TW201817035A - Light-emitting element and method for manufacturing light-emitting element - Google Patents

Light-emitting element and method for manufacturing light-emitting element Download PDF

Info

Publication number
TW201817035A
TW201817035A TW106129758A TW106129758A TW201817035A TW 201817035 A TW201817035 A TW 201817035A TW 106129758 A TW106129758 A TW 106129758A TW 106129758 A TW106129758 A TW 106129758A TW 201817035 A TW201817035 A TW 201817035A
Authority
TW
Taiwan
Prior art keywords
substrate
light
layer
transparent
film
Prior art date
Application number
TW106129758A
Other languages
Chinese (zh)
Other versions
TWI693725B (en
Inventor
石崎順也
Original Assignee
日商信越半導體股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商信越半導體股份有限公司 filed Critical 日商信越半導體股份有限公司
Publication of TW201817035A publication Critical patent/TW201817035A/en
Application granted granted Critical
Publication of TWI693725B publication Critical patent/TWI693725B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C15/00Surface treatment of glass, not in the form of fibres or filaments, by etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/22Roughened surfaces, e.g. at the interface between epitaxial layers

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

The present invention pertains to a light-emitting element having a transparent substrate bonded to a light-extraction surface side thereof, the light-emitting element being characterized in that a transparent film, having a refractive index lower than that of the transparent substrate, is provided on the outer surface on the light-extraction surface side of the transparent substrate, and the outer surface of the transparent film is roughened. Consequently, there is provided: the light-emitting element formed by bonding the transparent substrate, wherein a light distribution angle is increased and a luminous efficiency is increased; and a method for manufacturing the light-emitting element.

Description

發光元件及發光元件的製造方法Light-emitting element and manufacturing method of light-emitting element

本發明係關於貼合有透明基板的發光元件及其製造方法。The present invention relates to a light-emitting element to which a transparent substrate is bonded and a manufacturing method thereof.

在由AlGaInP所構成的發光元件之中,揭載有單面二電極的形狀之發光元件。在如此形狀的發光元件之中,發光角度分為窄的用途及廣的用途,而在發光角度為廣的用途的情況下,於光提取面設置粗糙面係為必要。Among the light-emitting elements made of AlGaInP, a light-emitting element having a shape of one electrode and two electrodes was exposed. Among the light-emitting elements having such a shape, a light emission angle is divided into a narrow application and a wide application. In a case where the light emission angle is wide, it is necessary to provide a rough surface on the light extraction surface.

雖然專利文獻1揭載:於設置於玻璃基板上的ITO上將發光元件予以接合,且將玻璃基板予以表面粗糙化的技術,但是此技術是因為有對基材為藍寶石的基材難以設置粗糙面的緣故。Although Patent Document 1 discloses a technology for bonding light-emitting elements on ITO provided on a glass substrate and roughening the surface of the glass substrate, this technology is because it is difficult to provide a rough substrate for a sapphire substrate. Surface sake.

另一方面,專利文獻2揭載了在具有單面二電極形狀的發光元件之中,直接於基材側設置粗糙面的方法。此係選擇了能於基材設置粗糙面的材料的緣故。雖然作為能表面粗糙化的材料,以能蝕刻的材料GaP形成,但是GaP結晶不論是選擇磊晶成長還是選擇塊狀基板,皆難以大口徑化,而為不適用於製作大型的發光元件的技術。On the other hand, Patent Document 2 discloses a method of providing a rough surface directly on a substrate side in a light-emitting element having a single-sided two-electrode shape. This is the reason for choosing a material that can provide a rough surface on the substrate. Although it can be made of GaP, which can be etched as a material that can roughen the surface, it is difficult to make GaP crystals large in diameter regardless of epitaxial growth or block substrates, and it is not suitable for the production of large-scale light-emitting devices. .

另一方面,專利文獻3揭載了將透明基板予以接合的技術。此手法,由於為不論接合的基材的材質,故能大口徑化。 [先前技術文獻] [專利文獻]On the other hand, Patent Document 3 discloses a technique of bonding transparent substrates. Since this method is irrespective of the material of the base material to be joined, it can be made larger in diameter. [Prior Art Literature] [Patent Literature]

[專利文獻1]日本特許5372766號 [專利文獻2]國際公開第2016/072050號 [專利文獻3]日本特開2008-205468號公報[Patent Document 1] Japanese Patent No. 5372766 [Patent Document 2] International Publication No. 2016/072050 [Patent Document 3] Japanese Patent Laid-Open No. 2008-205468

[發明所欲解決之問題] 但是,透明基板的材料中,低價地獲得的材料為氧化物,然而作為能通過半導體步驟的程度的加工精密度的基板材料,則限定於藍寶石基板。但是,藍寶石基板為難蝕刻材料,而有難以藉由濕式蝕刻法得到粗糙面的問題。[Problems to be Solved by the Invention] Among the materials of the transparent substrate, oxides are obtained at a low price. However, as a substrate material capable of processing precision to the extent that it can pass a semiconductor step, it is limited to a sapphire substrate. However, the sapphire substrate is a difficult-to-etch material, and there is a problem that it is difficult to obtain a rough surface by a wet etching method.

鑑於如同上述的問題,本發明的目的在於提供在將透明基板接合而形成的發光元件之中,發光角度的增大及發光效率的增大的發光元件及發光元件的製造方法。 [解決問題之技術手段]In view of the problems as described above, an object of the present invention is to provide a light-emitting element and a method for manufacturing a light-emitting element in which light-emitting elements are formed by joining transparent substrates with an increased light emission angle and an increased light-emitting efficiency. [Technical means to solve problems]

為了達成上述目的,根據本發明而提供一種發光元件,係於光提取面之側予以貼合一透明基板,其中於該透明基板的該光提取面之側的表面係設置有一透明膜,該透明膜的折射率低於該透明基板,且該透明膜的表面係經表面粗糙化。In order to achieve the above object, according to the present invention, a light-emitting element is provided. A transparent substrate is attached to a side of a light extraction surface, and a transparent film is disposed on a surface of the transparent substrate on a side of the light extraction surface. The refractive index of the film is lower than that of the transparent substrate, and the surface of the transparent film is surface roughened.

如此一來,由於透明膜的表面係為經表面粗糙化的緣故,不論透明基板的材質,能為有發光角度的增大及發光效率的增大的發光元件。藉由更低折射率材料被形成於光提取面而產生全反射角,能更提高發光效率。In this way, since the surface of the transparent film is surface-roughened, regardless of the material of the transparent substrate, it can be a light-emitting element having an increased light emission angle and an increased light emission efficiency. Since a lower refractive index material is formed on the light extraction surface to generate a total reflection angle, the luminous efficiency can be further improved.

此時,該透明基板為藍寶石基板,該透明膜為SiO2 膜為佳。At this time, the transparent substrate is a sapphire substrate, and the transparent film is preferably a SiO 2 film.

如此一來,能於透明基板合適地使用藍寶石基板,於透明膜合適地使用SiO2 膜。In this way, a sapphire substrate can be suitably used for the transparent substrate, and a SiO 2 film can be suitably used for the transparent film.

再者,根據本發明而提供一種發光元件的製造方法,該發光元件係於光提取面之側予以貼合一透明基板,其中該製造方法係於該透明基板的該光提取面之側的表面予以積層一透明膜,該透明膜的折射率低於該透明基板,以及將經積層的該透明膜的表面藉由化學處理的磨砂加工而表面粗糙化處理。Furthermore, according to the present invention, there is provided a method for manufacturing a light-emitting element. The light-emitting element is bonded to a transparent substrate on a side of a light extraction surface, and the manufacturing method is on a surface on a side of the light extraction surface of the transparent substrate. A transparent film is laminated, the refractive index of the transparent film is lower than that of the transparent substrate, and the surface of the laminated transparent film is surface roughened by chemically-treated matte processing.

如此一來,無關乎透明基板的材質而容易將表面表面粗糙化,能較容易製造有發光角度的增大及發光效率的增大的發光元件。藉由更低折射率材料被形成於光提取面而產生全反射角,能製造發光效率更高的發光元件。In this way, it is easy to roughen the surface regardless of the material of the transparent substrate, and it is easier to manufacture a light-emitting element having an increased light emission angle and an increased light emission efficiency. Since a lower refractive index material is formed on the light extraction surface to generate a total reflection angle, a light emitting element with higher light emitting efficiency can be manufactured.

此時,該透明基板為藍寶石基板,該透明膜為SiO2 膜為佳。At this time, the transparent substrate is a sapphire substrate, and the transparent film is preferably a SiO 2 film.

如此一來,作為透明基板,使用難以由化學處理的磨砂加工的材料的藍寶石基板,藉由使透明膜為SiO2 膜,能容易對透明膜的表面進行由化學處理的磨砂加工。In this way, as the transparent substrate, a sapphire substrate using a material that is difficult to be chemically processed by frosting is used. By making the transparent film a SiO 2 film, the surface of the transparent film can be easily processed by chemically frosting.

再者此時,該磨砂加工係藉由以氟酸與一價至四價的無機酸或有機酸經混合的液體而蝕刻處理,而將該透明膜的表面予以表面粗糙化處理為佳。Furthermore, at this time, the matte processing is preferably a surface roughening treatment of the surface of the transparent film by an etching treatment with a mixed liquid of a fluoric acid and a monovalent to tetravalent inorganic acid or organic acid.

若為如此的方法,能確實地表面粗糙化處理透明膜的表面。With such a method, the surface of the transparent film can be reliably roughened.

再者此時,作為該無機酸,係使用硫酸、鹽酸及磷酸中至少一種,作為該有機酸,係使用丙二酸、醋酸、檸檬酸及酒石酸中至少一種為佳。In this case, as the inorganic acid, at least one of sulfuric acid, hydrochloric acid, and phosphoric acid is used, and as the organic acid, at least one of malonic acid, acetic acid, citric acid, and tartaric acid is preferably used.

作為無機酸或有機酸,使用如同上述之物,能更確實地於透明膜的表面形成凹凸。As the inorganic acid or the organic acid, as described above, unevenness can be more reliably formed on the surface of the transparent film.

〔對照先前技術之功效〕 本發明的發光元件,由於透明膜的表面經表面粗糙化的緣故,無關乎透明基板的材質,能為有發光角度的增大及發光效率的增大的發光元件。藉由更低折射率材料被形成於光提取面而產生全反射角,能更提高發光效率。然後,根據本發明,能採用低價且加工精密度高的藍寶石基板作為透明基板。[Contrast with the effect of the prior art] The light-emitting element of the present invention can be a light-emitting element having an increase in light emission angle and an increase in light emission efficiency, regardless of the material of the transparent substrate, because the surface of the transparent film is surface roughened. Since a lower refractive index material is formed on the light extraction surface to generate a total reflection angle, the luminous efficiency can be further improved. Then, according to the present invention, a sapphire substrate having a low cost and high processing accuracy can be used as the transparent substrate.

再者,根據本發明的發光元件的製造方法,無關乎透明基板的材質而容易將表面表面粗糙化,能較容易地製造有發光角度的增大及發光效率的增大的發光元件。藉由更低折射率材料被形成於光提取面而產生全反射角,能製造發光效率更高的發光元件。Furthermore, according to the method for manufacturing a light-emitting element of the present invention, it is easy to roughen the surface surface regardless of the material of the transparent substrate, and a light-emitting element having an increased light emission angle and an increased light emission efficiency can be easily manufactured. Since a lower refractive index material is formed on the light extraction surface to generate a total reflection angle, a light emitting element with higher light emitting efficiency can be manufactured.

以下,說明關於本發明的實施樣貌,但是本發明並非限定於此。Hereinafter, embodiments of the present invention will be described, but the present invention is not limited thereto.

如同上述,藍寶石基板係為難蝕刻材料,而有難以藉由濕式蝕刻的方法得到粗糙表面的問題。As described above, the sapphire substrate is a difficult-to-etch material, and there is a problem that it is difficult to obtain a rough surface by a wet etching method.

