TW201830697A - Semiconductor substrate structures and methods for forming the same and semiconductor devices - Google Patents

Semiconductor substrate structures and methods for forming the same and semiconductor devices Download PDF

Info

Publication number
TW201830697A
TW201830697A TW106104043A TW106104043A TW201830697A TW 201830697 A TW201830697 A TW 201830697A TW 106104043 A TW106104043 A TW 106104043A TW 106104043 A TW106104043 A TW 106104043A TW 201830697 A TW201830697 A TW 201830697A
Authority
TW
Taiwan
Prior art keywords
layer
conductivity type
semiconductor
buried layer
disposed
Prior art date
Application number
TW106104043A
Other languages
Chinese (zh)
Other versions
TWI676291B (en
Inventor
洪培恒
馬洛宜 庫馬
李家豪
Original Assignee
世界先進積體電路股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 世界先進積體電路股份有限公司 filed Critical 世界先進積體電路股份有限公司
Priority to TW106104043A priority Critical patent/TWI676291B/en
Publication of TW201830697A publication Critical patent/TW201830697A/en
Application granted granted Critical
Publication of TWI676291B publication Critical patent/TWI676291B/en

Links

Landscapes

  • Element Separation (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

A semiconductor substrate structure includes a substrate having a first conductivity type, an oxide layer disposed on the substrate, and a semiconductor layer disposed on the oxide layer. The semiconductor substrate structure also includes a first buried layer disposed in the semiconductor layer, having a second conductivity type opposite to the first conductivity type. The semiconductor substrate structure further includes a second buried layer disposed in the semiconductor layer and above the first buried layer, having the first conductivity type, wherein the first buried layer and the second buried layer are separated by a distance.

Description

半導體基底結構及其形成方法和半導體裝置  Semiconductor substrate structure, method of forming same and semiconductor device  

本發明是關於半導體技術,特別是有關於半導體裝置之半導體基底結構及其形成方法。 This invention relates to semiconductor technology, and more particularly to semiconductor substrate structures for semiconductor devices and methods of forming the same.

在半導體工業中,絕緣層上覆矽(silicon-on-insulator,SOI)基底是可取代傳統矽基底的矽-絕緣材料-矽(silicon-insulator-silicon)基底,其包含埋置氧化層夾設於底部矽層與頂部矽層之間。絕緣層上覆矽技術相較於傳統塊狀矽基底的優勢包含較低的漏電流、較高的功率效率、較低的寄生電容、以及抗鎖住效應(resistance to latch-up)。 In the semiconductor industry, a silicon-on-insulator (SOI) substrate is a silicon-insulator-silicon substrate that can replace a conventional germanium substrate, including a buried oxide layer. Between the bottom layer and the top layer. The advantages of the overlying insulation coating technology over conventional bulk crucible substrates include lower leakage current, higher power efficiency, lower parasitic capacitance, and resistance to latch-up.

然而,一般而言,絕緣層上覆矽裝置遭受背側偏壓(backside bias)效應的問題,其亦稱為基底偏壓(substrate bias)效應。背側偏壓效應係發生於當金屬-氧化物-半導體場效電晶體(metal-oxide-semiconductor field-effect transistor,MOSFET)的崩潰電壓受到施加於處置晶圓(handling wafer)的電壓影響時。為了將背側偏壓效應的影響降至最低,設計者會添加額外的電路。 However, in general, the overlying insulating layer device suffers from the problem of a backside bias effect, which is also referred to as a substrate bias effect. The backside biasing effect occurs when the breakdown voltage of a metal-oxide-semiconductor field-effect transistor (MOSFET) is affected by the voltage applied to the handling wafer. To minimize the effects of the backside biasing effect, the designer adds additional circuitry.

雖然目前存在的半導體裝置之絕緣層上覆矽基底及其形成方法已足夠應付它們原先預定的用途,但它們仍未在 各個方面皆徹底的符合要求,因此,在半導體裝置之絕緣層上覆矽基底的技術上目前仍有一些問題需改善。 Although the insulating layer on the insulating layer of the semiconductor device and the forming method thereof are sufficient for their intended use, they are not completely satisfactory in all respects, and therefore, the insulating layer of the semiconductor device is covered. There are still some problems in the technical aspects of the substrate that need to be improved.

本發明提供了半導體裝置之半導體基底結構及其形成方法的實施例。背側偏壓效應會改變金屬-氧化物-半導體場效電晶體(MOSFET)之崩潰電壓,是具有絕緣層上覆矽基底之半導體裝置的主要問題之一。為了克服前述問題,本發明實施例在絕緣層上覆矽基底內植入N型埋置層和P型埋置層,如此可在半導體裝置的整體製程中,不需使用額外的遮罩來形成其他額外的電路之情況下,即可消除背側偏壓效應。 The present invention provides an embodiment of a semiconductor substrate structure of a semiconductor device and a method of forming the same. The backside bias effect changes the breakdown voltage of a metal-oxide-semiconductor field effect transistor (MOSFET), which is one of the major problems with semiconductor devices having a germanium-on-insulator substrate. In order to overcome the foregoing problems, the embodiment of the present invention implants an N-type buried layer and a P-type buried layer in the overlying substrate on the insulating layer, so that an additional mask can be formed in the overall process of the semiconductor device. In the case of other additional circuits, the backside biasing effect can be eliminated.

根據一些實施例,提供半導體基底結構。此半導體基底結構包含具有第一導電類型的基底。半導體基底結構也包含設置於基底上的氧化層。半導體基底結構更包含設置於氧化層上的半導體層。此外,半導體基底結構還包含設置於半導體層內的第一埋置層,其具有與第一導電類型相反的第二導電類型;以及設置於半導體層內且在第一埋置層上方的第二埋置層,其具有第一導電類型,其中第一埋置層與第二埋置層隔開一距離。 According to some embodiments, a semiconductor substrate structure is provided. The semiconductor substrate structure comprises a substrate having a first conductivity type. The semiconductor substrate structure also includes an oxide layer disposed on the substrate. The semiconductor substrate structure further includes a semiconductor layer disposed on the oxide layer. In addition, the semiconductor substrate structure further includes a first buried layer disposed in the semiconductor layer, having a second conductivity type opposite to the first conductivity type; and a second disposed in the semiconductor layer and above the first buried layer A buried layer having a first conductivity type, wherein the first buried layer is spaced apart from the second buried layer by a distance.

