TW202001978A - Plasma treatment device, plasma treatment method, program, and memory medium - Google Patents

Plasma treatment device, plasma treatment method, program, and memory medium Download PDF

Info

Publication number
TW202001978A
TW202001978A TW107146926A TW107146926A TW202001978A TW 202001978 A TW202001978 A TW 202001978A TW 107146926 A TW107146926 A TW 107146926A TW 107146926 A TW107146926 A TW 107146926A TW 202001978 A TW202001978 A TW 202001978A
Authority
TW
Taiwan
Prior art keywords
electrode
plasma processing
terminal
voltage
processing apparatus
Prior art date
Application number
TW107146926A
Other languages
Chinese (zh)
Other versions
TWI716796B (en
Inventor
田名部正治
関谷一成
井上忠
笹本浩
佐藤辰憲
土屋信昭
竹田敦
Original Assignee
日商佳能安內華股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2017/023611 external-priority patent/WO2019003312A1/en
Priority claimed from PCT/JP2017/023603 external-priority patent/WO2019003309A1/en
Priority claimed from PCT/JP2018/024146 external-priority patent/WO2019004184A1/en
Priority claimed from PCT/JP2018/024148 external-priority patent/WO2019004186A1/en
Priority claimed from PCT/JP2018/024149 external-priority patent/WO2019004187A1/en
Application filed by 日商佳能安內華股份有限公司 filed Critical 日商佳能安內華股份有限公司
Publication of TW202001978A publication Critical patent/TW202001978A/en
Application granted granted Critical
Publication of TWI716796B publication Critical patent/TWI716796B/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Toxicology (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Plasma Technology (AREA)
  • Physical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

This plasma treatment device is provided with: an impedance matching circuit; a balun which has a first unbalanced terminal that is connected to the impedance matching circuit, a second unbalanced terminal that is grounded, a first balanced terminal, and a second balanced terminal; a grounded vacuum container; a first electrode which is electrically connected to the first balanced terminal; a second electrode which is electrically connected to the second balanced terminal; an adjustment reactance which influences the relationship between a first voltage to be applied to the first electrode and a second voltage to be applied to the second electrode; a high-frequency power source which generates high-frequency waves that are supplied between the first unbalanced terminal and the second unbalanced terminal via the impedance matching circuit; and a control unit which controls impedance of the impedance matching circuit and reactance of the adjustment reactance.

Description

電漿處理裝置、電漿處理方法、程式及記憶媒體Plasma processing device, plasma processing method, program and memory medium

本發明是有關電漿處理裝置、電漿處理方法、程式及記憶媒體。The invention relates to a plasma processing device, a plasma processing method, a program and a memory medium.

在專利文獻1是記載具備:高頻變壓器(Tr7)、匹配器(MB7)、真空容器(10)、第1靶(T5)、第2靶(T6)、高頻電壓產生器(OSC5)、電壓放大器(PA5)、基板夾具(21)及馬達(22)的濺射裝置。在被記載於日本特開平2-156080號公報的濺射裝置中,2個的靶(T5、T6)的電壓是依據電漿的產生條件等而定者,為不能調整的參數。 [先前技術文獻] [專利文獻]Patent Document 1 describes that it includes: a high-frequency transformer (Tr7), a matching device (MB7), a vacuum container (10), a first target (T5), a second target (T6), a high-frequency voltage generator (OSC5), Sputtering device for voltage amplifier (PA5), substrate holder (21) and motor (22). In the sputtering apparatus described in Japanese Patent Laid-Open No. 2-15680, the voltages of two targets (T5, T6) depend on the plasma generation conditions and the like, and are parameters that cannot be adjusted. [Prior Technical Literature] [Patent Literature]

[專利文獻1]日本特開平2-156080號公報[Patent Document 1] Japanese Patent Laid-Open No. 2-15680

本發明是根據認知上述的課題而研發者,提供一種為了調整用以產生電漿的2個電極的電壓而有利的技術。The present invention is based on the knowledge of the above-mentioned problems and was developed by a developer to provide an advantageous technique for adjusting the voltages of two electrodes for generating plasma.

本發明的第1形態,係有關電漿處理裝置,前述電漿處理裝置,係具備: 阻抗匹配電路; 巴倫,其係具有:被連接至前述阻抗匹配電路的第1不平衡端子、被接地的第2不平衡端子、第1平衡端子及第2平衡端子; 真空容器,其係被接地; 第1電極,其係被電性連接至前述第1平衡端子; 第2電極,其係被電性連接至前述第2平衡端子; 調整電抗器,其係影響被施加於前述第1電極的第1電壓與被施加於前述第2電極的第2電壓的關係; 高頻電源,其係產生經由前述阻抗匹配電路來供給至前述第1不平衡端子與前述第2不平衡端子之間的高頻;及 控制部,其係控制前述阻抗匹配電路的阻抗及前述調整電抗器的電抗。The first aspect of the present invention relates to a plasma processing device. The plasma processing device includes: Impedance matching circuit; The balun has: a first unbalanced terminal connected to the impedance matching circuit, a second unbalanced terminal grounded, a first balanced terminal, and a second balanced terminal; The vacuum container is grounded; The first electrode is electrically connected to the first balanced terminal; The second electrode is electrically connected to the second balanced terminal; Adjusting the reactor affects the relationship between the first voltage applied to the first electrode and the second voltage applied to the second electrode; A high-frequency power supply, which generates a high frequency supplied between the first unbalanced terminal and the second unbalanced terminal via the impedance matching circuit; and The control unit controls the impedance of the impedance matching circuit and the reactance of the adjustment reactor.

本發明的第2形態,係有關在電漿處理裝置中處理基板的電漿處理方法,前述電漿處理裝置,係具備: 阻抗匹配電路; 巴倫,其係具有:被連接至前述阻抗匹配電路的第1不平衡端子、被接地的第2不平衡端子、第1平衡端子及第2平衡端子; 真空容器,其係被接地; 第1電極,其係被電性連接至前述第1平衡端子; 第2電極,其係被電性連接至前述第2平衡端子; 調整電抗器,其係影響被施加於前述第1電極的第1電壓與被施加於前述第2電極的第2電壓的關係;及 高頻電源,其係產生經由前述阻抗匹配電路來供給至前述第1不平衡端子與前述第2不平衡端子之間的高頻; 前述電漿處理方法,係包含: 匹配工程,其係以能匹配於從前述第1平衡端子及前述第2平衡端子的側來看前述第1電極及前述第2電極的側時的阻抗之方式控制前述阻抗匹配電路的阻抗; 調整工程,其係以能調整前述關係的方式調整前述調整電抗器;及 處理工程,其係於前述調整工程之後,處理前述基板。The second aspect of the present invention relates to a plasma processing method for processing a substrate in a plasma processing apparatus. The plasma processing apparatus includes: Impedance matching circuit; The balun has: a first unbalanced terminal connected to the impedance matching circuit, a second unbalanced terminal grounded, a first balanced terminal, and a second balanced terminal; The vacuum container is grounded; The first electrode is electrically connected to the first balanced terminal; The second electrode is electrically connected to the second balanced terminal; Adjusting the reactor, which affects the relationship between the first voltage applied to the first electrode and the second voltage applied to the second electrode; and A high-frequency power supply, which generates high frequency supplied between the first unbalanced terminal and the second unbalanced terminal via the impedance matching circuit; The foregoing plasma processing method includes: The matching process is to control the impedance of the impedance matching circuit in such a way that it can match the impedance when viewing the side of the first electrode and the second electrode from the side of the first balanced terminal and the second balanced terminal; Adjustment engineering, which is to adjust the aforementioned adjustment reactor in such a way as to adjust the aforementioned relationship; and The processing process is to process the substrate after the adjustment process.

本發明的第3形態,係有關電漿處理裝置,前述電漿處理裝置,係具備: 阻抗匹配電路; 巴倫,其係具有:被連接至前述阻抗匹配電路的第1不平衡端子、被接地的第2不平衡端子、第1平衡端子及第2平衡端子; 真空容器,其係被接地; 第1電極,其係被電性連接至前述第1平衡端子; 第2電極,其係被電性連接至前述第2平衡端子; 調整電抗器,其係影響被施加於前述第1電極的第1電壓與被施加於前述第2電極的第2電壓的關係; 高頻電源,其係產生經由前述阻抗匹配電路來供給至前述第1不平衡端子與前述第2不平衡端子之間的高頻;及 測定部,其係測定前述第1電極的電壓及前述第2電極的電壓, 按照在前述測定部所測定的前述第1電極的電壓與前述第2電極的電壓來調整前述調整電抗器的電抗。A third aspect of the present invention relates to a plasma processing apparatus. The plasma processing apparatus includes: Impedance matching circuit; The balun has: a first unbalanced terminal connected to the impedance matching circuit, a second unbalanced terminal grounded, a first balanced terminal, and a second balanced terminal; The vacuum container is grounded; The first electrode is electrically connected to the first balanced terminal; The second electrode is electrically connected to the second balanced terminal; Adjusting the reactor affects the relationship between the first voltage applied to the first electrode and the second voltage applied to the second electrode; A high-frequency power supply, which generates a high frequency supplied between the first unbalanced terminal and the second unbalanced terminal via the impedance matching circuit; and A measuring unit that measures the voltage of the first electrode and the voltage of the second electrode, The reactance of the adjustment reactor is adjusted according to the voltage of the first electrode and the voltage of the second electrode measured by the measurement unit.

以下,一邊參照附圖,一邊經由其舉例表示的實施形態來說明本發明。Hereinafter, the present invention will be described with reference to the accompanying drawings through exemplary embodiments thereof.

在圖1中模式性地表示本發明的第1實施形態的電漿處理裝置1的構成。第1實施形態的電漿處理裝置是可作為藉由濺射來將膜形成於基板112的濺射裝置動作。電漿處理裝置1是具備:巴倫(平衡不平衡變換電路)103、真空容器110、第1電極106及第2電極111。或,亦可理解為電漿處理裝置1是具備巴倫103及本體10,本體10具備真空容器110、第1電極106及第2電極111。本體10是具有第1端子251及第2端子252。第1電極106是亦可配置成為與真空容器110一起分離真空空間與外部空間(亦即構成真空隔壁的一部分),或亦可配置於真空容器110之中。第2電極111是亦可配置成為與真空容器110一起分離真空空間與外部空間(亦即構成真空隔壁的一部分),或亦可配置於真空容器110之中。FIG. 1 schematically shows the configuration of the plasma processing apparatus 1 according to the first embodiment of the present invention. The plasma processing apparatus of the first embodiment can operate as a sputtering apparatus that forms a film on the substrate 112 by sputtering. The plasma processing apparatus 1 includes a balun (balanced unbalanced conversion circuit) 103, a vacuum container 110, a first electrode 106, and a second electrode 111. Or, it may be understood that the plasma processing apparatus 1 includes a balun 103 and a body 10, and the body 10 includes a vacuum container 110, a first electrode 106, and a second electrode 111. The body 10 has a first terminal 251 and a second terminal 252. The first electrode 106 may be arranged to separate the vacuum space and the external space together with the vacuum vessel 110 (that is, constitute a part of the vacuum partition), or may be arranged in the vacuum vessel 110. The second electrode 111 may be arranged to separate the vacuum space and the external space together with the vacuum vessel 110 (that is, form a part of the vacuum partition), or may be arranged in the vacuum vessel 110.

巴倫103是具有第1不平衡端子201、第2不平衡端子202、第1平衡端子211及第2平衡端子212。在巴倫103的第1不平衡端子201及第2不平衡端子202的側是連接有不平衡電路,在巴倫103的第1平衡端子211及第2平衡端子212的側是連接有平衡電路。真空容器110是導體所構成,被接地。The balun 103 has a first unbalanced terminal 201, a second unbalanced terminal 202, a first balanced terminal 211, and a second balanced terminal 212. An unbalanced circuit is connected to the first unbalanced terminal 201 and the second unbalanced terminal 202 of the balun 103, and a balanced circuit is connected to the first balanced terminal 211 and the second balanced terminal 212 of the balun 103 . The vacuum container 110 is composed of a conductor and is grounded.

在第1實施形態中,第1電極106是陰極,保持標靶109。標靶109是例如可為絕緣體材料或導電體材料。並且,在第1實施形態中,第2電極111是陽極,保持基板112。第1實施形態的電漿處理裝置1是可作為藉由標靶109的濺射來將膜形成於基板112的濺射裝置動作。第1電極106是被電性連接至第1平衡端子211,第2電極111是被電性連接至第2平衡端子212。第1電極106與第1平衡端子211被電性連接是意思以電流能流動於第1電極106與第1平衡端子211之間的方式,在第1電極106與第1平衡端子211之間構成有電流路徑。同樣,在此說明書中,a與b被電性連接是意思以電流能流動於a與b之間的方式,在a與b之間構成有電流路徑。In the first embodiment, the first electrode 106 is a cathode, and holds the target 109. The target 109 is, for example, an insulator material or a conductor material. Furthermore, in the first embodiment, the second electrode 111 is an anode, and holds the substrate 112. The plasma processing apparatus 1 of the first embodiment can operate as a sputtering apparatus that forms a film on the substrate 112 by sputtering of the target 109. The first electrode 106 is electrically connected to the first balanced terminal 211, and the second electrode 111 is electrically connected to the second balanced terminal 212. The first electrode 106 and the first balanced terminal 211 are electrically connected to mean that a current can flow between the first electrode 106 and the first balanced terminal 211, and the first electrode 106 and the first balanced terminal 211 are configured between There is a current path. Similarly, in this specification, a and b are electrically connected to mean that a current path is formed between a and b in such a way that current can flow between a and b.

上述的構成亦可理解為第1電極106被電性連接至第1端子251,第2電極111被電性連接至第2端子252,第1端子251被電性連接至第1平衡端子211,第2端子252被電性連接至第2平衡端子212的構成。The above configuration can also be understood as that the first electrode 106 is electrically connected to the first terminal 251, the second electrode 111 is electrically connected to the second terminal 252, and the first terminal 251 is electrically connected to the first balanced terminal 211, The second terminal 252 is electrically connected to the second balanced terminal 212.

在第1實施形態中,第1電極106與第1平衡端子211(第1端子251)會經由阻塞電容器104來電性連接。阻塞電容器104是在第1平衡端子211與第1電極106之間(或第1平衡端子211與第2平衡端子212之間)遮斷直流電流。亦可取代阻塞電容器104,以後述的阻抗匹配電路102會遮斷流動於第1不平衡端子201與第2不平衡端子202之間的直流電流之方式構成。第1電極106是可隔著絕緣體107來藉由真空容器110所支撐。第2電極111可隔著絕緣體108來藉由真空容器110所支撐。或,可在第2電極111與真空容器110之間配置有絕緣體108。In the first embodiment, the first electrode 106 and the first balanced terminal 211 (first terminal 251) are electrically connected via the blocking capacitor 104. The blocking capacitor 104 blocks the direct current between the first balanced terminal 211 and the first electrode 106 (or between the first balanced terminal 211 and the second balanced terminal 212). Instead of the blocking capacitor 104, the impedance matching circuit 102 described below blocks the DC current flowing between the first unbalanced terminal 201 and the second unbalanced terminal 202. The first electrode 106 can be supported by the vacuum container 110 via the insulator 107. The second electrode 111 may be supported by the vacuum container 110 via the insulator 108. Or, an insulator 108 may be arranged between the second electrode 111 and the vacuum container 110.

電漿處理裝置1是可更具備:高頻電源101、及被配置於高頻電源101與巴倫103之間的阻抗匹配電路102。高頻電源101是經由阻抗匹配電路102來供給高頻(高頻電流、高頻電壓、高頻電力)至巴倫103的第1不平衡端子201與第2不平衡端子202之間。換言之,高頻電源101是經由阻抗匹配電路102、巴倫103及阻塞電容器104來供給高頻(高頻電流、高頻電壓、高頻電力)至第1電極106與第2電極111之間。或,亦可理解為高頻電源101是經由阻抗匹配電路102及巴倫103來供給高頻至本體10的第1端子251與第2端子252之間。The plasma processing apparatus 1 may further include a high-frequency power source 101 and an impedance matching circuit 102 disposed between the high-frequency power source 101 and the balun 103. The high-frequency power supply 101 supplies high-frequency (high-frequency current, high-frequency voltage, high-frequency power) via the impedance matching circuit 102 between the first unbalanced terminal 201 and the second unbalanced terminal 202 of the balun 103. In other words, the high-frequency power supply 101 supplies high-frequency (high-frequency current, high-frequency voltage, and high-frequency power) between the first electrode 106 and the second electrode 111 via the impedance matching circuit 102, the balun 103, and the blocking capacitor 104. Or, it can be understood that the high-frequency power supply 101 supplies high-frequency between the first terminal 251 and the second terminal 252 of the body 10 via the impedance matching circuit 102 and the balun 103.

在真空容器110的內部空間是經由被設在真空容器110之未圖示的氣體供給部來供給氣體(例如Ar、Kr或Xe氣體)。並且,在第1電極106與第2電極111之間是經由阻抗匹配電路102、巴倫103及阻塞電容器104來藉由高頻電源101供給高頻。藉此,在第1電極106與第2電極111之間產生電漿,在標靶109的表面產生自偏置電壓,電漿中的離子會衝突於標靶109的表面,從標靶109放出構成那個的材料的粒子。然後,藉由此粒子來形成膜於基板112上。In the internal space of the vacuum container 110, a gas (for example, Ar, Kr, or Xe gas) is supplied via a gas supply unit (not shown) provided in the vacuum container 110. In addition, between the first electrode 106 and the second electrode 111, the high frequency power is supplied by the high frequency power source 101 via the impedance matching circuit 102, the balun 103 and the blocking capacitor 104. As a result, plasma is generated between the first electrode 106 and the second electrode 111, and a self-bias voltage is generated on the surface of the target 109. The ions in the plasma collide with the surface of the target 109 and are emitted from the target 109 Particles of the material that constitutes that. Then, a film is formed on the substrate 112 by using the particles.

在圖2A是表示巴倫103的一構成例。被表示於圖2A的巴倫103是具有連接第1不平衡端子201與第1平衡端子211的第1線圈221、及連接第2不平衡端子202與第2平衡端子212的第2線圈222。第1線圈221及第2線圈222是同一捲數的線圈,共有鐵芯。FIG. 2A shows a configuration example of the balun 103. The balun 103 shown in FIG. 2A includes a first coil 221 that connects the first unbalanced terminal 201 and the first balanced terminal 211, and a second coil 222 that connects the second unbalanced terminal 202 and the second balanced terminal 212. The first coil 221 and the second coil 222 are the same number of coils and share an iron core.

在圖2B是表示巴倫103的其他的構成例。被表示於圖2B的巴倫103是具有:連接第1不平衡端子201與第1平衡端子211的第1線圈221、及連接第2不平衡端子202與第2平衡端子212的第2線圈222。第1線圈221及第2線圈222是同一捲數的線圈,共有鐵芯。並且,被表示於圖2B的巴倫103是更具有被連接至第1平衡端子211與第2平衡端子212之間的第3線圈223及第4線圈224,第3線圈223及第4線圈224是被構成為以第3線圈223與第4線圈224的連接節點213的電壓作為第1平衡端子211的電壓與第2平衡端子212的電壓之中點。第3線圈223及第4線圈224是同一捲數的線圈,共有鐵芯。連接節點213是亦可被接地,亦可被連接至真空容器110,亦可被形成浮動。FIG. 2B shows another configuration example of the balun 103. The balun 103 shown in FIG. 2B includes a first coil 221 connecting the first unbalanced terminal 201 and the first balanced terminal 211, and a second coil 222 connecting the second unbalanced terminal 202 and the second balanced terminal 212 . The first coil 221 and the second coil 222 are the same number of coils and share an iron core. In addition, the balun 103 shown in FIG. 2B further includes the third coil 223 and the fourth coil 224, and the third coil 223 and the fourth coil 224 connected between the first balanced terminal 211 and the second balanced terminal 212. It is configured such that the voltage of the connection node 213 of the third coil 223 and the fourth coil 224 is the midpoint between the voltage of the first balanced terminal 211 and the voltage of the second balanced terminal 212. The third coil 223 and the fourth coil 224 are the same number of coils and share an iron core. The connection node 213 can also be grounded, connected to the vacuum container 110, or floated.

一邊參照圖3,一邊說明巴倫103的機能。將流動於第1不平衡端子201的電流設為I1,將流動於第1平衡端子211的電流設為I2,將流動於第2不平衡端子202的電流設為I2’,將電流I2之中流至接地的電流設為I3。I3=0,亦即,在平衡電路的側電流不流至接地時,平衡電路對於接地的隔離(isolation)性能為最佳。I3=I2,亦即,當流動於第1平衡端子211的電流I2的全部對於接地流動時,平衡電路對於接地的隔離性能為最差。表示如此的隔離性能的程度的指標ISO是可賦予以下的式子。在此定義之下,ISO的值的絕對值較大,隔離性能較佳。3, the function of the balun 103 will be described. Let the current flowing through the first unbalanced terminal 201 be I1, the current flowing through the first balanced terminal 211 be I2, the current flowing through the second unbalanced terminal 202 be I2', and the current I2 flow The current to ground is set to I3. I3=0, that is, when the side current of the balanced circuit does not flow to the ground, the isolation performance of the balanced circuit to ground is optimal. I3=I2, that is, when all the current I2 flowing through the first balanced terminal 211 flows to the ground, the isolation performance of the balanced circuit from the ground is the worst. The index ISO indicating the degree of such isolation performance can be given by the following formula. Under this definition, the absolute value of the ISO value is larger, and the isolation performance is better.

Figure 02_image001
在圖3中,Rp-jXp是表示在真空容器110的內部空間產生電漿的狀態下,從第1平衡端子211及第2平衡端子212的側來看第1電極106及第2電極111的側(本體10的側)時的阻抗(包含阻塞電容器104的電抗)。Rp是表示電阻成分,-Xp是表示電抗成分。並且,在圖3中,X是表示巴倫103的第1線圈221的阻抗的電抗成分(電感成分)。ISO是對於X/Rp具有相關性。
Figure 02_image001
In FIG. 3, Rp-jXp indicates that the first electrode 106 and the second electrode 111 are viewed from the sides of the first balanced terminal 211 and the second balanced terminal 212 in a state where plasma is generated in the internal space of the vacuum container 110. Impedance (including the reactance blocking the capacitor 104) at the side (the side of the body 10). Rp represents the resistance component, and -Xp represents the reactance component. In addition, in FIG. 3, X is a reactance component (inductance component) indicating the impedance of the first coil 221 of the balun 103. ISO is relevant for X/Rp.

在圖4中舉例表示電流I1(=I2)、I2’、I3、ISO、α(=X/Rp)的關係。本發明者發現經由巴倫103來從高頻電源101供給高頻至第1電極106與第2電極111之間的構成,特別是在該構成中符合1.5≦X/Rp≦5000會有利於為了使被形成於真空容器110的內部空間(第1電極106與第2電極111之間的空間)的電漿的電位(電漿電位)對於真空容器110的內面的狀態形成鈍感。在此,電漿電位對於真空容器110的內面的狀態形成鈍感是意思即使是長期間使用電漿處理裝置1的情況,也可使電漿電位安定。1.5≦X/Rp≦5000是相當於-10.0dB≧ISO≧-80dB。Fig. 4 shows an example of the relationship between the currents I1 (=I2), I2', I3, ISO, and α (=X/Rp). The present inventors found that the configuration in which high frequency power is supplied from the high-frequency power source 101 to the first electrode 106 and the second electrode 111 via the balun 103. In particular, in this configuration, 1.5≦X/Rp≦5000 is advantageous for The potential of the plasma (plasma potential) formed in the internal space of the vacuum container 110 (the space between the first electrode 106 and the second electrode 111) is insensitive to the state of the inner surface of the vacuum container 110. Here, the plasma potential has a dull effect on the state of the inner surface of the vacuum container 110, which means that the plasma potential can be stabilized even when the plasma processing apparatus 1 is used for a long period of time. 1.5≦X/Rp≦5000 is equivalent to -10.0dB≧ISO≧-80dB.

在圖5A~5D是表示模擬符合1.5≦X/Rp≦5000時的電漿電位及第1電極106的電位(陰極電位)的結果。圖5A是表示在真空容器110的內面未形成有膜的狀態的電漿電位及陰極電位。圖5B是表示在真空容器110的內面形成有電阻性的膜(1000Ω)的狀態的電漿電位及陰極電位。圖5C是表示在真空容器110的內面形成有感應性的膜(0.6μH)的狀態的電漿電位及陰極電位。圖5D是表示在真空容器110的內面形成有電容性的膜(0.1nF)的狀態的電漿電位及陰極電位。由圖5A~5D可理解,符合1.5≦X/Rp≦5000會有利於為了真空容器110的內面在各種的狀態中使電漿電位安定。5A to 5D show the results of simulating the plasma potential and the potential (cathode potential) of the first electrode 106 when 1.5≦X/Rp≦5000. FIG. 5A is a diagram showing the plasma potential and the cathode potential in a state where no film is formed on the inner surface of the vacuum container 110. FIG. 5B is a diagram showing the plasma potential and the cathode potential in a state where a resistive film (1000 Ω) is formed on the inner surface of the vacuum container 110. 5C is a diagram showing the plasma potential and the cathode potential in the state where an inductive film (0.6 μH) is formed on the inner surface of the vacuum container 110. FIG. 5D is a diagram showing the plasma potential and the cathode potential in a state where a capacitive film (0.1 nF) is formed on the inner surface of the vacuum container 110. As can be understood from FIGS. 5A to 5D, compliance with 1.5≦X/Rp≦5000 is advantageous for stabilizing the plasma potential in various states for the inner surface of the vacuum container 110.

在圖6A~6D是表示模擬不符合1.5≦X/Rp≦5000時的電漿電位及第1電極106的電位(陰極電位)的結果。圖6A是表示在真空容器110的內面未形成有膜的狀態的電漿電位及陰極電位。圖6B是表示在真空容器110的內面形成有電阻性的膜(1000Ω)的狀態的電漿電位及陰極電位。圖6C是表示在真空容器110的內面形成有感應性的膜(0.6μH)的狀態的電漿電位及陰極電位。圖6D是表示在真空容器110的內面形成有電容性的膜(0.1nF)的狀態的電漿電位及陰極電位。由圖6A~6D可理解,不符合1.5≦X/Rp≦5000時,電漿電位會依真空容器110的內面的狀態而變化。FIGS. 6A to 6D show the results of simulation of the plasma potential and the potential of the first electrode 106 (cathode potential) when 1.5≦X/Rp≦5000. 6A is a diagram showing the plasma potential and the cathode potential in a state where no film is formed on the inner surface of the vacuum container 110. FIG. 6B is a diagram showing the plasma potential and the cathode potential in a state where a resistive film (1000 Ω) is formed on the inner surface of the vacuum container 110. 6C is a diagram showing the plasma potential and the cathode potential in a state where an inductive film (0.6 μH) is formed on the inner surface of the vacuum container 110. 6D is a plasma potential and a cathode potential showing a state where a capacitive film (0.1 nF) is formed on the inner surface of the vacuum container 110. FIG. As can be understood from FIGS. 6A to 6D, when 1.5≦X/Rp≦5000 is not satisfied, the plasma potential changes according to the state of the inner surface of the vacuum container 110.

在此,在X/Rp>5000(例如X/Rp=∞)的情況與X/Rp<1.5的情況(例如X/Rp=1.0,X/Rp=0.5)的雙方,電漿電位會容易依真空容器110的內面的狀態而變化。X/Rp>5000的情況,在真空容器110的內面未形成有膜的狀態,只在第1電極106與第2電極111之間發生放電。但,X/Rp>5000的情況,一旦膜開始被形成於真空容器110的內面,則對於此,電漿電位會敏感地反應,成為圖6A~6D所舉例表示般的結果。另一方面,X/Rp<1.5的情況,由於經由真空容器110來流入至接地的電流大,因此真空容器110的內面的狀態(被形成於內面的膜的電性的特性)所造成的影響顯著,電漿電位會依膜的形成而變化。因此,如前述般,以符合1.5≦X/Rp≦5000的方式構成電漿處理裝置1的情形有利。Here, in both the case of X/Rp>5000 (for example, X/Rp=∞) and the case of X/Rp<1.5 (for example, X/Rp=1.0, X/Rp=0.5), the plasma potential will easily depend on The state of the inner surface of the vacuum container 110 changes. When X/Rp>5000, a film is not formed on the inner surface of the vacuum container 110, and discharge occurs only between the first electrode 106 and the second electrode 111. However, in the case of X/Rp>5000, once the film starts to be formed on the inner surface of the vacuum container 110, the plasma potential will sensitively react to this, resulting in the results shown in the examples shown in FIGS. 6A to 6D. On the other hand, when X/Rp<1.5, the current flowing into the ground through the vacuum container 110 is large, so the state of the inner surface of the vacuum container 110 (which is caused by the electrical characteristics of the film formed on the inner surface) The effect of is significant, and the plasma potential will vary depending on the film formation. Therefore, as described above, it is advantageous to configure the plasma processing apparatus 1 so as to satisfy 1.5≦X/Rp≦5000.

一邊參照圖7,一邊舉例表示Rp-jXp(實際所欲得知者是僅Rp)的決定方法。首先,從電漿處理裝置1卸下巴倫103,將阻抗匹配電路102的輸出端子230連接至本體10的第1端子251(阻塞電容器104)。並且,將本體10的第2端子252(第2電極111)接地。在此狀態下從高頻電源101經由阻抗匹配電路102來供給高頻至本體10的第1端子251。在圖7所示的例子中,阻抗匹配電路102是等效地以線圈L1、L2及可變電容器VC1、VC2所構成。可藉由調整可變電容器VC1、VC2的電容值來使電漿產生。在電漿安定的狀態中,阻抗匹配電路102的阻抗是被匹配於電漿產生時的本體10的側(第1電極106及第2電極111的側)的阻抗Rp-jXp。此時的阻抗匹配電路102的阻抗是Rp+jXp。Referring to FIG. 7, an example of a determination method of Rp-jXp (the only person who actually wants to know is Rp) is shown. First, the balun 103 is removed from the plasma processing apparatus 1, and the output terminal 230 of the impedance matching circuit 102 is connected to the first terminal 251 (blocking capacitor 104) of the body 10. Then, the second terminal 252 (second electrode 111) of the body 10 is grounded. In this state, high-frequency power is supplied from the high-frequency power source 101 to the first terminal 251 of the main body 10 via the impedance matching circuit 102. In the example shown in FIG. 7, the impedance matching circuit 102 is equivalently constituted by the coils L1 and L2 and the variable capacitors VC1 and VC2. The plasma can be generated by adjusting the capacitance values of the variable capacitors VC1 and VC2. In the state where the plasma is stable, the impedance of the impedance matching circuit 102 is matched to the impedance Rp-jXp of the side of the body 10 (the side of the first electrode 106 and the second electrode 111) at the time of plasma generation. The impedance of the impedance matching circuit 102 at this time is Rp+jXp.

因此,可根據阻抗匹配時的阻抗匹配電路102的阻抗Rp+jXp來取得Rp-jXp(實際所欲得知者是僅Rp)。Rp-jXp是其他例如可根據設計資料來藉由模擬求取。Therefore, Rp-jXp can be obtained based on the impedance Rp+jXp of the impedance matching circuit 102 at the time of impedance matching (the actual knowledge is Rp only). Rp-jXp is other, which can be obtained by simulation based on design data, for example.

根據如此取得的Rp,可特定X/Rp。例如,以符合1.5≦X/Rp≦5000的方式,根據Rp,可決定巴倫103的第1線圈221的阻抗的電抗成分(電感成分)X。Based on the Rp thus obtained, X/Rp can be specified. For example, the reactance component (inductance component) X of the impedance of the first coil 221 of the balun 103 can be determined based on Rp so as to satisfy 1.5≦X/Rp≦5000.

在圖8是模式性地表示本發明的第2實施形態的電漿處理裝置1的構成。第2實施形態的電漿處理裝置1是可作為蝕刻基板112的蝕刻裝置動作。在第2實施形態中,第1電極106是陰極,保持基板112。並且,在第2實施形態中,第2電極111是陽極。在第2實施形態的電漿處理裝置1中,第1電極106與第1平衡端子211會經由阻塞電容器104來電性連接。換言之,在第2實施形態的電漿處理裝置1中,阻塞電容器104會被配置於第1電極106與第1平衡端子211的電性的連接路徑。FIG. 8 schematically shows the configuration of the plasma processing apparatus 1 according to the second embodiment of the present invention. The plasma processing apparatus 1 of the second embodiment is operable as an etching apparatus for etching the substrate 112. In the second embodiment, the first electrode 106 is a cathode and holds the substrate 112. Furthermore, in the second embodiment, the second electrode 111 is an anode. In the plasma processing apparatus 1 of the second embodiment, the first electrode 106 and the first balanced terminal 211 are electrically connected via the blocking capacitor 104. In other words, in the plasma processing apparatus 1 of the second embodiment, the blocking capacitor 104 is arranged in the electrical connection path between the first electrode 106 and the first balanced terminal 211.

在圖9是模式性地表示本發明的第3實施形態的電漿處理裝置1的構成。第3實施形態的電漿處理裝置1是第1實施形態的電漿處理裝置1的變形例,更具備使第2電極111昇降的機構及使第2電極111旋轉的機構的至少一方。在圖9所示的例子,電漿處理裝置1是具備包含使第2電極111昇降的機構及使第2電極111旋轉的機構的雙方之驅動機構114。在真空容器110與驅動機構114之間是可設有構成真空隔壁的波紋管113。FIG. 9 schematically shows the configuration of the plasma processing apparatus 1 according to the third embodiment of the present invention. The plasma processing apparatus 1 of the third embodiment is a modified example of the plasma processing apparatus 1 of the first embodiment, and further includes at least one of a mechanism for raising and lowering the second electrode 111 and a mechanism for rotating the second electrode 111. In the example shown in FIG. 9, the plasma processing apparatus 1 is a drive mechanism 114 including both a mechanism for raising and lowering the second electrode 111 and a mechanism for rotating the second electrode 111. Between the vacuum container 110 and the drive mechanism 114, a bellows 113 constituting a vacuum partition wall may be provided.

同樣,第2實施形態的電漿處理裝置1也可更具備使第1電極106昇降的機構及使第2電極106旋轉的機構的至少一方。Similarly, the plasma processing apparatus 1 of the second embodiment may further include at least one of a mechanism for raising and lowering the first electrode 106 and a mechanism for rotating the second electrode 106.

在圖10是模式性地表示本發明的第4實施形態的電漿處理裝置1的構成。第4實施形態的電漿處理裝置是可作為藉由濺射來將膜形成於基板112的濺射裝置動作。作為第4實施形態的電漿處理裝置1未言及的事項是可按照第1~第3實施形態。電漿處理裝置1是具備:第1巴倫103、第2巴倫303、真空容器110、構成第1組的第1電極106及第2電極135、構成第2組的第1電極141及第2電極145。或,亦可理解為電漿處理裝置1是具備:第1巴倫103、第2巴倫303及本體10,本體10具備:真空容器110、構成第1組的第1電極106及第2電極135、構成第2組的第1電極141及第2電極145。本體10是具有第1端子251、第2端子252、第3端子451、第4端子452。FIG. 10 schematically shows the configuration of the plasma processing apparatus 1 according to the fourth embodiment of the present invention. The plasma processing apparatus of the fourth embodiment can operate as a sputtering apparatus that forms a film on the substrate 112 by sputtering. What is not mentioned as the plasma processing apparatus 1 of the fourth embodiment is that the first to third embodiments can be followed. The plasma processing apparatus 1 includes: a first balun 103, a second balun 303, a vacuum container 110, a first electrode 106 and a second electrode 135 constituting the first group, and a first electrode 141 and a second electrode constituting the second group 2electrode 145. Or, it can also be understood that the plasma processing apparatus 1 includes: a first balun 103, a second balun 303, and a body 10, and the body 10 includes: a vacuum container 110, a first electrode 106 and a second electrode constituting the first group 135. The first electrode 141 and the second electrode 145 constituting the second group. The body 10 has a first terminal 251, a second terminal 252, a third terminal 451, and a fourth terminal 452.