於此,本發明人為了解決如此的問題而反覆努力檢討。其結果想到:在於光提取面之側貼合有透明基板的發光元件之中,於透明基板的光提取面之側的表面,設置折射率低於透明基板的透明膜,當該透明膜的表面為表面粗糙化之物,無關於透明基板的材質,能為有發光角度的增大及發光效率的增大的發光元件,更進一步藉由使低折射率材料形成於光提取面之側而產生全反射角,而能更提高發光效率。然後,對用於實施這些的最佳的形態進行精密的查驗,而完成了本發明。Here, the present inventors have repeatedly reviewed to solve such problems. As a result, it is thought that a transparent film having a refractive index lower than that of the transparent substrate is provided on the surface of the light extraction surface of the transparent substrate among light emitting elements with a transparent substrate bonded to the light extraction surface. When the surface of the transparent film is It is a roughened surface, regardless of the material of the transparent substrate. It can be a light-emitting element with an increase in light emission angle and an increase in light emission efficiency. It is further produced by forming a low refractive index material on the side of the light extraction surface. Total reflection angle, which can further improve luminous efficiency. Then, the best mode for carrying out these was precisely examined, and the present invention was completed.

[第一實施樣貌] 第1圖顯示了本發明的發光元件的第一實施樣貌。如第1圖所示,本發明的第一實施樣貌中的發光元件100於光提取面115之側貼合有透明基板110。再者,發光元件100於透明基板110的光提取面115之側的表面設置有折射率低於透明基板110的透明膜180,該透明膜180的表面係經表面粗糙化之物。粗糙面的粗糙度為Ra(算術平均粗糙度)=0.3μm以上為佳。[First Embodiment] FIG. 1 shows the first embodiment of the light-emitting element of the present invention. As shown in FIG. 1, a light-emitting element 100 according to a first embodiment of the present invention has a transparent substrate 110 bonded to a side of a light extraction surface 115. Furthermore, a transparent film 180 having a refractive index lower than that of the transparent substrate 110 is provided on the surface of the light emitting element 100 on the light extraction surface 115 of the transparent substrate 110, and the surface of the transparent film 180 is a surface roughened material. The roughness of the rough surface is preferably Ra (arithmetic average roughness) = 0.3 μm or more.

此時,能合適地使用表面形成有例如由SiO2 所構成的透明膜180的例如由藍寶石所構成的透明基板110。再者,於透明基板110的與透明膜180為相反側能形成有例如由SiO2 所構成的厚度100nm程度的第二介電質膜121。In this case, a transparent substrate 110 made of, for example, sapphire, on which a transparent film 180 made of, for example, SiO 2 is formed on the surface can be suitably used. In addition, a second dielectric film 121 having a thickness of approximately 100 nm made of, for example, SiO 2 can be formed on the transparent substrate 110 on the side opposite to the transparent film 180.

如同上述,透明膜180的表面經表面粗糙化,形成有凹凸。再者,透明膜180使用了折射率低於透明基板110的材料。如此一來,當設置折射率低於透明基板110的透明膜180,且於該透明膜180的表面形成有凹凸,無關於透明基板110的材質而容易地將表面粗糙化,能為有發光角度的增大及發光效率的增大的發光元件。再者,藉由低折射率材料被形成於光提取面115之側而產生全反射角,能更提高發光效率。As described above, the surface of the transparent film 180 is roughened to form irregularities. The transparent film 180 uses a material having a lower refractive index than the transparent substrate 110. In this way, when a transparent film 180 having a refractive index lower than that of the transparent substrate 110 is provided, and unevenness is formed on the surface of the transparent film 180, the surface can be easily roughened regardless of the material of the transparent substrate 110, and can have a light emitting angle. And a light-emitting element having an increased light emission efficiency. Moreover, a low-refractive-index material is formed on the side of the light extraction surface 115 to generate a total reflection angle, which can further improve the luminous efficiency.

再者,能為於第二介電質膜121表面形成有透明接著層125之物。此透明接著層125能為例如由第一接著層125A及第二接著層125B的複數層所形成之物。更進一步,於此透明接著層125形成有例如由SiO2 所構成且厚度100nm程度的第一介電質膜120,於第一介電質膜120的表面能以0.5~20μm的厚度形成有例如由AlGaAs、GaAsP、GaP等所構成的電流傳播層107。In addition, the transparent adhesive layer 125 can be formed on the surface of the second dielectric film 121. The transparent adhesive layer 125 can be formed of a plurality of layers of the first adhesive layer 125A and the second adhesive layer 125B, for example. Furthermore, the transparent adhesive layer 125 is formed with a first dielectric film 120 made of, for example, SiO 2 and having a thickness of about 100 nm. The surface of the first dielectric film 120 can be formed with a thickness of 0.5 to 20 μm, for example. A current propagation layer 107 made of AlGaAs, GaAsP, GaP, or the like.

再者,能為於電流傳播層107的表面的一部分(第二面)形成有第二電極151,於未形成有第二電極151的區域(第一面)形成有緩衝層106之物。In addition, the second electrode 151 may be formed on a part (second surface) of the surface of the current propagation layer 107, and the buffer layer 106 may be formed in a region (first surface) where the second electrode 151 is not formed.

第二電極151,在第二導電型為n型的情況,至少含有Au、Ag、Al、Ni、Pd、Ge、Si及Sn之中至少一種類以上的材料,具有100nm以上的膜厚度。在第二導電型為p型的情況,至少含有Au、Be、Mg及Zn之中至少一種類以上的材料,具有100nm以上的膜厚度。When the second electrode 151 is n-type, the second electrode 151 contains at least one or more materials selected from Au, Ag, Al, Ni, Pd, Ge, Si, and Sn, and has a film thickness of 100 nm or more. When the second conductivity type is a p-type, it contains at least one type of material of at least one of Au, Be, Mg, and Zn, and has a film thickness of 100 nm or more.

能於電流傳播層107的表面形成有用於緩和晶格不匹配的緩衝層106。此時,以GaAsx P1-x (0≦x<1)形成電流傳播層107的情況,緩衝層106以InGaP或AlInP形成者為最合適。由於GaAsx P1-x (x≠1)與AlGaInP系材料或AlGaAs系材料之間存在晶格不匹配的緣故,於GaAsx P1-x (x≠1)有高密度的應變及貫穿差排。貫穿差排密度根據組成x而能調整。A buffer layer 106 for reducing lattice mismatch can be formed on the surface of the current propagation layer 107. In this case, when the current propagation layer 107 is formed with GaAs x P 1-x (0 ≦ x <1), the buffer layer 106 is most preferably formed of InGaP or AlInP. Due to the lattice mismatch between GaAs x P 1-x (x ≠ 1) and AlGaInP-based materials or AlGaAs-based materials, GaAs x P 1-x (x ≠ 1) has high density strain and penetration difference. row. The through-drain density can be adjusted according to the composition x.

能於緩衝層106的表面形成有由AlGaInP或AlGaAs所構成且厚度為0.5~1.0μm的第二半導體層105。能於其表面形成有厚度為0.1~10μm的活性層104。此活性層104能為因應發光波長,以(Alx Ga1-x )y In1-y P(0≦x≦1,0.4≦y≦0.6)或Alz Ga1-z As(0≦z≦0.45)形成之物。應用於可見光照明的情況,選擇AlGaInP為合適,應用於紅外照明的情況,選擇AlGaAs或InGaAs為合適。但是,關於活性層104的設計,由於藉由超晶格等的利用,波長能調整至起因於材料組成的波長以外,故不限於上述的材料。A second semiconductor layer 105 made of AlGaInP or AlGaAs and having a thickness of 0.5 to 1.0 μm can be formed on the surface of the buffer layer 106. An active layer 104 having a thickness of 0.1 to 10 μm can be formed on the surface. The active layer 104 can be (Al x Ga 1-x ) y In 1-y P (0 ≦ x ≦ 1, 0.4 ≦ y ≦ 0.6) or Al z Ga 1-z As (0 ≦ z ≦ 0.45). In the case of visible light illumination, AlGaInP is suitable, and in the case of infrared illumination, AlGaAs or InGaAs is appropriate. However, the design of the active layer 104 is not limited to the above-mentioned materials because the wavelength can be adjusted to a wavelength other than the wavelength due to the material composition by using a superlattice or the like.

能於活性層104的表面形成有由AlGaInP或AlGaAs所構成且厚度為0.5~1.0μm的第一半導體層103。能於第一半導體層103的表面形成有第一電極150。此時,因應必要,於第一半導體層103與第一電極150之間設置緩衝層116等的所希望的層亦可。A first semiconductor layer 103 made of AlGaInP or AlGaAs and having a thickness of 0.5 to 1.0 μm can be formed on the surface of the active layer 104. A first electrode 150 can be formed on the surface of the first semiconductor layer 103. In this case, if necessary, a desired layer such as a buffer layer 116 may be provided between the first semiconductor layer 103 and the first electrode 150.

第一電極150,在第一導電型為n型的情況,含有Au、Ag、Al、Ni、Pd、Ge、Si及Sn之中至少一種類以上的材料,具有100nm以上的膜厚度。在第一導電型為p型的情況,含有Au、Be、Mg及Zn之中至少一種類以上的材料,具有100nm以上的膜厚度。The first electrode 150, when the first conductivity type is n-type, contains at least one type of material of Au, Ag, Al, Ni, Pd, Ge, Si, and Sn, and has a film thickness of 100 nm or more. When the first conductivity type is a p-type, at least one type of material including Au, Be, Mg, and Zn is included, and the film thickness is 100 nm or more.

雖然在本實施樣貌之中,例舉了於電流傳播層107設置第二電極151的情況,但是於第二半導體層105設置第二電極151亦可。Although in the aspect of the present embodiment, the case where the second electrode 151 is provided in the current propagation layer 107 is exemplified, the second electrode 151 may be provided in the second semiconductor layer 105.

接下來,關於本發明的第一實施樣貌的發光元件的製造方法,利用第2圖至第8圖進行說明。Next, a method for manufacturing a light-emitting element according to a first embodiment of the present invention will be described with reference to FIGS. 2 to 8.

於最初,如第2圖所示,準備基板101作為起始基板。作為基板101,使用結晶軸自[001]方向朝[110]方向傾斜的基板101為佳。再者,作為基板101,能合適地使用GaAs或Ge。若基板101自上述材料選擇,由於能將後述的活性層104的材料以晶格匹配系進行磊晶成長的緣故,會易於提升活性層104的品質,能得到輝度上升及壽命特性的提升。Initially, as shown in FIG. 2, a substrate 101 is prepared as a starting substrate. As the substrate 101, it is preferable to use the substrate 101 whose crystal axis is inclined from the [001] direction to the [110] direction. In addition, as the substrate 101, GaAs or Ge can be suitably used. If the substrate 101 is selected from the above materials, since the material of the active layer 104 described later can be epitaxially grown in a lattice matching system, the quality of the active layer 104 can be easily improved, and the brightness and life characteristics can be improved.

接下來,能於基板101上,藉由磊晶成長依序形成與基板101的晶格常數大致相同的第一導電型的第一半導體層103(例如厚度為0.5~1.0μm)、活性層104(例如厚度為0.1~1.0μm)、第二導電型的第二半導體層105(例如厚度為0.5~1.0μm)、緩衝層106及電流傳播層107(例如厚度為2.0μm程度)。再者,於基板101與第一半導體層103之間,插入有基板101的除去用的選擇蝕刻層102亦可。選擇蝕刻層102係由二層以上的層構造所構成,至少具有相接於基板101的第一選擇蝕刻層102A及相接於第一半導體層103的第二選擇蝕刻層102B為佳。第一選擇蝕刻層102A及第二選擇蝕刻層102B為由相異的材料或組成所構成亦可。Next, on the substrate 101, a first semiconductor layer 103 (for example, having a thickness of 0.5 to 1.0 μm) and an active layer 104 of a first conductivity type that are substantially the same as the lattice constant of the substrate 101 can be sequentially formed by epitaxial growth. (For example, the thickness is 0.1 to 1.0 μm), the second semiconductor layer 105 of the second conductivity type (for example, the thickness is 0.5 to 1.0 μm), the buffer layer 106 and the current propagation layer 107 (for example, the thickness is about 2.0 μm). Alternatively, a selective etching layer 102 for removing the substrate 101 may be interposed between the substrate 101 and the first semiconductor layer 103. The selective etching layer 102 is composed of two or more layer structures, and preferably has at least a first selective etching layer 102A connected to the substrate 101 and a second selective etching layer 102B connected to the first semiconductor layer 103. The first selective etching layer 102A and the second selective etching layer 102B may be made of different materials or compositions.

