TW201907085A - 風力發電廠、及配置決定裝置 - Google Patents
風力發電廠、及配置決定裝置 Download PDFInfo
- Publication number
- TW201907085A TW201907085A TW107122799A TW107122799A TW201907085A TW 201907085 A TW201907085 A TW 201907085A TW 107122799 A TW107122799 A TW 107122799A TW 107122799 A TW107122799 A TW 107122799A TW 201907085 A TW201907085 A TW 201907085A
- Authority
- TW
- Taiwan
- Prior art keywords
- wind
- wind power
- windmill
- power plant
- range
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D13/00—Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D9/00—Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
- F03D9/30—Wind motors specially adapted for installation in particular locations
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/728—Onshore wind turbines
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Wind Motors (AREA)
Abstract
[課題]達成可以有效果地發電。 [解決手段]一種風力發電廠(10),具備複數個風車(1),該風車具有受風而旋轉的葉片;其特徵為:至少一個風車(1)被配置成,在稜線的主風向(300)的下風側之比稜線還低的範圍中,葉片(23)的最低到達點L在稜線的標高以上。而且,風力發電廠中,複數個風車(1)包含:第1風車、以及比第1風車更配置在主風向(300)的下風側之第2風車;第2風車係配置在避開相對於包含主風向(300)的特定的範圍的風向而成為第1風車的下風方向之範圍。
Description
本發明有關具備複數個具有受風而旋轉的葉片之風力發電裝置之風力發電廠及決定風力發電裝置的配置之配置決定裝置。
最近幾年,廣為建設具備複數個風力發電裝置(風車)之風力發電廠。作為可以建設風力發電廠,吹著較強的風的場所是為必要,例如,建設在山岳部等。
例如,在建設風力發電廠在山岳部之際,為了有效得到風,是在稜線的附近、或是比稜線更位在主風向(整年間頻度最高的風向)的上風側的範圍設置風力發電裝置。
在建設風力發電廠的情況方面,如何配置風車是很重要的,要決定好如何決定與其他的風車的位置關係是非常困難的。
對此,使用依各風況總結出建設地內的各地點的風速值之風速資料,從發電量的觀點來決定最佳的風車的配置之技術是廣為人知(例如,參閱專利文獻1)。 [先前技術文獻] [專利文獻]
[專利文獻1]日本特開2010-127235號專利公報
[發明欲解決之課題]
建設在山岳部等的風力發電廠中,是有必要檢討考慮了因地形所產生的地形亂流、或通過了位置在上風側的風車之風車後流段(也稱為後流段)的影響之風車配置。在地形亂流中或風車後流段中,是有風車的發電量減少、或在風車產生損傷之問題。
本發明係有鑑於上述情事而為之創作,其目的為提供用於可以有效果地發電之技術。 [解決課題之手段]
為了達成上述目的,有關其中一觀點的風力發電廠,具備複數個風力發電裝置,該風力發電裝置具有受風而旋轉的葉片;其特徵為:至少一個風力發電裝置被配置成,在稜線的主風向的下風側之比稜線還低的範圍中,葉片的最低到達點在稜線的標高以上。 [發明效果]
根據本發明,可以有效果地發電。
有關若干個實施方式,參閱圖面說明之。尚且,以下說明的實施方式並非用來限定與申請專利範圍有關的發明,而且也不限定在實施方式的中所說明的各個要件及其組合的全部在發明的解決手段為必須。
首先,說明有關第1實施方式的風力發電廠。
風力發電廠為包含至少2座以上的風車(風力發電裝置)1之集合型風力發電所或風車群。
圖1為有關第1實施方式之風車的整體概略構成圖。
風車1具備:轉子24,其係具備受風而旋轉的葉片23及支撐葉片23的轂22;機艙21,其係支撐轉子24成可旋轉;以及塔20,其係支撐機艙21成可旋動。
在機艙21內,具備:主軸25,其係被連接到轂22成可旋轉;增速機27,其係被連接到主軸25,對旋轉速度進行增速;以及發電機28,其係以經由增速機27而被增速過的旋轉速度來使轉子旋轉而進行發電。增速機27及發電機28被保持在主框架29上。在機艙21的上表面,設置有用於計測風向資料及風速資料的風向風速計32。
而且,風車1具備驅動機艙21的方向(稱為平擺角)亦即轉子24的旋轉面的方向之平擺角驅動裝置33。平擺角驅動裝置33配置在機艙21的底面與塔20的末端部之間。平擺角驅動裝置33包含驅動致動器及致動器之馬達。而且,風車1係在機艙21內,具備:驅動葉片23的傾斜角(槳距角)之未圖示槳距角驅動裝置。槳距角驅動裝置包含:調整葉片23的傾斜角之致動器及驅動致動器之馬達。
