TW201821828A - 半導體x射線檢測器的封裝 - Google Patents

半導體x射線檢測器的封裝 Download PDF

Info

Publication number
TW201821828A
TW201821828A TW106132510A TW106132510A TW201821828A TW 201821828 A TW201821828 A TW 201821828A TW 106132510 A TW106132510 A TW 106132510A TW 106132510 A TW106132510 A TW 106132510A TW 201821828 A TW201821828 A TW 201821828A
Authority
TW
Taiwan
Prior art keywords
ray
voltage
controller
layer
electrically connected
Prior art date
Application number
TW106132510A
Other languages
English (en)
Other versions
TWI747957B (zh
Inventor
曹培炎
劉雨潤
Original Assignee
深圳幀觀德芯科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳幀觀德芯科技有限公司 filed Critical 深圳幀觀德芯科技有限公司
Publication of TW201821828A publication Critical patent/TW201821828A/zh
Application granted granted Critical
Publication of TWI747957B publication Critical patent/TWI747957B/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • G01T1/241Electrode arrangements, e.g. continuous or parallel strips or the like
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • G01T1/244Auxiliary details, e.g. casings, cooling, damping or insulation against damage by, e.g. heat, pressure or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14658X-ray, gamma-ray or corpuscular radiation imagers
    • H01L27/14659Direct radiation imagers structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/115Devices sensitive to very short wavelength, e.g. X-rays, gamma-rays or corpuscular radiation

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Measurement Of Radiation (AREA)
  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

本文公開適合於檢測x射線的裝置,其包括:X射線吸收層,其配置成從X射線吸收層上入射的X射線光子生成電信號;電子層,其包括電子系統,該電子系統配置成處理或解釋電信號;其中X射線吸收層和電子層中的至少一個嵌入電絕緣材料的板中。