此時,具體而言,能於基板101上(在設置有選擇蝕刻層102的情況下,於選擇蝕刻層102上),藉由例如MOVPE法(有機金屬氣相沉積法)、MBE(分子線磊晶法)或CBE(化學線磊晶法),而製作於由第一導電型的第一半導體層103、活性層104、第二導電型的第二半導體層105所構成的發光部108上,以緩衝層106、電流傳播層107的順序磊晶成長的磊晶基板109。At this time, specifically, on the substrate 101 (in the case where the selective etching layer 102 is provided, on the selective etching layer 102), for example, MOVPE method (organic metal vapor deposition method), MBE (molecular wire) Epitaxial method) or CBE (chemical line epitaxial method), and is fabricated on a light-emitting portion 108 composed of a first semiconductor layer 103 of a first conductivity type, an active layer 104, and a second semiconductor layer 105 of a second conductivity type. The epitaxial substrate 109 is epitaxially grown in the order of the buffer layer 106 and the current propagation layer 107.

活性層104能為因應發光波長,以(Alx Ga1-x )y In1-y P(0≦x≦1,0.4≦y≦0.6)或Alz Ga1-z As(0≦z≦0.45)形成。應用於可見光照明的情況,選擇AlGaInP為合適,應用於紅外照明的情況,選擇AlGaAs或InGaAs為合適。但是,關於活性層104的設計,由於藉由超晶格等的利用,波長能調整至起因於材料組成的波長以外,故不限於上述的材料。The active layer 104 can be (Al x Ga 1-x ) y In 1-y P (0 ≦ x ≦ 1, 0.4 ≦ y ≦ 0.6) or Al z Ga 1-z As (0 ≦ z ≦ 0.45) formation. In the case of visible light illumination, AlGaInP is suitable, and in the case of infrared illumination, AlGaAs or InGaAs is appropriate. However, the design of the active layer 104 is not limited to the above-mentioned materials because the wavelength can be adjusted to a wavelength other than the wavelength due to the material composition by using a superlattice or the like.

第一半導體層103、第二半導體層105係選擇AlGaInP或AlGaAs,選擇能隙廣於第一半導體層103的材料比。再者,該材料選擇不必與活性層104為相同的材料系亦可。The first semiconductor layer 103 and the second semiconductor layer 105 are selected from AlGaInP or AlGaAs, and a material ratio with a wider energy gap than that of the first semiconductor layer 103 is selected. It should be noted that the material selection may not necessarily be the same as that of the active layer 104.

在本實施樣貌之中,雖然例舉了為最單純的構造的第一半導體層103、發光層104、第二半導體層105係為同一材料的AlInGaP的情況,但是第一半導體層103或第二半導體層105係為了特性提升,於各層內含有複數層係為一般,第二半導體層105未限定於單一層。In this embodiment, although the case where the first semiconductor layer 103, the light emitting layer 104, and the second semiconductor layer 105 which are the simplest structures are AlInGaP of the same material is exemplified, the first semiconductor layer 103 or the first semiconductor layer 103 The second semiconductor layer 105 is for improving the characteristics, and it is normal to include a plurality of layers in each layer. The second semiconductor layer 105 is not limited to a single layer.

再者,第一半導體層103由二種類以上的Al組成所構成的層所構成,能為於活性層104附近之側具有第二層103B、於基板101附近之側具有Al組成低的第一層103A的構成。第二層103B為具有包覆層的功能的功能層,並非指單一組成或單一條件層。Furthermore, the first semiconductor layer 103 is composed of a layer composed of two or more types of Al, and can be a second layer 103B on the side near the active layer 104 and a first layer with a low Al composition on the side near the substrate 101. Composition of layer 103A. The second layer 103B is a functional layer having the function of a cladding layer, and does not refer to a single composition or a single condition layer.

作為電流傳播層107,能合適地使用AlGaAs或GaAsP或GaP。以GaAsx P1-x (0≦x<1)形成電流傳播層107的情況,緩衝層106以InGaP或AlInP形成者為最合適。由於GaAsx P1-x (x≠1)與AlGaInP系材料或AlGaAs系材料之間存在晶格不匹配的緣故,於GaAsx P1-x (x≠1)有高密度的應變及貫穿差排。貫穿差排密度根據組成x而能調整。As the current propagation layer 107, AlGaAs, GaAsP, or GaP can be suitably used. When the current propagation layer 107 is formed of GaAs x P 1-x (0 ≦ x <1), the buffer layer 106 is most preferably formed of InGaP or AlInP. Due to the lattice mismatch between GaAs x P 1-x (x ≠ 1) and AlGaInP-based materials or AlGaAs-based materials, GaAs x P 1-x (x ≠ 1) has high density strain and penetration difference. row. The through-drain density can be adjusted according to the composition x.

接下來,如第3圖所示,於磊晶基板109中的電流傳播層107上,堆積第一介電質膜(第一SiO2 膜)120。第一介電質膜120能藉由光CVD、濺鍍法、PECVD法而形成。Next, as shown in FIG. 3, a first dielectric film (first SiO 2 film) 120 is deposited on the current propagation layer 107 in the epitaxial substrate 109. The first dielectric film 120 can be formed by a photo-CVD method, a sputtering method, or a PECVD method.

接下來,於第一介電質膜120上形成透明接著層125,而能作為第一接合基板126。透明接著層125能選擇BCB(苯並環丁烯)或環氧樹脂等。形成方法為選擇能藉由浸塗法或旋轉塗覆法而形成的材料為合適。Next, a transparent adhesive layer 125 is formed on the first dielectric film 120 so as to serve as the first bonding substrate 126. The transparent adhesive layer 125 can be selected from BCB (benzocyclobutene) or epoxy resin. The formation method is appropriately selected from materials that can be formed by a dip coating method or a spin coating method.

接下來,於透明基板110上堆積第二介電質膜(第二SiO2 膜)121,而能形成第二接合基板131。第二介電質膜121能藉由光CVD、濺鍍法、PECVD法而形成。再者,於第二接合基板131設置透明接著層也能得到同樣的效果也不在話下。Next, a second dielectric film (second SiO 2 film) 121 is deposited on the transparent substrate 110 to form a second bonding substrate 131. The second dielectric film 121 can be formed by a photo CVD method, a sputtering method, or a PECVD method. In addition, the same effect can be obtained by providing a transparent adhesive layer on the second bonding substrate 131.

接下來,以透明接著層125與第二介電質膜121相對向且不接觸的方式設置第一接合基板126及第二接合基板131,處以10Pa以下的真空氛圍。真空氛圍後,使透明接著層125與第二介電質膜121接觸,且控制在5000N的壓力與100~200℃之間的溫度而維持5分以上後,施加100℃以上的熱而將第一接合基板126與第二接合基板131壓接而形成接合基板140。Next, the first bonding substrate 126 and the second bonding substrate 131 are provided so that the transparent adhesive layer 125 and the second dielectric film 121 face each other and do not contact each other, and a vacuum atmosphere of 10 Pa or less is provided. After the vacuum atmosphere, the transparent adhesive layer 125 is brought into contact with the second dielectric film 121 and controlled to a pressure between 5000N and a temperature between 100 and 200 ° C for 5 minutes or more, and then heat is applied at 100 ° C or more to A bonding substrate 126 is pressed against the second bonding substrate 131 to form a bonding substrate 140.

接下來,如第4圖所示,自接合基板140藉由蝕刻除去基板101。於蝕刻之際,能以氨水與過氧化氫水的混合液進行蝕刻。藉由將蝕刻停止層(第一選擇蝕刻層102A)為與基板101相異的材料,能使藉由氨水與過氧化氫水的混合液的蝕刻選擇地停止。作為第一選擇蝕刻層102A,能使用AlInP。Next, as shown in FIG. 4, the substrate 101 is removed from the bonded substrate 140 by etching. During the etching, etching can be performed with a mixed solution of ammonia water and hydrogen peroxide water. By using the etching stop layer (the first selective etching layer 102A) as a material different from that of the substrate 101, it is possible to selectively stop the etching using a mixed solution of ammonia water and hydrogen peroxide water. As the first selective etching layer 102A, AlInP can be used.

基板101除去後,除去第一選擇蝕刻層102A。由於蝕刻停止層102A係使用AlInP的緣故,除去係使用鹽酸而除去。由於第二選擇蝕刻層102B係使藉由鹽酸的蝕刻停止的緣故,能使用GaAs。After the substrate 101 is removed, the first selective etching layer 102A is removed. Since the etching stop layer 102A is made of AlInP, the removal is removed using hydrochloric acid. Since the second selective etching layer 102B stops etching by hydrochloric acid, GaAs can be used.

接下來,形成相接於第一半導體層103的第一電極150。第一電極150,在第一導電型為n型的情況,能含有Au、Ag、Al、Ni、Pd、Ge、Si及Sn之中至少一種類以上的材料,具有100nm以上的膜厚度。在第一導電型為p型的情況,能含有Au、Be、Mg及Zn之中至少一種類以上的材料,具有100nm以上的膜厚度。再者,讓第二選擇蝕刻層102B殘留亦可。Next, a first electrode 150 is formed in contact with the first semiconductor layer 103. The first electrode 150 can contain at least one material of Au, Ag, Al, Ni, Pd, Ge, Si, and Sn when the first conductivity type is n-type, and has a film thickness of 100 nm or more. In the case where the first conductivity type is a p-type, it can contain at least one type of material of Au, Be, Mg, and Zn, and has a film thickness of 100 nm or more. In addition, the second selective etching layer 102B may be left.

接下來,如第5圖所示,藉由以乾式法或濕式法的蝕刻,形成將區域160的第一半導體層103、活性層104切除的圖案。雖然在第5圖之中圖示切除至電流傳播層107為止的範例,但是以第二半導體層105或緩衝層106露出的狀態停止蝕刻也具有同樣的功能。區域160以外的區域並非限定於平坦面,使區域160以外的區域為粗糙面或凹凸面亦可。Next, as shown in FIG. 5, a pattern in which the first semiconductor layer 103 and the active layer 104 of the region 160 are cut off is formed by etching using a dry method or a wet method. Although an example of cutting up to the current propagation layer 107 is shown in FIG. 5, stopping the etching with the second semiconductor layer 105 or the buffer layer 106 exposed has the same function. The area other than the area 160 is not limited to a flat surface, and the area other than the area 160 may be a rough surface or an uneven surface.

接下來,如第6圖所示,能形成將第一半導體層103的至少一部分覆蓋的絕緣層170。絕緣層170能選擇SiO2 、SiNx等。Next, as shown in FIG. 6, an insulating layer 170 that covers at least a portion of the first semiconductor layer 103 can be formed. The insulating layer 170 can be selected from SiO 2 and SiNx.

接下來,如第7圖所示,形成於區域160的一部分形成有第二電極151的發光元件基板171。在第二導電型為n型的情況,能含有Au、Ag、Al、Ni、Pd、Ge、Si及Sn之中至少一種類以上的材料,具有100nm以上的膜厚度。在第二導電型為p型的情況,能至少含有Au、Be、Mg及Zn之中至少一種類以上的材料,具有100nm以上的膜厚度。Next, as shown in FIG. 7, a light-emitting element substrate 171 in which a second electrode 151 is formed in a part of the region 160 is formed. In the case where the second conductivity type is an n-type, it can contain at least one type of material of Au, Ag, Al, Ni, Pd, Ge, Si, and Sn, and has a film thickness of 100 nm or more. In the case where the second conductivity type is a p-type, it can contain at least one or more materials of Au, Be, Mg, and Zn, and has a film thickness of 100 nm or more.

接下來,如第8圖所示,於發光元件基板171的透明基板110的光提取面115之側的表面,積層折射率低於透明基板110的透明膜180。然後,將此積層的透明膜180的表面藉由以化學處理的磨砂加工而進行表面粗糙化。粗糙面的粗糙度為Ra(算術平均粗糙度)=0.3μm以上為佳。Next, as shown in FIG. 8, on the surface on the light extraction surface 115 side of the transparent substrate 110 of the light-emitting element substrate 171, a transparent film 180 having a lower refractive index than the transparent substrate 110 is laminated. Then, the surface of this laminated transparent film 180 is surface-roughened by a chemically-processed sanding process. The roughness of the rough surface is preferably Ra (arithmetic average roughness) = 0.3 μm or more.

此時,透明基板110為藍寶石基板,透明膜180為SiO2 膜為佳。如此一來,作為透明基板110,使用雖然為低價且加工精密度高但是以化學處理的磨砂加工困難的材料的藍寶石基板的同時,藉由使透明膜180為SiO2 膜,能容易地對透明膜180的表面進行以化學處理的磨砂加工。At this time, the transparent substrate 110 is preferably a sapphire substrate, and the transparent film 180 is preferably a SiO 2 film. In this way, as the transparent substrate 110, a sapphire substrate that is inexpensive and has high processing precision, but which is difficult to process with chemically processed frosted materials, and the transparent film 180 is a SiO 2 film can be easily aligned. The surface of the transparent film 180 is subjected to a chemically-treated matte process.