在塔20的內部,配置有:轉換經由發電機28所發電出的電力的頻率之電力變換器30、控制裝置31、未圖示之進行電流的開關之切換用的開關器、變壓器等。尚且,圖1中,雖表示出把電力變換器30及控制裝置31設置在塔20的底部之例,但是這些機器並不限於塔20的底部,也可以設置在風車2的內部之其他的場所。
作為控制裝置31,例如,也可以使用控制盤或是SCADA(Supervisory Control And Data Acquisition)。控制裝置31係整合控制風車1的動作。例如,控制裝置31係透過訊號線連接到平擺角驅動裝置33,輸出平擺角控制指令,使平擺角驅動裝置33的馬達旋轉,使致動器做期望量變位,藉此,把機艙21旋動控制在期望的平擺角。而且,控制裝置31係對未圖示槳距角驅動裝置,輸出槳距角控制指令,把葉片23的槳距角控制在期望的角度。
山岳部中的風力發電廠中,是有標高越高平均風速越高的傾向,所以一般是沿稜線設置風車。但是,因為噪音或對周邊民家的問題等,也並非一定可以設置在稜線上,所以也有產生有必要檢討稜線上以外的設置場所之情況。
在此,說明有關通過稜線的風況。
圖2為說明通過稜線的風況之圖。
通過山岳部的風的特徵之一,舉例有流場分離。流場分離係如圖2表示,沿斜面上升的風310,係作為風311通過山頂(稜線)後,不沿地面下降,而如表示在流動在上空的風312般進行流動的現象。在此,把相對於山的稜線成為下風側的範圍350稱為分離範圍。
分離範圍350中,風速急遽下降的緣故,在該範圍即便配置風車發電效率也不好。而且,分離範圍350中,因為產生局部性風向變化等大的風的紊亂,所以有對風車的負載變動變大之虞。
在此,本實施方式中的風力發電廠中,把風車配置成,連一個風車1的葉片23都不通過分離範圍350。
圖3為有關第1實施方式之風力發電廠的一個風車的配置圖。
本實施方式中,比起相對於主風向(整年間頻度最高的風向)300比稜線更位在風側的稜線,配置在更低的位置之風車1(在此作為風車211)中,係以風車211的葉片23的最低到達點位置在上風側的稜線的標高H以上的方式,配置風車211。尚且,在此的稜線、與風車1的配置位置,係例如屬於相同的山岳部;稜線係相對於風車1的配置位置為最近的稜線。經由如此配置風車211,風車211的葉片23不會通過圖2表示的分離範圍350,可以適切迴避風車211所致之發電受到流場分離的影響之憾事。
尚且,所謂稜線,不限於自然界中所形成者,例如,人工造成的也算。例如,為了把風車211配置成,風車211的葉片23的最低到達點比位置在上風側的稜線的標高還高,例如,也可以人工造成稜線,而降低稜線的標高。
而且,風力發電廠中,在配置在比稜線更位在下風側之風車1有複數個的情況下,關於其中1個以上的風車1,係可以配置成風車1的葉片23的最低到達點比位置在上風側的稜線的標高還高,關於全部的風車1,係可以配置成風車1的葉片23的最低到達點比位置在上風側的稜線的標高還高。
根據本實施方式,山岳部中,是也可以在稜線的主風向的下風側的範圍設置風車,與限定在稜線上配置風車的情況相比,可以設置更多的風車。而且,以風車1的葉片23不通過分離範圍350的方式來可以進行發電的緣故,可以提高風車1所致之發電效率。
接著,說明有關第2實施方式的風力發電廠。
有關第2實施方式的風力發電廠,係考慮到相互的位置關係而配置複數個風車者。尚且,省略有關與第1實施方式共通的點之詳細的說明。
首先,說明有關位置在上風側的風車所致之對位置在下風側的風車的影響。
圖4為說明上風側的風車所致之對下風側的風車的影響之圖。
通過了位置在上風側的風車100的風,被叫做風車後流段(也簡稱為後流段)。該風車後流段,係在比較了流入到位置在上風側的風車100的風的情況下,風向、風速等的風的特性產生了變化。風車後流段的特性的變化,係相依於位置在上風側的風車100的運轉狀態。在此,所謂運轉狀態,也包含風車100的葉片23的傾斜角(槳距角)、或轉子24的旋轉面的方向等的狀態。
圖5為說明小規模的風力發電廠中的上風側的風車所致之對下風側的風車的影響之圖。圖6為說明大規模的風力發電廠中的上風側的風車所致之對下風側的風車的影響之圖。
如圖5表示,利用2座的風車所構成的風力發電廠12中,因為風向,是有位置在下風側的風車200會進入到位置在上風側的風車100的風車後流段的範圍(風車後流段範圍)中的可能性。
而且,利用4座的風車所構成的風力發電廠13中,在如圖6表示般的風向的情況下,是有相對於位置在上風側之1座的風車100a,1座的風車200b位置在下風方向的風車100的風車後流段範圍中,2座的風車200位置在該範圍以外的場所之情況。在風向變化了的情況下,各風車的關係發生變化。例如,是有因為風向,位置在下風側的風車200b、風車200d中任意一個變成位置在上風側的風車,位置在上風側的風車100a、風車200d中任意一個變成位置在下風側的風車之情況。
在此,說明有關風車後流段(後流段)。圖6表示的風力發電廠中,通過位置在上風側的風車100a的風,係因為位置在上風側的風車100a的轉子24的旋轉的影響,所謂風向、風速之風況發生變化。此時,不僅是風向、風速,風的各種紊亂也就是亂流特性或渦流的形狀等發生變化。
風車後流段係如圖6表示,在通過了位置在上風側的風車100a後,一邊擴開一邊往下風側流動。亦即,風車後流段,係一邊擴散一邊使渦流(亂流)產生,往下風側傳播。在此,把一邊擴散一邊產生渦流(亂流)並往下風側傳播的風車後流段的範圍,稱為風車後流段範圍(也稱為後流段範圍)。圖6表示的狀況中,在位置在下風側的風車200b中,與位置在風車後流段範圍的外側的風車200d相比,發電量下降,並且,積蓄的損傷度增加。
圖7為表示有關第2實施方式的風力發電廠的構成之側視圖。圖7係表示從稜線延伸的方向(圖面深度方向)看風力發電廠之圖。