根據一些實施例,提供半導體裝置。此半導體裝置包含具有第一導電類型的基底。半導體裝置也包含設置於基底上的氧化層。半導體裝置更包含設置於氧化層上的半導體層。此外,半導體裝置包含設置於半導體層內的第一埋置層,其具有與第一導電類型相反的第二導電類型。半導體裝置還包含設置於半導體層內且位於第一埋置層上方的第二埋置層,其 具有第一導電類型,其中第一埋置層與第二埋置層隔開一距離。半導體裝置更包含設置於半導體層上方的源極電極和汲極電極,以及設置於半導體層上方且位於源極電極與汲極電極之間的閘極結構。 According to some embodiments, a semiconductor device is provided. The semiconductor device includes a substrate having a first conductivity type. The semiconductor device also includes an oxide layer disposed on the substrate. The semiconductor device further includes a semiconductor layer disposed on the oxide layer. Further, the semiconductor device includes a first buried layer disposed within the semiconductor layer having a second conductivity type opposite to the first conductivity type. The semiconductor device further includes a second buried layer disposed within the semiconductor layer and over the first buried layer, having a first conductivity type, wherein the first buried layer is spaced apart from the second buried layer by a distance. The semiconductor device further includes a source electrode and a drain electrode disposed above the semiconductor layer, and a gate structure disposed above the semiconductor layer and between the source electrode and the drain electrode.

根據一些實施例,提供半導體基底結構的形成方法。此方法包含提供具有第一導電類型的基底,在基底上形成氧化層,在氧化層上形成半導體層。此外,此方法還包含在半導體層內形成第一埋置層,其中第一埋置層具有與第一導電類型相反的第二導電類型;以及在半導體層內和第一埋置層上方形成第二埋置層,其中第二埋置層具有第一導電類型,且第一埋置層和第二埋置層隔開一距離。 According to some embodiments, a method of forming a semiconductor substrate structure is provided. The method includes providing a substrate having a first conductivity type, forming an oxide layer on the substrate, and forming a semiconductor layer on the oxide layer. Moreover, the method further includes forming a first buried layer in the semiconductor layer, wherein the first buried layer has a second conductivity type opposite to the first conductivity type; and forming a first layer within the semiconductor layer and over the first buried layer A buried layer, wherein the second buried layer has a first conductivity type, and the first buried layer and the second buried layer are separated by a distance.

100a、100c‧‧‧半導體基底結構 100a, 100c‧‧‧ semiconductor base structure

100b‧‧‧半導體裝置 100b‧‧‧Semiconductor device

101‧‧‧基底 101‧‧‧Base

103‧‧‧氧化層 103‧‧‧Oxide layer

105‧‧‧半導體層 105‧‧‧Semiconductor layer

107‧‧‧第一埋置層 107‧‧‧First buried layer

109‧‧‧第二埋置層 109‧‧‧Second buried layer

111‧‧‧磊晶層 111‧‧‧Elevation layer

113a、113b‧‧‧隔離結構 113a, 113b‧‧‧ isolation structure

115‧‧‧第一井區 115‧‧‧First Well Area

117‧‧‧第二井區 117‧‧‧Second well area

121‧‧‧第一摻雜區 121‧‧‧First doped area

123‧‧‧第二摻雜區 123‧‧‧Second doped area

125‧‧‧第三摻雜區 125‧‧‧ Third doped area

127‧‧‧層間介電層 127‧‧‧Interlayer dielectric layer

129‧‧‧汲極電極 129‧‧‧汲electrode

129a、131a、131b‧‧‧穿孔 129a, 131a, 131b‧‧‧ perforation

131‧‧‧源極電極 131‧‧‧Source electrode

藉由以下的詳述配合所附圖式,我們能更加理解本發明實施例的觀點。值得注意的是,根據工業上的標準慣例,各種部件(feature)可能沒有按照比例繪製。事實上,為了能清楚地討論,各種部件的尺寸可能被任意地增加或減少。 The views of the embodiments of the present invention can be further understood by the following detailed description in conjunction with the accompanying drawings. It is worth noting that various features may not be drawn to scale in accordance with standard practice in the industry. In fact, the dimensions of the various components may be arbitrarily increased or decreased for clarity of discussion.

第1A-1B圖是根據本發明的一些實施例,說明形成半導體基底結構之示範連續製程的剖面示意圖。 1A-1B is a cross-sectional view showing an exemplary continuous process for forming a semiconductor substrate structure in accordance with some embodiments of the present invention.

第2A-2F圖是根據本發明的一些實施例,說明形成半導體裝置之示範連續製程的剖面示意圖。 2A-2F are cross-sectional schematic views illustrating an exemplary continuous process for forming a semiconductor device in accordance with some embodiments of the present invention.

第3圖是根據本發明的其他實施例,說明半導體裝置的剖面示意圖。 Fig. 3 is a schematic cross-sectional view showing a semiconductor device in accordance with another embodiment of the present invention.

以下揭露內容提供了很多不同的實施例或範例, 用於實施所提供的半導體裝置之不同元件。各元件和其配置的具體範例描述如下,以簡化本發明的實施例。當然,這些僅僅是範例,並非用以限定本發明。舉例而言,敘述中若提及第一元件形成在第二元件之上,可能包含第一和第二元件直接接觸的實施例,也可能包含額外的元件形成在第一和第二元件之間,使得第一和第二元件不直接接觸的實施例。此外,本發明實施例可能在不同的範例中重複參考數字及/或字母。如此重複是為了簡明和清楚,而非用以表示所討論的不同實施例及/或形態之間的關係。 The following disclosure provides many different embodiments or examples for implementing the various components of the semiconductor device provided. Specific examples of the components and their configurations are described below to simplify embodiments of the present invention. Of course, these are merely examples and are not intended to limit the invention. For example, reference to a first element formed above a second element in the description may include embodiments in which the first and second elements are in direct contact, and may also include additional elements formed between the first and second elements. An embodiment that makes the first and second components not in direct contact. Furthermore, embodiments of the invention may repeat reference numerals and/or letters in different examples. This repetition is for the purpose of clarity and clarity, and is not intended to represent the relationship of the various embodiments and/

以下描述實施例的一些變化。在不同圖式和說明的實施例中,相似的參考數字被用來標示相似的元件。可以理解的是,在下述方法的前、中和後可以提供額外的操作,且一些敘述的操作可為了該方法的其他實施例被取代或刪除。 Some variations of the embodiments are described below. In the various figures and illustrated embodiments, like reference numerals are used to refer to the It will be appreciated that additional operations may be provided before, during and after the methods described below, and that some of the recited operations may be substituted or deleted for other embodiments of the method.