第1巴倫103是具有:第1不平衡端子201、第2不平衡端子202、第1平衡端子211及第2平衡端子212。在第1巴倫103的第1不平衡端子201及第2不平衡端子202的側是連接有不平衡電路,在第1巴倫103的第1平衡端子211及第2平衡端子212是連接有平衡電路。第2巴倫303是可具有與第1巴倫103同樣的構成。第2巴倫303是具有:第1不平衡端子401、第2不平衡端子402、第1平衡端子411及第2平衡端子412。在第2巴倫303的第1不平衡端子401及第2不平衡端子402的側是連接有不平衡電路,在第2巴倫303的第1平衡端子411及第2平衡端子412是連接有平衡電路。真空容器110是被接地。The first balun 103 includes a first unbalanced terminal 201, a second unbalanced terminal 202, a first balanced terminal 211, and a second balanced terminal 212. An unbalanced circuit is connected to the first unbalanced terminal 201 and the second unbalanced terminal 202 of the first balun 103, and the first balanced terminal 211 and the second balanced terminal 212 of the first balun 103 are connected Balanced circuit. The second balun 303 may have the same configuration as the first balun 103. The second balun 303 includes a first unbalanced terminal 401, a second unbalanced terminal 402, a first balanced terminal 411, and a second balanced terminal 412. An unbalanced circuit is connected to the first unbalanced terminal 401 and the second unbalanced terminal 402 of the second balun 303, and the first balanced terminal 411 and the second balanced terminal 412 of the second balun 303 are connected to Balanced circuit. The vacuum container 110 is grounded.

第1組的第1電極106是保持標靶109。標靶109是例如可為絕緣體材料或導電體材料。第1組的第2電極135是被配置於第1電極106的周圍。第1組的第1電極106是被電性連接至第1巴倫103的第1平衡端子211,第1組的第2電極135是被電性連接至第1巴倫103的第2平衡端子212。第2組的第1電極141是保持基板112。第2組的第2電極145是被配置於第1電極141的周圍。第2組的第1電極141是被電性連接至第2巴倫303的第1平衡端子411,第2組的第2電極145是被電性連接至第2巴倫303的第2平衡端子412。The first electrode 106 of the first group is the holding target 109. The target 109 is, for example, an insulator material or a conductor material. The second electrode 135 of the first group is arranged around the first electrode 106. The first electrode 106 of the first group is the first balanced terminal 211 electrically connected to the first balun 103, and the second electrode 135 of the first group is the second balanced terminal electrically connected to the first balun 103 212. The first electrode 141 of the second group is the holding substrate 112. The second electrode 145 of the second group is arranged around the first electrode 141. The first electrode 141 of the second group is the first balanced terminal 411 electrically connected to the second balun 303, and the second electrode 145 of the second group is the second balanced terminal electrically connected to the second balun 303 412.

上述的構成是可理解為第1組的第1電極106被電性連接至第1端子251,第1組的第2電極135被電性連接至第2端子252,第1端子251被電性連接至第1巴倫103的第1平衡端子211,第2端子252被電性連接至第1巴倫103的第2平衡端子212的構成。又,上述的構成是可理解為第2組的第1電極141被電性連接至第3端子451,第2組的第2電極145被電性連接至第4端子452,第3端子451被電性連接至第2巴倫303的第1平衡端子411,第4端子452被電性連接至第2巴倫303的第2平衡端子412。The above configuration is understood that the first electrode 106 of the first group is electrically connected to the first terminal 251, the second electrode 135 of the first group is electrically connected to the second terminal 252, and the first terminal 251 is electrically The first balanced terminal 211 of the first balun 103 is connected, and the second terminal 252 is electrically connected to the second balanced terminal 212 of the first balun 103. In addition, the above configuration is understood that the first electrode 141 of the second group is electrically connected to the third terminal 451, the second electrode 145 of the second group is electrically connected to the fourth terminal 452, and the third terminal 451 is The first balanced terminal 411 of the second balun 303 is electrically connected, and the fourth terminal 452 is electrically connected to the second balanced terminal 412 of the second balun 303.

第1組的第1電極106與第1巴倫103的第1平衡端子211(第1端子251)是可經由阻塞電容器104來電性連接。阻塞電容器104是在第1巴倫103的第1平衡端子211與第1組的第1電極106之間(或第1巴倫103的第1平衡端子211與第2平衡端子212之間)遮斷直流電流。亦可取代阻塞電容器104,以第1阻抗匹配電路102會遮斷流動於第1巴倫103的第1不平衡端子201與第2不平衡端子202之間的直流電流之方式構成。第1組的第1電極106及第2電極135是可隔著絕緣體132來藉由真空容器110所支撐。The first electrode 106 of the first group and the first balanced terminal 211 (first terminal 251) of the first balun 103 can be electrically connected via the blocking capacitor 104. The blocking capacitor 104 is shielded between the first balanced terminal 211 of the first balun 103 and the first electrode 106 of the first group (or between the first balanced terminal 211 and the second balanced terminal 212 of the first balun 103) Break DC current. Instead of the blocking capacitor 104, the first impedance matching circuit 102 may block the DC current flowing between the first unbalanced terminal 201 and the second unbalanced terminal 202 of the first balun 103. The first electrode 106 and the second electrode 135 of the first group can be supported by the vacuum container 110 via the insulator 132.

第2組的第1電極141與第2巴倫303的第1平衡端子411(第3端子451)是可經由阻塞電容器304來電性連接。阻塞電容器304是在第2巴倫303的第1平衡端子411與第2組的第1電極141之間(或第2巴倫303的第1平衡端子411與第2平衡端子412之間)遮斷直流電流。亦可取代阻塞電容器304,以第2阻抗匹配電路302會遮斷流動於第2巴倫303的第1不平衡端子201與第2不平衡端子202之間的直流電流之方式構成。第2組的第1電極141及第2電極145是可隔著絕緣體142來藉由真空容器110所支撐。The first electrode 141 of the second group and the first balanced terminal 411 (third terminal 451) of the second balun 303 can be electrically connected via the blocking capacitor 304. The blocking capacitor 304 is shielded between the first balanced terminal 411 of the second balun 303 and the first electrode 141 of the second group (or between the first balanced terminal 411 and the second balanced terminal 412 of the second balun 303) Break DC current. Instead of the blocking capacitor 304, the second impedance matching circuit 302 may block the DC current flowing between the first unbalanced terminal 201 and the second unbalanced terminal 202 of the second balun 303. The first electrode 141 and the second electrode 145 of the second group can be supported by the vacuum container 110 via the insulator 142.

電漿處理裝置1是可具備:第1高頻電源101、及被配置於第1高頻電源101與第1巴倫103之間的第1阻抗匹配電路102。第1高頻電源101是經由第1阻抗匹配電路102來供給高頻至第1巴倫103的第1不平衡端子201與第2不平衡端子202之間。換言之,第1高頻電源101是經由第1阻抗匹配電路102、第1巴倫103及阻塞電容器104來供給高頻至第1電極106與第2電極135之間。或,第1高頻電源101是經由第1阻抗匹配電路102、第1巴倫103來供給高頻至本體10的第1端子251與第2端子252之間。第1巴倫103以及第1組的第1電極106及第2電極135是構成供給高頻至真空容器110的內部空間之第1高頻供給部。The plasma processing apparatus 1 may include a first high-frequency power source 101 and a first impedance matching circuit 102 disposed between the first high-frequency power source 101 and the first balun 103. The first high-frequency power supply 101 supplies high-frequency between the first unbalanced terminal 201 and the second unbalanced terminal 202 of the first balun 103 via the first impedance matching circuit 102. In other words, the first high-frequency power source 101 supplies high-frequency between the first electrode 106 and the second electrode 135 via the first impedance matching circuit 102, the first balun 103, and the blocking capacitor 104. Or, the first high-frequency power source 101 supplies high-frequency between the first terminal 251 and the second terminal 252 of the body 10 via the first impedance matching circuit 102 and the first balun 103. The first balun 103 and the first electrode 106 and the second electrode 135 of the first group constitute a first high-frequency supply unit that supplies high-frequency to the internal space of the vacuum container 110.

電漿處理裝置1是可具備:第2高頻電源301、及被配置於第2高頻電源301與第2巴倫303之間的第2阻抗匹配電路302。第2高頻電源301是經由第2阻抗匹配電路302來供給高頻至第2巴倫303的第1不平衡端子401與第2不平衡端子402之間。換言之,第2高頻電源301是經由第2阻抗匹配電路302、第2巴倫303及阻塞電容器304來供給高頻至第2組的第1電極141與第2電極145之間。或,第2高頻電源301是經由第2阻抗匹配電路302、第2巴倫303來供給高頻至本體10的第3端子451與第4端子452之間。第2巴倫303以及第2組的第1電極141及第2電極145是構成供給高頻至真空容器110的內部空間之第2高頻供給部。The plasma processing apparatus 1 may include a second high-frequency power supply 301 and a second impedance matching circuit 302 disposed between the second high-frequency power supply 301 and the second balun 303. The second high-frequency power supply 301 supplies high-frequency between the first unbalanced terminal 401 and the second unbalanced terminal 402 of the second balun 303 via the second impedance matching circuit 302. In other words, the second high-frequency power supply 301 supplies high-frequency between the first electrode 141 and the second electrode 145 of the second group via the second impedance matching circuit 302, the second balun 303, and the blocking capacitor 304. Or, the second high-frequency power supply 301 supplies high-frequency between the third terminal 451 and the fourth terminal 452 of the main body 10 via the second impedance matching circuit 302 and the second balun 303. The second balun 303 and the first electrode 141 and the second electrode 145 of the second group constitute a second high-frequency supply unit that supplies high-frequency to the internal space of the vacuum container 110.

藉由來自第1高頻電源101的高頻的供給,在真空容器110的內部空間產生電漿的狀態下,將由第1巴倫103的第1平衡端子211及第2平衡端子212的側來看第1組的第1電極106及第2電極135的側(本體10的側)時的阻抗設為Rp1-jXp1。並且,將第1巴倫103的第1線圈221的阻抗的電抗成分(電感成分)設為X1。在此定義中,符合1.5≦X1/Rp1≦5000是有利於為了使被形成於真空容器110的內部空間之電漿的電位安定。With the supply of high frequency from the first high-frequency power source 101, in the state where plasma is generated in the internal space of the vacuum vessel 110, the side of the first balanced terminal 211 and the second balanced terminal 212 of the first balun 103 will come The impedance when looking at the side of the first electrode 106 and the second electrode 135 (the side of the body 10) of the first group is set to Rp1-jXp1. Furthermore, let the reactance component (inductance component) of the impedance of the first coil 221 of the first balun 103 be X1. In this definition, compliance with 1.5≦X1/Rp1≦5000 is advantageous for stabilizing the potential of the plasma formed in the internal space of the vacuum container 110.

又,藉由來自第2高頻電源301的高頻的供給,在真空容器110的內部空間產生電漿的狀態下,將由第2巴倫303的第1平衡端子411及第2平衡端子412的側來看第2組的第1電極141及第2電極145的側(本體10的側)時的阻抗設為Rp2-jXp2。並且,將第2巴倫303的第1線圈221的阻抗的電抗成分(電感成分)設為X2。在此定義中,符合1.5≦X2/Rp2≦5000是有利於使被形成於真空容器110的內部空間之電漿的電位安定。In addition, with the supply of high frequency from the second high-frequency power supply 301, in the state where plasma is generated in the internal space of the vacuum vessel 110, the first balanced terminal 411 and the second balanced terminal 412 of the second balun 303 When the side of the first electrode 141 and the second electrode 145 of the second group (side of the body 10) is viewed from the side, the impedance is Rp2-jXp2. Furthermore, let the reactance component (inductance component) of the impedance of the first coil 221 of the second balun 303 be X2. In this definition, compliance with 1.5≦X2/Rp2≦5000 is beneficial to stabilize the potential of the plasma formed in the internal space of the vacuum container 110.

在圖11是模式性地表示本發明的第5實施形態的電漿處理裝置1的構成。第5實施形態的裝置1是相對於第4實施形態的電漿處理裝置1,具有追加驅動機構114、314的構成。驅動機構114是可具備使第1電極141昇降的機構及使第1電極141旋轉的機構的至少一方。驅動機構314是可具備使第2電極145昇降的機構。FIG. 11 schematically shows the configuration of the plasma processing apparatus 1 according to the fifth embodiment of the present invention. The device 1 of the fifth embodiment is configured to have additional drive mechanisms 114 and 314 compared to the plasma processing device 1 of the fourth embodiment. The drive mechanism 114 may include at least one of a mechanism that raises and lowers the first electrode 141 and a mechanism that rotates the first electrode 141. The drive mechanism 314 can be provided with a mechanism for raising and lowering the second electrode 145.

在圖12是模式性地表示本發明的第6實施形態的電漿處理裝置1的構成。第6實施形態的電漿處理裝置是可作為藉由濺射來將膜形成於基板112的濺射裝置動作。作為第6實施形態未言及的事項是可按照第1~第5實施形態。第6實施形態的電漿處理裝置1是具備:複數的第1高頻供給部、及至少1個的第2高頻供給部。複數的第1高頻供給部之中的1個是可包含第1電極106a、第2電極135a及第1巴倫103a。複數的第1高頻供給部之中的其他的1個是可包含第1電極106b、第2電極135b及第1巴倫103b。在此,說明複數的第1高頻供給部為以2個的高頻供給部所構成的例子。並且,以下標符號a、b來互相區別2個的高頻供給部及其關聯的構成要素。同樣,有關2個的標靶也是以下標符號a、b來互相區別。FIG. 12 schematically shows the configuration of the plasma processing apparatus 1 according to the sixth embodiment of the present invention. The plasma processing apparatus of the sixth embodiment can operate as a sputtering apparatus that forms a film on the substrate 112 by sputtering. As the matters not mentioned in the sixth embodiment, the first to fifth embodiments can be followed. The plasma processing apparatus 1 of the sixth embodiment includes a plurality of first high-frequency supply units and at least one second high-frequency supply unit. One of the plurality of first high-frequency supply units may include the first electrode 106a, the second electrode 135a, and the first balun 103a. The other one of the plurality of first high-frequency supply units may include the first electrode 106b, the second electrode 135b, and the first balun 103b. Here, an example in which the plural first high-frequency supply units are configured by two high-frequency supply units will be described. In addition, the two high-frequency supply units and their associated components are distinguished from each other by the subscripts a and b. Similarly, the two targets are distinguished from each other by subscripts a and b.

在其他的觀點,電漿處理裝置1是具備:複數的第1巴倫103a、103b、第2巴倫303、真空容器110、第1電極106a及第2電極135a、第1電極106b及第2電極135b、第1電極141及第2電極145。或,亦可理解為電漿處理裝置1是具備:複數的第1巴倫103a、103b、第2巴倫303及本體10,本體10具備:真空容器110、第1電極106a及第2電極135a、第1電極106b及第2電極135b、第1電極141及第2電極145。本體10是具有:第1端子251a、251b、第2端子252a、252b、第3端子451、第4端子452。In other viewpoints, the plasma processing apparatus 1 includes: a plurality of first baluns 103a, 103b, a second balun 303, a vacuum container 110, a first electrode 106a and a second electrode 135a, a first electrode 106b, and a second The electrode 135b, the first electrode 141, and the second electrode 145. Or, it may be understood that the plasma processing apparatus 1 includes: a plurality of first baluns 103a, 103b, a second balun 303, and a body 10, and the body 10 includes: a vacuum container 110, a first electrode 106a, and a second electrode 135a , The first electrode 106b and the second electrode 135b, the first electrode 141 and the second electrode 145. The body 10 includes first terminals 251a, 251b, second terminals 252a, 252b, third terminals 451, and fourth terminals 452.

第1巴倫103a是具有:第1不平衡端子201a、第2不平衡端子202a、第1平衡端子211a及第2平衡端子212a。在第1巴倫103a的第1不平衡端子201a及第2不平衡端子202a的側是連接有不平衡電路,在第1巴倫103a的第1平衡端子211a及第2平衡端子212a是連接有平衡電路。第1巴倫103b是具有:第1不平衡端子201b、第2不平衡端子202b、第1平衡端子211b及第2平衡端子212b。在第1巴倫103b的第1不平衡端子201b及第2不平衡端子202b的側是連接有不平衡電路,在第1巴倫103b的第1平衡端子211b及第2平衡端子212b是連接有平衡電路。The first balun 103a has a first unbalanced terminal 201a, a second unbalanced terminal 202a, a first balanced terminal 211a, and a second balanced terminal 212a. An unbalanced circuit is connected to the first unbalanced terminal 201a and the second unbalanced terminal 202a of the first balun 103a, and the first balanced terminal 211a and the second balanced terminal 212a of the first balun 103a are connected Balanced circuit. The first balun 103b has a first unbalanced terminal 201b, a second unbalanced terminal 202b, a first balanced terminal 211b, and a second balanced terminal 212b. An unbalanced circuit is connected to the first unbalanced terminal 201b and the second unbalanced terminal 202b of the first balun 103b, and the first balanced terminal 211b and the second balanced terminal 212b of the first balun 103b are connected Balanced circuit.

第2巴倫303是可具有與第1巴倫103a、103b同樣的構成。第2巴倫303是具有:第1不平衡端子401、第2不平衡端子402、第1平衡端子411及第2平衡端子412。在第2巴倫303的第1不平衡端子401及第2不平衡端子402的側是連接有不平衡電路,在第2巴倫303的第1平衡端子411及第2平衡端子412是連接有平衡電路。真空容器110是被接地。The second balun 303 may have the same configuration as the first baluns 103a and 103b. The second balun 303 includes a first unbalanced terminal 401, a second unbalanced terminal 402, a first balanced terminal 411, and a second balanced terminal 412. An unbalanced circuit is connected to the first unbalanced terminal 401 and the second unbalanced terminal 402 of the second balun 303, and the first balanced terminal 411 and the second balanced terminal 412 of the second balun 303 are connected to Balanced circuit. The vacuum container 110 is grounded.

第1電極106a、106b是分別保持標靶109a、109b。標靶109a、109b是例如可為絕緣體材料或導電體材料。第2電極135a、135b是分別被配置於第1電極106a、106b的周圍。第1電極106a、106b是分別被電性連接至第1巴倫103a、103b的第1平衡端子211a、211b,第2電極135a、135b是分別被電性連接至第1巴倫103a、103b的第2平衡端子212a、212b。The first electrodes 106a and 106b hold the targets 109a and 109b, respectively. The targets 109a, 109b are, for example, insulator materials or electrical conductor materials. The second electrodes 135a and 135b are arranged around the first electrodes 106a and 106b, respectively. The first electrodes 106a and 106b are electrically connected to the first balanced terminals 211a and 211b of the first baluns 103a and 103b, respectively, and the second electrodes 135a and 135b are electrically connected to the first baluns 103a and 103b, respectively The second balanced terminals 212a and 212b.

第1電極141是保持基板112。第2電極145是被配置於第1電極141的周圍。第1電極141是被電性連接至第2巴倫303的第1平衡端子411,第2電極145是被電性連接至第2巴倫303的第2平衡端子412。The first electrode 141 is the holding substrate 112. The second electrode 145 is arranged around the first electrode 141. The first electrode 141 is the first balanced terminal 411 electrically connected to the second balun 303, and the second electrode 145 is the second balanced terminal 412 electrically connected to the second balun 303.

上述的構成是可理解為第1電極106a、106b分別被電性連接至第1端子251a、251b,第2電極135a、135b分別被電性連接至第2端子252a、252b,第1端子251a、251b分別被電性連接至第1巴倫103a、103b的第1平衡端子211a、111b,第2端子252a、252b分別被電性連接至第1巴倫103a、103b的第2平衡端子212a、212b的構成。又,上述的構成是可理解為第1電極141被電性連接至第3端子451,第2電極145被電性連接至第4端子452,第3端子451被電性連接至第2巴倫303的第1平衡端子411,第4端子452被電性連接至第2巴倫303的第2平衡端子412。The above configuration is understood that the first electrodes 106a and 106b are electrically connected to the first terminals 251a and 251b, the second electrodes 135a and 135b are electrically connected to the second terminals 252a and 252b, and the first terminal 251a and 251b is electrically connected to the first balanced terminals 211a and 111b of the first baluns 103a and 103b, respectively, and the second terminals 252a and 252b are electrically connected to the second balanced terminals 212a and 212b of the first baluns 103a and 103b, respectively Composition. In addition, the above configuration is understood that the first electrode 141 is electrically connected to the third terminal 451, the second electrode 145 is electrically connected to the fourth terminal 452, and the third terminal 451 is electrically connected to the second balun The first balanced terminal 411 and the fourth terminal 452 of 303 are electrically connected to the second balanced terminal 412 of the second balun 303.

第1電極106a、106b與第1巴倫103a、103b的第1平衡端子211a、211b(第1端子251a、251b)是可分別經由阻塞電容器104a、104b來電性連接。阻塞電容器104a、104b是在第1巴倫103a、103b的第1平衡端子211a、211b與第1電極106a、106b之間(或第1巴倫103a、103b的第1平衡端子211a、211b與第2平衡端子212a、212b之間)遮斷直流電流。亦可取代阻塞電容器104a、104b,以第1阻抗匹配電路102a、102b會遮斷流動於第1巴倫103a、103b的第1不平衡端子201a、201b與第2不平衡端子202a、202b之間的直流電流之方式構成。或,阻塞電容器104a、104b是亦可被配置於第2電極135a、135b與第1巴倫103a、103b的第2平衡端子212a、212b(第2端子252a、252b)之間。第1電極106a、106b及第2電極135a、135b是可分別隔著絕緣體132a、132b來藉由真空容器110所支撐。The first electrodes 106a, 106b and the first balanced terminals 211a, 211b (first terminals 251a, 251b) of the first baluns 103a, 103b can be electrically connected via blocking capacitors 104a, 104b, respectively. The blocking capacitors 104a, 104b are between the first balanced terminals 211a, 211b of the first baluns 103a, 103b and the first electrodes 106a, 106b (or the first balanced terminals 211a, 211b of the first baluns 103a, 103b and the first 2 Between balanced terminals 212a and 212b) DC current is interrupted. Instead of blocking capacitors 104a, 104b, the first impedance matching circuits 102a, 102b will block the flow between the first unbalanced terminals 201a, 201b and the second unbalanced terminals 202a, 202b flowing in the first baluns 103a, 103b The way of the DC current is constituted. Alternatively, the blocking capacitors 104a and 104b may be disposed between the second electrodes 135a and 135b and the second balanced terminals 212a and 212b (second terminals 252a and 252b) of the first baluns 103a and 103b. The first electrodes 106a and 106b and the second electrodes 135a and 135b can be supported by the vacuum container 110 via insulators 132a and 132b, respectively.

第1電極141與第2巴倫303的第1平衡端子411(第3端子451)是可經由阻塞電容器304來電性連接。阻塞電容器304是在第2巴倫303的第1平衡端子411與第1電極141之間(或第2巴倫303的第1平衡端子411與第2平衡端子412之間)遮斷直流電流。亦可取代阻塞電容器304,以第2阻抗匹配電路302會遮斷流動於第2巴倫303的第1不平衡端子201與第2不平衡端子202之間的直流電流之方式構成。或,阻塞電容器304是亦可被配置於第2電極145與第2巴倫303的第2平衡端子412(第4端子452)之間。第1電極141及第2電極145是可隔著絕緣體142來藉由真空容器110所支撐。The first electrode 141 and the first balanced terminal 411 (third terminal 451) of the second balun 303 can be electrically connected via the blocking capacitor 304. The blocking capacitor 304 blocks the direct current between the first balanced terminal 411 and the first electrode 141 of the second balun 303 (or between the first balanced terminal 411 and the second balanced terminal 412 of the second balun 303). Instead of the blocking capacitor 304, the second impedance matching circuit 302 may block the DC current flowing between the first unbalanced terminal 201 and the second unbalanced terminal 202 of the second balun 303. Alternatively, the blocking capacitor 304 may be disposed between the second electrode 145 and the second balanced terminal 412 (fourth terminal 452) of the second balun 303. The first electrode 141 and the second electrode 145 can be supported by the vacuum container 110 via the insulator 142.

電漿處理裝置1是可具備:複數的第1高頻電源101a、101b、及分別被配置於複數的第1高頻電源101a、101b與複數的第1巴倫103a、103b之間的第1阻抗匹配電路102a、102b。第1高頻電源101a、101b是分別經由第1阻抗匹配電路102a、102b來供給高頻至第1巴倫103a、103b的第1不平衡端子201a、201b與第2不平衡端子202a、202b之間。換言之,第1高頻電源101a、101b是分別經由第1阻抗匹配電路102a、102b、第1巴倫103a、103b及阻塞電容器104a、104b來供給高頻至第1電極106a、106b與第2電極135a、135b之間。或,第1高頻電源101a、101b是經由第1阻抗匹配電路102a、102b、第1巴倫103a、103b來供給高頻至本體10的第1端子251a、251b與第2端子252a、252b之間。The plasma processing apparatus 1 may be provided with: a plurality of first high-frequency power supplies 101a, 101b, and a first arranged between the plurality of first high-frequency power supplies 101a, 101b and the plurality of first baluns 103a, 103b Impedance matching circuits 102a, 102b. The first high-frequency power sources 101a and 101b supply high-frequency to the first unbalanced terminals 201a and 201b and the second unbalanced terminals 202a and 202b of the first baluns 103a and 103b via the first impedance matching circuits 102a and 102b, respectively between. In other words, the first high-frequency power sources 101a and 101b supply high frequencies to the first electrodes 106a, 106b and the second electrode via the first impedance matching circuits 102a and 102b, the first baluns 103a and 103b, and the blocking capacitors 104a and 104b, respectively Between 135a and 135b. Or, the first high-frequency power sources 101a and 101b supply high-frequency to the first terminals 251a and 251b and the second terminals 252a and 252b of the body 10 through the first impedance matching circuits 102a and 102b and the first baluns 103a and 103b. between.

電漿處理裝置1是可具備:第2高頻電源301、及被配置於第2高頻電源301與第2巴倫303之間的第2阻抗匹配電路302。第2高頻電源301是經由第2阻抗匹配電路302來供給高頻至第2巴倫303的第1不平衡端子401與第2不平衡端子402之間。換言之,第2高頻電源301是經由第2阻抗匹配電路302、第2巴倫303及阻塞電容器304來供給高頻至第1電極141與第2電極145之間。或,第2高頻電源301是經由第2阻抗匹配電路302、第2巴倫303來供給高頻至本體10的第3端子451與第4端子452之間。The plasma processing apparatus 1 may include a second high-frequency power supply 301 and a second impedance matching circuit 302 disposed between the second high-frequency power supply 301 and the second balun 303. The second high-frequency power supply 301 supplies high-frequency between the first unbalanced terminal 401 and the second unbalanced terminal 402 of the second balun 303 via the second impedance matching circuit 302. In other words, the second high-frequency power supply 301 supplies high-frequency between the first electrode 141 and the second electrode 145 via the second impedance matching circuit 302, the second balun 303, and the blocking capacitor 304. Or, the second high-frequency power supply 301 supplies high-frequency between the third terminal 451 and the fourth terminal 452 of the main body 10 via the second impedance matching circuit 302 and the second balun 303.

在圖13是模式性地表示本發明的第7實施形態的電漿處理裝置1的構成。第7實施形態的電漿處理裝置是可作為藉由濺射來將膜形成於基板112的濺射裝置動作。作為第7實施形態未言及的事項是可按照第1~第6實施形態。電漿處理裝置1是具備:第1巴倫103、第2巴倫303、真空容器110、構成第1組的第1電極105a及第2電極105b、構成第2組的第1電極141及第2電極145。或,亦可理解為電漿處理裝置1是具備:第1巴倫103、第2巴倫303及本體10,本體10具備:真空容器110、構成第1組的第1電極105a及第2電極105b、構成第2組的第1電極141及第2電極145。本體10是具有:第1端子251、第2端子252、第3端子451、第4端子452。FIG. 13 schematically shows the configuration of the plasma processing apparatus 1 according to the seventh embodiment of the present invention. The plasma processing apparatus of the seventh embodiment can operate as a sputtering apparatus that forms a film on the substrate 112 by sputtering. The matters not mentioned in the seventh embodiment can be in accordance with the first to sixth embodiments. The plasma processing apparatus 1 includes a first balun 103, a second balun 303, a vacuum container 110, a first electrode 105a and a second electrode 105b that constitute the first group, and a first electrode 141 and a second electrode that constitute the second group 2electrode 145. Or, it may be understood that the plasma processing apparatus 1 includes: a first balun 103, a second balun 303, and a body 10, and the body 10 includes a vacuum container 110, a first electrode 105a, and a second electrode constituting the first group 105b. The first electrode 141 and the second electrode 145 constituting the second group. The body 10 includes a first terminal 251, a second terminal 252, a third terminal 451, and a fourth terminal 452.

第1巴倫103是具有:第1不平衡端子201、第2不平衡端子202、第1平衡端子211及第2平衡端子212。在第1巴倫103的第1不平衡端子201及第2不平衡端子202的側是連接有不平衡電路,在第1巴倫103的第1平衡端子211及第2平衡端子212是連接有平衡電路。第2巴倫303是可具有與第1巴倫103同樣的構成。第2巴倫303是具有:第1不平衡端子401、第2不平衡端子402、第1平衡端子411及第2平衡端子412。在第2巴倫303的第1不平衡端子401及第2不平衡端子402的側是連接有不平衡電路,在第2巴倫303的第1平衡端子411及第2平衡端子412是連接有平衡電路。真空容器110是被接地。The first balun 103 includes a first unbalanced terminal 201, a second unbalanced terminal 202, a first balanced terminal 211, and a second balanced terminal 212. An unbalanced circuit is connected to the first unbalanced terminal 201 and the second unbalanced terminal 202 of the first balun 103, and the first balanced terminal 211 and the second balanced terminal 212 of the first balun 103 are connected Balanced circuit. The second balun 303 may have the same configuration as the first balun 103. The second balun 303 includes a first unbalanced terminal 401, a second unbalanced terminal 402, a first balanced terminal 411, and a second balanced terminal 412. An unbalanced circuit is connected to the first unbalanced terminal 401 and the second unbalanced terminal 402 of the second balun 303, and the first balanced terminal 411 and the second balanced terminal 412 of the second balun 303 are connected to Balanced circuit. The vacuum container 110 is grounded.

第1組的第1電極105a是保持第1標靶109a,隔著第1標靶109a來與基板112的側的空間對向。第1組的第2電極105b是被配置於第1電極105a的旁邊,保持第2標靶109b,隔著第2標靶109b來與基板112的側的空間對向。標靶109a及109b是例如可為絕緣體材料或導電體材料。第1組的第1電極105a是被電性連接至第1巴倫103的第1平衡端子211,第1組的第2電極105b是被電性連接至第1巴倫103的第2平衡端子212。The first electrode 105a of the first group holds the first target 109a, and faces the space on the side of the substrate 112 across the first target 109a. The second electrode 105b of the first group is arranged beside the first electrode 105a, holds the second target 109b, and faces the space on the side of the substrate 112 across the second target 109b. The targets 109a and 109b are, for example, insulator materials or conductor materials. The first electrode 105a of the first group is the first balanced terminal 211 electrically connected to the first balun 103, and the second electrode 105b of the first group is the second balanced terminal electrically connected to the first balun 103 212.

第2組的第1電極141是保持基板112。第2組的第2電極145是被配置於第1電極141的周圍。第2組的第1電極141是被電性連接至第2巴倫303的第1平衡端子411,第2組的第2電極145是被電性連接至第2巴倫303的第2平衡端子412。The first electrode 141 of the second group is the holding substrate 112. The second electrode 145 of the second group is arranged around the first electrode 141. The first electrode 141 of the second group is the first balanced terminal 411 electrically connected to the second balun 303, and the second electrode 145 of the second group is the second balanced terminal electrically connected to the second balun 303 412.

上述的構成是可理解為第1組的第1電極105a被電性連接至第1端子251,第1組的第2電極105b被電性連接至第2端子252,第1端子251被電性連接至第1巴倫103的第1平衡端子211,第2端子252被電性連接至第1巴倫103的第2平衡端子212的構成。又,上述的構成是可理解為第2組的第1電極141被電性連接至第3端子451,第2組的第2電極145被電性連接至第4端子452,第3端子451被電性連接至第2巴倫303的第1平衡端子411,第4端子452被電性連接至第2巴倫303的第2平衡端子412。The above configuration is understood that the first electrode 105a of the first group is electrically connected to the first terminal 251, the second electrode 105b of the first group is electrically connected to the second terminal 252, and the first terminal 251 is electrically connected The first balanced terminal 211 of the first balun 103 is connected, and the second terminal 252 is electrically connected to the second balanced terminal 212 of the first balun 103. In addition, the above configuration is understood that the first electrode 141 of the second group is electrically connected to the third terminal 451, the second electrode 145 of the second group is electrically connected to the fourth terminal 452, and the third terminal 451 is The first balanced terminal 411 of the second balun 303 is electrically connected, and the fourth terminal 452 is electrically connected to the second balanced terminal 412 of the second balun 303.

第1組的第1電極105a與第1巴倫103的第1平衡端子211(第1端子251)是可經由阻塞電容器104a來電性連接。阻塞電容器104a是在第1巴倫103的第1平衡端子211與第1組的第1電極105a之間(或第1巴倫103的第1平衡端子211與第2平衡端子212之間)遮斷直流電流。第1組的第2電極105b與第1巴倫103的第2平衡端子212(第2端子252)是可經由阻塞電容器104b來電性連接。阻塞電容器104b是在第1巴倫103的第2平衡端子212與第1組的第2電極105b之間(或第1巴倫103的第1平衡端子211與第2平衡端子212之間)遮斷直流電流。第1組的第1電極105a、第2電極105b是可分別隔著絕緣體132a、132b來藉由真空容器110所支撐。The first electrode 105a of the first group and the first balanced terminal 211 (first terminal 251) of the first balun 103 can be electrically connected via the blocking capacitor 104a. The blocking capacitor 104a is shielded between the first balanced terminal 211 of the first balun 103 and the first electrode 105a of the first group (or between the first balanced terminal 211 and the second balanced terminal 212 of the first balun 103) Break DC current. The second electrode 105b of the first group and the second balanced terminal 212 (second terminal 252) of the first balun 103 can be electrically connected via the blocking capacitor 104b. The blocking capacitor 104b is shielded between the second balanced terminal 212 of the first balun 103 and the second electrode 105b of the first group (or between the first balanced terminal 211 and the second balanced terminal 212 of the first balun 103) Break DC current. The first electrode 105a and the second electrode 105b of the first group can be supported by the vacuum container 110 via insulators 132a and 132b, respectively.

第2組的第1電極141與第2巴倫303的第1平衡端子411(第3端子451)是可經由阻塞電容器304來電性連接。阻塞電容器304是在第2巴倫303的第1平衡端子411與第2組的第1電極141之間(或第2巴倫303的第1平衡端子411與第2平衡端子412之間)遮斷直流電流。亦可取代阻塞電容器304,以第2阻抗匹配電路302會遮斷流動於第2巴倫303的第1不平衡端子401與第2不平衡端子402之間的直流電流之方式構成。第2組的第1電極141、第2電極145是可分別隔著絕緣體142、146來藉由真空容器110所支撐。The first electrode 141 of the second group and the first balanced terminal 411 (third terminal 451) of the second balun 303 can be electrically connected via the blocking capacitor 304. The blocking capacitor 304 is shielded between the first balanced terminal 411 of the second balun 303 and the first electrode 141 of the second group (or between the first balanced terminal 411 and the second balanced terminal 412 of the second balun 303) Break DC current. Instead of the blocking capacitor 304, the second impedance matching circuit 302 may block the DC current flowing between the first unbalanced terminal 401 and the second unbalanced terminal 402 of the second balun 303. The first electrode 141 and the second electrode 145 of the second group can be supported by the vacuum container 110 via insulators 142 and 146, respectively.

電漿處理裝置1是可具備:第1高頻電源101、及被配置於第1高頻電源101與第1巴倫103之間的第1阻抗匹配電路102。第1高頻電源101是經由第1阻抗匹配電路102、第1巴倫103及阻塞電容器104a、104b來供給高頻至第1電極105a與第2電極105b之間。或,第1高頻電源101是經由第1阻抗匹配電路102、第1巴倫103來供給高頻至本體10的第1端子251與第2端子252之間。第1巴倫103以及第1組的第1電極105a及第2電極105b是構成供給高頻至真空容器110的內部空間之第1高頻供給部。The plasma processing apparatus 1 may include a first high-frequency power source 101 and a first impedance matching circuit 102 disposed between the first high-frequency power source 101 and the first balun 103. The first high-frequency power source 101 supplies high-frequency between the first electrode 105a and the second electrode 105b via the first impedance matching circuit 102, the first balun 103, and the blocking capacitors 104a, 104b. Or, the first high-frequency power source 101 supplies high-frequency between the first terminal 251 and the second terminal 252 of the body 10 via the first impedance matching circuit 102 and the first balun 103. The first balun 103 and the first electrode 105 a and the second electrode 105 b of the first group constitute a first high-frequency supply unit that supplies high-frequency to the internal space of the vacuum container 110.