Description

半導體X射線檢測器的封裝
本公開涉及X射線檢測器,特別涉及半導體X射線檢測器的封裝。
X射線檢測器可以是用於測量X射線的通量、空間分佈、光譜或其他性質的設備。
X射線檢測器可用於許多應用。一個重要應用是成像。X射線成像是放射攝影技術並且可以用於揭示組成不均勻和不透明物體(例如人體)的內部結構。
早期用於成像的X射線檢測器包括照相底片和照相膠片。照相底片可以是具有感光乳劑塗層的玻璃底片。儘管照相底片被照相膠片取代,由於它們所提供的優越品質和它們的極端穩定性而仍可在特殊情形中使用它們。照相膠片可以是具有感光乳劑塗層的塑膠膠片(例如,帶或片)。
在20世紀80年代,出現了光激勵螢光板(PSP板)。PSP板可包含在它的晶格中具有色心的螢光材料。在將PSP板暴露於X射線時,X射線激發的電子被困在色心中直到它們受到在板表面上掃描的鐳射光束的激勵。在鐳射掃描板時,捕獲的激發電子發出光,其被光電倍增管收集。收集的光轉換成數字圖像。與照相底片和照相膠片相比,PSP板可以被重複使用。
另一種X射線檢測器是X射線圖像增強器。X射線圖像增強器的部件通常在真空中密封。與照相底片、照相膠片和PSP板相比,X射線圖像增強器可產生即時圖像,即不需要曝光後處理來產生圖像。X射線首先撞擊輸入螢光體(例 如,碘化銫)並且被轉換成可見光。可見光然後撞擊光電陰極(例如,包含銫和銻複合物的薄金屬層)並且促使電子發射。發射電子數量與入射X射線的強度成比例。發射電子通過電子光學器件投射到輸出螢光體上並且促使該輸出螢光體產生可見光圖像。
閃爍體的操作與X射線圖像增強器有些類似之處在於閃爍體(例如,碘化鈉)吸收X射線並且發射可見光,其然後可以被對可見光合適的圖像感測器檢測到。在閃爍體中,可見光在各個方向上傳播和散射並且從而降低空間解析度。使閃爍體厚度減少有助於提高空間解析度但也減少X射線吸收。閃爍體從而必須在吸收效率與解析度之間達成妥協。
半導體X射線檢測器通過將X射線直接轉換成電信號而在很大程度上克服該間題。半導體X射線檢測器可包括半導體層,其在感興趣波長吸收X射線。當在半導體層中吸收X射線光子時,產生多個載荷子(例如,電子和空穴)並且在電場下,這些載流子被掃向電晶體層上的電觸點。現有的半導體X射線檢測器(例如,Medipix)中需要的繁瑣的熱管理會使得具有大面積和大量像素的檢測器難以生產或不可能生產。
本文公開適合於檢測x射線的裝置,其包括:X射線吸收層,其配置成從X射線吸收層上入射的X射線光子產生電信號;電子層,其包括電子系統,該電子系統配置成處理或解釋電信號;其中X射線吸收層和電子層中的至少一個嵌入電絕緣材料的板中。
根據實施例,電絕緣層包括樹脂、玻璃纖維、塑膠或陶瓷。
根據實施例,其中板是柔性的。
根據實施例,電子層嵌入板中。
根據實施例,板包括電連接到電子系統的通孔。
根據實施例,X射線吸收層包括電觸點;其中X射線吸收層接合到板使得電觸點電連接到通孔並且通過通孔電連接到電子系統。
根據實施例,X射線吸收層嵌入板中。
根據實施例,X射線吸收層包括電觸點;其中板包括電連接到電觸點的通孔。
根據實施例,電子層接合到板使得電子系統電連接到通孔並且通過通孔電連接到電觸點。
根據實施例,板包括第一傳輸線,其電連接通孔中的至少兩個。
根據實施例,板包括第二傳輸線,其電連接到通孔中的至少一個。
根據實施例,X射線吸收層包括傳輸線。
根據實施例,X射線吸收層包括電極;其中電子系統包括:第一電壓比較器,其配置成將電極的電壓與第一閾值比較;第二電壓比較器,其配置成將該電壓與第二閾值比較;計數器,其配置成記錄到達X射線吸收層的X射線光子的數目;控制器;其中該控制器配置成從第一電壓比較器確定電壓的絕對值等於或超出第一閾值的絕對值的時間啟動時間延遲;其中控制器配置成在時間延遲期間啟動第二電壓比較器;其中控制器配置成如果第二電壓比較器確定電壓的絕對值等於或超出第二閾值的絕對值則促使計數器記錄的數目增加一。
根據實施例,電子系統進一步包括電容器模組,其電連接到電極,其中該 電容器模組配置成從電極收集載荷子。
根據實施例,控制器配置成在時間延遲開始或終止時啟動第二電壓比較器。
根據實施例,電子系統進一步包括電壓表,其中控制器配置成在時間延遲終止時促使電壓表測量電壓。
根據實施例,控制器配置成基於在時間延遲終止時測量的電壓值確定X射線光子能量。
根據實施例,控制器配置成使電極連接到電接地。
根據實施例,電壓變化率在時間延遲終止時大致為零。
根據實施例,電壓變化率在時間延遲終止時大致為非零。
根據實施例,第一X射線吸收層包括二極體。
100‧‧‧檢測器
110‧‧‧X射線吸收層
111‧‧‧第一摻雜區
112‧‧‧本征區
113‧‧‧第二摻雜區
114‧‧‧離散區
119A‧‧‧電觸點
119B‧‧‧電觸點
120‧‧‧電子層
121‧‧‧電子系統
123‧‧‧暴露表面
125‧‧‧電觸點
126‧‧‧通孔
150‧‧‧像素
311‧‧‧傳輸線
312‧‧‧傳輸線
313‧‧‧金屬
320‧‧‧通孔
321‧‧‧孔
330‧‧‧焊料凸點
399‧‧‧板
400‧‧‧晶片
410‧‧‧扇出線
300‧‧‧二極體
301‧‧‧第一電壓比較器
302‧‧‧第二電壓比較器
305‧‧‧開關
306‧‧‧電壓表
309‧‧‧電容器模組
310‧‧‧控制器
320‧‧‧計數器
1201‧‧‧X射線源
1202‧‧‧物體
1301‧‧‧X射線源
1302‧‧‧物體
1401‧‧‧X射線源
1402‧‧‧物體
1501‧‧‧X射線源
1502‧‧‧行李
1601‧‧‧X射線源
1602‧‧‧人
1701‧‧‧X射線源
RST‧‧‧復位期
t0、t1、t2、te、th、ts‧‧‧時間
TD1‧‧‧時間延遲
TD2‧‧‧時間延遲
V1‧‧‧第一閾值
V2‧‧‧第二閾值
VR‧‧‧殘餘電壓
圖1A示意示出根據實施例的檢測器的橫截面圖。
圖1B示意示出根據實施例的X射線吸收層和電子層以及它們的連接的詳細橫截面圖。
圖1C示意示出根據實施例的X射線吸收層和電子層以及它們的連接的詳細橫截面圖。
圖2示意示出根據實施例設備可以具有像素陣列。
圖3示意示出根據實施例在電子層與X射線吸收層之間的電連接的形式。
圖4A-圖4H示意示出製作圖3中示出的檢測器的過程。
圖5-圖9各自示出根據實施例在電子層與X射線吸收層之間的電連接的形 式。
圖10示意示出根據實施例的系統,其包括本文描述的適合於例如胸部X射線放射攝影、腹部X射線放射攝影等醫學成像的半導體X射線檢測器。
圖11示意示出根據實施例的系統,其包括本文描述的適合於牙齒X射線放射攝影的半導體X射線檢測器。
圖12示意示出根據實施例的貨物掃描或非侵入式檢查(NII)系統,其包括本文描述的半導體X射線檢測器。
圖13示意示出根據實施例的另一個貨物掃描或非侵入式檢查(NII)系統,其包括本文描述的半導體X射線檢測器。
圖14示意示出全身儀掃描系統,其包括本文描述的半導體X射線檢測器。
圖15示意示出根據實施例的X射線電腦斷層攝影(X射線CT)系統,其包括本文描述的半導體X射線檢測器。
圖16A和圖16B各種示出根據實施例的圖1A或圖1B中的檢測器的電子系統的部件圖。