以下提供形成半導體基底結構之實施例。第1A-1B圖是根據本發明的一些實施例,說明形成半導體基底結構100a之示範連續製程的剖面示意圖。 Embodiments for forming a semiconductor substrate structure are provided below. 1A-1B is a cross-sectional view illustrating an exemplary continuous process for forming a semiconductor substrate structure 100a, in accordance with some embodiments of the present invention.

根據一些實施例,如第1A圖所示,在基底101上形成氧化層103,且在氧化層103上形成半導體層105。基底101可由矽或其他半導體材料製成,或者,基底101可包含其他元素半導體材料,例如鍺(Ge)。一些實施例中,基底101由化合物半導體製成,例如碳化矽、氮化鎵、砷化鎵、砷化銦或磷化銦。一些實施例中,基底101由合金半導體製成,例如矽鍺、碳化矽鍺、磷化砷鎵或磷化銦鎵。一些實施例中,基底101為N型基底。在其他實施例中,基底101為P型基底。 According to some embodiments, as shown in FIG. 1A, an oxide layer 103 is formed on the substrate 101, and a semiconductor layer 105 is formed on the oxide layer 103. The substrate 101 may be made of tantalum or other semiconductor material, or the substrate 101 may comprise other elemental semiconductor materials such as germanium (Ge). In some embodiments, substrate 101 is made of a compound semiconductor, such as tantalum carbide, gallium nitride, gallium arsenide, indium arsenide, or indium phosphide. In some embodiments, substrate 101 is made of an alloy semiconductor such as germanium, tantalum carbide, gallium arsenide or indium gallium phosphide. In some embodiments, substrate 101 is an N-type substrate. In other embodiments, substrate 101 is a P-type substrate.

一些實施例中,基底101、氧化層103和半導體層105的結構是由氧離子佈植隔離法(separation by implantation of oxygen,SIMOX)的製程所形成。在氧離子佈植隔離法的製程中,將氧離子束以高能量植入矽晶圓。然後,植入的氧離子會與矽進行反應,並藉由高溫退火製程在矽晶圓的表面下形成氧化層103。在此製程中,位於氧化層103下方的矽晶圓之部分為基底101,而位於氧化層103上方的矽晶圓之部分為半導體層105。 In some embodiments, the structures of the substrate 101, the oxide layer 103, and the semiconductor layer 105 are formed by a process of separation by implantation of oxygen (SIMOX). In the process of oxygen ion implantation isolation, the oxygen ion beam is implanted into the germanium wafer with high energy. The implanted oxygen ions then react with the ruthenium and form an oxide layer 103 under the surface of the tantalum wafer by a high temperature annealing process. In this process, a portion of the germanium wafer under the oxide layer 103 is the substrate 101, and a portion of the germanium wafer above the oxide layer 103 is the semiconductor layer 105.

在其他實施例中,基底101、氧化層103和半導體層105的結構是由晶圓接合(wafer bonding)製程、晶種法(seed method)製程或其他合適的製程所形成。在晶圓接合製程中,直接將氧化的矽與半導體層105接合以形成氧化層103在半導體層105下方,然後,在氧化層103和半導體層105與基底101接合之前,將半導體層105薄化。在晶種法製程中,在已經形成於基底101上的氧化層103上磊晶成長半導體層105。 In other embodiments, the structures of the substrate 101, the oxide layer 103, and the semiconductor layer 105 are formed by a wafer bonding process, a seed method process, or other suitable process. In the wafer bonding process, the oxidized germanium is directly bonded to the semiconductor layer 105 to form the oxide layer 103 under the semiconductor layer 105, and then the semiconductor layer 105 is thinned before the oxide layer 103 and the semiconductor layer 105 are bonded to the substrate 101. . In the seeding process, the semiconductor layer 105 is epitaxially grown on the oxide layer 103 which has been formed on the substrate 101.

一些實施例中,氧化層103係由氧化矽製成,且氧化層103的厚度在約0.3μm至約10μm的範圍內。一些實施例中,半導體層105係由矽製成,且可摻雜N型摻質或P型摻質。半導體層105的厚度在約1μm至約15μm的範圍內。 In some embodiments, the oxide layer 103 is made of hafnium oxide, and the thickness of the oxide layer 103 is in the range of about 0.3 μm to about 10 μm. In some embodiments, the semiconductor layer 105 is made of tantalum and may be doped with an N-type dopant or a P-type dopant. The thickness of the semiconductor layer 105 is in the range of about 1 μm to about 15 μm.

根據一些實施例,如第1B圖所示,在半導體層105內形成第一埋置(buried)層107,並且在半導體層105內和第一埋置層107上形成第二埋置層109。一旦形成第二埋置層109之後,半導體基底結構100a的形成已完成,且第一埋置層107和第二埋置層109隔開一距離。一些實施例中,第一埋置層107 具有與基底101相反的導電類型,而第二埋置層109具有與基底101相同的導電類型。 According to some embodiments, as shown in FIG. 1B, a first buried layer 107 is formed in the semiconductor layer 105, and a second buried layer 109 is formed in the semiconductor layer 105 and on the first buried layer 107. Once the second buried layer 109 is formed, the formation of the semiconductor base structure 100a is completed, and the first buried layer 107 and the second buried layer 109 are separated by a distance. In some embodiments, the first buried layer 107 has a conductivity type opposite to the substrate 101, and the second buried layer 109 has the same conductivity type as the substrate 101.