風力發電廠中,平均風速是有相應於標高而越高的傾向,所以一般的情況是如風車1(風車101)般設置在稜線上。但是,稜線上的土地係因為受限,而更進一步考慮到了設置風車的情況下,例如,有必要在比起稜線其標高為低的位置設置風車1(風車201)。山岳部中,在著眼於風向的出現頻度的情況下,如圖7中的風向300般,因為橫切稜線的風的出現頻度變高,風車201係在風向300中,配置成不受到其他的風車的後流段的影響這一點變成很重要。尚且,風車201被配置成,葉片23的最低到達點比位置在上風側的稜線的標高H還高。
圖8為表示有關第2實施方式的風力發電廠的構成之俯視圖。
風車101(第1風車)、與風車102(第1風車),係設置在相同的稜線上。稜線係例如,與主風向成為垂直方向的可能性高,在此,以稜線與主風向成垂直的情況為例進行說明。風車101與風車102之間的風車間距離401,係延伸在與主風向成垂直的方向的緣故,例如,理想上為風車101、102的轉子24的直徑的3倍以上。在此,在吹了主風向的風的情況下,風車201(第2風車)係配置成理想上可以迴避稜線上的風車101、102的風車後流段的影響的緣故,迴避各風車101、102的主風向的下風方向做配置者為佳。例如,可以配置成為圖6表示的風車100a與風車200d之位置關係。
而且,從主風向傾斜了特定角度(因場所而異,例如,45度)以上的風的出現準確率係大幅下降的緣故,理想上把風車201,決定在不進入到分別相對於風車101及風車102以主風向的下風方向為中心取特定角度到兩側之角度幅度範圍(在該例,例如是90度的範圍)內。例如,在特定角度為45度的情況下,把以把與風車101及風車102的略中間位置之距離410決定成風車間距離401的一半以下的方式,來決定風車201。經由這樣的配置,相對於主風向,只要風向的變化在45度以內,風車201是可以迴避風車101及風車102所致之風車後流段的影響。尚且,角度幅度範圍也可以作為出現準確率為特定以上(例如90%)的風向的範圍。
圖8中,表示出了稜線為直線,且在稜線上配置了2個風車之例,但是,本發明並不限於此,例如可以在稜線上配置3座以上的風車,也在該情況下,相對於各自相鄰的2個風車,也可以把主風向的下風側的1個風車的配置,決定成語圖8同樣的位置關係。而且,也在稜線不是直線,而是曲線的情況下,風車彼此成為同樣的位置關係,經此,是可以把下風側的風車配置在風車後流段的影響較少的位置。
而且,圖8中,說明了配置在稜線的風車、與更配置在其之主風向的下風側的風車之配置關係,但是,例如,也就有關配置在主風向的上風側之複數個風車、與配置在其之主風向的下風側的風車之配置關係,經由決定成上述同樣的配置關係,是可以適切迴避上風側之稍前的風車的風車後流段的影響。
根據本實施方式,山岳部中,是可以也設置風車在稜線及稜線的主風向的上風側及下風側的範圍,與限定在稜線上配置風車的情況相比,可以設置更多的風車。而且,風車不排列配置在主風向的方向的緣故,風車受到主風向的上風側的風車的風車後流段的影響變少,可以提高發電效率。
接著,說明有關第3實施方式的風力發電廠。
有關第3實施方式的風力發電廠,係在配置了複數個風車之風力發電廠中,控制位置在其他的風車的下風側的風車的動作狀態。尚且,風力發電廠中的風車的配置,可以是第2實施方式所示之風車的配置,也可以是其他的風車的配置;在此,以第2實施方式所示之風車的配置的情況為例進行說明。
例如,圖8表示的風力發電廠中,在風車間距離401為被推薦的最小距離也就是風車1的轉子24的直徑的3倍之情況下,風車201與風車101之間的風車間距離421及風車201與風車102之間的風車間距離422,係成為風車1的轉子24的直徑的約2.1倍,比風車間隔401小。為此,在產生了讓風車201位置在風車102的風車後流段範圍般的風向的風,亦即,讓風車201成為風車102的下風方向的位置的風(圖6中對風車100a成為風車200b的位置關係之風向的風)之情況下,產生在風車201的負載振幅變大,變成容易積蓄疲勞損傷。
在此,在本實施方式,在出現了這樣的風向的風的情況下,經由變更風車201中的風車控制,達成使負載振幅的影響減低。更具體方面,風車201的控制裝置31,係根據風向風速計32所致之風向資料,在檢測到了讓風車201成為風車101或是102的下風方向的風向的風之情況下,控制成風車201的停止或是縮退運轉(full back)。作為縮退運轉的控制方法,例如有,變更葉片23的槳距角,控制成葉片23的方向相對於風向變成略平行,使轉子24的轉速減少之方法。經此,在風車2101位置在風的紊亂大的後流段範圍內的情況下,可以減低旋轉所致之負載振幅,可以抑制風車201所受的損傷度的增加。
根據有關本實施方式的風力發電廠,可以高密度配置風車,並且,可以抑制成為下風側的風車201的損傷度的增加。
接著,說明有關第4實施方式的風力發電廠。
有關第4實施方式的風力發電廠,係在配置了複數個風車之風力發電廠中,控制位置在其他的風車的上風側的風車的動作狀態。尚且,風力發電廠中的風車的配置,可以是第2實施方式所示之風車的配置,也可以是其他的風車的配置;在此,以第2實施方式所示之風車的配置的情況為例進行說明。
如在第3實施方式所說明的,圖8表示的風力發電廠中,在產生了讓風車201位置在風車102的風車後流段範圍般的風向的風,亦即,讓風車201成為風車102的下風方向的位置的風(圖6中對風車100a成為風車200b的位置關係之風向的風)之情況下,產生在風車201的負載振幅變大,變成容易積蓄疲勞損傷。
在此,本實施方式中,在出現了這樣的風向的風的情況下,經由變更上風側的風車101(102)的控制,減低風車201中的風車後流段的影響。
在此,說明因構成風車的轉子的旋轉面的方向與風向之關係所產生的風車後流段的傳播方向。