圖17示意示出根據實施例流過暴露於X射線的X射線吸收層的二極體的電極或電阻器的電觸點的電流的時間變化(上曲線)和電極電壓的對應時間變化(下曲線),電流由X射線吸收層上入射的X射線光子產生的載荷子引起。
圖18示意示出根據實施例在採用圖8中示出的方式操作的電子系統中雜訊(例如,暗電流)引起的流過電極的電流的時間變化(上曲線)和電極電壓的對應時間變化(下曲線)。
圖19示意示出根據實施例在電子系統操作來檢測處於較高速率的入射X射 線光子時流過暴露於X射線的X射線吸收層的電極的電流的時間變化(上曲線)和電極電壓的對應時間變化(下曲線),電流由X射線吸收層上入射的X射線光子產生的載荷子引起。
圖20示意示出根據實施例在採用圖10中示出的方式操作的電子系統中雜訊(例如,暗電流)引起的流過電極的電流的時間變化(上曲線)和電極電壓的對應時間變化(下曲線)。
圖21示意示出根據實施例在採用圖10中示出的方式(其中RST在te之前終止)操作的電子系統中由X射線吸收層上入射的一系列X射線光子產生的載荷子引起的流過電極的電流的時間變化(上曲線)和電極電壓的對應時間變化。
圖1A示意示出根據實施例的檢測器100的橫截面圖。檢測器100可包括X射線吸收層110和電子層120(例如,ASIC),用於處理或分析入射X射線在X射線吸收層110中產生的電信號。在實施例中,檢測器100不包括閃爍體。X射線吸收層110可包括半導體材料,例如矽、鍺、GaAs、CdTe、CdZnTe或其組合。半導體對於感興趣的X射線能量可具有高的質量衰減係數。
如在圖1B中的檢測器100的詳細橫截面圖中示出的,根據實施例,X射線吸收層110可包括由第一摻雜區111、第二摻雜區113的一個或多個離散區114形成的一個或多個二極體(例如,p-i-n或p-n)。第二摻雜區113可通過本征區112(可選)而與第一摻雜區111分離。離散部分114通過第一摻雜區111或本征區112而彼此分離。第一摻雜區111和第二摻雜區113具有相反類型的摻雜(例如,區111是p型並且區113是n型,或區111是n型並且區113是p型)。在 圖1B中的示例中,第二摻雜區113的離散區114中的每個與第一摻雜區111和本征區112(可選)一起形成二極體。即,在圖1B中的示例中,X射線吸收層110具有多個二極體,其具有第一摻雜區111作為共用電極。第一摻雜區111還可具有離散部分。
在X射線光子撞擊X射線吸收層110(其包括二極體)時,X射線光子可被吸收並且通過許多機制產生一個或多個載荷子。一個X射線光子可產生10至100000個載荷子。載荷子可在電場下向二極體中的一個的電極漂移。場可以是外部電場。電觸點119B可包括離散部分,其中的每個與離散區114電接觸。在實施例中,載荷子可在多個方向上漂移使得單個X射線光子產生的載荷子大致未被兩個不同離散區114共用(“大致未被共用”在這裏意指這些載荷子中不到2%、不到0.5%、不到0.1%或不到0.01%流向與餘下載荷子不同的離散區114中的一個)。在這些離散區114中的一個的足跡內入射的X射線光子產生的載荷子大致未與這些離散區114中的另一個共用。與離散區114關聯的像素150可以是圍繞離散區114的區域,其中由其中入射的X射線光子產生的載荷子中的大致全部(超過98%、超過99.5%、超過99.9%或超過99.99%)流向離散區114。即,這些載荷子中不到2%、不到1%、不到0.1%或不到0.01%流到像素外。
如在圖1C中的檢測器100的備選詳細橫截面圖中示出的,根據實施例,X射線吸收層110可包括具有半導體材料(例如矽、鍺、GaAs、CdTe、CdZnTe或其組合)的電阻器,但不包括二極體。半導體對於感興趣的X射線能量可具有高的質量衰減係數。
在X射線光子撞擊X射線吸收層110(其包括電阻器但不包括二極體)時,它可被吸收並且通過許多機制產生一個或多個載荷子。一個X射線光子可產生 10至100000個載荷子。載荷子可在電場下向電觸點119A和119B漂移。場可以是外部電場。電觸點119B包括離散部分。在實施例中,載荷子可在多個方向上漂移使得單個X射線光子產生的載荷子大致未被電觸點119B的兩個不同離散部分共用(“大致未被共用”在這裏意指這些載荷子中不到2%、不到0.5%、不到0.1%或不到0.01%流向與餘下載荷子不同的離散區中的一個)。在電觸點119B的這些離散部分中的一個的足跡周圍入射的X射線光子產生的載荷子大致未與電觸點119B的這些離散部分中的另一個共用。與電觸點119B的離散部分關聯的像素150可以是圍繞離散部分的區域,其中由其中入射的X射線光子產生的載荷子中的大致全部(超過98%、超過99.5%、超過99.9%或超過99.99%)流向電觸點119B的離散部分。即,這些載荷子中不到2%、不到0.5%、不到0.1%或不到0.01%流到與電觸點119B的一個離散部分關聯的像素外。
電子層120可包括電子系統121,其適合於處理或解釋X射線吸收層110上入射的X射線光子產生的信號。電子系統121可包括例如濾波網路、放大器、積分器和比較器等模擬電路或例如微處理器等數字電路和記憶體。電子系統121可包括像素共用的部件或專用於單個像素的部件。例如,電子系統121可包括專用於每個像素的放大器和在所有像素之間共用的微處理器。電子系統121可電連接到像素。
圖2示意示出檢測器100可具有像素150的陣列。陣列可以是矩形陣列、蜂窩狀陣列、六邊形陣列或任何其他適合的陣列。每個像素150可配置成檢測其上入射的X射線光子、測量X射線光子的能量或兩者兼而有之。例如,每個像素150可配置成在一段時間內對其上入射的、能量落在多個倉中的X射線光子的數目計數。所有像素150可配置成在相同時段內對其上入射的、在多個能量倉內的X射線光子的數目計數。每個像素150可具有它自己的模數轉換器 (ADC),其配置成使代表入射X射線光子的能量的模擬信號數位化為數字信號。ADC可具有10位或更高的解析度。每個像素150可配置成測量它的暗電流,例如在每個X射線光子入射在其上之前或與之併發。每個像素150可配置成從其上入射的X射線光子的能量減去暗電流的貢獻。像素150可配置成並行操作。例如,在一個像素150測量入射X射線光子時,另一個像素150可等待X射線光子到達。像素150可以但不必獨立可尋址。
X射線吸收層110與電子層120之間的電連接可以採用各種形式。電子層120可以具有到檢測器100外部的電路的電連接。在實施例中,電子層120與檢測器100外部的電路之間的電連接以及使電子層120和X射線吸收層110電連接的電連接可以設置在相同襯底中。
圖3示意示出根據實施例在電子層120與X射線吸收層110之間的電連接的形式。電子層120嵌入電絕緣材料的板399中。在板399中可形成各種互連(例如,傳輸線311和312、通孔322)。板399可以是任何適合的材料,例如樹脂、玻璃纖維、塑膠、陶瓷。如果檢測器100是小的,或使用包括電子層120和X射線吸收層110的多個晶片,板399可是柔性的並且檢測器100可保持運作,即使板399彎曲也如此。X射線吸收層110可接合到板399使得電觸點119B電連接到通孔322並且通過通孔322電連接到電子層120的電子系統121。傳輸線311和312可使電子系統121電連接到外部電路。X射線吸收層110到電子層120的接合可以通過適合的技術,例如直接接合或倒裝接合。板399中的傳輸線312可在從板399表面的不同深度設置-傳輸線312可設置在不同層中。
