TW201907756A - Plasma processing device - Google Patents

Plasma processing device Download PDF

Info

Publication number
TW201907756A
TW201907756A TW107121806A TW107121806A TW201907756A TW 201907756 A TW201907756 A TW 201907756A TW 107121806 A TW107121806 A TW 107121806A TW 107121806 A TW107121806 A TW 107121806A TW 201907756 A TW201907756 A TW 201907756A
Authority
TW
Taiwan
Prior art keywords
electrode
terminal
plasma processing
balun
balanced terminal
Prior art date
Application number
TW107121806A
Other languages
Chinese (zh)
Other versions
TWI679924B (en
Inventor
田名部正治
関谷一成
井上忠
笹本浩
佐藤辰憲
土屋信昭
竹田敦
Original Assignee
日商佳能安內華股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2017/023603 external-priority patent/WO2019003309A1/en
Priority claimed from PCT/JP2017/023611 external-priority patent/WO2019003312A1/en
Application filed by 日商佳能安內華股份有限公司 filed Critical 日商佳能安內華股份有限公司
Publication of TW201907756A publication Critical patent/TW201907756A/en
Application granted granted Critical
Publication of TWI679924B publication Critical patent/TWI679924B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma Technology (AREA)
  • Physical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

A plasma processing device, comprising: a balun that has a first unbalanced terminal, a second unbalanced terminal, a first balanced terminal, and a second balanced terminal; a grounded vacuum container; a first electrode that is electrically connected to the first balanced terminal; a second electrode that is electrically connected to the second balanced terminal; an adjustment reactance that imparts an effect on the relationship of a first voltage applied to the first electrode and a second voltage applied to the second electrode; a substrate-holding unit that holds a substrate; and a drive mechanism that causes the substrate-holding unit to rotate.

Description

電漿處理裝置Plasma processing device

本發明是有關電漿處理裝置。The present invention relates to a plasma processing apparatus.

有藉由在2個的電極之間施加高頻來產生電漿,藉由該電漿來處理基板的電漿處理裝置。如此的電漿處理裝置是可藉由2個的電極的面積比及/或偏壓來作為濺射裝置動作,或作為蝕刻裝置動作。構成為濺射裝置的電漿處理裝置是具有:保持標靶的第1電極,及保持基板的第2電極,在第1電極與第2電極之間施加高頻,在第1電極與第2電極之間(標靶與基板之間)產生電漿。藉由電漿的生成,在標靶的表面產生自偏置電壓,藉此離子會衝突於標靶,構成此的材料的粒子會從標靶放出。There is a plasma processing apparatus that generates a plasma by applying a high frequency between two electrodes, and processes a substrate by the plasma. Such a plasma processing apparatus can operate as a sputtering apparatus or as an etching apparatus by the area ratio and / or bias voltage of two electrodes. A plasma processing device configured as a sputtering device includes a first electrode holding a target and a second electrode holding a substrate. A high frequency is applied between the first electrode and the second electrode, and the first electrode and the second electrode are applied. Plasma is generated between the electrodes (between the target and the substrate). By the generation of the plasma, a self-bias voltage is generated on the surface of the target, whereby ions will collide with the target, and particles of the material constituting this will be released from the target.

在專利文獻1是記載有濺射裝置,其係具有:被接地的腔室、經由阻抗匹配電路網來連接至RF發生源的標靶電極、及經由基板電極調諧電路來接地的基板保持電極。Patent Document 1 describes a sputtering device including a grounded chamber, a target electrode connected to an RF generation source via an impedance matching circuit network, and a substrate holding electrode grounded via a substrate electrode tuning circuit.

在如專利文獻1記載般的濺射裝置中,除了基板保持電極以外,腔室可作為陽極機能。自偏置電壓會依可作為陰極機能的部分的狀態及可作為陽極機能的部分的狀態而變化。因此,除了基板保持電極以外,腔室也作為陽極機能時,自偏置電壓會也依腔室之中作為陽極機能的部分的狀態而變化。自偏置電壓的變化會帶來電漿電位的變化,電漿電位的變化會對被形成的膜的特性造成影響。In the sputtering apparatus described in Patent Document 1, the chamber functions as an anode in addition to the substrate holding electrode. The self-bias voltage varies depending on the state of the part that can function as the cathode and the state of the part that can function as the anode. Therefore, when the chamber functions as the anode in addition to the substrate holding electrode, the self-bias voltage also changes depending on the state of the part functioning as the anode in the chamber. Changes in the self-bias voltage will cause changes in the plasma potential, and changes in the plasma potential will affect the characteristics of the film being formed.

若藉由濺射裝置在基板形成膜,則在腔室的內面也會形成有膜。藉此,腔室之中可作為陽極機能的部分的狀態會變化。因此,若繼續使用濺射裝置,則自偏置電壓會依被形成於腔室的內面的膜而變化,電漿電位也會變化。因此,以往長期使用濺射裝置的情況,難以將被形成於基板上的膜的特性維持於一定。When a film is formed on a substrate by a sputtering device, a film is also formed on the inner surface of the chamber. As a result, the state of the portion of the chamber that can function as an anode changes. Therefore, if the sputtering device is continuously used, the self-bias voltage will change depending on the film formed on the inner surface of the chamber, and the plasma potential will also change. Therefore, it has been difficult to maintain the characteristics of a film formed on a substrate to be constant when a sputtering device has been used in the past for a long time.

同樣,在蝕刻裝置長期被使用的情況,也是自偏置電壓會依被形成於腔室的內面的膜而變化,藉此電漿電位也會變化,因此難以將基板的蝕刻特性維持於一定。 [先前技術文獻] [專利文獻]Similarly, when the etching device is used for a long period of time, the self-bias voltage also changes depending on the film formed on the inner surface of the chamber. As a result, the plasma potential also changes, so it is difficult to maintain the etching characteristics of the substrate at a certain level. . [Prior Art Literature] [Patent Literature]

[專利文獻1]日本特公昭55-35465號公報[Patent Document 1] Japanese Patent Publication No. 55-35465

本發明是根據上述的課題認識所研發者,提供一種在長期間的使用中為了使電漿電位安定而有利的技術。The present invention has been developed based on the above-mentioned problems, and provides a technique that is advantageous for stabilizing the plasma potential during long-term use.

本發明的第1形態係有關電漿處理裝置,前述電漿處理裝置,係具備:   具有第1不平衡端子、第2不平衡端子、第1平衡端子及第2平衡端子的巴倫;   被接地的真空容器;   被電性連接至前述第1平衡端子的第1電極;   被電性連接至前述第2平衡端子的第2電極;   影響被施加於前述第1電極的第1電壓與被施加於前述第2電極的第2電壓的關係之調整電抗器;   保持基板的基板保持部;及   使前述基板保持部旋轉的驅動機構。A first aspect of the present invention relates to a plasma processing apparatus, and the plasma processing apparatus includes: a balun having a first unbalanced terminal, a second unbalanced terminal, a first balanced terminal, and a second balanced terminal; Vacuum container; the first electrode electrically connected to the first balanced terminal; the second electrode electrically connected to the second balanced terminal; affects the first voltage applied to the first electrode and is applied to A reactor for adjusting the relationship between the second voltage of the second electrode; (i) a substrate holding portion that holds the substrate; and a driving mechanism that rotates the substrate holding portion.

本發明的第2形態係有關電漿處理方法,前述電漿處理方法,係於電漿處理裝置中處理基板的電漿處理方法,該電漿處理裝置係具備:   具有第1不平衡端子、第2不平衡端子、第1平衡端子及第2平衡端子的巴倫;   被接地的真空容器;   被電性連接至前述第1平衡端子的第1電極;   被電性連接至前述第2平衡端子的第2電極;   影響被施加於前述第1電極的第1電壓與被施加於前述第2電極的第2電壓的關係之調整電抗器;   保持基板的基板保持部;及   使前述基板保持部旋轉的驅動機構。   其特徵係包含:   以前述關係能被調整的方式調整前述電抗器之工程;及   在前述工程之後﹐使前述基板藉由前述驅動機構來一邊旋轉一邊處理之工程。A second aspect of the present invention relates to a plasma processing method. The aforementioned plasma processing method is a plasma processing method for processing a substrate in a plasma processing apparatus. The plasma processing apparatus includes: (1) having a first unbalanced terminal, a 2 baluns of the unbalanced terminal, the first balanced terminal, and the second balanced terminal; 接地 a vacuum container grounded; the first electrode electrically connected to the first balanced terminal; 平衡 electrically connected to the second balanced terminal A second electrode; 之 an adjustment reactor that affects the relationship between the first voltage applied to the first electrode and the second voltage applied to the second electrode; a substrate holding portion holding a substrate; and Drive mechanism. Its features include: a process of adjusting the aforementioned reactor in such a manner that the aforementioned relationship can be adjusted; and a process of allowing the substrate to be processed while being rotated by the aforementioned driving mechanism after the aforementioned process.

以下,一邊參照附圖,一邊經由其舉例表示的實施形態來說明本發明。Hereinafter, the present invention will be described with reference to the accompanying drawings through embodiments illustrated by examples.

在圖1中模式性地表示本發明的第1實施形態的電漿處理裝置1的構成。第1實施形態的電漿處理裝置是可作為藉由濺射來將膜形成於基板112的濺射裝置動作。電漿處理裝置1是具備:巴倫(平衡不平衡變換電路)103、真空容器110、第1電極106及第2電極111。或,亦可理解為電漿處理裝置1是具備巴倫103及本體10,本體10具備真空容器110、第1電極106及第2電極111。本體10是具有第1端子251及第2端子252。第1電極106是亦可配置成為與真空容器110一起分離真空空間與外部空間(亦即構成真空隔壁的一部分),或亦可配置於真空容器110之中。第2電極111是亦可配置成為與真空容器110一起分離真空空間與外部空間(亦即構成真空隔壁的一部分),或亦可配置於真空容器110之中。FIG. 1 schematically shows the configuration of the plasma processing apparatus 1 according to the first embodiment of the present invention. The plasma processing apparatus of the first embodiment can be operated as a sputtering apparatus that forms a film on the substrate 112 by sputtering. The plasma processing apparatus 1 includes a balun (balanced-unbalanced conversion circuit) 103, a vacuum container 110, a first electrode 106, and a second electrode 111. Or, it can also be understood that the plasma processing apparatus 1 includes a balun 103 and a main body 10, and the main body 10 includes a vacuum container 110, a first electrode 106, and a second electrode 111. The main body 10 includes a first terminal 251 and a second terminal 252. The first electrode 106 may be disposed to separate the vacuum space and the external space (that is, a part of the vacuum partition wall) together with the vacuum container 110, or may be disposed in the vacuum container 110. The second electrode 111 may be arranged to separate the vacuum space and the external space (that is, a part of the vacuum partition wall) together with the vacuum container 110, or may be arranged in the vacuum container 110.

巴倫103是具有第1不平衡端子201、第2不平衡端子202、第1平衡端子211及第2平衡端子212。在巴倫103的第1不平衡端子201及第2不平衡端子202的側是連接有不平衡電路,在巴倫103的第1平衡端子211及第2平衡端子212的側是連接有平衡電路。真空容器110是導體所構成,被接地。The balun 103 includes a first unbalanced terminal 201, a second unbalanced terminal 202, a first balanced terminal 211, and a second balanced terminal 212. An unbalanced circuit is connected to the first unbalanced terminal 201 and the second unbalanced terminal 202 of the balun 103, and a balanced circuit is connected to the first balanced terminal 211 and the second balanced terminal 212 of the balun 103. . The vacuum container 110 is made of a conductor and is grounded.

在第1實施形態中,第1電極106是陰極,保持標靶109。標靶109是例如可為絕緣體材料或導電體材料。並且,在第1實施形態中,第2電極111是陽極,保持基板112。第1實施形態的電漿處理裝置1是可作為藉由標靶109的濺射來將膜形成於基板112的濺射裝置動作。第1電極106是被電性連接至第1平衡端子211,第2電極111是被電性連接至第2平衡端子212。第1電極106與第1平衡端子211被電性連接是意思以電流能流動於第1電極106與第1平衡端子211之間的方式,在第1電極106與第1平衡端子211之間構成有電流路徑。同樣,在此說明書中,a與b被電性連接是意思以電流能流動於a與b之間的方式,在a與b之間構成有電流路徑。In the first embodiment, the first electrode 106 is a cathode and holds the target 109. The target 109 is, for example, an insulator material or a conductor material. In the first embodiment, the second electrode 111 is an anode and holds the substrate 112. The plasma processing apparatus 1 according to the first embodiment operates as a sputtering apparatus that forms a film on the substrate 112 by sputtering of the target 109. The first electrode 106 is electrically connected to the first balanced terminal 211, and the second electrode 111 is electrically connected to the second balanced terminal 212. The fact that the first electrode 106 and the first balanced terminal 211 are electrically connected means that a current can flow between the first electrode 106 and the first balanced terminal 211, and is configured between the first electrode 106 and the first balanced terminal 211. There is a current path. Similarly, in this specification, a and b are electrically connected to each other, meaning that a current path is formed between a and b in such a manner that current can flow between a and b.

上述的構成亦可理解為第1電極106被電性連接至第1端子251,第2電極111被電性連接至第2端子252,第1端子251被電性連接至第1平衡端子211,第2端子252被電性連接至第2平衡端子212的構成。The above configuration can also be understood as the first electrode 106 is electrically connected to the first terminal 251, the second electrode 111 is electrically connected to the second terminal 252, and the first terminal 251 is electrically connected to the first balanced terminal 211. The second terminal 252 is electrically connected to the second balanced terminal 212.

在第1實施形態中,第1電極106與第1平衡端子211(第1端子251)會經由阻塞電容器104來電性連接。阻塞電容器104是在第1平衡端子211與第1電極106之間(或第1平衡端子211與第2平衡端子212之間)遮斷直流電流。亦可取代阻塞電容器104,以後述的阻抗匹配電路102會遮斷流動於第1不平衡端子201與第2不平衡端子202之間的直流電流之方式構成。第1電極106是可隔著絕緣體107來藉由真空容器110所支撐。第2電極111可隔著絕緣體108來藉由真空容器110所支撐。或,可在第2電極111與真空容器110之間配置有絕緣體108。In the first embodiment, the first electrode 106 and the first balanced terminal 211 (the first terminal 251) are electrically connected via the blocking capacitor 104. The blocking capacitor 104 blocks a DC current between the first balanced terminal 211 and the first electrode 106 (or between the first balanced terminal 211 and the second balanced terminal 212). Instead of the blocking capacitor 104, an impedance matching circuit 102 described later may be configured to block a DC current flowing between the first unbalanced terminal 201 and the second unbalanced terminal 202. The first electrode 106 is supported by the vacuum container 110 via an insulator 107. The second electrode 111 may be supported by the vacuum container 110 via the insulator 108. Alternatively, an insulator 108 may be disposed between the second electrode 111 and the vacuum container 110.

電漿處理裝置1是可更具備:高頻電源101、及被配置於高頻電源101與巴倫103之間的阻抗匹配電路102。高頻電源101是經由阻抗匹配電路102來供給高頻(高頻電流、高頻電壓、高頻電力)至巴倫103的第1不平衡端子201與第2不平衡端子202之間。換言之,高頻電源101是經由阻抗匹配電路102、巴倫103及阻塞電容器104來供給高頻(高頻電流、高頻電壓、高頻電力)至第1電極106與第2電極111之間。或,亦可理解為高頻電源101是經由阻抗匹配電路102及巴倫103來供給高頻至本體10的第1端子251與第2端子252之間。The plasma processing apparatus 1 may further include a high-frequency power source 101 and an impedance matching circuit 102 disposed between the high-frequency power source 101 and the balun 103. The high-frequency power source 101 supplies high-frequency (high-frequency current, high-frequency voltage, and high-frequency power) to the balun 103 between the first unbalanced terminal 201 and the second unbalanced terminal 202 via the impedance matching circuit 102. In other words, the high-frequency power source 101 supplies high-frequency (high-frequency current, high-frequency voltage, and high-frequency power) between the first electrode 106 and the second electrode 111 via the impedance matching circuit 102, the balun 103, and the blocking capacitor 104. Or, it can also be understood that the high-frequency power source 101 supplies high-frequency power between the first terminal 251 and the second terminal 252 of the main body 10 via the impedance matching circuit 102 and the balun 103.

在真空容器110的內部空間是經由被設在真空容器110之未圖示的氣體供給部來供給氣體(例如Ar、Kr或Xe氣體)。並且,在第1電極106與第2電極111之間是經由阻抗匹配電路102、巴倫103及阻塞電容器104來藉由高頻電源101供給高頻。藉此,在第1電極106與第2電極111之間產生電漿,在標靶109的表面產生自偏置電壓,電漿中的離子會衝突於標靶109的表面,從標靶109放出構成那個的材料的粒子。然後,藉由此粒子來形成膜於基板112上。A gas (for example, Ar, Kr, or Xe gas) is supplied to the internal space of the vacuum container 110 via a gas supply unit (not shown) provided in the vacuum container 110. A high-frequency power is supplied between the first electrode 106 and the second electrode 111 via the high-frequency power source 101 via the impedance matching circuit 102, the balun 103, and the blocking capacitor 104. As a result, a plasma is generated between the first electrode 106 and the second electrode 111, and a self-bias voltage is generated on the surface of the target 109. Ions in the plasma will collide with the surface of the target 109 and be released from the target 109. Particles of the material that makes up that. Then, a film is formed on the substrate 112 by the particles.

在圖2A是表示巴倫103的一構成例。被表示於圖2A的巴倫103是具有連接第1不平衡端子201與第1平衡端子211的第1線圈221,及連接第2不平衡端子202與第2平衡端子212的第2線圈222。第1線圈221及第2線圈222是同一捲數的線圈,共有鐵芯。FIG. 2A shows a configuration example of the balun 103. The balun 103 shown in FIG. 2A includes a first coil 221 that connects the first unbalanced terminal 201 and the first balanced terminal 211, and a second coil 222 that connects the second unbalanced terminal 202 and the second balanced terminal 212. The first coil 221 and the second coil 222 are coils of the same number of windings, and share a core.

在圖2B是表示巴倫103的其他的構成例。被表示於圖2B的巴倫103是具有:連接第1不平衡端子201與第1平衡端子211的第1線圈221,及連接第2不平衡端子202與第2平衡端子212的第2線圈222。第1線圈221及第2線圈222是同一捲數的線圈,共有鐵芯。並且,被表示於圖2B的巴倫103是更具有被連接至第1平衡端子211與第2平衡端子212之間的第3線圈223及第4線圈224,第3線圈223及第4線圈224是被構成為以第3線圈223與第4線圈224的連接節點213的電壓作為第1平衡端子211的電壓與第2平衡端子212的電壓之中點。第3線圈223及第4線圈224是同一捲數的線圈,共有鐵芯。連接節點213是亦可被接地,亦可被連接至真空容器110,亦可被形成浮動。FIG. 2B shows another configuration example of the balun 103. The balun 103 shown in FIG. 2B includes a first coil 221 that connects the first unbalanced terminal 201 and the first balanced terminal 211, and a second coil 222 that connects the second unbalanced terminal 202 and the second balanced terminal 212. . The first coil 221 and the second coil 222 are coils of the same number of windings, and share a core. The balun 103 shown in FIG. 2B further includes a third coil 223 and a fourth coil 224, and a third coil 223 and a fourth coil 224 connected between the first balanced terminal 211 and the second balanced terminal 212. It is comprised so that the voltage of the connection node 213 of the 3rd coil 223 and the 4th coil 224 may be set as the midpoint of the voltage of the 1st balanced terminal 211 and the voltage of the 2nd balanced terminal 212. The third coil 223 and the fourth coil 224 are coils of the same number of windings, and share a core. The connection node 213 may also be grounded, may be connected to the vacuum container 110, or may be formed in a floating state.

一邊參照圖3,一邊說明巴倫103的機能。將流動於第1不平衡端子201的電流設為I1,將流動於第1平衡端子211的電流設為I2,將流動於第2不平衡端子202的電流設為I2’,將電流I2之中流至接地的電流設為I3。I3=0,亦即,在平衡電路的側電流不流至接地時,平衡電路對於接地的隔離(isolation)性能為最佳。I3=I2,亦即,當流動於第1平衡端子211的電流I2的全部對於接地流動時,平衡電路對於接地的隔離性能為最差。表示如此的隔離性能的程度的指標ISO是可賦予以下的式子。在此定義之下,ISO的值的絕對值較大,隔離性能較佳。   ISO[dB]=20log(I3/I2’)The function of the balun 103 will be described with reference to FIG. 3. Let the current flowing through the first unbalanced terminal 201 be I1, let the current flowing through the first balanced terminal 211 be I2, let the current flowing through the second unbalanced terminal 202 be I2 ', and let the current I2 flow The current to ground is set to I3. I3 = 0, that is, when the side current of the balanced circuit does not flow to the ground, the isolation performance of the balanced circuit for ground is the best. I3 = I2, that is, when all of the current I2 flowing through the first balanced terminal 211 flows to ground, the isolation performance of the balanced circuit against ground is the worst. The index ISO showing the degree of such isolation performance can be given by the following formula. Under this definition, the absolute value of ISO is larger and the isolation performance is better. ISO [dB] = 20log (I3 / I2 ’)

在圖3中,Rp-jXp是表示在真空容器110的內部空間產生電漿的狀態下,從第1平衡端子211及第2平衡端子212的側來看第1電極106及第2電極111的側(本體10的側)時的阻抗(包含阻塞電容器104的電抗)。Rp是表示電阻成分,-Xp是表示電抗成分。並且,在圖3中,X是表示巴倫103的第1線圈221的阻抗的電抗成分(電感成分)。ISO是對於X/Rp具有相關性。In FIG. 3, Rp-jXp indicates that the first electrode 106 and the second electrode 111 are viewed from the side of the first balanced terminal 211 and the second balanced terminal 212 in a state where plasma is generated in the internal space of the vacuum container 110. Impedance (including the reactance of the blocking capacitor 104) at the side (side of the body 10). Rp is a resistance component, and -Xp is a reactance component. In addition, in FIG. 3, X is a reactance component (inductance component) showing the impedance of the first coil 221 of the balun 103. ISO is relevant for X / Rp.