電漿處理裝置1是可具備:第2高頻電源301、及被配置於第2高頻電源301與第2巴倫303之間的第2阻抗匹配電路302。第2高頻電源301是經由第2阻抗匹配電路302來供給高頻至第2巴倫303的第1不平衡端子401與第2不平衡端子402之間。第2高頻電源301是經由第2阻抗匹配電路302、第2巴倫303及阻塞電容器304來供給高頻至第2組的第1電極141與第2電極145之間。或,第2高頻電源301是經由第2阻抗匹配電路302、第2巴倫303來供給高頻至本體10的第3端子451與第4端子452之間。第2巴倫303以及第2組的第1電極141及第2電極145是構成供給高頻至真空容器110的內部空間之第2高頻供給部。The plasma processing apparatus 1 may include a second high-frequency power supply 301 and a second impedance matching circuit 302 disposed between the second high-frequency power supply 301 and the second balun 303. The second high-frequency power supply 301 supplies high-frequency between the first unbalanced terminal 401 and the second unbalanced terminal 402 of the second balun 303 via the second impedance matching circuit 302. The second high-frequency power supply 301 supplies high-frequency between the first electrode 141 and the second electrode 145 of the second group via the second impedance matching circuit 302, the second balun 303, and the blocking capacitor 304. Or, the second high-frequency power supply 301 supplies high-frequency between the third terminal 451 and the fourth terminal 452 of the main body 10 via the second impedance matching circuit 302 and the second balun 303. The second balun 303 and the first electrode 141 and the second electrode 145 of the second group constitute a second high-frequency supply unit that supplies high-frequency to the internal space of the vacuum container 110.

藉由來自第1高頻電源101的高頻的供給,在真空容器110的內部空間產生電漿的狀態下,將由第1巴倫103的第1平衡端子211及第2平衡端子212的側來看第1組的第1電極105a及第2電極105b的側(本體10的側)時的阻抗設為Rp1-jXp1。並且,將第1巴倫103的第1線圈221的阻抗的電抗成分(電感成分)設為X1。在此定義中,符合1.5 ≦X1/Rp1≦5000是有利於為了使被形成於真空容器110的內部空間之電漿的電位安定。With the supply of high frequency from the first high-frequency power source 101, in the state where plasma is generated in the internal space of the vacuum vessel 110, the side of the first balanced terminal 211 and the second balanced terminal 212 of the first balun 103 will come The impedance when looking at the side of the first electrode 105a and the second electrode 105b of the first group (the side of the body 10) is set to Rp1-jXp1. Furthermore, let the reactance component (inductance component) of the impedance of the first coil 221 of the first balun 103 be X1. In this definition, conformity of 1.5≦X1/Rp1≦5000 is advantageous for stabilizing the potential of the plasma formed in the internal space of the vacuum container 110.

又,藉由來自第2高頻電源302的高頻的供給,在真空容器110的內部空間產生電漿的狀態下,將由第2巴倫303的第1平衡端子411及第2平衡端子412的側來看第2組的第1電極127及第2電極130的側(本體10的側)時的阻抗設為Rp2-jXp2。並且,將第2巴倫303的第1線圈221的阻抗的電抗成分(電感成分)設為X2。在此定義中,符合1.5 ≦X2/Rp2≦5000是有利於為了使被形成於真空容器110的內部空間之電漿的電位安定。In addition, with the supply of high frequency from the second high-frequency power source 302, in the state where plasma is generated in the internal space of the vacuum container 110, the first balanced terminal 411 and the second balanced terminal 412 of the second balun 303 When the side of the first electrode 127 and the second electrode 130 of the second group (side of the body 10) is viewed from the side, the impedance is Rp2-jXp2. Furthermore, let the reactance component (inductance component) of the impedance of the first coil 221 of the second balun 303 be X2. In this definition, conformity of 1.5≦X2/Rp2≦5000 is advantageous in order to stabilize the potential of the plasma formed in the internal space of the vacuum container 110.

第7實施形態的電漿處理裝置1是可更具備使構成第2組的第1電極141昇降的機構及使構成第2組的第1電極141旋轉的機構的至少一方。在圖13所示的例子中,電漿處理裝置1是具備包含使第1電極141昇降的機構及使第1電極141旋轉的機構的雙方之驅動機構114。並且,在圖13所示的例子中,電漿處理裝置1是具備使構成第2組的第2電極145昇降的機構314。在真空容器110與驅動機構114、314之間是可設有構成真空隔壁的波紋管。The plasma processing apparatus 1 of the seventh embodiment may further include at least one of a mechanism for raising and lowering the first electrode 141 constituting the second group and a mechanism for rotating the first electrode 141 constituting the second group. In the example shown in FIG. 13, the plasma processing apparatus 1 is a drive mechanism 114 that includes both a mechanism for raising and lowering the first electrode 141 and a mechanism for rotating the first electrode 141. In addition, in the example shown in FIG. 13, the plasma processing apparatus 1 is provided with a mechanism 314 that raises and lowers the second electrode 145 constituting the second group. Between the vacuum container 110 and the drive mechanisms 114 and 314, a bellows constituting a vacuum partition wall may be provided.

一邊參照圖14,一邊說明在圖13所示的第7實施形態的電漿處理裝置1的第1巴倫103的機能。將流動於第1不平衡端子201的電流設為I1,將流動於第1平衡端子211的電流設為I2,將流動於第2不平衡端子202的電流設為I2’,將電流I2之中流至接地的電流設為I3。I3=0,亦即,在平衡電路的側電流不流至接地時,平衡電路對於接地的隔離(isolation)性能為最佳。I3=I2,亦即,當流動於第1平衡端子211的電流I2的全部對於接地流動時,平衡電路對於接地的隔離性能為最差。表示如此的隔離性能的程度的指標ISO是與第1~第5實施形態同樣,可賦予以下的式子。在此定義之下,ISO的值的絕對值較大,隔離性能較佳。14, the function of the first balun 103 of the plasma processing apparatus 1 of the seventh embodiment shown in FIG. 13 will be described. Let the current flowing through the first unbalanced terminal 201 be I1, the current flowing through the first balanced terminal 211 be I2, the current flowing through the second unbalanced terminal 202 be I2', and the current I2 flow The current to ground is set to I3. I3=0, that is, when the side current of the balanced circuit does not flow to the ground, the isolation performance of the balanced circuit to ground is optimal. I3=I2, that is, when all the current I2 flowing through the first balanced terminal 211 flows to the ground, the isolation performance of the balanced circuit from the ground is the worst. The index ISO indicating the degree of such isolation performance is the same as in the first to fifth embodiments, and the following formula can be given. Under this definition, the absolute value of the ISO value is larger, and the isolation performance is better.

Figure 02_image003
在圖14中,Rp-jXp(=Rp/2-jXp/2+Rp/2-jXp/2)是表示在真空容器110的內部空間產生電漿的狀態下,從第1平衡端子211及第2平衡端子212的側來看第1電極105a及第2電極105b的側(本體10的側)時的阻抗(包含阻塞電容器104a及104b的電抗)。Rp是表示電阻成分,-Xp是表示電抗成分。並且,在圖14中,X是表示第1巴倫103的第1線圈221的阻抗的電抗成分(電感成分)。ISO是對於X/Rp具有相關性。
Figure 02_image003
In FIG. 14, Rp-jXp (=Rp/2-jXp/2+Rp/2-jXp/2) indicates that the plasma is generated in the internal space of the vacuum container 110 from the first balanced terminal 211 and the first 2 The impedance of the side of the balanced terminal 212 when viewed from the side of the first electrode 105a and the second electrode 105b (the side of the body 10) (including the reactance blocking the capacitors 104a and 104b). Rp represents the resistance component, and -Xp represents the reactance component. In addition, in FIG. 14, X is a reactance component (inductance component) indicating the impedance of the first coil 221 of the first balun 103. ISO is relevant for X/Rp.

在第1實施形態的說明中參照的圖4是舉例表示電流I1(=I2)、I2’、I3、ISO、α(=X/Rp)的關係。圖4的關係是在第7實施形態中也成立。本發明者是發現在第7實施形態中也在符合1.5≦X/Rp≦5000是有利於為了使被形成於真空容器110的內部空間(第1電極105a與第2電極105b之間的空間)的電漿的電位(電漿電位)對於真空容器110的內面的狀態形成鈍感。在此,電漿電位對於真空容器110的內面的狀態形成鈍感是意思即使是長期間使用電漿處理裝置1的情況,也可使電漿電位安定。1.5≦X/Rp≦5000是相當於-10.0dB≧ISO≧-80dB。FIG. 4 referred to in the description of the first embodiment is an example showing the relationship between the currents I1 (=I2), I2', I3, ISO, and α (=X/Rp). The relationship of FIG. 4 is also established in the seventh embodiment. The present inventors found that in the seventh embodiment, compliance with 1.5≦X/Rp≦5000 is also advantageous in order to make the internal space formed in the vacuum container 110 (the space between the first electrode 105a and the second electrode 105b) The electric potential of the plasma (plasma potential) is insensitive to the state of the inner surface of the vacuum container 110. Here, the plasma potential has a dull effect on the state of the inner surface of the vacuum container 110, which means that the plasma potential can be stabilized even when the plasma processing apparatus 1 is used for a long period of time. 1.5≦X/Rp≦5000 is equivalent to -10.0dB≧ISO≧-80dB.

在圖15A~15D是表示模擬符合1.5≦X/Rp≦5000時的電漿電位、第1電極105a的電位(陰極1電位)及第2電極105b的電位(陰極2電位)的結果。圖15A是表示在真空容器110的內面形成有電阻性的膜(1mΩ)的狀態的電漿電位、第1電極105a的電位(陰極1電位)及第2電極105b的電位(陰極2電位)。圖15B是表示在真空容器110的內面形成有電阻性的膜(1000Ω)的狀態的電漿電位、第1電極105a的電位(陰極1電位)及第2電極105b的電位(陰極2電位)。圖15C是表示在真空容器110的內面形成有感應性的膜(0.6μH)的狀態的電漿電位、第1電極105a的電位(陰極1電位)及第2電極105b的電位(陰極2電位)。圖15D是表示在真空容器110的內面形成有電容性的膜(0.1nF)的狀態的電漿電位、第1電極105a的電位(陰極1電位)及第2電極105b的電位(陰極2電位)。由圖15A~15D可理解,符合1.5≦X/Rp≦5000是有利於真空容器110的內面在各種的狀態中使電漿電位安定。15A to 15D show the results of simulating the plasma potential when 1.5≦X/Rp≦5000, the potential of the first electrode 105a (cathode 1 potential) and the potential of the second electrode 105b (cathode 2 potential). 15A is a diagram showing the plasma potential, the potential of the first electrode 105a (cathode 1 potential) and the potential of the second electrode 105b (cathode 2 potential) in a state where a resistive film (1 mΩ) is formed on the inner surface of the vacuum container 110 . 15B shows the plasma potential, the potential of the first electrode 105a (cathode 1 potential) and the potential of the second electrode 105b (cathode 2 potential) in a state where a resistive film (1000Ω) is formed on the inner surface of the vacuum container 110 . 15C shows the plasma potential, the potential of the first electrode 105a (cathode 1 potential) and the potential of the second electrode 105b (cathode 2 potential) in a state where an inductive film (0.6 μH) is formed on the inner surface of the vacuum container 110 ). 15D shows the plasma potential, the potential of the first electrode 105a (cathode 1 potential), and the potential of the second electrode 105b (cathode 2 potential) in the state where a capacitive film (0.1 nF) is formed on the inner surface of the vacuum container 110 ). As can be understood from FIGS. 15A to 15D, compliance with 1.5≦X/Rp≦5000 is beneficial to stabilize the plasma potential of the inner surface of the vacuum container 110 in various states.

在圖16A~16D是表示模擬不符合1.5≦X/Rp≦5000時的電漿電位、第1電極105a的電位(陰極1電位)及第2電極105b的電位(陰極2電位)的結果。圖16A是表示在真空容器110的內面形成有電阻性的膜(1mΩ)的狀態的電漿電位、第1電極105a的電位(陰極1電位)及第2電極105b的電位(陰極2電位)。圖16B是表示在真空容器110的內面形成有電阻性的膜(1000Ω)的狀態的電漿電位、第1電極105a的電位(陰極1電位)及第2電極105b的電位(陰極2電位)。圖16C是表示在真空容器110的內面形成有感應性的膜(0.6μH)的狀態的電漿電位、第1電極105a的電位(陰極1電位)及第2電極105b的電位(陰極2電位)。圖16D是表示在真空容器110的內面形成有電容性的膜(0.1nF)的狀態的電漿電位、第1電極105a的電位(陰極1電位)及第2電極105b的電位(陰極2電位)。由圖16A~16D可理解,不符合1.5≦X/Rp≦5000時,電漿電位會依真空容器110的內面的狀態而變化。16A to 16D show the results of simulating the plasma potential, the potential of the first electrode 105a (cathode 1 potential) and the potential of the second electrode 105b (cathode 2 potential) when 1.5≦X/Rp≦5000 is not satisfied. FIG. 16A shows the plasma potential, the potential of the first electrode 105a (cathode 1 potential), and the potential of the second electrode 105b (cathode 2 potential) in a state where a resistive film (1 mΩ) is formed on the inner surface of the vacuum container 110 . 16B shows the plasma potential, the potential of the first electrode 105a (cathode 1 potential), and the potential of the second electrode 105b (cathode 2 potential) in a state where a resistive film (1000Ω) is formed on the inner surface of the vacuum container 110. . 16C shows the plasma potential, the potential of the first electrode 105a (cathode 1 potential) and the potential of the second electrode 105b (cathode 2 potential) in the state where an inductive film (0.6 μH) is formed on the inner surface of the vacuum container 110 ). 16D shows the plasma potential, the potential of the first electrode 105a (cathode 1 potential) and the potential of the second electrode 105b (cathode 2 potential) in a state where a capacitive film (0.1 nF) is formed on the inner surface of the vacuum container 110 ). As can be understood from FIGS. 16A to 16D, when 1.5≦X/Rp≦5000 is not satisfied, the plasma potential changes according to the state of the inner surface of the vacuum container 110.

在此,在X/Rp>5000(例如X/Rp=∞)的情況與X/Rp<1.5的情況(例如X/Rp=1.16、X/Rp=0.87)的雙方,電漿電位會容易依真空容器110的內面的狀態而變化。X/Rp>5000的情況,在膜未被形成於真空容器110的內面的狀態,只在第1電極105a與第2電極105b之間發生放電。但,X/Rp>5000的情況,一旦膜開始被形成於真空容器110的內面,則對於此,電漿電位會敏感地反應,成為圖16A~16D所舉例表示般的結果。另一方面,X/Rp<1.5的情況,由於經由真空容器110來流入至接地的電流大,因此真空容器110的內面的狀態(被形成於內面的膜的電性的特性)所造成的影響顯著,電漿電位會依膜的形成而變化。因此,如前述般,以符合1.5≦X/Rp≦5000的方式構成電漿處理裝置1的情形有利。Here, in both the case of X/Rp>5000 (for example, X/Rp=∞) and the case of X/Rp<1.5 (for example, X/Rp=1.16, X/Rp=0.87), the plasma potential will easily depend on The state of the inner surface of the vacuum container 110 changes. When X/Rp>5000, in a state where the film is not formed on the inner surface of the vacuum container 110, discharge occurs only between the first electrode 105a and the second electrode 105b. However, in the case of X/Rp>5000, once the film starts to be formed on the inner surface of the vacuum container 110, the plasma potential will sensitively react to this, resulting in the results shown in the examples shown in FIGS. 16A to 16D. On the other hand, when X/Rp<1.5, the current flowing into the ground through the vacuum container 110 is large, so the state of the inner surface of the vacuum container 110 (which is caused by the electrical characteristics of the film formed on the inner surface) The effect of is significant, and the plasma potential will vary depending on the film formation. Therefore, as described above, it is advantageous to configure the plasma processing apparatus 1 so as to satisfy 1.5≦X/Rp≦5000.

在圖17是模式性地表示本發明的第8實施形態的電漿處理裝置1的構成。第8實施形態的電漿處理裝置是可作為藉由濺射來將膜形成於基板112的濺射裝置動作。作為第8實施形態的電漿處理裝置1未言及的事項是可按照第1~第7實施形態。第8實施形態的電漿處理裝置1是具備:巴倫(第1巴倫)103、真空容器110、第1電極105a及第2電極105b。或,亦可理解為電漿處理裝置1是具備巴倫103及本體10,本體10具備:真空容器110、第1電極105a及第2電極105b。本體10是具有第1端子251及第2端子252。FIG. 17 schematically shows the configuration of the plasma processing apparatus 1 according to the eighth embodiment of the present invention. The plasma processing apparatus of the eighth embodiment can operate as a sputtering apparatus that forms a film on the substrate 112 by sputtering. What is not mentioned as the plasma processing apparatus 1 of the eighth embodiment is that the first to seventh embodiments can be followed. The plasma processing apparatus 1 of the eighth embodiment includes a balun (first balun) 103, a vacuum container 110, a first electrode 105a, and a second electrode 105b. Or, it may be understood that the plasma processing apparatus 1 includes a balun 103 and a body 10, and the body 10 includes a vacuum container 110, a first electrode 105a, and a second electrode 105b. The body 10 has a first terminal 251 and a second terminal 252.

第1電極105a是可具有保持作為第1構件的第1標靶109a的第1保持面HS1,第2電極105b是可具有保持作為第2構件的第2標靶109b的第2保持面HS2。第1保持面HS1及第2保持面HS2是可屬於1個的平面PL。The first electrode 105a can have a first holding surface HS1 that can hold a first target 109a as a first member, and the second electrode 105b can have a second holding surface HS2 that can hold a second target 109b as a second member. The first holding surface HS1 and the second holding surface HS2 are planes PL that can belong to one.

第8實施形態的電漿處理裝置1是亦可更具備:第2巴倫303、第3電極141及第4電極145。換言之,電漿處理裝置1是可具備:第1巴倫103、第2巴倫303、真空容器110、第1電極105a、第2電極105b、第3電極141及第4電極145。或,亦可理解為電漿處理裝置1是具備:第1巴倫103、第2巴倫303及本體10,本體10具備:真空容器110、第1電極105a、第2電極105b、第3電極141及第4電極145。本體10是具有:第1端子251、第2端子252、第3端子451及第4端子452。The plasma processing apparatus 1 of the eighth embodiment may further include the second balun 303, the third electrode 141, and the fourth electrode 145. In other words, the plasma processing apparatus 1 may include the first balun 103, the second balun 303, the vacuum container 110, the first electrode 105a, the second electrode 105b, the third electrode 141, and the fourth electrode 145. Or, it can be understood that the plasma processing apparatus 1 includes: a first balun 103, a second balun 303, and a body 10, and the body 10 includes: a vacuum container 110, a first electrode 105a, a second electrode 105b, and a third electrode 141和第4 electrode145. The body 10 includes a first terminal 251, a second terminal 252, a third terminal 451, and a fourth terminal 452.

第1巴倫103是具有:第1不平衡端子201、第2不平衡端子202、第1平衡端子211及第2平衡端子212。在第1巴倫103的第1不平衡端子201及第2不平衡端子202的側是連接有不平衡電路,在第1巴倫103的第1平衡端子211及第2平衡端子212的側是連接有平衡電路。第2巴倫303是可具有與第1巴倫103同樣的構成。第2巴倫303是具有:第3不平衡端子401、第4不平衡端子402、第3平衡端子411及第4平衡端子412。在第2巴倫303的第3不平衡端子401及第4不平衡端子402的側是連接有不平衡電路,在第2巴倫303的第3平衡端子411及第4平衡端子412的側是連接有平衡電路。真空容器110是被接地。巴倫103、303是例如可具有被記載於圖2A、2B(圖14)的構成。The first balun 103 includes a first unbalanced terminal 201, a second unbalanced terminal 202, a first balanced terminal 211, and a second balanced terminal 212. An unbalanced circuit is connected to the side of the first unbalanced terminal 201 and the second unbalanced terminal 202 of the first balun 103, and to the side of the first balanced terminal 211 and the second balanced terminal 212 of the first balun 103 The balance circuit is connected. The second balun 303 may have the same configuration as the first balun 103. The second balun 303 includes a third unbalanced terminal 401, a fourth unbalanced terminal 402, a third balanced terminal 411, and a fourth balanced terminal 412. An unbalanced circuit is connected to the side of the third unbalanced terminal 401 and the fourth unbalanced terminal 402 of the second balun 303, and to the side of the third balanced terminal 411 and the fourth balanced terminal 412 of the second balun 303 The balance circuit is connected. The vacuum container 110 is grounded. The baluns 103 and 303 can have the structures described in FIGS. 2A and 2B (FIG. 14 ), for example.

第1電極105a是保持第1標靶109a,隔著第1標靶109a來與處理對象的基板112的側的空間對向。第2電極105b是被配置於第1電極105a的旁邊,保持第2標靶109b,隔著第2標靶109b來與處理對象的基板112的側的空間對向。標靶109a及109b是例如可為絕緣體材料或導電體材料。第1電極105a是被電性連接至第1巴倫103的第1平衡端子211,第2電極105b是被電性連接至第1巴倫103的第2平衡端子212。The first electrode 105a holds the first target 109a, and faces the space on the side of the substrate 112 to be processed via the first target 109a. The second electrode 105b is disposed beside the first electrode 105a, holds the second target 109b, and faces the space on the side of the substrate 112 to be processed via the second target 109b. The targets 109a and 109b are, for example, insulator materials or conductor materials. The first electrode 105 a is the first balanced terminal 211 electrically connected to the first balun 103, and the second electrode 105 b is the second balanced terminal 212 electrically connected to the first balun 103.

第3電極141是保持基板112。第4電極145是可被配置於第3電極141的周圍。第3電極141是被電性連接至第2巴倫303的第1平衡端子411,第4電極145是被電性連接至第2巴倫303的第2平衡端子412。The third electrode 141 is the holding substrate 112. The fourth electrode 145 can be arranged around the third electrode 141. The third electrode 141 is the first balanced terminal 411 electrically connected to the second balun 303, and the fourth electrode 145 is the second balanced terminal 412 electrically connected to the second balun 303.

上述的構成是可理解為第1電極105a被電性連接至第1端子251,第2電極105b被電性連接至第2端子252,第1端子251被電性連接至第1巴倫103的第1平衡端子211,第2端子252被電性連接至第1巴倫103的第2平衡端子212之構成。又,上述的構成是可理解為第3電極141被電性連接至第3端子451,第4電極145被電性連接至第4端子452,第3端子451被電性連接至第2巴倫303的第1平衡端子411,第4端子452被電性連接至第2巴倫303的第2平衡端子412者。The above configuration is understood that the first electrode 105a is electrically connected to the first terminal 251, the second electrode 105b is electrically connected to the second terminal 252, and the first terminal 251 is electrically connected to the first balun 103 The first balanced terminal 211 and the second terminal 252 are electrically connected to the second balanced terminal 212 of the first balun 103. In addition, the above configuration is understood that the third electrode 141 is electrically connected to the third terminal 451, the fourth electrode 145 is electrically connected to the fourth terminal 452, and the third terminal 451 is electrically connected to the second balun The first balanced terminal 411 and the fourth terminal 452 of 303 are electrically connected to the second balanced terminal 412 of the second balun 303.

第1電極105a與第1巴倫103的第1平衡端子211(第1端子251)是可藉由第1路徑PTH1來電性連接。在第1路徑PTH1是可配置有可變電抗器511a。換言之,第1電極105a與第1巴倫103的第1平衡端子211(第1端子251)是可經由可變電抗器511a來電性連接。可變電抗器511a是可包含電容器,該電容器是可作為在第1巴倫103的第1平衡端子211與第1電極105a之間(或第1巴倫103的第1平衡端子211與第2平衡端子212之間)遮斷直流電流的阻塞電容器機能。第2電極105b與第1巴倫103的第2平衡端子212(第2端子252)是可藉由第2路徑PTH2來電性連接。在第2路徑PTH2是可配置有可變電抗器511b。換言之,第2電極105b與第1巴倫103的第2平衡端子212(第3端子252)是可經由可變電抗器511b來電性連接。可變電抗器511b是可包含電容器,該電容器是可作為在第1巴倫103的第2平衡端子212與第2電極105b之間(或第1巴倫103的第1平衡端子211與第2平衡端子212之間)遮斷直流電流的阻塞電容器機能。第1電極105a、第2電極105b是可分別隔著絕緣體132a、132b來藉由真空容器110所支撐。The first electrode 105a and the first balanced terminal 211 (first terminal 251) of the first balun 103 can be electrically connected via the first path PTH1. In the first path PTH1, a variable reactor 511a can be arranged. In other words, the first electrode 105a and the first balanced terminal 211 (first terminal 251) of the first balun 103 can be electrically connected via the variable reactor 511a. The variable reactor 511a can include a capacitor that can be used between the first balanced terminal 211 of the first balun 103 and the first electrode 105a (or the first balanced terminal 211 of the first balun 103 and the first 2 Between balanced terminals 212) The function of a blocking capacitor that blocks DC current. The second electrode 105b and the second balanced terminal 212 (second terminal 252) of the first balun 103 can be electrically connected via the second path PTH2. In the second path PTH2, a variable reactor 511b can be arranged. In other words, the second electrode 105b and the second balanced terminal 212 (third terminal 252) of the first balun 103 can be electrically connected via the variable reactor 511b. The variable reactor 511b may include a capacitor that can be used between the second balanced terminal 212 of the first balun 103 and the second electrode 105b (or the first balanced terminal 211 of the first balun 103 and the first 2 Between balanced terminals 212) The function of a blocking capacitor that blocks DC current. The first electrode 105a and the second electrode 105b can be supported by the vacuum container 110 via insulators 132a and 132b, respectively.

電漿處理裝置1是可具備被配置於第1電極105a與接地之間的可變電抗器521a。電漿處理裝置1是可具備被配置於第2電極105b與接地之間的可變電抗器521b。電漿處理裝置1是可具備連接第1路徑PTH1與第2路徑PTH2的可變電抗器530。The plasma processing apparatus 1 may include a variable reactor 521a disposed between the first electrode 105a and the ground. The plasma processing apparatus 1 may include a variable reactor 521b disposed between the second electrode 105b and the ground. The plasma processing apparatus 1 may be provided with a variable reactor 530 connecting the first path PTH1 and the second path PTH2.

在1個的構成例中,電漿處理裝置1,作為影響被施加於第1電極105a的第1電壓與被施加於第2電極105b的第2電壓的關係之調整電抗器,包含(a)被配置於連接第1平衡端子211與第1電極105a的第1路徑PTH1之可變電抗器511a、(b)被配置於第1電極105a與接地之間的可變電抗器521a、(c)被配置於連接第2平衡端子212與第2電極105b的第2路徑PTH2之可變電抗器511b、(d)被配置於第2電極105b與接地之間的可變電抗器521b、及(e)連接第1路徑PTH1與第2路徑PTH2的可變電抗器530之至少1個。In one configuration example, the plasma processing apparatus 1 includes an adjustment reactor that affects the relationship between the first voltage applied to the first electrode 105a and the second voltage applied to the second electrode 105b, including (a) The variable reactors 511a, (b) arranged on the first path PTH1 connecting the first balanced terminal 211 and the first electrode 105a are arranged between the first electrode 105a and the ground. c) The variable reactor 511b disposed in the second path PTH2 connecting the second balanced terminal 212 and the second electrode 105b, (d) The variable reactor 521b disposed between the second electrode 105b and the ground And (e) at least one variable reactor 530 connecting the first path PTH1 and the second path PTH2.

藉由調整影響被施加於第1電極105a的第1電壓與被施加於第2電極105b的第2電壓的關係之調整電抗器的值,可調整第1標靶109a所濺射的量與第2標靶109b所濺射的量的關係。或,藉由將調整電抗器的值調整,可調整第1標靶109a所濺射的量與第2標靶109b所濺射的量的平衡。藉此,可調整第1標靶109a的消費量與第2標靶109b的消費量的關係。或,可調整第1標靶109a的消費量與第2標靶109b的消費量的平衡。如此的構成是例如將第1標靶109a的更換時機與第2標靶109b的更換時機形成相同的時機,有利於為了減低電漿處理裝置1的停機時間。又,亦可調整被形成於基板112的膜的厚度分佈。By adjusting the value of the adjustment reactor that affects the relationship between the first voltage applied to the first electrode 105a and the second voltage applied to the second electrode 105b, the amount of sputtering of the first target 109a and the 2 The relationship between the amount of sputtering of the target 109b. Or, by adjusting the value of the adjustment reactor, the balance between the amount of sputtering of the first target 109a and the amount of sputtering of the second target 109b can be adjusted. In this way, the relationship between the consumption of the first target 109a and the consumption of the second target 109b can be adjusted. Or, the balance between the consumption of the first target 109a and the consumption of the second target 109b may be adjusted. Such a configuration is such that, for example, the replacement timing of the first target 109a and the replacement timing of the second target 109b are the same, which is advantageous for reducing the downtime of the plasma processing apparatus 1. In addition, the thickness distribution of the film formed on the substrate 112 may be adjusted.

第3電極141與第2巴倫303的第1平衡端子411(第3端子451)是可經由阻塞電容器304來電性連接。阻塞電容器304是在第2巴倫303的第1平衡端子411與第3電極141之間(或第2巴倫303的第1平衡端子411與第2平衡端子412之間)遮斷直流電流。亦可取代阻塞電容器304,以第2阻抗匹配電路302會遮斷流動於第2巴倫303的第1不平衡端子401與第2不平衡端子402之間的直流電流之方式構成。第3電極141、第4電極145是可分別隔著絕緣體142、146來藉由真空容器110所支撐。The third electrode 141 and the first balanced terminal 411 (third terminal 451) of the second balun 303 can be electrically connected via the blocking capacitor 304. The blocking capacitor 304 blocks the direct current between the first balanced terminal 411 and the third electrode 141 of the second balun 303 (or between the first balanced terminal 411 and the second balanced terminal 412 of the second balun 303). Instead of the blocking capacitor 304, the second impedance matching circuit 302 may block the DC current flowing between the first unbalanced terminal 401 and the second unbalanced terminal 402 of the second balun 303. The third electrode 141 and the fourth electrode 145 can be supported by the vacuum container 110 via insulators 142 and 146, respectively.

電漿處理裝置1是可具備:第1高頻電源101、及被配置於第1高頻電源101與第1巴倫103之間的第1阻抗匹配電路102。第1高頻電源101是經由第1阻抗匹配電路102、第1巴倫103及第1路徑PTH1來供給高頻至第1電極105a與第2電極105b之間。或,第1高頻電源101是經由第1阻抗匹配電路102、第1巴倫103來供給高頻至本體10的第1端子251與第2端子252之間。第1巴倫103以及第1電極105a及第2電極105b是構成供給高頻至真空容器110的內部空間的第1高頻供給部。The plasma processing apparatus 1 may include a first high-frequency power source 101 and a first impedance matching circuit 102 disposed between the first high-frequency power source 101 and the first balun 103. The first high-frequency power supply 101 supplies high-frequency between the first electrode 105a and the second electrode 105b via the first impedance matching circuit 102, the first balun 103, and the first path PTH1. Or, the first high-frequency power source 101 supplies high-frequency between the first terminal 251 and the second terminal 252 of the body 10 via the first impedance matching circuit 102 and the first balun 103. The first balun 103, the first electrode 105a, and the second electrode 105b constitute a first high-frequency supply unit that supplies high-frequency to the internal space of the vacuum container 110.

電漿處理裝置1是可具備:第2高頻電源301、及被配置於第2高頻電源301與第2巴倫303之間的第2阻抗匹配電路302。第2高頻電源301是經由第2阻抗匹配電路302來供給高頻至第2巴倫303的第1不平衡端子401與第2不平衡端子402之間。第2高頻電源301是經由第2阻抗匹配電路302、第2巴倫303及阻塞電容器304來供給高頻至第3電極141與第4電極145之間。或,第2高頻電源301是經由第2阻抗匹配電路302、第2巴倫303來供給高頻至本體10的第3端子451與第4端子452之間。第2巴倫303以及第3電極141及第4電極145是構成供給高頻至真空容器110的內部空間之第2高頻供給部。The plasma processing apparatus 1 may include a second high-frequency power supply 301 and a second impedance matching circuit 302 disposed between the second high-frequency power supply 301 and the second balun 303. The second high-frequency power supply 301 supplies high-frequency between the first unbalanced terminal 401 and the second unbalanced terminal 402 of the second balun 303 via the second impedance matching circuit 302. The second high-frequency power supply 301 supplies high-frequency between the third electrode 141 and the fourth electrode 145 via the second impedance matching circuit 302, the second balun 303, and the blocking capacitor 304. Or, the second high-frequency power supply 301 supplies high-frequency between the third terminal 451 and the fourth terminal 452 of the main body 10 via the second impedance matching circuit 302 and the second balun 303. The second balun 303, the third electrode 141, and the fourth electrode 145 are the second high-frequency supply unit that configures the high-frequency supply to the internal space of the vacuum container 110.

將藉由來自第1高頻電源101的高頻的供給而在真空容器110的內部空間產生電漿的狀態下從第1巴倫103的第1平衡端子211及第2平衡端子212的側來看第1電極105a及第2電極105b的側(本體10的側)時的阻抗設為Rp1-jXp1。並且,將第1巴倫103的第1線圈221的阻抗的電抗成分(電感成分)設為X1。在此定義中,符合1.5≦X1/Rp1≦5000是特別有利於為了使被形成於真空容器110的內部空間的電漿的電位安定。但,符合1.5≦X/Rp1≦5000的條件,在第8實施形態中不是必須,為有利的條件想要被留意。在第8實施形態中,藉由設置巴倫103,要比不設巴倫103的情況,更可使電漿的電位安定。而且,藉由設置調整電抗器,可調整第1標靶109a所濺射的量與第2標靶109b所濺射的量的關係。From the sides of the first balanced terminal 211 and the second balanced terminal 212 of the first balun 103 in the state where plasma is generated in the internal space of the vacuum vessel 110 by the supply of high frequency from the first high-frequency power source 101 The impedance when looking at the side of the first electrode 105a and the second electrode 105b (the side of the body 10) is set to Rp1-jXp1. Furthermore, let the reactance component (inductance component) of the impedance of the first coil 221 of the first balun 103 be X1. In this definition, compliance with 1.5≦X1/Rp1≦5000 is particularly advantageous in order to stabilize the potential of the plasma formed in the internal space of the vacuum container 110. However, meeting the condition of 1.5≦X/Rp1≦5000 is not necessary in the eighth embodiment, and it is desirable to pay attention to favorable conditions. In the eighth embodiment, by providing the balun 103, the potential of the plasma can be stabilized more than when the balun 103 is not provided. Furthermore, by providing an adjustment reactor, the relationship between the amount of sputtering of the first target 109a and the amount of sputtering of the second target 109b can be adjusted.

又,將藉由來自第2高頻電源301的高頻的供給而在真空容器110的內部空間產生電漿的狀態下從第2巴倫303的第1平衡端子411及第2平衡端子412的側來看第3電極141及第4電極145的側(本體10的側)時的阻抗設為Rp2-jXp2。並且,將第2巴倫303的第1線圈221的阻抗的電抗成分(電感成分)設為X2。在此定義中,符合1.5≦X2/Rp2≦5000是特別有利於為了使被形成於真空容器110的內部空間的電漿的電位安定。但,符合1.5≦X/Rp2≦5000的條件,在第8實施形態中不是必須,為有利的條件想要被留意。In addition, from the first balanced terminal 411 and the second balanced terminal 412 of the second balun 303 in the state where plasma is generated in the internal space of the vacuum vessel 110 by the supply of high frequency from the second high-frequency power supply 301 The impedance when viewing the side of the third electrode 141 and the fourth electrode 145 (the side of the body 10) is Rp2-jXp2. Furthermore, let the reactance component (inductance component) of the impedance of the first coil 221 of the second balun 303 be X2. In this definition, compliance with 1.5≦X2/Rp2≦5000 is particularly advantageous for stabilizing the potential of the plasma formed in the internal space of the vacuum container 110. However, meeting the condition of 1.5≦X/Rp2≦5000 is not necessary in the eighth embodiment, and it is desirable to pay attention to favorable conditions.