此時,對係為透明膜180的SiO2 膜,以氟酸與一價至四價的無機酸或有機酸的混合液對表面實施磨砂加工,而能製作於SiO2 膜的表面具有凹凸層181的磨砂加工基板182。若為如此的方法,能確實地表面粗糙化處理透明膜180的表面,而形成凹凸。At this time, the surface of the SiO 2 film which is the transparent film 180 is a matte process with a mixed solution of a fluoric acid and a monovalent to tetravalent inorganic acid or organic acid, and the surface of the SiO 2 film can be produced with an uneven layer. A matte-processed substrate 182 of 181. According to such a method, the surface of the transparent film 180 can be surface-roughened, and unevenness can be formed.

於此,無機酸能由硫酸、鹽酸及磷酸中至少一種所構成,有機酸能由丙二酸、醋酸、檸檬酸及酒石酸中至少一種所構成。作為無機酸或有機酸,若使用如同上述之物,能更確實地於透明膜的表面形成凹凸。Here, the inorganic acid can be composed of at least one of sulfuric acid, hydrochloric acid, and phosphoric acid, and the organic acid can be composed of at least one of malonic acid, acetic acid, citric acid, and tartaric acid. When an inorganic acid or an organic acid is used as described above, unevenness can be more reliably formed on the surface of the transparent film.

接下來,藉由隱形切割法或刀片切割法而將磨砂加工基板182分割成個別晶粒之後,將晶粒固定於支架,而能製作以環氧樹脂密封的發光二極體。Next, the matte-processed substrate 182 is divided into individual crystal grains by an invisible cutting method or a blade cutting method, and the crystal grains are fixed to a bracket, so that a light-emitting diode sealed with an epoxy resin can be manufactured.

如此一來,由於將積層於透明基板110的透明膜180的表面進行表面粗糙化處理的緣故,無關於透明基板110的材質而容易地將表面粗糙化,而能比較容易地製造有發光角度的增大及發光效率的增大的發光元件。更進一步,藉由低折射率材料被形成於光提取面115之側而產生全反射角,能更提高發光效率。In this way, since the surface of the transparent film 180 laminated on the transparent substrate 110 is subjected to a surface roughening treatment, the surface of the transparent substrate 110 can be easily roughened regardless of the material of the transparent substrate 110, and it is relatively easy to manufacture a light emitting angle A light-emitting element having an increased light emission efficiency. Furthermore, by forming a low-refractive-index material on the side of the light extraction surface 115 to generate a total reflection angle, the light emission efficiency can be further improved.

[第二實施樣貌] 於第9圖顯示本發明的發光元件的第二實施樣貌。如第9圖所示,本發明的第二實施樣貌之中的發光元件200,於光提取面215之側貼合有透明基板210。再者,發光元件200,於透明基板210的光提取面215之側的表面,設置有折射率低於透明基板210的透明膜280,該透明膜280的表面為經表面粗糙化者。粗糙面的粗糙度為Ra(算術平均粗糙度)=0.3μm以上為佳。[Second Embodiment] FIG. 9 shows a second embodiment of the light-emitting element of the present invention. As shown in FIG. 9, a light-emitting element 200 in a second embodiment of the present invention has a transparent substrate 210 bonded to a side of a light extraction surface 215. Furthermore, the light emitting element 200 is provided on the surface on the side of the light extraction surface 215 of the transparent substrate 210 with a transparent film 280 having a refractive index lower than that of the transparent substrate 210, and the surface of the transparent film 280 is roughened. The roughness of the rough surface is preferably Ra (arithmetic average roughness) = 0.3 μm or more.

此時,能合適地使用表面形成有例如由SiO2 膜等所構成的透明膜280的例如由藍寶石等所構成的透明基板210。再者,能為於與透明基板210的透明膜280相對側,形成例如由SiO2 所構成且厚度為100nm程度的第二介電質膜221。In this case, a transparent substrate 210 made of, for example, sapphire or the like on which a transparent film 280 made of, for example, a SiO 2 film is formed on the surface can be suitably used. In addition, a second dielectric film 221 made of, for example, SiO 2 and having a thickness of about 100 nm can be formed on the side opposite to the transparent film 280 of the transparent substrate 210.

如同上述,透明膜280的表面係經表面粗糙化,形成有凹凸。再者,透明膜280使用折射率低於透明基板210的材料。以此方式,當以設置折射率低於透明基板210的透明膜280,且於該透明膜280的表面形成有凹凸,則無關於透明基板210的材質而容易地將表面粗糙化,而能為有發光角度的增大及發光效率的增大的發光元件。再者,藉由低折射率材料被形成於光提取面215之側而產生全反射角,能更提高發光效率。As described above, the surface of the transparent film 280 is roughened to form irregularities. The transparent film 280 uses a material having a lower refractive index than the transparent substrate 210. In this way, when a transparent film 280 having a refractive index lower than that of the transparent substrate 210 is provided, and unevenness is formed on the surface of the transparent film 280, the surface of the transparent substrate 210 can be easily roughened regardless of the material of the transparent substrate 210, and can be A light-emitting element having an increase in light emission angle and an increase in light emission efficiency. Furthermore, a low-refractive-index material is formed on the side of the light extraction surface 215 to generate a total reflection angle, which can further improve the luminous efficiency.

更進一步,在第二實施樣貌之中,於透明基板210的光提取面215之側的表面也形成有凹凸。透明基板210為了調整厚度而進行研光及拋光。但是,由於拋光具有長時間加工的緣故,藉由僅進行研光會對成本有利。雖然僅進行研光的表面會成為凹凸面,但是由於加工上的制約,凹凸的Ra(粗糙度)無法控制的緣故,凹凸會小。藉由形成透明膜280而於其表面形成粗糙凹凸,成為具有能對光提取有利的粗糙度之物。Furthermore, in the aspect of the second embodiment, the surface on the side of the light extraction surface 215 of the transparent substrate 210 is also uneven. The transparent substrate 210 is polished and polished in order to adjust the thickness. However, since polishing has a long processing time, it is cost effective to perform polishing only. Although the surface that is polished only becomes a concave-convex surface, the Ra (roughness) of the concave-convex cannot be controlled due to processing constraints, and the unevenness is small. By forming the transparent film 280 to form rough unevenness on the surface, it becomes a thing having a roughness which is favorable for light extraction.

再者,能於第二介電質膜221表面形成有透明接著層225。此透明接著層225,能為由例如第一接著層225A及第二接著層225B的複數層所形成。更進一步,能於此透明接著層225形成有例如由SiO2 所構成且厚度為100nm程度的第一介電質膜220,於第一介電質膜220的表面,以0.5~20μm的厚度形成例如由AlGaAs、GaAsP、GaP等所構成的電流傳播層207。Furthermore, a transparent adhesive layer 225 can be formed on the surface of the second dielectric film 221. The transparent adhesive layer 225 can be formed of a plurality of layers such as a first adhesive layer 225A and a second adhesive layer 225B. Furthermore, the transparent adhesive layer 225 can be formed with a first dielectric film 220 made of, for example, SiO 2 and having a thickness of about 100 nm, and formed on the surface of the first dielectric film 220 with a thickness of 0.5 to 20 μm. For example, a current propagation layer 207 made of AlGaAs, GaAsP, GaP, or the like.

再者,能於電流傳播層207的表面的一部分(第二面)形成第二電極251,於未形成有第二電極251的區域(第一面)形成緩衝層206。In addition, the second electrode 251 can be formed on a part (the second surface) of the surface of the current propagation layer 207, and the buffer layer 206 can be formed in a region (the first surface) where the second electrode 251 is not formed.

第二電極251,在第二導電型為n型的情況,至少含有Au、Ag、Al、Ni、Pd、Ge、Si及Sn之中至少一種類以上的材料,具有100nm以上的膜厚度。在第二導電型為p型的情況,至少含有Au、Be、Mg及Zn之中至少一種類以上的材料,具有100nm以上的膜厚度。The second electrode 251, when the second conductivity type is n-type, contains at least one or more materials of Au, Ag, Al, Ni, Pd, Ge, Si, and Sn, and has a film thickness of 100 nm or more. When the second conductivity type is a p-type, it contains at least one type of material of at least one of Au, Be, Mg, and Zn, and has a film thickness of 100 nm or more.

能於電流傳播層207的表面形成有用於緩和晶格不匹配的緩衝層206。此時,以GaAsx P1-x (0≦x<1)形成電流傳播層207的情況,緩衝層206以InGaP或AlInP形成者為最合適。由於GaAsx P1-x (x≠1)與AlGaInP系材料或AlGaAs系材料之間存在晶格不匹配的緣故,於GaAsx P1-x (x≠1)有高密度的應變及貫穿差排。貫穿差排密度根據組成x而能調整。A buffer layer 206 for reducing lattice mismatch can be formed on the surface of the current propagation layer 207. In this case, when the current propagation layer 207 is formed with GaAs x P 1-x (0 ≦ x <1), the buffer layer 206 is most preferably formed of InGaP or AlInP. Due to the lattice mismatch between GaAs x P 1-x (x ≠ 1) and AlGaInP-based materials or AlGaAs-based materials, GaAs x P 1-x (x ≠ 1) has high density strain and penetration difference. row. The through-drain density can be adjusted according to the composition x.

能於緩衝層206的表面形成有由AlGaInP或AlGaAs所構成且厚度為0.5~1.0μm的第二半導體層205。能於其表面形成有厚度為0.1~10μm的活性層204。此活性層204能為因應發光波長,以(Alx Ga1-x )y In1-y P(0≦x≦1,0.4≦y≦0.6)或Alz Ga1-z As(0≦z≦0.45)形成之物。應用於可見光照明的情況,選擇AlGaInP為合適,應用於紅外照明的情況,選擇AlGaAs或InGaAs為合適。但是,關於活性層204的設計,由於藉由超晶格等的利用,波長能調整至起因於材料組成的波長以外,故不限於上述的材料。A second semiconductor layer 205 made of AlGaInP or AlGaAs and having a thickness of 0.5 to 1.0 μm can be formed on the surface of the buffer layer 206. An active layer 204 having a thickness of 0.1 to 10 μm can be formed on the surface. The active layer 204 can be (Al x Ga 1-x ) y In 1-y P (0 ≦ x ≦ 1, 0.4 ≦ y ≦ 0.6) or Al z Ga 1-z As (0 ≦ z ≦ 0.45). In the case of visible light illumination, AlGaInP is suitable, and in the case of infrared illumination, AlGaAs or InGaAs is appropriate. However, the design of the active layer 204 is not limited to the above-mentioned materials because the wavelength can be adjusted to a wavelength other than the wavelength due to the material composition by using a superlattice or the like.

能於活性層204的表面,形成有由AlGaInP或AlGaAs所構成且厚度為0.5~1.0μm的第一半導體層203。能於第一半導體層203的表面形成有第一電極250。此時,因應必要,於第一半導體層203與第一電極250之間設置緩衝層216等的所希望的層亦可。A first semiconductor layer 203 made of AlGaInP or AlGaAs and having a thickness of 0.5 to 1.0 μm can be formed on the surface of the active layer 204. A first electrode 250 can be formed on a surface of the first semiconductor layer 203. In this case, if necessary, a desired layer such as a buffer layer 216 may be provided between the first semiconductor layer 203 and the first electrode 250.

第一電極250,在第一導電型為n型的情況,含有Au、Ag、Al、Ni、Pd、Ge、Si及Sn之中至少一種類以上的材料,具有100nm以上的膜厚度。在第一導電型為p型的情況,含有Au、Be、Mg及Zn之中至少一種類以上的材料,具有100nm以上的膜厚度。The first electrode 250 includes at least one material selected from Au, Ag, Al, Ni, Pd, Ge, Si, and Sn when the first conductivity type is n-type, and has a film thickness of 100 nm or more. When the first conductivity type is a p-type, at least one type of material including Au, Be, Mg, and Zn is included, and the film thickness is 100 nm or more.

雖然在本實施樣貌之中,例舉了於電流傳播層207設置第二電極251的情況,但是於第二半導體層205設置第二電極251亦可。Although a case where the second electrode 251 is provided in the current propagation layer 207 is exemplified in the aspect of this embodiment, the second electrode 251 may be provided in the second semiconductor layer 205.