在圖4中舉例表示電流I1(=I2)、I2’、I3、ISO、α(=X/Rp)的關係。本發明者發現經由巴倫103來從高頻電源101供給高頻至第1電極106與第2電極111之間的構成,特別是在該構成中符合1.5≦X/Rp≦5000會有利於為了使被形成於真空容器110的內部空間(第1電極106與第2電極111之間的空間)的電漿的電位(電漿電位)對於真空容器110的內面的狀態形成鈍感。在此,電漿電位對於真空容器110的內面的狀態形成鈍感是意思即使是長期間使用電漿處理裝置1的情況,也可使電漿電位安定。1.5≦X/Rp≦5000是相當於-10.0dB≧ISO≧-80dB。FIG. 4 illustrates the relationship between the currents I1 (= I2), I2 ', I3, ISO, and α (= X / Rp) by way of example. The inventors have found that a configuration in which high frequency is supplied from the high-frequency power source 101 to the first electrode 106 and the second electrode 111 via the balun 103, and in particular, in this configuration, meeting 1.5 ≦ X / Rp ≦ 5000 is advantageous for The potential of the plasma (plasma potential) formed in the internal space (the space between the first electrode 106 and the second electrode 111) of the vacuum container 110 is dulled to the state of the inner surface of the vacuum container 110. Here, the fact that the plasma potential is insensitive to the state of the inner surface of the vacuum container 110 means that the plasma potential can be stabilized even when the plasma processing apparatus 1 is used for a long period of time. 1.5 ≦ X / Rp ≦ 5000 is equivalent to -10.0dB ≧ ISO ≧ -80dB.

在圖5A~5D是表示模擬符合1.5≦X/Rp≦5000時的電漿電位及第1電極106的電位(陰極電位)的結果。圖5A是表示在真空容器110的內面未形成有膜的狀態的電漿電位及陰極電位。圖5B是表示在真空容器110的內面形成有電阻性的膜(1000Ω)的狀態的電漿電位及陰極電位。圖5C是表示在真空容器110的內面形成有感應性的膜(0.6μH)的狀態的電漿電位及陰極電位。圖5D是表示在真空容器110的內面形成有電容性的膜(0.1nF)的狀態的電漿電位及陰極電位。由圖5A~5D可理解,符合1.5≦X/Rp≦5000會有利於為了真空容器110的內面在各種的狀態中使電漿電位安定。5A to 5D show the results of simulating the plasma potential and the potential (cathode potential) of the first electrode 106 when 1.5 ≦ X / Rp ≦ 5000. FIG. 5A shows a plasma potential and a cathode potential in a state where a film is not formed on the inner surface of the vacuum container 110. FIG. 5B shows the plasma potential and the cathode potential in a state where a resistive film (1000 Ω) is formed on the inner surface of the vacuum container 110. FIG. 5C shows a plasma potential and a cathode potential in a state where an inductive film (0.6 μH) is formed on the inner surface of the vacuum container 110. FIG. 5D shows a plasma potential and a cathode potential in a state where a capacitive film (0.1 nF) is formed on the inner surface of the vacuum container 110. It can be understood from FIGS. 5A to 5D that compliance with 1.5 ≦ X / Rp ≦ 5000 will help stabilize the plasma potential in various states for the inner surface of the vacuum container 110.

在圖6A~6D是表示模擬不符合1.5≦X/Rp≦5000時的電漿電位及第1電極106的電位(陰極電位)的結果。圖6A是表示在真空容器110的內面未形成有膜的狀態的電漿電位及陰極電位。圖6B是表示在真空容器110的內面形成有電阻性的膜(1000Ω)的狀態的電漿電位及陰極電位。圖6C是表示在真空容器110的內面形成有感應性的膜(0.6μH)的狀態的電漿電位及陰極電位。圖6D是表示在真空容器110的內面形成有電容性的膜(0.1nF)的狀態的電漿電位及陰極電位。由圖6A~6D可理解,不符合1.5≦X/Rp≦5000時,電漿電位會依真空容器110的內面的狀態而變化。6A to 6D show the results of simulating the plasma potential and the potential (cathode potential) of the first electrode 106 when 1.5 ≦ X / Rp ≦ 5000 is not satisfied. FIG. 6A shows a plasma potential and a cathode potential in a state where a film is not formed on the inner surface of the vacuum container 110. FIG. 6B shows a plasma potential and a cathode potential in a state where a resistive film (1000 Ω) is formed on the inner surface of the vacuum container 110. FIG. 6C shows a plasma potential and a cathode potential in a state where an inductive film (0.6 μH) is formed on the inner surface of the vacuum container 110. FIG. 6D shows a plasma potential and a cathode potential in a state where a capacitive film (0.1 nF) is formed on the inner surface of the vacuum container 110. It can be understood from FIGS. 6A to 6D that when it does not meet 1.5 ≦ X / Rp ≦ 5000, the plasma potential changes depending on the state of the inner surface of the vacuum container 110.

在此,在X/Rp>5000(例如X/Rp=∞)的情況與X/Rp<1.5的情況(例如X/Rp=1.0,X/Rp=0.5)的雙方,電漿電位會容易依真空容器110的內面的狀態而變化。X/Rp>5000的情況,在真空容器110的內面未形成有膜的狀態,只在第1電極106與第2電極111之間發生放電。但,X/Rp>5000的情況,一旦膜開始被形成於真空容器110的內面,則對於此,電漿電位會敏感地反應,成為圖6A~6D所舉例表示般的結果。另一方面,X/Rp<1.5的情況,由於經由真空容器110來流入至接地的電流大,因此真空容器110的內面的狀態(被形成於內面的膜的電性的特性)所造成的影響顯著,電漿電位會依膜的形成而變化。因此,如前述般,以符合1.5≦X/Rp≦5000的方式構成電漿處理裝置1的情形有利。Here, in the case of X / Rp> 5000 (for example, X / Rp = ∞) and X / Rp <1.5 (for example, X / Rp = 1.0, X / Rp = 0.5), the plasma potential can be easily adjusted. The state of the inner surface of the vacuum container 110 changes. In the case where X / Rp> 5000, a film is not formed on the inner surface of the vacuum container 110, and a discharge occurs only between the first electrode 106 and the second electrode 111. However, in the case of X / Rp> 5000, once the film starts to be formed on the inner surface of the vacuum container 110, the plasma potential responds sensitively to this, and the results are shown as examples shown in FIGS. 6A to 6D. On the other hand, when X / Rp <1.5, the current flowing into the ground through the vacuum container 110 is large, so the state of the inner surface of the vacuum container 110 (electrical characteristics of the film formed on the inner surface) is caused. The effect is significant and the plasma potential will change depending on the film formation. Therefore, as described above, it is advantageous in the case where the plasma processing apparatus 1 is configured so as to satisfy 1.5 ≦ X / Rp ≦ 5000.

一邊參照圖7,一邊舉例表示Rp-jXp(實際所欲得知者是僅Rp)的決定方法。首先,從電漿處理裝置1卸下巴倫103,將阻抗匹配電路102的輸出端子230連接至本體10的第1端子251(阻塞電容器104)。並且,將本體10的第2端子252(第2電極111)接地。在此狀態下從高頻電源101經由阻抗匹配電路102來供給高頻至本體10的第1端子251。在圖7所示的例子中,阻抗匹配電路102是等效地以線圈L1、L2及可變電容器VC1、VC2所構成。可藉由調整可變電容器VC1、VC2的電容值來使電漿產生。在電漿安定的狀態中,阻抗匹配電路102的阻抗是被匹配於電漿產生時的本體10的側(第1電極106及第2電極111的側)的阻抗Rp-jXp。此時的阻抗匹配電路102的阻抗是Rp+jXp。Referring to FIG. 7, an example of a method for determining Rp-jXp (only Rp is actually known) is shown. First, the balun 103 is removed from the plasma processing apparatus 1, and the output terminal 230 of the impedance matching circuit 102 is connected to the first terminal 251 (blocking capacitor 104) of the main body 10. The second terminal 252 (second electrode 111) of the main body 10 is grounded. In this state, high frequency is supplied from the high-frequency power source 101 to the first terminal 251 of the main body 10 through the impedance matching circuit 102. In the example shown in FIG. 7, the impedance matching circuit 102 is equivalently configured by the coils L1 and L2 and the variable capacitors VC1 and VC2. The plasma can be generated by adjusting the capacitance of the variable capacitors VC1 and VC2. In the plasma stable state, the impedance of the impedance matching circuit 102 is matched to the impedance Rp-jXp of the side of the body 10 (the side of the first electrode 106 and the second electrode 111) when the plasma is generated. The impedance of the impedance matching circuit 102 at this time is Rp + jXp.

因此,可根據阻抗匹配時的阻抗匹配電路102的阻抗Rp+jXp來取得Rp-jXp(實際所欲得知者是僅Rp)。Rp-jXp是其他例如可根據設計資料來藉由模擬求取。Therefore, Rp-jXp can be obtained from the impedance Rp + jXp of the impedance matching circuit 102 at the time of impedance matching (actually known is only Rp). Rp-jXp may be obtained by simulation based on design data, for example.

根據如此取得的Rp,可特定X/Rp。例如,以符合1.5≦X/Rp≦5000的方式,根據Rp,可決定巴倫103的第1線圈221的阻抗的電抗成分(電感成分)X。From the Rp thus obtained, X / Rp can be specified. For example, the reactance component (inductance component) X of the impedance of the first coil 221 of the balun 103 can be determined based on Rp so as to satisfy 1.5 ≦ X / Rp ≦ 5000.

在圖8是模式性地表示本發明的第2實施形態的電漿處理裝置1的構成。第2實施形態的電漿處理裝置1是可作為蝕刻基板112的蝕刻裝置動作。在第2實施形態中,第1電極106是陰極,保持基板112。並且,在第2實施形態中,第2電極111是陽極。在第2實施形態的電漿處理裝置1中,第1電極106與第1平衡端子211會經由阻塞電容器104來電性連接。換言之,在第2實施形態的電漿處理裝置1中,阻塞電容器104會被配置於第1電極106與第1平衡端子211的電性的連接路徑。FIG. 8 schematically shows the configuration of a plasma processing apparatus 1 according to a second embodiment of the present invention. The plasma processing apparatus 1 according to the second embodiment operates as an etching apparatus for etching the substrate 112. In the second embodiment, the first electrode 106 is a cathode and holds the substrate 112. In the second embodiment, the second electrode 111 is an anode. In the plasma processing apparatus 1 according to the second embodiment, the first electrode 106 and the first balanced terminal 211 are electrically connected via the blocking capacitor 104. In other words, in the plasma processing apparatus 1 according to the second embodiment, the blocking capacitor 104 is disposed on the electrical connection path between the first electrode 106 and the first balanced terminal 211.

在圖9是模式性地表示本發明的第3實施形態的電漿處理裝置1的構成。第3實施形態的電漿處理裝置1是第1實施形態的電漿處理裝置1的變形例,更具備使第2電極111昇降的機構及使第2電極111旋轉的機構的至少一方。在圖9所示的例子,電漿處理裝置1是具備包含使第2電極111昇降的機構及使第2電極111旋轉的機構的雙方之驅動機構114。在真空容器110與驅動機構114之間是可設有構成真空隔壁的波紋管113。FIG. 9 schematically shows the configuration of a plasma processing apparatus 1 according to a third embodiment of the present invention. The plasma processing apparatus 1 according to the third embodiment is a modification of the plasma processing apparatus 1 according to the first embodiment, and further includes at least one of a mechanism for raising and lowering the second electrode 111 and a mechanism for rotating the second electrode 111. In the example shown in FIG. 9, the plasma processing apparatus 1 includes a drive mechanism 114 including both a mechanism for raising and lowering the second electrode 111 and a mechanism for rotating the second electrode 111. A corrugated tube 113 constituting a vacuum partition wall may be provided between the vacuum container 110 and the driving mechanism 114.

同樣,第2實施形態的電漿處理裝置1也可更具備使第1電極106昇降的機構及使第2電極106旋轉的機構的至少一方。Similarly, the plasma processing apparatus 1 according to the second embodiment may further include at least one of a mechanism for raising and lowering the first electrode 106 and a mechanism for rotating the second electrode 106.

在圖10是模式性地表示本發明的第4實施形態的電漿處理裝置1的構成。第4實施形態的電漿處理裝置是可作為藉由濺射來將膜形成於基板112的濺射裝置動作。作為第4實施形態的電漿處理裝置1未言及的事項是可按照第1~第3實施形態。電漿處理裝置1是具備:第1巴倫103、第2巴倫303、真空容器110、構成第1組的第1電極106及第2電極135、構成第2組的第1電極141及第2電極145。或,亦可理解為電漿處理裝置1是具備:第1巴倫103、第2巴倫303及本體10,本體10具備:真空容器110、構成第1組的第1電極106及第2電極135、構成第2組的第1電極141及第2電極145。本體10是具有第1端子251、第2端子252、第3端子451、第4端子452。FIG. 10 schematically shows the configuration of a plasma processing apparatus 1 according to a fourth embodiment of the present invention. The plasma processing apparatus of the fourth embodiment can operate as a sputtering apparatus that forms a film on the substrate 112 by sputtering. The matters not mentioned in the plasma processing apparatus 1 according to the fourth embodiment are those according to the first to third embodiments. The plasma processing apparatus 1 includes a first balun 103, a second balun 303, a vacuum container 110, a first electrode 106 and a second electrode 135 constituting the first group, a first electrode 141, and a first electrode constituting the second group. 2electrode 145. Or, it can also be understood that the plasma processing apparatus 1 is provided with a first balun 103, a second balun 303, and a body 10, and the body 10 is provided with a vacuum container 110, a first electrode 106 and a second electrode constituting the first group. 135. The first electrode 141 and the second electrode 145 constituting the second group. The main body 10 includes a first terminal 251, a second terminal 252, a third terminal 451, and a fourth terminal 452.

第1巴倫103是具有:第1不平衡端子201、第2不平衡端子202、第1平衡端子211及第2平衡端子212。在第1巴倫103的第1不平衡端子201及第2不平衡端子202的側是連接有不平衡電路,在第1巴倫103的第1平衡端子211及第2平衡端子212的側是連接有平衡電路。第2巴倫303是可具有與第1巴倫103同樣的構成。第2巴倫303是具有:第1不平衡端子401、第2不平衡端子402、第1平衡端子411及第2平衡端子412。在第2巴倫303的第1不平衡端子401及第2不平衡端子402的側是連接有不平衡電路,在第2巴倫303的第1平衡端子411及第2平衡端子412的側是連接有平衡電路。真空容器110是被接地。The first balun 103 includes a first unbalanced terminal 201, a second unbalanced terminal 202, a first balanced terminal 211, and a second balanced terminal 212. An unbalanced circuit is connected to the side of the first unbalanced terminal 201 and the second unbalanced terminal 202 of the first balun 103, and the side of the first balanced terminal 211 and the second balanced terminal 212 of the first balun 103 is A balanced circuit is connected. The second balun 303 may have the same configuration as the first balun 103. The second balun 303 includes a first unbalanced terminal 401, a second unbalanced terminal 402, a first balanced terminal 411, and a second balanced terminal 412. An unbalanced circuit is connected to the side of the first unbalanced terminal 401 and the second unbalanced terminal 402 of the second balun 303, and the side of the first balanced terminal 411 and the second balanced terminal 412 of the second balun 303 is A balanced circuit is connected. The vacuum container 110 is grounded.

第1組的第1電極106是保持標靶109。標靶109是例如可為絕緣體材料或導電體材料。第1組的第2電極135是被配置於第1電極106的周圍。第1組的第1電極106是被電性連接至第1巴倫103的第1平衡端子211,第1組的第2電極135是被電性連接至第1巴倫103的第2平衡端子212。第2組的第1電極141是保持基板112。第2組的第2電極145是被配置於第1電極141的周圍。第2組的第1電極141是被電性連接至第2巴倫303的第1平衡端子411,第2組的第2電極145是被電性連接至第2巴倫303的第2平衡端子412。The first electrode 106 of the first group is a holding target 109. The target 109 is, for example, an insulator material or a conductor material. The second electrode 135 of the first group is arranged around the first electrode 106. The first electrode 106 of the first group is a first balanced terminal 211 electrically connected to the first balun 103, and the second electrode 135 of the first group is a second balanced terminal electrically connected to the first balun 103 212. The first electrode 141 of the second group is a holding substrate 112. The second electrode 145 of the second group is arranged around the first electrode 141. The first electrode 141 of the second group is a first balanced terminal 411 electrically connected to the second balun 303, and the second electrode 145 of the second group is a second balanced terminal electrically connected to the second balun 303 412.

上述的構成是可理解為第1組的第1電極106被電性連接至第1端子251,第1組的第2電極135被電性連接至第2端子252,第1端子251被電性連接至第1巴倫103的第1平衡端子211,第2端子252被電性連接至第1巴倫103的第2平衡端子212的構成。又,上述的構成是可理解為第2組的第1電極141被電性連接至第3端子451,第2組的第2電極145被電性連接至第4端子452,第3端子451被電性連接至第2巴倫303的第1平衡端子411,第4端子452被電性連接至第2巴倫303的第2平衡端子412。The above structure can be understood as the first electrode 106 of the first group is electrically connected to the first terminal 251, the second electrode 135 of the first group is electrically connected to the second terminal 252, and the first terminal 251 is electrically The first balanced terminal 211 is connected to the first balun 103, and the second terminal 252 is electrically connected to the second balanced terminal 212 of the first balun 103. The above configuration can be understood as the first electrode 141 of the second group is electrically connected to the third terminal 451, the second electrode 145 of the second group is electrically connected to the fourth terminal 452, and the third terminal 451 is electrically connected The first balanced terminal 411 is electrically connected to the second balun 303, and the fourth terminal 452 is electrically connected to the second balanced terminal 412 of the second balun 303.

第1組的第1電極106與第1巴倫103的第1平衡端子211(第1端子251)是可經由阻塞電容器104來電性連接。阻塞電容器104是在第1巴倫103的第1平衡端子211與第1組的第1電極106之間(或第1巴倫103的第1平衡端子211與第2平衡端子212之間)遮斷直流電流。亦可取代阻塞電容器104,以第1阻抗匹配電路102會遮斷流動於第1巴倫103的第1不平衡端子201與第2不平衡端子202之間的直流電流之方式構成。第1組的第1電極106及第2電極135是可隔著絕緣體132來藉由真空容器110所支撐。The first electrode 106 of the first group and the first balanced terminal 211 (first terminal 251) of the first balun 103 can be electrically connected via a blocking capacitor 104. The blocking capacitor 104 is shielded between the first balanced terminal 211 of the first balun 103 and the first electrode 106 of the first group (or between the first balanced terminal 211 and the second balanced terminal 212 of the first balun 103). Cut off the DC current. Instead of the blocking capacitor 104, the first impedance matching circuit 102 may be configured to block the DC current flowing between the first unbalanced terminal 201 and the second unbalanced terminal 202 of the first balun 103. The first electrode 106 and the second electrode 135 of the first group are supported by the vacuum container 110 via an insulator 132.

第2組的第1電極141與第2巴倫303的第1平衡端子411(第3端子451)是可經由阻塞電容器304來電性連接。阻塞電容器304是在第2巴倫303的第1平衡端子411與第2組的第1電極141之間(或第2巴倫303的第1平衡端子411與第2平衡端子412之間)遮斷直流電流。亦可取代阻塞電容器304,以第2阻抗匹配電路302會遮斷流動於第2巴倫303的第1不平衡端子201與第2不平衡端子202之間的直流電流之方式構成。第2組的第1電極141及第2電極145是可隔著絕緣體142來藉由真空容器110所支撐。The first electrode 141 of the second group and the first balanced terminal 411 (third terminal 451) of the second balun 303 are electrically connectable via a blocking capacitor 304. The blocking capacitor 304 is shielded between the first balanced terminal 411 of the second balun 303 and the first electrode 141 of the second group (or between the first balanced terminal 411 and the second balanced terminal 412 of the second balun 303). Cut off the DC current. Instead of the blocking capacitor 304, the second impedance matching circuit 302 may be configured to block the DC current flowing between the first unbalanced terminal 201 and the second unbalanced terminal 202 of the second balun 303. The first electrode 141 and the second electrode 145 of the second group are supported by the vacuum container 110 via an insulator 142.

電漿處理裝置1是可具備:第1高頻電源101,及被配置於第1高頻電源101與第1巴倫103之間的第1阻抗匹配電路102。第1高頻電源101是經由第1阻抗匹配電路102來供給高頻至第1巴倫103的第1不平衡端子201與第2不平衡端子202之間。換言之,第1高頻電源101是經由第1阻抗匹配電路102、第1巴倫103及阻塞電容器104來供給高頻至第1電極106與第2電極135之間。或,第1高頻電源101是經由第1阻抗匹配電路102、第1巴倫103來供給高頻至本體10的第1端子251與第2端子252之間。第1巴倫103以及第1組的第1電極106及第2電極135是構成供給高頻至真空容器110的內部空間之第1高頻供給部。The plasma processing apparatus 1 may include a first high-frequency power source 101 and a first impedance matching circuit 102 disposed between the first high-frequency power source 101 and the first balun 103. The first high-frequency power source 101 supplies high frequency to the first balun 103 and the second unbalanced terminal 202 via the first impedance matching circuit 102. In other words, the first high-frequency power source 101 supplies high frequency between the first electrode 106 and the second electrode 135 via the first impedance matching circuit 102, the first balun 103, and the blocking capacitor 104. Alternatively, the first high-frequency power source 101 supplies high-frequency power between the first terminal 251 and the second terminal 252 of the main body 10 via the first impedance matching circuit 102 and the first balun 103. The first balun 103 and the first electrode 106 and the second electrode 135 of the first group are first high-frequency supply units that supply high-frequency to the internal space of the vacuum container 110.

電漿處理裝置1是可具備:第2高頻電源301,及被配置於第2高頻電源301與第2巴倫303之間的第2阻抗匹配電路302。第2高頻電源301是經由第2阻抗匹配電路302來供給高頻至第2巴倫303的第1不平衡端子401與第2不平衡端子402之間。換言之,第2高頻電源301是經由第2阻抗匹配電路302、第2巴倫303及阻塞電容器304來供給高頻至第2組的第1電極141與第2電極145之間。或,第2高頻電源301是經由第2阻抗匹配電路302、第2巴倫303來供給高頻至本體10的第3端子451與第4端子452之間。第2巴倫303以及第2組的第1電極141及第2電極145是構成供給高頻至真空容器110的內部空間之第2高頻供給部。The plasma processing apparatus 1 may include a second high-frequency power source 301 and a second impedance matching circuit 302 arranged between the second high-frequency power source 301 and the second balun 303. The second high-frequency power supply 301 supplies high frequency to the second balun 303 between the first unbalanced terminal 401 and the second unbalanced terminal 402 via the second impedance matching circuit 302. In other words, the second high-frequency power supply 301 supplies high frequency to the first electrode 141 and the second electrode 145 of the second group through the second impedance matching circuit 302, the second balun 303, and the blocking capacitor 304. Alternatively, the second high-frequency power source 301 supplies high frequency to the third terminal 451 and the fourth terminal 452 of the main body 10 via the second impedance matching circuit 302 and the second balun 303. The second balun 303 and the first electrode 141 and the second electrode 145 of the second group are the second high-frequency supply unit that supplies high-frequency to the internal space of the vacuum container 110.

藉由來自第1高頻電源101的高頻的供給,在真空容器110的內部空間產生電漿的狀態下,將由第1巴倫103的第1平衡端子211及第2平衡端子212的側來看第1組的第1電極106及第2電極135的側(本體10的側)時的阻抗設為Rp1-jXp1。並且,將第1巴倫103的第1線圈221的阻抗的電抗成分(電感成分)設為X1。在此定義中,符合1.5≦X1/Rp1≦5000是有利於為了使被形成於真空容器110的內部空間之電漿的電位安定。With the high-frequency supply from the first high-frequency power source 101, in a state where the plasma is generated in the internal space of the vacuum container 110, the first balanced terminal 211 and the second balanced terminal 212 of the first balun 103 will come from the sides. The impedance when looking at the sides of the first electrode 106 and the second electrode 135 (side of the body 10) of the first group is Rp1-jXp1. The reactance component (inductance component) of the impedance of the first coil 221 of the first balun 103 is X1. In this definition, it is favorable to stabilize the potential of the plasma formed in the internal space of the vacuum container 110 to satisfy 1.5 ≦ X1 / Rp1 ≦ 5000.

又,藉由來自第2高頻電源301的高頻的供給,在真空容器110的內部空間產生電漿的狀態下,將由第2巴倫303的第1平衡端子411及第2平衡端子412的側來看第2組的第1電極141及第2電極145的側(本體10的側)時的阻抗設為Rp2-jXp2。並且,將第2巴倫303的第1線圈221的阻抗的電抗成分(電感成分)設為X2。在此定義中,符合1.5≦X2/Rp2≦5000是有利於使被形成於真空容器110的內部空間之電漿的電位安定。In addition, by the high-frequency supply from the second high-frequency power source 301, in a state where plasma is generated in the internal space of the vacuum container 110, the first balanced terminal 411 and the second balanced terminal 412 of the second balun 303 When the sides of the first electrode 141 and the second electrode 145 of the second group (side of the body 10) are viewed from the side, the impedance is Rp2-jXp2. The reactance component (inductance component) of the impedance of the first coil 221 of the second balun 303 is X2. In this definition, it is favorable to stabilize the potential of the plasma formed in the internal space of the vacuum container 110 to meet 1.5 ≦ X2 / Rp2 ≦ 5000.

在圖11是模式性地表示本發明的第5實施形態的電漿處理裝置1的構成。第5實施形態的裝置1是相對於第4實施形態的電漿處理裝置1,具有追加驅動機構114、314的構成。驅動機構114是可具備使第1電極141昇降的機構及使第1電極141旋轉的機構的至少一方。驅動機構314是可具備使第2電極145昇降的機構。FIG. 11 schematically shows the configuration of a plasma processing apparatus 1 according to a fifth embodiment of the present invention. The apparatus 1 according to the fifth embodiment is configured to have additional drive mechanisms 114 and 314 compared to the plasma processing apparatus 1 according to the fourth embodiment. The driving mechanism 114 may include at least one of a mechanism for raising and lowering the first electrode 141 and a mechanism for rotating the first electrode 141. The driving mechanism 314 may be provided with a mechanism for raising and lowering the second electrode 145.

在圖12是模式性地表示本發明的第6實施形態的電漿處理裝置1的構成。第6實施形態的電漿處理裝置是可作為藉由濺射來將膜形成於基板112的濺射裝置動作。作為第6實施形態未言及的事項是可按照第1~第5實施形態。第6實施形態的電漿處理裝置1是具備:複數的第1高頻供給部,及至少1個的第2高頻供給部。複數的第1高頻供給部之中的1個是可包含第1電極106a、第2電極135a及第1巴倫103a。複數的第1高頻供給部之中的其他的1個是可包含第1電極106b、第2電極135b及第1巴倫103b。在此,說明複數的第1高頻供給部為以2個的高頻供給部所構成的例子。並且,以下標符號a、b來互相區別2個的高頻供給部及其關聯的構成要素。同樣,有關2個的標靶也是以下標符號a、b來互相區別。FIG. 12 schematically shows the configuration of a plasma processing apparatus 1 according to a sixth embodiment of the present invention. The plasma processing apparatus of the sixth embodiment can be operated as a sputtering apparatus that forms a film on the substrate 112 by sputtering. Matters not mentioned as the sixth embodiment are those according to the first to fifth embodiments. The plasma processing apparatus 1 according to the sixth embodiment includes a plurality of first high-frequency supply units and at least one second high-frequency supply unit. One of the plurality of first high-frequency supply units may include a first electrode 106a, a second electrode 135a, and a first balun 103a. The other one of the plurality of first high-frequency supply units may include a first electrode 106b, a second electrode 135b, and a first balun 103b. Here, an example in which the plurality of first high-frequency supply units is configured by two high-frequency supply units will be described. In addition, the two high-frequency supply units and their related components are distinguished from each other by the subscripts a and b. Similarly, the two targets are distinguished from each other by the following symbols a and b.

在其他的觀點,電漿處理裝置1是具備:複數的第1巴倫103a、103b、第2巴倫303、真空容器110、第1電極106a及第2電極135a、第1電極106b及第2電極135b、第1電極141及第2電極145。或,亦可理解為電漿處理裝置1是具備:複數的第1巴倫103a、103b、第2巴倫303及本體10,本體10具備:真空容器110、第1電極106a及第2電極135a、第1電極106b及第2電極135b、第1電極141及第2電極145。本體10是具有:第1端子251a、251b、第2端子252a、252b、第3端子451、第4端子452。In another aspect, the plasma processing apparatus 1 includes a plurality of first baluns 103a and 103b, a second balun 303, a vacuum container 110, a first electrode 106a and a second electrode 135a, a first electrode 106b, and a second The electrode 135b, the first electrode 141, and the second electrode 145. Or, it can also be understood that the plasma processing apparatus 1 includes a plurality of first baluns 103a, 103b, a second balun 303, and a body 10, and the body 10 is provided with a vacuum container 110, a first electrode 106a, and a second electrode 135a. , The first electrode 106b and the second electrode 135b, the first electrode 141, and the second electrode 145. The main body 10 includes first terminals 251a and 251b, second terminals 252a and 252b, third terminals 451, and fourth terminals 452.

第1巴倫103a是具有:第1不平衡端子201a、第2不平衡端子202a、第1平衡端子211a及第2平衡端子212a。在第1巴倫103a的第1不平衡端子201a及第2不平衡端子202a的側是連接有不平衡電路,在第1巴倫103a的第1平衡端子211a及第2平衡端子212a的側是連接有平衡電路。第1巴倫103b是具有:第1不平衡端子201b、第2不平衡端子202b、第1平衡端子211b及第2平衡端子212b。在第1巴倫103b的第1不平衡端子201b及第2不平衡端子202b的側是連接有不平衡電路,在第1巴倫103b的第1平衡端子211b及第2平衡端子212b的側是連接有平衡電路。The first balun 103a includes a first unbalanced terminal 201a, a second unbalanced terminal 202a, a first balanced terminal 211a, and a second balanced terminal 212a. An unbalanced circuit is connected to the side of the first unbalanced terminal 201a and the second unbalanced terminal 202a of the first balun 103a, and the side of the first balanced terminal 211a and the second balanced terminal 212a of the first balun 103a is A balanced circuit is connected. The first balun 103b includes a first unbalanced terminal 201b, a second unbalanced terminal 202b, a first balanced terminal 211b, and a second balanced terminal 212b. An unbalanced circuit is connected to the side of the first unbalanced terminal 201b and the second unbalanced terminal 202b of the first balun 103b, and the side of the first balanced terminal 211b and the second balanced terminal 212b of the first balun 103b is A balanced circuit is connected.

第2巴倫303是可具有與第1巴倫103a、103b同樣的構成。第2巴倫303是具有:第1不平衡端子401、第2不平衡端子402、第1平衡端子411及第2平衡端子412。在第2巴倫303的第1不平衡端子401及第2不平衡端子402的側是連接有不平衡電路,在第2巴倫303的第1平衡端子411及第2平衡端子412的側是連接有平衡電路。真空容器110是被接地。The second balun 303 may have the same structure as the first baluns 103a and 103b. The second balun 303 includes a first unbalanced terminal 401, a second unbalanced terminal 402, a first balanced terminal 411, and a second balanced terminal 412. An unbalanced circuit is connected to the side of the first unbalanced terminal 401 and the second unbalanced terminal 402 of the second balun 303, and the side of the first balanced terminal 411 and the second balanced terminal 412 of the second balun 303 is A balanced circuit is connected. The vacuum container 110 is grounded.

第1電極106a、106b是分別保持標靶109a、109b。標靶109a、109b是例如可為絕緣體材料或導電體材料。第2電極135a、135b是分別被配置於第1電極106a、106b的周圍。第1電極106a、106b是分別被電性連接至第1巴倫103a、103b的第1平衡端子211a、211b,第2電極135a、135b是分別被電性連接至第1巴倫103a、103b的第2平衡端子212a、212b。The first electrodes 106a and 106b hold the targets 109a and 109b, respectively. The targets 109a and 109b are, for example, insulator materials or conductor materials. The second electrodes 135a and 135b are arranged around the first electrodes 106a and 106b, respectively. The first electrodes 106a and 106b are electrically connected to the first balanced terminals 211a and 211b of the first balun 103a and 103b, respectively, and the second electrodes 135a and 135b are electrically connected to the first balun 103a and 103b respectively. The second balanced terminals 212a and 212b.

第1電極141是保持基板112。第2電極145是被配置於第1電極141的周圍。第1電極141是被電性連接至第2巴倫303的第1平衡端子411,第2電極145是被電性連接至第2巴倫303的第2平衡端子412。The first electrode 141 is a holding substrate 112. The second electrode 145 is arranged around the first electrode 141. The first electrode 141 is a first balanced terminal 411 electrically connected to the second balun 303, and the second electrode 145 is a second balanced terminal 412 electrically connected to the second balun 303.

上述的構成是可理解為第1電極106a、106b分別被電性連接至第1端子251a、251b,第2電極135a、135b分別被電性連接至第2端子252a、252b,第1端子251a、251b分別被電性連接至第1巴倫103a、103b的第1平衡端子211a、111b,第2端子252a、252b分別被電性連接至第1巴倫103a、103b的第2平衡端子212a、212b的構成。又,上述的構成是可理解為第1電極141被電性連接至第3端子451,第2電極145被電性連接至第4端子452,第3端子451被電性連接至第2巴倫303的第1平衡端子411,第4端子452被電性連接至第2巴倫303的第2平衡端子412。The above configuration can be understood as the first electrodes 106a, 106b are electrically connected to the first terminals 251a, 251b, respectively, and the second electrodes 135a, 135b are electrically connected to the second terminals 252a, 252b, the first terminals 251a, 251a, 251b is electrically connected to the first balanced terminals 211a and 111b of the first baluns 103a and 103b, and second terminals 252a and 252b are electrically connected to the second balanced terminals 212a and 212b of the first baluns 103a and 103b, respectively. Composition. The above configuration can be understood as the first electrode 141 is electrically connected to the third terminal 451, the second electrode 145 is electrically connected to the fourth terminal 452, and the third terminal 451 is electrically connected to the second balun The first balanced terminal 411 and the fourth terminal 452 of 303 are electrically connected to the second balanced terminal 412 of the second balun 303.

第1電極106a、106b與第1巴倫103a、103b的第1平衡端子211a、211b(第1端子251a、251b)是可分別經由阻塞電容器104a、104b來電性連接。阻塞電容器104a、104b是在第1巴倫103a、103b的第1平衡端子211a、211b與第1電極106a、106b之間(或第1巴倫103a、103b的第1平衡端子211a、211b與第2平衡端子212a、212b之間)遮斷直流電流。亦可取代阻塞電容器104a、104b,以第1阻抗匹配電路102a、102b會遮斷流動於第1巴倫103a、103b的第1不平衡端子201a、201b與第2不平衡端子202a、202b之間的直流電流之方式構成。或,阻塞電容器104a、104b是亦可被配置於第2電極135a、135b與第1巴倫103a、103b的第2平衡端子212a、212b(第2端子252a、252b)之間。第1電極106a、106b及第2電極135a、135b是可分別隔著絕緣體132a、132b來藉由真空容器110所支撐。The first electrodes 106a, 106b and the first balanced terminals 211a, 211b (the first terminals 251a, 251b) of the first baluns 103a, 103b can be electrically connected via blocking capacitors 104a, 104b, respectively. The blocking capacitors 104a and 104b are between the first balanced terminals 211a and 211b of the first baluns 103a and 103b and the first electrodes 106a and 106b (or the first balanced terminals 211a, 211b and the first baluns of the first baluns 103a and 103b). 2 Between the balanced terminals 212a and 212b) interrupts the DC current. Instead of blocking capacitors 104a and 104b, the first impedance matching circuits 102a and 102b will block the flow between the first unbalanced terminals 201a and 201b and the second unbalanced terminals 202a and 202b of the first baluns 103a and 103b. By means of a direct current. Alternatively, the blocking capacitors 104a and 104b may be disposed between the second electrodes 135a and 135b and the second balanced terminals 212a and 212b (the second terminals 252a and 252b) of the first baluns 103a and 103b. The first electrodes 106a and 106b and the second electrodes 135a and 135b are supported by the vacuum container 110 via the insulators 132a and 132b, respectively.

第1電極141與第2巴倫303的第1平衡端子411(第3端子451)是可經由阻塞電容器304來電性連接。阻塞電容器304是在第2巴倫303的第1平衡端子411與第1電極141之間(或第2巴倫303的第1平衡端子411與第2平衡端子412之間)遮斷直流電流。亦可取代阻塞電容器304,以第2阻抗匹配電路302會遮斷流動於第2巴倫303的第1不平衡端子201與第2不平衡端子202之間的直流電流之方式構成。或,阻塞電容器304是亦可被配置於第2電極145與第2巴倫303的第2平衡端子412(第4端子452)之間。第1電極141及第2電極145是可隔著絕緣體142來藉由真空容器110所支撐。The first electrode 141 and the first balanced terminal 411 (third terminal 451) of the second balun 303 are electrically connectable via a blocking capacitor 304. The blocking capacitor 304 blocks a DC current between the first balanced terminal 411 and the first electrode 141 of the second balun 303 (or between the first balanced terminal 411 and the second balanced terminal 412 of the second balun 303). Instead of the blocking capacitor 304, the second impedance matching circuit 302 may be configured to block the DC current flowing between the first unbalanced terminal 201 and the second unbalanced terminal 202 of the second balun 303. Alternatively, the blocking capacitor 304 may be disposed between the second electrode 145 and the second balanced terminal 412 (the fourth terminal 452) of the second balun 303. The first electrode 141 and the second electrode 145 are supported by the vacuum container 110 via an insulator 142.

電漿處理裝置1是可具備:複數的第1高頻電源101a、101b,及分別被配置於複數的第1高頻電源101a、101b與複數的第1巴倫103a、103b之間的第1阻抗匹配電路102a、102b。第1高頻電源101a、101b是分別經由第1阻抗匹配電路102a、102b來供給高頻至第1巴倫103a、103b的第1不平衡端子201a、201b與第2不平衡端子202a、202b之間。換言之,第1高頻電源101a、101b是分別經由第1阻抗匹配電路102a、102b、第1巴倫103a、103b及阻塞電容器104a、104b來供給高頻至第1電極106a、106b與第2電極135a、135b之間。或,第1高頻電源101a、101b是經由第1阻抗匹配電路102a、102b、第1巴倫103a、103b來供給高頻至本體10的第1端子251a、251b與第2端子252a、252b之間。The plasma processing apparatus 1 may include a plurality of first high-frequency power sources 101a and 101b, and a first one disposed between the plurality of first high-frequency power sources 101a and 101b and the plurality of first baluns 103a and 103b. Impedance matching circuits 102a and 102b. The first high-frequency power sources 101a and 101b are the first unbalanced terminals 201a and 201b and the second unbalanced terminals 202a and 202b that supply high frequencies to the first baluns 103a and 103b via the first impedance matching circuits 102a and 102b, respectively. between. In other words, the first high-frequency power sources 101a and 101b supply high frequencies to the first electrodes 106a, 106b, and the second electrode via the first impedance matching circuits 102a, 102b, the first baluns 103a, 103b, and the blocking capacitors 104a, 104b, respectively. 135a, 135b. Alternatively, the first high-frequency power sources 101a and 101b are supplied to the first terminal 251a and 251b and the second terminals 252a and 252b of the body 10 via the first impedance matching circuits 102a and 102b and the first baluns 103a and 103b. between.

電漿處理裝置1是可具備:第2高頻電源301,及被配置於第2高頻電源301與第2巴倫303之間的第2阻抗匹配電路302。第2高頻電源301是經由第2阻抗匹配電路302來供給高頻至第2巴倫303的第1不平衡端子401與第2不平衡端子402之間。換言之,第2高頻電源301是經由第2阻抗匹配電路302、第2巴倫303及阻塞電容器304來供給高頻至第1電極141與第2電極145之間。或,第2高頻電源301是經由第2阻抗匹配電路302、第2巴倫303來供給高頻至本體10的第3端子451與第4端子452之間。The plasma processing apparatus 1 may include a second high-frequency power source 301 and a second impedance matching circuit 302 arranged between the second high-frequency power source 301 and the second balun 303. The second high-frequency power supply 301 supplies high frequency to the second balun 303 between the first unbalanced terminal 401 and the second unbalanced terminal 402 via the second impedance matching circuit 302. In other words, the second high-frequency power source 301 supplies a high frequency between the first electrode 141 and the second electrode 145 via the second impedance matching circuit 302, the second balun 303, and the blocking capacitor 304. Alternatively, the second high-frequency power source 301 supplies high frequency to the third terminal 451 and the fourth terminal 452 of the main body 10 via the second impedance matching circuit 302 and the second balun 303.

在圖13是模式性地表示本發明的第7實施形態的電漿處理裝置1的構成。第7實施形態的電漿處理裝置是可作為藉由濺射來將膜形成於基板112的濺射裝置動作。作為第7實施形態的電漿處理裝置1未言及的事項是可按照第1~第6實施形態。電漿處理裝置1是具備:第1巴倫103、第2巴倫303、真空容器110、構成第1組的第1電極105a及第2電極105b、構成第2組的第1電極141及第2電極145。或,亦可理解為電漿處理裝置1是具備:第1巴倫103、第2巴倫303及本體10,本體10具備:真空容器110、構成第1組的第1電極105a及第2電極105b、構成第2組的第1電極141及第2電極145。本體10是具有:第1端子251、第2端子252、第3端子451、第4端子452。FIG. 13 schematically shows the configuration of a plasma processing apparatus 1 according to a seventh embodiment of the present invention. The plasma processing apparatus of the seventh embodiment is operable as a sputtering apparatus that forms a film on the substrate 112 by sputtering. The matters not mentioned in the plasma processing apparatus 1 according to the seventh embodiment are those according to the first to sixth embodiments. The plasma processing apparatus 1 includes a first balun 103, a second balun 303, a vacuum container 110, a first electrode 105a and a second electrode 105b constituting the first group, a first electrode 141, and a first electrode constituting the second group. 2electrode 145. Or, it can also be understood that the plasma processing apparatus 1 includes: a first balun 103, a second balun 303, and a main body 10, and the main body 10 includes a vacuum container 110, a first electrode 105a, and a second electrode constituting the first group 105b. The first electrode 141 and the second electrode 145 constituting the second group. The main body 10 includes a first terminal 251, a second terminal 252, a third terminal 451, and a fourth terminal 452.

第1巴倫103是具有:第1不平衡端子201、第2不平衡端子202、第1平衡端子211及第2平衡端子212。在第1巴倫103的第1不平衡端子201及第2不平衡端子202的側是連接有不平衡電路,在第1巴倫103的第1平衡端子211及第2平衡端子212的側是連接有平衡電路。第2巴倫303是可具有與第1巴倫103同樣的構成。第2巴倫303是具有:第1不平衡端子401、第2不平衡端子402、第1平衡端子411及第2平衡端子412。在第2巴倫303的第1不平衡端子401及第2不平衡端子402的側是連接有不平衡電路,在第2巴倫303的第1平衡端子411及第2平衡端子412的側是連接有平衡電路。真空容器110是被接地。The first balun 103 includes a first unbalanced terminal 201, a second unbalanced terminal 202, a first balanced terminal 211, and a second balanced terminal 212. An unbalanced circuit is connected to the side of the first unbalanced terminal 201 and the second unbalanced terminal 202 of the first balun 103, and the side of the first balanced terminal 211 and the second balanced terminal 212 of the first balun 103 is A balanced circuit is connected. The second balun 303 may have the same configuration as the first balun 103. The second balun 303 includes a first unbalanced terminal 401, a second unbalanced terminal 402, a first balanced terminal 411, and a second balanced terminal 412. An unbalanced circuit is connected to the side of the first unbalanced terminal 401 and the second unbalanced terminal 402 of the second balun 303, and the side of the first balanced terminal 411 and the second balanced terminal 412 of the second balun 303 is A balanced circuit is connected. The vacuum container 110 is grounded.

第1組的第1電極105a是保持第1標靶109a,隔著第1標靶109a來與基板112的側的空間對向。第1組的第2電極105b是被配置於第1電極105a的旁邊,保持第2標靶109b,隔著第2標靶109b來與基板112的側的空間對向。標靶109a及109b是例如可為絕緣體材料或導電體材料。第1組的第1電極105a是被電性連接至第1巴倫103的第1平衡端子211,第1組的第2電極105b是被電性連接至第1巴倫103的第2平衡端子212。The first electrode 105a of the first group holds the first target 109a, and faces the space on the side of the substrate 112 via the first target 109a. The second electrode 105b of the first group is disposed beside the first electrode 105a, holds the second target 109b, and faces the space on the side of the substrate 112 via the second target 109b. The targets 109a and 109b are, for example, insulator materials or conductor materials. The first electrode 105a of the first group is a first balanced terminal 211 electrically connected to the first balun 103, and the second electrode 105b of the first group is a second balanced terminal electrically connected to the first balun 103 212.

第2組的第1電極141是保持基板112。第2組的第2電極145是被配置於第1電極141的周圍。第2組的第1電極141是被電性連接至第2巴倫303的第1平衡端子411,第2組的第2電極145是被電性連接至第2巴倫303的第2平衡端子412。The first electrode 141 of the second group is a holding substrate 112. The second electrode 145 of the second group is arranged around the first electrode 141. The first electrode 141 of the second group is a first balanced terminal 411 electrically connected to the second balun 303, and the second electrode 145 of the second group is a second balanced terminal electrically connected to the second balun 303 412.

上述的構成是可理解為第1組的第1電極105a被電性連接至第1端子251,第1組的第2電極105b被電性連接至第2端子252,第1端子251被電性連接至第1巴倫103的第1平衡端子211,第2端子252被電性連接至第1巴倫103的第2平衡端子212的構成。又,上述的構成是可理解為第2組的第1電極141被電性連接至第3端子451,第2組的第2電極145被電性連接至第4端子452,第3端子451被電性連接至第2巴倫303的第1平衡端子411,第4端子452被電性連接至第2巴倫303的第2平衡端子412。The above structure can be understood as the first electrode 105a of the first group is electrically connected to the first terminal 251, the second electrode 105b of the first group is electrically connected to the second terminal 252, and the first terminal 251 is electrically The first balanced terminal 211 is connected to the first balun 103, and the second terminal 252 is electrically connected to the second balanced terminal 212 of the first balun 103. The above configuration can be understood as the first electrode 141 of the second group is electrically connected to the third terminal 451, the second electrode 145 of the second group is electrically connected to the fourth terminal 452, and the third terminal 451 is electrically connected The first balanced terminal 411 is electrically connected to the second balun 303, and the fourth terminal 452 is electrically connected to the second balanced terminal 412 of the second balun 303.

第1組的第1電極105a與第1巴倫103的第1平衡端子211(第1端子251)是可經由阻塞電容器104a來電性連接。阻塞電容器104a是在第1巴倫103的第1平衡端子211與第1組的第1電極105a之間(或第1巴倫103的第1平衡端子211與第2平衡端子212之間)遮斷直流電流。第1組的第2電極105b與第1巴倫103的第2平衡端子212(第2端子252)是可經由阻塞電容器104b來電性連接。阻塞電容器104b是在第1巴倫103的第2平衡端子212與第1組的第2電極105b之間(或第1巴倫103的第1平衡端子211與第2平衡端子212之間)遮斷直流電流。第1組的第1電極105a、第2電極105b是可分別隔著絕緣體132a、132b來藉由真空容器110所支撐。The first electrode 105a of the first group and the first balanced terminal 211 (first terminal 251) of the first balun 103 can be electrically connected via a blocking capacitor 104a. The blocking capacitor 104a is shielded between the first balanced terminal 211 of the first balun 103 and the first electrode 105a of the first group (or between the first balanced terminal 211 and the second balanced terminal 212 of the first balun 103). Cut off the DC current. The second electrode 105b of the first group and the second balanced terminal 212 (second terminal 252) of the first balun 103 can be electrically connected via a blocking capacitor 104b. The blocking capacitor 104b is shielded between the second balanced terminal 212 of the first balun 103 and the second electrode 105b of the first group (or between the first balanced terminal 211 and the second balanced terminal 212 of the first balun 103). Cut off the DC current. The first electrode 105a and the second electrode 105b of the first group can be supported by the vacuum container 110 via the insulators 132a and 132b, respectively.

第2組的第1電極141與第2巴倫303的第1平衡端子411(第3端子451)是可經由阻塞電容器304來電性連接。阻塞電容器304是在第2巴倫303的第1平衡端子411與第2組的第1電極141之間(或第2巴倫303的第1平衡端子411與第2平衡端子412之間)遮斷直流電流。亦可取代阻塞電容器304,以第2阻抗匹配電路302會遮斷流動於第2巴倫303的第1不平衡端子401與第2不平衡端子402之間的直流電流之方式構成。第2組的第1電極141、第2電極145是可分別隔著絕緣體142、146來藉由真空容器110所支撐。The first electrode 141 of the second group and the first balanced terminal 411 (third terminal 451) of the second balun 303 are electrically connectable via a blocking capacitor 304. The blocking capacitor 304 is shielded between the first balanced terminal 411 of the second balun 303 and the first electrode 141 of the second group (or between the first balanced terminal 411 and the second balanced terminal 412 of the second balun 303). Cut off the DC current. Instead of the blocking capacitor 304, the second impedance matching circuit 302 may be configured to block the DC current flowing between the first unbalanced terminal 401 and the second unbalanced terminal 402 of the second balun 303. The first electrode 141 and the second electrode 145 of the second group can be supported by the vacuum container 110 via the insulators 142 and 146, respectively.

電漿處理裝置1是可具備:第1高頻電源101,及被配置於第1高頻電源101與第1巴倫103之間的第1阻抗匹配電路102。第1高頻電源101是經由第1阻抗匹配電路102、第1巴倫103及阻塞電容器104a、104b來供給高頻至第1電極105a與第2電極105b之間。或,第1高頻電源101是經由第1阻抗匹配電路102、第1巴倫103來供給高頻至本體10的第1端子251與第2端子252之間。第1巴倫103以及第1組的第1電極105a及第2電極105b是構成供給高頻至真空容器110的內部空間之第1高頻供給部。The plasma processing apparatus 1 may include a first high-frequency power source 101 and a first impedance matching circuit 102 disposed between the first high-frequency power source 101 and the first balun 103. The first high-frequency power source 101 supplies high-frequency power between the first electrode 105a and the second electrode 105b via the first impedance matching circuit 102, the first balun 103, and the blocking capacitors 104a and 104b. Alternatively, the first high-frequency power source 101 supplies high-frequency power between the first terminal 251 and the second terminal 252 of the main body 10 via the first impedance matching circuit 102 and the first balun 103. The first balun 103 and the first electrode 105a and the second electrode 105b of the first group are first high-frequency supply units that configure high-frequency supply to the internal space of the vacuum container 110.

電漿處理裝置1是可具備:第2高頻電源301,及被配置於第2高頻電源301與第2巴倫303之間的第2阻抗匹配電路302。第2高頻電源301是經由第2阻抗匹配電路302來供給高頻至第2巴倫303的第1不平衡端子401與第2不平衡端子402之間。第2高頻電源301是經由第2阻抗匹配電路302、第2巴倫303及阻塞電容器304來供給高頻至第2組的第1電極141與第2電極145之間。或,第2高頻電源301是經由第2阻抗匹配電路302、第2巴倫303來供給高頻至本體10的第3端子451與第4端子452之間。第2巴倫303以及第2組的第1電極141及第2電極145是構成供給高頻至真空容器110的內部空間之第2高頻供給部。The plasma processing apparatus 1 may include a second high-frequency power source 301 and a second impedance matching circuit 302 arranged between the second high-frequency power source 301 and the second balun 303. The second high-frequency power supply 301 supplies high frequency to the second balun 303 between the first unbalanced terminal 401 and the second unbalanced terminal 402 via the second impedance matching circuit 302. The second high-frequency power source 301 supplies high-frequency power between the first electrode 141 and the second electrode 145 of the second group via the second impedance matching circuit 302, the second balun 303, and the blocking capacitor 304. Alternatively, the second high-frequency power source 301 supplies high frequency to the third terminal 451 and the fourth terminal 452 of the main body 10 via the second impedance matching circuit 302 and the second balun 303. The second balun 303 and the first electrode 141 and the second electrode 145 of the second group are the second high-frequency supply unit that supplies high-frequency to the internal space of the vacuum container 110.

藉由來自第1高頻電源101的高頻的供給,在真空容器110的內部空間產生電漿的狀態下,將由第1巴倫103的第1平衡端子211及第2平衡端子212的側來看第1組的第1電極105a及第2電極105b的側(本體10的側)時的阻抗設為Rp1-jXp1。並且,將第1巴倫103的第1線圈221的阻抗的電抗成分(電感成分)設為X1。在此定義中,符合1.5≦X1/Rp1≦5000是有利於為了使被形成於真空容器110的內部空間之電漿的電位安定。With the high-frequency supply from the first high-frequency power source 101, in a state where the plasma is generated in the internal space of the vacuum container 110, the first balanced terminal 211 and the second balanced terminal 212 of the first balun 103 will come from the sides. The impedance when looking at the sides of the first electrode 105a and the second electrode 105b (side of the body 10) of the first group is Rp1-jXp1. The reactance component (inductance component) of the impedance of the first coil 221 of the first balun 103 is X1. In this definition, it is favorable to stabilize the potential of the plasma formed in the internal space of the vacuum container 110 to satisfy 1.5 ≦ X1 / Rp1 ≦ 5000.

又,藉由來自第2高頻電源301的高頻的供給,在真空容器110的內部空間產生電漿的狀態下,將由第2巴倫303的第1平衡端子411及第2平衡端子412的側來看第2組的第1電極127及第2電極130的側(本體10的側)時的阻抗設為Rp2-jXp2。並且,將第2巴倫303的第1線圈221的阻抗的電抗成分(電感成分)設為X2。在此定義中,符合1.5≦X2/Rp2≦5000是有利於為了使被形成於真空容器110的內部空間之電漿的電位安定。In addition, by the high-frequency supply from the second high-frequency power source 301, in a state where plasma is generated in the internal space of the vacuum container 110, the first balanced terminal 411 and the second balanced terminal 412 of the second balun 303 When the side of the first electrode 127 and the second electrode 130 of the second group (the side of the body 10) is viewed from the side, the impedance is Rp2-jXp2. The reactance component (inductance component) of the impedance of the first coil 221 of the second balun 303 is X2. In this definition, it is favorable to stabilize the potential of the plasma formed in the internal space of the vacuum container 110 to satisfy 1.5 ≦ X2 / Rp2 ≦ 5000.

第7實施形態的電漿處理裝置1是可更具備使構成第2組的第1電極141昇降的機構及使構成第2組的第1電極141旋轉的機構的至少一方。在圖13所示的例子中,電漿處理裝置1是具備包含使第1電極141昇降的機構及使第1電極141旋轉的機構的雙方之驅動機構114。並且,在圖13所示的例子中,電漿處理裝置1是具備使構成第2組的第2電極145昇降的機構314。在真空容器110與驅動機構114、314之間是可設有構成真空隔壁的波紋管。The plasma processing apparatus 1 according to the seventh embodiment may further include at least one of a mechanism for raising and lowering the first electrode 141 constituting the second group and a mechanism for rotating the first electrode 141 constituting the second group. In the example shown in FIG. 13, the plasma processing apparatus 1 includes a drive mechanism 114 including both a mechanism for raising and lowering the first electrode 141 and a mechanism for rotating the first electrode 141. Further, in the example shown in FIG. 13, the plasma processing apparatus 1 is provided with a mechanism 314 for raising and lowering the second electrode 145 constituting the second group. Between the vacuum container 110 and the driving mechanisms 114 and 314, a corrugated tube constituting a vacuum partition wall may be provided.

一邊參照圖14,一邊說明在圖13所示的第7實施形態的電漿處理裝置1的第1巴倫103的機能。將流動於第1不平衡端子201的電流設為I1,將流動於第1平衡端子211的電流設為I2,將流動於第2不平衡端子202的電流設為I2’,將電流I2之中流至接地的電流設為I3。I3=0,亦即,在平衡電路的側電流不流至接地時,平衡電路對於接地的隔離(isolation)性能為最佳。I3=I2,亦即,當流動於第1平衡端子211的電流I2的全部對於接地流動時,平衡電路對於接地的隔離性能為最差。表示如此的隔離性能的程度的指標ISO是與第1~第5實施形態同樣,可賦予以下的式子。在此定義之下,ISO的值的絕對值較大,隔離性能較佳。   ISO[dB]=20log(I3/I2’)The function of the first balun 103 of the plasma processing apparatus 1 according to the seventh embodiment shown in FIG. 13 will be described with reference to FIG. 14. Let the current flowing through the first unbalanced terminal 201 be I1, let the current flowing through the first balanced terminal 211 be I2, let the current flowing through the second unbalanced terminal 202 be I2 ', and let the current I2 flow The current to ground is set to I3. I3 = 0, that is, when the side current of the balanced circuit does not flow to the ground, the isolation performance of the balanced circuit for ground is the best. I3 = I2, that is, when all of the current I2 flowing through the first balanced terminal 211 flows to ground, the isolation performance of the balanced circuit against ground is the worst. The index ISO showing the degree of such isolation performance is the same as the first to fifth embodiments, and the following formula can be given. Under this definition, the absolute value of ISO is larger and the isolation performance is better. ISO [dB] = 20log (I3 / I2 ’)

在圖14中,Rp-jXp(=Rp/2-jXp/2+Rp/2-jXp/2)是表示在真空容器110的內部空間產生電漿的狀態下,從第1平衡端子211及第2平衡端子212的側來看第1電極105a及第2電極105b的側(本體10的側)時的阻抗(包含阻塞電容器104a及104b的電抗)。Rp是表示電阻成分,-Xp是表示電抗成分。並且,在圖14中,X是表示第1巴倫103的第1線圈221的阻抗的電抗成分(電感成分)。ISO是對於X/Rp具有相關性。In FIG. 14, Rp-jXp (= Rp / 2-jXp / 2 + Rp / 2-jXp / 2) indicates that the plasma is generated from the internal space of the vacuum container 110 from the first balanced terminal 211 and the first 2 The impedance (including the reactance of the blocking capacitors 104a and 104b) when the side of the balanced terminal 212 is viewed from the side of the first electrode 105a and the second electrode 105b (the side of the body 10). Rp is a resistance component, and -Xp is a reactance component. In addition, in FIG. 14, X is a reactance component (inductance component) showing the impedance of the first coil 221 of the first balun 103. ISO is relevant for X / Rp.

在第1實施形態的說明中參照的圖4是舉例表示電流I1(=I2)、I2’、I3、ISO、α(=X/Rp)的關係。圖4的關係是在第7實施形態中也成立。本發明者是發現在第7實施形態中也在符合1.5≦X/Rp≦5000是有利於為了使被形成於真空容器110的內部空間(第1電極105a與第2電極105b之間的空間)的電漿的電位(電漿電位)對於真空容器110的內面的狀態形成鈍感。在此,電漿電位對於真空容器110的內面的狀態形成鈍感是意思即使是長期間使用電漿處理裝置1的情況,也可使電漿電位安定。1.5≦X/Rp≦5000是相當於-10.0dB≧ISO≧-80dB。FIG. 4 referred to in the description of the first embodiment is an example showing the relationship between the currents I1 (= I2), I2 ', I3, ISO, and α (= X / Rp). The relationship of FIG. 4 is also established in the seventh embodiment. The inventor has found that in the seventh embodiment, it is also advantageous to satisfy 1.5 ≦ X / Rp ≦ 5000 so that the internal space (the space between the first electrode 105a and the second electrode 105b) formed in the vacuum container 110 is favorable. The potential of the plasma (plasma potential) is insensitive to the state of the inner surface of the vacuum container 110. Here, the fact that the plasma potential is insensitive to the state of the inner surface of the vacuum container 110 means that the plasma potential can be stabilized even when the plasma processing apparatus 1 is used for a long period of time. 1.5 ≦ X / Rp ≦ 5000 is equivalent to -10.0dB ≧ ISO ≧ -80dB.

在圖15A~15D是表示模擬符合1.5≦X/Rp≦5000時的電漿電位、第1電極105a的電位(陰極1電位)及第2電極105b的電位(陰極2電位)的結果。圖15A是表示在真空容器110的內面形成有電阻性的膜(1mΩ)的狀態的電漿電位、第1電極105a的電位(陰極1電位)及第2電極105b的電位(陰極2電位)。圖15B是表示在真空容器110的內面形成有電阻性的膜(1000Ω)的狀態的電漿電位、第1電極105a的電位(陰極1電位)及第2電極105b的電位(陰極2電位)。圖15C是表示在真空容器110的內面形成有感應性的膜(0.6μH)的狀態的電漿電位、第1電極105a的電位(陰極1電位)及第2電極105b的電位(陰極2電位)。圖15D是表示在真空容器110的內面形成有電容性的膜(0.1nF)的狀態的電漿電位、第1電極105a的電位(陰極1電位)及第2電極105b的電位(陰極2電位)。由圖15A~15D可理解,符合1.5≦X/Rp≦5000是有利於真空容器110的內面在各種的狀態中使電漿電位安定。15A to 15D show the results of simulating the plasma potential, the potential of the first electrode 105a (cathode 1 potential), and the potential of the second electrode 105b (cathode 2 potential) when 1.5 ≦ X / Rp ≦ 5000 is satisfied. FIG. 15A shows the plasma potential, the potential of the first electrode 105a (cathode 1 potential), and the potential of the second electrode 105b (cathode 2 potential) in a state where a resistive film (1 mΩ) is formed on the inner surface of the vacuum container 110. . 15B shows the plasma potential, the potential of the first electrode 105a (cathode 1 potential), and the potential of the second electrode 105b (cathode 2 potential) in a state where a resistive film (1000Ω) is formed on the inner surface of the vacuum container 110. . 15C shows the plasma potential, the potential of the first electrode 105a (cathode 1 potential), and the potential of the second electrode 105b (cathode 2 potential) in a state where an inductive film (0.6 μH) is formed on the inner surface of the vacuum container 110. ). 15D shows a plasma potential, a potential of the first electrode 105a (cathode 1 potential), and a potential of the second electrode 105b (cathode 2 potential) in a state where a capacitive film (0.1 nF) is formed on the inner surface of the vacuum container 110. ). It can be understood from FIGS. 15A to 15D that compliance with 1.5 ≦ X / Rp ≦ 5000 is beneficial for the inner surface of the vacuum container 110 to stabilize the plasma potential in various states.

在圖16A~16D是表示模擬不符合1.5≦X/Rp≦5000時的電漿電位、第1電極105a的電位(陰極1電位)及第2電極105b的電位(陰極2電位)的結果。圖16A是表示在真空容器110的內面形成有電阻性的膜(1mΩ)的狀態的電漿電位、第1電極105a的電位(陰極1電位)及第2電極105b的電位(陰極2電位)。圖16B是表示在真空容器110的內面形成有電阻性的膜(1000Ω)的狀態的電漿電位、第1電極105a的電位(陰極1電位)及第2電極105b的電位(陰極2電位)。圖16C是表示在真空容器110的內面形成有感應性的膜(0.6μH)的狀態的電漿電位、第1電極105a的電位(陰極1電位)及第2電極105b的電位(陰極2電位)。圖16D是表示在真空容器110的內面形成有電容性的膜(0.1nF)的狀態的電漿電位、第1電極105a的電位(陰極1電位)及第2電極105b的電位(陰極2電位)。由圖16A~16D可理解,不符合1.5≦X/Rp≦5000時,電漿電位會依真空容器110的內面的狀態而變化。16A to 16D show the results of simulating the plasma potential, the potential of the first electrode 105a (cathode 1 potential), and the potential of the second electrode 105b (cathode 2 potential) when 1.5 ≦ X / Rp ≦ 5000 is not satisfied. FIG. 16A shows the plasma potential, the potential of the first electrode 105a (cathode 1 potential), and the potential of the second electrode 105b (cathode 2 potential) in a state where a resistive film (1 mΩ) is formed on the inner surface of the vacuum container 110. . FIG. 16B shows the plasma potential, the potential of the first electrode 105a (cathode 1 potential), and the potential of the second electrode 105b (cathode 2 potential) in a state where a resistive film (1000Ω) is formed on the inner surface of the vacuum container 110. . 16C shows the plasma potential, the potential of the first electrode 105a (cathode 1 potential), and the potential of the second electrode 105b (cathode 2 potential) in a state where an inductive film (0.6 μH) is formed on the inner surface of the vacuum container 110 ). 16D shows the plasma potential, the potential of the first electrode 105a (cathode 1 potential), and the potential of the second electrode 105b (cathode 2 potential) in a state where a capacitive film (0.1 nF) is formed on the inner surface of the vacuum container 110. ). It can be understood from FIGS. 16A to 16D that when it does not conform to 1.5 ≦ X / Rp ≦ 5000, the plasma potential changes depending on the state of the inner surface of the vacuum container 110.

在此,在X/Rp>5000(例如X/Rp=∞)的情況與X/Rp<1.5的情況(例如X/Rp=1.16、X/Rp=0.87)的雙方,電漿電位會容易依真空容器110的內面的狀態而變化。X/Rp>5000的情況,在膜未被形成於真空容器110的內面的狀態,只在第1電極105a與第2電極105b之間發生放電。但,X/Rp>5000的情況,一旦膜開始被形成於真空容器110的內面,則對於此,電漿電位會敏感地反應,成為圖16A~16D所舉例表示般的結果。另一方面,X/Rp<1.5的情況,由於經由真空容器110來流入至接地的電流大,因此真空容器110的內面的狀態(被形成於內面的膜的電性的特性)所造成的影響顯著,電漿電位會依膜的形成而變化。因此,如前述般,以符合1.5≦X/Rp≦5000的方式構成電漿處理裝置1的情形有利。Here, in the case of X / Rp> 5000 (for example, X / Rp = ∞) and X / Rp <1.5 (for example, X / Rp = 1.16, X / Rp = 0.87), the plasma potential can be easily determined. The state of the inner surface of the vacuum container 110 changes. When X / Rp> 5000, in a state where the film is not formed on the inner surface of the vacuum container 110, a discharge occurs only between the first electrode 105a and the second electrode 105b. However, in the case of X / Rp> 5000, once the film starts to be formed on the inner surface of the vacuum container 110, the plasma potential responds sensitively to this, and the results are shown as examples shown in FIGS. 16A to 16D. On the other hand, when X / Rp <1.5, the current flowing into the ground through the vacuum container 110 is large, so the state of the inner surface of the vacuum container 110 (electrical characteristics of the film formed on the inner surface) is caused. The effect is significant and the plasma potential will change depending on the film formation. Therefore, as described above, it is advantageous in the case where the plasma processing apparatus 1 is configured so as to satisfy 1.5 ≦ X / Rp ≦ 5000.

在圖17是模式性地表示本發明的第8實施形態的電漿處理裝置1的構成。第8實施形態的電漿處理裝置是可作為藉由濺射來將膜形成於基板112的濺射裝置動作。作為第8實施形態的電漿處理裝置1未言及的事項是可按照第1~第7實施形態。第8實施形態的電漿處理裝置1是具備:巴倫(第1巴倫)103、真空容器110、第1電極105a及第2電極105b。或,電漿處理裝置1是亦可理解為具備巴倫103及本體10,本體10具備:真空容器110、第1電極105a及第2電極105b。本體10是具有第1端子251及第2端子252。FIG. 17 schematically shows the configuration of a plasma processing apparatus 1 according to an eighth embodiment of the present invention. The plasma processing apparatus of the eighth embodiment can be operated as a sputtering apparatus that forms a film on the substrate 112 by sputtering. The matters not mentioned in the plasma processing apparatus 1 according to the eighth embodiment are those according to the first to seventh embodiments. The plasma processing apparatus 1 according to the eighth embodiment includes a balun (first balun) 103, a vacuum container 110, a first electrode 105a, and a second electrode 105b. Alternatively, the plasma processing apparatus 1 may also be understood to include the balun 103 and the main body 10, and the main body 10 includes a vacuum container 110, a first electrode 105a, and a second electrode 105b. The main body 10 includes a first terminal 251 and a second terminal 252.

第1電極105a是可具有保持作為第1構件的第1標靶109a的第1保持面HS1,第2電極105b是可具有保持作為第2構件的第2標靶109b的第2保持面HS2。第1保持面HS1及第2保持面HS2是可屬於1個的平面PL。The first electrode 105a is a first holding surface HS1 capable of holding a first target 109a as a first member, and the second electrode 105b is a second holding surface HS2 capable of holding a second target 109b as a second member. The first holding surface HS1 and the second holding surface HS2 are planes PL that can belong to one.

第8實施形態的電漿處理裝置1是亦可更具備:第2巴倫303、第3電極141及第4電極145。換言之,電漿處理裝置1是可具備:第1巴倫103、第2巴倫303、真空容器110、第1電極105a、第2電極105b、第3電極141(基板保持部)及第4電極145。或,亦可理解為電漿處理裝置1是具備:第1巴倫103、第2巴倫303及本體10,本體10具備:真空容器110、第1電極105a、第2電極105b、第3電極141及第4電極145。本體10是具有:第1端子251、第2端子252、第3端子451及第4端子452。The plasma processing apparatus 1 according to the eighth embodiment may further include a second balun 303, a third electrode 141, and a fourth electrode 145. In other words, the plasma processing apparatus 1 may include the first balun 103, the second balun 303, the vacuum container 110, the first electrode 105a, the second electrode 105b, the third electrode 141 (substrate holding portion), and the fourth electrode. 145. Or, it can also be understood that the plasma processing apparatus 1 includes: a first balun 103, a second balun 303, and a main body 10. The main body 10 is provided with a vacuum container 110, a first electrode 105a, a second electrode 105b, and a third electrode. 141 and the fourth electrode 145. The main body 10 includes a first terminal 251, a second terminal 252, a third terminal 451, and a fourth terminal 452.

第1巴倫103是具有:第1不平衡端子201、第2不平衡端子202、第1平衡端子211及第2平衡端子212。在第1巴倫103的第1不平衡端子201及第2不平衡端子202的側是連接有不平衡電路,在第1巴倫103的第1平衡端子211及第2平衡端子212的側是連接有平衡電路。第2巴倫303是可具有與第1巴倫103同樣的構成。第2巴倫303是具有:第3不平衡端子401、第4不平衡端子402、第3平衡端子411及第4平衡端子412。在第2巴倫303的第3不平衡端子401及第4不平衡端子402的側是連接有不平衡電路,在第2巴倫303的第3平衡端子411及第4平衡端子412的側是連接有平衡電路。真空容器110是被接地。巴倫103、303是例如可具有被記載於圖2A、2B(圖14)的構成。The first balun 103 includes a first unbalanced terminal 201, a second unbalanced terminal 202, a first balanced terminal 211, and a second balanced terminal 212. An unbalanced circuit is connected to the side of the first unbalanced terminal 201 and the second unbalanced terminal 202 of the first balun 103, and the side of the first balanced terminal 211 and the second balanced terminal 212 of the first balun 103 is A balanced circuit is connected. The second balun 303 may have the same configuration as the first balun 103. The second balun 303 includes a third unbalanced terminal 401, a fourth unbalanced terminal 402, a third balanced terminal 411, and a fourth balanced terminal 412. An unbalanced circuit is connected to the side of the third unbalanced terminal 401 and the fourth unbalanced terminal 402 of the second balun 303, and the side of the third balanced terminal 411 and the fourth balanced terminal 412 of the second balun 303 is A balanced circuit is connected. The vacuum container 110 is grounded. The baluns 103 and 303 may have a structure described in, for example, FIGS. 2A and 2B (FIG. 14).

第1電極105a是保持第1標靶109a,隔著第1標靶109a來與處理對象的基板112的側的空間對向。第2電極105b是被配置於第1電極105a的旁邊,保持第2標靶109b,隔著第2標靶109b來與處理對象的基板112的側的空間對向。標靶109a及109b是例如可為絕緣體材料或導電體材料。第1電極105a是被電性連接至第1巴倫103的第1平衡端子211,第2電極105b是被電性連接至第1巴倫103的第2平衡端子212。The first electrode 105a holds the first target 109a and faces the space on the side of the substrate 112 to be processed via the first target 109a. The second electrode 105b is disposed beside the first electrode 105a, holds the second target 109b, and faces the space on the side of the substrate 112 to be processed via the second target 109b. The targets 109a and 109b are, for example, insulator materials or conductor materials. The first electrode 105a is a first balanced terminal 211 electrically connected to the first balun 103, and the second electrode 105b is a second balanced terminal 212 electrically connected to the first balun 103.

第3電極141是可作為保持基板112的基板保持部機能。第4電極145是可被配置於第3電極141的周圍。第3電極141是被電性連接至第2巴倫303的第1平衡端子411,第4電極145是被電性連接至第2巴倫303的第2平衡端子412。The third electrode 141 functions as a substrate holding portion that holds the substrate 112. The fourth electrode 145 may be disposed around the third electrode 141. The third electrode 141 is a first balanced terminal 411 electrically connected to the second balun 303, and the fourth electrode 145 is a second balanced terminal 412 electrically connected to the second balun 303.

上述的構成是可理解為第1電極105a被電性連接至第1端子251,第2電極105b被電性連接至第2端子252,第1端子251被電性連接至第1巴倫103的第1平衡端子211,第2端子252被電性連接至第1巴倫103的第2平衡端子212之構成。又,上述的構成是可理解為第3電極141被電性連接至第3端子451,第4電極145被電性連接至第4端子452,第3端子451被電性連接至第2巴倫303的第1平衡端子411,第4端子452被電性連接至第2巴倫303的第2平衡端子412者。The above configuration can be understood as the first electrode 105a is electrically connected to the first terminal 251, the second electrode 105b is electrically connected to the second terminal 252, and the first terminal 251 is electrically connected to the first balun 103. The first balanced terminal 211 and the second terminal 252 are electrically connected to the second balanced terminal 212 of the first balun 103. The above configuration can be understood as the third electrode 141 is electrically connected to the third terminal 451, the fourth electrode 145 is electrically connected to the fourth terminal 452, and the third terminal 451 is electrically connected to the second balun The first balanced terminal 411 and the fourth terminal 452 of 303 are electrically connected to the second balanced terminal 412 of the second balun 303.

第1電極105a與第1巴倫103的第1平衡端子211(第1端子251)是可藉由第1路徑PTH1來電性連接。在第1路徑PTH1是可配置有可變電抗器511a。換言之,第1電極105a與第1巴倫103的第1平衡端子211(第1端子251)是可經由可變電抗器511a來電性連接。可變電抗器511a是可包含電容器,該電容器是可作為在第1巴倫103的第1平衡端子211與第1電極105a之間(或第1巴倫103的第1平衡端子211與第2平衡端子212之間)遮斷直流電流的阻塞電容器機能。第2電極105b與第1巴倫103的第2平衡端子212(第2端子252)是可藉由第2路徑PTH2來電性連接。在第2路徑PTH2是可配置有可變電抗器511b。換言之,第2電極105b與第1巴倫103的第2平衡端子212(第3端子252)是可經由可變電抗器511b來電性連接。可變電抗器511b是可包含電容器,該電容器是可作為在第1巴倫103的第2平衡端子212與第2電極105b之間(或第1巴倫103的第1平衡端子211與第2平衡端子212之間)遮斷直流電流的阻塞電容器機能。第1電極105a、第2電極105b是可分別隔著絕緣體132a、132b來藉由真空容器110所支撐。The first electrode 105a and the first balanced terminal 211 (the first terminal 251) of the first balun 103 can be electrically connected via the first path PTH1. A variable reactor 511a may be arranged on the first path PTH1. In other words, the first electrode 105a and the first balanced terminal 211 (the first terminal 251) of the first balun 103 are electrically connectable via the variable reactor 511a. The variable reactor 511a may include a capacitor, which may be used between the first balanced terminal 211 and the first electrode 105a of the first balun 103 (or the first balanced terminal 211 and the first balun 103 of the first balun 103). 2 between balanced terminals 212) blocking capacitor function to block DC current. The second electrode 105b and the second balanced terminal 212 (second terminal 252) of the first balun 103 can be electrically connected via the second path PTH2. A variable reactor 511b may be arranged on the second path PTH2. In other words, the second electrode 105b and the second balanced terminal 212 (third terminal 252) of the first balun 103 can be electrically connected via the variable reactor 511b. The variable reactor 511b may include a capacitor which may be used between the second balanced terminal 212 and the second electrode 105b of the first balun 103 (or the first balanced terminal 211 and the first balun 103 2 between balanced terminals 212) blocking capacitor function to block DC current. The first electrode 105a and the second electrode 105b can be supported by the vacuum container 110 via the insulators 132a and 132b, respectively.

電漿處理裝置1是可具備被配置於第1電極105a與接地之間的可變電抗器521a。電漿處理裝置1是可具備被配置於第2電極105b與接地之間的可變電抗器521b。電漿處理裝置1是可具備連接第1路徑PTH1與第2路徑PTH2的可變電抗器530。The plasma processing apparatus 1 may include a variable reactor 521a disposed between the first electrode 105a and the ground. The plasma processing apparatus 1 may include a variable reactor 521b disposed between the second electrode 105b and the ground. The plasma processing apparatus 1 may include a variable reactor 530 that connects the first path PTH1 and the second path PTH2.

在1個的構成例中,電漿處理裝置1,作為影響被施加於第1電極105a的第1電壓與被施加於第2電極105b的第2電壓的關係之調整電抗器,包含(a)被配置於連接第1平衡端子211與第1電極105a的第1路徑PTH1之可變電抗器511a、(b)被配置於第1電極105a與接地之間的可變電抗器521a、(c)被配置於連接第2平衡端子212與第2電極105b的第2路徑PTH2之可變電抗器511b、(d)被配置於第2電極105b與接地之間的可變電抗器521b、及(e)連接第1路徑PTH1與第2路徑PTH2的可變電抗器530之至少1個。In one configuration example, the plasma processing apparatus 1 includes (a) an adjustment reactor that affects the relationship between the first voltage applied to the first electrode 105a and the second voltage applied to the second electrode 105b. The varactors 511a, (b) arranged on the first path PTH1 connecting the first balanced terminal 211 and the first electrode 105a are varactors 521a, ((a) c) Variable reactors 511b arranged on the second path PTH2 connecting the second balanced terminal 212 and the second electrode 105b, (d) Variable reactors 521b arranged between the second electrode 105b and the ground And (e) at least one of the variable reactors 530 connecting the first path PTH1 and the second path PTH2.

藉由調整影響被施加於第1電極105a的第1電壓與被施加於第2電極105b的第2電壓的關係之調整電抗器的值,可調整第1標靶109a所濺射的量與第2標靶109b所濺射的量的關係。或,藉由將調整電抗器的值調整,可調整第1標靶109a所濺射的量與第2標靶109b所濺射的量的平衡。藉此,可調整第1標靶109a的消費量與第2標靶109b的消費量的關係。或,可調整第1標靶109a的消費量與第2標靶109b的消費量的平衡。如此的構成是例如將第1標靶109a的更換時機與第2標靶109b的更換時機形成相同的時機,有利於為了減低電漿處理裝置1的停機時間。又,亦可調整被形成於基板112的膜的厚度分布。By adjusting the value of the reactor that affects the relationship between the first voltage applied to the first electrode 105a and the second voltage applied to the second electrode 105b, the amount of sputtering of the first target 109a and the first Relation between the amount of sputtering of the target 109b. Alternatively, the balance of the amount of sputtering of the first target 109a and the amount of sputtering of the second target 109b can be adjusted by adjusting the value of the adjustment reactor. Thereby, the relationship between the consumption amount of the first target 109a and the consumption amount of the second target 109b can be adjusted. Alternatively, the balance between the consumption amount of the first target 109a and the consumption amount of the second target 109b may be adjusted. Such a configuration, for example, makes the replacement timing of the first target 109a and the replacement timing of the second target 109b the same timing, which is advantageous for reducing the downtime of the plasma processing apparatus 1. The thickness distribution of the film formed on the substrate 112 may be adjusted.

第3電極141與第2巴倫303的第1平衡端子411(第3端子451)是可經由阻塞電容器304來電性連接。阻塞電容器304是在第2巴倫303的第1平衡端子411與第3電極141之間(或第2巴倫303的第1平衡端子411與第2平衡端子412之間)遮斷直流電流。亦可取代阻塞電容器304,以第2阻抗匹配電路302會遮斷流動於第2巴倫303的第1不平衡端子401與第2不平衡端子402之間的直流電流之方式構成。第3電極141、第4電極145是可分別隔著絕緣體142、146來藉由真空容器110所支撐。The third electrode 141 and the first balanced terminal 411 (third terminal 451) of the second balun 303 are electrically connectable via a blocking capacitor 304. The blocking capacitor 304 blocks a DC current between the first balanced terminal 411 and the third electrode 141 of the second balun 303 (or between the first balanced terminal 411 and the second balanced terminal 412 of the second balun 303). Instead of the blocking capacitor 304, the second impedance matching circuit 302 may be configured to block the DC current flowing between the first unbalanced terminal 401 and the second unbalanced terminal 402 of the second balun 303. The third electrode 141 and the fourth electrode 145 can be supported by the vacuum container 110 via the insulators 142 and 146, respectively.

電漿處理裝置1是可具備:第1高頻電源101、及被配置於第1高頻電源101與第1巴倫103之間的第1阻抗匹配電路102。第1高頻電源101是經由第1阻抗匹配電路102、第1巴倫103及第1路徑PTH1來供給高頻至第1電極105a與第2電極105b之間。或,第1高頻電源101是經由第1阻抗匹配電路102、第1巴倫103來供給高頻至本體10的第1端子251與第2端子252之間。第1巴倫103以及第1電極105a及第2電極105b是構成供給高頻至真空容器110的內部空間的第1高頻供給部。The plasma processing apparatus 1 may include a first high-frequency power source 101 and a first impedance matching circuit 102 disposed between the first high-frequency power source 101 and the first balun 103. The first high-frequency power source 101 supplies high frequency between the first electrode 105a and the second electrode 105b via the first impedance matching circuit 102, the first balun 103, and the first path PTH1. Alternatively, the first high-frequency power source 101 supplies high-frequency power between the first terminal 251 and the second terminal 252 of the main body 10 via the first impedance matching circuit 102 and the first balun 103. The first balun 103, the first electrode 105a, and the second electrode 105b are a first high-frequency supply unit that supplies high-frequency to the internal space of the vacuum container 110.

電漿處理裝置1是可具備:第2高頻電源301、及被配置於第2高頻電源301與第2巴倫303之間的第2阻抗匹配電路302。第2高頻電源301是經由第2阻抗匹配電路302來供給高頻至第2巴倫303的第1不平衡端子401與第2不平衡端子402之間。第2高頻電源301是經由第2阻抗匹配電路302、第2巴倫303及阻塞電容器304來供給高頻至第3電極141與第4電極145之間。或,第2高頻電源301是經由第2阻抗匹配電路302、第2巴倫303來供給高頻至本體10的第3端子451與第4端子452之間。第2巴倫303以及第3電極141及第4電極145是構成供給高頻至真空容器110的內部空間之第2高頻供給部。The plasma processing apparatus 1 may include a second high-frequency power source 301 and a second impedance matching circuit 302 arranged between the second high-frequency power source 301 and the second balun 303. The second high-frequency power supply 301 supplies high frequency to the second balun 303 between the first unbalanced terminal 401 and the second unbalanced terminal 402 via the second impedance matching circuit 302. The second high-frequency power source 301 supplies a high frequency between the third electrode 141 and the fourth electrode 145 via the second impedance matching circuit 302, the second balun 303, and the blocking capacitor 304. Alternatively, the second high-frequency power source 301 supplies high frequency to the third terminal 451 and the fourth terminal 452 of the main body 10 via the second impedance matching circuit 302 and the second balun 303. The second balun 303, the third electrode 141, and the fourth electrode 145 are a second high-frequency supply unit that supplies high-frequency to the internal space of the vacuum container 110.

電漿處理裝置1是可具備:藉由使作為基板保持部機能的第3電極141旋轉來使基板112旋轉的驅動機構114。驅動機構114是亦可包含:藉由使作為基板保持部機能的第3電極141昇降來使基板112昇降的昇降機構。在真空容器110與驅動機構114之間是可設有構成真空隔壁的波紋管113。The plasma processing apparatus 1 may include a driving mechanism 114 that rotates the substrate 112 by rotating the third electrode 141 that functions as a substrate holding portion. The drive mechanism 114 may include an elevating mechanism that elevates the substrate 112 by elevating the third electrode 141 functioning as a substrate holding portion. A corrugated tube 113 constituting a vacuum partition wall may be provided between the vacuum container 110 and the driving mechanism 114.

將藉由來自第1高頻電源101的高頻的供給而在真空容器110的內部空間產生電漿的狀態下從第1巴倫103的第1平衡端子211及第2平衡端子212的側來看第1電極105a及第2電極105b的側(本體10的側)時的阻抗設為Rp1-jXp1。並且,將第1巴倫103的第1線圈221的阻抗的電抗成分(電感成分)設為X1。在此定義中,符合1.5≦X1/Rp1≦5000是特別有利於為了使被形成於真空容器110的內部空間的電漿的電位安定。但,符合1.5≦X/Rp1≦5000的條件,在第8實施形態中不是必須,為有利的條件想要被留意。在第8實施形態中,藉由設置巴倫103,要比不設巴倫103的情況,更可使電漿的電位安定。而且,藉由設置調整電抗器﹐可調整第1標靶109a所濺射的量與第2標靶109b所濺射的量的關係。又,藉由使基板112一邊利用驅動機構114來旋轉一邊在基板112形成膜,可減低基板112的面內的該膜的厚度偏差。From the side of the first balanced terminal 211 and the second balanced terminal 212 of the first balun 103 in a state where plasma is generated in the internal space of the vacuum container 110 by the high-frequency supply from the first high-frequency power source 101. The impedance when looking at the sides of the first electrode 105a and the second electrode 105b (the side of the body 10) is Rp1-jXp1. The reactance component (inductance component) of the impedance of the first coil 221 of the first balun 103 is X1. In this definition, 1.5 ≦ X1 / Rp1 ≦ 5000 is satisfied in order to stabilize the potential of the plasma formed in the internal space of the vacuum container 110. However, the condition of 1.5 ≦ X / Rp1 ≦ 5000 is not required in the eighth embodiment, and it is necessary to pay attention to the favorable condition. In the eighth embodiment, by providing the balun 103, the potential of the plasma can be stabilized more than when the balun 103 is not provided. Furthermore, by adjusting the reactor, the relationship between the amount of sputtering of the first target 109a and the amount of sputtering of the second target 109b can be adjusted. In addition, by forming the film on the substrate 112 while the substrate 112 is rotated by the driving mechanism 114, the thickness variation of the film in the plane of the substrate 112 can be reduced.

又,將藉由來自第2高頻電源301的高頻的供給而在真空容器110的內部空間產生電漿的狀態下從第2巴倫303的第1平衡端子411及第2平衡端子412的側來看第3電極141及第4電極145的側(本體10的側)時的阻抗設為Rp2-jXp2。並且,將第2巴倫303的第1線圈221的阻抗的電抗成分(電感成分)設為X2。在此定義中,符合1.5≦X2/Rp2≦5000是特別有利於為了使被形成於真空容器110的內部空間的電漿的電位安定。但,符合1.5≦X/Rp2≦5000的條件,在第8實施形態中不是必須,為有利的條件想要被留意。In addition, the first balanced terminal 411 and the second balanced terminal 412 of the second balun 303 will be generated from the first balanced terminal 411 and the second balanced terminal 412 of the second balun 303 in a state where plasma is generated in the internal space of the vacuum container 110 by the high-frequency supply from the second high-frequency power source 301. When the side of the third electrode 141 and the fourth electrode 145 (side of the body 10) is viewed from the side, the impedance is Rp2-jXp2. The reactance component (inductance component) of the impedance of the first coil 221 of the second balun 303 is X2. In this definition, 1.5 ≦ X2 / Rp2 ≦ 5000 is satisfied in order to stabilize the potential of the plasma formed in the internal space of the vacuum container 110. However, the condition of 1.5 ≦ X / Rp2 ≦ 5000 is not required in the eighth embodiment, and it is necessary to pay attention to the favorable condition.

以下,一邊參照圖18~圖25、圖32A~32C及圖33A~33C,一邊說明將第8實施形態的電漿處理裝置1具體化的第9~第14實施形態。在圖18是模式性地表示本發明的第9實施形態的電漿處理裝置1的構成。作為第9實施形態未言及的事項是可按照第8實施形態。第9實施形態的電漿處理裝置1是包含被配置於第1路徑PTH1的可變電抗器511a及被配置於第2路徑PTH2的可變電抗器511b的至少1個。在此,電漿處理裝置1是包含被配置於第1路徑PTH1的可變電抗器511a及被配置於第2路徑PTH2的可變電抗器511b的雙方為理想,但任一方皆可值為固定的電抗。Hereinafter, the ninth to fourteenth embodiments of the plasma processing apparatus 1 according to the eighth embodiment will be described with reference to FIGS. 18 to 25, 32A to 32C, and 33A to 33C. FIG. 18 schematically shows the configuration of a plasma processing apparatus 1 according to a ninth embodiment of the present invention. Matters not mentioned as the ninth embodiment are that the eighth embodiment can be followed. The plasma processing apparatus 1 according to the ninth embodiment includes at least one varactor 511a disposed on the first path PTH1 and at least one varactor 511b disposed on the second path PTH2. Here, it is desirable that the plasma processing apparatus 1 includes both the variable reactor 511a arranged on the first path PTH1 and the variable reactor 511b arranged on the second path PTH2, but either one can be valued. Is a fixed reactance.

第1可變電抗器511a是至少包含可變電感器601a,較理想是可包含可變電感器601a及電容器602a。可變電感器601a是亦可被配置於第1平衡端子211(第1端子251)與電容器602a之間,亦可被配置於電容器602a與第1電極105a之間。第2可變電抗器511b是至少包含可變電感器601b,較理想是可包含可變電感器601b及電容器602b。可變電感器601b是亦可被配置於第2平衡端子212(第2端子252)與電容器602b之間,亦可被配置於電容器602b與第2電極105b之間。The first variable reactor 511a includes at least a variable inductor 601a, and preferably includes a variable inductor 601a and a capacitor 602a. The variable inductor 601a may be disposed between the first balanced terminal 211 (the first terminal 251) and the capacitor 602a, or may be disposed between the capacitor 602a and the first electrode 105a. The second variable reactor 511b includes at least a variable inductor 601b, and preferably includes a variable inductor 601b and a capacitor 602b. The variable inductor 601b may be disposed between the second balanced terminal 212 (the second terminal 252) and the capacitor 602b, or may be disposed between the capacitor 602b and the second electrode 105b.

電漿處理裝置1是可具備:藉由使作為基板保持部機能的第3電極141旋轉來使基板112旋轉的驅動機構114。驅動機構114是亦可包含:藉由使作為基板保持部機能的第3電極141昇降來使基板112昇降的昇降機構。在真空容器110與驅動機構114之間是可設有構成真空隔壁的波紋管113。The plasma processing apparatus 1 may include a driving mechanism 114 that rotates the substrate 112 by rotating the third electrode 141 that functions as a substrate holding portion. The drive mechanism 114 may include an elevating mechanism that elevates the substrate 112 by elevating the third electrode 141 functioning as a substrate holding portion. A corrugated tube 113 constituting a vacuum partition wall may be provided between the vacuum container 110 and the driving mechanism 114.

在圖24是表示在第9實施形態的電漿處理裝置1中,將第1路徑PTH1的可變電感器601a及第2路徑PTH2的可變電感器601b的值設定於200nH時被形成於基板112的膜的厚度分布。並且,在圖24是表示在第9實施形態的電漿處理裝置1中,將第1路徑PTH1的可變電感器601a及第2路徑PTH2的可變電感器601b的值設定於400nH時被形成於基板112的膜的厚度分布。橫軸是圖18的橫方向(與基板112的表面平行的方向)的位置,表示離基板112的中心的距離。當可變電感器601a、601b的值為400nH時,在基板112的中心的左側及右側,膜的厚度分布大不同。另一方面,當可變電感器601a、601b的值為200nH時,在基板112的中心的左側及右側,膜的厚度分布的對稱性高。給予第1電極105a的第1電壓與給予第2電極105b的第2電壓的平衡是可變電感器601a、601b的值為200nH時要比可變電感器601a、601b的值為400nH時更佳。FIG. 24 shows the case where the value of the variable inductor 601a of the first path PTH1 and the variable inductor 601b of the second path PTH2 is set to 200 nH in the plasma processing apparatus 1 of the ninth embodiment. The thickness distribution of the film on the substrate 112. 24 shows the case where the value of the variable inductor 601a of the first path PTH1 and the variable inductor 601b of the second path PTH2 is set to 400 nH in the plasma processing apparatus 1 of the ninth embodiment. The thickness distribution of the film formed on the substrate 112. The horizontal axis is a position in the horizontal direction (direction parallel to the surface of the substrate 112) of FIG. 18, and represents a distance from the center of the substrate 112. When the values of the variable inductors 601a and 601b are 400 nH, the thickness distribution of the film is greatly different on the left and right sides of the center of the substrate 112. On the other hand, when the values of the variable inductors 601a and 601b are 200 nH, the symmetry of the thickness distribution of the film is high on the left and right sides of the center of the substrate 112. The balance between the first voltage applied to the first electrode 105a and the second voltage applied to the second electrode 105b is that when the value of the variable inductors 601a and 601b is 200nH, the value of the variable inductors 601a and 601b is 400nH. Better.

在圖25是表示在第9實施形態的電漿處理裝置1中,將第1路徑PTH1的可變電感器601a及第2路徑PTH2的可變電感器601b的值變更時的第1電極105a、第2電極105b的電壓。當可變電感器601a、601b的值約為225nH時,給予第1電極105a的電壓與給予第2電極105b的電壓會形成大致相等。FIG. 25 shows the first electrode when the values of the variable inductor 601a of the first path PTH1 and the variable inductor 601b of the second path PTH2 are changed in the plasma processing apparatus 1 of the ninth embodiment. 105a and the voltage of the second electrode 105b. When the values of the variable inductors 601a and 601b are approximately 225 nH, the voltage applied to the first electrode 105a and the voltage applied to the second electrode 105b become substantially equal.

在圖32A~32C是舉例表示在第9實施形態的電漿處理裝置1中,將基板112與標靶109a、109b的距離(鉛直方向的距離)之TS距離設為120mm、105mm、100mm時被配置於基板112的膜的厚度分布。在此,圖32A是將TS距離設為120mm時被形成於基板112的膜的厚度分布,圖32B是將TS距離設為105mm時被形成於基板112的膜的厚度分布,圖32C是將TS距離設為100mm時被形成於基板112的膜的厚度分布。對基板112之膜的形成是藉由驅動機構110來使基板112一邊旋轉一邊實施。32A to 32C show an example in which the TS distance between the substrate 112 and the targets 109a and 109b (distance in the vertical direction) is 120 mm, 105 mm, and 100 mm in the plasma processing apparatus 1 according to the ninth embodiment. A thickness distribution of a film disposed on the substrate 112. Here, FIG. 32A is the thickness distribution of the film formed on the substrate 112 when the TS distance is 120 mm, FIG. 32B is the thickness distribution of the film formed on the substrate 112 when the TS distance is 105 mm, and FIG. 32C is the TS The thickness distribution of the film formed on the substrate 112 when the distance is 100 mm. The film formation on the substrate 112 is performed by the driving mechanism 110 while rotating the substrate 112.

在圖33A~33C是舉例表示在第9實施形態的電漿處理裝置1中,將TS距離設為110mm,且將可變電感器601a的值設為200nH、400nH、300nH時被形成於基板112的膜的厚度分布。在此,圖33A是表示將可變電感器601a的值設為200nH時被形成於基板112的膜的厚度分布,圖33B是表示將可變電感器601a的值設為400nH時被形成於基板112的膜的厚度分布,圖33C是表示將可變電感器601a的值設為300nH時被形成於基板112的膜的厚度分布。33A to 33C show an example in which the plasma processing apparatus 1 according to the ninth embodiment is formed on a substrate when the TS distance is 110 mm and the value of the variable inductor 601a is 200 nH, 400 nH, and 300 nH. The film thickness distribution of 112. Here, FIG. 33A shows the thickness distribution of the film formed on the substrate 112 when the value of the variable inductor 601a is 200 nH, and FIG. 33B shows the thickness distribution of the film formed when the value of the variable inductor 601a is 400 nH. For the thickness distribution of the film on the substrate 112, FIG. 33C shows the thickness distribution of the film formed on the substrate 112 when the value of the variable inductor 601a is 300 nH.

在圖33A~33C中,當可變電感器601a的值為300nH時,被形成於基板112的膜的厚度偏差會形成最小。由圖25所示的結果可知,當可變電感器601a的值為225nH時,給予第1電極105a的電壓與給予第2電極105b的電壓會形成大致相等。另一方面,由圖33A~33C所示的結果可知,當可變電感器601a的值為300nH時,被形成於基板112的膜的厚度偏差為最小。由此可理解,在使基板112旋轉的情況,給予第1電極105a的電壓與給予第2電極105b的電壓大致相等時未必被形成於基板112的膜的厚度偏差會形成最小。因此,使基板112一邊旋轉一邊形成膜時,應以被形成於基板112的膜的厚度偏差會形成最小的方式決定可變電感器601a的值。可變電感器601a的值是可經由實驗或經由模擬來決定。In FIGS. 33A to 33C, when the value of the variable inductor 601a is 300 nH, the thickness deviation of the film formed on the substrate 112 is minimized. From the results shown in FIG. 25, when the value of the variable inductor 601 a is 225 nH, the voltage applied to the first electrode 105 a and the voltage applied to the second electrode 105 b become approximately equal. On the other hand, from the results shown in FIGS. 33A to 33C, it can be seen that when the value of the variable inductor 601 a is 300 nH, the thickness deviation of the film formed on the substrate 112 is minimized. From this, it can be understood that when the substrate 112 is rotated, when the voltage applied to the first electrode 105a and the voltage applied to the second electrode 105b are substantially equal, the thickness deviation of the film formed on the substrate 112 may not be minimized. Therefore, when forming the film while rotating the substrate 112, the value of the variable inductor 601a should be determined so that the thickness deviation of the film formed on the substrate 112 will be minimized. The value of the variable inductor 601a can be determined through experiments or simulations.

在圖19是模式性地表示本發明的第10實施形態的電漿處理裝置1的構成。作為第10實施形態未言及的事項是可按照第8實施形態。第10實施形態的電漿處理裝置1是包含:被配置於第1路徑PTH1的可變電抗器511a、及被配置於第2路徑PTH2的可變電抗器511b之至少1個。在此,電漿處理裝置1是包含被配置於第1路徑PTH1的可變電抗器511a及被配置於第2路徑PTH2的可變電抗器511b的雙方為理想,但任一方皆可值為固定的電抗。FIG. 19 schematically illustrates the configuration of a plasma processing apparatus 1 according to a tenth embodiment of the present invention. Matters not mentioned as the tenth embodiment are that the eighth embodiment can be followed. The plasma processing apparatus 1 according to the tenth embodiment includes at least one varactor 511a disposed on the first path PTH1 and at least one varactor 511b disposed on the second path PTH2. Here, it is desirable that the plasma processing apparatus 1 includes both the variable reactor 511a arranged on the first path PTH1 and the variable reactor 511b arranged on the second path PTH2, but either one can be valued. Is a fixed reactance.

第1可變電抗器511a是至少包含可變電容器604a,較理想是可包含可變電容器604a及電感器603a。可變電容器604a是亦可被配置於電感器603a與第1電極105a之間,亦可被配置於第1平衡端子211(第1端子251)與電感器603a之間。第2可變電抗器511b是至少包含可變電容器604b,較理想是可包含可變電容器604b及電感器603b。可變電容器604b是亦可被配置於電感器603b與第2電極105b之間,亦可被配置於第2平衡端子212(第2端子252)與電感器603b之間。The first variable reactor 511a includes at least a variable capacitor 604a, and preferably includes a variable capacitor 604a and an inductor 603a. The variable capacitor 604a may be disposed between the inductor 603a and the first electrode 105a, or may be disposed between the first balanced terminal 211 (first terminal 251) and the inductor 603a. The second variable reactor 511b includes at least a variable capacitor 604b, and preferably includes a variable capacitor 604b and an inductor 603b. The variable capacitor 604b may be disposed between the inductor 603b and the second electrode 105b, or may be disposed between the second balanced terminal 212 (the second terminal 252) and the inductor 603b.

在圖20是模式性地表示本發明的第11實施形態的電漿處理裝置1的構成。作為第11實施形態未言及的事項是可按照第8實施形態。第11實施形態的電漿處理裝置1是具備:作為被配置於第1電極105a與接地之間的可變電抗器521a之可變電容器605a、及作為被配置於第2電極105b與接地之間的可變電抗器521b之可變電容器605b的至少1個。電漿處理裝置1是可更具備:被配置於第1路徑PTH1的電抗(在此例是電感器603a、電容器602a)、及被配置於第2路徑PTH2的電抗(在此例是電感器603b、電容器602b)。FIG. 20 schematically shows the configuration of a plasma processing apparatus 1 according to an eleventh embodiment of the present invention. Matters not mentioned as the eleventh embodiment are that the eighth embodiment can be followed. The plasma processing apparatus 1 according to the eleventh embodiment includes a variable capacitor 605a as a variable reactor 521a arranged between the first electrode 105a and the ground, and a variable capacitor 605a arranged as the second electrode 105b and the ground. At least one variable capacitor 605b of the variable reactor 521b. The plasma processing apparatus 1 may further include a reactance (in this example, an inductor 603a and a capacitor 602a) disposed in the first path PTH1 and a reactance (in this example, an inductor 603b) disposed in the second path PTH2. Capacitor 602b).

在圖21是模式性地表示本發明的第12實施形態的電漿處理裝置1的構成。作為第12實施形態未言及的事項是可按照第8實施形態。第12實施形態的電漿處理裝置1是具備:被配置於第1電極105a與接地之間的可變電抗器521a、及被配置於第2電極105b與接地之間的可變電抗器521b的至少1個。可變電抗器521a是至少包含可變電感器607a,例如,可包含可變電感器607a及電容器606a。可變電抗器521b是至少包含可變電感器607b,例如,可包含可變電感器607b及電容器606b。FIG. 21 schematically shows the configuration of a plasma processing apparatus 1 according to a twelfth embodiment of the present invention. Matters not mentioned as the twelfth embodiment are that the eighth embodiment can be followed. The plasma processing apparatus 1 according to the twelfth embodiment includes a variable reactor 521a disposed between the first electrode 105a and the ground, and a variable reactor disposed between the second electrode 105b and the ground. At least one of 521b. The variable reactor 521a includes at least a variable inductor 607a, and may include, for example, a variable inductor 607a and a capacitor 606a. The variable reactor 521b includes at least a variable inductor 607b, and may include, for example, a variable inductor 607b and a capacitor 606b.

電漿處理裝置1是可更具備:被配置於第1路徑PTH1的電抗(在此例是電感器603a、電容器602a)、及被配置於第2路徑PTH2的電抗(在此例是電感器603b、電容器602b)。The plasma processing apparatus 1 may further include a reactance (in this example, an inductor 603a and a capacitor 602a) disposed in the first path PTH1 and a reactance (in this example, an inductor 603b) disposed in the second path PTH2. Capacitor 602b).

在圖22是模式性地表示本發明的第13實施形態的電漿處理裝置1的構成。作為第13實施形態未言及的事項是可按照第8實施形態。第13實施形態的電漿處理裝置1是具備:作為連接第1路徑PTH1與第2路徑PTH2的可變電抗器530之可變電感器608。電漿處理裝置1是可更具備:被配置於第1路徑PTH1的電抗(在此例是電感器603a、電容器602a)、及被配置於第2路徑PTH2的電抗(在此例是電感器603b、電容器602b)。FIG. 22 schematically shows the configuration of a plasma processing apparatus 1 according to a thirteenth embodiment of the present invention. Matters not mentioned as the thirteenth embodiment are that the eighth embodiment can be followed. The plasma processing apparatus 1 according to the thirteenth embodiment includes a variable inductor 608 as a varactor 530 connecting the first path PTH1 and the second path PTH2. The plasma processing apparatus 1 may further include a reactance (in this example, an inductor 603a and a capacitor 602a) disposed in the first path PTH1 and a reactance (in this example, an inductor 603b) disposed in the second path PTH2. Capacitor 602b).

在圖23是模式性地表示本發明的第14實施形態的電漿處理裝置1的構成。作為第14實施形態未言及的事項是可按照第8實施形態。第14實施形態的電漿處理裝置1是具備:作為連接第1路徑PTH1與第2路徑PTH2的可變電抗器530之可變電容器609。電漿處理裝置1是可更具備:被配置於第1路徑PTH1的電抗(在此例是電感器603a、電容器602a)、及被配置於第2路徑PTH2的電抗(在此例是電感器603b、電容器602b)。FIG. 23 schematically shows the configuration of a plasma processing apparatus 1 according to a fourteenth embodiment of the present invention. Matters not mentioned as the fourteenth embodiment are that the eighth embodiment can be followed. The plasma processing apparatus 1 according to the fourteenth embodiment includes a variable capacitor 609 as a variable reactor 530 that connects the first path PTH1 and the second path PTH2. The plasma processing apparatus 1 may further include a reactance (in this example, an inductor 603a and a capacitor 602a) disposed in the first path PTH1 and a reactance (in this example, an inductor 603b) disposed in the second path PTH2. Capacitor 602b).

以下,一邊參照圖26~圖31,一邊說明根據第1電極105a的第1電壓V1及第2電極105b的第2電壓V2來將調整電抗器的值調整的動作。在圖26是模式性地表示本發明的第15實施形態的電漿處理裝置1的構成。第15實施形態的電漿處理裝置1是具有對於圖18所示的第9實施形態的電漿處理裝置1追加控制部700的構成。控制部700是以第1電極105a的第1電壓V1及第2電極105b的第2電壓V2會分別形成目標值V1T、V2T的方式,將調整電抗器的值調整。例如,控制部700是以第1電極105a的第1電壓V1及第2電極105b的第2電壓V2會分別形成目標值V1T、V2T的方式,產生分別調整可變電感器601a、601b的值之第1指令值CNT1、第2指令值CNT2。目標值V1T、V2T是可被預定成為被形成於基板112的膜的厚度會收於目標偏差。Hereinafter, the operation of adjusting the value of the adjustment reactor based on the first voltage V1 of the first electrode 105a and the second voltage V2 of the second electrode 105b will be described with reference to FIGS. 26 to 31. FIG. 26 schematically shows the configuration of a plasma processing apparatus 1 according to a fifteenth embodiment of the present invention. The plasma processing apparatus 1 according to the fifteenth embodiment has a configuration in which a control unit 700 is added to the plasma processing apparatus 1 according to the ninth embodiment shown in FIG. 18. The control unit 700 adjusts the value of the adjustment reactor such that the first voltage V1 of the first electrode 105a and the second voltage V2 of the second electrode 105b form target values V1T and V2T, respectively. For example, the control unit 700 generates the values of the variable inductors 601a and 601b so that the first voltage V1 of the first electrode 105a and the second voltage V2 of the second electrode 105b form target values V1T and V2T, respectively. The first command value CNT1 and the second command value CNT2. The target values V1T and V2T are intended to be set to a thickness of a film to be formed on the substrate 112 and are subject to a target deviation.

在圖27是模式性地表示本發明的第16實施形態的電漿處理裝置1的構成。第16實施形態的電漿處理裝置1是具有對於圖19所示的第10實施形態的電漿處理裝置1追加控制部700的構成。控制部700是以第1電極105a的第1電壓V1及第2電極105b的第2電壓V2會分別形成目標值V1T、V2T的方式,將調整電抗器的值調整。例如,控制部700是以第1電極105a的第1電壓V1及第2電極105b的第2電壓V2會分別形成目標值V1T、V2T的方式,產生分別調整可變電容器604a、604b的值之第1指令值CNT1、第2指令值CNT2。目標值V1T、V2T是可被預定成為被形成於基板112的膜的厚度會收於目標偏差。FIG. 27 schematically shows the configuration of a plasma processing apparatus 1 according to a sixteenth embodiment of the present invention. The plasma processing apparatus 1 according to the sixteenth embodiment has a configuration in which a control unit 700 is added to the plasma processing apparatus 1 according to the tenth embodiment shown in FIG. 19. The control unit 700 adjusts the value of the adjustment reactor such that the first voltage V1 of the first electrode 105a and the second voltage V2 of the second electrode 105b form target values V1T and V2T, respectively. For example, the control unit 700 generates the first voltage V1 of the first electrode 105a and the second voltage V2 of the second electrode 105b to form target values V1T and V2T, respectively. 1 command value CNT1, second command value CNT2. The target values V1T and V2T are intended to be set to a thickness of a film to be formed on the substrate 112 and are subject to a target deviation.

在圖28是模式性地表示本發明的第17實施形態的電漿處理裝置1的構成。第17實施形態的電漿處理裝置1是具有對於圖20所示的第11實施形態的電漿處理裝置1追加控制部700的構成。控制部700是以第1電極105a的第1電壓V1及第2電極105b的第2電壓V2會分別形成目標值V1T、V2T的方式,將調整電抗器的值調整。例如,控制部700是以第1電極105a的第1電壓V1及第2電極105b的第2電壓V2會分別形成目標值V1T、V2T的方式,產生分別調整可變電容器605a、605b的值之第1指令值CNT1、第2指令值CNT2。目標值V1T、V2T是可被預定成為被形成於基板112的膜的厚度會收於目標偏差。FIG. 28 schematically shows the configuration of a plasma processing apparatus 1 according to a seventeenth embodiment of the present invention. The plasma processing apparatus 1 according to the seventeenth embodiment has a configuration in which a control unit 700 is added to the plasma processing apparatus 1 according to the eleventh embodiment shown in FIG. 20. The control unit 700 adjusts the value of the adjustment reactor such that the first voltage V1 of the first electrode 105a and the second voltage V2 of the second electrode 105b form target values V1T and V2T, respectively. For example, the control unit 700 generates the first voltage V1 of the first electrode 105a and the second voltage V2 of the second electrode 105b to form target values V1T and V2T, respectively. 1 command value CNT1, second command value CNT2. The target values V1T and V2T are intended to be set to a thickness of a film to be formed on the substrate 112 and are subject to a target deviation.

在圖29是模式性地表示本發明的第18實施形態的電漿處理裝置1的構成。第18實施形態的電漿處理裝置1是具有對於圖21所示的第12實施形態的電漿處理裝置1追加控制部700的構成。控制部700是根據第1電極105a的第1電壓V1及第2電極105b的第2電壓V2,例如,以第1電壓V1與第2電壓V2會分別形成目標值V1T、V2T的方式,將調整電抗器的值調整。例如,控制部700是以第1電極105a的第1電壓V1及第2電極105b的第2電壓V2會分別形成目標值V1T、V2T的方式,產生分別調整可變電感器607a、607b的值之第1指令值CNT1、第2指令值CNT2。目標值V1T、V2T是可被預定成為被形成於基板112的膜的厚度會收於目標偏差。FIG. 29 schematically shows a configuration of a plasma processing apparatus 1 according to an eighteenth embodiment of the present invention. The plasma processing apparatus 1 according to the eighteenth embodiment has a configuration in which a control unit 700 is added to the plasma processing apparatus 1 according to the twelfth embodiment shown in FIG. 21. The control unit 700 adjusts based on the first voltage V1 of the first electrode 105a and the second voltage V2 of the second electrode 105b. For example, the first voltage V1 and the second voltage V2 will form target values V1T and V2T, respectively. Reactor value adjustment. For example, the control unit 700 generates the values of the variable inductors 607a and 607b so that the first voltage V1 of the first electrode 105a and the second voltage V2 of the second electrode 105b form target values V1T and V2T, respectively. The first command value CNT1 and the second command value CNT2. The target values V1T and V2T are intended to be set to a thickness of a film to be formed on the substrate 112 and are subject to a target deviation.

在圖30是模式性地表示本發明的第19實施形態的電漿處理裝置1的構成。第19實施形態的電漿處理裝置1是具有對於圖22所示的第13實施形態的電漿處理裝置1追加控制部700的構成。控制部700是以第1電極105a的第1電壓V1及第2電極105b的第2電壓V2會分別形成目標值V1T、V2T的方式,將調整電抗器的值調整。例如,控制部700是以第1電極105a的第1電壓V1及第2電極105b的第2電壓V2會分別形成目標值V1T、V2T的方式,產生調整可變電感器608的值之指令值CNT。目標值V1T、V2T是可被預定成為被形成於基板112的膜的厚度會收於目標偏差。FIG. 30 schematically illustrates the configuration of a plasma processing apparatus 1 according to a nineteenth embodiment of the present invention. The plasma processing apparatus 1 according to the nineteenth embodiment has a configuration in which a control unit 700 is added to the plasma processing apparatus 1 according to the thirteenth embodiment shown in FIG. 22. The control unit 700 adjusts the value of the adjustment reactor such that the first voltage V1 of the first electrode 105a and the second voltage V2 of the second electrode 105b form target values V1T and V2T, respectively. For example, the control unit 700 generates a command value for adjusting the value of the variable inductor 608 such that the first voltage V1 of the first electrode 105a and the second voltage V2 of the second electrode 105b form target values V1T and V2T, respectively. CNT. The target values V1T and V2T are intended to be set to a thickness of a film to be formed on the substrate 112 and are subject to a target deviation.

在圖31是模式性地表示本發明的第20實施形態的電漿處理裝置1的構成。第20實施形態的電漿處理裝置1是具有對於圖23所示的第14實施形態的電漿處理裝置1追加控制部700的構成。控制部700是以第1電極105a的第1電壓V1及第2電極105b的第2電壓V2會分別形成目標值V1T、V2T的方式,將調整電抗器的值調整。例如,控制部700是以第1電極105a的第1電壓V1及第2電極105b的第2電壓V2會分別形成目標值V1T、V2T的方式,產生調整可變電容器609的值之指令值CNT。目標值V1T、V2T是可被預定成為被形成於基板112的膜的厚度會收於目標偏差。FIG. 31 schematically shows the configuration of a plasma processing apparatus 1 according to a twentieth embodiment of the present invention. The plasma processing apparatus 1 according to the twentieth embodiment has a configuration in which a control unit 700 is added to the plasma processing apparatus 1 according to the fourteenth embodiment shown in FIG. 23. The control unit 700 adjusts the value of the adjustment reactor such that the first voltage V1 of the first electrode 105a and the second voltage V2 of the second electrode 105b form target values V1T and V2T, respectively. For example, the control unit 700 generates a command value CNT for adjusting the value of the variable capacitor 609 such that the first voltage V1 of the first electrode 105a and the second voltage V2 of the second electrode 105b form target values V1T and V2T, respectively. The target values V1T and V2T are intended to be set to a thickness of a film to be formed on the substrate 112 and are subject to a target deviation.

在參照圖26~圖31說明的第15~第20實施形態中,控制部700是以第1電極105a的第1電壓V1及第2電極105b的第2電壓V2會分別形成目標值V1T、V2T的方式﹐將調整電抗器的值調整。亦可取代如此的構成,控制部700是構成為根據第1電極105a的附近的電漿強度及第2電極105b的附近的電漿強度來將調整電抗器調整。第1電極105a的附近的電漿強度是可例如藉由光電變換裝置來檢測出。同樣,第2電極105b的附近的電漿強度是可例如藉由光電變換裝置來檢測出。控制部700是可構成為以第1電極105a的附近的電漿強度及第2電極105b的附近的電漿強度會分別形成目標值的方式,將調整電抗器的值調整。In the fifteenth to twentieth embodiments described with reference to FIGS. 26 to 31, the control unit 700 forms target values V1T and V2T with the first voltage V1 of the first electrode 105a and the second voltage V2 of the second electrode 105b. Way, the value of the reactor will be adjusted. Instead of such a configuration, the control unit 700 may be configured to adjust the adjustment reactor based on the plasma strength near the first electrode 105a and the plasma strength near the second electrode 105b. The plasma intensity in the vicinity of the first electrode 105a can be detected by, for example, a photoelectric conversion device. Similarly, the intensity of the plasma in the vicinity of the second electrode 105b can be detected by, for example, a photoelectric conversion device. The control unit 700 may be configured to adjust the value of the adjustment reactor so that the plasma strength near the first electrode 105a and the plasma strength near the second electrode 105b form target values, respectively.

其次,說明作為本發明的第21實施形態的電漿處理方法。作為第21實施形態的電漿處理方法是在第8~第20實施形態的任一的電漿處理裝置1中處理基板112。該電漿處理方法是可包含:以被施加於第1電極105a的第1電壓與被施加於第2電極105b的第2電壓的關係能被調整的方式,將調整電抗器調整之工程、及在該工程之後,使基板112一邊藉由驅動機構114來旋轉一邊處理之工程。該處理是可包含:在基板112藉由濺射來形成膜的工程、或蝕刻基板112的工程。Next, a plasma processing method as a twenty-first embodiment of the present invention will be described. The plasma processing method according to the twenty-first embodiment is to process the substrate 112 in the plasma processing apparatus 1 according to any one of the eighth to twentieth embodiments. This plasma processing method may include a process of adjusting an adjustment reactor so that the relationship between the first voltage applied to the first electrode 105a and the second voltage applied to the second electrode 105b can be adjusted, and After this process, a process in which the substrate 112 is processed while being rotated by the driving mechanism 114 is performed. This process may include a process of forming a film on the substrate 112 by sputtering, or a process of etching the substrate 112.

本發明是不限於上述實施形態,不脫離本發明的精神及範圍,可實施各種的變更及變形。因此,為了將本發明的範圍公諸於世,而附上以下的請求項。The present invention is not limited to the above embodiments, and various changes and modifications can be made without departing from the spirit and scope of the present invention. Therefore, in order to make the scope of the present invention public, the following claims are attached.

1‧‧‧電漿處理裝置1‧‧‧ Plasma treatment device

10‧‧‧本體10‧‧‧ Ontology

101‧‧‧高頻電源101‧‧‧High Frequency Power

102‧‧‧阻抗匹配電路102‧‧‧Impedance matching circuit

103‧‧‧巴倫103‧‧Barron

104‧‧‧阻塞電容器104‧‧‧ blocking capacitor

106‧‧‧第1電極106‧‧‧The first electrode

107、108‧‧‧絕緣體107, 108‧‧‧ insulator

109‧‧‧標靶109‧‧‧Target

110‧‧‧真空容器110‧‧‧Vacuum container

111‧‧‧第2電極111‧‧‧Second electrode

112‧‧‧基板112‧‧‧ substrate

201‧‧‧第1不平衡端子201‧‧‧The first unbalanced terminal

202‧‧‧第2不平衡端子202‧‧‧The second unbalanced terminal

211‧‧‧第1平衡端子211‧‧‧The first balanced terminal

212‧‧‧第2平衡端子212‧‧‧Second balanced terminal

251‧‧‧第1端子251‧‧‧The first terminal

252‧‧‧第2端子252‧‧‧ 2nd terminal

221‧‧‧第1線圈221‧‧‧The first coil

222‧‧‧第2線圈222‧‧‧The second coil

223‧‧‧第3線圈223‧‧‧3rd coil

224‧‧‧第4線圈224‧‧‧4th coil

511a、511b、521a、521b、530‧‧‧可變電抗器511a, 511b, 521a, 521b, 530‧‧‧Reactors

700‧‧‧控制部700‧‧‧ Control Department

圖1是模式性地表示本發明的第1實施形態的電漿處理裝置1的構成的圖。   圖2A是表示巴倫的構成例的圖。   圖2B是表示巴倫的其他的構成例的圖。   圖3是說明巴倫103的機能的圖。   圖4是舉例表示電流I1(=I2)、I2’、I3、ISO、α(=X/Rp)的關係的圖。   圖5A是表示模擬符合1.5≦X/Rp≦5000時的電漿電位及陰極電位的結果的圖。   圖5B是表示模擬符合1.5≦X/Rp≦5000時的電漿電位及陰極電位的結果的圖。   圖5C是表示模擬符合1.5≦X/Rp≦5000時的電漿電位及陰極電位的結果的圖。   圖5D是表示模擬符合1.5≦X/Rp≦5000時的電漿電位及陰極電位的結果的圖。   圖6A是表示模擬不符合1.5≦X/Rp≦5000時的電漿電位及陰極電位的結果的圖。   圖6B是表示模擬不符合1.5≦X/Rp≦5000時的電漿電位及陰極電位的結果的圖。   圖6C是表示模擬不符合1.5≦X/Rp≦5000時的電漿電位及陰極電位的結果的圖。   圖6D是表示模擬不符合1.5≦X/Rp≦5000時的電漿電位及陰極電位的結果的圖。   圖7是例示Rp-jXp的確認方法的圖。   圖8是模式性地表示本發明的第2實施形態的電漿處理裝置1的構成的圖。   圖9是模式性地表示本發明的第3實施形態的電漿處理裝置1的構成的圖。   圖10是模式性地表示本發明的第4實施形態的電漿處理裝置1的構成的圖。   圖11是模式性地表示本發明的第5實施形態的電漿處理裝置1的構成的圖。   圖12是模式性地表示本發明的第6實施形態的電漿處理裝置1的構成的圖。   圖13是模式性地表示本發明的第7實施形態的電漿處理裝置1的構成的圖。   圖14是說明本發明的第7實施形態的巴倫的機能的圖。   圖15A是表示模擬符合1.5≦X/Rp≦5000時的電漿電位及2個的陰極電位的結果的圖。   圖15B是表示模擬符合1.5≦X/Rp≦5000時的電漿電位及2個的陰極電位的結果的圖。   圖15C是表示模擬符合1.5≦X/Rp≦5000時的電漿電位及2個的陰極電位的結果的圖。   圖15D是表示模擬符合1.5≦X/Rp≦5000時的電漿電位及2個的陰極電位的結果的圖。   圖16A是表示模擬不符合1.5≦X/Rp≦5000時的電漿電位及2個的陰極電位的結果的圖。   圖16B是表示模擬不符合1.5≦X/Rp≦5000時的電漿電位及2個的陰極電位的結果的圖。   圖16C是表示模擬不符合1.5≦X/Rp≦5000時的電漿電位及2個的陰極電位的結果的圖。   圖16D是表示模擬不符合1.5≦X/Rp≦5000時的電漿電位及2個的陰極電位的結果的圖。   圖17是模式性地表示本發明的第8實施形態的電漿處理裝置1的構成的圖。   圖18是模式性地表示本發明的第9實施形態的電漿處理裝置1的構成的圖。   圖19是模式性地表示本發明的第10實施形態的電漿處理裝置1的構成的圖。   圖20是模式性地表示本發明的第11實施形態的電漿處理裝置1的構成的圖。   圖21是模式性地表示本發明的第12實施形態的電漿處理裝置1的構成的圖。   圖22是模式性地表示本發明的第13實施形態的電漿處理裝置1的構成的圖。   圖23是模式性地表示本發明的第14實施形態的電漿處理裝置1的構成的圖。   圖24是說明本發明的第9實施形態的電漿處理裝置1的機能的圖。   圖25是說明本發明的第9實施形態的電漿處理裝置1的機能的圖。   圖26是模式性地表示本發明的第15實施形態的電漿處理裝置1的構成的圖。   圖27是模式性地表示本發明的第16實施形態的電漿處理裝置1的構成的圖。   圖28是模式性地表示本發明的第17實施形態的電漿處理裝置1的構成的圖。   圖29是模式性地表示本發明的第18實施形態的電漿處理裝置1的構成的圖。   圖30是模式性地表示本發明的第19實施形態的電漿處理裝置1的構成的圖。   圖31是模式性地表示本發明的第20實施形態的電漿處理裝置1的構成的圖。   圖32A是舉例表示在本發明的第9實施形態的電漿處理裝置1中將TS距離設為120mm時被形成於基板的膜的厚度分布的圖。   圖32B是舉例表示在本發明的第9實施形態的電漿處理裝置1中將TS距離設為105mm時被形成於基板的膜的厚度分布的圖。   圖32C是舉例表示在本發明的第9實施形態的電漿處理裝置1中將TS距離設為100mm時被形成於基板的膜的厚度分布的圖。   圖33A是舉例表示在本發明的第9實施形態的電漿處理裝置1中將TS距離設為110mm﹐且將可變電感器的值設為200nH時被形成於基板的膜的厚度分布的圖。   圖33B是舉例表示在本發明的第9實施形態的電漿處理裝置1中將TS距離設為110mm﹐且將可變電感器的值設為400nH時被形成於基板的膜的厚度分布的圖。   圖33C是舉例表示在本發明的第9實施形態的電漿處理裝置1中將TS距離設為110mm﹐且將可變電感器的值設為300nH時被形成於基板的膜的厚度分布的圖。FIG. 1 is a diagram schematically showing a configuration of a plasma processing apparatus 1 according to a first embodiment of the present invention. FIG. 2A is a diagram showing a configuration example of a balun. FIG. 2B is a diagram showing another configuration example of the balun. FIG. 3 is a diagram illustrating the function of the balun 103. FIG. 4 is a diagram illustrating the relationship among the currents I1 (= I2), I2 ', I3, ISO, and α (= X / Rp) by way of example. FIG. 5A is a diagram showing a result of simulating a plasma potential and a cathode potential when 1.5 ≦ X / Rp ≦ 5000 is satisfied. FIG. 5B is a diagram showing a result of simulating a plasma potential and a cathode potential when 1.5 ≦ X / Rp ≦ 5000 is satisfied. C FIG. 5C is a diagram showing a result of simulating a plasma potential and a cathode potential when 1.5 ≦ X / Rp ≦ 5000 is satisfied. FIG. 5D is a diagram showing a result of simulating a plasma potential and a cathode potential when 1.5 ≦ X / Rp ≦ 5000 is satisfied. FIG. 6A is a diagram showing a result of simulating plasma potential and cathode potential when 1.5 ≦ X / Rp ≦ 5000 is not satisfied. FIG. 6B is a diagram showing a result of simulating a plasma potential and a cathode potential when 1.5 ≦ X / Rp ≦ 5000 is not satisfied. FIG. 6C is a diagram showing a result of simulating plasma potential and cathode potential when 1.5 ≦ X / Rp ≦ 5000 is not satisfied. FIG. 6D is a diagram showing the results of simulating plasma potential and cathode potential when 1.5 ≦ X / Rp ≦ 5000 is not satisfied. FIG. 7 is a diagram illustrating a method of confirming Rp-jXp. 8 is a diagram schematically showing a configuration of a plasma processing apparatus 1 according to a second embodiment of the present invention. 9 is a diagram schematically showing a configuration of a plasma processing apparatus 1 according to a third embodiment of the present invention. 10 is a diagram schematically showing a configuration of a plasma processing apparatus 1 according to a fourth embodiment of the present invention. 11 is a diagram schematically showing a configuration of a plasma processing apparatus 1 according to a fifth embodiment of the present invention. Fig. 12 is a diagram schematically showing the configuration of a plasma processing apparatus 1 according to a sixth embodiment of the present invention. 13 is a diagram schematically showing the configuration of a plasma processing apparatus 1 according to a seventh embodiment of the present invention. FIG. 14 is a diagram illustrating the function of a balun according to a seventh embodiment of the present invention. FIG. 15A is a diagram showing a result of simulating a plasma potential and two cathode potentials when 1.5 ≦ X / Rp ≦ 5000 is satisfied. FIG. 15B is a diagram showing a result of simulating a plasma potential and two cathode potentials when 1.5 ≦ X / Rp ≦ 5000 is satisfied. C FIG. 15C is a diagram showing a result of simulating a plasma potential and two cathode potentials when 1.5 ≦ X / Rp ≦ 5000 is satisfied. 15D is a diagram showing a result of simulating a plasma potential and two cathode potentials when 1.5 ≦ X / Rp ≦ 5000 is satisfied. 16A is a diagram showing a result of simulating a plasma potential and two cathode potentials when 1.5 ≦ X / Rp ≦ 5000 is not satisfied. 16B is a diagram showing a result of simulating a plasma potential and two cathode potentials when 1.5 ≦ X / Rp ≦ 5000 is not satisfied. 16C is a diagram showing a result of simulating a plasma potential and two cathode potentials when 1.5 ≦ X / Rp ≦ 5000 is not satisfied. 16D is a diagram showing a result of simulating a plasma potential and two cathode potentials when 1.5 ≦ X / Rp ≦ 5000 is not satisfied. 17 is a diagram schematically showing a configuration of a plasma processing apparatus 1 according to an eighth embodiment of the present invention. FIG. 18 is a diagram schematically showing a configuration of a plasma processing apparatus 1 according to a ninth embodiment of the present invention. Fig. 19 is a diagram schematically showing a configuration of a plasma processing apparatus 1 according to a tenth embodiment of the present invention. FIG. 20 is a diagram schematically showing a configuration of a plasma processing apparatus 1 according to an eleventh embodiment of the present invention. Fig. 21 is a diagram schematically showing the configuration of a plasma processing apparatus 1 according to a twelfth embodiment of the present invention. 22 is a diagram schematically showing a configuration of a plasma processing apparatus 1 according to a thirteenth embodiment of the present invention. Fig. 23 is a diagram schematically showing the configuration of a plasma processing apparatus 1 according to a fourteenth embodiment of the present invention. FIG. 24 is a diagram illustrating the function of the plasma processing apparatus 1 according to a ninth embodiment of the present invention. Fig. 25 is a diagram illustrating the function of the plasma processing apparatus 1 according to a ninth embodiment of the present invention. Fig. 26 is a diagram schematically showing a configuration of a plasma processing apparatus 1 according to a fifteenth embodiment of the present invention. Fig. 27 is a diagram schematically showing a configuration of a plasma processing apparatus 1 according to a sixteenth embodiment of the present invention. Fig. 28 is a diagram schematically showing a configuration of a plasma processing apparatus 1 according to a seventeenth embodiment of the present invention. Fig. 29 is a diagram schematically showing the configuration of a plasma processing apparatus 1 according to an eighteenth embodiment of the present invention. FIG. 30 is a diagram schematically showing the configuration of a plasma processing apparatus 1 according to a nineteenth embodiment of the present invention. Fig. 31 is a diagram schematically showing a configuration of a plasma processing apparatus 1 according to a twentieth embodiment of the present invention. FIG. 32A is a diagram illustrating a thickness distribution of a film formed on a substrate when a TS distance is 120 mm in a plasma processing apparatus 1 according to a ninth embodiment of the present invention. FIG. 32B is a diagram illustrating a thickness distribution of a film formed on a substrate when a TS distance is 105 mm in a plasma processing apparatus 1 according to a ninth embodiment of the present invention. FIG. 32C is a diagram illustrating a thickness distribution of a film formed on a substrate when a TS distance is 100 mm in a plasma processing apparatus 1 according to a ninth embodiment of the present invention. FIG. 33A shows an example of the thickness distribution of a film formed on a substrate when the TS distance is 110 mm and the value of the variable inductor is 200 nH in the plasma processing apparatus 1 according to the ninth embodiment of the present invention. Illustration. FIG. 33B shows an example of the thickness distribution of the film formed on the substrate when the TS distance is 110 mm and the value of the variable inductor is 400 nH in the plasma processing apparatus 1 according to the ninth embodiment of the present invention. Illustration. FIG. 33C shows an example of the thickness distribution of the film formed on the substrate when the TS distance is 110 mm and the value of the variable inductor is 300 nH in the plasma processing apparatus 1 according to the ninth embodiment of the present invention. Illustration.

Claims (20)

一種電漿處理裝置,其特徵係具備:   具有第1不平衡端子、第2不平衡端子、第1平衡端子及第2平衡端子的巴倫;   被接地的真空容器;   被電性連接至前述第1平衡端子的第1電極;   被電性連接至前述第2平衡端子的第2電極;   影響被施加於前述第1電極的第1電壓與被施加於前述第2電極的第2電壓的關係之調整電抗器;   保持基板的基板保持部;及   使前述基板保持部旋轉的驅動機構。A plasma processing apparatus, comprising: a balun having a first unbalanced terminal, a second unbalanced terminal, a first balanced terminal, and a second balanced terminal; 接地 a grounded vacuum container; electrically connected to the aforementioned first 1 the first electrode of the balanced terminal; the second electrode electrically connected to the second balanced terminal; the relationship between the first voltage applied to the first electrode and the second voltage applied to the second electrode An adjustment reactor; (ii) a substrate holding portion that holds the substrate; and a driving mechanism that rotates the substrate holding portion. 如申請專利範圍第1項之電漿處理裝置,其中,   前述第1電極,係具有保持第1構件的第1保持面,   前述第2電極,係具有保持第2構件的第2保持面,   前述第1保持面及前述第2保持面,係屬於1個的平面。For example, the plasma processing apparatus according to the first item of the patent application, wherein: the first electrode has a first holding surface for holding the first member, the second electrode has a second holding surface for holding the second member, the foregoing The first holding surface and the second holding surface belong to one plane. 如申請專利範圍第1項之電漿處理裝置,其中,   前述第1電極,係保持第1標靶,   前述第2電極,係保持第2標靶,   前述第1電極係經由前述第1標靶來與前述基板的側的空間對向,   前述第2電極係經由前述第2標靶來與前述空間對向。For example, the plasma processing device in the first scope of the patent application, wherein: the first electrode holds the first target, the second electrode holds the second target, and the first electrode passes through the first target. It is opposed to the space on the side of the substrate, and the second electrode is opposed to the space through the second target. 如申請專利範圍第3項之電漿處理裝置,其中,前述調整電抗器,係包含:(a)被配置於連接前述第1平衡端子與前述第1電極的第1路徑之可變電抗器、(b)被配置於前述第1電極與接地之間的可變電抗器、(c)被配置於連接前述第2平衡端子與前述第2電極的第2路徑之可變電抗器、(d)被配置於前述第2電極與接地之間的可變電抗器、及(e)連接前述第1路徑與前述第2路徑的可變電抗器之至少1個。For example, the plasma processing device of the third scope of the patent application, wherein the aforementioned adjusting reactor includes: (a) a variable reactor arranged on a first path connecting the first balanced terminal and the first electrode; (B) a variable reactor arranged between the first electrode and the ground, (c) a variable reactor arranged on a second path connecting the second balanced terminal and the second electrode, (d) at least one variable reactor arranged between the second electrode and the ground, and (e) at least one variable reactor connecting the first path and the second path. 如申請專利範圍第3項之電漿處理裝置,其中,前述調整電抗器,係包含:被配置於連接前述第1平衡端子與前述第1電極的第1路徑之第1可變電抗器、及被配置於連接前述第2平衡端子與前述第2電極的第2路徑之第2可變電抗器的至少1個。For example, the plasma processing device of the third item of the patent application, wherein the adjustment reactor includes a first variable reactor arranged on a first path connecting the first balanced terminal and the first electrode, And at least one second variable reactor arranged on a second path connecting the second balanced terminal and the second electrode. 如申請專利範圍第5項之電漿處理裝置,其中,   前述第1可變電抗器,係包含可變電感器,   前述第2可變電抗器,係包含可變電感器。For example, the plasma processing device of the fifth item of the patent application, wherein: the first variable reactor includes a variable inductor, and the second variable reactor includes a variable inductor. 如申請專利範圍第5項之電漿處理裝置,其中,   前述第1可變電抗器,係包含可變電容器,   前述第2可變電抗器,係包含可變電容器。For example, the plasma processing device of the fifth item of the patent application, wherein: the first variable reactor includes a variable capacitor, and the second variable reactor includes a variable capacitor. 如申請專利範圍第3項之電漿處理裝置,其中,前述調整電抗器,係包含:被配置於連接前述第1電極與接地的第3路徑之第3可變電抗器、及被配置於連接前述第2電極與接地的第4路徑之第4可變電抗器的至少1個。For example, the plasma processing device in the third scope of the patent application, wherein the adjustment reactor includes a third variable reactor arranged on a third path connecting the first electrode to the ground and a third variable reactor arranged on the third path. At least one of the fourth variable reactors connecting the second electrode and the fourth path to the ground. 如申請專利範圍第8項之電漿處理裝置,其中,   前述第3可變電抗器,係包含可變電容器,   前述第4可變電抗器,係包含可變電容器。For example, the plasma processing device according to the eighth aspect of the patent application, wherein: the third variable reactor includes a variable capacitor, and the fourth variable reactor includes a variable capacitor. 如申請專利範圍第8項之電漿處理裝置,其中,   前述第3可變電抗器,係包含可變電感器,   前述第4可變電抗器,係包含可變電感器。For example, the plasma processing device according to the eighth aspect of the patent application, wherein: the third variable reactor includes a variable inductor, and the fourth variable reactor includes a variable inductor. 如申請專利範圍第3項之電漿處理裝置,其中,前述調整電抗器,係包含連接第1路徑與第2路徑的可變電抗器,該第1路徑係連接前述第1平衡端子與前述第1電極,該第2路徑係連接前述第2平衡端子與前述第2電極。For example, the plasma processing device of the third scope of the patent application, wherein the aforementioned adjusting reactor includes a variable reactor connecting the first path and the second path, and the first path connects the first balanced terminal and the foregoing The first electrode and the second path connect the second balanced terminal and the second electrode. 如申請專利範圍第11項之電漿處理裝置,其中,前述可變電抗器,係包含可變電感器。For example, the plasma processing device according to item 11 of the application, wherein the variable reactor includes a variable inductor. 如申請專利範圍第11項之電漿處理裝置,其中,前述可變電抗器,係包含可變電容器。For example, the plasma processing device according to item 11 of the patent application range, wherein the variable reactor includes a variable capacitor. 如申請專利範圍第1項之電漿處理裝置,其中,更具備:根據前述第1電極的電壓與前述第2電極的電壓來控制前述調整電抗器的控制部。For example, the plasma processing apparatus according to item 1 of the patent application scope further includes a control unit for controlling the adjustment reactor based on the voltage of the first electrode and the voltage of the second electrode. 如申請專利範圍第1項之電漿處理裝置,其中,更具備:根據前述第1電極的附近的電漿強度與前述第2電極的附近的電漿強度來控制前述調整電抗器的控制部。For example, the plasma processing apparatus according to item 1 of the patent application scope further includes a control unit for controlling the adjustment reactor based on the plasma strength near the first electrode and the plasma strength near the second electrode. 如申請專利範圍第1項之電漿處理裝置,其中,將從前述第1平衡端子及前述第2平衡端子的側來看前述第1電極及前述第2電極的側時的前述第1平衡端子與前述第2平衡端子之間的電阻成分設為Rp,且將前述第1不平衡端子與前述第1平衡端子之間的電感設為X時,符合1.5≦X/Rp≦5000。For example, the plasma processing apparatus of the first scope of the patent application, wherein the first balanced terminal when the side of the first electrode and the second electrode is viewed from the side of the first balanced terminal and the second balanced terminal. When the resistance component between the second balanced terminal and Rp is set, and the inductance between the first unbalanced terminal and the first balanced terminal is set to X, 1.5 ≦ X / Rp ≦ 5000 is satisfied. 如申請專利範圍第1項之電漿處理裝置,其中,前述巴倫,係具有:連接前述第1不平衡端子與前述第1平衡端子的第1線圈、及連接前述第2不平衡端子與前述第2平衡端子的第2線圈。For example, the plasma processing device of the first scope of the patent application, wherein the balun includes a first coil that connects the first unbalanced terminal and the first balanced terminal, and a second coil that connects the second unbalanced terminal and the aforementioned The second coil of the second balanced terminal. 如申請專利範圍第17項之電漿處理裝置,其中,前述巴倫,係更具有:被連接於前述第1平衡端子與前述第2平衡端子之間的第3線圈及第4線圈,   前述第3線圈及前述第4線圈,係被構成為以前述第3線圈與前述第4線圈的連接節點的電壓作為前述第1平衡端子的電壓與前述第2平衡端子的電壓之中點。For example, the plasma processing device according to item 17 of the patent application, wherein the balun further includes: a third coil and a fourth coil connected between the first balanced terminal and the second balanced terminal; The three coils and the fourth coil are configured such that a voltage at a connection node between the third coil and the fourth coil is used as a midpoint between the voltage of the first balanced terminal and the voltage of the second balanced terminal. 如申請專利範圍第1項之電漿處理裝置,其中,更具備:   高頻電源;及   被配置於前述高頻電源與前述巴倫之間的阻抗匹配電路。For example, the plasma processing device of the scope of application for patent No. 1 further includes: a high-frequency power supply; and an impedance matching circuit arranged between the high-frequency power supply and the balun. 一種電漿處理方法,係於電漿處理裝置中處理基板的電漿處理方法,該電漿處理裝置係具備:   具有第1不平衡端子、第2不平衡端子、第1平衡端子及第2平衡端子的巴倫;   被接地的真空容器;   被電性連接至前述第1平衡端子的第1電極;   被電性連接至前述第2平衡端子的第2電極;   影響被施加於前述第1電極的第1電壓與被施加於前述第2電極的第2電壓的關係之調整電抗器;   保持基板的基板保持部;及   使前述基板保持部旋轉的驅動機構,   其特徵係包含:   以前述關係能被調整的方式調整前述調整電抗器之工程;及   在前述工程之後﹐使前述基板藉由前述驅動機構來一邊旋轉一邊處理之工程。A plasma processing method is a plasma processing method for processing a substrate in a plasma processing apparatus. The plasma processing apparatus includes: (1) having a first unbalanced terminal, a second unbalanced terminal, a first balanced terminal, and a second balance; The balun of the terminal; 接地 a grounded vacuum container; 第 a first electrode electrically connected to the first balanced terminal; a second electrode electrically connected to the second balanced terminal; 前述 influence on the first electrode A reactor for adjusting the relationship between the first voltage and the second voltage applied to the second electrode; a substrate holding portion that holds the substrate; and a driving mechanism that rotates the substrate holding portion; 特征 its characteristics include: The adjustment method adjusts the aforementioned process of adjusting the reactor; and after the aforementioned process, the aforementioned substrate is processed while being rotated by the aforementioned driving mechanism.
TW107121806A 2017-06-27 2018-06-26 Plasma processing device TWI679924B (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
??PCT/JP2017/023611 2017-06-27
WOPCT/JP2017/023603 2017-06-27
WOPCT/JP2017/023611 2017-06-27
??PCT/JP2017/023603 2017-06-27
PCT/JP2017/023603 WO2019003309A1 (en) 2017-06-27 2017-06-27 Plasma treatment device
PCT/JP2017/023611 WO2019003312A1 (en) 2017-06-27 2017-06-27 Plasma treatment device
JP2018017551 2018-02-02
JP2018-017551 2018-02-02

Publications (2)

Publication Number Publication Date
TW201907756A true TW201907756A (en) 2019-02-16
TWI679924B TWI679924B (en) 2019-12-11

Family

ID=64742978

Family Applications (3)

Application Number Title Priority Date Filing Date
TW108125826A TWI680697B (en) 2017-06-27 2018-06-26 Plasma processing device
TW107121806A TWI679924B (en) 2017-06-27 2018-06-26 Plasma processing device
TW107146926A TWI716796B (en) 2017-06-27 2018-12-25 Plasma processing device, plasma processing method, program and memory medium

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW108125826A TWI680697B (en) 2017-06-27 2018-06-26 Plasma processing device

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW107146926A TWI716796B (en) 2017-06-27 2018-12-25 Plasma processing device, plasma processing method, program and memory medium

Country Status (3)

Country Link
JP (2) JP6656479B2 (en)
TW (3) TWI680697B (en)
WO (1) WO2019004185A1 (en)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53141937U (en) * 1977-04-15 1978-11-09
US4887005A (en) * 1987-09-15 1989-12-12 Rough J Kirkwood H Multiple electrode plasma reactor power distribution system
JPH02156080A (en) * 1988-12-09 1990-06-15 Tokuda Seisakusho Ltd Sputtering device
US5330578A (en) * 1991-03-12 1994-07-19 Semiconductor Energy Laboratory Co., Ltd. Plasma treatment apparatus
JP2010045664A (en) * 2008-08-14 2010-02-25 Tokyo Electron Ltd Matching device, matching method, plasma treatment device, and storage medium
US8438990B2 (en) * 2008-09-30 2013-05-14 Applied Materials, Inc. Multi-electrode PECVD source
JP2009302566A (en) * 2009-09-16 2009-12-24 Masayoshi Murata Plasma surface processor with balanced-unbalanced transformer
WO2012095961A1 (en) * 2011-01-12 2012-07-19 日新電機株式会社 Plasma apparatus
KR101839776B1 (en) * 2011-02-18 2018-03-20 삼성디스플레이 주식회사 Plazma treatment apparatus
US20130337657A1 (en) * 2012-06-19 2013-12-19 Plasmasi, Inc. Apparatus and method for forming thin protective and optical layers on substrates
JP6063035B2 (en) * 2013-03-14 2017-01-18 キヤノンアネルバ株式会社 Film forming method, semiconductor light emitting device manufacturing method, semiconductor light emitting device, and lighting device
JP6574547B2 (en) 2013-12-12 2019-09-11 東京エレクトロン株式会社 Plasma processing apparatus and plasma processing method
PL3648550T3 (en) * 2017-06-27 2021-11-22 Canon Anelva Corporation Plasma treatment device

Also Published As

Publication number Publication date
TW201941667A (en) 2019-10-16
JPWO2019004185A1 (en) 2020-01-09
TWI679924B (en) 2019-12-11
JP6656479B2 (en) 2020-03-04
WO2019004185A1 (en) 2019-01-03
TWI680697B (en) 2019-12-21
TW202001978A (en) 2020-01-01
JP7145833B2 (en) 2022-10-03
JP2020024926A (en) 2020-02-13
TWI716796B (en) 2021-01-21

Similar Documents

Publication Publication Date Title
TWI704842B (en) Plasma processing device
JP7133441B2 (en) Plasma processing equipment
TWI678425B (en) Plasma processing device
KR102439024B1 (en) Plasma processing apparatus, plasma processing method, program, and memory medium
TW201906501A (en) Plasma processing device
JP7145832B2 (en) Plasma processing apparatus and plasma processing method
TWI679924B (en) Plasma processing device
TWI680696B (en) Plasma processing device
JP7145136B2 (en) Plasma processing apparatus and plasma processing method
JP2019133929A (en) Plasma processing apparatus