以下,一邊參照圖18~圖25,一邊說明將第8實施形態的電漿處理裝置1具體化的第9~第14實施形態。在圖18是模式性地表示本發明的第9實施形態的電漿處理裝置1的構成。作為第9實施形態未言及的事項是可按照第8實施形態。第9實施形態的電漿處理裝置1是包含被配置於第1路徑PTH1的可變電抗器511a及被配置於第2路徑PTH2的可變電抗器511b的至少1個。在此,電漿處理裝置1是包圍被配置於第1路徑PTH1的可變電抗器511a及被配置於第2路徑PTH2的可變電抗器511b的雙方為理想,但任一方皆可值為固定的電抗。Hereinafter, the ninth to fourteenth embodiments in which the plasma processing apparatus 1 of the eighth embodiment is embodied will be described with reference to FIGS. 18 to 25. FIG. 18 schematically shows the configuration of the plasma processing apparatus 1 of the ninth embodiment of the present invention. As for matters not mentioned in the ninth embodiment, it is possible to follow the eighth embodiment. The plasma processing apparatus 1 of the ninth embodiment includes at least one variable reactor 511a disposed on the first path PTH1 and a variable reactor 511b disposed on the second path PTH2. Here, the plasma processing apparatus 1 is ideal to surround both the variable reactor 511a arranged on the first path PTH1 and the variable reactor 511b arranged on the second path PTH2, but either one can be valued. It is a fixed reactance.

第1可變電抗器511a是至少包含可變電感器601a,較理想是可包含可變電感器601a及電容器602a。可變電感器601a是亦可被配置於第1平衡端子211(第1端子251)與電容器602a之間,亦可被配置於電容器602a與第1電極105a之間。第2可變電抗器511b是至少包含可變電感器601b,較理想是可包含可變電感器601b及電容器602b。可變電感器601b是亦可被配置於第2平衡端子212(第2端子252)與電容器602b之間,亦可被配置於電容器602b與第2電極105b之間。The first variable reactor 511a includes at least the variable inductor 601a, and more preferably includes the variable inductor 601a and the capacitor 602a. The variable inductor 601a may be disposed between the first balanced terminal 211 (first terminal 251) and the capacitor 602a, or may be disposed between the capacitor 602a and the first electrode 105a. The second variable reactor 511b includes at least the variable inductor 601b, and more preferably includes the variable inductor 601b and the capacitor 602b. The variable inductor 601b may be disposed between the second balanced terminal 212 (second terminal 252) and the capacitor 602b, or may be disposed between the capacitor 602b and the second electrode 105b.

在圖24是表示在第9實施形態的電漿處理裝置1中,將第1路徑PTH1的可變電感器601a及第2路徑PTH2的可變電感器601b的值設定於200nH時被形成於基板112的膜的厚度分佈。並且,在圖24是表示在第9實施形態的電漿處理裝置1中,將第1路徑PTH1的可變電感器601a及第2路徑PTH2的可變電感器601b的值設定於400nH時被形成於基板112的膜的厚度分佈。橫軸是圖18的橫方向(與基板112的表面平行的方向)的位置,表示離基板112的中心的距離。當可變電感器601a、601b的值為400nH時,在基板112的中心的左側及右側,膜的厚度分佈大不同。另一方面,當可變電感器601a、601b的值為200nH時,在基板112的中心的左側及右側,膜的厚度分佈的對稱性高。給予第1電極105a的第1電壓與給予第2電極105b的第2電壓的平衡是可變電感器601a、601b的值為200nH時要比可變電感器601a、601b的值為400nH時更佳。FIG. 24 shows that the plasma processing apparatus 1 of the ninth embodiment is formed when the values of the variable inductor 601a of the first path PTH1 and the variable inductor 601b of the second path PTH2 are set to 200 nH. The thickness distribution of the film on the substrate 112. 24 shows that in the plasma processing apparatus 1 of the ninth embodiment, the values of the variable inductor 601a of the first path PTH1 and the variable inductor 601b of the second path PTH2 are set to 400 nH The thickness distribution of the film formed on the substrate 112. The horizontal axis is the position in the horizontal direction (the direction parallel to the surface of the substrate 112) of FIG. 18 and represents the distance from the center of the substrate 112. When the values of the variable inductors 601a and 601b are 400 nH, the thickness distribution of the film differs greatly on the left and right sides of the center of the substrate 112. On the other hand, when the values of the variable inductors 601a and 601b are 200 nH, the left and right sides of the center of the substrate 112 have high symmetry of the film thickness distribution. The balance between the first voltage applied to the first electrode 105a and the second voltage applied to the second electrode 105b is when the values of the variable inductors 601a and 601b are 200nH than when the values of the variable inductors 601a and 601b are 400nH Better.

在圖25是表示在第9實施形態的電漿處理裝置1中,將第1路徑PTH1的可變電感器601a及第2路徑PTH2的可變電感器601b的值變更時的第1電極105a、第2電極105b的電壓。當可變電感器601a、601b的值約為225nH時,給予第1電極105a的電壓與給予第2電極105b的電壓會形成大致相等。FIG. 25 shows the first electrode when the values of the variable inductor 601a of the first path PTH1 and the variable inductor 601b of the second path PTH2 are changed in the plasma processing apparatus 1 of the ninth embodiment. 105a, the voltage of the second electrode 105b. When the values of the variable inductors 601a and 601b are approximately 225nH, the voltage applied to the first electrode 105a and the voltage applied to the second electrode 105b are approximately equal.

在圖19是模式性地表示本發明的第10實施形態的電漿處理裝置1的構成。作為第10實施形態未言及的事項是可按照第8實施形態。第10實施形態的電漿處理裝置1是包含:被配置於第1路徑PTH1的可變電抗器511a、及被配置於第2路徑PTH2的可變電抗器511b之至少1個。在此,電漿處理裝置1是包含:被配置於第1路徑PTH1的可變電抗器511a、及被配置於第2路徑PTH2的可變電抗器511b的雙方為理想,但亦可為任一一方是值為固定的電抗。FIG. 19 schematically shows the configuration of the plasma processing apparatus 1 according to the tenth embodiment of the present invention. As the matters not mentioned in the tenth embodiment, the eighth embodiment can be followed. The plasma processing apparatus 1 of the tenth embodiment includes at least one of the variable reactor 511a disposed on the first path PTH1 and the variable reactor 511b disposed on the second path PTH2. Here, the plasma processing apparatus 1 preferably includes both the variable reactor 511a disposed on the first path PTH1 and the variable reactor 511b disposed on the second path PTH2, but it may also be Either side is a fixed reactance.

第1可變電抗器511a是至少包含可變電容器604a,較理想是可包含可變電容器604a及電感器603a。可變電容器604a是亦可被配置於電感器603a與第1電極105a之間,或亦可被配置於第1平衡端子211(第1端子251)與電感器603a之間。第2可變電抗器511b是至少包含可變電容器604b,較理想是可包含可變電容器604b及電感器603b。可變電容器604b是亦可被配置於電感器603b與第2電極105b之間,亦可被配置於第2平衡端子212(第2端子252)與電感器603b之間。The first variable reactor 511a includes at least a variable capacitor 604a, and more preferably includes a variable capacitor 604a and an inductor 603a. The variable capacitor 604a may be disposed between the inductor 603a and the first electrode 105a, or may be disposed between the first balanced terminal 211 (first terminal 251) and the inductor 603a. The second variable reactor 511b includes at least a variable capacitor 604b, and more preferably includes a variable capacitor 604b and an inductor 603b. The variable capacitor 604b may be disposed between the inductor 603b and the second electrode 105b, or may be disposed between the second balanced terminal 212 (second terminal 252) and the inductor 603b.

在圖20是模式性地表示本發明的第11實施形態的電漿處理裝置1的構成。作為第11實施形態未言及的事項是可按照第8實施形態。第11實施形態的電漿處理裝置1是具備:作為被配置於第1電極105a與接地之間的可變電抗器521a之可變電容器605a、及作為被配置於第2電極105b與接地之間的可變電抗器521b之可變電容器605b的至少1個。電漿處理裝置1是可更具備:被配置於第1路徑PTH1的電抗(此例是電感器603a、電容器602a)、及被配置於第2路徑PTH2的電抗(此例是電感器603b、電容器602b)。FIG. 20 schematically shows the configuration of the plasma processing apparatus 1 according to the eleventh embodiment of the present invention. As for matters not mentioned in the eleventh embodiment, it is possible to follow the eighth embodiment. The plasma processing apparatus 1 of the eleventh embodiment includes: a variable capacitor 605a as a variable reactor 521a disposed between the first electrode 105a and the ground, and a variable capacitor 605a disposed as the second electrode 105b and the ground At least one variable capacitor 605b of the variable reactor 521b in between. The plasma processing apparatus 1 may further include: a reactance disposed in the first path PTH1 (in this example, the inductor 603a and a capacitor 602a), and a reactance disposed in the second path PTH2 (in this example, the inductor 603b and the capacitor 602b).

在圖21是模式性地表示本發明的第12實施形態的電漿處理裝置1的構成。作為第12實施形態未言及的事項是可按照第8實施形態。第12實施形態的電漿處理裝置1是具備:被配置於第1電極105a與接地之間的可變電抗器521a、及被配置於第2電極105b與接地之間的可變電抗器521b之至少1個。可變電抗器521a是至少包含可變電感器607a,例如,可包含可變電感器607a及電容器606a。可變電抗器521b是至少包含可變電感器607b,例如,可包含可變電感器607b及電容器606b。FIG. 21 schematically shows the configuration of the plasma processing apparatus 1 of the twelfth embodiment of the present invention. As the matters not mentioned in the twelfth embodiment, the eighth embodiment can be followed. The plasma processing apparatus 1 of the twelfth embodiment is provided with a variable reactor 521a arranged between the first electrode 105a and the ground, and a variable reactor arranged between the second electrode 105b and the ground At least one of 521b. The variable reactor 521a includes at least the variable inductor 607a, and for example, may include the variable inductor 607a and the capacitor 606a. The variable reactor 521b includes at least the variable inductor 607b, and for example, may include the variable inductor 607b and the capacitor 606b.

電漿處理裝置1是可更具備:被配置於第1路徑PTH1的電抗(此例是電感器603a、電容器602a)、及被配置於第2路徑PTH2的電抗(此例是電感器603b、電容器602b)。The plasma processing apparatus 1 may further include: a reactance disposed in the first path PTH1 (in this example, the inductor 603a and a capacitor 602a), and a reactance disposed in the second path PTH2 (in this example, the inductor 603b and the capacitor 602b).

在圖22是模式性地表示本發明的第13實施形態的電漿處理裝置1的構成。作為第13實施形態未言及的事項是可按照第8實施形態。第13實施形態的電漿處理裝置1是具備作為連接第1路徑PTH1與第2路徑PTH2的可變電抗器530之可變電感器608。電漿處理裝置1是可更具備:被配置於第1路徑PTH1的電抗(此例是電感器603a、電容器602a)、及被配置於第2路徑PTH2的電抗(此例是電感器603b、電容器602b)。FIG. 22 schematically shows the configuration of the plasma processing apparatus 1 according to the thirteenth embodiment of the present invention. The matters not mentioned in the thirteenth embodiment can be according to the eighth embodiment. The plasma processing apparatus 1 of the thirteenth embodiment is a variable inductor 608 including a variable reactor 530 connecting the first path PTH1 and the second path PTH2. The plasma processing apparatus 1 may further include: a reactance disposed in the first path PTH1 (in this example, the inductor 603a and a capacitor 602a), and a reactance disposed in the second path PTH2 (in this example, the inductor 603b and the capacitor 602b).

在圖23是模式性地表示本發明的第14實施形態的電漿處理裝置1的構成。作為第14實施形態未言及的事項是可按照第8實施形態。第14實施形態的電漿處理裝置1是具備作為連接第1路徑PTH1與第2路徑PTH2的可變電抗器530之可變電容器609。電漿處理裝置1是可更具備:被配置於第1路徑PTH1的電抗(此例是電感器603a、電容器602a)、及被配置於第2路徑PTH2的電抗(此例是電感器603b、電容器602b)。FIG. 23 schematically shows the configuration of the plasma processing apparatus 1 according to the fourteenth embodiment of the present invention. As the matters not mentioned in the fourteenth embodiment, the eighth embodiment can be followed. The plasma processing apparatus 1 of the fourteenth embodiment is a variable capacitor 609 as a variable reactor 530 connecting the first path PTH1 and the second path PTH2. The plasma processing apparatus 1 may further include: a reactance disposed in the first path PTH1 (in this example, the inductor 603a and a capacitor 602a), and a reactance disposed in the second path PTH2 (in this example, the inductor 603b and the capacitor 602b).

另外,在參照圖18~25說明的第9~第14實施形態中,在標靶109a、109b的對向面配置有電極,但亦可構成為不被電極限定,配置有被稱為所謂Carousel型的型式的電漿裝置的圓筒形的基板旋轉座(holder)(例如日本特開2003-1555526,特開昭62-133065)或被稱為所謂In-Line型的型式的電漿裝置的矩形形狀等的基板托盤(例如日本特許5824072、特開2011-144450)。In addition, in the ninth to fourteenth embodiments described with reference to FIGS. 18 to 25, the electrodes are arranged on the opposing surfaces of the targets 109a and 109b, but they may be configured not to be limited by the electrodes, and the so-called Carousel is arranged. The cylindrical substrate holder of the type of plasma device (for example, Japanese Patent Laid-Open No. 2003-1555526, Japanese Patent Laid-Open No. 62-133065) or the so-called In-Line type plasma device A substrate tray of a rectangular shape or the like (for example, Japanese Patent No. 5824572, Japanese Patent Laid-Open No. 2011-144450)

以下,一邊參照圖26~圖31,一邊說明根據第1電極105a的第1電壓V1及第2電極105b的第2電壓V2來將調整電抗器的值調整的動作。在圖26是模式性地表示本發明的第15實施形態的電漿處理裝置1的構成。第15實施形態的電漿處理裝置1是具有對於圖18所示的第9實施形態的電漿處理裝置1追加控制部700的構成。控制部700是根據第1電極105a的第1電壓V1及第2電極105b的第2電壓V2,例如,以第1電壓V1與第2電壓V2能相等的方式,將調整電抗器的值調整。例如,控制部700是根據第1電極105a的第1電壓V1及第2電極105b的第2電壓V2來產生分別調整作為調整電抗器的可變電感器601a、601b的值之第1指令值CNT1、第2指令值CNT2。第1指令值CNT1、第2指令值CNT2是分別被供給至可變電感器601a、601b。可變電感器601a、601b是分別按照第1指令值CNT1、第2指令值CNT2來變更自己的電感。Hereinafter, the operation of adjusting the value of the adjustment reactor based on the first voltage V1 of the first electrode 105a and the second voltage V2 of the second electrode 105b will be described with reference to FIGS. 26 to 31. FIG. 26 schematically shows the configuration of the plasma processing apparatus 1 according to the fifteenth embodiment of the present invention. The plasma processing apparatus 1 of the fifteenth embodiment has a configuration in which a control unit 700 is added to the plasma processing apparatus 1 of the ninth embodiment shown in FIG. 18. The control unit 700 adjusts the value of the adjustment reactor based on the first voltage V1 of the first electrode 105a and the second voltage V2 of the second electrode 105b, for example, so that the first voltage V1 and the second voltage V2 can be equal. For example, the control unit 700 generates a first command value that adjusts the values of the variable inductors 601a and 601b as adjustment reactors based on the first voltage V1 of the first electrode 105a and the second voltage V2 of the second electrode 105b, respectively CNT1, second command value CNT2. The first command value CNT1 and the second command value CNT2 are supplied to the variable inductors 601a and 601b, respectively. The variable inductors 601a and 601b change their own inductance according to the first command value CNT1 and the second command value CNT2, respectively.

在圖27是模式性地表示本發明的第16實施形態的電漿處理裝置1的構成。第16實施形態的電漿處理裝置1是具有對於圖19所示的第10實施形態的電漿處理裝置1追加控制部700的構成。控制部700是根據第1電極105a的第1電壓V1及第2電極105b的第2電壓V2,例如,以第1電壓V1與第2電壓V2能相等的方式,將調整電抗器的值調整。例如,控制部700是根據第1電極105a的第1電壓V1及第2電極105b的第2電壓V2來產生分別調整作為調整電抗器的可變電容器604a、604b的值之第1指令值CNT1、第2指令值CNT2。第1指令值CNT1、第2指令值CNT2是分別被供給至可變電容器604a、604b。可變電容器604a、604b是分別按照第1指令值CNT1、第2指令值CNT2來變更自己的電容。FIG. 27 schematically shows the configuration of the plasma processing apparatus 1 according to the sixteenth embodiment of the present invention. The plasma processing apparatus 1 of the sixteenth embodiment has a configuration in which a control unit 700 is added to the plasma processing apparatus 1 of the tenth embodiment shown in FIG. 19. The control unit 700 adjusts the value of the adjustment reactor based on the first voltage V1 of the first electrode 105a and the second voltage V2 of the second electrode 105b, for example, so that the first voltage V1 and the second voltage V2 can be equal. For example, the control unit 700 generates a first command value CNT1 that adjusts the values of the variable capacitors 604a and 604b as adjustment reactors based on the first voltage V1 of the first electrode 105a and the second voltage V2 of the second electrode 105b, respectively. The second command value is CNT2. The first command value CNT1 and the second command value CNT2 are supplied to the variable capacitors 604a and 604b, respectively. The variable capacitors 604a and 604b change their capacitances according to the first command value CNT1 and the second command value CNT2, respectively.

在圖28是模式性地表示本發明的第17實施形態的電漿處理裝置1的構成。第17實施形態的電漿處理裝置1是具有對於圖20所示的第11實施形態的電漿處理裝置1追加控制部700的構成。控制部700是根據第1電極105a的第1電壓V1及第2電極105b的第2電壓V2,例如,以第1電壓V1與第2電壓V2能相等的方式,將調整電抗器的值調整。例如,控制部700是根據第1電極105a的第1電壓V1及第2電極105b的第2電壓V2來產生分別調整作為調整電抗器的可變電容器605a、605b的值之第1指令值CNT1、第2指令值CNT2。第1指令值CNT1、第2指令值CNT2是分別被供給至可變電容器605a、605b。可變電容器605a、605b是分別按照第1指令值CNT1、第2指令值CNT2來變更自己的電容。FIG. 28 schematically shows the configuration of the plasma processing apparatus 1 according to the seventeenth embodiment of the present invention. The plasma processing apparatus 1 of the seventeenth embodiment has a configuration in which a control unit 700 is added to the plasma processing apparatus 1 of the eleventh embodiment shown in FIG. 20. The control unit 700 adjusts the value of the adjustment reactor based on the first voltage V1 of the first electrode 105a and the second voltage V2 of the second electrode 105b, for example, so that the first voltage V1 and the second voltage V2 can be equal. For example, the control unit 700 generates a first command value CNT1 that adjusts the values of the variable capacitors 605a and 605b as adjustment reactors based on the first voltage V1 of the first electrode 105a and the second voltage V2 of the second electrode 105b, respectively. The second command value is CNT2. The first command value CNT1 and the second command value CNT2 are supplied to the variable capacitors 605a and 605b, respectively. The variable capacitors 605a and 605b change their capacitances according to the first command value CNT1 and the second command value CNT2, respectively.

在圖29是模式性地表示本發明的第18實施形態的電漿處理裝置1的構成。第18實施形態的電漿處理裝置1是具有對於圖21所示的第12實施形態的電漿處理裝置1追加控制部700的構成。控制部700是根據第1電極105a的第1電壓V1及第2電極105b的第2電壓V2,例如,以第1電壓V1與第2電壓V2能相等的方式,將調整電抗器的值調整。例如,控制部700是根據第1電極105a的第1電壓V1及第2電極105b的第2電壓V2來產生分別調整作為調整電抗器的可變電感器607a、607b的值之第1指令值CNT1、第2指令值CNT2。第1指令值CNT1、第2指令值CNT2是分別被供給至可變電感器607a、607b。可變電感器607a、607b是分別按照第1指令值CNT1、第2指令值CNT2來變更自己的電感。FIG. 29 schematically shows the configuration of the plasma processing apparatus 1 according to the eighteenth embodiment of the present invention. The plasma processing apparatus 1 of the eighteenth embodiment has a configuration in which a control unit 700 is added to the plasma processing apparatus 1 of the twelfth embodiment shown in FIG. 21. The control unit 700 adjusts the value of the adjustment reactor based on the first voltage V1 of the first electrode 105a and the second voltage V2 of the second electrode 105b, for example, so that the first voltage V1 and the second voltage V2 can be equal. For example, the control unit 700 generates a first command value that adjusts the values of the variable inductors 607a and 607b as adjustment reactors based on the first voltage V1 of the first electrode 105a and the second voltage V2 of the second electrode 105b, respectively CNT1, second command value CNT2. The first command value CNT1 and the second command value CNT2 are supplied to the variable inductors 607a and 607b, respectively. The variable inductors 607a and 607b change their own inductances according to the first command value CNT1 and the second command value CNT2, respectively.

在圖30是模式性地表示本發明的第19實施形態的電漿處理裝置1的構成。第19實施形態的電漿處理裝置1是具有對於圖22所示的第13實施形態的電漿處理裝置1追加控制部700的構成。控制部700是根據第1電極105a的第1電壓V1及第2電極105b的第2電壓V2,例如,以第1電壓V1與第2電壓V2能相等的方式,將調整電抗器的值調整。例如,控制部700是根據第1電極105a的第1電壓V1及第2電極105b的第2電壓V2來產生調整作為調整電抗器的可變電感器608的值之指令值CNT。指令值CNT是被供給至可變電感器608。可變電感器608是按照指令值來變更自己的電感。FIG. 30 schematically shows the configuration of the plasma processing apparatus 1 of the nineteenth embodiment of the present invention. The plasma processing apparatus 1 of the nineteenth embodiment has a configuration in which a control unit 700 is added to the plasma processing apparatus 1 of the thirteenth embodiment shown in FIG. 22. The control unit 700 adjusts the value of the adjustment reactor based on the first voltage V1 of the first electrode 105a and the second voltage V2 of the second electrode 105b, for example, so that the first voltage V1 and the second voltage V2 can be equal. For example, the control unit 700 generates a command value CNT for adjusting the value of the variable inductor 608 as an adjustment reactor based on the first voltage V1 of the first electrode 105a and the second voltage V2 of the second electrode 105b. The command value CNT is supplied to the variable inductor 608. The variable inductor 608 changes its own inductance according to the command value.

在圖31是模式性地表示本發明的第20實施形態的電漿處理裝置1的構成。第20實施形態的電漿處理裝置1是具有對於圖23所示的第14實施形態的電漿處理裝置1追加控制部700的構成。控制部700是根據第1電極105a的第1電壓V1及第2電極105b的第2電壓V2,例如,以第1電壓V1與第2電壓V2能相等的方式,將調整電抗器的值調整。例如,控制部700是根據第1電極105a的第1電壓V1及第2電極105b的第2電壓V2來產生作為調整電抗器的調整可變電容器609的值之指令值CNT。指令值CNT是被供給至可變電容器609。可變電容器609是按照指令值CNT來變更自己的電容。FIG. 31 schematically shows the configuration of the plasma processing apparatus 1 according to the twentieth embodiment of the present invention. The plasma processing apparatus 1 of the twentieth embodiment has a configuration in which a control unit 700 is added to the plasma processing apparatus 1 of the fourteenth embodiment shown in FIG. 23. The control unit 700 adjusts the value of the adjustment reactor based on the first voltage V1 of the first electrode 105a and the second voltage V2 of the second electrode 105b, for example, so that the first voltage V1 and the second voltage V2 can be equal. For example, the control unit 700 generates a command value CNT as the value of the adjustable variable capacitor 609 for adjusting the reactor based on the first voltage V1 of the first electrode 105a and the second voltage V2 of the second electrode 105b. The command value CNT is supplied to the variable capacitor 609. The variable capacitor 609 changes its own capacitance according to the command value CNT.

在圖32是模式性地表示本發明的第21實施形態的電漿處理裝置1的構成。第21實施形態的電漿處理裝置1是可作為蝕刻基板112a、112b的蝕刻裝置動作。第21實施形態的電漿處理裝置1是第1電極105a、第2電極105b會分別保持蝕刻對象的第1基板112a、第2基板112b,第3電極141不會保持基板的點,與第8實施形態的電漿處理裝置1不同,其他的點是可具有與第8實施形態的電漿處理裝置1同樣的構成。FIG. 32 schematically shows the configuration of the plasma processing apparatus 1 of the twenty-first embodiment of the present invention. The plasma processing apparatus 1 of the 21st embodiment is operable as an etching apparatus for etching the substrates 112a and 112b. In the plasma processing apparatus 1 of the 21st embodiment, the first electrode 105a and the second electrode 105b respectively hold the first substrate 112a and the second substrate 112b to be etched, and the third electrode 141 does not hold the point of the substrate. The plasma processing apparatus 1 of the embodiment is different, and the other points are that it can have the same configuration as the plasma processing apparatus 1 of the eighth embodiment.

在1個的構成例中,電漿處理裝置1,作為影響被施加於第1電極105a的第1電壓與被施加於第2電極105b的第2電壓的關係之調整電抗器,包含:(a)被配置於連接第1平衡端子211與第1電極105a的第1路徑PTH1之可變電抗器511a、(b)被配置於第1電極105a與接地之間的可變電抗器521a、(c)被配置於連接第2平衡端子212與第2電極105b的第2路徑PTH2之可變電抗器511b、(d)被配置於第2電極105b與接地之間的可變電抗器521b、及(e)連接第1路徑PTH1與第2路徑PTH2的可變電抗器530之至少1個。In one configuration example, the plasma processing apparatus 1 includes, as an adjustment reactor that affects the relationship between the first voltage applied to the first electrode 105a and the second voltage applied to the second electrode 105b: (a ) The variable reactor 511a arranged in the first path PTH1 connecting the first balanced terminal 211 and the first electrode 105a, (b) The variable reactor 521a arranged between the first electrode 105a and ground (c) The variable reactor 511b disposed in the second path PTH2 connecting the second balanced terminal 212 and the second electrode 105b, (d) The variable reactor disposed between the second electrode 105b and the ground 521b, and (e) at least one variable reactor 530 connecting the first path PTH1 and the second path PTH2.

藉由調整影響被施加於第1電極105a的第1電壓與被施加於第2電極105b的第2電壓的關係之調整電抗器的值,可調整第1基板112a的蝕刻量分佈及第2基板112b的蝕刻量分佈。或,藉由調整影響被施加於第1電極105a的第1電壓與被施加於第2電極105b的第2電壓的關係之調整電抗器的值,可將第1基板112a的蝕刻量分佈與第2基板112b的蝕刻量分佈形成相同。By adjusting the value of the adjustment reactor that affects the relationship between the first voltage applied to the first electrode 105a and the second voltage applied to the second electrode 105b, the etching amount distribution of the first substrate 112a and the second substrate can be adjusted 112b etching amount distribution. Or, by adjusting the value of the reactor that affects the relationship between the first voltage applied to the first electrode 105a and the second voltage applied to the second electrode 105b, the distribution of the etching amount of the first substrate 112a and the second 2 The etching amount distribution of the substrate 112b is the same.

另外,在參照圖26~31說明的第15~第20實施形態中,在標靶109a、109b的對向面配置有電極,但亦可構成為不被電極限定,配置有被稱為所謂Carousel型的型式的電漿裝置的圓筒形的基板旋轉座(holder)(例如日本特開2003-1555526,特開昭62-133065)或被稱為所謂In-Line型的型式的電漿裝置的矩形形狀等的基板托盤(例如日本特許5824072、特開2011-144450)。In addition, in the fifteenth to twentieth embodiments described with reference to FIGS. 26 to 31, the electrodes are arranged on the opposing surfaces of the targets 109a and 109b, but it may be configured not to be limited by the electrodes, and the so-called Carousel is arranged. The cylindrical substrate holder of the type of plasma device (for example, Japanese Patent Laid-Open No. 2003-1555526, Japanese Patent Laid-Open No. 62-133065) or the so-called In-Line type plasma device A substrate tray of a rectangular shape or the like (for example, Japanese Patent No. 5824572, Japanese Patent Laid-Open No. 2011-144450)

在參照圖26~圖31說明的第15~第20實施形態中,控制部700是根據第1電極105a的第1電壓V1及第2電極105b的第2電壓V2來將調整電抗器的值調整。亦可取代如此的構成,構成為控制部700會根據第1電極105a的附近的電漿強度及第2電極105b的附近的電漿強度來將調整電抗器調整。第1電極105a的附近的電漿強度是可例如藉由光電變換裝置來檢測出。同樣,第2電極105b的附近的電漿強度是可例如藉由光電變換裝置來檢測出。可被構成為控制部700是根據第1電極105a的附近的電漿強度及第2電極105b的附近的電漿強度,例如,以第1電極105a的附近的電漿強度與第2電極105b的附近的電漿強度會相等的方式,將調整電抗器的值調整。In the fifteenth to twentieth embodiments described with reference to FIGS. 26 to 31, the control unit 700 adjusts the value of the adjustment reactor based on the first voltage V1 of the first electrode 105a and the second voltage V2 of the second electrode 105b . Instead of such a configuration, the control unit 700 may adjust the adjustment reactor based on the plasma strength near the first electrode 105a and the plasma strength near the second electrode 105b. The plasma strength in the vicinity of the first electrode 105a can be detected by a photoelectric conversion device, for example. Similarly, the plasma strength in the vicinity of the second electrode 105b can be detected by a photoelectric conversion device, for example. The control unit 700 may be configured based on the plasma strength near the first electrode 105a and the plasma strength near the second electrode 105b, for example, the plasma strength near the first electrode 105a and the second electrode 105b Adjust the reactor value in such a way that the nearby plasma strength will be equal.

其次,說明作為本發明的第22實施形態的電漿處理方法。作為第22實施形態的電漿處理方法是在第8~第21實施形態的任一的電漿處理裝置1中處理基板112。該電漿處理方法是可包含:以被施加於第1電極105a的第1電壓與被施加於第2電極105b的第2電壓的關係能被調整的方式將調整電抗器調整的工程、及在該工程之後處理基板112的工程。該處理是可包含:在基板112藉由濺射來形成膜的工程、或蝕刻基板112的工程。Next, a plasma processing method as the 22nd embodiment of the present invention will be described. As a plasma processing method of the 22nd embodiment, the substrate 112 is processed in the plasma processing apparatus 1 of any one of the 8th to 21st embodiments. The plasma processing method may include a process of adjusting the adjustment reactor so that the relationship between the first voltage applied to the first electrode 105a and the second voltage applied to the second electrode 105b can be adjusted, and After this process, the process of processing the substrate 112 is performed. This process may include a process of forming a film on the substrate 112 by sputtering, or a process of etching the substrate 112.

在圖33是模式性地表示本發明的第23實施形態的電漿處理裝置1的構成。第23實施形態的電漿處理裝置1是具有對於圖18所示的第9實施形態的電漿處理裝置1追加控制部700的構成。控制部700是根據第1電極105a的第1電壓V1及第2電極105b的第2電壓V2,例如,以第1電壓V1會形成第1目標值,第2電壓V2會形成第2目標值的方式,將調整電抗器的值調整。例如,控制部700是根據第1電極105a的第1電壓V1及第2電極105b的第2電壓V2,以第1電壓V1會形成第1目標值,第2電壓V2會形成第2目標值的方式,產生分別調整作為調整電抗器的可變電感器601a、601b的值之第1指令值CNT1、第2指令值CNT2。在此,第1目標值與第2目標值是亦可為彼此相等的值,或亦可被設定為第1目標值與第2目標值的差分一致於目標差分值。控制部700是可包含測定第1電極105a的電壓的第1電壓V1及第2電極105b的電壓的第2電壓V2的測定部。或,如此的測定是亦可與控制部700分開設置。FIG. 33 schematically shows the configuration of the plasma processing apparatus 1 according to the twenty-third embodiment of the present invention. The plasma processing apparatus 1 of the 23rd embodiment has a configuration in which a control unit 700 is added to the plasma processing apparatus 1 of the ninth embodiment shown in FIG. 18. The control unit 700 is based on the first voltage V1 of the first electrode 105a and the second voltage V2 of the second electrode 105b. For example, the first voltage V1 will form the first target value, and the second voltage V2 will form the second target value. Way, the value of the reactor will be adjusted. For example, the control unit 700 is based on the first voltage V1 of the first electrode 105a and the second voltage V2 of the second electrode 105b, the first target value is formed by the first voltage V1, and the second target value is formed by the second voltage V2 In this method, the first command value CNT1 and the second command value CNT2 are adjusted, which are values of the variable inductors 601a and 601b, which are adjustment reactors, respectively. Here, the first target value and the second target value may be equal to each other, or may be set such that the difference between the first target value and the second target value coincides with the target difference value. The control unit 700 is a measurement unit that may include a first voltage V1 that measures the voltage of the first electrode 105a and a second voltage V2 that of the second electrode 105b. Alternatively, such measurement may be provided separately from the control unit 700.

控制部700是產生控制阻抗匹配電路102的指令值CNT3。控制部700是在點燃電漿時,以阻抗匹配電路102成為電漿的點燃用的阻抗之方式控制阻抗匹配電路102。又,控制部700是以在電漿的點燃後電漿會安定的方式,變更阻抗匹配電路102的阻抗。在電漿安定的狀態中,阻抗匹配電路102的阻抗是匹配於電漿產生時的本體10的側的阻抗Rp-jXp(從第1平衡端子211及第2平衡端子212的側來看第1電極105a及第2電極105b的側(本體10的側)時的阻抗)。此時的阻抗匹配電路102的阻抗是Rp+jXp。The control unit 700 generates a command value CNT3 that controls the impedance matching circuit 102. The control unit 700 controls the impedance matching circuit 102 so that the impedance matching circuit 102 becomes an impedance for plasma ignition when the plasma is ignited. In addition, the control unit 700 changes the impedance of the impedance matching circuit 102 so that the plasma becomes stable after the plasma is ignited. In the state where the plasma is stable, the impedance of the impedance matching circuit 102 is matched to the impedance Rp-jXp of the side of the body 10 at the time of plasma generation (viewed from the sides of the first balanced terminal 211 and the second balanced terminal 212 Impedance at the side of the electrode 105a and the second electrode 105b (the side of the body 10). The impedance of the impedance matching circuit 102 at this time is Rp+jXp.

控制部700是例如可藉由FPGA(Field Programmable Gate Array的簡稱)等的PLD(Programmable Logic Device的簡稱),或ASIC(Application Specific Integrated Circuit的簡稱),或安裝有程式的泛用或專用的電腦,或該等的全部或一部分的組合所構成。該程式是被儲存於記憶媒體(電腦可讀記憶媒體),或可經由通訊線路提供。The control unit 700 is, for example, a PLD (short for Programmable Logic Device) such as FPGA (short for Field Programmable Gate Array), or an ASIC (short for Application Specific Integrated Circuit), or a general-purpose or dedicated computer with a program installed , Or a combination of all or part of these. The program is stored in a memory medium (computer-readable memory medium) or may be provided via a communication line.

在圖40是例示第23實施形態的電漿處理裝置1的動作。此動作是可藉由控制部700來控制。在工程S401中,控制部700是以阻抗匹配電路102的阻抗(Rpi+jXpi)被設定或變更成電漿的點燃用的阻抗(Rpi-jXpi)之方式決定指令值CNT3,將該指令值CNT3供給至阻抗匹配電路102。阻抗匹配電路102是按照指令值CNT3來設定或變更自己的阻抗。FIG. 40 illustrates the operation of the plasma processing apparatus 1 of the 23rd embodiment. This operation can be controlled by the control unit 700. In process S401, the control part 700 determines the command value CNT3 in such a manner that the impedance (Rpi+jXpi) of the impedance matching circuit 102 is set or changed to the plasma ignition resistance (Rpi-jXpi), and the command value CNT3 Supply to the impedance matching circuit 102. The impedance matching circuit 102 sets or changes its own impedance according to the command value CNT3.

然後,在工程S402(點燃工程)中,控制部700是在阻抗匹配電路102的阻抗被設定成電漿的點燃用的阻抗之狀態下,將高頻電源402起動(ON),使高頻產生。高頻電源402所產生的高頻是經由阻抗匹配電路102、巴倫103、調整電抗器(可變電感器601a、601b、電容器602a、602b)來供給至第1電極105a及第2電極105b。藉此,電漿會被點燃。Then, in the process S402 (ignition process), the control unit 700 activates (ON) the high-frequency power supply 402 in a state where the impedance of the impedance matching circuit 102 is set to the impedance for plasma ignition, causing high-frequency generation . The high frequency generated by the high-frequency power supply 402 is supplied to the first electrode 105a and the second electrode 105b through the impedance matching circuit 102, the balun 103, and the adjustment reactors (variable inductors 601a, 601b, capacitors 602a, 602b) . By this, the plasma will be ignited.

