3 is the effective focal length of the third lens, and f is the effective focal length of the imaging lens. 如申請專利範圍第1項所述之成像鏡頭,其中該成像鏡頭滿足以下條件:0.7824f/TTL0.7945其中,f為該成像鏡頭之有效焦距,TTL為該第一透鏡之物側面至一成像面於該光軸上之距離。 The imaging lens of claim 1, wherein the imaging lens satisfies the following condition: 0.7824 f/TTL 0.7945, where f is the effective focal length of the imaging lens, and TTL is the distance from the object side of the first lens to an imaging surface on the optical axis. 如申請專利範圍第1項所述之成像鏡頭,其中該第一透鏡以及該第二透鏡係由玻璃材質製成,該第三透鏡係由塑膠材質製成。 The imaging lens of claim 1, wherein the first lens and the second lens are made of a glass material, and the third lens is made of a plastic material. 如申請專利範圍第1項所述之成像鏡頭,其中該第一透鏡之物側面以及像側面至少有一面為非球面表面,該第二透鏡之物側面以及像側面至少有一面為非球面表面,該第三透鏡之物側面以及像側面皆為非球面表面。 The imaging lens of claim 1, wherein at least one side of the object side and the image side of the first lens is an aspherical surface, and at least one side of the object side and the image side of the second lens is an aspherical surface. Both the object side surface and the image side surface of the third lens are aspherical surfaces. 如申請專利範圍第1項所述之成像鏡頭,其更包括一光圈,設置於該物側與該第一透鏡之間。 The imaging lens of claim 1, further comprising an aperture disposed between the object side and the first lens.
TW104100032A 2015-01-05 2015-01-05 Lens assembly TWI522645B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW104100032A TWI522645B (en) 2015-01-05 2015-01-05 Lens assembly
CN201511025020.5A CN105759399B (en) 2015-01-05 2015-12-30 Imaging lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104100032A TWI522645B (en) 2015-01-05 2015-01-05 Lens assembly

Publications (2)

Publication Number Publication Date
TWI522645B TWI522645B (en) 2016-02-21
TW201626028A true TW201626028A (en) 2016-07-16

Family

ID=55810425

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104100032A TWI522645B (en) 2015-01-05 2015-01-05 Lens assembly

Country Status (2)

Country Link
CN (1) CN105759399B (en)
TW (1) TWI522645B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109557643B (en) * 2019-01-03 2020-06-23 江西联益光学有限公司 Telephoto lens and mobile terminal
CN111025576A (en) * 2019-12-26 2020-04-17 天津大学 Bifocal bidirectional combined imaging optical system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5173809A (en) * 1989-02-28 1992-12-22 Asahi Kogaku Kogyo Kabushiki Kaisha Objective lens system of optical information recording/reproducing apparatus
JP2000019388A (en) * 1998-06-30 2000-01-21 Sony Corp Optical element for correcting chromatic aberration, optical pickup device having this element and optical reproducing device and optical recording and reproducing device having this pickup device
JP2002023051A (en) * 2000-07-13 2002-01-23 Asahi Optical Co Ltd Optical spatial transmitting device
JP2007097631A (en) * 2005-09-30 2007-04-19 Matsushita Electric Ind Co Ltd Iris photographing lens
JP2013120312A (en) * 2011-12-08 2013-06-17 Konica Minolta Advanced Layers Inc Condenser lens

Also Published As

Publication number Publication date
CN105759399A (en) 2016-07-13
TWI522645B (en) 2016-02-21
CN105759399B (en) 2018-01-23

Similar Documents

Publication Publication Date Title
TWI476436B (en) Lens assembly
TWI542902B (en) Wide-angle lens
TWI534471B (en) Wide-angle lens
TWI529413B (en) Lens assembly
TWI491915B (en) Wide-angle lens
TWI526712B (en) Lens assembly
TWI480577B (en) Wide-angle lens
TWI623773B (en) Fixed focus projection lens
TWI766956B (en) Lens assembly
TWI485426B (en) Miniaturized lens assembly
TWI491913B (en) Lens assembly
TW201715267A (en) Wide-angle lens
TWI522645B (en) Lens assembly
TWI546566B (en) Wide-angle lens
TW201310062A (en) Imaging lens
TW201544841A (en) Wide-angle lens
TWI528067B (en) Lens assembly
TWI518358B (en) Lens assembly
TWI808056B (en) Wide-angle lens assembly
TWI595260B (en) Lens assembly
TWI504926B (en) Miniaturized lens assembly
TW201433819A (en) Mobile device and optical imaging lens thereof
TWI790224B (en) Lens assembly
TWI663419B (en) Lens assembly
TW201626041A (en) Wide-angle lens

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees