TW201841488A - 新無線電同步訊號叢發、訊號設計及系統訊框獲取 - Google Patents

新無線電同步訊號叢發、訊號設計及系統訊框獲取 Download PDF

Info

Publication number
TW201841488A
TW201841488A TW107103756A TW107103756A TW201841488A TW 201841488 A TW201841488 A TW 201841488A TW 107103756 A TW107103756 A TW 107103756A TW 107103756 A TW107103756 A TW 107103756A TW 201841488 A TW201841488 A TW 201841488A
Authority
TW
Taiwan
Prior art keywords
wtru
sfn
pbch
burst
block
Prior art date
Application number
TW107103756A
Other languages
English (en)
Other versions
TWI805568B (zh
Inventor
俊霖 潘
方俊 辛
羅伯特 奧勒森
尼拉夫 夏
Original Assignee
美商Idac控股公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商Idac控股公司 filed Critical 美商Idac控股公司
Publication of TW201841488A publication Critical patent/TW201841488A/zh
Application granted granted Critical
Publication of TWI805568B publication Critical patent/TWI805568B/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • H04J11/0073Acquisition of primary synchronisation channel, e.g. detection of cell-ID within cell-ID group
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • H04J11/0076Acquisition of secondary synchronisation channel, e.g. detection of cell-ID group
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Time-Division Multiplex Systems (AREA)

Abstract

揭露了用於同步訊號叢發、訊號設計、及/或系統訊框獲取的系統、方法及工具。可接收同步訊號(SS)塊或叢發。該SS塊或叢發可包括主同步訊號(PSS)、輔助同步訊號(SSS)及/或實體廣播通道(PBCH)。可確定第一胞元ID,及/或可產生多個SSS序列。可例如基於所產生的多個SSS序列從m0值集合確定m0值(例如,第一循環偏移)。可從n1值集合確定n1值(例如,第二循環偏移)。可基於例如該m0值及該n1值確定第二胞元ID。可基於例如第二胞元ID及第一胞元ID確定第三胞元ID。

Description

新無線電同步訊號叢發、訊號設計及系統訊框獲取
交叉引用 本申請案要求享有以下申請案的權益:2017年2月3日申請的美國臨時申請案62/454,524;2017年5月3日申請的美國臨時申請案62/500,752;2017年6月14日申請的美國臨時申請案62/519,745;以及2017年9月8日申請的美國臨時申請案62/556,171,其中作為參考,在這裡以全面闡述的方式引入上述申請案。
新興5G系統用例的寬泛分類描述如下:增強型行動寬頻(eMBB)、大型機器類通信(mMTC)、超可靠低潛時通信(URRLLC)。該用例的寬泛分類可基於由ITU-R、NGMN以及3GPP闡述的需求。用例可集中於一個或多個需求,諸如較高的資料速率、較高的頻譜效率、低功率、較高的能量效率、較低的潛時、以及較高的可靠性。可考慮將從700 MHz至80 GHz的寬範圍頻帶用於各種部署場景。
揭露了用於在新無線電(NR)中同步訊號叢發、訊號設計及/或系統訊框獲取的方法、過程及工具。可基於SS叢發來定義同步訊號(SS)塊,其中一個或多個SS叢發可定義一SS叢發集合。可確定可被啟動、賦能或傳輸的SS塊。該可被啟動、賦能或傳輸的SS塊的資訊可被提供至另一實體。基於可被啟動、賦能或傳輸的SS塊,可識別出OFDM符號索引、無線電訊框中的時槽索引、無線電訊框號、及/或微時槽索引。可提供準共定位(quasi-co-located ,QCL)指示及/或速率匹配指示(例如,可針對SS塊來提供)。
可接收同步訊號(SS)叢發。該SS叢發可包含主同步訊號(PSS)、輔助同步訊號(SSS)及/或實體廣播通道(PBCH)。可確定PSS(例如,在PSS中)攜帶的第一胞元ID。例如,可基於第一M序列及第二M序列產生多個SSS序列。可例如基於所產生的多個SSS序列從m0值集合(例如,第一循環偏移集合)確定m0值(例如,第一循環偏移)。可從n1值集合(例如,第二循環偏移集合)確定n1值(例如,第二循環偏移)。例如,可基於該m0值及該n1值確定該SSS(例如,在SSS內)攜帶的第二胞元ID。例如,可基於SSS攜帶的第二胞元ID及PSS攜帶的第一胞元ID確定第三胞元ID。
可基於加擾碼確定系統訊框號(SFN)的一部分。該加擾碼可基於第三胞元ID。該SFN的一部分(例如,另一部分)可在SS叢發中被獲得。例如,可基於該SFN的所確定的部分與SS叢發中獲得的該SFN的部分相同而確定該SFN(例如,整個SFN)。
現在將參考不同附圖來描述關於說明性實施例的具體描述。雖然本描述提供了關於可能的實施方式的詳細範例,然而應該指出的是,這些細節的目的是作為範例,並且絕不會對本申請案的範圍構成限制。
第1A圖是示出了可以實施所揭露的一個或多個實施例的範例性通信系統100的圖。該通信系統100可以是為多個無線使用者提供例如語音、資料、視訊、訊息、廣播等內容的多重存取系統。該通信系統100可以經由共用包括無線頻寬的系統資源而使多個無線使用者能夠存取此類內容。舉例來說,通信系統100可以使用一種或多種通道存取方法,例如分碼多重存取(CDMA)、分時多重存取(TDMA)、分頻多重存取(FDMA)、正交FDMA(OFDMA)、單載波FDMA(SC-FDMA)、零尾唯一字DFT擴展OFDM(ZT UW DTS-s OFDM)、唯一字OFDM(UW-OFDM)、資源塊過濾OFDM、以及濾波器組多載波(FBMC)等等。
如第1A圖所示,通信系統100可以包括無線傳輸/接收單元(WTRU)102a、102b、102c、102d、RAN 104/113、CN 106/115、公共交換電話網路(PSTN)108、網際網路110以及其他網路112,然而應該瞭解,所揭露的實施例設想了任意數量的WTRU、基地台、網路及/或網路元件。每一個WTRU 102a、102b、102c、102d可以是被配置為在無線環境中操作及/或通信的任何類型的裝置。例如,WTRU 102a、102b、102c、及102d中的任一者都可被稱為“站”及/或“STA”,WTRU 102a、102b、102c、102d可以被配置為傳輸及/或接收無線訊號、並且可以包括使用者設備(UE)、行動站、固定或行動用戶單元、基於訂用的單元、呼叫器、行動電話、個人數位助理(PDA)、智慧型電話、膝上型電腦、小筆電、個人電腦、無線感測器、熱點或Mi-Fi裝置、物聯網(IoT)裝置、手錶或其他可穿戴裝置、頭戴顯示器(HMD)、車輛、無人機、醫療設備及應用(例如遠端外科手術)、工業設備及應用(例如機器人及/或在工業及/或自動處理鏈環境中操作的其他無線裝置)、消費類電子裝置、以及在商業及/或工業無線網路上操作的裝置等等。WTRU 102a、102b、102c、及102d中的任一者都可以被可交換地稱為UE。
通信系統100還可以包括基地台114a及/或基地台114b。基地台114a及114b中的每一個可以是被配置為與WTRU 102a、102b、102c、102d中的至少一個無線對接以便於其存取一個或多個通信網路(例如CN 106/115、網際網路110、及/或其他網路112)的任何類型的裝置。舉例來說,基地台114a、114b可以是基地收發站(BTS)、節點B、e節點B、本地節點B、本地e節點 B、gNB、NR節點B、網站控制器、存取點(AP)、以及無線路由器等等。雖然每一個基地台114a、114b都被描述為單一元件,然而應該瞭解,基地台114a、114b可以包括任何數量的互連基地台及/或網路元件。
基地台114a可以是RAN 104/113的一部分,並且該RAN 104/113還可以包括其他基地台及/或網路元件(未顯示),例如基地台控制器(BSC)、無線電網路控制器(RNC)、中繼節點等等。基地台114a及/或基地台114b可被配置為以一個或多個載波頻率傳輸及/或接收無線訊號,基地台114a及/或基地台114b可被稱為胞元(未顯示)。這些頻率可以在授權頻譜、無授權頻譜或是授權與無授權頻譜的組合中。胞元可以為相對固定或者有可能隨時間變化的特定地理區域提供無線服務覆蓋。胞元可被進一步分成胞元扇區。例如,與基地台114a相關聯的胞元可被分為三個扇區。由此,在一個實施例中,基地台114a可以包括三個收發器,也就是說,每一個收發器都對應於胞元的一個扇區。在一個實施例中,基地台114a可以使用多輸入多輸出(MIMO)技術、並且可以為胞元的每一個扇區使用多個收發器。舉例來說,藉由使用波束成形,可以在期望的空間方向上傳輸及/或接收訊號。
基地台114a、114b可以藉由空中介面116以與WTRU 102a、102b、102c、102d中的一個或多個進行通信,其中所述空中介面116可以是任何適當的無線通訊鏈路(例如射頻(RF)、微波、釐米波、毫米波、紅外線(IR)、紫外線(UV)、可見光等等)。空中介面116可以使用任何適當的無線電存取技術(RAT)而被建立。
更具體地說,如上所述,通信系統100可以是多重存取系統、並且可以使用一種或多種通道存取方案,例如CDMA、TDMA、FDMA、OFDMA以及SC-FDMA等等。例如,RAN 104/113中的基地台114a與WTRU 102a、102b、102c可以實施例如通用行動電信系統(UMTS)陸地無線電存取(UTRA)之類的無線電技術,其中該無線電技術可以使用寬頻CDMA(WCDMA)來建立空中介面115/116/117。WCDMA可以包括諸如高速封包存取(HSPA)及/或演進型HSPA(HSPA+)之類的通信協定。HSPA可以包括高速下鏈(DL)封包存取(HSDPA)及/或高速UL封包存取(HSUPA)。
在一個實施例中,基地台114a以及WTRU 102a、102b、102c可以實施例如演進型UMTS陸地無線電存取(E-UTRA)之類的無線電技術,該無線電技術可以使用長期演進(LTE)及/或先進LTE(LTE-A)及/或先進LTA Pro(LTE-A Pro)來建立空中介面116。
在一個實施例中,基地台114a以及WTRU 102a、102b、102c可以實施例如NR無線電存取之類的無線電技術,該無線電技術可以使用新型無線電(NR)來建立空中介面116。
在一個實施例中,基地台114a以及WTRU 102a、102b、102c可以實施多種無線電存取技術。例如,基地台114a以及WTRU 102a、102b、102c可以共同實施LTE無線電存取以及NR無線電存取(例如使用雙連接(DC)原理)。由此,WTRU 102a、102b、102c使用的空中介面可以藉由多種類型的無線電存取技術及/或向/從多種類型的基地台(例如eNB及gNB)發送的傳輸來表徵。
在其他實施例中,基地台114a以及WTRU 102a、102b、102c可以實施以下的無線電技術,例如IEEE 802.11(即,無線高保真(WiFi))、IEEE 802.16(即,全球微波存取互通性(WiMAX))、CDMA2000、CDMA2000 1X、CDMA2000 EV-DO、臨時標準2000(IS-2000)、臨時標準95(IS-95)、臨時標準856(IS-856)、全球行動通信系統(GSM)、用於GSM演進的增強資料速率(EDGE)以及GSM EDGE(GERAN)等等。
第1A圖中的基地台114b可以是,例如,無線路由器、本地節點B、本地e節點B或存取點、並且可以使用任何適當的RAT來促成局部區域中的無線連接,該局部區域可以是例如營業場所、住宅、車輛、校園、工業設施、空中走廊(例如供無人機使用)以及道路等等。在一個實施例中,基地台114b與WTRU 102c、102d可以實施例如IEEE 802.11之類的無線電技術來建立無線區域網路(WLAN)。在一個實施例中,基地台114b與WTRU 102c、102d可以實施例如IEEE 802.15之類的無線電技術來建立無線個人區域網路(WPAN)。在再一個實施例中,基地台114b以及WTRU 102c、102d可使用基於蜂巢的RAT(例如WCDMA、CDMA2000、GSM、LTE、LTE-A、LTE-A Pro、NR等等)來建立微微胞元或毫微微胞元。如第1A圖所示,基地台114b可以直連到網際網路110。由此,基地台114b並不是必然要經由CN 106/115來存取網際網路110。
RAN 104/113可以與CN 106/115進行通信,其中該CN106/115可以是被配置為向WTRU 102a、102b、102c、102d中的一個或多個提供語音、資料、應用及/或網際網路協定語音(VoIP)服務的任何類型的網路。該資料可以具有不同的服務品質(QoS)需求,例如不同的輸送量需求、潛時需求、容錯需求、可靠性需求、資料輸送量需求、以及移動性需求等等。CN 106/115可以提供呼叫控制、記帳服務、基於移動位置的服務、預付費呼叫、網際網路連接、視訊分發等等、及/或可以執行使用者驗證之類的高階安全功能。雖然在第1A圖中沒有顯示,然而應該瞭解,RAN 104/113及/或CN 106/115可以直接或間接地以及其他那些與RAN 104/113使用相同RAT或不同RAT的RAN進行通信。例如,除了與使用NR無線電技術的RAN 104/113連接之外,CN 106/115還可以與使用GSM、UMTS、CDMA 2000、WiMAX、E-UTRA或WiFi無線電技術的另一RAN(未顯示)通信。
CN 106/115還可以充當供WTRU 102a、102b、102c、102d存取PSTN 108、網際網路110及/或其他網路112的閘道。PSTN 108可以包括提供簡易老式電話服務(POTS)的電路交換電話網路。網際網路110可以包括使用了公共通信協定(例如TCP/IP網際網路協定族中的傳輸控制協定(TCP)、使用者資料報通訊協定(UDP)及/或網際網路協定(IP))的全球性互連的電腦網路及裝置的系統。網路112可以包括由其他服務供應者擁有及/或操作的有線及/或無線通訊網路。例如,網路112可以包括與一個或多個RAN連接的另一個CN,其中該一個或多個RAN可以與RAN 104/113使用相同RAT或不同RAT。
通信系統100中WTRU 102a、102b、102c、102d中的一些或所有可以包括多模能力(例如,WTRU 102a、102b、102c、102d可以包括在不同無線鏈路上與不同無線網路通信的多個收發器)。例如,第1A圖所示的WTRU 102c可被配置為與使用基於蜂巢的無線電技術的基地台114a通信、以及與可以使用IEEE 802無線電技術的基地台114b通信。
第1B圖是示出了範例性WTRU 102的系統圖。如第1B圖所示,WTRU 102可以包括處理器118、收發器120、傳輸/接收元件122、揚聲器/麥克風124、小鍵盤126、顯示器/觸控板128、非可移記憶體130、可移記憶體132、電源134、全球定位系統(GPS)晶片組136及/或其他週邊設備138。應該瞭解的是,在保持符合實施例的同時,WTRU 102還可以包括前述元件的任何子組合。
處理器118可以是通用處理器、專用處理器、常規處理器、數位訊號處理器(DSP)、多個微處理器、與DSP核心關聯的一個或多個微處理器、控制器、微控制器、專用積體電路(ASIC)、現場可程式設計閘陣列(FPGA)電路、其他任何類型的積體電路(IC)以及狀態機等等。處理器118可以執行訊號編碼、資料處理、功率控制、輸入/輸出處理、及/或其他任何能使WTRU 102在無線環境中操作的功能。處理器118可以耦合至收發器120,收發器120可以耦合至傳輸/接收元件122。雖然第1B圖將處理器118以及收發器120描述為單獨的元件,然而應該瞭解,處理器118以及收發器120也可以集成在一個電子元件或晶片中。
傳輸/接收元件122可被配置為經由空中介面116以傳輸訊號至基地台(例如基地台114a)或接收來自基地台(例如基地台114a)的訊號。舉個例子,在一個實施例中,傳輸/接收元件122可以是被配置為傳輸及/或接收RF訊號的天線。作為範例,在另一個實施例中,傳輸/接收元件122可以是被配置為傳輸及/或接收IR、UV或可見光訊號的放射器/偵測器。在再一個實施例中,傳輸/接收元件122可被配置為傳輸及/或接收RF及光訊號。應該瞭解的是,傳輸/接收元件122可以被配置為傳輸及/或接收無線訊號的任何組合。
雖然在第1B圖中將傳輸/接收元件122描述為是單一元件,但是WTRU 102可以包括任何數量的傳輸/接收元件122。更具體地說,WTRU 102可以使用MIMO技術。由此,在一個實施例中,WTRU 102可以包括經由空中介面116以傳輸及接收無線電訊號的兩個或多個傳輸/接收元件122(例如多個天線)。
收發器120可被配置為對要由傳輸/接收元件122傳送的訊號進行調變、以及對傳輸/接收元件122接收的訊號進行解調。如上所述,WTRU 102可以具有多模能力。因此,例如,收發器120可以包括使WTRU 102能經由例如NR以及IEEE 802.11之類的多種RAT來進行通信的多個收發器。
WTRU 102的處理器118可以耦合到揚聲器/麥克風124、小鍵盤126及/或顯示器/觸控板128(例如液晶顯示器(LCD)顯示單元或有機發光二極體(OLED)顯示單元)、並且可以接收來自這些元件的使用者輸入資料。處理器118還可以向揚聲器/麥克風124、小鍵盤126及/或顯示器/觸控板128輸出使用者資料。此外,處理器118可以從諸如非可移記憶體130及/或可移記憶體132之類的任何適當的記憶體中存取資訊、以及將資料存入這些記憶體。非可移記憶體130可以包括隨機存取記憶體(RAM)、唯讀記憶體(ROM)、硬碟或是其他任何類型的儲存裝置。可移記憶體132可以包括用戶身份模組(SIM)卡、記憶條、以及安全數位(SD)記憶卡等等。在其他實施例中,處理器118可以從那些並非實際位於WTRU 102的記憶體存取資訊、以及將資料存入這些記憶體,作為範例,此類記憶體可以位於伺服器或家用電腦(未顯示)。
處理器118可以接收來自電源134的電力、並且可被配置分發及/或控制該電力至WTRU 102中的其他元件。電源134可以是為WTRU 102供電的任何適當裝置。例如,電源134可以包括一個或多個乾電池組(如鎳鎘(Ni-Cd)、鎳鋅(Ni-Zn)、鎳金屬化合物(NiMH)、鋰離子(Li-ion)等等)、太陽能電池、以及燃料電池等等。
處理器118還可以耦合到GPS晶片組136,該晶片組可被配置為提供與WTRU 102的目前位置相關的位置資訊(例如經度及緯度)。作為來自GPS晶片組136的資訊的補充或替代,WTRU 102可以經由空中介面116接收來自基地台(例如基地台114a、114b)的位置資訊、及/或根據從兩個或多個附近基地台接收的訊號時序來確定其位置。應該瞭解的是,在保持符合實施例的同時,WTRU 102可以用任何適當的定位方法來獲取位置資訊。
處理器118還可以耦合到其他週邊設備138,其中該週邊設備138可以包括提供附加特徵、功能及/或有線或無線連接的一個或多個軟體及/或硬體模組。例如,週邊設備138可以包括加速度計、電子指南針、衛星收發器、數位相機(用於照片及/或視訊)、通用序列匯流排(USB)埠、振動裝置、電視收發器、免持耳機、藍牙®模組、調頻(FM)無線電單元、數位音樂播放器、媒體播放器、視訊遊戲機模組、網際網路瀏覽器、虛擬實境及/或增強現實(VR/AR)裝置、以及活動追蹤器等等。週邊設備138可以包括一個或多個感測器,該感測器可以是以下的一個或多個:陀螺儀、加速度計、霍爾效應感測器、磁力計、方位感測器、鄰近感測器、溫度感測器、時間感測器、地理位置感測器、高度計、光感測器、觸摸感測器、磁力計、氣壓計、手勢感測器、生物測定感測器、及/或濕度感測器。
WTRU 102可以包括全雙工無線電裝置,對於該全雙工無線電裝置來說,一些或所有訊號(例如與用於UL(例如用於傳輸)以及下鏈(例如用於接收)的特定子訊框相關聯)的接收或傳輸可以是並行及/或同時的。全雙工無線電裝置可以包括介面管理單元139,以經由硬體(例如扼流圈)或是經由處理器(例如單獨的處理器(未顯示)或是經由處理器118)的訊號處理來減小及/或基本消除自干擾。在一個實施例中,WTRU 102可以包括半雙工無線電裝置,對於該半雙工裝置來說,一些或所有訊號(例如與用於UL(例如用於傳輸)以及下鏈(例如用於接收)的特定子訊框相關聯)的傳輸及接收。
第1C圖是示出了根據一個實施例的RAN 104以及CN 106的系統圖。如上所述,RAN 104可以使用E-UTRA無線電技術以經由空中介面116來與WTRU 102a、102b、102c進行通信。RAN 104還可以與CN 106進行通信。
RAN 104可以包括e節點B 160a、160b、160c,然而應該瞭解,在保持符合實施例的同時,RAN 104可以包括任何數量的e節點B。e節點B 160a、160b、160c中的每一個都可以包括經由空中介面以與WTRU 102a、102b、102c通信的一個或多個收發器。在一個實施例中,e節點B 160a、160b、160c可以實施MIMO技術。由此,舉例來說,e節點B 160a 可以使用多個天線以向WTRU 102a傳輸無線訊號、及/或接收來自WTRU 102a的無線訊號。
e節點B 160a、160b、160c中的每一個都可以關聯於一個特定胞元(未顯示)、並且可被配置為處理無線電資源管理決策、切換決策、UL及/或DL中的使用者排程等等。如第1C圖所示,e節點B 160a、160b、160c可以經由X2介面相互通信。
第1C圖所示的CN 106可以包括移動性管理實體(MME)162、服務閘道(SGW)164以及封包資料網路(PDN)閘道(或PGW)166。雖然前述的每一個元件都被描述為是CN 106的一部分,然而應該瞭解,這其中的任一元件都可以由CN操作者之外的實體所擁有及/或操作。
MME 162可以經由S1介面而連接到RAN 104中的e節點B 160a、160b、160c中的每一個、並且可以充當控制節點。例如,MME 162可以負責驗證WTRU 102a、102b、102c的使用者、執行承載啟動/停用、以及在WTRU 102a、102b、102c的初始附加期間選擇特定的服務閘道等等。MME 162還可以提供一個用於在RAN 104與使用其他無線電技術(例如GSM及/或WCDMA)的其他RAN(未顯示)之間進行切換的控制平面功能。
SGW 164可以經由S1介面而連接到RAN 104中的e節點B 160a、160b、160c中的每一個。SGW 164通常可以路由及轉發去往/來自WTRU 102a、102b、102c的使用者資料封包。SGW 164還可以執行其他功能,例如在e節點B間的切換期間錨定使用者平面、在DL資料可供WTRU 102a、102b、102c使用時觸發傳呼、以及管理及儲存WTRU 102a、102b、102c的上下文等等。
SGW 164可以連接到PGW 146,該PGW 146可以為WTRU 102a、102b、102c提供封包交換網路(例如網際網路110)存取,以便促成WTRU 102a、102b、102c與IP賦能的裝置之間的通信。
CN 106可以促成與其他網路的通信。例如,CN 106可以為WTRU 102a、102b、102c提供電路切換式網路(例如PSTN 108)存取,以便促成WTRU 102a、102b、102c與傳統的陸線通信裝置之間的通信。例如,CN 106可以包括IP閘道(例如IP多媒體子系統(IMS)伺服器)或與之進行通信,並且該IP閘道可以充當CN 106與PSTN 108之間的介面。此外,CN 106可以為WTRU 102a、102b、102c提供針對其他網路112的存取,其中該網路112可以包括其他服務供應者擁有及/或操作的其他有線及/或無線網路。
雖然在第1A圖至第1D圖中將WTRU描述為無線終端,然而應該想到的是,在某些典型實施例中,此類終端與通信網路可以使用(例如臨時或永久性)有線通信介面。
在典型的實施例中,其他網路112可以是WLAN。
採用基礎架構基本服務集(BSS)模式的WLAN可以具有用於該BSS的存取點(AP)以及與該AP相關聯的一個或多個站(STA)。該AP可以存取或是介接到分散式系統(DS)或是將訊務送入及/或送出BSS的另外類型的有線/無線網路。源於BSS外部且去往STA的訊務可以經由AP到達並被遞送至STA。源自STA且至BSS外部的目的地的訊務可被發送至AP,以遞送到各自的目的地。在BSS內的STA之間的訊務可以經由AP而被發送,例如源STA可以向AP發送訊務並且AP可以將訊務遞送至目的地STA。在BSS內的STA之間的訊務可被認為及/或稱為點到點訊務。該點到點訊務可以在源與目的地STA之間(例如在其間直接)用直接鏈路建立(DLS)而被發送。在某些典型實施例中,DLS可以使用802.11e DLS或802.11z隧道化DLS(TDLS))。使用獨立BSS(IBSS)模式的WLAN不具有AP,並且在該IBSS內或是使用該IBSS的STA(例如所有STA)彼此可以直接通信。在這裡,IBSS通信模式有時可被稱為“特定(ad-hoc)”通信模式。
在使用802.11ac基礎設施操作模式或類似操作模式時,AP可以在固定通道(例如主通道)上傳送信標。該主通道可以具有固定寬度(例如20 MHz頻寬)或是經由傳訊動態設定的寬度。主通道可以是BSS的操作通道、並且可被STA用來與AP建立連接。在某些典型實施例中,可以實施具有衝突避免的載波感測多重存取(CSMA/CA)(例如在802.11系統中)。對於CSMA/CA,包括AP的STA(例如每一個STA)可以感測主通道。如果特定STA感測到/偵測到及/或確定主通道繁忙,那麼該特定STA可以回退。在指定的BSS中,一個STA(例如只有一個站)可以在任何指定時間進行傳輸。
高輸送量(HT)STA可以使用寬度為40 MHz的通道來進行通信(例如經由將20 MHz寬的主通道與20 MHz寬的相鄰或不相鄰通道組合以形成40 MHz寬的通道)。
甚高輸送量(VHT)STA可以支援20 MHz、40 MHz、80 MHz及/或160 MHz寬的通道。40 MHz及/或80 MHz通道可以藉由組合連續的20 MHz通道來形成。160 MHz通道可以藉由組合8個連續的20 MHz通道或者通過組合兩個不連續的80 MHz通道(這種組合可被稱為80+80配置)來形成。對於80+80配置來說,在通道編碼之後,資料可被傳遞並經過一個分段解析器,該分段解析器可以將資料分成兩個流。可以在每一個流上單獨執行反向快速傅裡葉變換(IFFT)處理以及時域處理。該流可被映射在兩個80 MHz通道上,並且資料可以由一傳輸STA來傳送。在一接收STA的接收器處,用於80+80配置的上述操作可以是相反的,並且組合資料可被發送至媒體存取控制(MAC)。
802.11af及802.11ah支援次1 GHz操作模式。與在802.11n及802.11ac中使用的那些相比,在802.11af及802.11ah中通道操作頻寬以及載波有所縮減。802.11af在TV白空間(TVWS)頻譜中支援5 MHz、10 MHz及20 MHz頻寬,並且802.11ah支援使用非TVWS頻譜的1 MHz、2 MHz、4 MHz、8 MHz及16 MHz頻寬。依照典型實施例,802.11ah可以支援儀錶類型控制/機器類型通信(例如巨集覆蓋區域中的MTC裝置)。MTC裝置可以具有某種能力,例如包含了支援(例如只支持)某些及/或有限頻寬的受限能力。MTC裝置可以包括電池,並且該電池的電池壽命高於臨界值(例如維持很長的電池壽命)。
可以支援多個通道及通道頻寬(例如802.11n、802.11ac、802.11af以及802.11ah)的WLAN系統包括可被指定成主通道的通道。該主通道的頻寬可以等於BSS中的所有STA所支援的最大公共操作頻寬。主通道的頻寬可以由來自在BSS中操作的所有STA的STA設定及/或限制,STA支援最小頻寬操作模式。在802.11ah的範例中,即使BSS中的AP以及其他STA支持2 MHz、4 MHz、8 MHz、16 MHz及/或其他通道頻寬操作模式,但對支援(例如只支援)1 MHz模式的STA(例如MTC類型的裝置),主通道的寬度可以是1 MHz。載波感測及/或網路分配向量(NAV)設定可以取決於主通道的狀態。如果主通道繁忙(例如因為STA(其只支援1 MHz操作模式)向AP進行傳輸),那麼即使大多數的頻帶保持空閒並且可供使用,也可以認為整個可用頻帶繁忙。
在美國,802.11ah可使用的可用頻帶是902 MHz到928 MHz。在韓國,可用頻帶是917.5 MHz到923.5 MHz。在日本,可用頻帶是916.5 MHz到927.5 MHz。依照國家碼,可用於802.11ah的總頻寬是6 MHz到26 MHz。
第1D圖是示出了根據一個實施例的RAN 113以及CN 115的系統圖。如上所述,RAN 113可以使用NR無線電技術以經由空中介面116來與WTRU 102a、102b、102c進行通信。此外,RAN 113還可以與CN 115進行通信。
RAN 113可以包括gNB 180a、180b、180c,但是應該瞭解,在保持符合實施例的同時,RAN 113可以包括任何數量的gNB。gNB 180a、180b、180c中的每一個都可以包括一個或多個收發器,以用於經由空中介面116來與WTRU 102a、102b、102c通信。在一個實施例中,gNB 180a、180b、180c可以實施MIMO技術。例如,gNB 180a、180b可以使用波束成形以向gNB 180a、180b、180c傳輸訊號及/或從gNB 180a、180b、180c接收訊號。因此,舉例來說,gNB 180a可以使用多個天線以向WTRU 102a傳輸無線訊號、及/或接收來自WTRU 102a的無線訊號。在一個實施例中,gNB 180a、180b、180c可以實施載波聚合技術。例如,gNB 180a可以向WTR 102a(未顯示)傳送多個分量載波。這些分量載波的子集可以處於無授權頻譜上,而剩餘分量載波則可以處於授權頻譜上。在一個實施例中,gNB 180a、180b、180c可以實施協作多點(CoMP)技術。例如,WTRU 102a可以接收來自gNB 180a及gNB 180b(及/或gNB 180c)的協作傳輸。
WTRU 102a、102b、102c可以使用與可縮放參數集相關聯的傳輸以與gNB 180a、180b、180c進行通信。舉例來說,對於不同的傳輸、不同的胞元及/或無線傳輸頻譜的不同部分來說,OFDM符號間距及/或OFDM子載波間距可以是不同的。WTRU 102a、102b、102c可以使用不同或可縮放長度的子訊框或傳輸時間間隔(TTI)(例如包含了不同數量的OFDM符號及/或持續不同的絕對時間長度)以與gNB 180a、180b、180c進行通信。
gNB 180a、180b、180c可被配置為與採用獨立配置及/或非獨立配置的WTRU 102a、102b、102c進行通信。在獨立配置中,WTRU 102a、102b、102c也可以在不存取其他RAN(例如e節點B 160a、160b、160c)下與gNB 180a、180b、180c進行通信。在獨立配置中,WTRU 102a、102b、102c可以使用gNB 180a、180b、180c中的一個或多個作為行動錨點。在獨立配置中,WTRU 102a、102b、102c可以使用無授權頻帶中的訊號來與gNB 180a、180b、180c進行通信。在非獨立配置中,WTRU 102a、102b、102c可以在與另一RAN(例如e節點B 160a、160b、160c)進行通信/連接的同時與gNB 180a、180b、180c進行通信/連接。舉例來說,WTRU 102a、102b、102c可以實施DC原理以基本同時地與一個或多個gNB 180a、180b、180c以及一個或多個e節點B 160a、160b、160c進行通信。在非獨立配置中,e節點B 160a、160b、160c可以充當WTRU 102a、102b、102c的行動錨點,並且gNB 180a、180b、180c可以提供附加的覆蓋及/或輸送量,以服務WTRU 102a、102b、102c。
gNB 180a、180b、180c中的每一個都可以關聯於特定胞元(未顯示)、並且可以被配置為處理無線電資源管理決策、切換決策、UL及/或DL中的使用者排程、支援網路截割、實施雙連接性、NR與E-UTRA之間的互通、路由使用者平面資料至使用者平面功能(UPF)184a、184b、以及路由控制平面資訊至存取及移動性管理功能(AMF)182a、182b等等。如第1D圖所示,gNB 180a、180b、180c可以經由Xn介面互相通信。
第1D圖顯示的CN 115可以包括至少一個AMF 182a、182b、至少一個UPF 184a、184b、至少一個對話管理功能(SMF)183a、183b,並且有可能包括資料網路(DN)185a、185b。雖然每一個前述元件都被描述為CN 115的一部分,但是應該瞭解,這其中的任一元件都可以被CN操作者之外的其他實體擁有及/或操作。
AMF 182a、182b可以經由N2介面而連接到RAN 113中的gNB 180a、180b、180c中的一個或多個、並且可以充當控制節點。例如,AMF 182a、182b可以負責驗證WTRU 102a、102b、102c的使用者、支援網路截割(例如處理具有不同需求的不同PDU對話)、選擇特定SMF 183a、183b、管理註冊區域、終止NAS傳訊、以及移動性管理等等。AMF 182a、1823b可以使用網路截割以基於使用的WTRU 102a、102b、102c的服務類型來定制用於WTRU 102a、102b、102c提供的CN支援。作為範例,針對不同的用例,可以建立不同的網路截割,例如依賴於超可靠低潛時(URLLC)存取的服務、依賴於增強型大規模行動寬頻(eMBB)存取的服務、及/或用於機器類型通信(MTC)存取的服務等等。AMF 162可以提供用於在RAN 113與使用其他無線電技術(例如LTE、LTE-A、LTE-A Pro及/或WiFi之類的非3GPP存取技術)的其他RAN(未顯示)之間切換的控制平面功能。
SMF 183a、183b可以經由N11介面而連接到CN 115中的AMF 182a、182b。SMF 183a、183b還可以經由N4介面而連接到CN 115中的UPF 184a、184b。SMF 183a、183b可以選擇及控制UPF 184a、184b、並且可以經由UPF 184a、184b來配置訊務路由。該SMF 183a、183b可以執行其他功能,諸如管理及分配UE IP位址、管理PDU對話、控制策略執行及QoS、提供下鏈資料通知等等。PDU對話類型可以是基於IP的、基於非IP的、基於乙太網路的等等。
UPF 184a、184b可以經由N3介面而連接到CN 113中的gNB 180a、180b、180c中的一個或多個,這可以為WTRU 102a、102b、102c提供封包交換網路(例如網際網路110)存取,以促成WTRU 102a、102b、102c與IP賦能的裝置之間的通信。UPF 184、184b可以執行其他功能,例如路由及轉發封包、實施使用者平面策略、支援多連接PDU對話、處理使用者平面QoS、緩衝下鏈封包、以及提供行動性錨定等等。
CN 115可以促成與其他網路的通信。例如,CN 115可以包括或者可以與充當CN 115與CN 108之間的介面的IP閘道(例如IP多媒體子系統(IMS)伺服器)進行通信。此外,CN 115可以為WTRU 102a、102b、102c提供針對其他網路112的存取,其他網路112可以包括其他服務供應者擁有及/或操作的其他有線及/或無線網路。在一個實施例中,WTRU 102a、102b、102c可以經由介接到UPF 184a、184b的N3介面以及介於UPF 184a、184b與DN 185a、185b之間的N6介面以經由UPF 184a、184b而連接到本地資料網路(DN)185a、185b。
有鑒於第1A圖至第1D圖以及第1A圖至第1D圖的對應描述,在這裡對照以下的一項或多項描述的一個或多個或所有功能可以由一個或多個仿真裝置(未顯示)來執行:WTRU 102a-d、基地台114a-b、e節點B 160a-c、MME 162、SGW 164、PGW 166、gNB 180a-c、AMF 182a-b、UPF 184a-b、SMF 183a-b、DN 185 a-b及/或這裡描述的任何其他一個或多個裝置。這些仿真裝置可以是被配置為仿真這裡一個或多個或所有功能的一個或多個裝置。舉例來說,這些仿真裝置可用於測試其他裝置及/或類比網路及/或WTRU功能。
該仿真裝置可被設計為在實驗室環境及/或操作者網路環境中實施關於其他裝置的一項或多項測試。舉例來說,該一個或多個仿真裝置可以在被完全或部分作為有線及/或無線通訊網路一部分實施及/或部署的同時執行一個或多個或所有功能,以測試通信網路內的其他裝置。該一個或多個仿真裝置可以在作為有線及/或無線通訊網路的一部分而被臨時實施/部署的同時執行一個或多個或所有功能。該仿真裝置可以直接耦合到另一裝置以執行測試、及/或可以使用空中無線通訊來執行測試。
一個或多個仿真裝置可以在未被作為有線及/或無線通訊網路一部分實施/部署的同時執行包括所有功能的一個或多個功能。舉例來說,該仿真裝置可以在測試實驗室及/或未被部署(例如測試)的有線及/或無線通訊網路的測試場景中使用,以實施一個或多個元件的測試。該一個或多個仿真裝置可以是測試設備。該仿真裝置可以使用直接的RF耦合及/或經由RF電路(作為範例,該電路可以包括一個或多個天線)的無線通訊來傳輸及/或接收資料。
新興5G系統用例的寬泛分類描述如下:增強型行動寬頻(eMBB)、大型機器類通信(mMTC)、超可靠低潛時通信(URLLC)。該用例的寬泛分類可基於ITU-R、NGMN以及3GPP所設定的需求。用例可集中於一個或多個需求,諸如較高的資料速率、較高的頻譜效率、低功率、較高的能量效率、較低的潛時、以及較高的可靠性。可考慮將從700 MHz至80 GHz的寬範圍頻帶用於各種部署場景。
隨著載波頻率增加,路徑損耗可能成為保證足夠覆蓋的限制。毫米波系統中的傳輸可能遭受非視線損耗(例如,繞射損耗、穿透損耗、氧氣吸收損耗以及葉面損耗等)。在初始存取期間,基地台及/或WTRU可克服高路徑損耗及/或發現彼此。例如,可以使用利用天線元件來產生波束成形的訊號,以藉由提供波束成形增益來補償路徑損耗。波束成形技術可包括數位、類比以及混合波束成形。
可以提供LTE初始同步及/或廣播通道。
在胞元搜尋中,WTRU可以獲取與胞元的時間及/或頻率同步、及/或可以偵測到胞元的胞元ID。在一個或多個(例如每一個)無線電訊框的第0個及/或第5個子訊框中可以傳送LTE同步訊號,及/或該LTE同步訊號可在初始化期間被用於時間及/或頻率同步。作為系統捕獲的一部分,WTRU可以同步到(例如順序地同步到)OFDM符號、時槽、子訊框、半訊框及/或無線電訊框(例如基於同步訊號)。該同步訊號可以是主同步訊號(PSS)及/或輔助同步訊號(SSS)。主同步訊號(PSS)可用於獲得時槽、子訊框及/或半訊框邊界。PSS可以提供胞元識別碼群組內的實體層胞元識別碼(PCI)。輔助同步訊號(SSS)可用於獲得無線電訊框邊界。SSS可使WTRU能夠確定從0到167的範圍內的胞元識別碼群組。
在同步(例如,成功同步)及/或PCI獲取之後,WTRU可以解碼實體廣播通道(PBCH)(例如借助於胞元特定參考訊號(CRS))及/或獲取有關系統頻寬、系統訊框號(SFN)及/或PHICH配置的主區塊(MIB)資訊。
例如,LTE同步訊號及/或PBCH可以依照標準化的週期而被發送(例如,連續發送)。
例如,在新型無線電(NR)中,高度統一化的同步訊號(SS)叢發結構可以如下。PSS、SSS及/或PBCH可以在SS塊內傳輸、一個或多個SS塊可構成SS叢發、及/或一個或多個SS塊可構成SS叢發集合。由於一個或多個SS塊可構成SS叢發、及/或一個或多個SS塊可構成SS叢發集合,因此PSS、SSS及/或PBCH可以在SS叢發及/或SS叢發集合內被傳輸。可在此提供並可解決一個或多個以下方面。可提供針對SS叢發組成及/或結構的詳細設計。可提供在SS叢發內表明的資訊。可提供統一化的SS叢發結構(例如以支援單波束及/或多波束部署)。可提供關於時間指示的設計(例如,針對可覆蓋單波束及/或多波束操作的SS叢發)。可提供詳細的SS叢發組成及/或結構。
NR中的SS叢發結構(例如,新的SS叢發結構)可影響系統訊框獲取。例如,LTE系統訊框獲取可藉由加擾及/或在PBCH酬載中攜帶的一個或多個系統訊框號(SFN)以傳遞該SFN而進行。作為範例,可(例如針對NR)提供用於獲取系統訊框號及/或擴展SFN(例如,基於SS叢發集合結構)的設計,以解決SS塊及/或叢發結構的引入。
NR內的SS叢發集合結構可針對系統性能及/或同步潛時(例如,最佳系統性能及同步潛時)而重新設計SS序列。可提供符合NR內的SS叢發結構的序列設計。
可設計及/或建構SS叢發集合。
SS叢發集合設計及/或建構可考慮以下一個或多個方面:無線電訊框號、時槽號、子訊框號、最小時槽號、系統訊框號、週期性及/或訊號的相干組合。
可針對無線電訊框而定義SS塊。可在無線電訊框內表明SS塊索引。SS塊索引可為SS塊的時間索引。作為範例,可使用無線電訊框內的該SS塊的時間索引來識別該無線電訊框內的一個或多個SS塊。
可針對SS叢發定義SS塊。可針對SS叢發集合定義SS叢發。作為範例,可使用可特定於SS叢發內的SS塊的時間索引。可針對SS叢發索引使用另一時間索引,該時間索引可特定於SS叢發集合內的一個或多個SS叢發。SS叢發索引對於一個或多個SS叢發中的SS塊可以是公共的。可以在SS叢發內表明SS塊索引,及/或可以在SS叢發集合內表明SS叢發索引。可針對SS叢發集合定義SS塊。可在SS叢發集合內表明SS塊索引。可使用SS叢發集合內的SS塊的時間索引來識別SS叢發集合內的一個或多個SS塊。SS塊可被侷限在預定視窗內。SS塊可分佈在SS叢發集合的週期(例如整個週期)上。SS塊可被侷限。SS塊(例如,所有的SS塊)可被限制在半無線電訊框內或5 ms視窗內。例如,SS塊可被限制在第一或第二半無線電訊框內、或10 ms無線電訊框的第一或第二5 ms視窗內。SS塊是否被限制在第一或第二半無線電訊框內、或10 ms無線電訊框的第一或第二5 ms視窗內是可被預定的(例如藉由預設、或藉由指示符)。例如,可基於半無線電訊框指示向WTRU表明在哪裡接收SS塊(例如,第一或第二無線電訊框)。
對於頻帶,SS塊可對應於K 個OFDM符號(例如,基於預設子載波間距)。K 可以是固定的。SS塊內的訊號多工結構可以是固定的。SS塊集合可對應於M 個SS叢發。SS叢發可對應於N 個SS塊。SS叢發集合可對應於L 個SS塊。L 可以是L =MN 。第2圖繪示了範例性SS叢發集合設計及/或建構。
第2圖示出了用於建構及/或設計SS塊、叢發及/或叢發集合的範例。SS叢發可對應於N 個SS塊,及/或SS叢發集合可對應於M 個SS叢發。SS塊可根據SS叢發而被定義,及/或SS叢發可根據SS叢發集合而被定義。可在SS叢發內表明SS塊索引,及/或可在SS叢發集合內表明SS叢發索引。
第3圖示出了用於建構及/或設計SS塊、叢發及/或叢發集合的範例。SS叢發集合可對應於L 個SS塊。SS塊可根據SS叢發集合而被定義。可在SS叢發集合內表明SS塊索引。
第4圖示出了用於建構及/或設計SS塊、叢發及/或叢發集合的範例。無線電訊框可對應於N 個SS塊,及/或SS叢發集合可對應於M 個無線電訊框。SS塊可根據無線電訊框而被定義。無線電可根據SS叢發集合而被定義。可在無線電訊框內表明SS塊索引,及/或可在SS叢發集合內表明無線電訊框索引。
如在此所描述的,SS叢發可對應於N 個SS塊,及/或SS叢發集合可對應於M 個SS叢發。SS叢發集合可對應於L 個SS塊。M、N或L中的一者或多者(例如,M及N、或者L)可使用固定值。M、N及/或L的值可被設計以使得M、N及/或L的值是胞元特定的、gNB特定的、及/或傳輸及接收點(TRP)特定的。在一些範例(例如,替代範例)中,M、N及/或L的值可以不是固定的及/或可以被改變。M及/或N可被更新及/或提供。參數M、N及/或L可被配置。
WTRU可被配置有關於哪些SS塊(例如,在SS叢發集合內)可被傳輸的資訊。WTRU可將關於哪些SS塊(例如,在SS叢發集合內)可被啟動、賦能及/或傳輸的資訊提供給gNB及/或TRP。WTRU可處於空閒模式。當WTRU處於空閒模式時,WTRU可經由初始UL傳輸、NR-PRACH訊息1及/或訊息3等將關於SS叢發集合內的SS塊(例如,哪些SS塊)可被啟動、賦能及/或傳輸的資訊提供給gNB及/或TRP。當處於連接模式時,WTRU可經由WTRU回饋(例如,UCI,諸如NR-PUCCH)及/或經由MAC-CE及/或無線電資源控制(RRC)傳訊等將關於針對傳輸SS叢發集合內的SS塊(例如,哪些SS塊)可被啟動、賦能、停用及/或停用的資訊提供給gNB及/或TRP。
基於所接收的SS塊,WTRU可識別以下中的一者或多者(例如,所有)。WTRU可識別OFDM符號索引、無線電訊框內的時槽索引、無線電訊框號、及/或最小時槽索引。對於初始胞元選擇,預設的SS叢發集合週期可基於(例如,為頻帶及/或頻率範圍的函數)頻帶及/或頻率範圍。WTRU可假定預設的SS叢發集合週期,例如,該SS叢發集合週期可基於WTRU正在其上操作的頻帶及/或頻率範圍而被確定。可以用SS叢發集合週期來重複SS塊。所重複的SS塊中的NR-PBCH內容可以是不同的及/或可以改變的。可以指定每一頻率範圍、頻帶及/或子帶的SS塊時間位置集合(例如,單一集合)。
SS塊可包括一個或多個訊號。例如,SS塊可包含以下一者或多者:NR-PSS、NR-SSS、及/或NR-PBCH。訊號類型可被包括在SS塊內。例如,另一類型(例如,第二類型)PBCH訊號可被包括在(例如,輔助NR-PBCH訊號可被包括在)SS塊內。另一類型(例如,第三類型)SS訊號(例如,第三SS及/或NR-SS訊號)及/或NR-PSS及/或 NR-SSS可被包括在SS塊內。其他訊號類型(例如,行動參考訊號(MRS)及/或測量參考訊號)可被包括。可在SS塊內多工一個或多個其他通道(例如,資料傳輸及/或控制資訊)。可在一個或多個SS塊內停用一個或多個訊號(例如,NR-PBCH、第二NR-PBCH、第二類型NR-PBCH、第三NR-PBCH、及/或第三類型SS訊號)。
可使用以下訊號中的一個或多個來表明SS塊索引。該訊號包括NR-SS、NR-PBCH、另一NR-SS、另一類型 NR-SS(例如,第三NR-SS)、另一NR-PBCH、另一類型NR-PBCH(例如,輔助NR-PBCH)等。可在PBCH訊號及/或通道的酬載中攜帶SS塊索引。例如,當表明SS塊索引時(例如,使用NR-PBCH、另一NR-PBCH、及/或另一類型NR-PBCH進行表明),可在PBCH訊號及/或通道的酬載中攜帶SS塊索引。SS塊索引可使用一些隱式特徵(例如,CRC遮罩及/或序列加擾)被嵌入至以下一者或多者中:NR-PBCH、另一NR-PBCH、及/或另一類型NR-PBCH。WTRU可不假設gNB及/或TRP會發送相同數量(一個或多個)的實體波束。WTRU可不假設gNB及/或TRP會在SS叢發內及/或SS叢發集合內的一個或多個(不同的)SS塊上發送相同數量(一個或多個)的實體波束。
可獲取系統訊框。
系統訊框可使用SS塊及/或叢發而被獲取。
SS塊索引可用於表明無線電訊框號。當SS塊索引表明一個或多個Nblock 無線電訊框時,Nsf 個系統訊框可被表明如下:SFN = f (PBCH內的SFN,SS塊索引)。SS塊索引可藉由針對SFN LSB的log 2 (Nblock )個位元而被表示,其可由SS塊來表明。PBCH中的SFN可藉由針對SFN MSB的log 2 (Nsf ) -log 2 (Nblock )個位元而被表示,其可在NR-PBCH訊號及通道中被表明(例如,藉由NR-PBCH酬載)。
第5圖示出了使用SS塊索引的範例性系統訊框號獲取。在502,WTRU可偵測SS塊及/或相關聯的SS塊索引。在504,WTRU可從所接收的SS塊及/或相關聯的SS塊索引取得SFN的LSB。在506,WTRU可接收NR-PBCH。在508,WTRU可從所接收的NR-PBCH訊號及/或通道取得SFN的MSB。在510,WTRU可獲取SFN(例如,整個SFN)。例如,WTRU可藉由將SS塊內表明及/或攜帶的LSB、及/或NR-PBCH訊號及/或通道內表明及/或攜帶的MSB組合以獲取SFN(例如,整個SFN)。
可使用SS叢發索引來表明無線電訊框號。當SS叢發索引表明一個或多個Nburst 無線電訊框時,Nsf 個系統訊框可被表明如下:SFN = f (PBCH中的SFN,SS叢發索引)。SS叢發索引可藉由針對SFN LSB的log 2 (Nburst )個位元而被表示,例如,其可使用SS叢發而被表明。PBCH中的SFN可藉由針對SFN MSB的log 2 (Nsf ) -log 2 (Nburst )個位元而被表示,例如,其可在NR-PBCH訊號及通道中被表明。
第6圖示出了使用SS塊及/或叢發的範例性系統訊框號獲取。在602,WTRU可偵測SS叢發及/或相關聯的SS叢發索引。在604,WTRU可從所接收的SS叢發及/或相關聯的SS叢發索引取得SFN的LSB。在606,WTRU可接收NR-PBCH。在608,WTRU可取得SFN的MSB。例如,WTRU可從所接收的NR-PBCH酬載取得SNF的MSB。在610,WTRU可獲取SFN(例如,整個SFN)。例如,WTRU可藉由將可在SS叢發內表明及/或攜帶的LSB以及可在NR-PBCH訊號及/或通道內表明及/或攜帶的MSB組合以獲取SFN。
可提供多階段系統訊框獲取。
第7圖示出了範例性多階段系統訊框號獲取(例如,使用3階段方法)。SNF可為以下參數中的一者或多者的函數:SS塊/叢發索引、加擾碼、及/或NR-RBCH中的SNF。SFN可為f(SS塊/叢發索引、加擾碼、NR-RBCH中的SNF)。
範例性多階段訊框號獲取可被執行如下:在702,WTRU可偵測SS塊及/或叢發。在704,WTRU可從所接收的SS塊/叢發取得SFN的第一部分。在706,WTRU可接收NR-PBCH。在708,WTRU可從加擾碼取得SNF的第二部分。在710,WTRU可從NR-PBCH訊號及/或通道(例如,酬載)取得SNF的第三部分。在712,WTRU可獲取SFN(例如,整個SFN)。例如,WTRU可藉由將該SS塊中表明的SFN的第一部分、加擾碼中表明的SFN的第二部分、及/或NR-PBCH酬載中表明的SFN的第三部分(例如,經過多個階段)進行組合以獲取SFN。
第8圖示出了範例性系統訊框號獲取(例如,多階段系統訊框號獲取,例如利用4階段獲取)。SFN可基於(例如,為以下參數中的一者或多者的函數)以下參數中的一者或多者:SS塊索引、SS叢發索引、加擾碼、及/或NR-PBCH中的SFN。SFN可為f(SS塊索引、SS叢發索引、加擾碼、NR-PBCH中的SFN)。範例性多階段系統訊框號取得可被執行如下。在802,WTRU可偵測SS塊。在804,WTRU可從所接收的SS塊取得SFN的第一部分。在806,WTRU可偵測SS叢發。在808,WTRU可從所接收的SS叢發取得SFN的第二部分。在810,WTRU可接收NR-PBCH。在812,WTRU可從加擾碼獲取SFN的第三部分。在814,WTRU可從NR-PBCH酬載取得SFN的第四部分。
在816,WTRU可獲取SFN(例如,整個SFN)。例如,WTRU可藉由將(SS塊中表明的)SFN的第一部分、(SS叢發內所表明的)SFN的第二部分、(加擾碼中表明的)SFN的第三部分及/或(例如,NR-PBCH酬載中表明的)SFN的第四部分(例如,經由多個階段)進行組合以獲取SFN。
第9圖示出了範例性多階段系統訊框號獲取。該範例性多階段系統訊框號獲取可被執行如下。在902,WTRU可偵測SS塊。在904,WTRU可從所接收的SS塊取得SFN的LSB的第一部分。在906,WTRU可接收NR-PBCH。在908,WTRU可從加擾碼取得SFN的LSB的第二部分。在910,WTRU可從NR-PBCH酬載取得SFN的MSB。
在912,WTRU可獲取SFN(例如,整個SFN)。例如,WTRU可藉由將SFN的LSB的第一部分(例如,SS塊中表明的)、SFN的LSB的第二部分(例如,加擾碼中表明的)及/或SFN的MSB(例如,NR-PBCH酬載中表明的)進行組合,以獲取SFN。
可提供系統訊框獲取。可應用以下一者或多著。
WTRU可接收SS塊訊號。
WTRU可偵測SS叢發集合內的SS塊時間指示。SS塊時間指示可被表示為,其範圍可為從1至L-1,例如= 0, 1, 2, …, L-1。
WTRU可從所偵測的SS塊時間指示取得SFN的第一部分。例如,WTRU可經由以下等式從所偵測的SS塊時間指示取得SFN的第一部分:SFN 的第一部分=
該SFN的第一部分可為 0或1。
WTRU可對NR-PBCH訊號進行解擾、及/或解碼NR-PBCH通道。WTRU可使用加擾碼及/或該加擾碼的偏移版本來對該NR-PBCH訊號進行解擾。
加擾碼可為加擾碼0、1、2…Z-1。加擾碼0、1、2…Z-1可被稱為原始加擾碼。
加擾碼偏移(例如,利用J碼偏移)可為加擾碼J、J+1…Z-1、0、1…J-1。加擾碼偏移可為原始加擾碼的J碼循環偏移。
WTRU可基於以下公式確定(例如,取得)SFN的第二部分的位元數:SFN 的第二部分的位元數 =
WTRU可藉由例如以下表(假設J=4)從所偵測的加擾碼偏移確定(例如,取得)SFN的第二部分的位元內容(例如,精確的位元內容): 表1: SFN 的第二部分(J = 4)
對於J=8而言,SFN的第二部分可為000、001、010、011、100、101、110、及/或 111。
WTRU可從NR-PBCH酬載取得SFN的第三部分。該SFN的第三部分可等於PBCH攜帶的SFN位元(例如,顯示攜帶的)。
WTRU可藉由序連及/或組合從SS塊取得的SFN的第一部分、從加擾碼獲得的SFN的第二部分、及/或NR-PBCH酬載中攜帶的SFN的第三部分來獲取SFN(例如,整個SFN)。序連及/或組合的範例可如第10圖所示。
例如,如果經由SS塊索引獲得;經由所偵測的加擾碼及偏移獲得;及/或經由經解碼的PBCH酬載獲得,則SFN(例如,整個SFN)可為:
可經由PBCH酬載、SS塊索引及/或加擾碼及偏移的一個或多個組合(例如,不同的組合)獲得SFN位元的一個或多個部分(例如,不同部分)。例如,基於設計及系統參數,SFN位元的第一部分可經由所偵測的加擾碼及偏移獲取、SFN位元的第二部分可經由SS塊索引或時間索引獲取、及/或SFN位元的第三部分可經由PBCH酬載獲取。第11圖描繪出獲取範例。SFN位元的一個或多個部分(例如,不同部分)可例如藉由偵測及/或解碼SS塊以及PBCH訊號及通道而被獲得及/或獲取。SFN位元的一個或多個部分(例如,不同部分)可被序連及/或組合以形成SFN位元集合(例如,最終集合)。
PBCH中可攜帶SS塊索引。例如,SS塊索引可在PBCH中在酬載內被顯式攜帶及/或在訊號內被隱式攜帶。例如,如此所述,顯式指的是指示可以用在PBCH內作為酬載攜帶的位元形式。隱式指的是指示作為訊號一部分,例如,訊號的初始化及/或訊號中的偏移但不被包括(例如,被顯式包括)作為酬載的一部分。
可獲取基於操作模式的系統訊框。
可使用多種週期(例如,針對SS叢發集合的週期集合)。週期可被預定義作為用於SS叢發集合傳輸的預設週期。該預設週期可被表示為個無線電訊框。週期集合可被表示為個無線電訊框。
WTRU可例如基於預設週期來偵測SS塊。例如,在初始存取中,WTRU可基於預設週期來偵測SS塊。WTRU可使用以下等式從所偵測的SS塊時間指示獲得SFN的第一部分:SFN 的第一部分 =
WTRU可使用預設週期、及/或週期集合中的一個或多個週期。例如,在空閒模式期間,WTRU可使用預設週期、及/或週期集合中的一個或多個週期。網路可向WTRU表明週期。在WTRU接收到所表明的週期之後,WTRU可覆蓋預設週期。該用於調適的週期可使用NR-PBCH來表明。NR-PBCH可攜帶一個或多個(例如,數個)位元以表明週期。WTRU可獲得更新的週期。例如,WTRU可在WTRU解碼NR-PBCH之後獲得更新的週期。該用於調適的週期可使用最小系統資訊而被表明。
WTRU可使用以下等式從所偵測的SS塊時間指示來取得SFN的第一部分:SFN 的第一部分 =
在RRC連接模式期間,WTRU可使用週期集合內的一個或多個週期。網路可向WTRU表明週期。在WTRU接收到所表明的週期之後,WTRU可覆蓋之前使用的週期。該用於調適的週期可使用專用傳訊(例如,RRC傳訊)而被表明。該RRC傳訊可攜帶一個或多個(例如,數個)位元以表明專用於WTRU的週期。
WTRU可使用以下等式從所偵測的SS塊時間指示來取得SFN的第一部分:SFN 的第一部分 =
可執行帶有確認的系統訊框獲取。
可獲取例如帶有確認的系統訊框號。第12圖示出了帶有確認的範例性系統訊框號獲取。可執行以下一者或多者。在1202,WTRU可接收及/或偵測SS訊號。在1204,WTRU可接收及/或偵測SS叢發。在1206,WTRU可從接收的SS叢發取得SNF的第一部分。在1208,WTRU可接收NR-PUBCH訊號及/或通道。在1210,WTRU可偵測加擾碼。在1212,WTRU可從所偵測加擾碼取得SFN的第一部分。
在1214,WTRU可以比較SFN的第一部分(例如,從所接收的SS叢發取得的SFN的第一部分)。如果從所接收的SS叢發取得的SFN的第一部分與從所偵測的加擾碼取得的SFN的第一部分不相同,在1202,WTRU可偵測SS訊號。如果從所接收的SS叢發取得的SFN的第一部分與從所偵測的加擾碼取得的SFN的第一部分相同,在1216,WTRU可確認該SFN的第一部分被成功獲取。
在1218,WTRU可從NR-PBCH訊號及/或通道(例如,酬載)取得SFN的第二部分。在1220,WTRU可確定(例如,獲取)SFN(例如,整個SFN)。例如,WTRU可藉由將(例如,在SS叢發中表明的)SFN的第一部分與(例如,可在NR-PBCH(諸如NR-PBCH中的訊號及/或酬載)內表明的)SFN的第二部分進行組合以獲取SFN。