在工程S403(匹配工程)中,控制部700是以在電漿的點燃後電漿會安定的方式,變更阻抗匹配電路102的阻抗。具體而言,在工程S403中,控制部700是以電漿安定的阻抗會被設定於阻抗匹配電路700的方式決定指令值CNT3,將該指令值CNT3供給至阻抗匹配電路700。在電漿安定的狀態中,阻抗匹配電路102的阻抗是匹配於電漿產生時的本體10的側(第1電極106及第2電極111的側)的阻抗Rp-jXp。此時的阻抗匹配電路102的阻抗是Rp+jXp。另外,Rp的值是與Rpi不同,Xp的值是與Xpi不同。In the process S403 (matching process), the control unit 700 changes the impedance of the impedance matching circuit 102 in such a manner that the plasma becomes stable after the plasma is ignited. Specifically, in step S403, the control unit 700 determines the command value CNT3 such that the plasma-stabilized impedance is set in the impedance matching circuit 700, and supplies the command value CNT3 to the impedance matching circuit 700. In the state where the plasma is stable, the impedance of the impedance matching circuit 102 is matched to the impedance Rp-jXp of the side of the body 10 (the side of the first electrode 106 and the second electrode 111) at the time of plasma generation. The impedance of the impedance matching circuit 102 at this time is Rp+jXp. In addition, the value of Rp is different from Rpi, and the value of Xp is different from Xpi.

然後,在工程S404中,控制部700是取得第1電極105a的電壓V1及第2電極105b的第2電壓V2。然後,在工程S405(調整工程)中,控制部700是根據第1電極105a的電壓V1及第2電極105b的第2電壓V2,以第1電壓V1會形成第1目標值,第2電壓V2會形成第2目標值的方式,產生分別調整作為可變電抗器的可變電感器601a、601b的值之第1指令值CNT1、第2指令值CNT2。第1指令值CNT1、第2指令值CNT2是分別被供給至可變電感器601a、601b。可變電感器601a、601b是分別按照第1指令值CNT1、第2指令值CNT2來調整或變更自己的電感。Then, in step S404, the control unit 700 obtains the voltage V1 of the first electrode 105a and the second voltage V2 of the second electrode 105b. Then, in the process S405 (adjustment process), the control unit 700 is based on the voltage V1 of the first electrode 105a and the second voltage V2 of the second electrode 105b to form the first target value with the first voltage V1 and the second voltage V2 The second target value is formed so that the first command value CNT1 and the second command value CNT2 are adjusted for the values of the variable inductors 601a and 601b as variable reactors, respectively. The first command value CNT1 and the second command value CNT2 are supplied to the variable inductors 601a and 601b, respectively. The variable inductors 601a and 601b adjust or change their own inductance according to the first command value CNT1 and the second command value CNT2, respectively.

在圖41是在電漿產生於真空容器110的內部空間的狀態下,從第1平衡端子211及第2平衡端子212的側來看第1電極105a及第2電極105b的側(本體10的側)時的電抗與第1電極105a及第2電極105b的電壓的關係。此電抗是相當於前述的-XP。如圖41所例示般,第1電極105a及第2電極105b的電壓是藉由變更調整電抗器的電抗,該等之間的大小關係更換。換言之,第1電極105a及第2電極105b的電壓對於電抗的變化的變化曲線是顯示互相交叉的特性。FIG. 41 shows the side of the first electrode 105a and the second electrode 105b (the side of the body 10) from the side of the first balanced terminal 211 and the second balanced terminal 212 in a state where plasma is generated in the internal space of the vacuum container 110. Side) the relationship between the reactance and the voltage of the first electrode 105a and the second electrode 105b. This reactance is equivalent to the aforementioned -XP. As illustrated in FIG. 41, the voltages of the first electrode 105a and the second electrode 105b are adjusted by changing the reactance of the reactor, and the magnitude relationship between these is replaced. In other words, the change curve of the voltage of the first electrode 105a and the second electrode 105b with respect to the change in reactance shows the characteristic of crossing each other.

在圖41所例示的特性是例如可藉由預先實驗或計算來決定。此情況,在工程S405中,控制部700是可根據此特性與第1電極105a的電壓V1及第2電極105b的電壓V2,以第1電壓V1會形成第1目標值,第2電壓V2會形成第2目標值的方式,產生分別調整可變電感器601a、601b的值之第1指令值CNT1、第2指令值CNT2。在圖41所例示的特性未預先被決定時,在工程S405中,控制部700是可根據第1電極105a的電壓V1及第2電極105b的電壓V2來微調整第1指令值CNT1、第2指令值CNT2。The characteristics illustrated in FIG. 41 can be determined by, for example, experiments or calculations in advance. In this case, in the process S405, the control unit 700 can form the first target value with the first voltage V1 and the second voltage V2 according to this characteristic and the voltage V1 of the first electrode 105a and the voltage V2 of the second electrode 105b In order to form the second target value, the first command value CNT1 and the second command value CNT2 for adjusting the values of the variable inductors 601a and 601b, respectively, are generated. When the characteristics illustrated in FIG. 41 are not determined in advance, in step S405, the control unit 700 can finely adjust the first command value CNT1 and the second command value based on the voltage V1 of the first electrode 105a and the voltage V2 of the second electrode 105b. Command value CNT2.

然後,在工程S407中,控制部700是取得第1電極105a的電壓V1及第2電極105b的第2電壓V2。然後,在工程S408中,控制部700是判斷是否第1電壓V1形成第1目標值,第2電壓V2形成第2目標值,當第1電壓V1形成第1目標值,第2電壓V2形成第2目標值時,前進至工程S409,不是時回到工程S405。在工程S409(處理工程)中,控制部700是以基板112會被處理的方式進行控制。該控制是例如可包含控制被配置於靶109a與基板112之間的擋板(shutter)(未圖示)及被配置於靶109b與基板112之間的擋板(未圖示)的開閉。圖40所示的處理是亦可手動實行。Then, in step S407, the control unit 700 obtains the voltage V1 of the first electrode 105a and the second voltage V2 of the second electrode 105b. Then, in step S408, the control unit 700 determines whether the first voltage V1 forms the first target value, the second voltage V2 forms the second target value, and when the first voltage V1 forms the first target value, the second voltage V2 forms the first 2 When the target value is reached, proceed to project S409, and if not, return to project S405. In the process S409 (processing process), the control unit 700 performs control so that the substrate 112 will be processed. This control may include, for example, controlling the opening and closing of a shutter (not shown) arranged between the target 109a and the substrate 112 and a shutter (not shown) arranged between the target 109b and the substrate 112. The processing shown in FIG. 40 can also be performed manually.

在日本特開平2-156080號公報的圖3是記載具備高頻變壓器(Tr7)、匹配器(MB7)、真空容器(10)、第1靶(T5)、第2靶(T6)、高頻電壓產生器(OSC5)、電壓放大器(PA5)、基板夾具(21)及馬達(22)的濺射裝置。記載於日本特開平2-156080號公報的濺射裝置是配置於高頻變壓器(Tr7)與第1靶(T5)之間及高頻變壓器(Tr7)與第2靶(T7)之間的匹配器(MB7)具有可調整的電抗。FIG. 3 of Japanese Unexamined Patent Publication No. 2-15680 describes the provision of a high-frequency transformer (Tr7), a matching device (MB7), a vacuum container (10), a first target (T5), a second target (T6), and high-frequency Sputtering device for voltage generator (OSC5), voltage amplifier (PA5), substrate holder (21) and motor (22). The sputtering device described in Japanese Patent Laid-Open No. 2-15680 is arranged between the high-frequency transformer (Tr7) and the first target (T5) and the matching between the high-frequency transformer (Tr7) and the second target (T7) (MB7) has adjustable reactance.

然而,在日本特開平2-156080號公報所記載的濺射裝置的匹配器(MB7)是無法使如上述的第23實施形態的調整電抗器(可變電感器601a、601b)般動作。原因是為了阻抗匹配,匹配器(MB7)是不可缺少,若容許自由地調整匹配器(MB7)的電抗,則為了阻抗匹配,無法使用匹配器(MB7),也無法使電漿產生,也無法使電漿安定。However, the matching device (MB7) of the sputtering device described in Japanese Patent Laid-Open No. 2-15680 cannot operate as the adjustment reactors (variable inductors 601a and 601b) of the 23rd embodiment described above. The reason is that the matching device (MB7) is indispensable for impedance matching. If the reactance of the matching device (MB7) is allowed to be adjusted freely, the matching device (MB7) cannot be used for impedance matching, nor can plasma be generated, nor Stabilize the plasma.

在此,在日本特開平2-156080號公報所記載的濺射裝置中產生的電漿(P5)是可理解成在靶(T5、T6)的附近具有被稱為鞘層(sheath)的離子過多的區域及接觸於彼的主體電漿(bulk plasma)的區域。鞘層是與電容器同樣地具有負的電抗成分,主體電漿是與電感器同樣地具有正的電抗成分。該等的電抗成分是依存於產生電漿的條件之施加電力、放電壓力、電極材料等。因此,電漿的電抗是取正的值或取負的值,且其絕對值也可變化。由於在日本特開平2-156080號公報所記載的濺射裝置是不具有第23實施形態所例示般的調整電抗器,因此無法控制2個的靶(T5、T6),換言之,2個的電極的電壓之間的關係。Here, the plasma (P5) generated in the sputtering apparatus described in Japanese Patent Laid-Open No. 2-15680 is understood to have ions called sheaths near the targets (T5, T6). Too many areas and areas that are in contact with one another's bulk plasma. The sheath layer has a negative reactance component like a capacitor, and the main body plasma has a positive reactance component like an inductor. These reactance components are applied power, discharge pressure, electrode material, etc. depending on the conditions under which plasma is generated. Therefore, the reactance of the plasma is taken as a positive value or a negative value, and its absolute value can also be changed. Since the sputtering device described in Japanese Patent Laid-Open No. 2-15680 does not have the adjustment reactor as exemplified in the 23rd embodiment, it is impossible to control two targets (T5, T6), in other words, two electrodes The relationship between the voltage.

在圖34是模式性地表示本發明的第24實施形態的電漿處理裝置1的構成。第24實施形態的電漿處理裝置1是具有對於圖19所示的第10實施形態的電漿處理裝置1追加控制部700的構成。作為第24實施形態未言及的事項是可按照第23實施形態。控制部700是根據第1電極105a的第1電壓V1及第2電極105b的第2電壓V2,例如,以第1電壓V1會形成第1目標值,第2電壓V2會形成第2目標值的方式,將調整電抗器的值調整。例如,控制部700是根據第1電極105a的第1電壓V1及第2電極105b的第2電壓V2,以第1電壓V1會形成第1目標值,第2電壓V2會形成第2目標值的方式,產生分別調整作為調整電抗器的可變電容器604a、604b的值之第1指令值CNT1、第2指令值CNT2。第1指令值CNT1、第2指令值CNT2是分別被供給至可變電容器604a、604b。可變電容器604a、604b是分別按照第1指令值CNT1、第2指令值CNT2來變更自己的電容。又,控制部700是產生控制阻抗匹配電路102的指令值CNT3。控制部700是可包含測定第1電極105a的電壓的第1電壓V1及第2電極105b的電壓的第2電壓V2的測定部。或,如此的測定是亦可與控制部700分開設置。FIG. 34 schematically shows the configuration of the plasma processing apparatus 1 according to the 24th embodiment of the present invention. The plasma processing apparatus 1 of the 24th embodiment has a configuration in which a control unit 700 is added to the plasma processing apparatus 1 of the 10th embodiment shown in FIG. 19. As the matters not mentioned in the 24th embodiment, the 23rd embodiment can be followed. The control unit 700 is based on the first voltage V1 of the first electrode 105a and the second voltage V2 of the second electrode 105b. For example, the first voltage V1 will form the first target value, and the second voltage V2 will form the second target value. Way, the value of the reactor will be adjusted. For example, the control unit 700 is based on the first voltage V1 of the first electrode 105a and the second voltage V2 of the second electrode 105b, the first target value is formed by the first voltage V1, and the second target value is formed by the second voltage V2 In this method, the first command value CNT1 and the second command value CNT2, which are values for adjusting the variable capacitors 604a and 604b of the adjustment reactor, are generated. The first command value CNT1 and the second command value CNT2 are supplied to the variable capacitors 604a and 604b, respectively. The variable capacitors 604a and 604b change their capacitances according to the first command value CNT1 and the second command value CNT2, respectively. In addition, the control unit 700 generates a command value CNT3 that controls the impedance matching circuit 102. The control unit 700 is a measurement unit that may include a first voltage V1 that measures the voltage of the first electrode 105a and a second voltage V2 that of the second electrode 105b. Alternatively, such measurement may be provided separately from the control unit 700.

在圖35是模式性地表示本發明的第25實施形態的電漿處理裝置1的構成。第25實施形態的電漿處理裝置1是具有對於圖20所示的第25實施形態的電漿處理裝置1追加控制部700的構成。控制部700是根據第1電極105a的第1電壓V1及第2電極105b的第2電壓V2,例如,以第1電壓V1會形成第1目標值,第2電壓V2會形成第2目標值的方式,將調整電抗器的值調整。例如,控制部700是根據第1電極105a的第1電壓V1及第2電極105b的第2電壓V2,以第1電壓V1會形成第1目標值,第2電壓V2會形成第2目標值的方式,產生分別調整作為調整電抗器的可變電容器605a、605b的值之第1指令值CNT1、第2指令值CNT2。在此,第1目標值與第2目標值是亦可為彼此相等的值,或亦可設定為第1目標值與第2目標值的差分一致於目標差分值。第1指令值CNT1、第2指令值CNT2是分別被供給至可變電容器605a、605b。可變電容器605a、605b是分別按照第1指令值CNT1、第2指令值CNT2來變更自己的電容。控制部700是可包含測定第1電極105a的電壓的第1電壓V1及第2電極105b的電壓的第2電壓V2的測定部。或,如此的測定是亦可與控制部700分開設置。FIG. 35 schematically shows the configuration of the plasma processing apparatus 1 according to the 25th embodiment of the present invention. The plasma processing apparatus 1 of the 25th embodiment has a configuration in which a control unit 700 is added to the plasma processing apparatus 1 of the 25th embodiment shown in FIG. 20. The control unit 700 is based on the first voltage V1 of the first electrode 105a and the second voltage V2 of the second electrode 105b. For example, the first voltage V1 will form the first target value, and the second voltage V2 will form the second target value. Way, the value of the reactor will be adjusted. For example, the control unit 700 is based on the first voltage V1 of the first electrode 105a and the second voltage V2 of the second electrode 105b, the first target value is formed by the first voltage V1, and the second target value is formed by the second voltage V2 In the method, the first command value CNT1 and the second command value CNT2, which are values for adjusting the variable capacitors 605a and 605b of the adjustment reactor, are generated. Here, the first target value and the second target value may be equal to each other, or may be set such that the difference between the first target value and the second target value coincides with the target difference value. The first command value CNT1 and the second command value CNT2 are supplied to the variable capacitors 605a and 605b, respectively. The variable capacitors 605a and 605b change their capacitances according to the first command value CNT1 and the second command value CNT2, respectively. The control unit 700 is a measurement unit that may include a first voltage V1 that measures the voltage of the first electrode 105a and a second voltage V2 that of the second electrode 105b. Alternatively, such measurement may be provided separately from the control unit 700.

在圖36是模式性地表示本發明的第26實施形態的電漿處理裝置1的構成。第26實施形態的電漿處理裝置1是具有對於圖21所示的第12實施形態的電漿處理裝置1追加控制部700的構成。作為第26實施形態未言及的事項是可按照第23實施形態。控制部700是根據第1電極105a的第1電壓V1及第2電極105b的第2電壓V2,例如,以第1電壓V1會形成第1目標值,第2電壓V2會形成第2目標值的方式,將調整電抗器的值調整。例如,控制部700是根據第1電極105a的第1電壓V1及第2電極105b的第2電壓V2,以第1電壓V1會形成第1目標值,第2電壓V2會形成第2目標值的方式,產生分別調整作為調整電抗器的可變電感器607a、607b的值之第1指令值CNT1、第2指令值CNT2。第1指令值CNT1、第2指令值CNT2是分別被供給至可變電感器607a、607b。可變電感器607a、607b是分別按照第1指令值CNT1、第2指令值CNT2來變更自己的電感。又,控制部700是產生控制阻抗匹配電路102的指令值CNT3。控制部700是可包含測定第1電極105a的電壓的第1電壓V1及第2電極105b的電壓的第2電壓V2的測定部。或,如此的測定是亦可與控制部700分開設置。FIG. 36 schematically shows the configuration of the plasma processing apparatus 1 according to the twenty-sixth embodiment of the present invention. The plasma processing apparatus 1 of the twenty-sixth embodiment has a configuration in which a control unit 700 is added to the plasma processing apparatus 1 of the twelfth embodiment shown in FIG. 21. As the matters not mentioned in the 26th embodiment, the 23rd embodiment can be followed. The control unit 700 is based on the first voltage V1 of the first electrode 105a and the second voltage V2 of the second electrode 105b. For example, the first voltage V1 will form the first target value, and the second voltage V2 will form the second target value. Way, the value of the reactor will be adjusted. For example, the control unit 700 is based on the first voltage V1 of the first electrode 105a and the second voltage V2 of the second electrode 105b, the first target value is formed by the first voltage V1, and the second target value is formed by the second voltage V2 In this method, the first command value CNT1 and the second command value CNT2 are adjusted, which are values of the variable inductors 607a and 607b, which are adjustment reactors, respectively. The first command value CNT1 and the second command value CNT2 are supplied to the variable inductors 607a and 607b, respectively. The variable inductors 607a and 607b change their own inductances according to the first command value CNT1 and the second command value CNT2, respectively. In addition, the control unit 700 generates a command value CNT3 that controls the impedance matching circuit 102. The control unit 700 is a measurement unit that may include a first voltage V1 that measures the voltage of the first electrode 105a and a second voltage V2 that of the second electrode 105b. Alternatively, such measurement may be provided separately from the control unit 700.

在圖37是模式性地表示本發明的第27實施形態的電漿處理裝置1的構成。第27實施形態的電漿處理裝置1是具有對於圖22所示的第13實施形態的電漿處理裝置1追加控制部700的構成。作為第27實施形態未言及的事項是可按照第23實施形態。控制部700是根據第1電極105a的第1電壓V1及第2電極105b的第2電壓V2,例如,以第1電壓V1會形成第1目標值,第2電壓V2會形成第2目標值的方式,將調整電抗器的值調整。例如,控制部700是根據第1電極105a的第1電壓V1及第2電極105b的第2電壓V2,以第1電壓V1會形成第1目標值,第2電壓V2會形成第2目標值的方式,產生調整作為調整電抗器的可變電感器608的值之指令值CNT。指令值CNT是被供給至可變電感器608。可變電感器608是按照指令值來變更自己的電感。又,控制部700是產生控制阻抗匹配電路102的指令值CNT3。控制部700是可包含測定第1電極105a的電壓的第1電壓V1及第2電極105b的電壓的第2電壓V2的測定部。或,如此的測定是亦可與控制部700分開設置。FIG. 37 schematically shows the configuration of the plasma processing apparatus 1 according to the twenty-seventh embodiment of the present invention. The plasma processing apparatus 1 of the 27th embodiment has a configuration in which a control unit 700 is added to the plasma processing apparatus 1 of the 13th embodiment shown in FIG. 22. As the matters not mentioned in the 27th embodiment, the 23rd embodiment can be followed. The control unit 700 is based on the first voltage V1 of the first electrode 105a and the second voltage V2 of the second electrode 105b. For example, the first voltage V1 will form the first target value, and the second voltage V2 will form the second target value. Way, the value of the reactor will be adjusted. For example, the control unit 700 is based on the first voltage V1 of the first electrode 105a and the second voltage V2 of the second electrode 105b, the first target value is formed by the first voltage V1, and the second target value is formed by the second voltage V2 In this manner, a command value CNT that is a value for adjusting the variable inductor 608 of the reactor is generated. The command value CNT is supplied to the variable inductor 608. The variable inductor 608 changes its own inductance according to the command value. In addition, the control unit 700 generates a command value CNT3 that controls the impedance matching circuit 102. The control unit 700 is a measurement unit that may include a first voltage V1 that measures the voltage of the first electrode 105a and a second voltage V2 that of the second electrode 105b. Alternatively, such measurement may be provided separately from the control unit 700.

在圖38是模式性地表示本發明的第28實施形態的電漿處理裝置1的構成。第28實施形態的電漿處理裝置1是具有對於圖23所示的第14實施形態的電漿處理裝置1追加控制部700的構成。作為第28實施形態未言及的事項是可按照第23實施形態。控制部700是根據第1電極105a的第1電壓V1及第2電極105b的第2電壓V2,例如,以第1電壓V1會形成第1目標值,第2電壓V2會形成第2目標值的方式,將調整電抗器的值調整。例如,控制部700是根據第1電極105a的第1電壓V1及第2電極105b的第2電壓V2,以第1電壓V1會形成第1目標值,第2電壓V2會形成第2目標值,產生調整作為調整電抗器的可變電容器609的值之指令值CNT。指令值CNT是被供給至可變電容器609。可變電容器609是按照指令值CNT來變更自己的電容。又,控制部700是產生控制阻抗匹配電路102的指令值CNT3。控制部700是可包含測定第1電極105a的電壓的第1電壓V1及第2電極105b的電壓的第2電壓V2的測定部。或,如此的測定是亦可與控制部700分開設置。FIG. 38 schematically shows the configuration of the plasma processing apparatus 1 according to the 28th embodiment of the present invention. The plasma processing apparatus 1 of the 28th embodiment has a configuration in which a control unit 700 is added to the plasma processing apparatus 1 of the 14th embodiment shown in FIG. 23. As the matters not mentioned in the 28th embodiment, the 23rd embodiment can be followed. The control unit 700 is based on the first voltage V1 of the first electrode 105a and the second voltage V2 of the second electrode 105b. For example, the first voltage V1 will form the first target value, and the second voltage V2 will form the second target value. Way, the value of the reactor will be adjusted. For example, based on the first voltage V1 of the first electrode 105a and the second voltage V2 of the second electrode 105b, the control unit 700 forms the first target value with the first voltage V1 and the second target value with the second voltage V2, A command value CNT that adjusts the value of the variable capacitor 609 of the reactor is generated. The command value CNT is supplied to the variable capacitor 609. The variable capacitor 609 changes its own capacitance according to the command value CNT. In addition, the control unit 700 generates a command value CNT3 that controls the impedance matching circuit 102. The control unit 700 is a measurement unit that may include a first voltage V1 that measures the voltage of the first electrode 105a and a second voltage V2 that of the second electrode 105b. Alternatively, such measurement may be provided separately from the control unit 700.

在圖39是模式性表示本發明的第29實施形態的電漿處理裝置1的構成。第29實施形態的電漿處理裝置1是可作為蝕刻基板112a、112b的蝕刻裝置動作。第29實施形態的電漿處理裝置1有關控制部700以外是可具有與第21實施形態的電漿處理裝置1同樣的構成。作為第29實施形態未言及的事項是可按照第23實施形態。FIG. 39 schematically shows the configuration of the plasma processing apparatus 1 according to the twenty-ninth embodiment of the present invention. The plasma processing apparatus 1 of the 29th embodiment can be operated as an etching apparatus for etching the substrates 112a and 112b. The plasma processing apparatus 1 of the 29th embodiment may have the same configuration as the plasma processing apparatus 1 of the 21st embodiment except for the control unit 700. The matters not mentioned in the 29th embodiment can follow the 23rd embodiment.

在1個的構成例中,電漿處理裝置1是包含:(a)被配置於連接第1平衡端子211與第1電極105a的第1路徑PTH1之可變電抗器511a、(b)被配置於第1電極105a與接地之間的可變電抗器521a、(c)被配置於連接第2平衡端子212與第2電極105b的第2路徑PTH2之可變電抗器511b、(d)被配置於第2電極105b與接地之間的可變電抗器521b、及(e)連接第1路徑PTH1與第2路徑PTH2的可變電抗器530的至少1個,作為影響被施加於第1電極105a的第1電壓與被施加於第2電極105b的第2電壓的關係之調整電抗器。In one configuration example, the plasma processing apparatus 1 includes: (a) a variable reactor 511a arranged in a first path PTH1 connecting the first balanced terminal 211 and the first electrode 105a, (b) The variable reactors 521a, (c) arranged between the first electrode 105a and the ground are arranged in the variable reactors 511b, (d of the second path PTH2 connecting the second balanced terminal 212 and the second electrode 105b ) The variable reactor 521b disposed between the second electrode 105b and the ground, and (e) at least one variable reactor 530 connecting the first path PTH1 and the second path PTH2 is applied as an influence An adjustment reactor for the relationship between the first voltage at the first electrode 105a and the second voltage applied to the second electrode 105b.

藉由調整影響被施加於第1電極105a的第1電壓與被施加於第2電極105b的第2電壓的關係之調整電抗器的值,可調整第1基板112a的蝕刻量分佈及第2基板112b的蝕刻量分佈。或,藉由調整影響被施加於第1電極105a的第1電壓與被施加於第2電極105b的第2電壓的關係之調整電抗器的值,可將第1基板112a的蝕刻量分佈與第2基板112b的蝕刻量分佈設為相同。By adjusting the value of the adjustment reactor that affects the relationship between the first voltage applied to the first electrode 105a and the second voltage applied to the second electrode 105b, the etching amount distribution of the first substrate 112a and the second substrate can be adjusted 112b etching amount distribution. Or, by adjusting the value of the reactor that affects the relationship between the first voltage applied to the first electrode 105a and the second voltage applied to the second electrode 105b, the distribution of the etching amount of the first substrate 112a and the second The etching amount distribution of the two substrates 112b is the same.

另外,參照圖33~39說明的第23~第29實施形態是在靶109a、109b的對向面配置有電極,但不限於電極,亦可被構成為配置有所謂旋轉式型的樣式的電漿裝置的圓筒形的基板旋轉座架(例如,日本特開2003-1555526、特開昭62-133065)或所謂一列式型的樣式的電漿裝置的矩形形狀等的基板托盤(例如,日本特許5824072、特開2011-144450)。In addition, in the 23rd to 29th embodiments described with reference to FIGS. 33 to 39, electrodes are arranged on the opposing surfaces of the targets 109a and 109b, but it is not limited to the electrodes, and it may be configured to arrange a so-called rotary type of electric Cylindrical substrate rotating pedestal of the plasma device (for example, Japanese Patent Application Laid-Open 2003-1555526, Japanese Patent Application Laid-Open 62-133065) or a rectangular-shaped substrate tray of a plasma device of the so-called in-line type (for example, Japan (Patent No. 5824702, Special Open 2011-144450).

在參照圖33~圖39說明的第23~第29實施形態中,控制部700是根據第1電極105a的第1電壓V1及第2電極105b的第2電壓V2來將調整電抗器的值調整。亦可取代如此的構成,構成為控制部700是根據第1電極105a的附近的電漿強度及第2電極105b的附近的電漿強度來將調整電抗器調整。第1電極105a的附近的電漿強度是可例如藉由光電變換裝置來檢測出。同樣,第2電極105b的附近的電漿強度是可例如藉由光電變換裝置來檢測出。可被構成為控制部700是根據第1電極105a的附近的電漿強度及第2電極105b的附近的電漿強度,例如,以第1電極105a的附近的電漿強度與第2電極105b的附近的電漿強度會相等的方式,將調整電抗器的值調整。In the 23rd to 29th embodiments described with reference to FIGS. 33 to 39, the control unit 700 adjusts the value of the adjustment reactor based on the first voltage V1 of the first electrode 105a and the second voltage V2 of the second electrode 105b . Instead of such a configuration, the control unit 700 is configured to adjust the adjustment reactor based on the plasma strength near the first electrode 105a and the plasma strength near the second electrode 105b. The plasma strength in the vicinity of the first electrode 105a can be detected by a photoelectric conversion device, for example. Similarly, the plasma strength in the vicinity of the second electrode 105b can be detected by a photoelectric conversion device, for example. The control unit 700 may be configured based on the plasma strength near the first electrode 105a and the plasma strength near the second electrode 105b, for example, the plasma strength near the first electrode 105a and the second electrode 105b Adjust the reactor value in such a way that the nearby plasma strength will be equal.

在圖42是模式性地表示本發明的第30實施形態的電漿處理裝置1的構成。第30實施形態的電漿處理裝置是可作為藉由濺射來將膜形成於基板112的濺射裝置動作。作為第30實施形態的電漿處理裝置1未言及的事項是可按照第1~第29實施形態。第30實施形態的電漿處理裝置1是具備巴倫(第1巴倫)103、真空容器110、第1電極105a及第2電極105b。或,亦可理解為電漿處理裝置1是具備巴倫103及本體10,本體10具備真空容器110、第1電極105a及第2電極105b者。本體10是具有第1端子251及第2端子252。FIG. 42 schematically shows the configuration of the plasma processing apparatus 1 according to the thirtieth embodiment of the present invention. The plasma processing apparatus of the 30th embodiment can operate as a sputtering apparatus that forms a film on the substrate 112 by sputtering. What is not mentioned as the plasma processing apparatus 1 of the 30th embodiment is that the first to 29th embodiments can be followed. The plasma processing apparatus 1 of the 30th embodiment includes a balun (first balun) 103, a vacuum container 110, a first electrode 105a, and a second electrode 105b. Or, it may be understood that the plasma processing apparatus 1 includes a balun 103 and a body 10, and the body 10 includes a vacuum container 110, a first electrode 105a, and a second electrode 105b. The body 10 has a first terminal 251 and a second terminal 252.

第1電極105a是可具有保持作為第1構件的第1靶109a的第1保持面HS1,第2電極105b是可具有保持作為第2構件的第2靶109b的第2保持面HS2。第1保持面HS1及第2保持面HS2是可屬於1個的平面PL。The first electrode 105a can have a first holding surface HS1 that can hold a first target 109a as a first member, and the second electrode 105b can have a second holding surface HS2 that can hold a second target 109b as a second member. The first holding surface HS1 and the second holding surface HS2 are planes PL that can belong to one.

第30實施形態的電漿處理裝置1是亦可更具備第2巴倫303、第3電極141及第4電極145。換言之,電漿處理裝置1是可具備第1巴倫103、第2巴倫303、真空容器110、第1電極105a、第2電極105b、第3電極141及第4電極145。或,亦可理解為電漿處理裝置1是具備第1巴倫103、第2巴倫303及本體10,本體10具備真空容器110、第1電極105a、第2電極105b、第3電極141及第4電極145者。本體10是具有第1端子251、第2端子252、第3端子451、第4端子452。The plasma processing apparatus 1 of the 30th embodiment may further include the second balun 303, the third electrode 141, and the fourth electrode 145. In other words, the plasma processing apparatus 1 may include the first balun 103, the second balun 303, the vacuum container 110, the first electrode 105a, the second electrode 105b, the third electrode 141, and the fourth electrode 145. Or, it can be understood that the plasma processing apparatus 1 includes a first balun 103, a second balun 303, and a body 10, and the body 10 includes a vacuum container 110, a first electrode 105a, a second electrode 105b, and a third electrode 141 and The fourth electrode 145. The body 10 has a first terminal 251, a second terminal 252, a third terminal 451, and a fourth terminal 452.

第1巴倫103是具有第1不平衡端子201、第2不平衡端子202、第1平衡端子211及第2平衡端子212。在第1巴倫103的第1不平衡端子201及第2不平衡端子202的側是連接不平衡電路,在第1巴倫103的第1平衡端子211及第2平衡端子212的側是連接平衡電路。第2巴倫303是可具有與第1巴倫103同樣的構成。第2巴倫303是具有第3不平衡端子401、第4不平衡端子402、第3平衡端子411及第4平衡端子412。在第2巴倫303的第3不平衡端子401及第4不平衡端子402的側是連接不平衡電路,在第2巴倫303的第3平衡端子411及第4平衡端子412的側是連接平衡電路。真空容器110是被接地。巴倫103、303是例如可具有記載於圖2A、2B(圖14)的構成。The first balun 103 has a first unbalanced terminal 201, a second unbalanced terminal 202, a first balanced terminal 211, and a second balanced terminal 212. An unbalanced circuit is connected to the first unbalanced terminal 201 and the second unbalanced terminal 202 of the first balun 103, and to the side of the first balanced terminal 211 and the second balanced terminal 212 of the first balun 103 Balanced circuit. The second balun 303 may have the same configuration as the first balun 103. The second balun 303 has a third unbalanced terminal 401, a fourth unbalanced terminal 402, a third balanced terminal 411, and a fourth balanced terminal 412. An unbalanced circuit is connected to the side of the third unbalanced terminal 401 and the fourth unbalanced terminal 402 of the second balun 303, and to the side of the third balanced terminal 411 and the fourth balanced terminal 412 of the second balun 303 Balanced circuit. The vacuum container 110 is grounded. The baluns 103 and 303 can have the structures described in FIGS. 2A and 2B (FIG. 14), for example.

第1電極105a是保持第1靶109a,經由第1靶109a來與處理對象的基板112的側的空間對向。第2電極105b是配置於第1電極105a的旁邊,保持第2靶109b,經由第2靶109b來與處理對象的基板112的側的空間對向。靶109a及109b是例如可為絕緣體材料或導電體材料。第1電極105a是被電性連接至第1巴倫103的第1平衡端子211,第2電極105b是被電性連接至第1巴倫103的第2平衡端子212。The first electrode 105a holds the first target 109a and faces the space on the side of the substrate 112 to be processed via the first target 109a. The second electrode 105b is disposed beside the first electrode 105a, holds the second target 109b, and faces the space on the side of the substrate 112 to be processed via the second target 109b. The targets 109a and 109b are, for example, insulator materials or conductor materials. The first electrode 105 a is the first balanced terminal 211 electrically connected to the first balun 103, and the second electrode 105 b is the second balanced terminal 212 electrically connected to the first balun 103.

第3電極141是保持基板112。第4電極145是可配置於第3電極141的周圍。第3電極141是被電性連接至第2巴倫303的第1平衡端子411,第4電極145是電性連接至第2巴倫303的第2平衡端子412。The third electrode 141 is the holding substrate 112. The fourth electrode 145 can be arranged around the third electrode 141. The third electrode 141 is the first balanced terminal 411 electrically connected to the second balun 303, and the fourth electrode 145 is the second balanced terminal 412 electrically connected to the second balun 303.

上述的構成是可理解為第1電極105a被電性連接至第1端子251,第2電極105b被電性連接至第2端子252,第1端子251被電性連接至第1巴倫103的第1平衡端子211,第2端子252被電性連接至第1巴倫103的第2平衡端子212的構成。又,上述的構成是可被理解為第3電極141被電性連接至第3端子451,第4電極145被電性連接至第4端子452,第3端子451被電性連接至第2巴倫303的第1平衡端子411,第4端子452被電性連接至第2巴倫303的第2平衡端子412者。The above configuration is understood that the first electrode 105a is electrically connected to the first terminal 251, the second electrode 105b is electrically connected to the second terminal 252, and the first terminal 251 is electrically connected to the first balun 103 The first balanced terminal 211 and the second terminal 252 are electrically connected to the second balanced terminal 212 of the first balun 103. In addition, the above-mentioned configuration can be understood that the third electrode 141 is electrically connected to the third terminal 451, the fourth electrode 145 is electrically connected to the fourth terminal 452, and the third terminal 451 is electrically connected to the second bar The first balanced terminal 411 and the fourth terminal 452 of the lun 303 are electrically connected to the second balanced terminal 412 of the second balun 303.