直接接合是沒有任何額外中間層(例如,焊料凸點)的晶圓接合工藝。接合工藝基於兩個表面之間的化學接合。直接接合可在升高的溫度但不一定如此。
倒裝接合使用沉積到接觸墊(例如,X射線吸收層110的電觸點119B)上的焊料凸點330。X射線吸收層110或電子層120翻轉並且X射線吸收層110的電觸點119B與通孔322對齊。焊料凸點330可熔融以將電觸點119B和電觸點322焊接在一起。焊料凸點330之間的任何空隙空間可用絕緣材料填充。
圖4A-圖4H示意示出製作圖3中示出的檢測器的工藝。
如在圖4A中示出的,工藝以具有靠其支承的傳輸線312的襯底開始。傳輸線312可以通過蝕刻沉積在襯底上的金屬層而製成。儘管傳輸線312在圖4A中示出為在一個層中,傳輸線312可以設置在多個層中。
如在圖4B中示出的,電子層120使用適合的方法(例如倒裝接合)安裝到板399。電子層120可以採用連續襯底或許多晶片的形式。
圖4C示出襯底用絕緣材料構建來形成板399。電子層120掩埋在板399中。
圖4D示出在板399中形成孔321來使電子層120上以及傳輸線312上的區域暴露。形成孔321的一個方式通過鐳射鑽孔。其他可能方式包括光刻和蝕刻。
圖4E示出填充空321來形成通孔322。
圖4F示出金屬313的層設置在電連接到通孔322的板399上。
圖4G示出傳輸線311由金屬313的層形成。例如,傳輸線311可以通過光刻和蝕刻金屬313的層而形成。傳輸線可使通孔322中的一些電連接到傳輸線312。
圖4H示出X射線吸收層110用焊球330安裝且接合到板399。
圖4B和圖4C中示出的步驟可被形成凹陷且將電子層120安裝到凹陷內並且通過填充凹陷來掩埋電子層120所代替。凹陷可以通過適合的技術(例如印 記)形成。
圖5示出根據實施例在電子層120與X射線吸收層110之間的另一個形式的電連接。圖5中示出的結構與圖3中的結構相似,所不同的是X射線吸收層310嵌入板399並且電子層120安裝在板上且電連接到X射線吸收層310。
圖6示出根據實施例在電子層120與X射線吸收層110之間的另一個形式的電連接。圖6中示出的結構與圖3中的結構相似,所不同的是X射線吸收層110橋接電子層120的至少兩個晶片。
圖7示意示出根據實施例在電子層120與X射線吸收層110之間的一種形式的電連接。電子層120嵌入電絕緣材料的板399中。電子層120具有帶電觸點的暴露表面123。因此,沒有連接到電子層120的通孔並且X射線吸收層110未通過任何通孔接合到電子層120。在實施例中,X射線吸收層110具有傳輸線311,其使檢測器100電連接到板399中的通孔322,其中通孔322連接到板399中的傳輸線312。
圖8示出根據實施例在電子層120與X射線吸收層110之間的另一個形式的電連接。圖8的結構與圖7中的結構相似,所不同的是X射線吸收層110和電子層120嵌入板399中。圖8的結構可以通過在圖7的結構中構建板399而獲得。
圖9示意示出根據實施例在電子層120與X射線吸收層110之間的電連接形式。X射線吸收層110和電子層120接合在一起。電觸點119B與電子層120中的電子系統121的電觸點125接觸。電子層120具有通孔126,其使電子系統121連接到與X射線吸收層110相對的電子層120的表面。X射線吸收層110和電子層120然後可一起接合到嵌入板399中的插入晶片400。插入晶片400具有 扇出線410,其使電子層120中的通孔126連接到板399中的傳輸線312。
圖10示意示出這樣的系統,其包括本文描述的半導體X射線檢測器100。該系統可用於醫學成像,例如胸部X射線放射攝影、腹部X射線放射攝影等。系統包括X射線源1201。從X射線源1201發射的X射線穿過物體1202(例如,例如胸部、肢體、腹部等人體部位)、由於物體1202的內部結構(例如,骨頭、肌肉、脂肪和器官等)而衰減不同程度並且被投射到半導體X射線檢測器100。半導體X射線檢測器100通過檢測X射線的強度分佈來形成圖像。
圖11示意示出這樣的系統,其包括本文描述的半導體X射線檢測器100。該系統可用於醫學成像,例如牙齒X射線放射攝影。系統包括X射線源1301。從X射線源1301發射的X射線穿過物體1302,其是哺乳動物(例如,人類)口腔的部分。物體1302可包括上顎骨、顎骨、牙齒、下顎或舌頭。X射線由於物體1302的不同結構而衰減不同程度並且被投射到半導體X射線檢測器100。半導體X射線檢測器100通過檢測X射線的強度分佈來形成圖像。牙齒比齲齒、感染和牙周膜吸收更多的X射線。牙科患者接收的X射線輻射的劑量典型地是小的(對於全口系列是近似0.150mSv)。
圖12示意示出貨物掃描或非侵入式檢查(N11)系統,其包括本文描述的半導體X射線檢測器100。系統可用於在例如海運集裝箱、車輛、輪船、行李等傳輸系統中檢查和識別物品。系統包括X射線源1401。從X射線源1401發射的X射線可從物體1402(例如,海運集裝箱、車輛、輪船等)背散射並且被投射到檢測器100。物體1402的不同內部結構可有差異地背散射X射線。半導體X射線檢測器100通過檢測背散射X射線的強度分佈和/或背散射X射線光子的能量來形成圖像。
圖13示意示出另一個貨物掃描或非侵入式檢查(NII)系統,其包括本文描述的半導體X射線檢測器100。系統可用於公交站和機場處的行李篩查。系統包括X射線源1501。從X射線源1501發射的X射線可穿過行李1502、由於行李的內含物而有差異地衰減並且被投射到半導體X射線檢測器100。半導體X射線檢測器100通過檢測透射的X射線的強度分佈來形成圖像。系統可揭示行李的內含物並且識別公共交通上禁用的專案,例如槍支、毒品、鋒利武器、易燃物。
圖14示意示出全身掃描器系統,其包括本文描述的半導體X射線檢測器100。該全身掃描器系統可為了安全篩查目的來檢測人體上的物體而不物理脫衣或進行物理接觸。全身掃描器系統可能夠檢測非金屬物體。全身掃描器系統包括X射線源1601。從X射線源1601發射的X射線可從被篩查的人1602和其上的物體背散射,並且被投射到半導體X射線檢測器100。物體和人體可有差異地背散射X射線。半導體X射線檢測器100通過檢測背散射X射線的強度分佈來形成圖像。半導體X射線檢測器100和X射線源1601可配置成直線或旋轉方向上掃描人。
圖15示意示出X射線電腦斷層攝影(X射線CT)系統。X射線CT系統使用電腦處理的X射線來產生被掃描物體的特定區域的斷層攝影圖像(虛擬“切片”)。斷層攝影圖像在各種醫學學科中可用於診斷和治療目的,或用於缺陷檢測、失效分析、計量、組件分析和逆向工程。X射線CT系統包括本文描述的半導體檢測器100和X射線源1701。半導體X射線檢測器100和X射線源1701可配置成沿一個或多個圓形或螺旋形路徑同步旋轉。
這裏描述的半導體X射線檢測器100可具有其他應用,例如在X射線望遠 鏡、X射線乳房攝影、工業X射線缺陷檢測、X射線顯微鏡或顯微放射攝影、X射線鑄件檢查、X射線無損檢驗、X射線焊縫檢查、X射線數字減影血管攝影等中。使用該半導體X射線檢測器100來代替照相底片、照相膠片、PSP板、X射線圖像增強器、閃爍體或另一個半導體X射線檢測器,這可是適合的。