接下來,關於本發明的第二實施樣貌的發光元件的製造方法,利用第10圖至第16圖進行說明。Next, a method for manufacturing a light-emitting element according to a second embodiment of the present invention will be described with reference to FIGS. 10 to 16.

於最初,如第10圖所示,準備基板201作為起始基板。作為基板201,使用結晶軸自[001]方向朝[110]方向傾斜的基板201為佳。再者,作為基板201,能合適地使用GaAs或Ge。若基板201自上述材料選擇,由於能將後述的活性層204的材料以晶格匹配系進行磊晶成長的緣故,會易於提升活性層204的品質,能得到輝度上升及壽命特性的提升。Initially, as shown in FIG. 10, a substrate 201 is prepared as a starting substrate. As the substrate 201, it is preferable to use a substrate 201 whose crystal axis is inclined from the [001] direction to the [110] direction. In addition, as the substrate 201, GaAs or Ge can be suitably used. If the substrate 201 is selected from the above materials, since the material of the active layer 204 described later can be epitaxially grown in a lattice matching system, the quality of the active layer 204 can be easily improved, and the brightness and life characteristics can be improved.

接下來,能於基板201上,藉由磊晶成長依序形成與基板201的晶格常數大致相同的第一導電型的第一半導體層203(例如厚度為0.5~1.0μm)、活性層204(例如厚度為0.1~1.0μm)、第二導電型的第二半導體層205(例如厚度為0.5~1.0μm)、緩衝層206及電流傳播層207(例如厚度為2.0μm程度)。再者,於基板201與第一半導體層203之間,插入有基板201的除去用的選擇蝕刻層202亦可。選擇蝕刻層202係由二層以上的層構造所構成,至少具有相接於基板201的第一選擇蝕刻層202A及相接於第一半導體層203的第二選擇蝕刻層202B為佳。第一選擇蝕刻層202A及第二選擇蝕刻層202B為由相異的材料或組成所構成亦可。Next, a first semiconductor layer 203 (for example, having a thickness of 0.5 to 1.0 μm) and an active layer 204 of a first conductivity type that are substantially the same as the lattice constant of the substrate 201 can be sequentially formed on the substrate 201 by epitaxial growth. (For example, the thickness is 0.1 to 1.0 μm), the second semiconductor layer 205 of the second conductivity type (for example, the thickness is 0.5 to 1.0 μm), the buffer layer 206 and the current propagation layer 207 (for example, the thickness is about 2.0 μm). Alternatively, a selective etching layer 202 for removing the substrate 201 may be interposed between the substrate 201 and the first semiconductor layer 203. The selective etching layer 202 is composed of two or more layer structures, and preferably has at least a first selective etching layer 202A connected to the substrate 201 and a second selective etching layer 202B connected to the first semiconductor layer 203. The first selective etching layer 202A and the second selective etching layer 202B may be made of different materials or compositions.

此時,具體而言,能於基板201上(在設置有選擇蝕刻層202的情況下,於選擇蝕刻層202上),藉由例如MOVPE法(有機金屬氣相沉積法)、MBE(分子線磊晶法)或CBE(化學線磊晶法),而製作於由第一導電型的第一半導體層203、活性層204、第二導電型的第二半導體層205所構成的發光部208上,以緩衝層206、電流傳播層207的順序磊晶成長的磊晶基板209。At this time, specifically, on the substrate 201 (in the case where the selective etching layer 202 is provided, on the selective etching layer 202), for example, MOVPE method (organic metal vapor deposition method), MBE (molecular wire) Epitaxial method) or CBE (chemical line epitaxial method), and is fabricated on a light-emitting portion 208 composed of a first semiconductor layer 203 of a first conductivity type, an active layer 204, and a second semiconductor layer 205 of a second conductivity type. The epitaxial substrate 209 is epitaxially grown in the order of the buffer layer 206 and the current propagation layer 207.

活性層204能為因應發光波長,以(Alx Ga1-x )y In1-y P(0≦x≦1,0.4≦y≦0.6)或Alz Ga1-z As(0≦z≦0.45)形成。應用於可見光照明的情況,選擇AlGaInP為合適,應用於紅外照明的情況,選擇AlGaAs或InGaAs為合適。但是,關於活性層204的設計,由於藉由超晶格等的利用,波長能調整至起因於材料組成的波長以外,故不限於上述的材料。The active layer 204 can be (Al x Ga 1-x ) y In 1-y P (0 ≦ x ≦ 1, 0.4 ≦ y ≦ 0.6) or Al z Ga 1-z As (0 ≦ z ≦ 0.45) formation. In the case of visible light illumination, AlGaInP is suitable, and in the case of infrared illumination, AlGaAs or InGaAs is appropriate. However, the design of the active layer 204 is not limited to the above-mentioned materials because the wavelength can be adjusted to a wavelength other than the wavelength due to the material composition by using a superlattice or the like.

第一半導體層203、第二半導體層205係選擇AlGaInP或AlGaAs,選擇能隙廣於第一半導體層203的材料比。再者,該材料選擇不必與活性層204為相同的材料系亦可。The first semiconductor layer 203 and the second semiconductor layer 205 are selected from AlGaInP or AlGaAs, and a material ratio with a wider energy gap than that of the first semiconductor layer 203 is selected. It should be noted that this material selection need not be the same as that of the active layer 204.

在本實施樣貌之中,雖然例舉了為最單純的構造的第一半導體層203、發光層204、第二半導體層205係為同一材料的AlInGaP的情況,但是第一半導體層203或第二半導體層205係為了特性提升,於各層內含有複數層係為一般,第二半導體層205未限定於單一層。In the aspect of this embodiment, although the case where the first semiconductor layer 203, the light emitting layer 204, and the second semiconductor layer 205 which are the simplest structures are AlInGaP of the same material is exemplified, the first semiconductor layer 203 or the first semiconductor layer 203 The second semiconductor layer 205 is for improving characteristics, and it is normal to include a plurality of layers in each layer. The second semiconductor layer 205 is not limited to a single layer.

再者,第一半導體層203由二種類以上的Al組成所構成的層所構成,能為於活性層204附近之側具有第二層203B、於基板201附近之側具有Al組成低的第一層203A的構成。第二層203B為具有包覆層的功能的功能層,並非指單一組成或單一條件層。In addition, the first semiconductor layer 203 is composed of a layer composed of two or more types of Al. The first semiconductor layer 203 can be a layer having a second layer 203B on the side near the active layer 204 and a first having a low Al composition on the side near the substrate 201. Structure of layer 203A. The second layer 203B is a functional layer having the function of a cladding layer, and does not refer to a single composition or a single condition layer.

作為電流傳播層207,能合適地使用AlGaAs或GaAsP或GaP。以GaAsx P1-x (0≦x<1)形成電流傳播層207的情況,緩衝層206以InGaP或AlInP形成者為最合適。由於GaAsx P1-x (x≠1)與AlGaInP系材料或AlGaAs系材料之間存在晶格不匹配的緣故,於GaAsx P1-x (x≠1)有高密度的應變及貫穿差排。貫穿差排密度根據組成x而能調整。As the current propagation layer 207, AlGaAs, GaAsP, or GaP can be suitably used. When the current propagation layer 207 is formed with GaAs x P 1-x (0 ≦ x <1), the buffer layer 206 is most preferably formed of InGaP or AlInP. Due to the lattice mismatch between GaAs x P 1-x (x ≠ 1) and AlGaInP-based materials or AlGaAs-based materials, GaAs x P 1-x (x ≠ 1) has high density strain and penetration difference. row. The through-drain density can be adjusted according to the composition x.

接下來,如第11圖所示,於磊晶基板209中的電流傳播層207上,堆積第一介電質膜(第一SiO2 膜)220。第一介電質膜220能藉由光CVD、濺鍍法、PECVD法而形成。Next, as shown in FIG. 11, a first dielectric film (first SiO 2 film) 220 is deposited on the current propagation layer 207 in the epitaxial substrate 209. The first dielectric film 220 can be formed by a photo CVD method, a sputtering method, or a PECVD method.

接下來,於第一介電質膜220上形成透明接著層225,而能作為第一接合基板226。透明接著層225能選擇BCB(苯並環丁烯)或環氧樹脂等。形成方法為選擇能藉由浸塗法或旋轉塗覆法而形成的材料為合適。Next, a transparent adhesive layer 225 is formed on the first dielectric film 220 to serve as a first bonding substrate 226. The transparent adhesive layer 225 can be selected from BCB (benzocyclobutene) or epoxy resin. The formation method is appropriately selected from materials that can be formed by a dip coating method or a spin coating method.

接下來,於透明基板210上堆積第二介電質膜(第二SiO2 膜)221,而能形成第二接合基板231。第二介電質膜221能藉由光CVD、濺鍍法、PECVD法而形成。再者,於第二接合基板231設置透明接著層也能得到同樣的效果也不在話下。Next, a second dielectric film (second SiO 2 film) 221 is deposited on the transparent substrate 210 to form a second bonding substrate 231. The second dielectric film 221 can be formed by a photo-CVD method, a sputtering method, or a PECVD method. In addition, the same effect can be obtained by providing a transparent adhesive layer on the second bonding substrate 231.

接下來,以透明接著層225與第二介電質膜221相對向且不接觸的方式設置第一接合基板226及第二接合基板231,處以10Pa以下的真空氛圍。真空氛圍後,使透明接著層225與第二介電質膜221接觸,且控制在5000N的壓力與100~200℃之間的溫度而維持5分以上後,施加100℃以上的熱而將第一接合基板226與第二接合基板231壓接而形成接合基板240。Next, the first bonding substrate 226 and the second bonding substrate 231 are provided so that the transparent adhesive layer 225 and the second dielectric film 221 face each other and do not contact each other, and a vacuum atmosphere of 10 Pa or less is provided. After the vacuum atmosphere, the transparent adhesive layer 225 is brought into contact with the second dielectric film 221, and is controlled at a pressure between 5000 N and a temperature between 100 and 200 ° C for 5 minutes or more. A bonding substrate 226 is pressed against the second bonding substrate 231 to form a bonding substrate 240.

在接合基板之中,為了將第二接合基板231加工至所求的厚度,藉由研光或平面輪磨或噴砂法而進行薄膜加工至規定厚度,於與透明基板210的鏡面211相反的面,亦即,透明基板210的光提取面215之側形成凹凸面212。雖然凹凸面212能藉由拋光等的加工而鏡面化,但是由於必須要長時間的加工的緣故,為了防止對磊晶基板209給予損傷,於此不進行為佳。再者,藉由僅進行研光會對成本有利。Among the bonded substrates, in order to process the second bonded substrate 231 to a desired thickness, a thin film is processed to a predetermined thickness by grinding, flat grinding, or sandblasting, and on a surface opposite to the mirror surface 211 of the transparent substrate 210 That is, a side of the light extraction surface 215 of the transparent substrate 210 forms an uneven surface 212. Although the concave-convex surface 212 can be mirror-finished by processing such as polishing, it is necessary to perform processing for a long time. In order to prevent damage to the epitaxial substrate 209, it is better not to perform it here. Moreover, it is advantageous to cost by carrying out only the polishing.

接下來,如第12圖所示,自接合基板240藉由蝕刻除去基板201。於蝕刻之際,能以氨水與過氧化氫水的混合液進行蝕刻。藉由將蝕刻停止層(第一選擇蝕刻層202A)為與基板201相異的材料,能使藉由氨水與過氧化氫水的混合液的蝕刻選擇地停止。作為第一選擇蝕刻層202A,能使用AlInP。Next, as shown in FIG. 12, the substrate 201 is removed from the bonded substrate 240 by etching. During the etching, etching can be performed with a mixed solution of ammonia water and hydrogen peroxide water. By using the etching stop layer (the first selective etching layer 202A) as a material different from that of the substrate 201, it is possible to selectively stop the etching by the mixed solution of ammonia water and hydrogen peroxide water. As the first selective etching layer 202A, AlInP can be used.

基板201除去後,除去第一選擇蝕刻層202A。由於蝕刻停止層202A係使用AlInP的緣故,除去係使用鹽酸而除去。由於第二選擇蝕刻層202B係使藉由鹽酸的蝕刻停止的緣故,能使用GaAs。After the substrate 201 is removed, the first selective etching layer 202A is removed. Since the etching stop layer 202A is made of AlInP, the removal is removed using hydrochloric acid. Since the second selective etching layer 202B stops the etching by hydrochloric acid, GaAs can be used.