第1電極105a與第1巴倫103的第1平衡端子211(第1端子251)是可藉由第1路徑PTH1來電性連接。在第1路徑PTH1是可配置有電抗511a。換言之,第1電極105a與第1巴倫103的第1平衡端子211(第1端子251)是可經由電抗511a來電性連接。電抗511a是可包含電容器,該電容器是在第1巴倫103的第1平衡端子211與第1電極105a之間(或第1巴倫103的第1平衡端子211與第2平衡端子212之間)可作為遮斷直流電流的阻塞電容器機能。第2電極105b與第1巴倫103的第2平衡端子212(第2端子252)是可藉由第2路徑PTH2來電性連接。在第2路徑PTH2是可配置電抗511b。換言之,第2電極105b與第1巴倫103的第2平衡端子212(第3端子252)是可經由電抗511b來電性連接。電抗511b是可包含電容器,該電容器是在第1巴倫103的第2平衡端子212與第2電極105b之間(或第1巴倫103的第1平衡端子211與第2平衡端子212之間)可作為遮斷直流電流的阻塞電容器機能。第1電極105a、第2電極105b是可分別隔著絕緣體132a、132b來藉由真空容器110所支撐。The first electrode 105a and the first balanced terminal 211 (first terminal 251) of the first balun 103 can be electrically connected via the first path PTH1. Reactance 511a can be arranged in the first path PTH1. In other words, the first electrode 105a and the first balanced terminal 211 (first terminal 251) of the first balun 103 can be electrically connected via the reactance 511a. The reactance 511a may include a capacitor between the first balanced terminal 211 of the first balun 103 and the first electrode 105a (or between the first balanced terminal 211 and the second balanced terminal 212 of the first balun 103 ) Can be used as a blocking capacitor function to interrupt DC current. The second electrode 105b and the second balanced terminal 212 (second terminal 252) of the first balun 103 can be electrically connected via the second path PTH2. Reactance 511b is configurable in the second path PTH2. In other words, the second electrode 105b and the second balanced terminal 212 (third terminal 252) of the first balun 103 can be electrically connected via the reactance 511b. The reactance 511b may include a capacitor between the second balanced terminal 212 of the first balun 103 and the second electrode 105b (or between the first balanced terminal 211 and the second balanced terminal 212 of the first balun 103 ) Can be used as a blocking capacitor function to interrupt DC current. The first electrode 105a and the second electrode 105b can be supported by the vacuum container 110 via insulators 132a and 132b, respectively.

電漿處理裝置1是可具備配置於第1電極105a與接地之間的電抗521a。電漿處理裝置1是可具備配置於第2電極105b與接地之間的電抗521b。電漿處理裝置1是可具備連接第1路徑PTH1與第2路徑PTH2的電抗530。The plasma processing apparatus 1 may include a reactance 521a disposed between the first electrode 105a and the ground. The plasma processing apparatus 1 may include a reactance 521b disposed between the second electrode 105b and the ground. The plasma processing apparatus 1 may include a reactance 530 connecting the first path PTH1 and the second path PTH2.

在1個的構成例中,電漿處理裝置1是包含:(a)被配置於連接第1平衡端子211與第1電極105a的第1路徑PTH1之電抗511a、(b)被配置於第1電極105a與接地之間的電抗521a、(c)被配置於連接第2平衡端子212與第2電極105b的第2路徑PTH2之電抗511b、(d)被配置於第2電極105b與接地之間的電抗521b、及(e)連接第1路徑PTH1與第2路徑PTH2的電抗530的至少1個,作為影響被施加於第1電極105a的第1電壓與被施加於第2電極105b的第2電壓的關係。In one configuration example, the plasma processing apparatus 1 includes: (a) a reactance 511a disposed in the first path PTH1 connecting the first balanced terminal 211 and the first electrode 105a, and (b) disposed in the first Reactances 521a and (c) between electrode 105a and ground are arranged between reactance 511b and (d) of second path PTH2 connecting second balanced terminal 212 and second electrode 105b between second electrode 105b and ground At least one of the reactance 521b and (e) the reactance 530 connecting the first path PTH1 and the second path PTH2, as the first voltage applied to the first electrode 105a and the second voltage applied to the second electrode 105b Voltage relationship.

第3電極141與第2巴倫303的第1平衡端子411(第3端子451)是可經由阻塞電容器304來電性連接。阻塞電容器304是在第2巴倫303的第1平衡端子411與第3電極141之間(或第2巴倫303的第1平衡端子411與第2平衡端子412之間)遮斷直流電流。亦可構成為第2阻抗匹配電路302會遮斷流動於第2巴倫303的第1不平衡端子401與第2不平衡端子402之間的直流電流,取代設置阻塞電容器304。第3電極141、第4電極145是可分別隔著絕緣體142、146來藉由真空容器110所支撐。The third electrode 141 and the first balanced terminal 411 (third terminal 451) of the second balun 303 can be electrically connected via the blocking capacitor 304. The blocking capacitor 304 blocks the direct current between the first balanced terminal 411 and the third electrode 141 of the second balun 303 (or between the first balanced terminal 411 and the second balanced terminal 412 of the second balun 303). Alternatively, the second impedance matching circuit 302 may block the DC current flowing between the first unbalanced terminal 401 and the second unbalanced terminal 402 of the second balun 303, instead of providing the blocking capacitor 304. The third electrode 141 and the fourth electrode 145 can be supported by the vacuum container 110 via insulators 142 and 146, respectively.

電漿處理裝置1是可具備產生被供給至第1不平衡端子201與第2不平衡端子202之間的高頻之第1高頻電源101。高頻電源101是可變更被供給至第1不平衡端子201與第2不平衡端子202之間的高頻的頻率。藉由變更該頻率,可調整被施加於第1電極105a的第1電壓及被施加於第2電極105b的第2電壓。或,藉由變更該頻率,可調整被施加於第1電極105a的第1電壓與被施加於第2電極105b的第2電壓的關係。The plasma processing apparatus 1 may be provided with a first high-frequency power source 101 that generates high frequencies supplied between the first unbalanced terminal 201 and the second unbalanced terminal 202. The high-frequency power supply 101 can change the frequency of high-frequency supplied between the first unbalanced terminal 201 and the second unbalanced terminal 202. By changing the frequency, the first voltage applied to the first electrode 105a and the second voltage applied to the second electrode 105b can be adjusted. Or, by changing the frequency, the relationship between the first voltage applied to the first electrode 105a and the second voltage applied to the second electrode 105b can be adjusted.

因此,藉由調整該頻率,可調整第1靶109a所濺射的量與第2靶109b所濺射的量的關係。或,藉由調整該頻率,可調整第1靶109a所濺射的量與第2靶109b所濺射的量的平衡。藉由,可調整第1靶109a的消費量與第2靶109b的消費量的關係。或,可調整第1靶109a的消費量與第2靶109b的消費量的平衡。如此的構成是例如有利為了將第1靶109a的更換時機與第2靶109b的更換時機設為相同時機,減低電漿處理裝置1的停機時間。又,藉由調整該頻率,亦可調整被形成於基板112的膜的厚度分佈。Therefore, by adjusting the frequency, the relationship between the amount of sputtering of the first target 109a and the amount of sputtering of the second target 109b can be adjusted. Or, by adjusting the frequency, the balance between the amount of sputtering of the first target 109a and the amount of sputtering of the second target 109b can be adjusted. By this, the relationship between the consumption of the first target 109a and the consumption of the second target 109b can be adjusted. Alternatively, the balance between the consumption of the first target 109a and the consumption of the second target 109b can be adjusted. Such a configuration is advantageous, for example, in order to set the replacement timing of the first target 109 a and the replacement timing of the second target 109 b to the same timing, and to reduce the downtime of the plasma processing apparatus 1. Furthermore, by adjusting the frequency, the thickness distribution of the film formed on the substrate 112 can also be adjusted.

電漿處理裝置1是可更具備配置於第1高頻電源101與第1巴倫103之間的第1阻抗匹配電路102。第1高頻電源101是經由第1阻抗匹配電路102、第1巴倫103及第1路徑PTH1來供給高頻至第1電極105a與第2電極105b之間。或,第1高頻電源101是經由第1阻抗匹配電路102、第1巴倫103來供給高頻至本體10的第1端子251與第2端子252之間。第1巴倫103以及第1電極105a及第2電極105b是構成供給高頻至真空容器110的內部空間的第1高頻供給部。The plasma processing apparatus 1 may further include a first impedance matching circuit 102 disposed between the first high-frequency power source 101 and the first balun 103. The first high-frequency power supply 101 supplies high-frequency between the first electrode 105a and the second electrode 105b via the first impedance matching circuit 102, the first balun 103, and the first path PTH1. Or, the first high-frequency power source 101 supplies high-frequency between the first terminal 251 and the second terminal 252 of the body 10 via the first impedance matching circuit 102 and the first balun 103. The first balun 103, the first electrode 105a, and the second electrode 105b constitute a first high-frequency supply unit that supplies high-frequency to the internal space of the vacuum container 110.

電漿處理裝置1是可具備第2高頻電源301、及配置於第2高頻電源301與第2巴倫303之間的第2阻抗匹配電路302。第2高頻電源301是經由第2阻抗匹配電路302來供給高頻至第2巴倫303的第1不平衡端子401與第2不平衡端子402之間。第2高頻電源301是經由第2阻抗匹配電路302、第2巴倫303及阻塞電容器304來供給高頻至第3電極141與第4電極145之間。或,第2高頻電源301是經由第2阻抗匹配電路302、第2巴倫303來供給高頻至本體10的第3端子451與第4端子452之間。第2巴倫303以及第3電極141及第4電極145是構成供給高頻至真空容器110的內部空間的第2高頻供給部。The plasma processing apparatus 1 may include a second high-frequency power supply 301 and a second impedance matching circuit 302 disposed between the second high-frequency power supply 301 and the second balun 303. The second high-frequency power supply 301 supplies high-frequency between the first unbalanced terminal 401 and the second unbalanced terminal 402 of the second balun 303 via the second impedance matching circuit 302. The second high-frequency power supply 301 supplies high-frequency between the third electrode 141 and the fourth electrode 145 via the second impedance matching circuit 302, the second balun 303, and the blocking capacitor 304. Or, the second high-frequency power supply 301 supplies high-frequency between the third terminal 451 and the fourth terminal 452 of the main body 10 via the second impedance matching circuit 302 and the second balun 303. The second balun 303, the third electrode 141, and the fourth electrode 145 constitute a second high-frequency supply unit that supplies high-frequency to the internal space of the vacuum container 110.

藉由來自第1高頻電源101的高頻的供給,在真空容器110的內部空間產生電漿的狀態下,將由第1巴倫103的第1平衡端子211及第2平衡端子212的側來看第1電極105a及第2電極105b的側(本體10的側)時的阻抗設為Rp1-jXp1。並且,將第1巴倫103的第1線圈221的阻抗的電抗成分(電感成分)設為X1。在此定義中,符合1.5≦X1/Rp1≦5000是特別有利於為了使形成於真空容器110的內部空間的電漿的電位安定。但,符合1.5≦X/Rp1≦5000的條件,在第30實施形態中不是必須,為有利的條件想要被留意。在第30實施形態中,藉由設置巴倫103,要比不設巴倫103的情況亦可使電漿的電位安定。又,藉由設置可變更產生的高頻的頻率的高頻電源101,可調整第1靶109a所濺射的量與第2靶109b所濺射的量的關係。With the supply of high frequency from the first high-frequency power source 101, in the state where plasma is generated in the internal space of the vacuum vessel 110, the side of the first balanced terminal 211 and the second balanced terminal 212 of the first balun 103 will come The impedance when looking at the side of the first electrode 105a and the second electrode 105b (the side of the body 10) is set to Rp1-jXp1. Furthermore, let the reactance component (inductance component) of the impedance of the first coil 221 of the first balun 103 be X1. In this definition, compliance with 1.5≦X1/Rp1≦5000 is particularly advantageous in order to stabilize the potential of the plasma formed in the internal space of the vacuum container 110. However, meeting the condition of 1.5≦X/Rp1≦5000 is not necessary in the 30th embodiment, and it is desirable to pay attention to favorable conditions. In the 30th embodiment, by providing the balun 103, the potential of the plasma can be stabilized compared to the case without the balun 103. Furthermore, by providing a high-frequency power source 101 that can change the frequency of the generated high frequency, the relationship between the amount of sputtering of the first target 109a and the amount of sputtering of the second target 109b can be adjusted.

又,藉由來自第2高頻電源301的高頻的供給,在真空容器110的內部空間產生電漿的狀態下,將由第2巴倫303的第1平衡端子411及第2平衡端子412的側來看第3電極141及第4電極145的側(本體10的側)時的阻抗設為Rp2-jXp2。並且,將第2巴倫303的第1線圈221的阻抗的電抗成分(電感成分)設為X2。在此定義中,符合1.5≦X2/Rp2≦5000是特別有利於為了使被形成於真空容器110的內部空間的電漿的電位安定。但,符合1.5≦X/Rp2≦5000的條件,在第30實施形態中不是必須,為有利的條件想要被留意。In addition, with the supply of high frequency from the second high-frequency power supply 301, in the state where plasma is generated in the internal space of the vacuum vessel 110, the first balanced terminal 411 and the second balanced terminal 412 of the second balun 303 The impedance when viewing the side of the third electrode 141 and the fourth electrode 145 (the side of the body 10) is Rp2-jXp2. Furthermore, let the reactance component (inductance component) of the impedance of the first coil 221 of the second balun 303 be X2. In this definition, compliance with 1.5≦X2/Rp2≦5000 is particularly advantageous for stabilizing the potential of the plasma formed in the internal space of the vacuum container 110. However, satisfying the condition of 1.5≦X/Rp2≦5000 is not necessary in the 30th embodiment, and it is desirable to pay attention to favorable conditions.

以下,一邊參照圖43~圖48,一邊說明將第29實施形態的電漿處理裝置1具體化的第31~第34實施形態。在圖43是模式性地表示本發明的第31實施形態的電漿處理裝置1的構成。作為第31實施形態未言及的事項是可按照第30實施形態。第31實施形態的電漿處理裝置1是包含配置於第1路徑PTH1的電抗511a及配置於第2路徑PTH2的電抗511b的至少1個。在此,電漿處理裝置1是包含配置於第1路徑PTH1的電抗511a及配置於第2路徑PTH2的電抗511b的雙方為理想。Hereinafter, the 31st to 34th embodiments in which the plasma processing apparatus 1 of the 29th embodiment is embodied will be described with reference to FIGS. 43 to 48. FIG. 43 schematically shows the configuration of the plasma processing apparatus 1 according to the thirty-first embodiment of the present invention. As the matters not mentioned in the 31st embodiment, it is possible to follow the 30th embodiment. The plasma processing apparatus 1 of the 31st embodiment includes at least one reactance 511a disposed in the first path PTH1 and a reactance 511b disposed in the second path PTH2. Here, it is preferable that the plasma processing apparatus 1 includes both the reactance 511a disposed in the first path PTH1 and the reactance 511b disposed in the second path PTH2.

第1電抗511a是可包含電感器601a及電容器602a。電感器601a是亦可配置於第1平衡端子211(第1端子251)與電容器602a之間,亦可配置於電容器602a與第1電極105a之間。第2電抗511b是可包含電感器601b及電容器602b。電感器601b是亦可配置於第2平衡端子212(第2端子252)與電容器602b之間,亦可配置於電容器602b與第2電極105b之間。The first reactance 511a may include an inductor 601a and a capacitor 602a. The inductor 601a may be disposed between the first balanced terminal 211 (first terminal 251) and the capacitor 602a, or may be disposed between the capacitor 602a and the first electrode 105a. The second reactance 511b may include an inductor 601b and a capacitor 602b. The inductor 601b may be disposed between the second balanced terminal 212 (second terminal 252) and the capacitor 602b, or may be disposed between the capacitor 602b and the second electrode 105b.

在圖47是表示在第31實施形態的電漿處理裝置1中,將高頻電源101所產生的高頻的頻率設定於12.56MHz時被形成於基板112的膜之被正規化的厚度分佈。又,在圖47是表示在第31實施形態的電漿處理裝置1中,將高頻電源101所產生的高頻的頻率設定於13.56MHz時被形成於基板112的膜之被正規化的厚度分佈。橫軸是圖43的橫方向(與基板112的表面平行的方向)的位置,表示離基板112的中心的距離。當高頻電源101所產生的高頻的頻率為12.56MHz時,在基板112的中心的左側及右側,膜的厚度分佈大不同。另一方面,當高頻電源101所產生的高頻的頻率為13.56MHz時,在基板112的中心的左側及右側,膜的厚度分佈的對稱性高。高頻電源101所產生的高頻的頻率為13.56MHz時,給予第1電極105a的第1電壓與給予第2電極105b的第2電壓的平衡,要比高頻電源101所產生的高頻的頻率為12.56MHz時更佳。FIG. 47 shows the normalized thickness distribution of the film formed on the substrate 112 when the frequency of the high frequency generated by the high-frequency power source 101 is set to 12.56 MHz in the plasma processing apparatus 1 of the 31st embodiment. 47 shows the normalized thickness of the film formed on the substrate 112 when the frequency of the high frequency generated by the high-frequency power source 101 is set to 13.56 MHz in the plasma processing apparatus 1 of the 31st embodiment. distributed. The horizontal axis is the position in the horizontal direction (the direction parallel to the surface of the substrate 112) of FIG. 43 and represents the distance from the center of the substrate 112. When the frequency of the high frequency generated by the high-frequency power source 101 is 12.56 MHz, the thickness distribution of the film differs greatly on the left and right sides of the center of the substrate 112. On the other hand, when the frequency of the high frequency generated by the high-frequency power source 101 is 13.56 MHz, the symmetry of the thickness distribution of the film is high on the left and right sides of the center of the substrate 112. When the frequency of the high frequency generated by the high-frequency power source 101 is 13.56 MHz, the balance between the first voltage applied to the first electrode 105a and the second voltage applied to the second electrode 105b is higher than that generated by the high-frequency power source 101. The frequency is better at 12.56MHz.

在圖48是例示在第30實施形態的電漿處理裝置1中,使高頻電源101所產生的高頻的頻率變化時的第1電極105a的電壓(第1電壓)及第2電極105b的電壓(第2電壓)。藉由使高頻電源101所產生的高頻的頻率變化,可調整第1電極105a的電壓(第1電壓)及第2電極105b的電壓(第2電壓)。或,藉由使高頻電源101所產生的高頻的頻率變化,可調整第1電極105a的電壓(第1電壓)與第2電極105b的電壓(第2電壓)的關係。例如,高頻電源101所產生的高頻的頻率是可被調整為第1電極105a的電壓(第1電壓)與第2電極105b的電壓(第2電壓)形成相等。藉此,可將第1靶109a所濺射的量與第2靶109b所濺射的量設為相同。這例如有利為了將第1靶109a的更換時機與第2靶109b的更換時機設為相同時機,減低電漿處理裝置1的停機時間。FIG. 48 illustrates the voltage of the first electrode 105a (first voltage) and the second electrode 105b when the frequency of the high frequency generated by the high-frequency power source 101 is changed in the plasma processing apparatus 1 of the 30th embodiment. Voltage (second voltage). By changing the frequency of the high frequency generated by the high-frequency power supply 101, the voltage of the first electrode 105a (first voltage) and the voltage of the second electrode 105b (second voltage) can be adjusted. Alternatively, by changing the frequency of the high frequency generated by the high-frequency power source 101, the relationship between the voltage of the first electrode 105a (first voltage) and the voltage of the second electrode 105b (second voltage) can be adjusted. For example, the frequency of the high frequency generated by the high-frequency power source 101 can be adjusted so that the voltage of the first electrode 105a (first voltage) and the voltage of the second electrode 105b (second voltage) are equal. With this, the amount of sputtering of the first target 109a and the amount of sputtering of the second target 109b can be made the same. This is advantageous, for example, in order to set the replacement timing of the first target 109 a and the replacement timing of the second target 109 b to the same timing, and to reduce the downtime of the plasma processing apparatus 1.

在圖44是模式性地表示本發明的第32實施形態的電漿處理裝置1的構成。作為第32實施形態未言及的事項是可按照第30實施形態。第32實施形態的電漿處理裝置1是具備配置於第1電極105a與接地之間的電抗521a及配置於第2電極105b與接地之間的電抗521b的至少1個。電抗521a是例如可包含電感器607a及電容器606a。電抗521b是例如可包含電感器607b及電容器606b。FIG. 44 schematically shows the configuration of the plasma processing apparatus 1 according to the 32nd embodiment of the present invention. The matters not mentioned in the 32nd embodiment are the 30th embodiment. The plasma processing apparatus 1 of the 32nd embodiment is provided with at least one reactance 521a disposed between the first electrode 105a and the ground and a reactance 521b disposed between the second electrode 105b and the ground. The reactance 521a may include, for example, an inductor 607a and a capacitor 606a. Reactance 521b may include inductor 607b and capacitor 606b, for example.

電漿處理裝置1是可更具備配置於第1路徑PTH1的電抗511a(在此例是電感器603a、電容器602a)及配置於第2路徑PTH2的電抗511b(在此例是電感器603b、電容器602b)。The plasma processing apparatus 1 may further include a reactance 511a (in this example, an inductor 603a and a capacitor 602a) arranged in the first path PTH1 and a reactance 511b (in this example, an inductor 603b and a capacitor arranged in the second path PTH2 602b).

在圖45是模式性地表示本發明的第33實施形態的電漿處理裝置1的構成。作為第33實施形態未言及的事項是可按照第30實施形態。第33實施形態的電漿處理裝置1是具備作為連接第1路徑PTH1與第2路徑PTH2的電抗530之電感器608。電漿處理裝置1是可更具備配置於第1路徑PTH1的電抗511a(在此例是電感器603a、電容器602a)及配置於第2路徑PTH2的電抗511b(在此例是電感器603b、電容器602b)。FIG. 45 schematically shows the configuration of the plasma processing apparatus 1 according to the 33rd embodiment of the present invention. As the matters not mentioned in the 33rd embodiment, the 30th embodiment can be used. The plasma processing apparatus 1 of the 33rd embodiment is an inductor 608 provided with a reactance 530 connecting the first path PTH1 and the second path PTH2. The plasma processing apparatus 1 may further include a reactance 511a (in this example, an inductor 603a and a capacitor 602a) arranged in the first path PTH1 and a reactance 511b (in this example, an inductor 603b and a capacitor arranged in the second path PTH2 602b).

在圖46是模式性地表示本發明的第33實施形態的電漿處理裝置1的構成。作為第33實施形態未言及的事項是可按照第30實施形態。第33實施形態的電漿處理裝置1是具備作為連接第1路徑PTH1與第2路徑PTH2的可變電抗器530之電容器609。電漿處理裝置1是可更具備配置於第1路徑PTH1的電抗511a(在此例是電感器603a、電容器602a)及配置於第2路徑PTH2的電抗511b(在此例是電感器603b、電容器602b)。FIG. 46 schematically shows the configuration of the plasma processing apparatus 1 according to the 33rd embodiment of the present invention. As the matters not mentioned in the 33rd embodiment, the 30th embodiment can be used. The plasma processing apparatus 1 of the 33rd embodiment is a capacitor 609 provided with a variable reactor 530 connecting the first path PTH1 and the second path PTH2. The plasma processing apparatus 1 may further include a reactance 511a (in this example, an inductor 603a and a capacitor 602a) arranged in the first path PTH1 and a reactance 511b (in this example, an inductor 603b and a capacitor arranged in the second path PTH2 602b).

另外,參照圖43~圖48說明的第30~第33實施形態是在靶109a、109b的對向面配置有電極,但不限於電極,亦可被構成為配置有所謂旋轉式型的樣式的電漿裝置的圓筒形的基板旋轉座架(例如,日本特開2003-1555526、特開昭62-133065)或所謂一列式型的樣式的電漿裝置的矩形形狀等的基板托盤(例如,日本特許5824072、特開2011-144450)。In addition, in the 30th to 33rd embodiments described with reference to FIGS. 43 to 48, electrodes are arranged on the opposing surfaces of the targets 109a and 109b, but the electrodes are not limited to the above, and may be configured to be arranged in a so-called rotary type. Cylindrical substrate rotating pedestal of plasma device (for example, Japanese Patent Laid-Open No. 2003-1555526, Japanese Patent Laid-Open No. 62-133065) or a rectangular-shaped substrate tray of plasma device of so-called in-line type (for example, (Japanese Patent No. 5824702, Japanese Patent Application No. 2011-144450).

以下,一邊參照圖49~圖53,一邊說明根據第1電極105a的第1電壓V1及第2電極105b的第2電壓V2來將高頻電源101所產生的高頻的頻率調整的動作。在圖49是模式性地表示本發明的第35實施形態的電漿處理裝置1的構成。第35實施形態的電漿處理裝置1是具有對於圖43所示的第31實施形態的電漿處理裝置1追加控制部700的構成。控制部700是根據第1電極105a的第1電壓V1及第2電極105b的第2電壓V2,例如,以第1電壓V1與第2電壓V2形成相等的方式,調整高頻電源101所產生的高頻的頻率。例如,控制部700是根據第1電極105a的第1電壓V1及第2電極105b的第2電壓V2,以調整電抗器的值會變化的方式,產生調整高頻電源101所產生的高頻的頻率之指令值CNT。指令值CNT是被供給至高頻電源101。高頻電源101是按照指令值CNT來變更自己所產生的高頻的頻率。控制部700是可包含測定第1電極105a的電壓的第1電壓V1及第2電極105b的電壓的第2電壓V2的測定部。或,如此的測定是亦可與控制部700分開設置。Hereinafter, the operation of adjusting the frequency of the high frequency generated by the high-frequency power supply 101 based on the first voltage V1 of the first electrode 105a and the second voltage V2 of the second electrode 105b will be described with reference to FIGS. 49-53. FIG. 49 schematically shows the configuration of the plasma processing apparatus 1 according to the 35th embodiment of the present invention. The plasma processing apparatus 1 of the 35th embodiment has a configuration in which the control unit 700 is added to the plasma processing apparatus 1 of the 31st embodiment shown in FIG. 43. The control unit 700 adjusts the high-frequency power supply 101 based on the first voltage V1 of the first electrode 105a and the second voltage V2 of the second electrode 105b, for example, such that the first voltage V1 and the second voltage V2 are equal High frequency. For example, the control unit 700 generates a high frequency adjusted by the high-frequency power source 101 such that the value of the adjustment reactor changes based on the first voltage V1 of the first electrode 105a and the second voltage V2 of the second electrode 105b. The command value of frequency CNT. The command value CNT is supplied to the high-frequency power supply 101. The high-frequency power source 101 changes the frequency of the high-frequency generated by itself according to the command value CNT. The control unit 700 is a measurement unit that may include a first voltage V1 that measures the voltage of the first electrode 105a and a second voltage V2 that of the second electrode 105b. Alternatively, such measurement may be provided separately from the control unit 700.

在圖50是模式性地表示本發明的第36實施形態的電漿處理裝置1的構成。第36實施形態的電漿處理裝置1是具有對於圖44所示的第32實施形態的電漿處理裝置1追加控制部700的構成。控制部700是根據第1電極105a的第1電壓V1及第2電極105b的第2電壓V2,例如,以第1電壓V1與第2電壓V2形成相等的方式,調整高頻電源101所產生的高頻的頻率。例如,控制部700是根據第1電極105a的第1電壓V1及第2電極105b的第2電壓V2,以調整電抗器的值會變化的方式,產生調整高頻電源101所產生的高頻的頻率之指令值CNT。指令值CNT是被供給至高頻電源101。高頻電源101是按照指令值CNT來變更自己所產生的高頻的頻率。控制部700是可包含測定第1電極105a的電壓的第1電壓V1及第2電極105b的電壓的第2電壓V2的測定部。或,如此的測定是亦可與控制部700分開設置。FIG. 50 schematically shows the configuration of the plasma processing apparatus 1 according to the 36th embodiment of the present invention. The plasma processing apparatus 1 of the 36th embodiment has a configuration in which the control unit 700 is added to the plasma processing apparatus 1 of the 32nd embodiment shown in FIG. 44. The control unit 700 adjusts the high-frequency power supply 101 based on the first voltage V1 of the first electrode 105a and the second voltage V2 of the second electrode 105b, for example, such that the first voltage V1 and the second voltage V2 are equal High frequency. For example, the control unit 700 generates a high frequency adjusted by the high-frequency power source 101 such that the value of the adjustment reactor changes based on the first voltage V1 of the first electrode 105a and the second voltage V2 of the second electrode 105b. The command value of frequency CNT. The command value CNT is supplied to the high-frequency power supply 101. The high-frequency power source 101 changes the frequency of the high-frequency generated by itself according to the command value CNT. The control unit 700 is a measurement unit that may include a first voltage V1 that measures the voltage of the first electrode 105a and a second voltage V2 that of the second electrode 105b. Alternatively, such measurement may be provided separately from the control unit 700.

在圖51是模式性地表示本發明的第37實施形態的電漿處理裝置1的構成。第37實施形態的電漿處理裝置1是具有對於圖45所示的第33實施形態的電漿處理裝置1追加控制部700的構成。控制部700是根據第1電極105a的第1電壓V1及第2電極105b的第2電壓V2,例如,以第1電壓V1與第2電壓V2形成相等的方式,調整高頻電源101所產生的高頻的頻率。例如,控制部700是根據第1電極105a的第1電壓V1及第2電極105b的第2電壓V2,以調整電抗器的值會變化的方式,產生調整高頻電源101所產生的高頻的頻率之指令值CNT。指令值CNT是被供給至高頻電源101。高頻電源101是按照指令值CNT來變更自己所產生的高頻的頻率。控制部700是可包含測定第1電極105a的電壓的第1電壓V1及第2電極105b的電壓的第2電壓V2的測定部。或,如此的測定是亦可分開設置控制部700。FIG. 51 schematically shows the configuration of the plasma processing apparatus 1 according to the 37th embodiment of the present invention. The plasma processing apparatus 1 of the 37th embodiment has a configuration in which the control unit 700 is added to the plasma processing apparatus 1 of the 33rd embodiment shown in FIG. 45. The control unit 700 adjusts the high-frequency power supply 101 based on the first voltage V1 of the first electrode 105a and the second voltage V2 of the second electrode 105b, for example, such that the first voltage V1 and the second voltage V2 are equal High frequency. For example, the control unit 700 generates a high frequency adjusted by the high-frequency power source 101 such that the value of the adjustment reactor changes based on the first voltage V1 of the first electrode 105a and the second voltage V2 of the second electrode 105b. The command value of frequency CNT. The command value CNT is supplied to the high-frequency power supply 101. The high-frequency power source 101 changes the frequency of the high-frequency generated by itself according to the command value CNT. The control unit 700 is a measurement unit that may include a first voltage V1 that measures the voltage of the first electrode 105a and a second voltage V2 that of the second electrode 105b. Or, in such a measurement, the control part 700 may be provided separately.

在圖52是模式性地表示本發明的第38實施形態的電漿處理裝置1的構成。第38實施形態的電漿處理裝置1是具有對於圖46所示的第34實施形態的電漿處理裝置1追加控制部700的構成。控制部700是根據第1電極105a的第1電壓V1及第2電極105b的第2電壓V2,例如,以第1電壓V1與第2電壓V2形成相等的方式,調整高頻電源101所產生的高頻的頻率。例如,控制部700是根據第1電極105a的第1電壓V1及第2電極105b的第2電壓V2,以調整電抗器的值會變化的方式,產生調整高頻電源101所產生的高頻的頻率之指令值CNT。指令值CNT是被供給至高頻電源101。高頻電源101是按照指令值CNT來變更自己所產生的高頻的頻率。控制部700是可包含測定第1電極105a的電壓的第1電壓V1及第2電極105b的電壓的第2電壓V2的測定部。或,如此的測定是亦可與控制部700分開設置。FIG. 52 schematically shows the configuration of the plasma processing apparatus 1 according to the 38th embodiment of the present invention. The plasma processing apparatus 1 of the 38th embodiment has a configuration in which a control unit 700 is added to the plasma processing apparatus 1 of the 34th embodiment shown in FIG. 46. The control unit 700 adjusts the high-frequency power supply 101 based on the first voltage V1 of the first electrode 105a and the second voltage V2 of the second electrode 105b, for example, such that the first voltage V1 and the second voltage V2 are equal High frequency. For example, the control unit 700 generates a high frequency adjusted by the high-frequency power source 101 such that the value of the adjustment reactor changes based on the first voltage V1 of the first electrode 105a and the second voltage V2 of the second electrode 105b. The command value of frequency CNT. The command value CNT is supplied to the high-frequency power supply 101. The high-frequency power source 101 changes the frequency of the high-frequency generated by itself according to the command value CNT. The control unit 700 is a measurement unit that may include a first voltage V1 that measures the voltage of the first electrode 105a and a second voltage V2 that of the second electrode 105b. Alternatively, such measurement may be provided separately from the control unit 700.

在圖53是模式性地表示本發明的第39實施形態的電漿處理裝置1的構成。第39實施形態的電漿處理裝置1是可作為蝕刻基板112a、112b的蝕刻裝置動作。第39實施形態的電漿處理裝置1是第1電極105a、第2電極105b分別保持蝕刻對象的第1基板112a、第2基板112b,第3電極141不保持基板的點,與第30實施形態的電漿處理裝置1不同,其他的點是可具有與第30實施形態的電漿處理裝置1同樣的構成。FIG. 53 schematically shows the configuration of the plasma processing apparatus 1 according to the 39th embodiment of the present invention. The plasma processing apparatus 1 of the 39th embodiment can be operated as an etching apparatus for etching the substrates 112a and 112b. The plasma processing apparatus 1 of the 39th embodiment is that the first electrode 105a and the second electrode 105b respectively hold the first substrate 112a and the second substrate 112b to be etched, and the third electrode 141 does not hold the point of the substrate. The plasma processing apparatus 1 of FIG. 1 is different, and the other points are that it can have the same configuration as the plasma processing apparatus 1 of the 30th embodiment.

在1個的構成例中,電漿處理裝置1是包含(a)被配置於連接第1平衡端子211與第1電極105a的第1路徑PTH1之電抗511a、(b)被配置於第1電極105a與接地之間的電抗521a、(c)被配置於連接第2平衡端子212與第2電極105b的第2路徑PTH2之電抗511b、(d)被配置於第2電極105b與接地之間的電抗521b、及(e)連接第1路徑PTH1與第2路徑PTH2的電抗530的至少1個,作為影響被施加於第1電極105a的第1電壓與被施加於第2電極105b的第2電壓的關係之調整電抗器。In one configuration example, the plasma processing apparatus 1 includes (a) a reactance 511a disposed in the first path PTH1 connecting the first balanced terminal 211 and the first electrode 105a, and (b) disposed in the first electrode The reactance 521a, (c) between the 105a and the ground is arranged in the reactance 511b, (d) arranged in the second path PTH2 connecting the second balanced terminal 212 and the second electrode 105b between the second electrode 105b and the ground Reactance 521b and (e) at least one of reactances 530 connecting the first path PTH1 and the second path PTH2, as affecting the first voltage applied to the first electrode 105a and the second voltage applied to the second electrode 105b Adjustment of the reactor.

藉由調整高頻電源101所產生的高頻的頻率,可調整第1基板112a的蝕刻量分佈及第2基板112b的蝕刻量分佈。或,藉由調整高頻電源101所產生的高頻的頻率,可將第1基板112a的蝕刻量分佈與第2基板112b的蝕刻量分佈設為相同。By adjusting the frequency of the high frequency generated by the high-frequency power source 101, the etching amount distribution of the first substrate 112a and the etching amount distribution of the second substrate 112b can be adjusted. Alternatively, by adjusting the frequency of the high frequency generated by the high-frequency power source 101, the etching amount distribution of the first substrate 112a and the etching amount distribution of the second substrate 112b can be made the same.

另外,參照圖49~圖53說明的第35~第39實施形態是在靶109a、109b的對向面配置有電極,但不限於電極,亦可被構成為配置有所謂旋轉式型的樣式的電漿裝置的圓筒形的基板旋轉座架(例如,日本特開2003-1555526、特開昭62-133065)或所謂一列式型的樣式的電漿裝置的矩形形狀等的基板托盤(例如,日本特許5824072、特開2011-144450)。In addition, in the 35th to 39th embodiments described with reference to FIGS. 49 to 53, the electrodes are arranged on the opposing surfaces of the targets 109a and 109b, but the electrodes are not limited to the above, and may be configured to be arranged in a so-called rotary type. Cylindrical substrate rotating pedestal of plasma device (for example, Japanese Patent Laid-Open No. 2003-1555526, Japanese Patent Laid-Open No. 62-133065) or a rectangular-shaped substrate tray of plasma device of so-called in-line type (for example, (Japanese Patent No. 5824702, Japanese Patent Application No. 2011-144450).