圖16A和圖16B各自示出根據實施例的電子系統121的部件圖。電子系統121可包括第一電壓比較器301、第二電壓比較器302、計數器320、開關305、電壓表306和控制器310。
第一電壓比較器301配置成將二極體300的電極的電壓與第一閾值比較。二極體可以是由第一摻雜區111、第二摻雜區113的離散區114中的一個和本征區112(可選)形成的二極體。備選地,第一電壓比較器301配置成將電觸點(例如,電觸點119B的離散部分)的電壓與第一閾值比較。第一電壓比較器301可配置成直接監測電壓,或通過使一段時間內流過二極體或電觸點的電流整合來計算電壓。第一電壓比較器301可由控制器310可控地啟動或停用。第一電壓比較器301可以是連續比較器。即,第一電壓比較器301可配置成被連續啟動,並且連續監測電壓。配置為連續比較器的第一電壓比較器301使系統121錯過由入射X射線光子產生的信號的機會減少。配置為連續比較器的第一電壓比較器301在入射X射線強度相對高時尤其適合。第一電壓比較器301可以是鐘控比較器,其具有較低功耗的益處。配置為鐘控比較器的第一電壓比較器301可導致系統121錯過由一些入射X射線光子產生的信號。在入射X射線強度低時,錯過入射X射線光子的機會因為兩個連續光子之間的間隔相對長而較低。因此,配置為鐘控比較器的第一電壓比較器301在入射X射線強度相對低時尤其適合。第一閾值可以是一個入射X射線光子可在二極體或電阻器中產生的最大電壓的5-10%、10%-20%、20-30%、30-40%或40-50%。最大電壓可取決於入射X射線光 子的能量(即,入射X射線的波長),X射線吸收層110的材料和其他因素。例如,第一閾值可以是50mV、100mV、150mV或200mV。
第二電壓比較器302配置成將電壓與第二閾值比較。第二電壓比較器302可配置成直接監測電壓,或通過使一段時間內流過二極體或電觸點的電流整合來計算電壓。第二電壓比較器302可以是連續比較器。第二電壓比較器302可由控制器310可控地啟動或停用。在停用第二電壓比較器302時,第二電壓比較器302的功耗可以是啟動第二電壓比較器302時的功耗的不到1%、不到5%、不到10%或不到20%。第二閾值的絕對值大於第一閾值的絕對值。如本文使用的,術語實數x的“絕對值”或“模數”|x|是x的非負值而不考慮它的符號。即, 。第二閾值可以是第一閾值的200%-300%。第二閾值可以是 一個入射X射線光子可在二極體或電阻器中產生的最大電壓的至少50%。例如,第二閾值可以是100mV、150mV、200mV、250mV或300mV。第二電壓比較器302和第一電壓比較器301可以是相同部件。即,系統121可具有一個電壓比較器,其可以在不同時間將電壓與兩個不同閾值比較。
第一電壓比較器301或第二電壓比較器302可包括一個或多個運算放大器或任何其他適合的電路。第一電壓比較器301或第二電壓比較器302可具有高的速度以允許系統121在高的入射X射線通量下操作。然而,具有高的速度通常以功耗為代價。
計數器320配置成記錄到達二極體或電阻器的X射線光子的數目。計數器320可以是軟體部件(例如,電腦記憶體中存儲的數目)或硬體部件(例如,4017 IC和7490 IC)。
控制器310可以是例如微控制器和微處理器等硬體部件。控制器310配置成 從第一電壓比較器301確定電壓的絕對值等於或超出第一閾值的絕對值(例如,電壓的絕對值從第一閾值的絕對閾值以下增加到等於或超過第一閾值的絕對值的值)的時間啟動時間延遲。在這裏因為電壓可以是負的或正的而使用絕對值,這取決於是使用二極體的陰極還是陽極的電壓或使用哪個電觸點。控制器310可配置成在第一電壓比較器301確定電壓的絕對值等於或超出第一閾值的絕對值的時間之前,保持停用第二電壓比較器302、計數器320和第一電壓比較器301的操作不需要的任何其他電路。時間延遲可在電壓變穩定(即,電壓的變化率大致為零)之前或之後終止。短語“電壓的變化率大致為零”意指電壓的時間變化小於0.1%/ns。短語“電壓的變化率大致為非零”意指電壓的時間變化是至少0.1%/ns。
控制器310可配置成在時間延遲期間(其包括開始和終止)啟動第二電壓比較器。在實施例中,控制器310配置成在時間延遲開始時啟動第二電壓比較器。術語“啟動”意指促使部件進入操作狀態(例如,通過發送例如電壓脈衝或邏輯電平等信號、通過提供電力等)。術語“停用”意指促使部件進入非操作狀態(例如,通過發送例如電壓脈衝或邏輯電平等信號、通過切斷電力等)。操作狀態可具有比非操作狀態更高的功耗(例如,高10倍、高100倍、高1000倍)。控制器310本身可被停用直到第一電壓比較器301的輸出在電壓的絕對值等於或超出第一閾值的絕對值時才啟動控制器310。
如果在時間延遲期間第二電壓比較器302確定電壓的絕對值等於或超出第二關值的絕對值,控制器310可配置成促使計數器320記錄的數目增加一。
控制器310可配置成促使電壓表306在時間延遲終止時測量電壓。控制器310可配置成使電極連接到電接地,以便使電壓重定並且使電極上累積的任何載 荷子放電。在實施例中,電極在時間延遲終止後連接到電接地。在實施例中,電極在有限複位時期連接到電接地。控制器310可通過控制開關305而使電極連接到電接地。開關可以是電晶體,例如場效應電晶體(FET)。
在實施例中,系統121沒有模擬濾波器網路(例如,RC網路)。在實施例中,系統121沒有模擬電路。
電壓表306可將它測量的電壓作為模擬或數字信號饋送給控制器310。
系統121可包括電容器模組309,其電連接到二極體300的電極或電觸點,其中電容器模組配置成從電極收集載荷子。電容器模組可以包括放大器的回饋路徑中的電容器。如此配置的放大器叫作電容跨阻放大器(CTIA)。CTIA通過防止放大器飽和而具有高的動態範圍並且通過限制信號路徑中的帶寬來提高信噪比。來自電極的載荷子在一段時間(“整合期”)(例如,如在圖17中示出的,在t0至t1或t1-t2之間)內在電容器上累積。在整合期終止後,對電容器電壓採樣並且然後由重定開關將其重定。電容器模組可以包括直接連接到電極的電容器。
圖17示意示出由二極體或電阻器上入射的X射線光子產生的載荷子引起的流過電極的電流的時間變化(上曲線)和電極的電壓的對應時間變化(下曲線)。電壓可以是電流關於時間的整合。在時間t0,X射線光子撞擊二極體或電阻器,載荷子開始在二極體或電阻器中產生,電流開始流過二極體的電極或電阻器,並且電極或電觸點的電壓的絕對值開始增加。在時間t1,第一電壓比較器301確定電壓的絕對值等於或超出第一閾值V1的絕對值,並且控制器310啟動時間延遲TD1並且控制器310可在TD1開始時停用第一電壓比較器301。如果控制器310在t1之前被停用,在t1啟動控制器310。在TD1期間,控制器310啟動 第二電壓比較器302。如這裏使用的術語在時間延遲“期間”意指開始和終止(即,結束)和中間的任何時間。例如,控制器310可在TD1終止時啟動第二電壓比較器302。如果在TD1期間,第二電壓比較器302確定在時間t電壓的絕對值等於或超出第二閾值的絕對值,控制器310促使計數器320記錄的數目增加一。在時間te,X射線光子產生的所有載荷子漂移出X射線吸收層110。在時間ts,時間延遲TD1終止。在圖17的示例中,時間ts在時間te之後;即TD1在X射線光子產生的所有載荷子漂移出X射線吸收層110之後終止。電壓的變化率從而在ts大致為零。控制器310可配置成在TD1終止時或在t2或中間的任何時間停用第二電壓比較器302。