帶有確認的系統訊框號獲取的範例可被執行如下。例如,可將系統訊框號或者系統訊框號的一部分傳遞給WTRU。該系統訊框號可以用一種或多種方式(例如,可同時用超過一種方式)傳遞給WTRU。可藉由用於例如PBCH的加擾序列或加擾碼將系統訊框號傳遞給WTRU。可藉由PBCH酬載同時將系統訊框號傳遞給WTRU。可將位元傳遞給WTRU。例如,可將偶數或非偶數個位元傳遞給WTRU。可(例如,使用一種或多種方式)將用於系統訊框號的相同位元或不同位元傳遞給WTRU。例如,可(例如,經由PBCH酬載)將X位元的系統訊框號傳遞給WTRU,並(例如經由PBCH加擾)將Y位元系統訊框號傳遞給WTRU。X可為10位元,Y可為2、3或4位元。Y可為X的子集。例如,可(例如,經由加擾序列或加擾碼)將系統訊框號的位元的一部分(例如,第一部分)傳遞給WTRU,可(例如,經由PBCH酬載)將系統訊框號的位元的另一部分(例如,第二部分)傳遞給WTRU。系統訊框號的位元的第一部分以及第二部分可重疊(例如,完全重疊或部分重疊)。系統訊框號的位元的第一部分以及第二部分可不重疊。當系統訊框號的位元的第一部分及第二部分完全重疊時,系統訊框號的位元的第一部分及第二部分可以是相同的。當系統訊框號的位元的第一部分及第二部分部分重疊時,系統訊框號的位元的第一部分及第二部分中的一些可以是相同的。當系統訊框號的位元的第一部分及第二部分不重疊時,系統訊框號的位元的第一部分及第二部分可以是不相同的。系統訊框號的部分位元相同可用於確認。
第13圖示出了帶有確認的系統訊框號獲取的範例。在1302,WTRU可偵測SS訊號。在1304,WTRU可偵測SS叢發及/或SS塊。在1306,WTRU可取得SFN的LSB。例如,WTRU可從所接收的SS叢發及/或SS塊取得SFN的LSB。在1308,WTRU可(例如,可以同時)偵測加擾碼。在1310,WTRU可從所偵測的加擾碼取得SFN的LSB。
在1312,WTRU可將從所接收的SS叢發取得的SFN的LSB及/或從所偵測的加擾碼取得的SFN的LSB進行比較。在1314,如果SFN的LSB(例如,從所接收的SS塊或SS叢發取得,諸如從SS塊或叢發中的PBCH酬載取得)與從所偵測的加擾碼取得的SFN的LSB不相同,在1302,WTRU可偵測SS訊號。在1314,如果SFN的LSB(例如,從所接收的SS塊或SS叢發取得,諸如從SS塊或叢發中的PBCH酬載取得)與從所偵測的加擾碼取得的SFN的LSB相同,WTRU可確認SFN的LSB被成功獲取。在1316,WTRU可接收NR-PBCH訊號及/或通道。在1318,WTRU可從NR-PBCH訊號及/或通道(例如,從SS塊或叢發中的PBCH酬載)取得SFN的MSB。在1320,WTRU可獲得SFN(例如,整個SFN)。例如,WTRU可藉由將SS塊或叢發中表明的LSB與NR-PBCH訊號及/或通道中表明的MSB組合以獲取SFN。
SS塊或SS叢發可包括以下一者或多者:PSS、SSS、及/或PBCH。PBCH可包括PBCH酬載及/或PBCH資料解調參考訊號(DMRS)。PBCH酬載或位元可以用例如加擾序列或加擾碼而被加擾。加擾序列或加擾碼可基於(例如,完全基於或部分基於)胞元ID。加擾序列或加擾碼可為胞元ID的函數、或可為胞元ID及其他ID(一個或多個)及/或索引(多個索引)的函數。例如,加擾序列或加擾碼可為胞元ID及/或時序資訊的函數。加擾序列或加擾碼可藉由胞元ID及/或時序資訊索引(例如,SS塊索引、SFN等)而被確定。
一個或多個SFN獲取可用於一個或多個SS叢發集合週期,例如以最佳化系統性能。例如,SFN獲取可用於及/或關聯於週期,及/或另一SFN獲取可用於及/或關聯於另一週期。
可執行帶有週期調適的基於SS週期的系統訊框獲取。
第13A圖、第13B圖示出了帶有週期調適的系統訊框獲取的範例流程。第13A圖、第13B圖描述了可與帶有週期調適的系統訊框獲取相關聯的特徵。例如,該特徵可包括以下一者或多者。
在1350,WTRU可偵測及/或接收作為SS塊叢發的訊號。在1352,WTRU可確定是否接收到SS叢發集合週期的調適(例如,調適資訊)。在1354,WTRU可從NR-PBCH、最小系統資訊、及/或RRC傳訊接收SS叢發集合的調適資訊及/或所發送的SS塊。例如,WTRU可接收NR-PBCH、最小系統資訊、及/或RRC傳訊以獲取及/或確定調適資訊。WTRU可從NR-PBCH、最小系統資訊、及/或RRC傳訊接收調適資訊以適應及/或更新SS叢發集合週期。
如果未接收到調適,WTRU可使用預設週期(例如,預設SS週期)以用於偵測。例如,預設SS叢發集合週期可為20 ms、及/或可等於2個無線電訊框。一無線電訊框可為10 ms。
如果接收到調適,在1368,可使用預定週期集合。預定週期集合可為{5ms, 10ms, 20ms, 40ms, 80ms, 160ms}及/或可等於
週期可短可長。週期可以是預設的。
如果未接收到週期調適,在1356,WTRU可使用預設SS叢發集合週期。在該預設SS叢發集合週期期間,在1358,可取得SFN的部分(例如,第一部分)。例如,可從所接收的SS塊及/或SS叢發取得SFN的部分(例如,第一部分)。WTRU可從SS塊索引或時間索引取得SFN的第一部分。SS塊索引或時間索引可由NR-PBCH DMRS表明(例如,隱示表明)。WTRU可從NR-PBCH DMRS取得(例如,直接獲得)SFN的第一部分。WTRU可從由NR-PBCH表明(例如,顯式表明的)的SS塊索引或時間索引取得SFN的第一部分。WTRU可解碼例如NR-PBCH以獲得SS塊索引或時間索引(例如,如果需要)。SFN_1可等於floor (Ndefault x SSBlockID / L)。在1360,WTRU可偵測、解擾、及/或解碼NR-PBCH。在1362,WTRU可取得SFN的第二部分。例如,WTRU可從加擾碼及/或偏移(SFN_2)取得SFN的第二部分。WTRU可遵循表2。 表2
在1364,WTRU可取得SFN的第三部分。例如,WTRU可從PBCH酬載取得SFN的第三部分(SFN_3)。在1366,SFN的多個部分(例如,3個部分)可被組合。例如,SFN的多個部分(例如,3個部分)可被組合以產生整個SFN [SFN_3, SFN_2, SFN_1]。
可接收週期調適。如果接收到週期調適,在1370,WTRU可確定週期是長還是短。WTRU可確定週期是否是預設的。
對於短週期調適而言,可應用以下一者或多者。對於短週期調適,在1372,WTRU可偵測、解擾及/或解碼NR-PBCH。對於短週期調適,在1374,WTRU可從在此所述的加擾碼及/或偏移取得SFN的第一部分(SFN_1)。對於短週期調適,在1376,WTRU可從PBCH酬載取得SFN的第二部分(SFN_2)。在1378,該兩部分可被組合。例如,該兩部分可被組合以產生SFN [SFN_2, SFN_1] (例如,整個 SFN [SFN_2, SFN_1])。
對於長週期調適,可應用以下一者或多者。對於長週期調適,在1380,WTRU可從所接收的SS塊或SS叢發取得SFN的第一部分。例如,WTRU可從由NR-PBCH DMRS表明的(例如,隱式表明的)SS塊索引或時間索引取得SFN的第一部分。WTRU可從NR-PBCH DMRS取得(例如,直接取得)SFN的第一部分。WTRU可從NR-PBCH表明的(例如,顯式表明的)SS塊索引或時間索引取得SFN的第一部分。在1382,WTRU可解碼NR-PBCH。例如,WTRU可解碼NR-PBCH以獲得SS塊索引或時間索引(例如,如果需要)。對於長週期調適,SFN_1可等於floor (Nadapt,i x SSBlockID / L)。對於長週期調適,WTRU可偵測、解擾及/或解碼NR-PBCH。對於長週期調適,在1384,WTRU可從PBCH酬載取得SFN的第二部分(SFN_2)。在1386,可以組合多個部分(例如,兩個部分)以產生整個SFN [SFN_2, SFN_1]。
對於預設週期調適,WTRU可執行在此所述的操作。例如,對於預設週期調適,如果沒有接收到週期調適,WTRU可執行在此所述的操作。可應用以下一者或多者。
可使用指示符來識別及/或獲取5 ms時序指示、邊界,及/或可等於0.5無線電訊框時序指示。該指示符可為1位元指示符。該指示符可由NR-PBCH、剩餘最小系統資訊(RMSI)及/或RRC傳訊攜帶。該指示符(例如,1位元指示符)可經由DMRS(諸如,NR-PBCH DMRS)來表明(例如,隱式表明)。
可從以下一者或多者取得SFN。可從PBCH-DMRS取得SFN。可從SS塊索引及/或SS塊時序索引取得SFN。可從加擾碼取得SFN。可從PBCH酬載取得SFN。可從CRC遮罩取得SFN。
可將在此所述的特徵(例如,解決方案)應用至超SFN(H-SFN)。
可執行一個或多個SS訊號及/或序列特徵。
可使用Zadoff-Chu序列來執行一個或多個SS序列(例如,帶有SS叢發的)。序列長度被選擇以適應及/或驗證一個或多個(例如,不同的)SS頻寬及/或一個或多個(例如,不同的)FFT尺寸。例如,長度63的Zadoff Chu(ZC63)、長度127的Zadoff Chu(ZC127)、及/或長度277的Zadoff Chu(ZC255)。
對於序列長度(例如,每一序列長度),可選擇根。例如,可選擇根使得可實現SS訊號及/或叢發偵測的最佳性能。對於例如根,可以執行以下一者或多者。根的值可從1至N-1變化。N可為Zadoff-Chu序列的長度。可使用等式zcSeq(n+1) = exp(-j*(pi*root*n*(n+1))/N)來產生ZC序列。“n”可為該值被計算的樣本點,及/或“N”可為序列長度。“root”可為用於產生序列的根。用於偵測的臨界值可針對根而被計算。可使用SNR 為0dB的加性高斯白色雜訊(AWGN)通道中的模擬來執行根的計算。序列可不從傳輸器發送,及/或接收器可確定(例如,計算)從通道接收的資料的關聯性。可選擇偵測臨界值,及/或該偵測臨界值可給出的誤警概率為0.1。可在CDL通道模式中執行PSS傳輸。在通過通道模式之後,可將載波頻率偏移(CFO)的百萬分之一(PPM)添加至資料。可使用一個或多個SNR值(例如不同值)處的AWGN。所接收的資料可與PSS序列副本相關聯。可將最高峰值與所選臨界值進行比較。將最高峰值與所選臨界值進行比較可確定SNR(例如,所選擇的SNR)處的偵測概率。可繪示出偵測概率與選擇用於Zadoff Chu序列的根之間的關係。可選擇根。例如,可選擇具有最佳偵測性能的根。選擇具有最佳偵測性能的根可表明在增大SNR下是不存在偵測概率底限的(no-flooring),例如在1 PPM CFO情況下。
第14圖示出了針對ZC255序列的性能。低SNR處的性能對於一個或多個(例如,所有)根可以是一致的。在較高SNR(例如,帶有增加的CFO)中,一些根可能會展現出較差的性能(flooring performance)及/或可能執行較差。例如,在第14圖內示出的範例中,所選的根1執行最佳。如第15圖所示,可針對ZC 127選擇根值62。如第14圖所示,可針對ZC255選擇根值1。針對ZC 63序列,可使用在LTE中選擇的根值其中之一(例如,根索引號或根索引29)。
第14圖及第15圖分別示出了針對ZC255序列及/或ZC127序列的範例性性能。低SNR處的性能對於一個或多個(例如,所有)根可以是一致的。在較高SNR(例如,帶有增加的CFO)中,一個或多個根可能會展現出較差的性能及/或可能執行較差。如第14圖所示,對於ZC 255,根1執行最佳。其他根可包括123及/或165。如第15圖所示,對於ZC 127,給出最佳性能的根為62、65及/或75。
如第15圖所示,可針對ZC 127選擇根值62。如第14圖所示,可針對ZC 255選擇根值1。對於ZC63序列而言,可使用所選(例如,在LTE中)的根其中之一,例如根索引號或根索引29。
序列(例如,基礎序列)可包括以下一者或多者。根索引62可用於ZC 127,及/或根索引1可用於ZC255。根索引65及/或75可用於ZC127。根索引123及165可用於ZC255。
使用頻率重複、時間重複、及/或頻率及時間重複,序列(例如,基礎序列)可用作建構較長序列(一個或多個)的基礎元件。
使用一個或多個(例如,3個)基礎序列(例如使用所選根)及/或一個或多個(例如,不同的)重複模式,可建構一個或多個(例如,不同的)PSS序列。使用一個或多個基礎序列(例如,使用所選根)及/或一個或多個重複模式來建構一個或多個PSS序列可包括以下一者或多者。可計算針對FFT尺寸、序列長度及/或重複次數的一個或多個零值。zpLen = floor((nFFT - zcSeqLen*zcRep - 1)/2),其中zpLen可為在序列的一側或多側(例如,任一側)上的零填充的長度。nFFT可為FFT尺寸。zcSeqLEn可為ZC序列的長度。zcRep可為ZC序列的重複次數。1可針對DC。
可執行帶有重複的建構。
如果不執行重複,可計算長度L = (zcSeqLen -1)/2。第一長度L (1:L)符號可為所選序列的符號、及/或可映射至L個子載波(例如,在DC子載波側)。最後的長度L符號(L+2: zcSeqLen)可為所選序列的符號、及/或可映射至L個子載波(例如,在DC子載波一側(例如,另一側)。可在一側或多側(例如,2側)插入針對DC的零及/或零填充,以例如建構序列(例如,最終序列)。第16圖示出了在一側或多側(例如,2側)插入針對DC的零及/或零填充以建構最終序列的範例。
可在DC子載波的一側或多側(例如,任一側)上使用序列(例如,相同的序列)。例如,如果執行一個或多個序列(例如,2個序列)重複,則可在DC子載波的一側或多側(例如,任一側)上使用序列(例如,相同序列)。第17圖示出了在DC子載波的一側或多側(例如,任一側)使用序列(例如,相同序列)的範例。
如果執行四次重複,則可在DC子載波的每一側上使用序列(例如,相同序列)兩次。第18圖示出了在DC子載波的每一側使用序列(例如,相同序列)兩次的範例。
第19圖繪示了範例性新無線電(NR)-輔助同步訊號(SSS)設計。
在1902處,可產生SSS序列。該SSS序列可為NR-SSS 1904。可使用一個或多個M序列產生SSS序列。例如,可使用兩個M序列的XOR來產生SSS。可應用以下一者或多者。可針對m序列定義多項式。例如,可針對m序列定義兩個產生器多項式。可對m序列應用循環偏移(例如,環形偏移)。例如,可根據胞元ID(例如,NR胞元ID)來對m序列應用循環偏移(例如,環形偏移)。可使用帶有N1循環偏移(例如,環形偏移)的多項式、及/或帶有N2循環偏移(例如,環形偏移)的多項式產生SSS(例如,NR-SSS)序列。例如,N1可等於127及/或N2可等於9。該兩個多項式的範例性多項式可為f0(x) = x7 + x4 + 1 及/或 f1(x) = x7 + x + 1。針對該兩個多項式的多項式可用於替代及/或最佳化。初始狀態(例如,SSS的初始狀態,諸如NR-SSS)可為0000001。可以用兩個(例如,兩個不同的)多項式(例如,具有相同階數的多項式)產生兩個(例如,兩個不同的)M序列(例如,相同長度的M序列)。可使用及/或表明1000個(例如,大約1000個)胞元ID。胞元IDS(例如,所表明的及/或使用的胞元ID)可被稱為nCellMax。可採用一種或多種(例如,不同的)方式來表明及/或使用胞元ID。
對於用兩個(例如,兩個不同的)多項式(例如,相同階數的多項式)產生兩個(例如,兩個不同的)M序列(例如,相同長度的M序列),可應用以下一者或多者。
可以從多項式(例如,不可約的本原多項式)建構M序列(例如,不同的M序列)。例如,M序列(例如,不同的M序列)可以從預定階數(例如,度數)的多項式(例如,不可約的本原多項式)而被建構。例如,對於階數7,可以有18個(例如,18個不同的)可用多項式。該多項式可藉由八進制值而被表示。例如,該多項式可藉由以下八進制值而被表示:203、211、217、221、235、247、253、271、277、301、313、323、325、345、357、361、367、375。
可使用來自集合(例如,多項式集合)的多項式(例如,兩個多項式)的一個或多個組合。可使用一個或多個多項式(例如,不可約的本原多項式)。例如,可使用多項式(例如,不可約的本原多項式)對(例如,較佳對)的組合。該多項式(例如,不可約的本原多項式)對(例如,較佳對)的組合可產生金氏碼。
M序列的長度可為127及/或多項式可為7階的(例如,217及211,其可為一對,諸如較佳對,以產生黃金編碼): 八進制217可為二進位10001111,其可轉換為:s1 = 1-2x 八進制211可為二進位10001001,其可轉換為:,s2 = 1-2x 對兩者進行初始化:可能的組合可為[221, 203]。該組合可分別對應於多項式f0(x) = x7 + x4 + 1 及f1(x) = x7 + x + 1。
可表明1000個(例如,大約1000個)胞元ID。所表明的胞元ID可被稱為nCellMax。可以用一種或多種(例如,不同的)方式來表明該胞元ID。可應用以下一者或多者。
可由SSS(例如,僅SSS)表明(例如,確定)胞元ID。一個或多個循環偏移(例如,環形偏移)參數可等於一函數(胞元ID)。例如,[m0, n1]可等於函數(胞元ID)。循環偏移(例如,環形偏移)參數(例如,m0)可被設定為一個或多個(例如,不同的)值。如第19圖所示,可從一個或多個循環偏移集合(例如,環形偏移集合)確定一個或多個循環偏移參數(例如,循環偏移參數的值)。例如,可從循環偏移集合(例如,0至p-1)確定(例如,設定)循環偏移參數(例如,m0)。如第19圖所示,m0的循環偏移集合可包括112個值。s1被循環偏移(例如,環形偏移)m0。例如,。如第19圖所示,另一循環偏移參數(例如,n1)可被設定為一個或多個(例如,不同的)值。該一個或多個值可為循環偏移集合。如第19圖所示,針對n1的循環偏移集合可包括3個值。可從循環偏移集合(例如,其可不同於設定了循環偏移(例如,m0)的循環偏移集合)確定循環偏移(例如,n1)。例如,n1可被設定為從0至ceil(nCellMax/p)、從0至floor(nCellMax/p)、或其他值的值(例如,一些值或所有值)。S2可被環形偏移n1。例如,
m0可被設定為從0-126的一些值或所有值(例如,127個循環偏移),及/或n1可被設定為從0:8的一些值或所有值(例如,9個循環偏移)。例如,SSS(例如,NR-SSS)序列可使用具有127個循環偏移的多項式、及/或具有9個循環偏移的多項式而被產生。m0可被設定為0-32,及/或n1可被設定為0:32。m0 及/或 n1可被設定為例如可被預定的及/或接收器已知的一個或多個組合。
可基於PSS及/或SSS的一個或多個組合確定(例如,表明)胞元ID。例如,可基於PSS及/或SSS的一個或多個組合所攜帶的一個或多個胞元ID確定(例如,表明)胞元ID。[m0, m1, NID2]可等於函數(胞元ID)。PSS可表明一個或多個(例如,3個)NID2。NID2可為PSS(例如,NR-PSS)所攜帶的胞元ID。例如,PSS可攜帶一個或多個(例如,3個)胞元ID。可使用s1及s2的m0及m1偏移來設定ceil(nCellMax./3)。如果nCellMax = 1008,ceil(nCellMax./3)可等於336。NID1的範圍可為[0,335],如1906處所示。NID1可為SSS(例如,NR-SSS)所攜帶的胞元ID。