在參照圖49~圖53說明的第35~第39實施形態中,控制部700是根據第1電極105a的第1電壓V1及第2電極105b的第2電壓V2來調整高頻電源101所產生的高頻的頻率。亦可取代如此的構成,構成為控制部700是根據第1電極105a的附近的電漿強度及第2電極105b的附近的電漿強度來調整高頻電源101所產生的高頻的頻率。第1電極105a的附近的電漿強度是可例如藉由光電變換裝置來檢測出。同樣,第2電極105b的附近的電漿強度是可例如藉由光電變換裝置來檢測出。可被構成為控制部700是根據第1電極105a的附近的電漿強度及第2電極105b的附近的電漿強度,例如,以第1電極105a的附近的電漿強度與第2電極105b的附近的電漿強度會相等的方式,調整高頻電源101所產生的高頻的頻率。In the 35th to 39th embodiments described with reference to FIGS. 49 to 53, the control unit 700 adjusts the generation of the high-frequency power source 101 based on the first voltage V1 of the first electrode 105a and the second voltage V2 of the second electrode 105b The high-frequency frequency. Instead of such a configuration, the control unit 700 is configured to adjust the frequency of the high frequency generated by the high-frequency power source 101 according to the plasma strength near the first electrode 105a and the plasma strength near the second electrode 105b. The plasma strength in the vicinity of the first electrode 105a can be detected by a photoelectric conversion device, for example. Similarly, the plasma strength in the vicinity of the second electrode 105b can be detected by a photoelectric conversion device, for example. The control unit 700 may be configured based on the plasma strength near the first electrode 105a and the plasma strength near the second electrode 105b, for example, the plasma strength near the first electrode 105a and the second electrode 105b Adjust the frequency of the high frequency generated by the high-frequency power source 101 in such a way that the nearby plasma strength will be equal.

其次,說明作為本發明的第40實施形態的電漿處理方法。作為第40實施形態的電漿處理方法是在第30~第39實施形態的任一個的電漿處理裝置1中處理基板112。該電漿處理方法是可包含:以能調整被施加於第1電極105a的第1電壓與被施加於第2電極105b的第2電壓的關係之方式調整高頻電源101所產生的高頻的頻率的工程、及在該工程之後處理基板112的工程。該處理是可包含在基板112藉由濺射來形成膜的工程或蝕刻基板112的工程。Next, a plasma processing method as a fortieth embodiment of the present invention will be explained. The plasma processing method of the 40th embodiment is to process the substrate 112 in the plasma processing apparatus 1 of any one of the 30th to 39th embodiments. The plasma processing method may include adjusting the high frequency generated by the high-frequency power supply 101 so that the relationship between the first voltage applied to the first electrode 105a and the second voltage applied to the second electrode 105b can be adjusted Frequency of the process, and the process of processing the substrate 112 after the process. This process may include a process of forming a film on the substrate 112 by sputtering or a process of etching the substrate 112.

在圖54是模式性地表示本發明的第41實施形態的電漿處理裝置1的構成。第41實施形態的電漿處理裝置1是具有對於圖43所示的第31實施形態的電漿處理裝置1追加控制部700的構成。控制部700是根據第1電極105a的第1電壓V1及第2電極105b的第2電壓V2,例如,以第1電壓V1會形成第1目標值,第2電壓V2會形成第2目標值的方式,調整高頻電源101所產生的高頻的頻率。例如,控制部700是根據第1電極105a的第1電壓V1及第2電極105b的第2電壓V2,以第1電壓V1會形成第1目標值,第2電壓V2會形成第2目標值的方式,且調整電抗器的值會變化的方式,產生調整高頻電源101所產生的高頻的頻率之指令值CNTosc。指令值CNTosc是被供給至高頻電源101。高頻電源101是按照指令值CNTosc來變更自己所產生的高頻的頻率。控制部700是可包含測定第1電極105a的電壓的第1電壓V1及第2電極105b的電壓的第2電壓V2的測定部。或,如此的測定是亦可與控制部700分開設置。FIG. 54 schematically shows the configuration of the plasma processing apparatus 1 according to the 41st embodiment of the present invention. The plasma processing apparatus 1 of the 41st embodiment has a configuration in which the control unit 700 is added to the plasma processing apparatus 1 of the 31st embodiment shown in FIG. 43. The control unit 700 is based on the first voltage V1 of the first electrode 105a and the second voltage V2 of the second electrode 105b. For example, the first voltage V1 will form the first target value, and the second voltage V2 will form the second target value. In this way, the frequency of the high frequency generated by the high-frequency power source 101 is adjusted. For example, the control unit 700 is based on the first voltage V1 of the first electrode 105a and the second voltage V2 of the second electrode 105b, the first target value is formed by the first voltage V1, and the second target value is formed by the second voltage V2 Mode, and the mode in which the value of the adjustment reactor changes, a command value CNTosc that adjusts the frequency of the high frequency generated by the high-frequency power supply 101 is generated. The command value CNTosc is supplied to the high-frequency power source 101. The high-frequency power supply 101 changes the frequency of the high-frequency generated by itself according to the command value CNTosc. The control unit 700 is a measurement unit that may include a first voltage V1 that measures the voltage of the first electrode 105a and a second voltage V2 that of the second electrode 105b. Alternatively, such measurement may be provided separately from the control unit 700.

控制部700是產生控制阻抗匹配電路102的指令值CNTmb。控制部700是在點燃電漿時,以阻抗匹配電路102成為電漿的點燃用的阻抗之方式控制阻抗匹配電路102。又,控制部700是以在電漿的點燃後電漿會安定的方式,變更阻抗匹配電路102的阻抗。在電漿安定的狀態中,阻抗匹配電路102的阻抗是匹配於電漿產生時的本體10的側的阻抗Rp-jXp(從第1平衡端子211及第2平衡端子212的側來看第1電極105a及第2電極105b的側(本體10的側)時的阻抗)。此時的阻抗匹配電路102的阻抗是Rp+jXp。The control unit 700 generates a command value CNTmb that controls the impedance matching circuit 102. The control unit 700 controls the impedance matching circuit 102 so that the impedance matching circuit 102 becomes an impedance for plasma ignition when the plasma is ignited. In addition, the control unit 700 changes the impedance of the impedance matching circuit 102 so that the plasma becomes stable after the plasma is ignited. In the state where the plasma is stable, the impedance of the impedance matching circuit 102 is matched to the impedance Rp-jXp of the side of the body 10 at the time of plasma generation (viewed from the sides of the first balanced terminal 211 and the second balanced terminal 212 Impedance at the side of the electrode 105a and the second electrode 105b (the side of the body 10). The impedance of the impedance matching circuit 102 at this time is Rp+jXp.

控制部700是例如可藉由FPGA(Field Programmable Gate Array的簡稱)等的PLD(Programmable Logic Device的簡稱),或ASIC(Application Specific Integrated Circuit的簡稱),或安裝有程式的泛用或專用的電腦,或該等的全部或一部分的組合所構成。該程式是被儲存於記憶媒體(電腦可讀記憶媒體),或可經由通訊線路提供。The control unit 700 is, for example, a PLD (short for Programmable Logic Device) such as FPGA (short for Field Programmable Gate Array), or an ASIC (short for Application Specific Integrated Circuit), or a general-purpose or dedicated computer with a program installed , Or a combination of all or part of these. The program is stored in a memory medium (computer-readable memory medium) or may be provided via a communication line.

在圖40是例示第39實施形態的電漿處理裝置1的動作。此動作是可藉由控制部700來控制。在工程S401中,控制部700是以阻抗匹配電路102的阻抗會被設定或變更成電漿的點燃用的阻抗之方式,將指令值CNTmb供給至阻抗匹配電路102。阻抗匹配電路102是按照指令值CNTmb來設定或變更自己的阻抗。FIG. 40 illustrates the operation of the plasma processing apparatus 1 of the 39th embodiment. This operation can be controlled by the control unit 700. In process S401, the control unit 700 supplies the command value CNTmb to the impedance matching circuit 102 in such a manner that the impedance of the impedance matching circuit 102 is set or changed to the impedance for plasma ignition. The impedance matching circuit 102 sets or changes its own impedance according to the command value CNTmb.

然後,在工程S402(點燃工程)中,控制部700是在阻抗匹配電路102的阻抗被設定成電漿的點燃用的阻抗之狀態下,將高頻電源402起動(ON),使高頻產生。高頻電源402所產生的高頻是經由阻抗匹配電路102、巴倫103、調整電抗器(可變電感器601a、601b、電容器602a、602b)來供給至第1電極105a及第2電極105b。藉此,電漿會被點燃。Then, in the process S402 (ignition process), the control unit 700 activates (ON) the high-frequency power supply 402 in a state where the impedance of the impedance matching circuit 102 is set to the impedance for plasma ignition, causing high-frequency generation . The high frequency generated by the high-frequency power supply 402 is supplied to the first electrode 105a and the second electrode 105b through the impedance matching circuit 102, the balun 103, and the adjustment reactors (variable inductors 601a, 601b, capacitors 602a, 602b) . By this, the plasma will be ignited.

在工程S403(匹配工程)中,控制部700是以在電漿的點燃後電漿會安定的方式,變更阻抗匹配電路102的阻抗。具體而言,在工程S403中,控制部700是以電漿安定的阻抗會被設定於阻抗匹配電路700的方式決定指令值CNTmb,將指令值CNTmb供給至阻抗匹配電路700。阻抗匹配電路102是按照指令值CNTmb來設定或變更自己的阻抗。In the process S403 (matching process), the control unit 700 changes the impedance of the impedance matching circuit 102 in such a manner that the plasma becomes stable after the plasma is ignited. Specifically, in step S403, the control unit 700 determines the command value CNTmb such that the plasma-stabilized impedance is set in the impedance matching circuit 700, and supplies the command value CNTmb to the impedance matching circuit 700. The impedance matching circuit 102 sets or changes its own impedance according to the command value CNTmb.

然後,在工程S404中,控制部700是取得第1電極105a的電壓V1及第2電極105b的第2電壓V2。然後,在工程S405(調整工程)中,控制部700是根據第1電極105a的電壓V1及第2電極105b的第2電壓V2,以第1電壓V1會形成第1目標值,第2電壓V2會形成第2目標值的方式,且以作為可變電抗的可變電感器601a、601b的值分別被調整的方式,產生指令值CNTosc。指令值CNTosc是被供給至高頻電源402。高頻電源101是按照指令值CNTosc來變更自己產生的高頻的頻率。Then, in step S404, the control unit 700 obtains the voltage V1 of the first electrode 105a and the second voltage V2 of the second electrode 105b. Then, in the process S405 (adjustment process), the control unit 700 is based on the voltage V1 of the first electrode 105a and the second voltage V2 of the second electrode 105b to form the first target value with the first voltage V1 and the second voltage V2 The second target value is formed, and the command value CNTosc is generated so that the values of the variable inductors 601a and 601b as variable reactances are adjusted respectively. The command value CNTosc is supplied to the high-frequency power supply 402. The high-frequency power supply 101 changes the frequency of the high-frequency generated by itself according to the command value CNTosc.

在圖59是例示高頻電源101所產生的高頻的頻率與第1電極105a及第2電極105b的電壓的關係。此電抗是相當於前述的-XP。如圖59所例示般,第1電極105a及第2電極105b的電壓是藉由高頻電源101所產生的高頻的頻率的變更而調整電抗器的電抗變化,藉此該等之間的大小關係更換。換言之,第1電極105a及第2電極105b的電壓對於高頻電源101所產生的高頻的頻率的變化的變化曲線是顯示互相交叉的特性。FIG. 59 illustrates the relationship between the frequency of the high frequency generated by the high-frequency power source 101 and the voltages of the first electrode 105a and the second electrode 105b. This reactance is equivalent to the aforementioned -XP. As illustrated in FIG. 59, the voltages of the first electrode 105a and the second electrode 105b adjust the reactance change of the reactor by changing the frequency of the high frequency generated by the high-frequency power supply 101, and thereby the magnitude between these Relationship replacement. In other words, the change curve of the voltage of the first electrode 105a and the second electrode 105b with respect to the change of the frequency of the high frequency generated by the high-frequency power source 101 shows the characteristic of crossing each other.

在圖59所例示的特性是例如預先藉由實驗或計算來決定。此情況,在工程S405中,控制部700是可根據此特性與第1電極105a的電壓V1及第2電極105b的電壓V2,以第1電壓V1會形成第1目標值,第2電壓V2會形成第2目標值的方式,產生調整高頻電源101所產生的高頻的頻率之指令值CNTosc。在圖59所例示的特性未預先被決定時,在工程S405中,控制部700是可根據第1電極105a的電壓V1及第2電極105b的電壓V2來微調整指令值CNTosc。The characteristics illustrated in FIG. 59 are determined in advance by experiment or calculation, for example. In this case, in the process S405, the control unit 700 can form the first target value with the first voltage V1 and the second voltage V2 according to this characteristic and the voltage V1 of the first electrode 105a and the voltage V2 of the second electrode 105b In order to form the second target value, a command value CNTosc that adjusts the frequency of the high frequency generated by the high-frequency power source 101 is generated. When the characteristics illustrated in FIG. 59 are not determined in advance, in step S405, the control unit 700 can finely adjust the command value CNTosc based on the voltage V1 of the first electrode 105a and the voltage V2 of the second electrode 105b.

然後,在工程S407中,控制部700是取得第1電極105a的電壓V1及第2電極105b的第2電壓V2。然後,在工程S408中,控制部700是判斷是否第1電壓V1形成第1目標值,第2電壓V2形成第2目標值,當第1電壓V1形成第1目標值,第2電壓V2形成第2目標值時,前進至工程S409,不是時回到工程S405。在工程S409(處理工程)中,控制部700是以基板112會被處理的方式進行控制。該控制是例如可包含控制被配置於靶109a與基板112之間的擋板(shutter)(未圖示)及被配置於靶109b與基板112之間的擋板(未圖示)的開閉。圖40所示的處理是亦可手動實行。Then, in step S407, the control unit 700 obtains the voltage V1 of the first electrode 105a and the second voltage V2 of the second electrode 105b. Then, in step S408, the control unit 700 determines whether the first voltage V1 forms the first target value, the second voltage V2 forms the second target value, and when the first voltage V1 forms the first target value, the second voltage V2 forms the first 2 When the target value is reached, proceed to project S409, and if not, return to project S405. In the process S409 (processing process), the control unit 700 performs control so that the substrate 112 will be processed. This control may include, for example, controlling the opening and closing of a shutter (not shown) arranged between the target 109a and the substrate 112 and a shutter (not shown) arranged between the target 109b and the substrate 112. The processing shown in FIG. 40 can also be performed manually.

在圖55是模式性地表示本發明的第42實施形態的電漿處理裝置1的構成。第42實施形態的電漿處理裝置1是具有對於圖44所示的第32實施形態的電漿處理裝置1追加控制部700的構成。作為第42實施形態未言及的事項是可按照第41實施形態。控制部700是根據第1電極105a的第1電壓V1及第2電極105b的第2電壓V2,例如,以第1電壓V1會形成第1目標值,第1電壓V1會形成第1目標值,第2電壓V2會形成第2目標值的方式,調整高頻電源101所產生的高頻的頻率。例如,控制部700是根據第1電極105a的第1電壓V1及第2電極105b的第2電壓V2,以調整電抗器的值會變化的方式,產生調整高頻電源101所產生的高頻的頻率之指令值CNTosc。指令值CNTosc是被供給至高頻電源101。高頻電源101是按照指令值CNTosc來變更自己所產生的高頻的頻率。FIG. 55 schematically shows the configuration of the plasma processing apparatus 1 according to the 42nd embodiment of the present invention. The plasma processing apparatus 1 of the 42nd embodiment has a configuration in which a control unit 700 is added to the plasma processing apparatus 1 of the 32nd embodiment shown in FIG. 44. As for the matters not mentioned in the 42nd embodiment, it is possible to follow the 41st embodiment. The control unit 700 is based on the first voltage V1 of the first electrode 105a and the second voltage V2 of the second electrode 105b, for example, the first target value is formed by the first voltage V1, and the first target value is formed by the first voltage V1, The second voltage V2 adjusts the frequency of the high frequency generated by the high-frequency power source 101 so that the second target value is formed. For example, the control unit 700 generates a high frequency adjusted by the high-frequency power source 101 such that the value of the adjustment reactor changes based on the first voltage V1 of the first electrode 105a and the second voltage V2 of the second electrode 105b. The command value of frequency is CNTosc. The command value CNTosc is supplied to the high-frequency power source 101. The high-frequency power supply 101 changes the frequency of the high-frequency generated by itself according to the command value CNTosc.

在圖56是模式性地表示本發明的第43實施形態的電漿處理裝置1的構成。第43實施形態的電漿處理裝置1是具有對於圖45所示的第33實施形態的電漿處理裝置1追加控制部700的構成。作為第43實施形態未言及的事項是可按照第41實施形態。控制部700是根據第1電極105a的第1電壓V1及第2電極105b的第2電壓V2,例如,以第1電壓V1會形成第1目標值,第1電壓V1會形成第1目標值,第2電壓V2會形成第2目標值的方式,調整高頻電源101所產生的高頻的頻率。例如,控制部700是根據第1電極105a的第1電壓V1及第2電極105b的第2電壓V2,以調整電抗器的值會變化的方式,產生調整高頻電源101所產生的高頻的頻率之指令值CNTosc。指令值CNTosc是被供給至高頻電源101。高頻電源101是按照指令值CNTosc來變更自己所產生的高頻的頻率。控制部700是可包含測定第1電極105a的電壓的第1電壓V1及第2電極105b的電壓的第2電壓V2的測定部。或,如此的測定是亦可與控制部700分開設置。FIG. 56 schematically shows the configuration of the plasma processing apparatus 1 according to the forty-third embodiment of the present invention. The plasma processing apparatus 1 of the 43rd embodiment has a configuration in which the control unit 700 is added to the plasma processing apparatus 1 of the 33rd embodiment shown in FIG. 45. As for the matters not mentioned in the 43rd embodiment, it is possible to follow the 41st embodiment. The control unit 700 is based on the first voltage V1 of the first electrode 105a and the second voltage V2 of the second electrode 105b, for example, the first target value is formed by the first voltage V1, and the first target value is formed by the first voltage V1, The second voltage V2 adjusts the frequency of the high frequency generated by the high-frequency power source 101 so that the second target value is formed. For example, the control unit 700 generates a high frequency adjusted by the high-frequency power source 101 such that the value of the adjustment reactor changes based on the first voltage V1 of the first electrode 105a and the second voltage V2 of the second electrode 105b. The command value of frequency is CNTosc. The command value CNTosc is supplied to the high-frequency power source 101. The high-frequency power supply 101 changes the frequency of the high-frequency generated by itself according to the command value CNTosc. The control unit 700 is a measurement unit that may include a first voltage V1 that measures the voltage of the first electrode 105a and a second voltage V2 that of the second electrode 105b. Alternatively, such measurement may be provided separately from the control unit 700.

在圖57是模式性地表示本發明的第44實施形態的電漿處理裝置1的構成。第44實施形態的電漿處理裝置1是具有對於圖46所示的第34實施形態的電漿處理裝置1追加控制部700的構成。作為第42實施形態未言及的事項是可按照第41實施形態。控制部700是根據第1電極105a的第1電壓V1及第2電極105b的第2電壓V2,例如,以第1電壓V1會形成第1目標值,第1電壓V1會形成第1目標值,第2電壓V2會形成第2目標值的方式,調整高頻電源101所產生的高頻的頻率。例如,控制部700是根據第1電極105a的第1電壓V1及第2電極105b的第2電壓V2,以調整電抗器的值會變化的方式,產生調整高頻電源101所產生的高頻的頻率之指令值CNTosc。指令值CNTosc是被供給至高頻電源101。高頻電源101是按照指令值CNTosc來變更自己所產生的高頻的頻率。控制部700是可包含測定第1電極105a的電壓的第1電壓V1及第2電極105b的電壓的第2電壓V2的測定部。或,如此的測定是亦可與控制部700分開設置。FIG. 57 schematically shows the configuration of the plasma processing apparatus 1 according to the forty-fourth embodiment of the present invention. The plasma processing apparatus 1 of the 44th embodiment has a configuration in which a control unit 700 is added to the plasma processing apparatus 1 of the 34th embodiment shown in FIG. 46. As for the matters not mentioned in the 42nd embodiment, it is possible to follow the 41st embodiment. The control unit 700 is based on the first voltage V1 of the first electrode 105a and the second voltage V2 of the second electrode 105b, for example, the first target value is formed by the first voltage V1, and the first target value is formed by the first voltage V1, The second voltage V2 adjusts the frequency of the high frequency generated by the high-frequency power source 101 so that the second target value is formed. For example, the control unit 700 generates a high frequency adjusted by the high-frequency power source 101 such that the value of the adjustment reactor changes based on the first voltage V1 of the first electrode 105a and the second voltage V2 of the second electrode 105b. The command value of frequency is CNTosc. The command value CNTosc is supplied to the high-frequency power source 101. The high-frequency power supply 101 changes the frequency of the high-frequency generated by itself according to the command value CNTosc. The control unit 700 is a measurement unit that may include a first voltage V1 that measures the voltage of the first electrode 105a and a second voltage V2 that of the second electrode 105b. Alternatively, such measurement may be provided separately from the control unit 700.

在圖58是模式性地表示本發明的第45實施形態的電漿處理裝置1的構成。第45實施形態的電漿處理裝置1是可作為蝕刻基板112a、112b的蝕刻裝置動作。第45實施形態的電漿處理裝置1是有關控制部700以外,可具有與第30實施形態的電漿處理裝置1同樣的構成。作為第45實施形態未言及的事項是可按照第41實施形態。FIG. 58 schematically shows the configuration of the plasma processing apparatus 1 according to the forty-fifth embodiment of the present invention. The plasma processing apparatus 1 of the 45th embodiment is operable as an etching apparatus for etching the substrates 112a and 112b. The plasma processing apparatus 1 of the forty-fifth embodiment is other than the control unit 700, and may have the same configuration as the plasma processing apparatus 1 of the twentieth embodiment. What is not mentioned as the 45th embodiment can follow the 41st embodiment.

在1個的構成例中,電漿處理裝置1是包含:(a)被配置於連接第1平衡端子211與第1電極105a的第1路徑PTH1之電抗511a、(b)被配置於第1電極105a與接地之間的電抗521a、(c)被配置於連接第2平衡端子212與第2電極105b的第2路徑PTH2之電抗511b、(d)被配置於第2電極105b與接地之間的電抗521b、及(e)連接第1路徑PTH1與第2路徑PTH2的電抗530的至少1個,作為影響被施加於第1電極105a的第1電壓與被施加於第2電極105b的第2電壓的關係之調整電抗器。In one configuration example, the plasma processing apparatus 1 includes: (a) a reactance 511a disposed in the first path PTH1 connecting the first balanced terminal 211 and the first electrode 105a, and (b) disposed in the first Reactances 521a and (c) between electrode 105a and ground are arranged between reactance 511b and (d) of second path PTH2 connecting second balanced terminal 212 and second electrode 105b between second electrode 105b and ground At least one of the reactance 521b and (e) the reactance 530 connecting the first path PTH1 and the second path PTH2, as the first voltage applied to the first electrode 105a and the second voltage applied to the second electrode 105b Adjust the reactor based on the voltage relationship.

藉由調整高頻電源101所產生的高頻的頻率,可調整第1基板112a的蝕刻量分佈及第2基板112b的蝕刻量分佈。或,藉由調整高頻電源101所產生的高頻的頻率,可將第1基板112a的蝕刻量分佈與第2基板112b的蝕刻量分佈設為相同。By adjusting the frequency of the high frequency generated by the high-frequency power source 101, the etching amount distribution of the first substrate 112a and the etching amount distribution of the second substrate 112b can be adjusted. Alternatively, by adjusting the frequency of the high frequency generated by the high-frequency power source 101, the etching amount distribution of the first substrate 112a and the etching amount distribution of the second substrate 112b can be made the same.

另外,參照圖54~圖58說明的第41~第45實施形態是在靶109a、109b的對向面配置有電極,但不限於電極,亦可被構成為配置有所謂旋轉式型的樣式的電漿裝置的圓筒形的基板旋轉座架(例如,日本特開2003-1555526、特開昭62-133065)或所謂一列式型的樣式的電漿裝置的矩形形狀等的基板托盤(例如,日本特許5824072、特開2011-144450)。In addition, in the 41st to 45th embodiments described with reference to FIGS. 54 to 58, the electrodes are arranged on the opposing surfaces of the targets 109a and 109b, but it is not limited to the electrodes, and may be configured to be arranged in a so-called rotary type. Cylindrical substrate rotating pedestal of plasma device (for example, Japanese Patent Laid-Open No. 2003-1555526, Japanese Patent Laid-Open No. 62-133065) or a rectangular-shaped substrate tray of plasma device of so-called in-line type (for example, (Japanese Patent No. 5824702, Japanese Patent Application No. 2011-144450)

在參照圖54~圖58說明的第41~第45實施形態中,控制部700是根據第1電極105a的第1電壓V1及第2電極105b的第2電壓V2來調整高頻電源101所產生的高頻的頻率。亦可取代如此的構成,構成為控制部700是根據第1電極105a的附近的電漿強度及第2電極105b的附近的電漿強度來調整高頻電源101所產生的高頻的頻率。第1電極105a的附近的電漿強度是可例如藉由光電變換裝置來檢測出。同樣,第2電極105b的附近的電漿強度是可例如藉由光電變換裝置來檢測出。可被構成為控制部700是根據第1電極105a的附近的電漿強度及第2電極105b的附近的電漿強度,例如,以第1電極105a的附近的電漿強度與第2電極105b的附近的電漿強度會相等的方式,調整高頻電源101所產生的高頻的頻率。In the 41st to 45th embodiments described with reference to FIGS. 54 to 58, the control unit 700 adjusts the generation of the high-frequency power source 101 based on the first voltage V1 of the first electrode 105a and the second voltage V2 of the second electrode 105b The high-frequency frequency. Instead of such a configuration, the control unit 700 is configured to adjust the frequency of the high frequency generated by the high-frequency power source 101 according to the plasma strength near the first electrode 105a and the plasma strength near the second electrode 105b. The plasma strength in the vicinity of the first electrode 105a can be detected by a photoelectric conversion device, for example. Similarly, the plasma strength in the vicinity of the second electrode 105b can be detected by a photoelectric conversion device, for example. The control unit 700 may be configured based on the plasma strength near the first electrode 105a and the plasma strength near the second electrode 105b, for example, the plasma strength near the first electrode 105a and the second electrode 105b Adjust the frequency of the high frequency generated by the high-frequency power source 101 in such a way that the nearby plasma strength will be equal.

在圖60是模式性地表示本發明的第46實施形態的電漿處理裝置1的構成。第46實施形態的電漿處理裝置1是參照圖33~圖41說明的第23~第29實施形態的電漿處理裝置1的變形例。第46實施形態的電漿處理裝置1是更具備使保持基板112的第1電極141昇降的機構及使第1電極141旋轉的機構的至少一方。在圖60所示的例子中,電漿處理裝置1是具備包含使第1電極141昇降的機構及使第1電極141旋轉的機構的雙方之驅動機構114。在真空容器110與驅動機構114之間是設有構成真空隔壁的波紋管113。FIG. 60 schematically shows the configuration of the plasma processing apparatus 1 according to the forty-sixth embodiment of the present invention. The plasma processing apparatus 1 of the 46th embodiment is a modified example of the plasma processing apparatus 1 of the 23rd to 29th embodiments described with reference to FIGS. 33 to 41. The plasma processing apparatus 1 of the 46th embodiment is further provided with at least one of a mechanism for raising and lowering the first electrode 141 of the holding substrate 112 and a mechanism for rotating the first electrode 141. In the example shown in FIG. 60, the plasma processing apparatus 1 is a drive mechanism 114 that includes both a mechanism for raising and lowering the first electrode 141 and a mechanism for rotating the first electrode 141. Between the vacuum container 110 and the drive mechanism 114, a bellows 113 constituting a vacuum partition wall is provided.

在圖61是模式性地表示本發明的第47實施形態的電漿處理裝置1的構成。第47實施形態的電漿處理裝置1是參照圖42~圖59說明的第30~第45實施形態的電漿處理裝置1的變形例。第47實施形態的電漿處理裝置1是更具備使保持基板112的第1電極141昇降的機構及使第1電極141旋轉的機構的至少一方。在圖61所示的例子中,電漿處理裝置1是具備包含使第1電極141昇降的機構及使第1電極141旋轉的機構的雙方之驅動機構114。在真空容器110與驅動機構114之間是設有構成真空隔壁的波紋管113。FIG. 61 schematically shows the configuration of the plasma processing apparatus 1 according to the 47th embodiment of the present invention. The plasma processing apparatus 1 of the 47th embodiment is a modified example of the plasma processing apparatus 1 of the 30th to 45th embodiments described with reference to FIGS. 42 to 59. The plasma processing apparatus 1 of the 47th embodiment is further provided with at least one of a mechanism for raising and lowering the first electrode 141 of the holding substrate 112 and a mechanism for rotating the first electrode 141. In the example shown in FIG. 61, the plasma processing apparatus 1 is a drive mechanism 114 that includes both a mechanism for raising and lowering the first electrode 141 and a mechanism for rotating the first electrode 141. Between the vacuum container 110 and the drive mechanism 114, a bellows 113 constituting a vacuum partition wall is provided.

本發明是不限於上述實施形態,可不脫離本發明的精神及範圍實施各種的變更及變形。因此,為了將本發明的範圍公諸於世,而附上以下的請求項。The present invention is not limited to the above-mentioned embodiments, and various changes and modifications can be implemented without departing from the spirit and scope of the present invention. Therefore, in order to make the scope of the present invention public, the following claims are attached.

1‧‧‧電漿處理裝置 10‧‧‧本體 101‧‧‧高頻電源 102‧‧‧阻抗匹配電路 103‧‧‧巴倫 104‧‧‧阻塞電容器 106‧‧‧第1電極 107、108‧‧‧絕緣體 109‧‧‧靶 110‧‧‧真空容器 111‧‧‧第2電極 112‧‧‧基板 201‧‧‧第1不平衡端子 202‧‧‧第2不平衡端子 211‧‧‧第1平衡端子 212‧‧‧第2平衡端子 251‧‧‧第1端子 252‧‧‧第2端子 221‧‧‧第1線圈 222‧‧‧第2線圈 223‧‧‧第3線圈 224‧‧‧第4線圈 511a、511b、521a、521b、530‧‧‧可變電抗器 700‧‧‧控制部1‧‧‧Plasma processing device 10‧‧‧Body 101‧‧‧High frequency power supply 102‧‧‧Impedance matching circuit 103‧‧‧ Barron 104‧‧‧Blocking capacitor 106‧‧‧First electrode 107、108‧‧‧Insulator 109‧‧‧ target 110‧‧‧Vacuum container 111‧‧‧ 2nd electrode 112‧‧‧ substrate 201‧‧‧1st unbalanced terminal 202‧‧‧ 2nd unbalanced terminal 211‧‧‧ 1st balanced terminal 212‧‧‧ 2nd balanced terminal 251‧‧‧ First terminal 252‧‧‧2nd terminal 221‧‧‧The first coil 222‧‧‧The second coil 223‧‧‧3rd coil 224‧‧‧ 4th coil 511a, 511b, 521a, 521b, 530 ‧‧‧ variable reactor 700‧‧‧Control Department