控制器310可配置成促使電壓表306在時間延遲TD1終止時測量電壓。在實施例中,在電壓的變化率在時間延遲TD1終止後大致變為零之後,控制器310促使電壓表306測量電壓。該時刻的電壓與X射線光子產生的載荷子的數量成正比,該數量與X射線光子的能量有關。控制器310可配置成基於電壓表306測量的電壓確定X射線光子的能量。確定能量的一個方式是通過使電壓裝倉。計數器320對於每個倉可具有子計數器。在控制器310確定X射線光子的能量落在倉中時,控制器310可促使對於該倉的子計數器中記錄的數目增加一。因此,系統121可能夠檢測X射線圖像並且可能夠分辨每個X射線光子的X射線光子能量。
在TD1終止後,控制器310在複位期RST使電極連接到電接地以允許電極上累積的載荷子流到地面並且使電壓重定。在RST之後,系統121準備檢測另一個入射X射線光子。系統121在圖17的示例中可以應對的入射X射線光子的速率隱式地受限於1/(TD1+RST)。如果第一電壓比較器301被停用,控制器310可以在RST終止之前的任何時間啟動它。如果控制器310被停用,可在RST終 止之前啟動它。
圖18示意示出在採用圖17中示出的方式操作的系統121中雜訊(例如,暗電流、背景輻射、散射X射線、螢光X射線、來自相鄰像素的共用電荷)引起的流過電極的電流的時間變化(上曲線)和電極的電壓的對應時間變化(下曲線)。在時間t0,雜訊開始。如果雜訊未大到足以促使電壓的絕對值超出V1的絕對值,控制器310未啟動第二電壓比較器302。如果在時間t1雜訊大到足以促使電壓的絕對值超出如由第一電壓比較器301確定的V1的絕對值,控制器310啟動時間延遲TD1並且控制器310可在TD1開始時停用第一電壓比較器301。在TD1期間(例如,在TD1終止時),控制器310啟動第二電壓比較器302。在TD1期間,雜訊不太可能大到足以促使電壓的絕對值超出V2的絕對值。因此,控制器310未促使計數器320記錄的數目增加。在時間te,雜訊結束。在時間ts,時間延遲TD1終止。控制器310可配置成在TD1終止時停用第二電壓比較器302。如果在TD1期間電壓的絕對值未超出V2的絕對值,控制器310可配置成未促使電壓表306測量電壓。在TD1終止後,控制器310在複位期RST使電極連接到電接地以允許電極上由於雜訊而累積的載荷子流到地面並且使電壓重定。因此,系統121在雜訊抑制方面可非常有效。
圖19示意示出在系統121操作來檢測處於比1/(TD1+RST)更高速率的入射X射線光子時由二極體或電阻器上入射的X射線光子產生的載荷子所引起的流過電極的電流的時間變化(上曲線)和電極的電壓的對應時間變化(下曲線)。電壓可以是電流關於時間的整合。在時間t0,X射線光子撞擊二極體或電阻器,載荷子開始在二極體或電阻器中產生,電流開始流過二極體的電極或電阻器的電觸點,並且電極或電觸點的電壓的絕對值開始增加。在時間t1,第一電壓比較器301確定電壓的絕對值等於或超出第一閾值V1的絕對值,並且控制器310 啟動比時間延遲TD1還短的時間延遲TD2,並且控制器310可在TD2開始時停用第一電壓比較器301。如果控制器310在t1之前被停用,在t1啟動控制器310。在TD2期間(例如,在TD2終止時),控制器310啟動第二電壓比較器302。如果在TD2期間,第二電壓比較器302確定在時間t2電壓的絕對值等於或超出第二閾值的絕對值,控制器310促使計數器320記錄的數目增加一。在時間te,X射線光子產生的所有載荷子漂移出X射線吸收層110。在時間th,時間延遲TD2終止。在圖19的示例中,時間th在時間te之前;即TD2在X射線光子產生的所有載荷子漂移出X射線吸收層110之前終止。電壓的變化率從而在th大致為非零。控制器310可配置成在TD2終止時或在t2或中間的任何時間停用第二電壓比較器302。
控制器310可配置成從在TD2期間作為時間函數的電壓推斷在te的電壓並且使用推斷的電壓來確定X射線光子的能量。
在TD2終止後,控制器310在複位期RST使電極連接到電接地以允許電極上累積的載荷子流到地面並且使電壓重定。在實施例中,RST在te之前終止。當RST在te之前終止時,RST後電壓的變化率可因為X射線光子產生的所有載荷子未漂移出X射線吸收層110而大致為非零。電壓的變化率在te後大致變為零並且電壓在te後穩定為殘餘電壓VR。在實施例中,RST在te或te之後終止,並且RST後電壓的變化率可因為X射線光子產生的所有載荷子在te漂移出X射線吸收層110而大致為零。在RST後,系統121準備檢測另一個入射X射線光子。如果第一電壓比較器301被停用,控制器310可以在RST終止之前的任何時間啟動它。如果控制器310被停用,可在RST終止之前啟動它。
圖20示意示出在採用圖19中示出的方式操作的系統121中雜訊(例如,暗 電流、背景輻射、散射X射線、螢光X射線、來自相鄰像素的共用電荷)引起的流過電極的電流的時間變化(上曲線)和電極的電壓的對應時間變化(下曲線)。在時間t0,雜訊開始。如果雜訊未大到足以促使電壓的絕對值超出V1的絕對值,控制器310未啟動第二電壓比較器302。如果在時間t1雜訊大到足以促使電壓的絕對值超出如由第一電壓比較器301確定的V1的絕對值,控制器310啟動時間延遲TD2並且控制器310可在TD2開始時停用第一電壓比較器301。在TD2期間(例如,在TD2終止時),控制器310啟動第二電壓比較器302。在TD2期間雜訊不太可能大到足以促使電壓的絕對值超出V2的絕對值。因此,控制器310未促使計數器320記錄的數目增加。在時間te,雜訊結束。在時間th,時間延遲TD2終止。控制器310可配置成在TD2終止時停用第二電壓比較器302。在TD2終止後,控制器310在複位期RST使電極連接到電接地以允許電極上由於雜訊而累積的載荷子流到地面並且使電壓重定。因此,系統121在雜訊抑制方面可非常有效。
圖21示意示出在採用圖19中示出的方式(其中RST在te之前終止)操作的系統121中由二極體或電阻器上入射的一系列X射線光子產生的載荷子所引起的流過電極的電流的時間變化(上曲線)和電極電壓的對應時間變化(下曲線)。由每個入射X射線光子產生的載荷子引起的電壓曲線在該光子之前偏移了殘餘電壓。殘餘電壓的絕對值隨每個入射光子而依次增加。當殘餘電壓的絕對值超出V1時(參見圖21中的虛線矩形),控制器啟動時間延遲TD2並且控制器310可在TD2開始時停用第一電壓比較器301。如果在TD2期間在二極體或電阻器上沒有其他X射線光子入射,控制器在TD2結束時在複位時期RST期間使電極連接到電接地,由此使殘餘電壓重定。殘餘電壓從而未促使計數器320記錄的數目增加。
儘管本文公開各種方面和實施例,其他方面和實施例對於本領域內技術人員將變得明顯。本文公開的各種方面和實施例是為了說明目的而不意在為限制性的,其真正範圍和精神由下列權利要求指示。