一些實施例中,基底101的導電類型為N型,半導體層105的導電類型為P型,第一埋置層107係藉由使用P型摻質的第一離子植入製程而形成,而第二埋置層109係藉由使用N型摻質的第二離子植入製程而形成。在其他實施例中,基底101的導電類型為P型,半導體層105的導電類型為P型,第一埋置層107係藉由使用N型摻質的第一離子植入製程而形成,而第二埋置層109係藉由使用P型摻質的第二離子植入製程而形成。一些實施例中,使用遮罩以實施第一離子植入製程和第二離子植入製程。在其他實施例中,第一離子植入製程和第二離子植入製程的實施可不使用遮罩,全面性地在基底101內形成連續的第一埋置層107和第二埋置層109。 In some embodiments, the conductivity type of the substrate 101 is N-type, the conductivity type of the semiconductor layer 105 is P-type, and the first buried layer 107 is formed by a first ion implantation process using a P-type dopant, and the first The second buried layer 109 is formed by a second ion implantation process using an N-type dopant. In other embodiments, the conductivity type of the substrate 101 is P-type, the conductivity type of the semiconductor layer 105 is P-type, and the first buried layer 107 is formed by a first ion implantation process using an N-type dopant. The second buried layer 109 is formed by a second ion implantation process using a P-type dopant. In some embodiments, a mask is used to implement the first ion implantation process and the second ion implantation process. In other embodiments, the implementation of the first ion implantation process and the second ion implantation process may form a continuous first buried layer 107 and a second buried layer 109 in the substrate 101 without using a mask.

一些實施例中,第一埋置層107的摻質濃度和第二埋置層109的摻質濃度在約1015原子/立方公分(atom/cm3)至約1017原子/立方公分(atom/cm3)的範圍內。第一埋置層107和第二埋置層109的摻質濃度可能影響第一埋置層107和第二埋置層109的厚度,且第一埋置層107和第二埋置層109的摻質濃度也可能影響第一埋置層107與第二埋置層109之間的距離。 In some embodiments, the dopant concentration of the first buried layer 107 and the dopant concentration of the second buried layer 109 are between about 10 15 atoms/cm 3 to about 10 17 atoms/cm 3 (atom). Within the range of /cm 3 ). The dopant concentration of the first buried layer 107 and the second buried layer 109 may affect the thicknesses of the first buried layer 107 and the second buried layer 109, and the first buried layer 107 and the second buried layer 109 The dopant concentration may also affect the distance between the first buried layer 107 and the second buried layer 109.

此外,以下提供形成半導體裝置之一些實施例。第2A-2F圖是根據本發明的一些實施例,說明形成半導體裝置100b之示範連續製程的剖面示意圖。 Additionally, some embodiments of forming a semiconductor device are provided below. 2A-2F are cross-sectional views illustrating an exemplary continuous process for forming a semiconductor device 100b, in accordance with some embodiments of the present invention.

根據一些實施例,如第2A圖所示,其係接續第1B 圖,在半導體基底結構100a上形成磊晶層111。一些實施例中,磊晶層111係由矽製成。一些實施例中,磊晶層111的形成係使用金屬有機化學氣相沉積法(metal organic chemical vapor deposition,MOCVD)、分子束磊晶(molecular beam epitaxy,MBE)或前述之組合。 According to some embodiments, as shown in FIG. 2A, which is connected to FIG. 1B, an epitaxial layer 111 is formed on the semiconductor substrate structure 100a. In some embodiments, the epitaxial layer 111 is made of tantalum. In some embodiments, the epitaxial layer 111 is formed by metal organic chemical vapor deposition (MOCVD), molecular beam epitaxy (MBE), or a combination thereof.

一些實施例中,磊晶層111可摻雜N型摻質或P型摻質。一些實施例中,基底101的導電類型為N型,半導體層105的導電類型為P型,第一埋置層107的導電類型為P型,第二埋置層109的導電類型為N型,且磊晶層111的導電類型為P型。一些實施例中,磊晶層111的厚度在約2μm至約15μm的範圍內。 In some embodiments, the epitaxial layer 111 can be doped with an N-type dopant or a P-type dopant. In some embodiments, the conductivity type of the substrate 101 is N-type, the conductivity type of the semiconductor layer 105 is P-type, the conductivity type of the first buried layer 107 is P-type, and the conductivity type of the second buried layer 109 is N-type. And the conductivity type of the epitaxial layer 111 is P type. In some embodiments, the thickness of the epitaxial layer 111 ranges from about 2 [mu]m to about 15 [mu]m.

根據一些實施例,如第2B圖所示,在磊晶層111上形成隔離結構113a和113b。明確而言,隔離結構113a和113b之一部分嵌入磊晶層111,且隔離結構113a和113b之另一部分係形成於磊晶層111之上。一些實施例中,隔離結構113a和113b可使用矽局部氧化(local oxidation of silicon,LOCOS)隔離技術或淺溝槽隔離(shallow trench isolation,STI)技術而形成。一些實施例中,隔離結構113a和113b係由氧化矽、氮化矽、氮氧化矽或其他合適的介電材料形成。 According to some embodiments, as shown in FIG. 2B, isolation structures 113a and 113b are formed on the epitaxial layer 111. Specifically, one of the isolation structures 113a and 113b is partially embedded in the epitaxial layer 111, and another portion of the isolation structures 113a and 113b is formed on the epitaxial layer 111. In some embodiments, the isolation structures 113a and 113b may be formed using a local oxidation of silicon (LOCOS) isolation technique or a shallow trench isolation (STI) technique. In some embodiments, the isolation structures 113a and 113b are formed of hafnium oxide, tantalum nitride, hafnium oxynitride or other suitable dielectric materials.

根據一些實施例,如第2C圖所示,在磊晶層111內形成第一井區115,並且在磊晶層111內形成鄰接於第一井區115的第二井區117。此外,一部分的第一井區115係形成於隔離結構113a之下,且第二井區117係設置於隔離結構113a與113b之間。 According to some embodiments, as shown in FIG. 2C, a first well region 115 is formed within the epitaxial layer 111, and a second well region 117 adjacent to the first well region 115 is formed within the epitaxial layer 111. In addition, a portion of the first well region 115 is formed under the isolation structure 113a, and a second well region 117 is disposed between the isolation structures 113a and 113b.