圖1是模式性地表示本發明的第1實施形態的電漿處理裝置1的構成的圖。 圖2A是表示巴倫的構成例的圖。 圖2B是表示巴倫的其他的構成例的圖。 圖3是說明巴倫103的機能的圖。 圖4是例示電流I1(=I2)、I2’、I3、ISO、α(=X/Rp)的關係的圖。 圖5A是表示模擬符合1.5≦X/Rp≦5000時的電漿電位及陰極電位的結果的圖。 圖5B是表示模擬符合1.5≦X/Rp≦5000時的電漿電位及陰極電位的結果的圖。 圖5C是表示模擬符合1.5≦X/Rp≦5000時的電漿電位及陰極電位的結果的圖。 圖5D是表示模擬符合1.5≦X/Rp≦5000時的電漿電位及陰極電位的結果的圖。 圖6A是表示模擬未符合1.5≦X/Rp≦5000時的電漿電位及陰極電位的結果的圖。 圖6B是表示模擬未符合1.5≦X/Rp≦5000時的電漿電位及陰極電位的結果的圖。 圖6C是表示模擬未符合1.5≦X/Rp≦5000時的電漿電位及陰極電位的結果的圖。 圖6D是表示模擬未符合1.5≦X/Rp≦5000時的電漿電位及陰極電位的結果的圖。 圖7是例示Rp-jXp的確認方法的圖。 圖8是模式性地表示本發明的第2實施形態的電漿處理裝置1的構成的圖。 圖9是模式性地表示本發明的第3實施形態的電漿處理裝置1的構成的圖。 圖10是模式性地表示本發明的第4實施形態的電漿處理裝置1的構成的圖。 圖11是模式性地表示本發明的第5實施形態的電漿處理裝置1的構成的圖。 圖12是模式性地表示本發明的第6實施形態的電漿處理裝置1的構成的圖。 圖13是模式性地表示本發明的第7實施形態的電漿處理裝置1的構成的圖。 圖14是說明本發明的第7實施形態的巴倫的機能的圖。 圖15A是表示模擬符合1.5≦X/Rp≦5000時的電漿電位及2個的陰極電位的結果的圖。 圖15B是表示模擬符合1.5≦X/Rp≦5000時的電漿電位及2個的陰極電位的結果的圖。 圖15C是表示模擬符合1.5≦X/Rp≦5000時的電漿電位及2個的陰極電位的結果的圖。 圖15D是表示模擬符合1.5≦X/Rp≦5000時的電漿電位及2個的陰極電位的結果的圖。 圖16A是表示模擬未符合1.5≦X/Rp≦5000時的電漿電位及2個的陰極電位的結果的圖。 圖16B是表示模擬未符合1.5≦X/Rp≦5000時的電漿電位及2個的陰極電位的結果的圖。 圖16C是表示模擬未符合1.5≦X/Rp≦5000時的電漿電位及2個的陰極電位的結果的圖。 圖16D是表示模擬未符合1.5≦X/Rp≦5000時的電漿電位及2個的陰極電位的結果的圖。 圖17是模式性地表示本發明的第8實施形態的電漿處理裝置1的構成的圖。 圖18是模式性地表示本發明的第9實施形態的電漿處理裝置1的構成的圖。 圖19是模式性地表示本發明的第10實施形態的電漿處理裝置1的構成的圖。 圖20是模式性地表示本發明的第11實施形態的電漿處理裝置1的構成的圖。 圖21是模式性地表示本發明的第12實施形態的電漿處理裝置1的構成的圖。 圖22是模式性地表示本發明的第13實施形態的電漿處理裝置1的構成的圖。 圖23是模式性地表示本發明的第14實施形態的電漿處理裝置1的構成的圖。 圖24是說明本發明的第9實施形態的電漿處理裝置1的機能的圖。 圖25是說明本發明的第9實施形態的電漿處理裝置1的機能的圖。 圖26是模式性地表示本發明的第15實施形態的電漿處理裝置1的構成的圖。 圖27是模式性地表示本發明的第16實施形態的電漿處理裝置1的構成的圖。 圖28是模式性地表示本發明的第17實施形態的電漿處理裝置1的構成的圖。 圖29是模式性地表示本發明的第18實施形態的電漿處理裝置1的構成的圖。 圖30是模式性地表示本發明的第19實施形態的電漿處理裝置1的構成的圖。 圖31是模式性地表示本發明的第20實施形態的電漿處理裝置1的構成的圖。 圖32是模式性地表示本發明的第21實施形態的電漿處理裝置1的構成的圖。 圖33是模式性地表示本發明的第23實施形態的電漿處理裝置1的構成的圖。 圖34是模式性地表示本發明的第24實施形態的電漿處理裝置1的構成的圖。 圖35是模式性地表示本發明的第25實施形態的電漿處理裝置1的構成的圖。 圖36是模式性地表示本發明的第26實施形態的電漿處理裝置1的構成的圖。 圖37是模式性地表示本發明的第27實施形態的電漿處理裝置1的構成的圖。 圖38是模式性地表示本發明的第28實施形態的電漿處理裝置1的構成的圖。 圖39是模式性地表示本發明的第29實施形態的電漿處理裝置1的構成的圖。 圖40是例示本發明的第23實施形態的電漿處理裝置1的動作的流程圖。 圖41是例示電抗與第1電極及第2電極的電壓的關係的圖。 圖42是模式性地表示本發明的第30實施形態的電漿處理裝置1的構成的圖。 圖43是模式性地表示本發明的第31實施形態的電漿處理裝置1的構成的圖。 圖44是模式性地表示本發明的第32實施形態的電漿處理裝置1的構成的圖。 圖45是模式性地表示本發明的第33實施形態的電漿處理裝置1的構成的圖。 圖46是模式性地表示本發明的第34實施形態的電漿處理裝置1的構成的圖。 圖47是例示將高頻電源所產生的高頻的頻率設定於12.56MHz時被形成於基板的膜之被正規化的厚度分佈的圖。 圖48是例示使高頻電源所產生的高頻的頻率變化時的第1電極的電壓(第1電壓)及第2電極的電壓(第2電壓)的圖。 圖49是模式性地表示本發明的第35實施形態的電漿處理裝置1的構成的圖。 圖50是模式性地表示本發明的第36實施形態的電漿處理裝置1的構成的圖。 圖51是模式性地表示本發明的第37實施形態的電漿處理裝置1的構成的圖。 圖52是模式性地表示本發明的第38實施形態的電漿處理裝置1的構成的圖。 圖53是模式性地表示本發明的第39實施形態的電漿處理裝置1的構成的圖。 圖54是模式性地表示本發明的第41實施形態的電漿處理裝置1的構成的圖。 圖55是模式性地表示本發明的第42實施形態的電漿處理裝置1的構成的圖。 圖56是模式性地表示本發明的第43實施形態的電漿處理裝置1的構成的圖。 圖57是模式性地表示本發明的第44實施形態的電漿處理裝置1的構成的圖。 圖58是模式性地表示本發明的第45實施形態的電漿處理裝置1的構成的圖。 圖59是例示高頻電源所產生的高頻的頻率與第1電極及第2電極的電壓的關係的圖。 圖60是模式性地表示本發明的第46實施形態的電漿處理裝置1的構成的圖。 圖61是模式性地表示本發明的第47實施形態的電漿處理裝置1的構成的圖。FIG. 1 is a diagram schematically showing the configuration of a plasma processing apparatus 1 according to a first embodiment of the present invention. FIG. 2A is a diagram showing a configuration example of a balun. 2B is a diagram showing another configuration example of the balun. FIG. 3 is a diagram illustrating the function of the balun 103. Fig. 4 is a diagram illustrating the relationship between currents I1 (=I2), I2', I3, ISO, and α (=X/Rp). 5A is a graph showing the results of simulating the plasma potential and the cathode potential when 1.5≦X/Rp≦5000. 5B is a graph showing the results of simulating the plasma potential and cathode potential when 1.5≦X/Rp≦5000. 5C is a graph showing the results of simulating the plasma potential and cathode potential when 1.5≦X/Rp≦5000. 5D is a graph showing the results of simulating the plasma potential and the cathode potential when 1.5≦X/Rp≦5000. 6A is a graph showing the results of simulating the plasma potential and cathode potential when 1.5≦X/Rp≦5000. 6B is a graph showing the results of simulating the plasma potential and cathode potential when 1.5≦X/Rp≦5000. 6C is a graph showing the results of simulating the plasma potential and cathode potential when 1.5≦X/Rp≦5000. 6D is a graph showing the results of simulating the plasma potential and cathode potential when 1.5≦X/Rp≦5000. FIG. 7 is a diagram illustrating an Rp-jXp confirmation method. FIG. 8 is a diagram schematically showing the configuration of the plasma processing apparatus 1 according to the second embodiment of the present invention. 9 is a diagram schematically showing the configuration of a plasma processing apparatus 1 according to a third embodiment of the present invention. FIG. 10 is a diagram schematically showing the configuration of the plasma processing apparatus 1 according to the fourth embodiment of the present invention. FIG. 11 is a diagram schematically showing the configuration of the plasma processing apparatus 1 according to the fifth embodiment of the present invention. FIG. 12 is a diagram schematically showing the configuration of the plasma processing apparatus 1 according to the sixth embodiment of the present invention. 13 is a diagram schematically showing the configuration of a plasma processing apparatus 1 according to a seventh embodiment of the present invention. 14 is a diagram illustrating the function of a balun according to a seventh embodiment of the present invention. 15A is a graph showing the results of simulating the plasma potential and the two cathode potentials when 1.5≦X/Rp≦5000. 15B is a graph showing the results of simulating the plasma potential and the two cathode potentials when 1.5≦X/Rp≦5000. 15C is a graph showing the results of simulating the plasma potential and the two cathode potentials when 1.5≦X/Rp≦5000. 15D is a graph showing the results of simulating the plasma potential and the two cathode potentials when 1.5≦X/Rp≦5000. 16A is a graph showing the results of simulating the plasma potential and two cathode potentials when 1.5≦X/Rp≦5000. 16B is a graph showing the results of simulating the plasma potential and the two cathode potentials when 1.5≦X/Rp≦5000. 16C is a graph showing the results of simulating the plasma potential and two cathode potentials when 1.5≦X/Rp≦5000. 16D is a graph showing the results of simulating the plasma potential and the two cathode potentials when 1.5≦X/Rp≦5000. FIG. 17 is a diagram schematically showing the configuration of the plasma processing apparatus 1 according to the eighth embodiment of the present invention. 18 is a diagram schematically showing the configuration of a plasma processing apparatus 1 according to a ninth embodiment of the present invention. FIG. 19 is a diagram schematically showing the configuration of the plasma processing apparatus 1 according to the tenth embodiment of the present invention. FIG. 20 is a diagram schematically showing the configuration of the plasma processing apparatus 1 according to the eleventh embodiment of the present invention. 21 is a diagram schematically showing the configuration of a plasma processing apparatus 1 according to a twelfth embodiment of the present invention. 22 is a diagram schematically showing the configuration of a plasma processing apparatus 1 according to a thirteenth embodiment of the present invention. 23 is a diagram schematically showing the configuration of a plasma processing apparatus 1 according to a fourteenth embodiment of the present invention. FIG. 24 is a diagram illustrating the function of the plasma processing apparatus 1 according to the ninth embodiment of the present invention. FIG. 25 is a diagram illustrating the function of the plasma processing apparatus 1 according to the ninth embodiment of the present invention. FIG. 26 is a diagram schematically showing the configuration of the plasma processing apparatus 1 according to the fifteenth embodiment of the present invention. FIG. 27 is a diagram schematically showing the configuration of the plasma processing apparatus 1 according to the sixteenth embodiment of the present invention. FIG. 28 is a diagram schematically showing the configuration of the plasma processing apparatus 1 according to the seventeenth embodiment of the present invention. FIG. 29 is a diagram schematically showing the configuration of the plasma processing apparatus 1 according to the eighteenth embodiment of the present invention. FIG. 30 is a diagram schematically showing the configuration of the plasma processing apparatus 1 according to the nineteenth embodiment of the present invention. FIG. 31 is a diagram schematically showing the configuration of the plasma processing apparatus 1 according to the twentieth embodiment of the present invention. 32 is a diagram schematically showing the configuration of a plasma processing apparatus 1 according to a twenty-first embodiment of the present invention. 33 is a diagram schematically showing the configuration of a plasma processing apparatus 1 according to a twenty-third embodiment of the present invention. 34 is a diagram schematically showing the configuration of the plasma processing apparatus 1 according to the 24th embodiment of the present invention. 35 is a diagram schematically showing the configuration of a plasma processing apparatus 1 according to a twenty-fifth embodiment of the present invention. 36 is a diagram schematically showing the configuration of a plasma processing apparatus 1 according to a twenty-sixth embodiment of the present invention. 37 is a diagram schematically showing the configuration of a plasma processing apparatus 1 according to a twenty-seventh embodiment of the present invention. 38 is a diagram schematically showing the configuration of the plasma processing apparatus 1 according to the twenty-eighth embodiment of the present invention. 39 is a diagram schematically showing the configuration of a plasma processing apparatus 1 according to a twenty-ninth embodiment of the present invention. FIG. 40 is a flowchart illustrating the operation of the plasma processing apparatus 1 according to the twenty-third embodiment of the present invention. 41 is a diagram illustrating the relationship between the reactance and the voltages of the first electrode and the second electrode. 42 is a diagram schematically showing the configuration of a plasma processing apparatus 1 according to a thirtieth embodiment of the present invention. 43 is a diagram schematically showing the configuration of the plasma processing apparatus 1 according to the thirty-first embodiment of the present invention. 44 is a diagram schematically showing the configuration of the plasma processing apparatus 1 according to the 32nd embodiment of the present invention. FIG. 45 is a diagram schematically showing the configuration of the plasma processing apparatus 1 according to the 33rd embodiment of the present invention. 46 is a diagram schematically showing the configuration of the plasma processing apparatus 1 according to the 34th embodiment of the present invention. 47 is a diagram illustrating the normalized thickness distribution of the film formed on the substrate when the frequency of the high frequency generated by the high-frequency power supply is set to 12.56 MHz. 48 is a diagram illustrating the voltage of the first electrode (first voltage) and the voltage of the second electrode (second voltage) when the frequency of the high frequency generated by the high-frequency power source is changed. FIG. 49 is a diagram schematically showing the configuration of the plasma processing apparatus 1 according to the 35th embodiment of the present invention. FIG. 50 is a diagram schematically showing the configuration of the plasma processing apparatus 1 according to the 36th embodiment of the present invention. FIG. 51 is a diagram schematically showing the configuration of the plasma processing apparatus 1 according to the 37th embodiment of the present invention. 52 is a diagram schematically showing the configuration of the plasma processing apparatus 1 according to the 38th embodiment of the present invention. FIG. 53 is a diagram schematically showing the configuration of the plasma processing apparatus 1 according to the 39th embodiment of the present invention. FIG. 54 is a diagram schematically showing the configuration of the plasma processing apparatus 1 according to the 41st embodiment of the present invention. FIG. 55 is a diagram schematically showing the configuration of the plasma processing apparatus 1 according to the forty-second embodiment of the present invention. 56 is a diagram schematically showing the configuration of the plasma processing apparatus 1 according to the forty-third embodiment of the present invention. 57 is a diagram schematically showing the configuration of the plasma processing apparatus 1 according to the forty-fourth embodiment of the present invention. FIG. 58 is a diagram schematically showing the configuration of the plasma processing apparatus 1 according to the forty-fifth embodiment of the present invention. FIG. 59 is a diagram illustrating the relationship between the frequency of the high frequency generated by the high-frequency power supply and the voltages of the first electrode and the second electrode. FIG. 60 is a diagram schematically showing the configuration of the plasma processing apparatus 1 according to the forty-sixth embodiment of the present invention. FIG. 61 is a diagram schematically showing the configuration of the plasma processing apparatus 1 according to the 47th embodiment of the present invention.

1‧‧‧電漿處理裝置 1‧‧‧Plasma processing device

10‧‧‧本體 10‧‧‧Body

101‧‧‧高頻電源 101‧‧‧High frequency power supply

102‧‧‧阻抗匹配電路 102‧‧‧Impedance matching circuit

103‧‧‧巴倫 103‧‧‧ Barron

105a‧‧‧第1電極 105a‧‧‧First electrode

105b‧‧‧第2電極 105b‧‧‧Second electrode

109a、109b‧‧‧標靶 109a, 109b ‧‧‧ target

110‧‧‧真空容器 110‧‧‧Vacuum container

112‧‧‧基板 112‧‧‧ substrate

132a、132b‧‧‧絕緣體 132a, 132b ‧‧‧ insulator

141‧‧‧第3電極 141‧‧‧3rd electrode

142、146‧‧‧絕緣體 142、146‧‧‧Insulator

145‧‧‧第4電極 145‧‧‧ 4th electrode

201‧‧‧第1不平衡端子 201‧‧‧1st unbalanced terminal

202‧‧‧第2不平衡端子 202‧‧‧ 2nd unbalanced terminal

211‧‧‧第1平衡端子 211‧‧‧ 1st balanced terminal

212‧‧‧第2平衡端子 212‧‧‧ 2nd balanced terminal

251‧‧‧第1端子 251‧‧‧ First terminal

252‧‧‧第2端子 252‧‧‧2nd terminal

301‧‧‧第2高頻電源 301‧‧‧ 2nd high frequency power supply

302‧‧‧第2阻抗匹配電路 302‧‧‧The second impedance matching circuit

303‧‧‧第2巴倫 303‧‧‧ 2nd Barron

304‧‧‧阻塞電容器 304‧‧‧ blocking capacitor

401‧‧‧第1不平衡端子 401‧‧‧The first unbalanced terminal

402‧‧‧第2不平衡端子 402‧‧‧The second unbalanced terminal

411‧‧‧第1平衡端子 411‧‧‧ 1st balanced terminal

412‧‧‧第2平衡端子 412‧‧‧ 2nd balanced terminal

451‧‧‧第3端子 451‧‧‧ Terminal 3

452‧‧‧第4端子 452‧‧‧4th terminal

601a、601b‧‧‧可變電感器 601a, 601b ‧‧‧ variable inductor

602a、602b‧‧‧電容器 602a, 602b ‧‧‧ capacitor

V1‧‧‧第1電壓 V1‧‧‧The first voltage

V2‧‧‧第2電壓 V2‧‧‧The second voltage

HS1‧‧‧第1保持面 HS1‧‧‧The first holding surface

HS2‧‧‧第2保持面 HS2‧‧‧Second holding surface

PTH1‧‧‧第1路徑 PTH1‧‧‧ First path

PTH2‧‧‧第2路徑 PTH2‧‧‧The second path

PL‧‧‧平面 PL‧‧‧Plane

CNT1‧‧‧第1指令值 CNT1‧‧‧First command value

CNT2‧‧‧第2指令值 CNT2‧‧‧second command value

CNT3‧‧‧指令值 CNT3‧‧‧Command value

Claims (35)

一種電漿處理裝置,其特徵係具備: 阻抗匹配電路; 巴倫,其係具有:被連接至前述阻抗匹配電路的第1不平衡端子、被接地的第2不平衡端子、第1平衡端子及第2平衡端子; 真空容器,其係被接地; 第1電極,其係被電性連接至前述第1平衡端子; 第2電極,其係被電性連接至前述第2平衡端子; 調整電抗器,其係影響被施加於前述第1電極的第1電壓與被施加於前述第2電極的第2電壓的關係; 高頻電源,其係產生經由前述阻抗匹配電路來供給至前述第1不平衡端子與前述第2不平衡端子之間的高頻;及 控制部,其係控制前述阻抗匹配電路的阻抗及前述調整電抗器的電抗。A plasma processing device, characterized by: Impedance matching circuit; The balun has: a first unbalanced terminal connected to the impedance matching circuit, a second unbalanced terminal grounded, a first balanced terminal, and a second balanced terminal; The vacuum container is grounded; The first electrode is electrically connected to the first balanced terminal; The second electrode is electrically connected to the second balanced terminal; Adjusting the reactor affects the relationship between the first voltage applied to the first electrode and the second voltage applied to the second electrode; A high-frequency power supply, which generates a high frequency supplied between the first unbalanced terminal and the second unbalanced terminal via the impedance matching circuit; and The control unit controls the impedance of the impedance matching circuit and the reactance of the adjustment reactor. 如申請專利範圍第1項之電漿處理裝置,其中,前述控制部,係以能匹配於從前述第1平衡端子及前述第2平衡端子的側來看前述第1電極及前述第2電極的側時的阻抗之方式控制前述阻抗匹配電路的阻抗。A plasma processing apparatus according to item 1 of the patent application, wherein the control unit is adapted to match the first electrode and the second electrode viewed from the side of the first balanced terminal and the second balanced terminal The impedance mode at the time controls the impedance of the aforementioned impedance matching circuit. 如申請專利範圍第1項之電漿處理裝置,其中,前述控制部,係將前述阻抗匹配電路的阻抗控制成電漿的點燃用的阻抗,在電漿被點燃後,以能匹配於從前述第1平衡端子及前述第2平衡端子的側來看前述第1電極及前述第2電極的側時的阻抗之方式控制前述阻抗匹配電路的阻抗。A plasma processing device as claimed in item 1 of the patent application, wherein the control unit controls the impedance of the impedance matching circuit to the impedance for ignition of the plasma, after the plasma is ignited, to match The impedance of the impedance matching circuit is controlled in such a manner that the sides of the first balanced terminal and the second balanced terminal look at the impedance of the sides of the first electrode and the second electrode. 如申請專利範圍第1項之電漿處理裝置,其中,前述控制部,係以前述第1電極的電壓會形成第1目標值,前述第2電極的電壓會形成第2目標值的方式,控制前述調整電抗器的電抗。According to the plasma processing device of claim 1, the control unit controls the voltage of the first electrode to form a first target value and the voltage of the second electrode to form a second target value. The aforementioned reactance of the reactor is adjusted. 如申請專利範圍第1項之電漿處理裝置,其中,前述控制部,係以前述第1電極的電壓與前述第2電極的電壓的差分會形成目標差分值的方式,控制前述調整電抗器的電抗。According to the plasma processing device of claim 1, the control unit controls the adjustment reactor such that the difference between the voltage of the first electrode and the voltage of the second electrode forms a target difference value Reactance. 如申請專利範圍第1項之電漿處理裝置,其中,前述控制部,係將用以控制前述調整電抗器的電抗之指令值供給至前述調整電抗器,前述調整電抗器,係按照前述指令值來變更自己的電抗。A plasma processing device as claimed in item 1 of the patent scope, wherein the control unit supplies the command value for controlling the reactance of the adjustment reactor to the adjustment reactor, and the adjustment reactor is based on the command value To change your own reactance. 如申請專利範圍第1項之電漿處理裝置,其中,前述高頻電源,係可變更前述高頻的頻率,前述控制部,係以能藉由前述頻率的變更來調整前述關係之方式,將用以控制前述高頻電源的頻率之指令值供給至前述高頻電源。For example, in the plasma processing device of claim 1, the high-frequency power source can change the frequency of the high-frequency power, and the control unit can adjust the relationship by changing the frequency. The command value for controlling the frequency of the high-frequency power supply is supplied to the high-frequency power supply. 如申請專利範圍第1項之電漿處理裝置,其中,前述第1電極,係具有保持第1構件的第1保持面,前述第2電極,係具有保持第2構件的第2保持面,前述第1保持面及前述第2保持面,係屬於1個平面。A plasma processing apparatus according to claim 1 of the patent application, wherein the first electrode has a first holding surface holding the first member, and the second electrode has a second holding surface holding the second member, The first holding surface and the second holding surface belong to one plane. 如申請專利範圍第1項之電漿處理裝置,其中,前述第1電極,係保持第1靶,前述第2電極,係保持第2靶,前述第1電極係隔著前述第1靶來與處理對象的基板的側的空間對向,前述第2電極係隔著前述第2靶來與前述空間對向。A plasma processing apparatus according to claim 1 of the patent application, wherein the first electrode holds the first target, the second electrode holds the second target, and the first electrode intersects the first target The space on the side of the substrate to be processed is opposed, and the second electrode is opposed to the space through the second target. 如申請專利範圍第9項之電漿處理裝置,其中,前述調整電抗器,係包含:(a)被配置於連接前述第1平衡端子與前述第1電極的第1路徑之可變電抗器、(b)被配置於前述第1電極與接地之間的可變電抗器、(c)被配置於連接前述第2平衡端子與前述第2電極的第2路徑之可變電抗器、(d)被配置於前述第2電極與接地之間的可變電抗器、及(e)連接前述第1路徑與前述第2路徑的可變電抗器的至少1個。A plasma processing apparatus according to claim 9 of the patent application, wherein the adjustment reactor includes: (a) a variable reactor arranged in a first path connecting the first balance terminal and the first electrode , (B) a variable reactor arranged between the first electrode and the ground, (c) a variable reactor arranged on the second path connecting the second balanced terminal and the second electrode, (d) at least one variable reactor arranged between the second electrode and the ground, and (e) a variable reactor connecting the first path and the second path. 如申請專利範圍第9項之電漿處理裝置,其中,前述調整電抗器,係包含:被配置於連接前述第1平衡端子與前述第1電極的第1路徑之第1可變電抗器、及被配置於連接前述第2平衡端子與前述第2電極的第2路徑之第2可變電抗器的至少1個。A plasma processing apparatus according to claim 9 of the patent application, wherein the adjustment reactor includes a first variable reactor arranged in a first path connecting the first balanced terminal and the first electrode, And at least one second variable reactor arranged in the second path connecting the second balanced terminal and the second electrode. 如申請專利範圍第11項之電漿處理裝置,其中,前述第1可變電抗器,係包含可變電感器,前述第2可變電抗器,係包含可變電感器。A plasma processing apparatus according to claim 11 of the patent application, wherein the first variable reactor includes a variable inductor, and the second variable reactor includes a variable inductor. 如申請專利範圍第11項之電漿處理裝置,其中,前述第1可變電抗器,係包含可變電容器,前述第2可變電抗器,係包含可變電容器。A plasma processing device according to claim 11 of the patent application, wherein the first variable reactor includes a variable capacitor, and the second variable reactor includes a variable capacitor. 如申請專利範圍第9項之電漿處理裝置,其中,前述調整電抗器,係包含:被配置於連接前述第1電極與接地的第3路徑之第3可變電抗器、及被配置於連接前述第2電極與接地的第4路徑之第4可變電抗器的至少1個。A plasma processing apparatus according to claim 9 of the patent application, wherein the adjustment reactor includes: a third variable reactor arranged in a third path connecting the first electrode and the ground, and arranged in At least one fourth variable reactor that connects the second electrode to the grounded fourth path. 如申請專利範圍第14項之電漿處理裝置,其中,前述第3可變電抗器,係包含可變電容器,前述第4可變電抗器,係包含可變電容器。A plasma processing apparatus according to claim 14 of the patent application, wherein the third variable reactor includes a variable capacitor, and the fourth variable reactor includes a variable capacitor. 如申請專利範圍第14項之電漿處理裝置,其中,前述第3可變電抗器,係包含可變電感器,前述第4可變電抗器,係包含可變電感器。A plasma processing device according to item 14 of the patent application, wherein the third variable reactor includes a variable inductor, and the fourth variable reactor includes a variable inductor. 如申請專利範圍第9項之電漿處理裝置,其中,前述調整電抗器,係包含連接第1路徑與第2路徑的可變電抗器,該第1路徑係連接前述第1平衡端子與前述第1電極,該第2路徑係連接前述第2平衡端子與前述第2電極。A plasma processing apparatus according to claim 9 of the patent application, wherein the adjustment reactor includes a variable reactor connecting the first path and the second path, and the first path connects the first balanced terminal and the foregoing For the first electrode, the second path connects the second balanced terminal and the second electrode. 如申請專利範圍第17項之電漿處理裝置,其中,前述可變電抗器,係包含可變電感器。For example, in the plasma processing device of claim 17, the variable reactor includes a variable inductor. 如申請專利範圍第18項之電漿處理裝置,其中,前述可變電抗器,係包含可變電容器。For example, in the plasma processing device of claim 18, the variable reactor includes a variable capacitor. 如申請專利範圍第1項之電漿處理裝置,其中,前述控制部,係根據前述第1電極的電壓及前述第2電極的電壓來控制前述調整電抗器。According to the plasma processing apparatus of claim 1, the control unit controls the adjustment reactor based on the voltage of the first electrode and the voltage of the second electrode. 如申請專利範圍第1項之電漿處理裝置,其中,前述控制部,係根據前述第1電極的附近的電漿強度及前述第2電極的附近的電漿強度來控制前述調整電抗器。According to the plasma processing apparatus of claim 1, the control unit controls the adjustment reactor based on the plasma strength near the first electrode and the plasma strength near the second electrode. 如申請專利範圍第1項之電漿處理裝置,其中,更具備: 保持基板的基板保持部;及 使前述基板保持部旋轉的驅動機構。For example, the plasma treatment device in the first scope of the patent application, which includes: A substrate holding portion that holds the substrate; and A driving mechanism for rotating the substrate holding portion. 如申請專利範圍第1項之電漿處理裝置,其中,將由前述第1平衡端子及前述第2平衡端子的側來看前述第1電極及前述第2電極的側時的前述第1平衡端子與前述第2平衡端子之間的電阻成分設為Rp,且將前述第1不平衡端子與前述第1平衡端子之間的電感設為X時,符合1.5≦X/Rp≦5000。A plasma processing apparatus according to claim 1 of the patent application, wherein the first balanced terminal and the first balanced terminal when viewed from the side of the first balanced terminal and the second balanced terminal When the resistance component between the second balanced terminals is Rp and the inductance between the first unbalanced terminal and the first balanced terminal is X, 1.5≦X/Rp≦5000 is satisfied. 如申請專利範圍第1項之電漿處理裝置,其中,前述巴倫,係具有:連接前述第1不平衡端子與前述第1平衡端子的第1線圈、及連接前述第2不平衡端子與前述第2平衡端子的第2線圈。A plasma processing apparatus as claimed in item 1 of the patent application, wherein the balun includes a first coil connecting the first unbalanced terminal and the first balanced terminal, and connecting the second unbalanced terminal and the foregoing The second coil of the second balanced terminal. 如申請專利範圍第24項之電漿處理裝置,其中,前述巴倫,係更具有:被連接至前述第1平衡端子與前述第2平衡端子之間的第3線圈及第4線圈, 前述第3線圈及前述第4線圈,係被構成為以前述第3線圈與前述第4線圈的連接節點的電壓作為前述第1平衡端子的電壓與前述第2平衡端子的電壓的中點。A plasma processing apparatus according to claim 24, wherein the balun further includes a third coil and a fourth coil connected between the first balanced terminal and the second balanced terminal, The third coil and the fourth coil are configured such that the voltage of the connection node between the third coil and the fourth coil is the midpoint between the voltage of the first balanced terminal and the voltage of the second balanced terminal. 一種電漿處理方法,係在電漿處理裝置中處理基板的電漿處理方法,該電漿處理裝置,係具備: 阻抗匹配電路; 巴倫,其係具有:被連接至前述阻抗匹配電路的第1不平衡端子、被接地的第2不平衡端子、第1平衡端子及第2平衡端子; 真空容器,其係被接地; 第1電極,其係被電性連接至前述第1平衡端子; 第2電極,其係被電性連接至前述第2平衡端子; 調整電抗器,其係影響被施加於前述第1電極的第1電壓與被施加於前述第2電極的第2電壓的關係;及 高頻電源,其係產生經由前述阻抗匹配電路來供給至前述第1不平衡端子與前述第2不平衡端子之間的高頻, 其特徵為包含: 匹配工程,其係以能匹配於從前述第1平衡端子及前述第2平衡端子的側來看前述第1電極及前述第2電極的側時的阻抗之方式控制前述阻抗匹配電路的阻抗; 調整工程,其係以能調整前述關係的方式調整前述調整電抗器;及 處理工程,其係於前述調整工程之後,處理前述基板。A plasma processing method is a plasma processing method for processing a substrate in a plasma processing device. The plasma processing device includes: Impedance matching circuit; The balun has: a first unbalanced terminal connected to the impedance matching circuit, a second unbalanced terminal grounded, a first balanced terminal, and a second balanced terminal; The vacuum container is grounded; The first electrode is electrically connected to the first balanced terminal; The second electrode is electrically connected to the second balanced terminal; Adjusting the reactor, which affects the relationship between the first voltage applied to the first electrode and the second voltage applied to the second electrode; and A high-frequency power supply that generates high frequencies supplied between the first unbalanced terminal and the second unbalanced terminal via the impedance matching circuit, Its characteristics include: The matching process is to control the impedance of the impedance matching circuit in such a way that it can match the impedance when viewing the side of the first electrode and the second electrode from the side of the first balanced terminal and the second balanced terminal; Adjustment engineering, which is to adjust the aforementioned adjustment reactor in such a way as to adjust the aforementioned relationship; and The processing process is to process the substrate after the adjustment process. 如申請專利範圍第26項之電漿處理方法,其中,更包含:在前述阻抗匹配電路的阻抗被設定成電漿的點燃用的阻抗之狀態下點燃電漿的點燃工程, 在前述點燃工程之後實施前述匹配工程。For example, the plasma processing method of claim 26, which further includes: the ignition process of igniting the plasma in a state where the impedance of the impedance matching circuit is set to the impedance for plasma ignition, The aforementioned matching process is carried out after the aforementioned ignition process. 如申請專利範圍第26項之電漿處理方法,其中,前述調整工程,係包含:以前述第1電極的電壓會形成第1目標值,前述第2電極的電壓會形成第2目標值的方式,控制前述調整電抗器的電抗。For example, in the plasma processing method of claim 26, the adjustment process includes: a method in which the voltage of the first electrode forms a first target value, and the voltage of the second electrode forms a second target value To control the reactance of the aforementioned adjustment reactor. 如申請專利範圍第26項之電漿處理方法,其中,前述調整工程,係包含:以前述第1電極的電壓與前述第2電極的電壓的差分會形成目標差分值的方式,控制前述調整電抗器的電抗。For example, in the plasma processing method of claim 26, the adjustment process includes controlling the adjustment reactance such that the difference between the voltage of the first electrode and the voltage of the second electrode will form a target difference value Reactor of the device. 如申請專利範圍第26項之電漿處理方法,其中,前述調整工程,係包含:將用以控制前述調整電抗器的電抗之指令值供給至前述調整電抗器,前述調整電抗器會按照前述指令值來變更自己的電抗。For example, the plasma processing method of claim 26, wherein the adjustment process includes: supplying the command value for controlling the reactance of the adjustment reactor to the adjustment reactor, the adjustment reactor will follow the instruction Value to change your own reactance. 如申請專利範圍第26項之電漿處理方法,其中,前述高頻電源,係可變更前述高頻的頻率,前述調整工程,係包含:以能藉由前述頻率的變更來調整前述關係之方式,將用以控制前述高頻電源的頻率之指令值供給至前述高頻電源。For example, the plasma processing method of claim 26, wherein the high-frequency power supply can change the frequency of the high-frequency, and the adjustment process includes: a method that can adjust the relationship by changing the frequency , The command value for controlling the frequency of the high-frequency power supply is supplied to the high-frequency power supply. 一種程式,其特徵為:使如申請專利範圍第26~29項中的任一項所記載之電漿處理方法實行於電腦。A program characterized in that the plasma processing method described in any one of the items 26 to 29 of the patent application scope is implemented on a computer. 一種記憶媒體,其特徵為:儲存有使如申請專利範圍第26~29項中的任一項所記載之電漿處理方法實行於電腦的程式。A memory medium characterized by storing a program for implementing the plasma processing method described in any one of the patent application items 26 to 29 in a computer. 一種電漿處理裝置,其特徵係具備: 阻抗匹配電路; 巴倫,其係具有:被連接至前述阻抗匹配電路的第1不平衡端子、被接地的第2不平衡端子、第1平衡端子及第2平衡端子; 真空容器,其係被接地; 第1電極,其係被電性連接至前述第1平衡端子; 第2電極,其係被電性連接至前述第2平衡端子; 調整電抗器,其係影響被施加於前述第1電極的第1電壓與被施加於前述第2電極的第2電壓的關係; 高頻電源,其係產生經由前述阻抗匹配電路來供給至前述第1不平衡端子與前述第2不平衡端子之間的高頻;及 測定部,其係測定前述第1電極的電壓及前述第2電極的電壓, 按照在前述測定部所測定的前述第1電極的電壓與前述第2電極的電壓來調整前述調整電抗器的電抗。A plasma processing device, characterized by: Impedance matching circuit; The balun has: a first unbalanced terminal connected to the impedance matching circuit, a second unbalanced terminal grounded, a first balanced terminal, and a second balanced terminal; The vacuum container is grounded; The first electrode is electrically connected to the first balanced terminal; The second electrode is electrically connected to the second balanced terminal; Adjusting the reactor affects the relationship between the first voltage applied to the first electrode and the second voltage applied to the second electrode; A high-frequency power supply, which generates a high frequency supplied between the first unbalanced terminal and the second unbalanced terminal via the impedance matching circuit; and A measuring unit that measures the voltage of the first electrode and the voltage of the second electrode, The reactance of the adjustment reactor is adjusted according to the voltage of the first electrode and the voltage of the second electrode measured by the measurement unit. 如申請專利範圍第34項之電漿處理裝置,其中,前述調整電抗器,係包含可變電感器及可變電容器。For example, in the plasma processing device of claim 34, the aforementioned adjustment reactor includes a variable inductor and a variable capacitor.
TW107146926A 2017-06-27 2018-12-25 Plasma processing device, plasma processing method, program and memory medium TWI716796B (en)

Applications Claiming Priority (11)

Application Number Priority Date Filing Date Title
PCT/JP2017/023611 WO2019003312A1 (en) 2017-06-27 2017-06-27 Plasma treatment device
PCT/JP2017/023603 WO2019003309A1 (en) 2017-06-27 2017-06-27 Plasma treatment device
JP2018017551 2018-02-02
WOPCT/JP2018/024146 2018-06-26
PCT/JP2018/024146 WO2019004184A1 (en) 2017-06-27 2018-06-26 Plasma treatment device
PCT/JP2018/024148 WO2019004186A1 (en) 2017-06-27 2018-06-26 Plasma processing device
PCT/JP2018/024149 WO2019004187A1 (en) 2017-06-27 2018-06-26 Plasma treatment device
WOPCT/JP2018/024149 2018-06-26
PCT/JP2018/024147 WO2019004185A1 (en) 2017-06-27 2018-06-26 Plasma processing device
WOPCT/JP2018/024147 2018-06-26
WOPCT/JP2018/024148 2018-06-26

Publications (2)

Publication Number Publication Date
TW202001978A true TW202001978A (en) 2020-01-01
TWI716796B TWI716796B (en) 2021-01-21

Family

ID=64742978

Family Applications (3)

Application Number Title Priority Date Filing Date
TW108125826A TWI680697B (en) 2017-06-27 2018-06-26 Plasma processing device
TW107121806A TWI679924B (en) 2017-06-27 2018-06-26 Plasma processing device
TW107146926A TWI716796B (en) 2017-06-27 2018-12-25 Plasma processing device, plasma processing method, program and memory medium

Family Applications Before (2)

Application Number Title Priority Date Filing Date
TW108125826A TWI680697B (en) 2017-06-27 2018-06-26 Plasma processing device
TW107121806A TWI679924B (en) 2017-06-27 2018-06-26 Plasma processing device

Country Status (3)

Country Link
JP (2) JP6656479B2 (en)
TW (3) TWI680697B (en)
WO (1) WO2019004185A1 (en)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53141937U (en) * 1977-04-15 1978-11-09
US4887005A (en) * 1987-09-15 1989-12-12 Rough J Kirkwood H Multiple electrode plasma reactor power distribution system
JPH02156080A (en) * 1988-12-09 1990-06-15 Tokuda Seisakusho Ltd Sputtering device
US5330578A (en) * 1991-03-12 1994-07-19 Semiconductor Energy Laboratory Co., Ltd. Plasma treatment apparatus
JP2010045664A (en) * 2008-08-14 2010-02-25 Tokyo Electron Ltd Matching device, matching method, plasma treatment device, and storage medium
US8438990B2 (en) * 2008-09-30 2013-05-14 Applied Materials, Inc. Multi-electrode PECVD source
JP2009302566A (en) * 2009-09-16 2009-12-24 Masayoshi Murata Plasma surface processor with balanced-unbalanced transformer
WO2012095961A1 (en) * 2011-01-12 2012-07-19 日新電機株式会社 Plasma apparatus
KR101839776B1 (en) * 2011-02-18 2018-03-20 삼성디스플레이 주식회사 Plazma treatment apparatus
US20130337657A1 (en) * 2012-06-19 2013-12-19 Plasmasi, Inc. Apparatus and method for forming thin protective and optical layers on substrates
WO2014141601A1 (en) * 2013-03-14 2014-09-18 キヤノンアネルバ株式会社 Film formation method, method for manufacturing semiconductor light-emitting element, semiconductor light-emitting element, and lighting apparatus
JP6574547B2 (en) * 2013-12-12 2019-09-11 東京エレクトロン株式会社 Plasma processing apparatus and plasma processing method
KR102457976B1 (en) * 2017-06-27 2022-10-25 캐논 아네르바 가부시키가이샤 plasma processing unit

Also Published As

Publication number Publication date
JP6656479B2 (en) 2020-03-04
TWI679924B (en) 2019-12-11
TW201907756A (en) 2019-02-16
TWI716796B (en) 2021-01-21
JPWO2019004185A1 (en) 2020-01-09
JP2020024926A (en) 2020-02-13
TWI680697B (en) 2019-12-21
TW201941667A (en) 2019-10-16
JP7145833B2 (en) 2022-10-03
WO2019004185A1 (en) 2019-01-03

Similar Documents

Publication Publication Date Title
KR102439024B1 (en) Plasma processing apparatus, plasma processing method, program, and memory medium
TWI704842B (en) Plasma processing device
JP6458206B1 (en) Plasma processing equipment
TWI699140B (en) Plasma treatment device
JP7202199B2 (en) Plasma processing equipment
JP7145832B2 (en) Plasma processing apparatus and plasma processing method
TW202001978A (en) Plasma treatment device, plasma treatment method, program, and memory medium
TWI693862B (en) Plasma treatment device
TWI680696B (en) Plasma processing device
JP2019133929A (en) Plasma processing apparatus
JPWO2019004189A1 (en) Plasma processing equipment