Claims (23)

  1. 一種適合於檢測x射線的裝置,其包括:X射線吸收層,其配置成從所述X射線吸收層上入射的X射線光子生成電信號;電子層,其包括電子系統,所述電子系統配置成處理或解釋電信號;其中所述X射線吸收層和所述電子層中的至少一個嵌入電絕緣材料的板中。
  2. 如申請專利範圍第1項之裝置,其中所述電絕緣層是樹脂、玻璃纖維、塑膠或陶瓷。
  3. 如申請專利範圍第1項之裝置,其中所述板是柔性的。
  4. 如申請專利範圍第1項之裝置,其中所述電子層嵌入所述板中。
  5. 如申請專利範圍第4項之裝置,其中所述板包括電連接到所述電子系統的通孔。
  6. 如申請專利範圍第5項之裝置,其中所述X射線吸收層包括電觸點;其中所述X射線吸收層接合到所述板使得所述電觸點電連接到所述通孔並且通過所述通孔電連接到所述電子系統。
  7. 如申請專利範圍第5項之裝置,其中所述板包括第一傳輸線,其電連接所述通孔中的至少兩個。
  8. 如申請專利範圍第5項之裝置,其中所述板包括第二傳輸線,其電連接到所述通孔中的至少一個。
  9. 如申請專利範圍第1項之裝置,其中所述X射線吸收層嵌入所述板中。
  10. 如申請專利範圍第9項之裝置,其中所述X射線吸收層包括電觸點;其中所述板包括電連接到所述電觸點的通孔。
  11. 如申請專利範圍第10項之裝置,其中所述電子層接合到所述板使得所述電子系統電連接到所述通孔並且通過所述通孔電連接到所述電觸點。
  12. 如申請專利範圍第10項之裝置,其中所述板包括第一傳輸線,其電連接所述通孔中的至少兩個。
  13. 如如申請專利範圍第10項之裝置,其中所述板包括第二傳輸線,其電連接到所述通孔中的至少一個。
  14. 如申請專利範圍第1項之裝置,其中所述X射線吸收層包括傳輸線。
  15. 如申請專利範圍第1項之裝置,其中所述X射線吸收層包括電極;其中所述電子系統包括:第一電壓比較器,其配置成將所述電極的電壓與第一閾值比較;第二電壓比較器,其配置成將所述電壓與第二閾值比較;計數器,其配置成記錄到達所述X射線吸收層的X射線光子的數目;控制器;其中所述控制器配置成從所述第一電壓比較器確定電壓的絕對值等於或超出第一閾值的絕對值的時間啟動時間延遲;其中所述控制器配置成在所述時間延遲期間啟動所述第二電壓比較器;其中所述控制器配置成如果所述第二電壓比較器確定所述電壓的絕對值等 於或超出所述第二閾值的絕對值則促使所述計數器記錄的數目增加一。
  16. 如申請專利範圍第15項之裝置,其中所述電子系統進一步包括電容器模組,其電連接到所述電極,其中所述電容器模組配置成從所述電極收集載荷子。
  17. 如申請專利範圍第15項之裝置,其中所述控制器配置成在所述時間延遲開始或終止時啟動所述第二電壓比較器。
  18. 如申請專利範圍第15項之裝置,其中所述電子系統進一步包括電壓表,其中所述控制器配置成在所述時間延遲終止時促使所述電壓表測量所述電壓。
  19. 如申請專利範圍第18項之裝置,其中所述控制器配置成基於在所述時間延遲終止時測量的電壓值確定X射線光子能量。
  20. 如申請專利範圍第15項之裝置,其中所述控制器配置成使所述電極連接到電接地。
  21. 如申請專利範圍第15項之裝置,其中所述電壓變化率在所述時間延遲終止時大致為零。
  22. 如申請專利範圍第15項之裝置,其中所述電壓變化率在所述時間延遲終止時大致為非零。
  23. 如申請專利範圍第1項之裝置,其中所述第一X射線吸收層包括二極體。
TW106132510A 2016-09-23 2017-09-22 半導體x射線檢測器的封裝 TWI747957B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
??PCT/CN2016/099800 2016-09-23
WOPCT/CN2016/099800 2016-09-23
PCT/CN2016/099800 WO2018053774A1 (en) 2016-09-23 2016-09-23 Packaging of semiconductor x-ray detectors