一些實施例中,第一井區115和第二井區117係藉由兩個獨立的離子植入製程分別形成。以N型的金屬-氧化物-半導體場效電晶體(NMOS)而言,第一井區115為高壓N型井(high-voltage n-well,HVNW),且第二井區117為P型井。以P型的金屬-氧化物-半導體場效電晶體(PMOS)而言,第一井區115為高壓P型井(high-voltage p-well,HVPW),且第二井區117為N型井。 In some embodiments, the first well region 115 and the second well region 117 are separately formed by two separate ion implantation processes. In the case of an N-type metal-oxide-semiconductor field effect transistor (NMOS), the first well region 115 is a high-voltage n-well (HVNW), and the second well region 117 is a P-type. well. In the case of a P-type metal-oxide-semiconductor field effect transistor (PMOS), the first well region 115 is a high-voltage p-well (HVPW), and the second well region 117 is an N-type. well.

在NMOS的實施例中,如第2C圖所示,由於第一井區115的導電類型與第二埋置層109的導電類型相同,作為HVNW的第一井區115與第二埋置層109接觸,且第二井區117藉由磊晶層111與第二埋置層109隔開。 In the embodiment of the NMOS, as shown in FIG. 2C, since the conductivity type of the first well region 115 is the same as the conductivity type of the second buried layer 109, the first well region 115 and the second buried layer 109 as the HVNW. Contact, and the second well region 117 is separated from the second buried layer 109 by the epitaxial layer 111.

根據一些實施例,如第2D圖所示,在磊晶層111和一部分的隔離結構113a上形成閘極結構119,閘極結構119覆蓋一部分的第一井區115和一部分的第二井區117。一些實施例中,閘極結構119可包含單一或多層的閘極介電層,以及單一或多層的閘極電極層。 According to some embodiments, as shown in FIG. 2D, a gate structure 119 is formed over the epitaxial layer 111 and a portion of the isolation structure 113a. The gate structure 119 covers a portion of the first well region 115 and a portion of the second well region 117. . In some embodiments, the gate structure 119 can comprise a single or multiple layers of gate dielectric layers, as well as single or multiple layers of gate electrode layers.

閘極介電層可由氧化矽、氮化矽、氮氧化矽、具有低介電常數(low-k)之介電材料或前述之組合製成。一些實施例中,閘極介電層係藉由電漿增強化學氣相沉積(plasma enhanced chemical vapor deposition,PECVD)製程或旋轉塗佈(spin coating)製程形成。 The gate dielectric layer can be made of tantalum oxide, tantalum nitride, hafnium oxynitride, a dielectric material having a low dielectric constant (low-k), or a combination thereof. In some embodiments, the gate dielectric layer is formed by a plasma enhanced chemical vapor deposition (PECVD) process or a spin coating process.

閘極電極層係由導電材料製成,例如鋁(Al)、銅(Cu)、鎢(W)、鈦(Ti)、鉭(Ta)或其他合適的材料。一些實施例中,閘極電極層係藉由沉積製程和圖案化製程而形成。沉積製 程可為化學氣相沉積(chemical vapor deposition,CVD)製程、物理氣相沉積(physical vapor deposition,PVD)製程、原子層沉積(atomic layer deposition,ALD)製程、高密度電漿化學氣相沉積(high density plasma chemical vapor deposition,HDPCVD)製程、金屬有機化學氣相沉積(MOCVD)製程、電漿增強化學氣相沉積(PECVD)製程或前述之組合。 The gate electrode layer is made of a conductive material such as aluminum (Al), copper (Cu), tungsten (W), titanium (Ti), tantalum (Ta) or other suitable material. In some embodiments, the gate electrode layer is formed by a deposition process and a patterning process. The deposition process can be a chemical vapor deposition (CVD) process, a physical vapor deposition (PVD) process, an atomic layer deposition (ALD) process, or a high-density plasma chemical vapor deposition process. (high density plasma chemical vapor deposition (HDPCVD) process, metal organic chemical vapor deposition (MOCVD) process, plasma enhanced chemical vapor deposition (PECVD) process or a combination of the foregoing.

根據一些實施例,如第2E圖所示,在第一井區115內形成第一摻雜區121,在第二井區117內形成第二摻雜區123和第三摻雜區125。此外,第三摻雜區125鄰接於第二摻雜區123。一些實施例中,第一摻雜區121的導電類型與第一井區115相同,第二摻雜區123的導電類型與第二井區117不同,且第三摻雜區125的導電類型與第二井區117相同。 According to some embodiments, as shown in FIG. 2E, a first doped region 121 is formed in the first well region 115, and a second doped region 123 and a third doped region 125 are formed in the second well region 117. Further, the third doping region 125 is adjacent to the second doping region 123. In some embodiments, the first doping region 121 has the same conductivity type as the first well region 115, the second doping region 123 has a different conductivity type than the second well region 117, and the third doping region 125 has a conductivity type and The second well zone 117 is the same.

根據一些實施例,如第2F圖所示,在磊晶層111、隔離結構113a和113b以及閘極結構119上形成層間介電(inter-layer dielectric,ILD)層127。一些實施例中,層間介電層127係由氧化矽、氮化矽、磷矽酸鹽玻璃(phosphosilicate glass,PSG)、硼磷矽酸鹽玻璃(borophosphosilicate glass,BPSG)及/或其他合適的介電材料所形成。層間介電層127可由化學氣相沉積(CVD)、物理氣相沉積(PVD)、原子層沉積(ALD)、旋轉塗佈或其他合適的製程而形成。 According to some embodiments, as shown in FIG. 2F, an inter-layer dielectric (ILD) layer 127 is formed on the epitaxial layer 111, the isolation structures 113a and 113b, and the gate structure 119. In some embodiments, the interlayer dielectric layer 127 is made of yttrium oxide, tantalum nitride, phosphosilicate glass (PSG), borophosphosilicate glass (BPSG), and/or other suitable media. Formed by electrical materials. The interlayer dielectric layer 127 may be formed by chemical vapor deposition (CVD), physical vapor deposition (PVD), atomic layer deposition (ALD), spin coating, or other suitable process.