接下來,形成相接於第一半導體層203的第一電極250。第一電極250,在第一導電型為n型的情況,能含有Au、Ag、Al、Ni、Pd、Ge、Si及Sn之中至少一種類以上的材料,具有100nm以上的膜厚度。在第一導電型為p型的情況,能含有Au、Be、Mg及Zn之中至少一種類以上的材料,具有100nm以上的膜厚度。再者,讓第二選擇蝕刻層202B殘留亦可。Next, a first electrode 250 is formed in contact with the first semiconductor layer 203. The first electrode 250 can contain at least one material of Au, Ag, Al, Ni, Pd, Ge, Si, and Sn when the first conductivity type is n-type, and has a film thickness of 100 nm or more. In the case where the first conductivity type is a p-type, it can contain at least one type of material of Au, Be, Mg, and Zn, and has a film thickness of 100 nm or more. In addition, the second selective etching layer 202B may be left.

接下來,如第13圖所示,藉由以乾式法或濕式法的蝕刻,形成將區域260的第一半導體層203、活性層204切除的圖案。雖然在第13圖之中圖示切除至電流傳播層207為止的範例,但是以第二半導體層205或緩衝層206露出的狀態停止蝕刻也具有同樣的功能。區域260以外的區域並非限定於平坦面,使區域260以外的區域為粗糙面或凹凸面亦可。Next, as shown in FIG. 13, a pattern in which the first semiconductor layer 203 and the active layer 204 of the region 260 are cut off is formed by dry or wet etching. Although an example of cutting up to the current propagation layer 207 is shown in FIG. 13, stopping the etching with the second semiconductor layer 205 or the buffer layer 206 exposed has the same function. The area other than the area 260 is not limited to a flat surface, and the area other than the area 260 may be a rough surface or an uneven surface.

接下來,如第14圖所示,能形成將第一半導體層203的至少一部分覆蓋的絕緣層270。絕緣層270能選擇SiO2 、SiNx等。Next, as shown in FIG. 14, an insulating layer 270 that covers at least a portion of the first semiconductor layer 203 can be formed. The insulating layer 270 can be selected from SiO 2 and SiNx.

接下來,如第15圖所示,形成於區域260的一部分形成有第二電極251的發光元件基板271。在第二導電型為n型的情況,能含有Au、Ag、Al、Ni、Pd、Ge、Si及Sn之中至少一種類以上的材料,具有100nm以上的膜厚度。在第二導電型為p型的情況,能含有Au、Be、Mg及Zn之中至少一種類以上的材料,具有100nm以上的膜厚度。Next, as shown in FIG. 15, a light-emitting element substrate 271 in which a second electrode 251 is formed in a part of the region 260 is formed. In the case where the second conductivity type is an n-type, it can contain at least one type of material of Au, Ag, Al, Ni, Pd, Ge, Si, and Sn, and has a film thickness of 100 nm or more. When the second conductivity type is a p-type, it can contain at least one of Au, Be, Mg, and Zn, and has a film thickness of 100 nm or more.

接下來,如第16圖所示,於發光元件基板271的透明基板210的光提取面215之側的表面,積層折射率低於透明基板210的透明膜280。然後,將此積層的透明膜280的表面藉由以化學處理的磨砂加工而進行表面粗糙化。粗糙表面的粗糙度為Ra(算術平均粗糙度)=0.3μm以上為佳。Next, as shown in FIG. 16, on the surface on the light extraction surface 215 side of the transparent substrate 210 of the light-emitting element substrate 271, a transparent film 280 having a lower refractive index than the transparent substrate 210 is laminated. Then, the surface of this laminated transparent film 280 is surface-roughened by a chemically-treated matte process. The roughness of the rough surface is preferably Ra (arithmetic average roughness) = 0.3 μm or more.

此時,透明基板210為藍寶石基板,透明膜280為SiO2 膜為佳。如此一來,作為透明基板210,使用雖然為低價且加工精密度高但是以化學處理的磨砂加工困難的材料的藍寶石基板的同時,藉由使透明膜280為SiO2 膜,能容易地對透明膜280的表面進行以化學處理的磨砂加工。At this time, the transparent substrate 210 is preferably a sapphire substrate, and the transparent film 280 is preferably a SiO 2 film. In this way, as the transparent substrate 210, a sapphire substrate that is inexpensive and has high processing precision, but which is difficult to process with chemically processed frosted materials, and the transparent film 280 is a SiO 2 film can be easily aligned. The surface of the transparent film 280 is subjected to a chemically-treated matte process.

此時,對係為透明膜280的SiO2 膜,以氟酸與一價至四價的無機酸或有機酸的混合液對表面實施磨砂加工,而能製作於SiO2 膜的表面具有凹凸層281的磨砂加工基板282。若為如此的方法,能確實地表面粗糙化處理透明膜280的表面,而形成凹凸。At this time, the surface of the SiO 2 film that is the transparent film 280 is blasted with a mixed solution of a fluoric acid and a monovalent to tetravalent inorganic acid or organic acid, so that the surface of the SiO 2 film can have an uneven layer. 281's matte processing substrate 282. According to such a method, the surface of the transparent film 280 can be surface-roughened, and unevenness can be formed.

於此,無機酸能由硫酸、鹽酸及磷酸中至少一種所構成,有機酸能由丙二酸、醋酸、檸檬酸及酒石酸中至少一種所構成。作為無機酸或有機酸,若使用如同上述之物,能更確實地於透明膜的表面形成凹凸。Here, the inorganic acid can be composed of at least one of sulfuric acid, hydrochloric acid, and phosphoric acid, and the organic acid can be composed of at least one of malonic acid, acetic acid, citric acid, and tartaric acid. When an inorganic acid or an organic acid is used as described above, unevenness can be more reliably formed on the surface of the transparent film.

接下來,藉由隱形切割法或刀片切割法而將磨砂加工基板282分割成個別晶粒之後,將晶粒固定於支架,而能製作以環氧樹脂密封的發光二極體。Next, the matte-processed substrate 282 is divided into individual crystal grains by an invisible cutting method or a blade cutting method, and the crystal grains are fixed to a bracket, so that a light-emitting diode sealed with an epoxy resin can be manufactured.

如此一來,由於將積層於透明基板210的透明膜280的表面進行表面粗糙化處理的緣故,無關於透明基板210的材質而容易地將表面表面粗糙化,而能比較容易地製造有發光角度的增大及發光效率的增大的發光元件。更進一步,藉由低折射率材料被形成於光提取面215之側而產生全反射角,能更提高發光效率。更進一步,在第二實施樣貌之中,由於亦於透明基板210的表面形成凹凸的緣故,藉由於如此的透明基板210積層透明膜而於其表面形成粗糙的凹凸,成為具有能更有利於光提取的粗糙度之物。In this way, since the surface of the transparent film 280 laminated on the transparent substrate 210 is subjected to surface roughening treatment, the surface surface can be easily roughened regardless of the material of the transparent substrate 210, and the light emitting angle can be manufactured relatively easily. And a light-emitting element having an increased light emission efficiency. Furthermore, by forming a low-refractive-index material on the side of the light extraction surface 215 to generate a total reflection angle, the luminous efficiency can be further improved. Furthermore, in the appearance of the second embodiment, since the unevenness is also formed on the surface of the transparent substrate 210, the roughened unevenness is formed on the surface of the transparent substrate 210 by laminating the transparent film, so that it is more advantageous. Light extraction of roughness.

另外,雖然在上述的第一及第二實施樣貌的發光元件的製造方法之中,對於在進行透明基板與第一接合基板的接合之後,於透明基板的光提取面之側的表面,積層折射率低於透明基板的透明膜,進行此透明膜的表面粗糙化處理的情況進行了說明,但是,本發明並不限定於此。例如,預先於接合前的透明基板積層透明膜,進行此積層的透明膜的表面的表面粗糙化處理之後,將之與第一接合基板接合亦可。In addition, in the method for manufacturing a light emitting device according to the first and second embodiments described above, after bonding the transparent substrate and the first bonding substrate, the surface on the light extraction surface side of the transparent substrate is laminated. The case where a transparent film having a refractive index lower than that of a transparent substrate is subjected to surface roughening treatment has been described, but the present invention is not limited to this. For example, a transparent film is laminated on the transparent substrate before bonding, and the surface of the laminated transparent film is subjected to a surface roughening treatment, and then may be bonded to the first bonding substrate.

[實施例] 以下,雖然表示本發明的實施例及比較例而更具體地說明本發明,但是本發明並非限定於這些。[Examples] Hereinafter, the present invention will be described more specifically by showing examples and comparative examples of the present invention, but the present invention is not limited to these.

[實施例一] 如第2圖所示,作為起始基板,準備了結晶軸自[001]方向朝[110]方向傾斜的GaAs基板(基板101)。接下來,於GaAs基板101上,藉由MOVPE法(有機金屬氣相沉積法),依序使由AlGaInP所構成且厚度為1.0μm的n型的包覆層(第一半導體層103)、活性層104、厚度為1.0μm的p型包覆層(第二半導體層105)磊晶成長,更進一步藉由磊晶成長而依序形成由InGaP所構成的緩衝層106及厚度為2.0μm的由GaP所構成的電流傳播層107。於GaAs基板與n型包覆層之間,形成由AlInP層及GaAs層所構成的選擇蝕刻層102(亦稱為蝕刻停止層)。[Example 1] As shown in FIG. 2, as a starting substrate, a GaAs substrate (substrate 101) having a crystal axis inclined from a [001] direction to a [110] direction was prepared. Next, on the GaAs substrate 101, an MOVPE method (organic metal vapor deposition method) was used to sequentially make an n-type cladding layer (first semiconductor layer 103) made of AlGaInP and having a thickness of 1.0 μm, and an active layer. The layer 104, the p-type cladding layer (second semiconductor layer 105) with a thickness of 1.0 μm are epitaxially grown, and the buffer layer 106 composed of InGaP is sequentially formed by the epitaxial growth, and the A current propagation layer 107 made of GaP. Between the GaAs substrate and the n-type cladding layer, a selective etching layer 102 (also referred to as an etch stop layer) composed of an AlInP layer and a GaAs layer is formed.

再者,第一半導體層103由二種類以上的Al組成所構成的層所構成,於基板101附近之側形成Al組成低的第一層103A。Furthermore, the first semiconductor layer 103 is composed of a layer composed of two or more types of Al composition, and a first layer 103A having a low Al composition is formed on the side near the substrate 101.

接下來,如第3圖所示,於由GaP所構成的電流傳播層107上,以TEOS及O2 作為原料並藉由PECVD法形成第一SiO2 膜(第一介電質膜120)。Next, as shown in FIG. 3, a first SiO 2 film (first dielectric film 120) is formed on the current propagation layer 107 made of GaP by using TEOS and O 2 as raw materials and by a PECVD method.

接下來,於第一介電質膜120上形成透明接著層125,而形成第一接合基板126。透明接著層125係將CYCLOTENE滴下,藉由1,000rpm的轉速而進行了旋轉塗覆。旋轉塗覆後,於熱板上以100℃的溫度維持60秒而使溶劑揮發。Next, a transparent adhesive layer 125 is formed on the first dielectric film 120 to form a first bonding substrate 126. The transparent adhesive layer 125 was CYCLOTENE dropped and spin-coated at a rotation speed of 1,000 rpm. After the spin coating, the solvent was maintained at 100 ° C. for 60 seconds on a hot plate to evaporate the solvent.

接下來,作為透明基板110而準備了藍寶石基板,於此透明基板110上堆積第二SiO2 膜(第二介電質膜121),而形成了第二接合基板131。第二介電質膜121係以TEOS及O2 為原料並且藉由PECVD法形成。Next, a sapphire substrate was prepared as the transparent substrate 110, and a second SiO 2 film (second dielectric film 121) was deposited on the transparent substrate 110 to form a second bonding substrate 131. The second dielectric film 121 is formed by using TEOS and O 2 as raw materials and by a PECVD method.