圖9為表示有關第4實施方式之因為構成風車的轉子的旋轉面的方向與風向的關係所產生的風車後流段的傳播方向之圖。圖9(A)係表示風車1的轉子24的旋轉面相對於風向為正對著的情況下的風車後流段範圍;圖9(B)係表示控制風車1的轉子24的旋轉面相對於風向朝向傾斜斜的情況下的風車後流段範圍。
在風車1的轉子24的旋轉面相對於風向為正對著的情況下,如圖9(A)表示,風車後流段係傳播在與風向相同的方向,風車後流段範圍係相對於風向形成左右對稱。另一方面,在控制成風車1的轉子24的旋轉面相對於風向朝向傾斜的情況下,如圖9(B)表示,往風車1流入的風,係因為受到來自轉子24的旋轉面之橫方向的力,風車後流段係相對於風向斜向傳播,形成相對於風向成傾斜的風車後流段範圍。
在此,在本實施方式,在出現了讓風車101(102)成為風車201的上風方向的風向的情況下,變更風車101(102)中的風車控制,經由改變風車後流段範圍所形成的範圍,風車201從風車後流段範圍脫離,減低風車201中的發電量的下降及損傷度的增加。更具體方面,風車101(102)的控制裝置31,係根據風向風速計32所致之風向資料,在檢測到了讓風車101(102)成為風車201的上風方向的風向的風之情況下,利用風車101(102)的平擺角驅動裝置33控制平擺角,藉此,變更轉子24的旋轉面的方向。經此,變更風車101(102)所致之風車後流段的傳播方向,變成風車201從風車101(102)的風車後流段範圍脫離,可以減低風車201中的發電量的下降及損傷度的增加。
上述實施方式中,作為位置在上風側的風車101(102)的控制變更,是讓平擺角變更;但本發明並不限於此,也可以一併變更葉片23的槳距角。例如,控制裝置31,係在檢測到了讓風車101(102)成為風車201的上風方向的風向的風的情況下,變更平擺角,並且變更葉片23的槳距角,也是可以變更成葉片23的方向相對於風向成略平行。如此變更的話,風車101(102)降低使轉子24旋轉並回收的能量。經此,可以提高後流段範圍中的風速,並且,可以減低風的紊亂的強度(亂流強度),可以提高位置在後流段範圍中的風車201的發電效率,並且,可以抑制對風車201之損傷度的增加。
接著,說明有關第5實施方式的風車配置決定裝置。
有關第5實施方式的風車配置決定裝置,係可以決定從第1實施方式至第4實施方式所示的風力發電廠中的複數個風車的配置案及風車的控制案。
圖10為有關第5實施方式的風車配置決定裝置的構成圖。
作為配置決定裝置的其中一例的風車配置決定裝置50,係利用例如一般的PC(Personal Computer)所構成,具備:作為處理器部的其中一例之CPU51、記憶體52、作為記憶部的其中一例之輔助記憶裝置53、顯示裝置54、輸入裝置55、以及相互連接各個構成之匯流排56。
CPU51,係根據儲存在記憶體52及/或是輔助記憶裝置53的程式,執行各種處理。CPU51為轉速控制部、後流段控制部、及回收能量控制部的其中一例。
記憶體52例如為RAM(RANDOM ACCESS MEMORY),記憶被CPU51執行的程式、或必要的資訊。
輔助記憶裝置53例如是硬碟或快閃記憶體等,記憶被CPU51執行的程式、或被CPU51利用的資料。在本實施方式,輔助記憶裝置53記憶:決定風車的配置案與控制案之程式、或風力發電廠的建設地的風向、風速等的資訊、或用於求出風車中的風車後流段的模型的資料等。
顯示裝置54例如是液晶顯示器等的顯示裝置,係顯示各種資訊(例如,配置案或控制案)。輸入裝置55例如是滑鼠、鍵盤等的輸入裝置,受理使用者所致之輸入操作。
接著,說明有關風車配置決定裝置50所致之風車配置決定處理。
圖11為有關第5實施方式的風車配置決定處理的流程。圖12為表示有關第5實施方式的風力發電廠中的風況資料之圖。圖13為表示考慮了有關第5實施方式的風力發電廠中的後流段之風況資料之圖。圖14為說明有關第5實施方式的最佳案決定方法的其中一例之圖。
風車配置決定處理中,CPU51係根據儲存在輔助記憶裝置53之風向、風力等的資訊,計算風力發電廠的建設地的風況(步驟S11)。在該步驟,風車的配置案未決定的緣故,CPU51不考慮風車的後流段的影響,計算僅考慮到地形的影響之風況。作為要計算的風況,係例如不僅是風向、風速,還有表示垂直方向的風速的梯度之風切、或表示風的紊亂的強度之亂流強度等。
接著,CPU51制定風力發電廠10中的風車的配置案,從在步驟S11得到的風況抽出各風車的位置中的風況的資訊(步驟S12)。在該步驟,例如,如圖12表示,作為風況的資訊,抽出在各風車的配置位置下的各風速的出現準確率810、風速每的亂流強度820、風切830等。尚且,作為配置案,可以制定出把至少一個風車位在比稜線的主風向的下風側的稜線更低的範圍中,配置成風車1的葉片23的最低到達點在稜線的標高以上之配置案,而且,有關比起第1風車更配置在主風向的下風側的第2風車,也可以制定出第2風車配置在避開相對於出現準確率為特定以上之風向的範圍而成為第1風車的下風方向的範圍之配置案。
接著,CPU51,係決定作為控制對象的風車(以下,處理的說明中稱為對象風車),並且,決定對象風車的控制案(例如,平擺的控制量,槳距的控制量等的控制參數)(步驟S13)。作為控制案,也可以包含在上述的第3實施方式及第4實施方式所示的控制案。在此,對對象風車進行控制的話,對象風車產生的風車後流段,係藉由控制案的內容(控制參數),傳播方向、風速的下降率、亂流強度的增加率等之特性產生變化。在此,為了計算與各種控制參數相應之風車後流段的風況,根據控制案的控制參數,更新預先準備的後流段的模型(步驟S14)。
接著,CPU51係如圖13表示,使用後流段的模型,來計算各風車位置中的風況(各風速的出現準確率811、風速每的亂流強度821、風切831)(步驟S15)。經此所得的風況,係因為後流段的影響,從在步驟S12所得的風況開始變化。