根據一些實施例,如第2F圖所示,在形成層間介電層127之後,在層間介電層127上形成源極電極131和汲極電極129。此外,在層間介電層127內形成穿孔(via)129a、131a和131b。汲極電極129透過穿孔129a電性連接於第一摻雜區 121,且源極電極131透過穿孔131a和131b電性連接於第二摻雜區123和第三摻雜區125。一些實施例中,源極電極131、汲極電極129以及穿孔129a、131a和131b可包括多晶矽、金屬或其他合適的導電材料。 According to some embodiments, as shown in FIG. 2F, after the interlayer dielectric layer 127 is formed, the source electrode 131 and the drain electrode 129 are formed on the interlayer dielectric layer 127. Further, vias 129a, 131a, and 131b are formed in the interlayer dielectric layer 127. The drain electrode 129 is electrically connected to the first doped region 121 through the via 129a, and the source electrode 131 is electrically connected to the second doped region 123 and the third doped region 125 through the vias 131a and 131b. In some embodiments, source electrode 131, drain electrode 129, and vias 129a, 131a, and 131b can comprise polysilicon, metal, or other suitable electrically conductive material.

一些實施例中,第一摻雜區121電連接於汲極電極129,第二摻雜區123和第三摻雜區125電連接於源極電極131。一些實施例中,閘極結構119設置於源極電極131與汲極電極129之間,且相較於汲極電極129閘極結構119更靠近源極電極131。形成源極電極131和汲極電極129之後,完成半導體裝置100b的形成。 In some embodiments, the first doping region 121 is electrically connected to the drain electrode 129, and the second doping region 123 and the third doping region 125 are electrically connected to the source electrode 131. In some embodiments, the gate structure 119 is disposed between the source electrode 131 and the drain electrode 129 and is closer to the source electrode 131 than the gate electrode 119 of the gate electrode 129. After the source electrode 131 and the drain electrode 129 are formed, the formation of the semiconductor device 100b is completed.

此外,以下提供其他實施例之半導體裝置100c。第3圖是根據本發明的其他實施例,說明PMOS之半導體裝置100c的剖面示意圖。 Further, the semiconductor device 100c of the other embodiment is provided below. FIG. 3 is a cross-sectional view showing a PMOS semiconductor device 100c according to another embodiment of the present invention.

在PMOS的此實施例中,基底101的導電類型為N型,第一埋置層107的導電類型為P型,且第二埋置層109的導電類型為N型。第一井區115為高壓P型井(HVPW),且第二井區117為N型井。第一摻雜區121的導電類型為P型,第二摻雜區123的導電類型為P型,且第三摻雜區125的導電類型為N型。 In this embodiment of the PMOS, the conductivity type of the substrate 101 is N-type, the conductivity type of the first buried layer 107 is P-type, and the conductivity type of the second buried layer 109 is N-type. The first well region 115 is a high pressure P-type well (HVPW) and the second well region 117 is an N-type well. The conductivity type of the first doping region 121 is P-type, the conductivity type of the second doping region 123 is P-type, and the conductivity type of the third doping region 125 is N-type.

再者,如第3圖所示,第一井區115和第二井區117皆藉由磊晶層111與第二埋置層109隔開。由於第一井區115的導電類型為P型,其不同於第二埋置層109的導電類型,第一井區115藉由磊晶層111與第二埋置層109隔開。 Furthermore, as shown in FIG. 3, the first well region 115 and the second well region 117 are separated from the second buried layer 109 by the epitaxial layer 111. Since the conductivity type of the first well region 115 is P-type, which is different from the conductivity type of the second buried layer 109, the first well region 115 is separated from the second buried layer 109 by the epitaxial layer 111.

傳統上,當施加偏壓時,電荷可能聚集在絕緣層 上覆矽(SOI)基底之氧化層的頂面,使得裝置無法達到完全空乏(fully depleted),如此將降低崩潰電壓並產生背側偏壓效應。為了克服具有絕緣層上覆矽(SOI)基底之半導體裝置的前述問題,本發明之一些實施例在絕緣層上覆矽基底的半導體層內植入一N型埋置層和一P型埋置層,如此可在半導體裝置的整體製程中,不使用額外的植入物(implants)或額外的遮罩來形成其他的電路的狀態下,提高崩潰電壓並消除背側偏壓效應。 Conventionally, when a bias voltage is applied, the charge may collect on the top surface of the oxide layer of the SOI substrate on the insulating layer, so that the device cannot be fully depleted, which will reduce the breakdown voltage and generate backside bias. Pressure effect. In order to overcome the aforementioned problems of a semiconductor device having a silicon-on-insulator (SOI) substrate, some embodiments of the present invention implant an N-type buried layer and a P-type buried in a semiconductor layer overlying the underlying insulating substrate. The layer can be used to improve the breakdown voltage and eliminate the backside bias effect in the overall process of the semiconductor device without using additional implants or additional masks to form other circuits.

再者,本發明的一些實施例可使用N型基底101或P型基底101,第一埋置層107的導電類型需與基底101的導電類型相反,且第二埋置層109的導電類型需相同於基底101的導電類型。 Furthermore, some embodiments of the present invention may use an N-type substrate 101 or a P-type substrate 101. The conductivity type of the first buried layer 107 needs to be opposite to that of the substrate 101, and the conductivity type of the second buried layer 109 is required. The same type of conductivity as the substrate 101.

以上概述數個實施例的部件,以便在本發明所屬技術領域中具有通常知識者可以更理解本發明實施例的觀點。在本發明所屬技術領域中具有通常知識者應該理解,他們能以本發明實施例為基礎,設計或修改其他製程和結構以達到與在此介紹的實施例相同之目的及/或優勢。在本發明所屬技術領域中具有通常知識者也應該理解到,此類等效的結構並無悖離本發明的精神與範圍,且他們能在不違背本發明之精神和範圍之下,做各式各樣的改變、取代和替換。 The components of the several embodiments are outlined above so that those skilled in the art can understand the embodiments of the invention. It will be appreciated by those of ordinary skill in the art that the present invention can be practiced or modified in other embodiments and/or structures in accordance with the embodiments of the present invention. It is also to be understood by those of ordinary skill in the art that the present invention is not to be construed as Various changes, substitutions and substitutions.