以透明接著層125與第二介電質膜121相對向且不接觸的方式設置第一接合基板126及第二接合基板131,處以10Pa以下的真空氛圍。真空氛圍後,使透明接著層125與第二介電質膜121接觸,且控制在5000N的壓力與100℃的溫度而維持5分以上後,施加100℃以上的熱而將第一接合基板126與第二接合基板131壓接而形成接合基板140。之後,為了達到所期望的厚度,對藍寶石基板表面進行了研光及拋光加工。The first bonding substrate 126 and the second bonding substrate 131 are provided so that the transparent adhesive layer 125 and the second dielectric film 121 face each other and do not contact each other, and a vacuum atmosphere of 10 Pa or less is provided. After the vacuum atmosphere, the transparent adhesive layer 125 is brought into contact with the second dielectric film 121, and the pressure is maintained at 5000 N and the temperature of 100 ° C. is maintained for 5 minutes or more. Then, the first bonding substrate 126 is applied with heat of 100 ° C. or more. The second bonding substrate 131 is pressure-bonded to form a bonding substrate 140. Thereafter, in order to achieve a desired thickness, the surface of the sapphire substrate was polished and polished.

接下來,如第4圖所示,自接合基板140藉由以氨水與過氧化氫水的混合液的蝕刻而除去基板101。基板101除去後,除去第一選擇蝕刻層102A。由於第一選擇蝕刻層102A係使用AlInP的緣故,除去係使用鹽酸。接下來,形成相接於第一半導體層103的由AuGeNi的合金所構成且厚度為500nm的第一電極150。Next, as shown in FIG. 4, the self-bonded substrate 140 is removed by etching with a mixed solution of ammonia water and hydrogen peroxide water. After the substrate 101 is removed, the first selective etching layer 102A is removed. Since the first selective etching layer 102A uses AlInP, hydrochloric acid is used for the removal. Next, a first electrode 150 made of an AuGeNi alloy and having a thickness of 500 nm is formed in contact with the first semiconductor layer 103.

接下來,如第5圖所示,藉由以乾式法或濕式法的蝕刻,形成將區域160的第一半導體層103、活性層104、第二半導體層105及緩衝層106切除的圖案。接下來,如第6圖所示,能形成將第一半導體層103、活性層104、第二半導體層105及緩衝層106覆蓋的絕緣層170。絕緣層170係藉由以TEOS及O2 為原料的PECVD法而成膜。再者,膜厚度為100nm。接下來,如第7圖所示,於區域160的一部分形成由AuBe的合金所構成且厚度為500nm的第二電極151,而形成了發光元件基板171。Next, as shown in FIG. 5, a pattern in which the first semiconductor layer 103, the active layer 104, the second semiconductor layer 105, and the buffer layer 106 of the region 160 are cut off is formed by dry or wet etching. Next, as shown in FIG. 6, an insulating layer 170 that covers the first semiconductor layer 103, the active layer 104, the second semiconductor layer 105, and the buffer layer 106 can be formed. The insulating layer 170 is formed by a PECVD method using TEOS and O 2 as raw materials. The film thickness is 100 nm. Next, as shown in FIG. 7, a second electrode 151 made of an AuBe alloy and having a thickness of 500 nm is formed in a part of the region 160 to form a light-emitting element substrate 171.

接下來,如第8圖所示,於發光元件基板171的透明基板110的光提取面115之側的表面,形成了作為透明膜180的SiO2 膜。對此透明膜180,以氟酸及醋酸的混合液對表面實施磨砂處理,而製作了於透明膜180的表面具有凹凸層181的磨砂處理基板182。Next, as shown in FIG. 8, a SiO 2 film as a transparent film 180 is formed on the surface on the light extraction surface 115 side of the transparent substrate 110 of the light-emitting element substrate 171. A frosted surface was applied to the transparent film 180 with a mixed solution of hydrofluoric acid and acetic acid to produce a frosted substrate 182 having an uneven layer 181 on the surface of the transparent film 180.

接下來,藉由隱形切割法而將磨砂加工基板182分割成個別晶粒之後,將晶粒固定於支架,而能製作以環氧樹脂密封的發光二極體。Next, the matte-processed substrate 182 is divided into individual crystal grains by an invisible cutting method, and the crystal grains are fixed to a holder, so that a light-emitting diode sealed with an epoxy resin can be produced.

[實施例二] 除了在接合藍寶石基板後,於藍寶石基板,藉由研光而進行薄膜加工至規定厚度,之後以不進行拋光加工,使藍寶石基板表面呈凹凸形狀以外,以與實施例一同樣的方法製造了發光二極體。[Example 2] It was the same as Example 1 except that the sapphire substrate was bonded to the sapphire substrate, and then the film was processed to a predetermined thickness by grinding, and then the surface of the sapphire substrate was roughened without polishing. The method produces a light-emitting diode.

[比較例] 除了不於藍寶石基板表面形成SiO2 膜,以與實施例一同樣的方法製造了發光二極體。[Comparative Example] A light-emitting diode was produced in the same manner as in Example 1 except that a SiO 2 film was not formed on the surface of the sapphire substrate.

對於在實施例一、實施例二及比較例之中製作的發光二極體,比較了發光特性。於第17圖顯示在實施例一、實施例二及比較例之中所製作的發光二極體的發光特性的差異。如第17圖所示,相對於在比較例之中有±30度前後的發光角度,實施例一及實施例二之中為±60度的發光角,具有50%以上的相對發光強度,而得知了發光角變廣。The light-emitting characteristics of the light-emitting diodes produced in Examples 1, 2, and Comparative Examples were compared. FIG. 17 shows the difference in light-emitting characteristics of the light-emitting diodes produced in the first, second, and comparative examples. As shown in Fig. 17, the light emission angles of ± 60 degrees in Examples 1 and 2 have a relative light emission intensity of 50% or more relative to the light emission angles of ± 30 degrees in the comparative example, and It was learned that the light emission angle became wider.

第18圖係顯示在實施例一、實施例二及比較例之中所製作的發光二極體的電流-輝度特性的圖。實施例一及實施例二,相對於比較例,大體而言無關於輝度高,電流-輝度係保持有線性關係。FIG. 18 is a graph showing current-luminance characteristics of the light-emitting diodes produced in Examples 1, 2, and Comparative Examples. Compared with the comparative example, the first embodiment and the second embodiment are generally not related to high luminance, and the current-luminance relationship is kept linear.

此外,本發明並不限定於上述的實施樣貌。上述實施樣貌為舉例說明,凡具有與本發明的申請專利範圍所記載之技術思想實質上同樣之構成,產生相同的功效者,不論為何物皆包含在本發明的技術範圍內。In addition, the present invention is not limited to the embodiment described above. The above embodiment is an example, and anyone who has substantially the same structure and produces the same effect as the technical idea described in the patent application scope of the present invention is included in the technical scope of the present invention no matter what.

100‧‧‧發光元件 100‧‧‧Light-emitting element

101‧‧‧基板 101‧‧‧ substrate

102‧‧‧選擇蝕刻層 102‧‧‧Select Etching Layer

102A‧‧‧第一選擇蝕刻層(蝕刻停止層) 102A‧‧‧The first choice of etching layer (etch stop layer)

102B‧‧‧第二選擇蝕刻層 102B‧‧‧Second Selective Etching Layer

103‧‧‧第一半導體層 103‧‧‧First semiconductor layer

103A‧‧‧第一層 103A‧‧‧First floor

103B‧‧‧第二層 103B‧‧‧Second floor

104‧‧‧活性層(發光層) 104‧‧‧active layer (light emitting layer)

105‧‧‧第二半導體層 105‧‧‧Second semiconductor layer

106‧‧‧緩衝層 106‧‧‧ buffer layer

107‧‧‧電流傳播層 107‧‧‧ current propagation layer

108‧‧‧發光部 108‧‧‧Lighting Department

109‧‧‧磊晶基板 109‧‧‧Epimorph substrate

110‧‧‧透明基板 110‧‧‧ transparent substrate

115‧‧‧光提取面 115‧‧‧light extraction surface

116‧‧‧緩衝層 116‧‧‧Buffer layer

120‧‧‧第一介電質膜(第一SiO2膜)120‧‧‧ the first dielectric film (the first SiO 2 film)

121‧‧‧第二介電質膜(第二SiO2膜)121‧‧‧Second dielectric film (second SiO 2 film)

125‧‧‧透明接著層 125‧‧‧ transparent adhesive layer

125A‧‧‧第一接著層 125A‧‧‧First Adhesive Layer

125B‧‧‧第二接著層 125B‧‧‧Second Adhesive Layer

126‧‧‧第一接合基板 126‧‧‧First bonding substrate

131‧‧‧第二接合基板 131‧‧‧Second bonding substrate

140‧‧‧接合基板 140‧‧‧Board

150‧‧‧第一電極 150‧‧‧first electrode

151‧‧‧第二電極 151‧‧‧Second electrode

160‧‧‧區域 160‧‧‧area

170‧‧‧絕緣層 170‧‧‧ Insulation

171‧‧‧發光元件基板 171‧‧‧Light-emitting element substrate

180‧‧‧透明膜 180‧‧‧ transparent film

181‧‧‧凹凸層 181‧‧‧ Bump layer

182‧‧‧磨砂加工基板 182‧‧‧Frosted processed substrate

200‧‧‧發光元件 200‧‧‧Light-emitting element

201‧‧‧基板 201‧‧‧ substrate

202‧‧‧選擇蝕刻層 202‧‧‧Select Etching Layer

202A‧‧‧第一選擇蝕刻層(蝕刻停止層) 202A‧‧‧The first choice of etching layer (etch stop layer)

202B‧‧‧第二選擇蝕刻層 202B‧‧‧Second Selective Etching Layer

203‧‧‧第一半導體層 203‧‧‧First semiconductor layer

203A‧‧‧第一層 203A‧‧‧First floor

203B‧‧‧第二層 203B‧‧‧Second floor

204‧‧‧活性層(發光層) 204‧‧‧active layer (light emitting layer)

205‧‧‧第二半導體層 205‧‧‧Second semiconductor layer

206‧‧‧緩衝層 206‧‧‧Buffer layer

207‧‧‧電流傳播層 207‧‧‧Current Propagation Layer

208‧‧‧發光部 208‧‧‧Lighting Department

209‧‧‧磊晶基板 209‧‧‧Epimorph substrate

210‧‧‧透明基板 210‧‧‧ transparent substrate

211‧‧‧鏡面 211‧‧‧Mirror

212‧‧‧凹凸面 212‧‧‧convex surface

215‧‧‧光提取面 215‧‧‧light extraction surface

216‧‧‧緩衝層 216‧‧‧Buffer layer

220‧‧‧第一介電質膜(第一SiO2膜)220‧‧‧ the first dielectric film (the first SiO 2 film)

221‧‧‧第二介電質膜(第二SiO2膜)221‧‧‧Second dielectric film (second SiO 2 film)