接著,CPU51,係使用在步驟S15所得之各風速的出現準確率811、風速每的亂流強度821、風切831,來計算風力發電廠整體的總發電量及各風車的損傷度(步驟S16)。
接下來,CPU51,係判定是否已決定最佳控制案(步驟S17),在尚未決定最佳控制案的情況(步驟S17:NO)下,再次進行步驟S13~步驟S16的處理。經此,對相同配置案改變控制案而反覆執行步驟S13~步驟S16,來探索最佳的控制案。在此,作為最佳的控制案,也可以作為損傷度低過設計容許值(特定值),而且,風力發電廠的總發電量成為最大(推定為最大)的控制案。
在此,步驟S17中,作為決定最佳控制案之具體的方法,例如考慮到有如圖14表示的方法,亦即,把損傷度作為限制函數,把總發電量作為目的函數之方法。具體方面,考慮到以下的方法:在滿足限制函數中,一邊變更控制參數一邊計算總發電量,保存所得到的總發電量的最大值(第N次取得),取得了其最大值後,即便進行僅特定的閾值M次(總計N+M次)計算,在總發電量的最大值沒有更新的情況下,把在其時點的最大值的總發電量(第N次的值)推定為最大值,把其時的控制參數決定為最佳控制案之方法。尚且,作為進行反覆計算來決定最佳的案的方法,並不限定於上述方法,也可以使用遺傳演算法之手法等,使用其他的最佳化演算法。
另一方面,在決定了最佳控制案的情況(步驟S17:YES)下,CPU51,係將處理前進到步驟S18。
在步驟S18,CPU51,係判定是否已決定了最佳配置案,在尚未決定最佳配置案的情況(步驟S18:NO)下,再次進行步驟S12~步驟S17的處理。經此,改變配置案,反覆執行決定最佳的控制案為其配置案之處理,以探索最佳的配置案。在此,作為最佳的配置案,也可以作為損傷度低過特定的設計容許值,而且,風力發電廠的總發電量為最大(推定為最大)的配置案。
在此,步驟S18中,作為決定最佳配置案之具體的方法,係可以使用與上述的步驟S17同樣的方法,也可以使用與步驟S17相異的方法。
另一方面,在決定了最佳配置案的情況(步驟S18:YES)下,CPU51,係把在步驟S18決定出的最佳配置案、以及對其配置案在步驟S17決定出作為最佳控制案之最佳控制案,顯示輸出到顯示裝置54。
根據該處理,可以一方面實現高密度的風車配置,一方面可以減低位置在後流段範圍的風車的損傷度的增加,並且,可以適切決定可以最大化總發電量之風車的配置案及控制案。
接著,說明有關第6實施方式的風車配置決定裝置。
風力發電廠的建設地中,實際上作為可以設置風車的範圍,係除了有關地形或風況的條件,還考慮到有一定要去考慮有無機器運搬用的道路、或土地權利者的配合、有無周邊住民等之情況。亦即,即便是從風況的觀點來決定出最佳的風車的配置的情況下,還是要去考慮因為風況以外的要因導致設置困難的情況。而且,理想上使用者可以自由設定配置在風力發電廠的風車的座數,例如,考慮到有必要指定更多的座數,來決定高密度的風車配置的最佳的配置案。例如,因為增加座數,是可以讓出現頻度高的額定以下的風速中的發電量增加,並且,也可以提升輸出的平滑化的效果。
在此,在有關第6實施方式的風車配置決定裝置中,也考慮到有關可以設置風車之離周邊住民的住居的距離或可以設置風車之離運搬道路的距離等的風車的設置可能範圍之要件、有關要設置的風車的座數之要件等的風車的設置要件,來決定配置案。可以設置風車之離運搬道路的距離,係可以考慮到例如風車設置時的運搬成本、或抑制建設工期等之要件。
接著,說明有關風車配置決定裝置50所致之風車配置決定處理。
圖15為有關第6實施方式的風車配置決定處理的流程。尚且,關於與有關圖11表示的第5實施方式之風車配置決定處理的流程同樣的部分,係賦予相同的元件符號,省略重複的說明。
CPU51,係在步驟S21中,透過輸入裝置55,受理使用者所致之設置要件的輸入。作為設置要件,可以是有關可以設置風車之離周邊住民的住居的距離、或可以設置風車之離運搬道路的距離等的風車的設置可能範圍之要件、以及有關要設置的風車的座數之要件中至少其中一方者。
接著,CPU51,係制定適合於在步驟S21輸入了設置要件之風車配置案(步驟S22)。在此,步驟S21中,作為設置要件,在受理了可以設置之離周邊住民的住居的距離、或可以設置之離運搬道路的距離等之情況下,不滿足該要件的建設地的範圍,係在制定配置案之際從配置風車的位置被排除掉的緣故,在處理中可以抑制應檢討的配置範圍,可以減低處理量。而且,在有指定風車的座數的情況下,在處理中應檢討的風車的座數被限制的緣故,可以減低處理量。
如上述說明,根據有關本實施方式之風車配置決定裝置,基於與設置可能範圍有關的要件,來決定最佳配置案的緣故,可以得到縮減了成本或工期等之風車配置的配置案。而且,可以適切決定高密度的風車配置的配置案,可以決定考慮了對應到各式各樣的地理上的要因等之風車配置之配置案。
尚且,本發明並不限定於上述的實施方式,在不逸脫本發明的主旨的範圍下,可以適宜變形並實施。
例如,在上述實施方式中,作為風力發電裝置(風車),是以順風型的風車為例進行了說明,但是,本發明並不限於此,也可以是逆風型的風車。而且,雖例示了利用3片葉片與轂來構成轉子之風車,但是,本發明並不限於此,轉子也可以利用轂、以及至少1片葉片來構成。
而且,上述實施方式中,各風車1分別具備控制裝置31,具備在風車1的控制裝置31係控制各自的風車1,但是,本發明並不限於此,也可以具備集中控制風力發電廠10的複數個風車1之控制裝置,該控制裝置控制複數個風車1。
1‧‧‧風車
10‧‧‧風力發電廠
23‧‧‧葉片
24‧‧‧轉子
31‧‧‧控制裝置
33‧‧‧平擺角驅動裝置