循環偏移參數(例如,m0)可被設定為一個或多個值。例如,m0可被設定為帶有或不帶有偏移的0 to p-1。該偏移可以是固定的,或者,該偏移可以是於此所述的m1及 NID2的函數。S1可被環形偏移m0。例如,。m1可被設定為1個或多個值。例如,m1可被設定為從0至ceil(nCellMax/(3*p))-1的值、從0至floor(nCellMax/(3*p))的值、或其他值。s2可被環形偏移n1。n1可等於m1、m1的函數、或者m1及一個或多個其他參數的函數。例如,n1= 函數 (m1, NID2)。例如,
可使用m0 = 0 至111。p可等於112。例如,對於在0-335均勻分佈,p可等於112。m1可等於0、1、2。如1908所示,NID2 可等於0、1、2。在偏移的情況下,m0 = m0 + 偏移,其中偏移可為n1+1。可將112個偏移(例如,不同的偏移)用於第一序列,及/或將9個偏移(例如,不同偏移)用於第二序列(例如,假設1008個胞元ID)。
m0 可被設定為從 0至126 (例如, p = 127);m1可被設定為 0、1、2;及/或NID2 可被設定為0、1、2。在偏移的情況下,m0可等於m0 + 偏移。該偏移可為n1+1。[127, 127 ,82]偏移可用於第一序列,例如,對應於第二序列的不同偏移(例如,3個不同偏移)。
NID2可被設定為0、1、2,如在1912處所示。m0 可被設定為 0至 32;及/或m1可被設定為0至11。在偏移的情況下,m0 = m0 + 偏移,其中偏移可為n1+1。可針對第一序列使用32個偏移,可針對第二序列(假定存在1056個胞元ID)使用12個偏移(例如,不同偏移)。例如,可使用SSS(例如,單獨的SSS)表明1056個胞元ID。序列中的12個偏移以及序列中的36個偏移可表明1056個胞元ID(例如,總共1056個唯一胞元ID)。
如在此所提供的,n1可等於m1、m1的函數、或m1及一個或多個其他參數的函數。循環偏移(例如,環形偏移)值n1及m0可由NR-PSS所攜帶的胞元ID(例如,)、及/或由NR-SSS攜帶的胞元ID(例如,)來確定(例如,聯合確定)。例如,如第19圖所示,一個或多個循環偏移值可由SSS序列的去相關而被確定。胞元ID可被給定為,其中Q可為縮放因數。Q的值可等於1,或者Q的值可大於1,例如Q=1或Q=5;及/或m 0=(NID1 mod 112)+偏移。偏移可為0。例如,可不使用偏移值。偏移可為非零值。例如,偏移可為固定值、或可取決於一個或多個參數(例如,偏移可為n1+1)。
NID2、 m0、及/或 m1可被設定為一個或多個組合,該一個或多個組合可以例如是預定義的及/或接收器已知的。
可使用針對n1及/或m0的一個或多個特徵(例如,函數)。
可使用用於同步訊號(SS)塊的準共定位(QCL)指示。第20圖示出了用於SS塊的範例性準共定位(QCL)指示。
WTRU可確定(例如,假設)具有SS塊索引或時間索引(例如相同的SS塊索引或時間索引)的SS塊可以是經QCL的。例如,WTRU可確定SS叢發集合下具有相同SS塊索引或時間索引的SS塊可以是經QCL的。gNB可以表明(例如,向WTRU表明)何時不能做出該確定(例如假設)。例如,gNB可以包括旗標以表明(例如,向WTRU表明)具有相同SS塊索引或時間索引的SS塊可能不是經QCL的。該旗標可被包括在PBCH酬載內、剩餘最小系統資訊(RMSI)、及/或其他系統資訊(OSI)。旗標可表明可能不是經QCL的且具有相同SS塊索引或時間索引的SS塊(例如,所有SS塊)。可使用一個或多個旗標。例如,在可以使用針對(例如每一)SS塊及/或SS塊群組的(例如,每一)旗標來表明可能是經QCL的且具有SS塊(例如相同SS塊)索引或時間索引的單獨的SS塊時,可使用一個或多個旗標。可針對SS塊群組使用一個或多個旗標,例如以表明單一SS塊群組可以是經QCL的。
WTRU可不確定(例如,假設)帶有不同SS塊索引或時間索引的SS塊是經QCL的。gNB可向WTRU表明例如帶有不同SS塊索引的SS塊是否可能是經QCL的。gNB可使用以下一種或多種方式來表明具有不同SS塊索引或時間索引的SS塊的QCL。例如,gNB可使用重複因數(例如,單一重複因數)、多重複因數、及/或雙態觸變位元映像(toggle bitmap)。
gNB可使用重複因數Q,以例如表明SS塊的QCL。例如,當WTRU接收到該指示時,WTRU可確定(例如,假設)Q 個SS塊是經QCL的。Q個SS塊可以是連續的及/或基於一個或多個預定義模式。Q個SS塊可以被配置。
gNB可以使用一個或多個重複因數。例如,gNB可以使用重複因數Q1、Q2等等。gNB可以使用重複因數來表明SS塊的QCL。當WTRU接收到該指示時,WTRU可假設Q1個SS塊以及Q2個SS塊等等可以是經QCL的。Q1、Q2、…個SS塊可是連續的及/或基於一個或多個預定義模式。Q1、Q2、…個SS塊可以被配置。例如,WTRU可以假設具有索引# 0 至Q1-1的SS塊可以是經QCL的。WTRU可以假設具有索引Q1 至Q1+Q2-1的SS塊可以是經QCL的。
gNB可以使用雙態觸變位元映像,以例如表明SS塊的QCL。WTRU可以確定(例如,假設)帶有位元值(例如,相同位元值)的SS塊可以是經QCL的。例如,當WTRU接收到該QCL指示時,WTRU可確定(例如,假設)帶有相同位元值的SS塊可以是經QCL的。WTRU可確定(例如,假設)帶有索引# 0 以及1的SS塊可以是經QCL的。WTRU可確定(例如,假設)帶有索引# 2、3 以及4的SS塊可以是經QCL的。WTRU可確定(例如,假設)帶有索引# 5以及6的SS塊可以是經QCL的。第21圖示出了針對SS塊的範例性QCL指示。
QCL可以與空間、平均增益、延遲及/或多普勒參數相關聯。
QCL指示可用於最大SS塊、SS塊候選、SS塊標稱位置、及/或所傳送的(例如,實際傳送的)SS塊。
可使用速率匹配指示。
對於所傳送的(例如,實際傳送的)SS塊,可利用使用了位元映像的速率匹配指示。例如,可利用使用了位元映像的速率匹配指示以使WTRU能針對PDSCH及/或PDCCH接收及/或偵測執行速率匹配。速率匹配指示可以是WTRU特定的。所表明的傳送的(例如,實際傳送的)SS塊可以是WTRU特定的。例如,傳遞所傳送的(例如,實際傳送的)SS塊的整個集合或子集的速率匹配指示可被表明給用於針對PDSCH及/或PDCCH接收執行速率匹配的WTRU。傳遞所傳送的(例如,實際傳送的)SS塊的整個集合或子集的速率匹配指示可被表明給用於針對PDSCH及/或PDCCH接收執行速率匹配的WTRU。傳遞所傳送的(例如,實際傳送的)SS塊的另一整個集合或子集的另一速率匹配指示可被表明給用於針對PDSCH及/或PDCCH接收執行速率匹配的另一WTRU。可在WTRU特定傳訊中攜帶速率匹配指示。例如,可在RRC傳訊中攜帶速率匹配指示。例如,可在WTRU特定L1/2控制通道(例如,下行控制資訊(DCI)、NR-PDCCH、MAC及/或MAC控制元素(CE)傳訊)中攜帶速率匹配指示。例如,為了處理速率匹配的動態特性(例如由於SS塊、波束、及PDSCH或PDCCH),可在WTRU特定L1/2控制通道(例如,下行控制資訊(DCI)、NR-PDCCH、MAC及/或MAC控制元素(CE)傳訊)中攜帶速率匹配指示。
可使用速率匹配指示(例如,2階段速率匹配指示)。例如,速率匹配可使用第一階段及/或第二階段。第一階段可表明所傳送的(例如,實際傳送的)SS塊。第二階段可表明針對速率匹配的SS塊。
可使用所傳送的(例如,實際傳送的)SS塊來執行速率匹配。例如,可使用一個或多個(例如,所有的)實際傳送的SS塊來執行速率匹配。可針對一個或多個(例如,所有的)WTRU執行粗略速率匹配。例如,第一階段可為針對一個或多個(例如,所有的)WTRU的粗略速率匹配。可使用可影響WTRU的速率匹配的WTRU特定SS塊來增強速率匹配。如果需要所傳送的(例如,實際傳送的)SS塊的子集(例如,僅子集)以用於WTRU的速率匹配,該指示可包括(例如,可僅包括)所傳送的(例如,實際傳送的)SS塊的子集。該指示可包括(例如,可僅包括)所傳送的(例如,實際傳送的)SS塊的子集,且不包括所傳送的(例如,實際傳送的)SS塊的集合(例如,整個集合)。例如,在第二階段,該指示可包括(例如,可僅包括)實際傳送的SS塊的子集,且可不包括實際傳送的SS塊的集合(例如,整個集合)。該第二階段可為WTRU的微速率匹配。可使用一個階段來執行速率匹配。例如,可使用僅階段1或僅階段2來執行速率匹配。可使用兩個階段來執行速率匹配。例如,可使用階段1以及階段2的組合來執行速率匹配。
可為所傳送的(例如,實際傳送的)SS塊的整個集合或子集保留資源(例如,所表明的資源)。例如,可針對所傳送的(例如,實際傳送的)SS塊的整個集合或子集保留所表明的資源(例如,時間及/或頻率資源)。可對資料通道(例如,PDSCH)及/或控制通道(例如,PDCCH)執行速率匹配。例如,可針對資料通道(例如,PDSCH)及/或控制通道(例如,PDCCH)在所表明的傳送的(例如,實際傳送的)SS塊周圍執行速率匹配。可針對所傳送的(例如,實際傳送的)SS塊的整個集合或子集對資料通道(例如,PDSCH)及/或控制通道(例如,PDCCH)執行速率匹配。
可使用以下一者或多者來表明實際傳送的SS塊(例如,整個集合或子集)。例如,所傳送的(例如,實際傳送的)SS塊(例如,整個集合或子集)可使用群組位元映像而被表明。群組或SS/PBCH群組可為連續的SS/PBCH塊。群組位元映像可表明哪個群組或SS/PBCH群組可被傳送(例如被實際傳送)。例如,可傳送(例如,實際傳送)所表明的傳送的群組或SS/PBCH群組內的一個或多個(例如,所有)SS/PBCH塊。
可使用群組位元映像(例如,使用群組中的位元映像)來表明所傳送的(例如,實際傳送的)SS塊(例如,整個集合或子集)。可將群組或SS/PBCH群組定義為連續的SS塊及/或SS/PBCH塊。該群組及/或SS/PBCH群組中的位元映像可表明哪一SS/PBCH塊被傳送(即,實際被傳送)。例如,群組或SS/PBCH群組中的位元映像可表明群組或SS/PBCH群組內的哪一SS/PBCH塊被傳送(例如,實際被傳送)。(例如,每一)群組或SS/PBCH群組可具有SS/PBCH塊傳輸模式(例如,相同或不同的模式)。群組位元映像可表明哪一群組或SS/PBCH群組被傳送(例如,實際被傳送)。
可使用帶有群組內的所傳送的(例如,實際傳送的)SS/PBCH塊的數量的群組位元映像來表明所傳送的(例如,實際傳送的)SS塊(例如,整個集合或子集)。所傳送的(例如,實際傳送的)SS/PBCH塊可具有群組或SS/PBCH群組中的SS/PBCH塊的起始索引(例如,固定的或非固定的起始索引)。可將群組或SS/PBCH群組定義為連續的SS/PBCH塊。可使用群組位元映像來表明哪一群組或SS/PBCH群組被傳送(例如,實際被傳送)。群組內的SS/PBCH塊可以是連續的(例如,邏輯上連續的)。所傳送的(例如,實際傳送的)SS/PBCH塊的數量可表明被實際傳送的連續(例如,邏輯上連續的)SS/PBCH塊的數量。例如,所傳送的(例如,實際傳送的)SS/PBCH塊的數量可表明從第一索引開始被傳送的(例如,實際被傳送的)連續(例如,邏輯上連續的)SS/PBCH塊的數量。該第一索引可為固定的起始索引。該第一索引可不為固定的起始索引。如果第一索引為固定的起始索引,則可不要求指示(例如,額外的指示)。如果第一索引不是固定的起始索引,則可需要指示(例如,額外的指示)。例如,可能需要額外的指示來表明所傳送的(例如,實際傳送的)SS/PBCH塊的索引(例如,第一索引或起始索引)。群組中所傳送的(例如,實際上傳送的)SS/PBCH塊的數量可被均等地(例如,共同地)施加至一個或多個(例如,所有的)傳送的群組或SS/PBCH群組。群組中所傳送的(例如,實際上傳送的)SS/PBCH塊的數量可不被均等地(例如,共同地)施加至一個或多個(例如,所有的)傳送的群組或SS/PBCH群組。
可使用帶有實際傳送的群組或SS/PBCH群組的數量的群組中的位元映像來表明所傳送的(例如,實際傳送的)SS塊(例如,整個集合或子集)。所傳送的(例如,實際傳送的)群組或SS/PBCH群組可具有固定的群組起始索引或不固定的群組起始索引。可將群組或SS/PBCH群組定義為連續的SS/PBCH塊。群組或SS/PBCH群組中的位元映像可表明群組或SS/PBCH群組中的哪一SS/PBCH塊被傳送(例如,實際被傳送)。(例如,每一)群組或SS/PBCH群組可具有相同的SS/PBCH塊傳輸模式。(例如,每一)群組或SS/PBCH群組可具有不同的SS/PBCH塊傳輸模式。群組中的位元映像可以或者可以不被均等地(例如,共同地)施加至一個或多個(例如,所有的)傳送的群組或SS/PBCH群組。所傳送的(例如,實際傳送的)群組或SS/PBCH群組的數量可表明可被傳送(例如,實際被傳送的)連續群組或SS/PBCH群組的數量。例如,所傳送的(例如,實際傳送的)群組或SS/PBCH群組的數量可表明從第一群組或固定起始群組索引開始的可被傳送(例如,實際被傳送的)連續群組或SS/PBCH群組的數量。如果起始群組索引或第一群組不是固定的,則可使用指示來表明SS/PBCH群組的起始群組索引或第一群組。
可使用帶有所傳送的(例如,實際傳送的)SS/PBCH塊的起始索引、及/或一個或多個(例如,兩個)連續SS/PBCH塊之間的空間(例如,間隙)的所傳送的(例如,實際傳送的)SS/PBCH塊的數量來表明所傳送的(例如,實際傳送的)SS塊(例如,整個集合或子集)。空間(例如,間隙)可以是固定的。可表明所傳送的(例如,實際傳送的)SS/PBCH塊的數量、及/或所傳送的(例如,實際傳送的)SS/PBCH塊的起始索引。可表明空間(例如,間隙)。
可在針對較高及/或較低頻率的剩餘最小系統資訊(RMSI)中表明所傳送的(例如,實際傳送的)SS塊。可在RRC傳訊及/或L1/2控制傳訊中表明所傳送的(例如,實際傳送的)SS塊。可在針對較高及/或較低頻率的RRC傳訊及/或L1/2控制傳訊中表明所傳送的(例如,實際傳送的)SS塊。
雖然上述特徵及元素考慮了LTE、LTE-A、新無線電(NR)及/或5G特定協定,但應該理解的是,在此所述的特徵及元素並不限於LTE、LTE-A、新無線電(NR)及/或5G特定協定,還可適用於其他無線系統。
雖然上文以特定的組合描述了特徵及元素,但是本領域中具有通常知識者理解每個特徵或元素能夠單獨使用或與其他特徵及元素任何組合使用。此外,這裡描述的方法可以用電腦程式、軟體或韌體實現,該電腦程式、軟體或韌體可包含到電腦可讀媒體中以由電腦或處理器執行。電腦可讀媒體的範例包括電子訊號(經由有線或無線連接傳送)及電腦可讀儲存媒體。電腦可讀儲存媒體的範例包括、但不限制為唯讀記憶體(ROM)、隨機存取記憶體(RAM)、暫存器、快取記憶體、半導體記憶體裝置、磁性媒體(例如內部硬碟及抽取式磁碟)、磁光媒體及光學媒體(例如CD-ROM盤及數位多功能光碟(DVD))。與軟體關聯的處理器用於實現在WTRU、UE、終端、基地台、eNB、RNC或任何主機電腦中使用的射頻收發器。
100‧‧‧通信系統
102、102a、102b、102c、102d‧‧‧無線傳輸/接收單元(WTRU)
104/113‧‧‧無線電存取網路(RAN)
106/115‧‧‧核心網路(CN)
108‧‧‧公共交換電話網路(PSTN)
110‧‧‧網際網路
112‧‧‧其他網路
114a、114b‧‧‧基地台
116‧‧‧空中介面
118‧‧‧處理器
120‧‧‧收發器
122‧‧‧傳輸/接收元件
124‧‧‧揚聲器/麥克風
126‧‧‧小鍵盤
128‧‧‧顯示器/觸控板
130‧‧‧非可移記憶體
132‧‧‧可移記憶體
134‧‧‧電源
136‧‧‧全球定位系統(GPS)晶片組
138‧‧‧週邊設備
160a、160b、160c‧‧‧e節點B
162‧‧‧移動性管理實體(MME)
164‧‧‧服務閘道(SGW)
166‧‧‧封包資料網路(PDN)閘道(或PGW)
180a、180b、180c‧‧‧gNB
182a、182b‧‧‧存取及移動性管理功能(AMF)
183a、183b‧‧‧對話管理功能(SMF)
184a、184b‧‧‧使用者平面功能(UPF)
185a、185b‧‧‧資料網路(DN)
1904‧‧‧NR-SSS
CFO‧‧‧載波頻率偏移
DC‧‧‧雙連接
LSB‧‧‧最低有效位
MSB‧‧‧最高有效位元
N2、N3、N4、N6、N11、S1、X2、Xn‧‧‧介面
NR‧‧‧新無線電
PBCH‧‧‧實體廣播通道
PPM‧‧‧百萬分之一
PSS‧‧‧主同步訊號
SFN‧‧‧系統訊框號
SS‧‧‧同步訊號
SSS‧‧‧輔助同步訊號
WTRU‧‧‧無線傳輸/接收單元
經由範例結合附圖,可從以下描述中得到更為詳細的理解,其中: 第1A圖是示出了可以實施所揭露的一個或多個實施例的範例性通信系統的系統圖。 第1B圖是示出了根據實施例的可以在第1A圖所示的通信系統內使用的範例性無線傳輸/接收單元(WTRU)的系統圖。 第1C圖是示出了根據實施例的可以在第1A圖所示的通信系統內使用的範例性無線電存取網路(RAN)以及範例核心網路(CN)的系統圖。 第1D圖是示出了根據實施例的可以在第1A圖所示的通信系統內使用的另一個範例性RAN以及另一個範例性CN的系統圖。 第2圖示出了範例性同步訊號(SS)叢發集合組成及結構。 第3圖示出了另一範例性SS叢發集合組成及結構。 第4圖示出了另一範例性SS叢發集合組成及結構。 第5圖示出了範例性系統訊框號獲取。 第6圖示出了另一範例性系統訊框號獲取。 第7圖示出了範例性多階段系統訊框號獲取(3階段)。 第8圖示出了範例性多階段系統訊框號獲取(4階段)。 第9圖示出了另一範例性多階段系統訊框號獲取。 第10圖示出了藉由偵測、解碼、序連以及組合SFN的最高有效位元(MSB)與多個最低有效位(LSB)的範例性系統訊框號(SFN)獲取。 第11圖示出了藉由偵測、解碼、序連以及組合SFN的多個部分的範例性SFN獲取。 第12圖示出了具有確認1的範例性系統訊框號獲取。 第13圖示出了具有確認2的範例性系統訊框號獲取。 第13A及13B圖示出了具有週期性適應的系統訊框號獲取的範例性流程。 第14圖示出了對ZC255序列的範例性掃描根。 第15圖示出了對ZC127序列的範例性掃描根。 第16圖示出了範例性SS序列。 第17圖示出了另一範例性SS序列。 第18圖示出了另一範例性SS序列。 第19圖示出了範例性新無線電(NR)輔助同步訊號(SSS)序列設計。 第20圖示出了針對同步訊號(SS)塊的範例性準共定位(QCL)指示。 第21圖示出了針對SS塊的另一範例性QCL指示。