225‧‧‧透明接著層 225‧‧‧Transparent adhesive layer

225A‧‧‧第一接著層 225A‧‧‧First Adhesive Layer

225B‧‧‧第二接著層 225B‧‧‧Second Adhesive Layer

226‧‧‧第一接合基板 226‧‧‧First bonding substrate

231‧‧‧第二接合基板 231‧‧‧Second bonding substrate

240‧‧‧接合基板 240‧‧‧Board

250‧‧‧第一電極 250‧‧‧first electrode

251‧‧‧第二電極 251‧‧‧Second electrode

260‧‧‧區域 260‧‧‧area

270‧‧‧絕緣層 270‧‧‧ Insulation

271‧‧‧發光元件基板 271‧‧‧Light-emitting element substrate

280‧‧‧透明膜 280‧‧‧ transparent film

281‧‧‧凹凸層 281‧‧‧ Bump layer

282‧‧‧磨砂加工基板 282‧‧‧ matte processing substrate

第1圖係顯示本發明的發光元件的第一實施樣貌的示意圖。 第2圖係顯示在本發明的發光元件的製造方法的第一實施樣貌之中的於基板上成長有選擇蝕刻層、發光部、緩衝層及電流傳播層的磊晶基板的說明圖。 第3圖係顯示在本發明的發光元件的製造方法的第一實施樣貌之中的將第一接合基板與第二接合基板接合的接合基板的說明圖。 第4圖係顯示在本發明的發光元件的製造方法的第一實施樣貌之中的形成有第一電極的發光元件基板的說明圖。 第5圖係顯示在本發明的發光元件的製造方法的第一實施樣貌之中的形成有切除第一半導體層及活性層的圖案的發光元件的說明圖。 第6圖係顯示在本發明的發光元件的製造方法的第一實施樣貌之中的形成有將第一半導體層的至少一部分覆蓋的絕緣層的發光元件基板的說明圖。 第7圖係顯示在本發明的發光元件的製造方法的第一實施樣貌之中的形成有第二電極的發光元件基板的說明圖。 第8圖係顯示在本發明的發光元件的製造方法的第一實施樣貌之中的經將透明膜的表面進行表面粗糙化處理的磨砂加工基板的說明圖。 第9圖係顯示本發明的發光元件的第二實施樣貌的示意圖。 第10圖係顯示在本發明的發光元件的製造方法的第二實施樣貌之中的於基板上成長有選擇蝕刻層、發光部、緩衝層及電流傳播層的磊晶基板的說明圖。 第11圖係顯示在本發明的發光元件的製造方法的第二實施樣貌之中的第一接合基板與第二接合基板接合的接合基板的說明圖。 第12圖係顯示在本發明的發光元件的製造方法的第二實施樣貌之中的形成有第一電極的發光元件基板的說明圖。 第13圖係顯示在本發明的發光元件的製造方法的第二實施樣貌之中的形成有切除第一半導體層及活性層的圖案的發光元件的說明圖。 第14圖係顯示在本發明的發光元件的製造方法的第二實施樣貌之中的形成有將第一半導體層的至少一部分覆蓋的絕緣層的發光元件基板的說明圖。 第15圖係顯示在本發明的發光元件的製造方法的第二實施樣貌之中的形成有第二電極的發光元件基板的說明圖。 第16圖係顯示在本發明的發光元件的製造方法的第二實施樣貌之中的經將透明膜的表面進行表面粗糙化處理的磨砂加工基板的說明圖。 第17圖係顯示在實施例一、二及比較例之中所製作的發光二極體的發光特性的圖。 第18圖係顯示在實施例一、二及比較例之中所製作的發光二極體的電流-輝度特性的圖。FIG. 1 is a schematic diagram showing the appearance of a first embodiment of a light-emitting element according to the present invention. FIG. 2 is an explanatory diagram showing an epitaxial substrate in which a selective etching layer, a light emitting portion, a buffer layer, and a current propagation layer are grown on a substrate in a first embodiment of a method for manufacturing a light emitting element according to the present invention. FIG. 3 is an explanatory diagram showing a bonded substrate in which a first bonded substrate and a second bonded substrate are bonded together in a first embodiment of the method for manufacturing a light emitting element according to the present invention. FIG. 4 is an explanatory view showing a light-emitting element substrate on which a first electrode is formed in a first embodiment of a method for manufacturing a light-emitting element according to the present invention. FIG. 5 is an explanatory diagram showing a light-emitting element having a pattern in which a first semiconductor layer and an active layer are cut out of a first embodiment of a method for manufacturing a light-emitting element according to the present invention. FIG. 6 is an explanatory view showing a light-emitting element substrate having an insulating layer covering at least a part of the first semiconductor layer in the first embodiment of the method for manufacturing a light-emitting element according to the present invention. FIG. 7 is an explanatory diagram showing a light-emitting element substrate having a second electrode formed therein in a first embodiment of the method for manufacturing a light-emitting element according to the present invention. FIG. 8 is an explanatory view showing a matte-processed substrate that has been subjected to a surface roughening treatment on the surface of the transparent film in the first embodiment of the method for manufacturing a light-emitting element according to the present invention. Fig. 9 is a schematic view showing a second embodiment of the light emitting device of the present invention. FIG. 10 is an explanatory view showing an epitaxial substrate in which a selective etching layer, a light emitting portion, a buffer layer, and a current propagation layer are grown on a substrate in a second embodiment of the method for manufacturing a light emitting element according to the present invention. FIG. 11 is an explanatory view showing a bonded substrate to which a first bonded substrate and a second bonded substrate are bonded in a second embodiment of the method for manufacturing a light emitting element according to the present invention. FIG. 12 is an explanatory diagram showing a light-emitting element substrate having a first electrode formed therein in a second embodiment of the method for manufacturing a light-emitting element according to the present invention. FIG. 13 is an explanatory diagram showing a light-emitting element having a pattern in which a first semiconductor layer and an active layer are cut out in a second embodiment of the method for manufacturing a light-emitting element according to the present invention. FIG. 14 is an explanatory view showing a light-emitting element substrate having an insulating layer covering at least a part of the first semiconductor layer in the second embodiment of the method for manufacturing a light-emitting element according to the present invention. Fig. 15 is an explanatory view showing a light-emitting element substrate having a second electrode formed therein, in a second embodiment of the method for manufacturing a light-emitting element according to the present invention. FIG. 16 is an explanatory view showing a matte-processed substrate that has been subjected to a surface roughening treatment on the surface of the transparent film in the second embodiment of the method for manufacturing a light-emitting element according to the present invention. Fig. 17 is a graph showing the light-emitting characteristics of the light-emitting diodes produced in Examples 1 and 2 and Comparative Examples. Fig. 18 is a graph showing the current-luminance characteristics of the light-emitting diodes produced in Examples 1 and 2 and Comparative Examples.

Claims (6)

一種發光元件,係於光提取面之側予以貼合一透明基板,其中 於該透明基板的該光提取面之側的表面係設置有一透明膜,該透明膜的折射率低於該透明基板,且該透明膜的表面係經表面粗糙化。A light emitting element is attached to a transparent substrate on a side of a light extraction surface, wherein a transparent film is disposed on a surface of the transparent substrate on the side of the light extraction surface, and the refractive index of the transparent film is lower than that of the transparent substrate. The surface of the transparent film is roughened. 如請求項1所述的發光元件,其中該透明基板為藍寶石基板,該透明膜為SiO2 膜。The light-emitting element according to claim 1, wherein the transparent substrate is a sapphire substrate, and the transparent film is a SiO 2 film. 一種發光元件的製造方法,該發光元件係於光提取面之側予以貼合一透明基板,其中該製造方法係 於該透明基板的該光提取面之側的表面予以積層一透明膜,該透明膜的折射率低於該透明基板,以及將經積層的該透明膜的表面藉由化學處理的磨砂加工而表面粗糙化處理。A method for manufacturing a light-emitting element, the light-emitting element is bonded to a transparent substrate on a side of a light extraction surface, wherein the manufacturing method is to laminate a transparent film on a surface of the transparent substrate on a side of the light extraction surface, the transparent The refractive index of the film is lower than that of the transparent substrate, and the surface of the laminated transparent film is surface-roughened by chemically-treated matte processing. 如請求項3所述之發光元件的製造方法,其中該透明基板為藍寶石基板,該透明膜為SiO2 膜。The method for manufacturing a light emitting device according to claim 3, wherein the transparent substrate is a sapphire substrate, and the transparent film is a SiO 2 film. 如請求項4所述之發光元件的製造方法,其中該磨砂加工係藉由以氟酸與一價至四價的無機酸或有機酸經混合的液體而蝕刻處理,而將該透明膜的表面表面粗糙化處理。The method for manufacturing a light-emitting device according to claim 4, wherein the frosting process is performed by etching the liquid with a mixed solution of hydrofluoric acid and a monovalent to tetravalent inorganic acid or organic acid, so that the surface of the transparent film Surface roughening treatment. 如請求項5所述之發光元件的製造方法,其中作為該無機酸,係使用硫酸、鹽酸及磷酸中至少一種,作為該有機酸,係使用丙二酸、醋酸、檸檬酸及酒石酸中至少一種。The method for manufacturing a light emitting device according to claim 5, wherein as the inorganic acid, at least one of sulfuric acid, hydrochloric acid and phosphoric acid is used, and as the organic acid, at least one of malonic acid, acetic acid, citric acid and tartaric acid is used .
TW106129758A 2016-10-12 2017-08-31 Light emitting element and method of manufacturing light emitting element TWI693725B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-200628 2016-10-12
JP2016200628A JP6729275B2 (en) 2016-10-12 2016-10-12 Light emitting device and method for manufacturing light emitting device

Publications (2)

Publication Number Publication Date
TW201817035A true TW201817035A (en) 2018-05-01
TWI693725B TWI693725B (en) 2020-05-11

Family

ID=61906310

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106129758A TWI693725B (en) 2016-10-12 2017-08-31 Light emitting element and method of manufacturing light emitting element

Country Status (3)

Country Link
JP (1) JP6729275B2 (en)
TW (1) TWI693725B (en)
WO (1) WO2018070120A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112968092A (en) * 2020-11-19 2021-06-15 重庆康佳光电技术研究院有限公司 Light emitting device, manufacturing method thereof and display panel with light emitting device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111936061B (en) 2018-03-29 2024-02-09 泰尔茂株式会社 Medical device
JP6836022B2 (en) 2018-12-10 2021-02-24 株式会社フィルネックス Semiconductor substrate, semiconductor substrate manufacturing method and semiconductor element manufacturing method

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4367816B2 (en) * 2000-05-19 2009-11-18 信越石英株式会社 Surface treatment method for quartz glass
TW474034B (en) * 2000-11-07 2002-01-21 United Epitaxy Co Ltd LED and the manufacturing method thereof
JP3824299B2 (en) * 2001-01-30 2006-09-20 東芝セラミックス株式会社 Frost treatment liquid and frost treatment method on quartz glass surface
JP3782357B2 (en) * 2002-01-18 2006-06-07 株式会社東芝 Manufacturing method of semiconductor light emitting device
JP4590905B2 (en) * 2003-10-31 2010-12-01 豊田合成株式会社 Light emitting element and light emitting device
US7018859B2 (en) * 2004-06-28 2006-03-28 Epistar Corporation Method of fabricating AlGaInP light-emitting diode and structure thereof
KR100638666B1 (en) * 2005-01-03 2006-10-30 삼성전기주식회사 Nitride based semiconductor light emitting device
JP2006278751A (en) * 2005-03-29 2006-10-12 Mitsubishi Cable Ind Ltd Garium nitride-based semiconductor light emitting element
US7829905B2 (en) * 2006-09-07 2010-11-09 Hong Kong Applied Science And Technology Research Institute Co., Ltd. Semiconductor light emitting device
JP2010287621A (en) * 2009-06-09 2010-12-24 Sharp Corp Method of manufacturing microstructure
WO2012176369A1 (en) * 2011-06-24 2012-12-27 パナソニック株式会社 Gallium nitride semiconductor light emitting element, light source, and method for forming recessed and projected structure
JP6251883B2 (en) * 2014-01-07 2017-12-27 パナソニックIpマネジメント株式会社 UV light emitting element
JP2016129189A (en) * 2015-01-09 2016-07-14 信越半導体株式会社 Infrared light emission element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112968092A (en) * 2020-11-19 2021-06-15 重庆康佳光电技术研究院有限公司 Light emitting device, manufacturing method thereof and display panel with light emitting device

Also Published As

Publication number Publication date
JP6729275B2 (en) 2020-07-22
JP2018064006A (en) 2018-04-19
TWI693725B (en) 2020-05-11
WO2018070120A1 (en) 2018-04-19

Similar Documents

Publication Publication Date Title
US11522104B2 (en) Light emitting device, and method for manufacturing thereof
WO2021208766A1 (en) Algainp-based light emitting diode chip and manufacturing method therefor
JP5533675B2 (en) Semiconductor light emitting device
US6967117B2 (en) Method for producing high brightness LED
US8022436B2 (en) Light emitting diode, production method thereof and lamp
US7915714B2 (en) Semiconductor light emitting element and wafer
US8390007B2 (en) Semiconductor light emitting device and method of fabricating semiconductor light emitting device
TW201448263A (en) Transparent light emitting diodes
JP2005150675A (en) Semiconductor light-emitting diode and its manufacturing method
WO2008047923A1 (en) Nitride semiconductor light-emitting diode device
JP2006066903A (en) Positive electrode for semiconductor light-emitting element
CN104617195A (en) Near infrared LED and production method thereof
JP2010098068A (en) Light emitting diode, manufacturing method thereof, and lamp
TWI693725B (en) Light emitting element and method of manufacturing light emitting element
WO2016079929A1 (en) Light emitting element and method for producing light emitting element
WO2018076901A1 (en) Thin-film light-emitting diode chip and manufacturing method therefor
JP2007294804A (en) Semiconductor light emitting element and wafer
JP4380083B2 (en) Manufacturing method of light emitting diode
JP2009094108A (en) MANUFACTURING METHOD OF GaN-BASED LED DEVICE
JP6623973B2 (en) Light emitting device and method for manufacturing light emitting device
CN104733583A (en) Manufacturing method for AlGaInP-base light-emitting diode with reversed polarity
TWI804627B (en) Light-emitting element and method for manufacturing light-emitting element
TWI431823B (en) Production method and finished product of light emitting diode grain element with microlens
TWI552381B (en) Method for manufacturing vertical-feedthrough led
KR20040067397A (en) Method for manufacturing semiconductor light emitting diode