[圖1]圖1為有關第1實施方式之風車的整體概略構成圖。 [圖2]圖2為說明通過稜線的風況之圖。 [圖3]圖3為有關第1實施方式之風力發電廠的一個風車的配置圖。 [圖4]圖4為說明上風側的風車所致之對下風側的風車的影響之圖。 [圖5]圖5為說明小規模的風力發電廠中的上風側的風車所致之對下風側的風車的影響之圖。 [圖6]圖6為說明大規模的風力發電廠中的上風側的風車所致之對下風側的風車的影響之圖。 [圖7]圖7為表示有關第2實施方式的風力發電廠的構成之側視圖。 [圖8]圖8為表示有關第2實施方式的風力發電廠的構成之俯視圖。 [圖9]圖9為表示有關第4實施方式之因為構成風車的轉子的旋轉面的方向與風向的關係所產生的風車後流段的傳播方向之圖。 [圖10]圖10為有關第5實施方式的風車配置決定裝置的構成圖。 [圖11]圖11為有關第5實施方式的風車配置決定處理的流程。 [圖12]圖12為表示有關第5實施方式的風力發電廠中的風況資料之圖。 [圖13]圖13為表示考慮了有關第5實施方式的風力發電廠中的後流段之風況資料之圖。 [圖14]圖14為說明有關第5實施方式的最佳案決定方法的其中一例之圖。 [圖15]圖15為有關第6實施方式的風車配置決定處理的流程。
Claims (11)
- 一種風力發電廠,具備複數個風力發電裝置,該風力發電裝置具有受風而旋轉的葉片;其特徵為: 至少一個前述風力發電裝置被配置成,在稜線的主風向的下風側之比前述稜線還低的範圍中,前述葉片的最低到達點在前述稜線的標高以上。
- 如請求項1的風力發電廠,其中, 前述複數個風力發電裝置包含:第1風力發電裝置、以及比前述第1風力發電裝置更配置在主風向的下風側之第2風力發電裝置; 前述第2風力發電裝置係配置在避開相對於包含前述主風向的特定的範圍的風向而成為前述第1風力發電裝置的下風方向之範圍。
- 如請求項2的風力發電廠,其中, 所謂包含前述主風向之特定的範圍的風向,就是出現準確率為特定以上之範圍的風向。
- 如請求項2或是請求項3的風力發電廠,其中, 成為前述下風方向的範圍,乃是以前述第1風力發電裝置的主風向的下風方向為中心之特定的角度幅寬的範圍。
- 如請求項1至請求項4中任一項的風力發電廠,其中, 前述複數個風力發電裝置包含:第1風力發電裝置、以及比前述第1風力發電裝置更配置在主風向的下風側之第2風力發電裝置; 更具備: 風向檢測部,其係檢測風向;以及 轉速控制部,其係在前述風向乃是讓前述第2風力發電裝置屬於在通過了前述第1風力發電裝置的風所流動的後流段範圍之風向的情況下,控制成經由調整前述第2風力發電裝置的前述葉片,來使前述葉片的轉速減少。
- 如請求項1至請求項5中任一項的風力發電廠,其中, 前述複數個風力發電裝置包含:第1風力發電裝置、以及比前述第1風力發電裝置更配置在主風向的下風側之第2風力發電裝置; 更具備: 風向檢測部,其係檢測風向;以及 後流段控制部,其係在前述風向乃是讓前述第2風力發電裝置屬於在通過了前述第1風力發電裝置的風所流動的後流段範圍之風向的情況下,控制成經由調整前述第1風力發電裝置的前述葉片的旋轉面,來讓前述第2風力發電裝置脫離通過了前述第1風力發電裝置的風所流動的後流段範圍。
- 如請求項1至請求項6中任一項的風力發電廠,其中, 前述複數個風力發電裝置包含:第1風力發電裝置、以及比前述第1風力發電裝置更配置在主風向的下風側之第2風力發電裝置; 更具備: 風向檢測部,其係檢測風向;以及 回收能量控制部,其係在前述風向乃是讓前述第2風力發電裝置屬於在通過了前述第1風力發電裝置的風所流動的後流段範圍之風向的情況下,控制成經由調整前述第1風力發電裝置的前述葉片的槳距角,使利用第1風力發電裝置所回收的能量下降。
- 一種配置決定裝置,係決定風力發電廠中的複數個風力發電裝置的配置,該風力發電廠具備複數個風力發電裝置,該風力發電裝置具有受風而旋轉的葉片;其特徵為: 具備: 記憶部,其係記憶前述風力發電廠的建設地的風向資訊;以及 處理器部,其係執行處理; 前述處理器部執行: (a)制定:前述風力發電廠的建設地的複數個風力發電裝置的配置案、以及包含成為控制運轉的對象之風力發電裝置和對前述風力發電裝置之控制內容的控制案; (b)算出依照前述配置案及前述控制案的前述風力發電廠中的各風力發電裝置的位置中的風況; (c)根據所算出的前述風況,算出前述風力發電廠中的總發電量及損傷度; (d)反覆執行前述(a)~(c),經此,在前述風力發電廠中的前述損傷度低過特定值的情況下,探索前述總發電量為最大的配置案及控制案; (e)把探索出的配置案輸出到顯示裝置。
- 如請求項8的配置決定裝置,其中, 前述處理器部執行: 前述(a)中,制定:構成前述風力發電廠中至少一個前述風力發電裝置配置成在比稜線的主風向的下風側的前述稜線還低的範圍中,前述葉片的最低到達點在前述稜線的標高以上之配置案。
- 如請求項9的配置決定裝置,其中, 前述處理器部執行: 前述(a)中,作成:有關第1風力發電裝置、以及比前述第1風力發電裝置更配置在主風向的下風側的第2風力發電裝置,前述第2風力發電裝置係配置在避開相對於出現準確率為特定以上之風向的範圍而成為前述第1風力發電裝置的下風方向之範圍之配置案。
- 如請求項8至請求項10中任一項的配置決定裝置,其中, 前述處理器部受理: 與前述風力發電廠中所設置的風力發電裝置的個數、或是風力發電廠內中的風力發電裝置的設置可能範圍中至少其中一方之設置要件的指定; 前述處理器部作成: 前述(a)中,適合前述設置要件之配置案。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017133561A JP2019015236A (ja) | 2017-07-07 | 2017-07-07 | ウィンドファーム、及び配置決定装置 |