Claims (15)

一種半導體基底結構,包括:一基底,具有一第一導電類型;一氧化層,設置於該基底上;一半導體層,設置於該氧化層上;一第一埋置層,設置於該半導體層內,具有與該第一導電類型相反的一第二導電類型;以及一第二埋置層,設置於該半導體層內且位於該第一埋置層上方,具有該第一導電類型,其中該第一埋置層與該第二埋置層隔開一距離。  A semiconductor substrate structure comprising: a substrate having a first conductivity type; an oxide layer disposed on the substrate; a semiconductor layer disposed on the oxide layer; and a first buried layer disposed on the semiconductor layer a second conductivity type opposite to the first conductivity type; and a second buried layer disposed in the semiconductor layer and above the first buried layer, having the first conductivity type, wherein the The first buried layer is spaced apart from the second buried layer by a distance.   如申請專利範圍第1項所述之半導體基底結構,其中該第一導電類型為n型,且該第二導電類型為p型。  The semiconductor substrate structure of claim 1, wherein the first conductivity type is n-type and the second conductivity type is p-type.   如申請專利範圍第1項所述之半導體基底結構,其中該第一導電類型為p型,且該第二導電類型為n型。  The semiconductor substrate structure of claim 1, wherein the first conductivity type is p-type and the second conductivity type is n-type.   一種半導體裝置,包括:一基底,具有一第一導電類型;一氧化層,設置於該基底上;一半導體層,設置於該氧化層上;一第一埋置層,設置於該半導體層內,具有與該第一導電類型相反的一第二導電類型;一第二埋置層,設置於該半導體層內且位於該第一埋置層上方,具有該第一導電類型,其中該第一埋置層與該第二埋置層隔開一距離;一源極電極和一汲極電極,設置於該半導體層上;以及 一閘極結構,設置於該半導體層上,且位於該源極電極與該汲極電極之間。  A semiconductor device comprising: a substrate having a first conductivity type; an oxide layer disposed on the substrate; a semiconductor layer disposed on the oxide layer; and a first buried layer disposed in the semiconductor layer Having a second conductivity type opposite to the first conductivity type; a second buried layer disposed in the semiconductor layer and above the first buried layer, having the first conductivity type, wherein the first The buried layer is spaced apart from the second buried layer; a source electrode and a drain electrode are disposed on the semiconductor layer; and a gate structure is disposed on the semiconductor layer and located at the source Between the electrode and the drain electrode.   如申請專利範圍第4項所述之半導體裝置,其中該第一導電類型為n型,且該第二導電類型為p型。  The semiconductor device of claim 4, wherein the first conductivity type is n-type and the second conductivity type is p-type.   如申請專利範圍第4項所述之半導體裝置,其中該第一導電類型為p型,且該第二導電類型為n型。  The semiconductor device of claim 4, wherein the first conductivity type is p-type and the second conductivity type is n-type.   如申請專利範圍第4項所述之半導體裝置,其中相較於與該汲極電極的距離,該閘極結構更靠近該源極電極。  The semiconductor device of claim 4, wherein the gate structure is closer to the source electrode than to the drain electrode.   如申請專利範圍第4項所述之半導體裝置,更包括:一磊晶層,設置於該半導體層上;一第一井區,設置於該磊晶層內;一第二井區,設置於該磊晶層內,且鄰接於該第一井區;以及一隔離結構,覆蓋一部分的該第一井區;其中該閘極結構設置於一部分的該隔離結構上,且覆蓋一部分的該第一井區和一部分的該第二井區。  The semiconductor device of claim 4, further comprising: an epitaxial layer disposed on the semiconductor layer; a first well region disposed in the epitaxial layer; and a second well region disposed on In the epitaxial layer, adjacent to the first well region; and an isolation structure covering a portion of the first well region; wherein the gate structure is disposed on a portion of the isolation structure and covers a portion of the first The well area and a portion of the second well area.   如申請專利範圍第8項所述之半導體裝置,其中該第一井區具有該第一導電類型且接觸該第二埋置層,以及該第二井區具有該第二導電類型且藉由該磊晶層與該第二埋置層隔開。  The semiconductor device of claim 8, wherein the first well region has the first conductivity type and contacts the second buried layer, and the second well region has the second conductivity type and The epitaxial layer is spaced apart from the second buried layer.   如申請專利範圍第9項所述之半導體裝置,更包括:一第一摻雜區,設置於該第一井區內,具有該第一導電類型;一第二摻雜區,設置於該第二井區內,具有該第一導電類 型;以及一第三摻雜區,設置於該第二井區內,具有該第二導電類型且鄰接於該第二摻雜區;其中該第一摻雜區電連接於該汲極電極,且該第二摻雜區和該第三摻雜區電連接於該源極電極。  The semiconductor device of claim 9, further comprising: a first doped region disposed in the first well region and having the first conductivity type; and a second doped region disposed on the first In the second well region, having the first conductivity type; and a third doping region disposed in the second well region, having the second conductivity type and adjacent to the second doping region; wherein the first doping region The impurity region is electrically connected to the drain electrode, and the second doped region and the third doped region are electrically connected to the source electrode.   如申請專利範圍第10項所述之半導體裝置,其中該第一摻雜區的摻質濃度大於該第一井區的摻質濃度,且該第二摻雜區的摻質濃度和該第三摻雜區的摻質濃度皆大於該第二井區的摻雜濃度。  The semiconductor device of claim 10, wherein a dopant concentration of the first doped region is greater than a dopant concentration of the first well region, and a dopant concentration of the second doped region and the third The doping concentration of the doped region is greater than the doping concentration of the second well region.   如申請專利範圍第8項所述之半導體裝置,其中該第一井區具有該第二導電類型,該第二井區具有該第一導電類型,且該第一井區和該第二井區藉由該磊晶層與該第二埋置層隔開。  The semiconductor device of claim 8, wherein the first well region has the second conductivity type, the second well region has the first conductivity type, and the first well region and the second well region The epitaxial layer is separated from the second buried layer.   如申請專利範圍第12項所述之半導體裝置,更包括:一第一摻雜區,設置於該第一井區內,具有該第二導電類型;一第二摻雜區,設置於該第二井區內,具有該第二導電類型;以及一第三摻雜區,設置於該第二井區內,具有該第一導電類型且鄰接於該第二摻雜區;其中該第一摻雜區電連接於該汲極電極,且該第二摻雜區和該第三摻雜區電連接於該源極電極。  The semiconductor device of claim 12, further comprising: a first doped region disposed in the first well region and having the second conductivity type; and a second doped region disposed on the first a second conductivity type in the second well region; and a third doping region disposed in the second well region, having the first conductivity type and adjacent to the second doping region; wherein the first doping region The impurity region is electrically connected to the drain electrode, and the second doped region and the third doped region are electrically connected to the source electrode.   一種半導體基底結構的形成方法,包括:提供一基底,其具有一第一導電類型; 形成一氧化層於該基底上;形成一半導體層於該氧化層上;形成一第一埋置層於該半導體層內,其中該第一埋置層具有與該第一導電類型相反的一第二導電類型;以及形成一第二埋置層於該半導體層內且位於該第一埋置層上方,其中該第二埋置層具有該第一導電類型,且該第一埋置層和該第二埋置層隔開一距離。  A method for forming a semiconductor substrate structure, comprising: providing a substrate having a first conductivity type; forming an oxide layer on the substrate; forming a semiconductor layer on the oxide layer; forming a first buried layer thereon In the semiconductor layer, wherein the first buried layer has a second conductivity type opposite to the first conductivity type; and a second buried layer is formed in the semiconductor layer and above the first buried layer, wherein The second buried layer has the first conductivity type, and the first buried layer and the second buried layer are separated by a distance.   如申請專利範圍第14項所述之半導體基底結構的形成方法,其中該第一埋置層由一第一離子植入製程形成,且該第二埋置層由一第二離子植入製程形成。  The method for forming a semiconductor substrate structure according to claim 14, wherein the first buried layer is formed by a first ion implantation process, and the second buried layer is formed by a second ion implantation process. .  
TW106104043A 2017-02-08 2017-02-08 Semiconductor substrate structures and methods for forming the same and semiconductor devices TWI676291B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106104043A TWI676291B (en) 2017-02-08 2017-02-08 Semiconductor substrate structures and methods for forming the same and semiconductor devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106104043A TWI676291B (en) 2017-02-08 2017-02-08 Semiconductor substrate structures and methods for forming the same and semiconductor devices

