TW201817016A - Solar cell - Google Patents

Solar cell Download PDF

Info

Publication number
TW201817016A
TW201817016A TW105134042A TW105134042A TW201817016A TW 201817016 A TW201817016 A TW 201817016A TW 105134042 A TW105134042 A TW 105134042A TW 105134042 A TW105134042 A TW 105134042A TW 201817016 A TW201817016 A TW 201817016A
Authority
TW
Taiwan
Prior art keywords
layer
tantalum nitride
solar cell
nitride layer
substrate
Prior art date
Application number
TW105134042A
Other languages
Chinese (zh)
Other versions
TWI585988B (en
Inventor
陳亮斌
蒲瑞臻
Original Assignee
茂迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 茂迪股份有限公司 filed Critical 茂迪股份有限公司
Priority to TW105134042A priority Critical patent/TWI585988B/en
Priority to CN201611008511.3A priority patent/CN107978644A/en
Application granted granted Critical
Publication of TWI585988B publication Critical patent/TWI585988B/en
Publication of TW201817016A publication Critical patent/TW201817016A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

A solar cell includes a substrate, an emitter layer, a back surface field layer, an anti-reflective layer, an alumina layer, a passivation layer, a front electrode and a back electrode. The emitter layer is located within the substrate and adjacent to a front surface of the substrate. The surface field layer is located within the substrate and adjacent to a back surface of the substrate. The anti-reflective layer is located on the front surface of the substrate. The Aluminum oxide layer is located on the back surface of the substrate. The passivation layer includes a first silicon nitride layer, a second silicon nitride layer and a third layer of silicon nitride which are arranged in sequence. The ratio of the hydrogen content to the nitrogen content of the first silicon nitride layer is less than the ratio of the hydrogen content to the nitrogen content of the second silicon nitride layer. The first silicon nitride layer contacts the aluminum oxide layer, and the nitrogen contents of the first and third silicon nitride layers are more than the nitrogen content of the second silicon nitride layer, respectively.

Description

太陽能電池  Solar battery  

本發明是有關於一種太陽能電池,且特別是有關於一種太陽能電池,其之鈍化層具有氫離子濃度梯度的設計。 The present invention relates to a solar cell, and more particularly to a solar cell having a passivation layer having a hydrogen ion concentration gradient design.

太陽能電池是一種能量轉換的光電元件(photovoltaic device),其中射極鈍化及背電極太陽能電池(PERC:Passivated Emitter Rear Cell)以其高轉換效率而備受關注。射極鈍化及背電極太陽能電池相較於傳統太陽能電池的主要差異在於:射極鈍化及背電極太陽能電池係利用鈍化技術將正面的射極與背面鈍化,以減少表面缺陷。 A solar cell is an energy-converting photovoltaic device in which an emitter passivation and a back electrode solar cell (PERC: Passivated Emitter Rear Cell) are attracting attention with their high conversion efficiency. The main difference between emitter passivation and back electrode solar cells compared to conventional solar cells is that the emitter passivation and back electrode solar cells use passivation techniques to passivate the front emitter and back side to reduce surface defects.