JP2017-133561 | 2017-07-07 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201907085A true TW201907085A (zh) | 2019-02-16 |
TWI707085B TWI707085B (zh) | 2020-10-11 |
Family
ID=64949887
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107122799A TWI707085B (zh) | 2017-07-07 | 2018-07-02 | 風力發電廠、及配置決定裝置 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2019015236A (zh) |
TW (1) | TWI707085B (zh) |
WO (1) | WO2019008931A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3533997A1 (en) | 2018-02-28 | 2019-09-04 | Siemens Gamesa Renewable Energy A/S | Estimating free-stream inflow at a wind turbine |
JP7267815B2 (ja) * | 2019-04-09 | 2023-05-02 | 三菱重工業株式会社 | 風車群発電量評価装置、風車群発電量評価方法、およびプログラム |
KR102483234B1 (ko) * | 2021-01-27 | 2023-01-03 | 한국과학기술원 | 웨이크 완화를 위한 풍력터빈시스템 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL1023666C2 (nl) * | 2003-06-14 | 2004-12-20 | Energieonderzoek Ct Petten Ecn | Werkwijze of inrichting om energie aan een stromend fluïdum te onttrekken. |
JP2009138523A (ja) * | 2007-12-03 | 2009-06-25 | Mitsubishi Electric Corp | 風力発電出力予測方法 |
JP5186691B2 (ja) * | 2008-11-28 | 2013-04-17 | 中部電力株式会社 | 風車配置決定装置、風車配置決定プログラム、記録媒体 |
BRPI1000009A2 (pt) * | 2010-02-12 | 2018-02-14 | Mitsubishi Heavy Ind Ltd | terminal portátil para um gerador de turbina eólica, geradores de turbina eólica, e, área de energia eólica |
EP2757255A1 (en) * | 2013-01-21 | 2014-07-23 | Alstom Wind, S.L.U. | Method of operating a wind farm |
US9512820B2 (en) * | 2013-02-19 | 2016-12-06 | Siemens Aktiengesellschaft | Method and system for improving wind farm power production efficiency |
KR101458798B1 (ko) * | 2014-02-20 | 2014-11-07 | 두산중공업 주식회사 | 풍력 발전 단지, 풍력 발전 단지의 배치 구조, 풍력 발전 단지의 제어 방법 및 풍력 발전 유닛. |
JP6258466B2 (ja) * | 2014-03-14 | 2018-01-10 | 株式会社日立製作所 | ウィンドファームの制御方法およびウィンドファームの制御システム |
JP2016070085A (ja) * | 2014-09-26 | 2016-05-09 | 株式会社東芝 | ウィンドファーム |
JP2017089590A (ja) * | 2015-11-17 | 2017-05-25 | 株式会社日立製作所 | 風力発電装置及びウィンドファーム |
-
2017
- 2017-07-07 JP JP2017133561A patent/JP2019015236A/ja active Pending
-
2018
- 2018-05-24 WO PCT/JP2018/019942 patent/WO2019008931A1/ja active Application Filing
- 2018-07-02 TW TW107122799A patent/TWI707085B/zh active
Also Published As
Publication number | Publication date |
---|---|
WO2019008931A1 (ja) | 2019-01-10 |
TWI707085B (zh) | 2020-10-11 |