Publications (2)

Publication Number Publication Date
TW201830697A true TW201830697A (en) 2018-08-16
TWI676291B TWI676291B (en) 2019-11-01

Family

ID=63960124

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106104043A TWI676291B (en) 2017-02-08 2017-02-08 Semiconductor substrate structures and methods for forming the same and semiconductor devices

Country Status (1)

Country Link
TW (1) TWI676291B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111276491A (en) * 2018-12-04 2020-06-12 世界先进积体电路股份有限公司 Semiconductor structure and forming method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5382818A (en) * 1993-12-08 1995-01-17 Philips Electronics North America Corporation Lateral semiconductor-on-insulator (SOI) semiconductor device having a buried diode
US6424005B1 (en) * 1998-12-03 2002-07-23 Texas Instruments Incorporated LDMOS power device with oversized dwell
EP1220323A3 (en) * 2000-12-31 2007-08-15 Texas Instruments Incorporated LDMOS with improved safe operating area
TWI548090B (en) * 2012-02-07 2016-09-01 聯華電子股份有限公司 Semiconductor device and method of fabricating the same
US9006820B2 (en) * 2012-12-19 2015-04-14 Alpha And Omega Semiconductor Incorporated Vertical DMOS transistor
TWI557904B (en) * 2015-03-17 2016-11-11 世界先進積體電路股份有限公司 Semiconductor device and method for fabricating the same
JP6509665B2 (en) * 2015-07-23 2019-05-08 ルネサスエレクトロニクス株式会社 Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111276491A (en) * 2018-12-04 2020-06-12 世界先进积体电路股份有限公司 Semiconductor structure and forming method thereof

Also Published As

Publication number Publication date
TWI676291B (en) 2019-11-01

Similar Documents

Publication Publication Date Title
US11424244B2 (en) Integrated circuit having a vertical power MOS transistor
US9793385B2 (en) Insulated gate bipolar transistor structure having low substrate leakage
JP6227129B2 (en) Semiconductor structure with column III-V isolation region
TWI572037B (en) Transistor device and method of forming the same
US10644132B2 (en) Method and apparatus for MOS device with doped region
US9978867B1 (en) Semiconductor substrate structures, semiconductor devices and methods for forming the same
US20110260245A1 (en) Cost Effective Global Isolation and Power Dissipation For Power Integrated Circuit Device
US10014408B1 (en) Semiconductor devices and methods for forming the same
US10388649B2 (en) Semiconductor devices and methods for manufacturing the same
TWI676291B (en) Semiconductor substrate structures and methods for forming the same and semiconductor devices
US9570584B2 (en) Semiconductor structure and manufacturing method thereof
US9929283B1 (en) Junction field effect transistor (JFET) with first and second top layer of opposite conductivity type for high driving current and low pinch-off voltage
TW201730971A (en) High voltage semiconductor device and method for manufacturing the same
US10600909B2 (en) Semiconductor devices and methods for fabricating the same
US9837411B2 (en) Semiconductor die with a metal via
TWI684213B (en) Semiconductor structure and method for forming the same
US10644146B1 (en) Vertical bi-directional switches and method for making same
US11348997B2 (en) Semiconductor devices and methods for fabricating the same
US11031505B2 (en) Transistor and its manufacturing process
TWI624002B (en) Semiconductor devices and methods for forming the same
TWI624058B (en) Semiconductor devices and methods for forming the same
US20190305128A1 (en) Semiconductor structure and method for forming the same
JP2012151230A (en) Protection element and semiconductor device having protection element
CN105405879B (en) LDMOS device and forming method thereof