Claims (15)

  1. 一種無線傳輸/接收單元(WTRU),包括: 一處理器,被配置為: 接收一同步訊號(SS)塊或叢發,該SS塊或叢發包括一主同步訊號(PSS)、一助同步訊號(SSS)以及一實體廣播通道(PBCH); 確定該PSS攜帶的一第一胞元ID; 產生多個SSS序列; 基於所產生的多個SSS序列,從一m0值集合確定一m0值; 從一n1值集合確定一n1值; 基於該m0值及該n1值,確定該SSS攜帶的一第二胞元ID;以及 基於該SSS攜帶的該第二胞元ID及該PSS攜帶的該第一胞元ID,確定一第三胞元ID。
  2. 如申請專利範圍第1項所述的WTRU,其中該處理器更被配置為: 基於一加擾碼確定一系統訊框號(SFN)的一第一部分;以及 基於該SFN的該第一部分與該SS塊或叢發中獲取的該SFN的一第二部分相同,確定一整個SFN。
  3. 如申請專利範圍第2項所述的WTRU,其中該加擾碼至少部分基於該第三胞元ID。
  4. 如申請專利範圍第1項所述的WTRU,其中該多個SSS序列包括336個SSS序列。
  5. 如申請專利範圍第1項所述的WTRU,其中該多個SSS序列是基於一第一M序列以及一第二M序列被異或而被產生。
  6. 如申請專利範圍第5項所述的WTRU,其中該第一M序列是基於一第一多項式而被確定,及該第二M序列是基於一第二多項式而被確定。
  7. 如申請專利範圍第6項所述的WTRU,其中該第一多項式及該第二多項式具有一相同的階。
  8. 如申請專利範圍第1項所述的WTRU,其中該m0值為一第一循環偏移,及該n1值為一第二循環偏移。
  9. 如申請專利範圍第1項所述的WTRU,其中該m0值集合包括112個值,及該n1值集合包括3個值。
  10. 一種方法,包括: 接收一同步訊號(SS)塊或叢發,該SS塊或叢發包括一主同步訊號(PSS)、一輔助同步訊號(SSS)以及一實體廣播通道(PBCH); 確定該PSS攜帶的一第一胞元ID; 產生多個SSS序列; 基於所產生的多個SSS序列,從一m0值集合確定一m0值; 從一n1值集合確定一n1值; 基於該m0值及該n1值,確定該SSS攜帶的一第二胞元ID;以及 基於該SSS攜帶的該第二胞元ID及該PSS攜帶的該第一胞元ID,確定一第三胞元ID。
  11. 如申請專利範圍第10項所述的方法,更包括: 基於一加擾碼確定一系統訊框號(SFN)的一第一部分;以及 基於該SFN的該第一部分與該SS塊或叢發中獲取的該SFN的一第二部分相同,確定一整個SFN。
  12. 如申請專利範圍第11項所述的方法,其中該加擾碼至少部分基於該第三胞元ID。
  13. 如申請專利範圍第10項所述的方法,其中該多個SSS序列是基於一第一M序列以及一第二M序列被異或而被產生。
  14. 如申請專利範圍第13項所述的方法,其中該第一M序列是基於一第一多項式而被確定,及該第二M序列基於一第二多項式而被確定。
  15. 如申請專利範圍第10項所述的方法,其中該m0值為一第一循環偏移,及該n1值為一第二循環偏移。
TW107103756A 2017-02-03 2018-02-02 無線傳輸/接收單元(wtru)及與無線通訊相關聯的方法 TWI805568B (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US201762454524P 2017-02-03 2017-02-03
US62/454524 2017-02-03
US201762500752P 2017-05-03 2017-05-03
US62/500752 2017-05-03
US201762519745P 2017-06-14 2017-06-14
US62/519745 2017-06-14
US201762556171P 2017-09-08 2017-09-08
US62/556171 2017-09-08