JP2019015236A (ja) | 2019-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Rezaeiha et al. | Characterization of aerodynamic performance of vertical axis wind turbines: Impact of operational parameters | |
Alom et al. | Performance evaluation of vent-augmented elliptical-bladed savonius rotors by numerical simulation and wind tunnel experiments | |
Sedaghat et al. | Aerodynamic design of a 300 kW horizontal axis wind turbine for province of Semnan | |
US9760069B2 (en) | Method of operating a wind farm | |
TWI737793B (zh) | 風力發電廠或風力發電廠之控制方法 | |
Kaldellis et al. | Critical evaluation of Wind Turbines’ analytical wake models | |
US9562515B2 (en) | Method and apparatus for wind turbine noise reduction | |
Gao et al. | Investigation into the optimal wind turbine layout patterns for a Hong Kong offshore wind farm | |
TW201907085A (zh) | 風力發電廠、及配置決定裝置 | |
JP2006527334A (ja) | 流れる流体からエネルギを引き出す方法及び設備 | |
Yao et al. | Design based on a parametric analysis of a drag driven VAWT with a tower cowling | |
Al-Ghriybah et al. | Review of the recent power augmentation techniques for the Savonius wind turbines | |
Zhao et al. | Investigation of fundamental mechanism leading to the performance improvement of vertical axis wind turbines by deflector | |
Krishnan et al. | A comprehensive review of innovative wind turbine airfoil and blade designs: Toward enhanced efficiency and sustainability | |
Ahmad et al. | Enhancing vertical axis wind turbine efficiency through leading edge tubercles: A multifaceted analysis | |
EP3308014B1 (en) | Rotor blade shaped to enhance wake diffusion | |
Nizamani et al. | Renewable wind energy resources in offshore low wind speeds regions near the equator: A review | |
Kouaissah et al. | 3D CFD study of a DeepWind demonstrator at design, off-design and tilted operating conditions | |
Peng | Influence analysis of wind shear and tower shadow on load and power based on blade element theory | |
Filipowicz et al. | Study of building integrated wind turbines operation on the example of Center of Energy AGH | |
TWI717000B (zh) | 風力發電廠 | |
Charles et al. | A Cluster-Based Dynamic Wind Farm Operation to Improve Annual Energy Production | |
Jiang et al. | The Aerodynamic Performance of Offshore Twin Vertical Axis Wind Turbines With Deflector | |
Elbakheit | Systematic Architectural Design for Optimal Wind Energy Generation | |
Poole | Optimisation of a mini horizontal axis wind turbine to increase energy yield during short duration wind variations |