Publications (2)

Publication Number Publication Date
TW201821828A true TW201821828A (zh) 2018-06-16
TWI747957B TWI747957B (zh) 2021-12-01

Family

ID=61690731

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106132510A TWI747957B (zh) 2016-09-23 2017-09-22 半導體x射線檢測器的封裝

Country Status (5)

Country Link
US (3) US10677941B2 (zh)
EP (1) EP3516425B1 (zh)
CN (1) CN109661595B (zh)
TW (1) TWI747957B (zh)
WO (1) WO2018053774A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3341756A4 (en) * 2015-08-27 2019-05-22 Shenzhen Xpectvision Technology Co., Ltd. X-RAY IMAGING WITH A DETECTOR LIKELY TO RESOLVE PHOTONIC ENERGY
CN109416406B (zh) * 2016-07-05 2023-06-20 深圳帧观德芯科技有限公司 具有不同热膨胀系数的接合材料
CN114788001A (zh) * 2022-01-04 2022-07-22 苏州帧观智造科技有限公司 多层图像传感器

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5245191A (en) * 1992-04-14 1993-09-14 The Board Of Regents Of The University Of Arizona Semiconductor sensor for gamma-ray tomographic imaging system
MX9704632A (es) * 1994-12-23 1998-02-28 Digirad Camara semiconductora de rayos gama y sistema medico de formacion de imagenes.
DE10136756C2 (de) * 2001-07-27 2003-07-31 Siemens Ag Röntgendiagnostikeinrichtung mit einem flexiblen Festkörper-Röntgendetektor
JP2003084067A (ja) * 2001-09-10 2003-03-19 Hitachi Medical Corp X線検出器及びこれを用いたx線ct装置
US7868665B2 (en) * 2002-03-05 2011-01-11 Nova R&D, Inc. Integrated circuit and sensor for imaging
FI20021255A (fi) * 2002-06-27 2003-12-28 Metorex Internat Oy Suoraan konversioon perustuva kuvaava röntgendetektori
JP2004037204A (ja) * 2002-07-02 2004-02-05 Hamamatsu Photonics Kk X線検出器及びこれを備えた検査システム
US7078702B2 (en) * 2002-07-25 2006-07-18 General Electric Company Imager
US7477727B1 (en) * 2006-01-26 2009-01-13 Karl Adolf Malashanko Digital X-ray image detector array
US7569832B2 (en) * 2006-07-14 2009-08-04 Carestream Health, Inc. Dual-screen digital radiographic imaging detector array
US7488946B2 (en) * 2006-10-03 2009-02-10 General Electric Company Digital x-ray detectors
CN101254108A (zh) * 2007-03-02 2008-09-03 通用电气公司 轻质坚固的数字x射线探测器
US20080296708A1 (en) * 2007-05-31 2008-12-04 General Electric Company Integrated sensor arrays and method for making and using such arrays
EP2088451B1 (en) * 2008-02-05 2016-01-06 PANalytical B.V. Imaging detector
CN101577284B (zh) * 2008-05-09 2011-04-13 同方威视技术股份有限公司 用于测量辐射的半导体探测器及成像装置
JP2011044717A (ja) * 2009-08-20 2011-03-03 Icemos Technology Ltd 直接ウエハ接合貫通孔フォトダイオード
DE102009055807B4 (de) * 2009-11-26 2016-11-24 Siemens Healthcare Gmbh Schaltungsanordnung zur Zählung von Röntgenquanten einer Röntgenstrahlung mittels quantenzählender Detektoren sowie anwendungsspezifische integrierte Schaltung und Strahler-Detektor-System
JP4982619B1 (ja) * 2011-07-29 2012-07-25 富士フイルム株式会社 半導体素子の製造方法及び電界効果型トランジスタの製造方法
DE102012215818A1 (de) * 2012-09-06 2014-03-06 Siemens Aktiengesellschaft Strahlungsdetektor und Verfahren zur Herstellung eines Strahlungsdetektors
US20140321601A1 (en) * 2013-04-26 2014-10-30 Texas Instruments Incorporated Active shield for x-ray computed tomography machine
KR20140132098A (ko) * 2013-05-07 2014-11-17 삼성전자주식회사 엑스선 검출기, 이를 포함하는 엑스선 영상 장치 및 그 제어 방법
CN104218045A (zh) * 2013-06-05 2014-12-17 朱兴华 碘化铅光电导层基数字x射线平板探测器
US9519069B2 (en) * 2013-09-06 2016-12-13 General Electric Company Precision self-aligning CT detector sensors
US20160148965A1 (en) * 2014-09-30 2016-05-26 James E. Clayton Detector assembly using vertical wire bonds and compression decals
EP3143430B1 (en) * 2014-10-31 2018-01-10 Koninklijke Philips N.V. Sensor device and imaging system for detecting radiation signals
US10007009B2 (en) * 2015-04-07 2018-06-26 Shenzhen Xpectvision Technology Co., Ltd. Semiconductor X-ray detector

Also Published As

Publication number Publication date
CN109661595A (zh) 2019-04-19
EP3516425A1 (en) 2019-07-31
US11353601B2 (en) 2022-06-07
US20190049603A1 (en) 2019-02-14
CN109661595B (zh) 2023-05-30
TWI747957B (zh) 2021-12-01
US20200241155A1 (en) 2020-07-30
EP3516425A4 (en) 2020-03-18
US11774609B2 (en) 2023-10-03
US10677941B2 (en) 2020-06-09
WO2018053774A1 (en) 2018-03-29
US20220268949A1 (en) 2022-08-25
EP3516425B1 (en) 2021-05-19

Similar Documents

Publication Publication Date Title
TWI632391B (zh) Semiconductor X-ray detector
TWI676814B (zh) 製作半導體x射線檢測器的方法
TWI776834B (zh) 具有x射線檢測器的圖像傳感器
TWI753861B (zh) 半導體x射線檢測器的封裝方法
TWI744385B (zh) 半導體x射線檢測器的封裝
TWI714672B (zh) 半導體x射線檢測器的封裝方法
TWI757342B (zh) 具有多層半導體x射線檢測器的系統
TW201828463A (zh) 製作半導體x射線檢測器的方法
US11774609B2 (en) Packaging of semiconductor x-ray detectors
JP2020008587A (ja) 半導体x線検出器の製造方法