Publications (2)

Publication Number Publication Date
TW201841488A true TW201841488A (zh) 2018-11-16
TWI805568B TWI805568B (zh) 2023-06-21

Family

ID=61224600

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107103756A TWI805568B (zh) 2017-02-03 2018-02-02 無線傳輸/接收單元(wtru)及與無線通訊相關聯的方法

Country Status (9)

Country Link
US (1) US20190393972A1 (zh)
EP (2) EP4236087A3 (zh)
JP (2) JP7267924B2 (zh)
KR (1) KR20190120750A (zh)
CN (2) CN110249555B (zh)
AU (2) AU2018217131B2 (zh)
MX (1) MX2019009163A (zh)
TW (1) TWI805568B (zh)
WO (1) WO2018144790A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2937390T3 (es) * 2017-02-07 2023-03-28 Innovative Tech Lab Co Ltd Método y aparato para la configuración de canales de difusión y para la transmisión y recepción de canales de difusión para un sistema de comunicaciones
JP6997206B2 (ja) * 2017-03-15 2022-02-04 オッポ広東移動通信有限公司 信号伝送方法、端末装置及びネットワーク装置
BR112019019461A2 (pt) * 2017-03-22 2020-04-22 Ntt Docomo Inc terminal do usuário e método de comunicação por rádio
RU2732078C1 (ru) * 2017-04-25 2020-09-11 Гуандун Оппо Мобайл Телекоммьюникейшнс Корп., Лтд. Способ и устройство обработки сигналов
CN110324891B (zh) * 2017-05-04 2020-07-14 华为技术有限公司 处理设备、网络节点、客户端设备及其方法
CN110476463B (zh) * 2017-05-05 2022-02-15 富士通株式会社 信息指示方法、检测方法及其装置、通信系统
US11018742B2 (en) * 2018-02-16 2021-05-25 Qualcomm Incorporated Downlink transmission beam configuration techniques for wireless communications
US11071000B2 (en) * 2018-07-19 2021-07-20 Samsung Electronics Co., Ltd. Method and apparatus for RRM measurement enhancement for NR unlicensed
CN111385867B (zh) * 2018-12-29 2021-07-09 华为技术有限公司 通信方法及装置
WO2020164142A1 (zh) 2019-02-15 2020-08-20 Oppo广东移动通信有限公司 同步信号块信息处理方法、装置及通信装置

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8649401B2 (en) 2007-05-01 2014-02-11 Qualcomm Incorporated Generation and detection of synchronization signal in a wireless communication system
US8050225B2 (en) 2007-05-21 2011-11-01 Qualcomm Incorporated Assignment of primary and secondary synchronization code sequences to cells in a wireless communication system
KR100938756B1 (ko) * 2007-07-06 2010-01-26 엘지전자 주식회사 무선통신 시스템에서 셀 탐색 과정을 수행하는 방법
US20090135804A1 (en) * 2007-11-26 2009-05-28 Francis Swarts Method And System For Ordering Sequences For Synchronization Signaling In A Wireless System
EP2333970B1 (en) * 2009-12-10 2012-07-18 Telefonaktiebolaget L M Ericsson (publ) Technique for determining a cell-identity
CN102209377B (zh) * 2010-03-31 2015-01-28 中兴通讯股份有限公司 辅同步信号的生成方法和装置
US8768359B2 (en) * 2010-08-20 2014-07-01 Qualcomm Incorporated Sample selection for secondary synchronization signal (SSS) detection
CN102075946A (zh) * 2011-01-11 2011-05-25 大唐移动通信设备有限公司 一种物理小区id规划方法及装置
WO2012148236A2 (ko) 2011-04-28 2012-11-01 엘지전자 주식회사 반송파 집성 시스템에서 동기화 신호 전송 방법 및 장치
JP5616284B2 (ja) * 2011-05-02 2014-10-29 株式会社Nttドコモ 基地局装置、移動端末装置、通信システム及び通信方法
US9332516B2 (en) 2011-08-11 2016-05-03 Blackberry Limited Method and system for signaling in a heterogeneous network
US8964723B2 (en) * 2012-05-31 2015-02-24 Intel Mobile Communications GmbH Devices for synchronizing a communication end device with a base station, methods for synchronizing a communication end device with a base station, devices for generating a secondary synchronization signal, and methods for generating a secondary synchronization signal
US9509469B2 (en) * 2013-04-04 2016-11-29 Futurewei Technologies, Inc. Device, network, and method for utilizing a downlink discovery reference signal
KR101882953B1 (ko) * 2013-04-18 2018-07-27 한국전자통신연구원 무선 프레임 구성 방법 및 이를 이용하는 장치
WO2015069026A1 (en) * 2013-11-05 2015-05-14 Lg Electronics Inc. Method and apparatus for wireless communication with dual connectivity
CN103607719B (zh) * 2013-11-06 2017-02-08 广东省电信规划设计院有限公司 Lte网络中小区pci设置方法和系统
WO2015155898A1 (ja) 2014-04-11 2015-10-15 富士通株式会社 システム、基地局および端末
WO2015200667A1 (en) * 2014-06-27 2015-12-30 Intel IP Corporation Method and apparatus of ue and enb for mtc with narrowband deployment
US10003986B2 (en) * 2014-09-26 2018-06-19 Futurewei Technologies, Inc. Device, network, and method for communications with variable-duration reference signals
US10681527B2 (en) * 2015-07-10 2020-06-09 Lg Electronics Inc. Method and device for transreceiving discovery reference signal in wireless access system supporting unlicensed band
EP3367601B1 (en) * 2015-10-19 2022-03-09 LG Electronics Inc. Method and user equipment for receiving downlink signals, and method and base station for transmitting downlink signals
WO2017075746A1 (en) * 2015-11-02 2017-05-11 Qualcomm Incorporated Techniques for managing cell identifiers and other parameters for flexible duplex operations
US9609585B1 (en) * 2016-03-30 2017-03-28 Intel IP Corporation Devices and method for cell search and detection
US10103868B2 (en) * 2016-04-05 2018-10-16 Qualcomm Incorporated Narrow band synchronization signal transmission and detection
US10887143B2 (en) * 2016-05-06 2021-01-05 Samsung Electronics Co., Ltd. Method and apparatus for initial access in wireless communication systems
US10447517B2 (en) * 2016-09-27 2019-10-15 Qualcomm Incorporated Methods and apparatus for using synchronization signals as reference for demodulating multi-port broadcast channel
KR20180049781A (ko) * 2016-11-03 2018-05-11 삼성전자주식회사 빔포밍 시스템에서 단말의 송신 전력 제어 방법 및 장치
US10389567B2 (en) * 2016-11-03 2019-08-20 Samsung Electronics Co., Ltd. Method and apparatus for synchronization signal design
CN108207027B (zh) * 2016-12-20 2021-02-12 华为技术有限公司 一种随机接入方法及设备
US20180198575A1 (en) * 2017-01-06 2018-07-12 Sharp Laboratories Of America, Inc. Synchronization signal transmission and reception for radio system
US10638485B2 (en) * 2017-01-27 2020-04-28 Qualcomm Incorporated Techniques and apparatuses for channel interference reduction
WO2018164420A1 (ko) * 2017-03-04 2018-09-13 엘지전자 주식회사 무선 통신 시스템에서, 동기 신호를 전송하는 방법 및 이를 위한 장치
WO2018174587A1 (en) * 2017-03-23 2018-09-27 Samsung Electronics Co., Ltd. Method and apparatus for pbch transmission in a multi-beam based system

Also Published As

Publication number Publication date
AU2018217131B2 (en) 2022-11-17
US20190393972A1 (en) 2019-12-26
KR20190120750A (ko) 2019-10-24
CN110249555A (zh) 2019-09-17
EP4236087A3 (en) 2023-11-29
WO2018144790A1 (en) 2018-08-09
EP3577803A1 (en) 2019-12-11
EP4236087A2 (en) 2023-08-30
JP7267924B2 (ja) 2023-05-02
CN110249555B (zh) 2022-04-29
JP2023062044A (ja) 2023-05-02
AU2018217131A1 (en) 2019-08-22
EP3577803B1 (en) 2023-08-30
CN114745781A (zh) 2022-07-12
AU2022259775A1 (en) 2022-12-01
TWI805568B (zh) 2023-06-21
JP2020511029A (ja) 2020-04-09
MX2019009163A (es) 2019-10-30

Similar Documents

Publication Publication Date Title
TWI696373B (zh) 新無線電系統中ssbs之有效利用
TWI674015B (zh) 廣播通道傳輸及解調
TWI805568B (zh) 無線傳輸/接收單元(wtru)及與無線通訊相關聯的方法
TWI758395B (zh) 與基於錯誤檢查的同步及廣播通道關聯的裝置及方法
TW201841533A (zh) 連結新無線電之實體傳播通道、初始上鏈傳輸及系統獲取
WO2019143937A1 (en) Synchronization signal and paging for new radio-unlicensed (nr-u) band communications
CN110679186A (zh) 波束成形的寻呼传输
CN109952728B (zh) 用于新无线电的控制信道
TWI739912B (zh) 波束成形系統中nr同步
TWI813662B (zh) 無線傳輸/接收單元及由其實施的方法
ES2807203T3 (es) Procedimientos y aparatos para comunicación inalámbrica usando un formato mixto
TW201947882A (zh) 降低複雜度之極化編碼及解碼
WO2023158735A1 (en) Methods for supporting ss/pbch blocks in single carrier waveforms for initial access
TW202015479A (zh) Noma 之wtru 識別及反饋方法及程序
TW201941554A (zh) 非正交多重存取參考信號裝置