詳細而言,射極鈍化及背電極之太陽能電池的背電極形成的方式,通常是先以雷射等方式對鈍化層開孔以形成電極接觸位置,再於背面網印非穿透性鋁膠或者是透過物理氣相沉積(PVD)鍍上鋁,最後與正面網印銀膠共燒結後形成電極,其與傳統太陽能電池於背面以鋁漿整面印刷並燒結,從而形成全面的背面電場(BSF:back-surface field)有所不同。由於射極鈍化及背電極太陽能電池的製作僅是於背面進行局部開孔,因此最終能形成局部背電場(Local BSF)並保留大面積的鈍化層。另一方面,相較於傳統電池而言,射極鈍化及背電極太陽能電池增加了其背面的鈍化層鈍化的面積,因此可有效減少載子在背面複合的速率。 In detail, the method of forming the back electrode of the emitter passivation and the back electrode of the solar cell is generally to first open the hole in the passivation layer by laser or the like to form an electrode contact position, and then screen the non-penetrating aluminum glue on the back side. Or it is plated with aluminum by physical vapor deposition (PVD), and finally formed by co-sintering with the front screen printing silver paste to form an electrode, which is printed and sintered on the back side with a conventional aluminum solar cell to form a comprehensive back surface electric field ( BSF: back-surface field) is different. Since the emitter passivation and the back electrode solar cell are fabricated only by partial opening on the back side, a local back field (Local BSF) can be formed and a large area of the passivation layer can be retained. On the other hand, compared with conventional batteries, the emitter passivation and back electrode solar cells increase the passivation layer passivation area on the back side, thereby effectively reducing the rate at which the carriers recombine on the back side.

參考圖1,其顯示一種習知射極鈍化及背電極之太陽能電池9包括一導電型基板91、一射極層92、一抗反射層93、一鈍化層94、一正面電極95及一背面電極96。該鈍化層94是指單一層之氮化矽層。然而,該單層之氮化矽層的厚度例如約為250nm,太厚的氮化矽層將導致製程時間較長。若直接將該單層的氮化矽層減薄,並僅 以此一層來進行矽基板表面之鈍化時,減薄後之單一層的氮化矽層可能無法提供足夠的氫離子以填補矽基板表面的缺陷(懸鍵)進而無法充分地達成表面鈍化。 Referring to FIG. 1, a solar cell 9 of a conventional emitter passivation and back electrode includes a conductive substrate 91, an emitter layer 92, an anti-reflection layer 93, a passivation layer 94, a front surface electrode 95, and a back surface. Electrode 96. The passivation layer 94 refers to a single layer of tantalum nitride layer. However, the thickness of the single-layer tantalum nitride layer is, for example, about 250 nm, and a too thick tantalum nitride layer will result in a long process time. If the single-layer tantalum nitride layer is directly thinned and the passivation of the germanium substrate surface is performed by only one layer, the thinned single layer of tantalum nitride layer may not provide sufficient hydrogen ions to fill the germanium substrate. Surface defects (hanging bonds), in turn, do not adequately achieve surface passivation.

因此,便有需要提供一種太陽能電池,能夠解決前述的問題。 Therefore, there is a need to provide a solar cell that can solve the aforementioned problems.

本發明之一目的是提供一種太陽能電池,其之鈍化層具有氫離子濃度梯度的設計。 It is an object of the present invention to provide a solar cell having a passivation layer having a design of a hydrogen ion concentration gradient.

依據上述之目的,本發明提供一種太陽能電池包括一基板、一射極層、一背電場層、一抗反射層、一氧化鋁層、一鈍化層、一正面電極及一背面電極。該基板為第一導電型,並具有一正面和一與該正面相對的背面。該射極層為第二導電型,並位於該基板內靠近該正面處。該背電場層為第一導電型,並位於該基板內靠近該背面處。該抗反射層位於該正面處。該氧化鋁層位於該背面處。該鈍化層包括依序排列的一第一氮化矽層、一第二氮化矽層及一第三氮化矽層。該第一氮化矽層的氫含量/氮含量的比值小於該第二氮化矽層的氫含量/氮含量的比值。該第一氮化矽層接觸該氧化鋁層,且該第一氮化矽層與該第三氮化矽層的氮含量分別大於該第二氮化矽層的氮含量。該正面電極穿過該抗反射層,並接觸該射極層。該背面電極穿過該鈍化層及該氧化鋁層,並接觸該背電場層。 According to the above objective, the present invention provides a solar cell including a substrate, an emitter layer, a back field layer, an anti-reflection layer, an aluminum oxide layer, a passivation layer, a front electrode, and a back electrode. The substrate is of a first conductivity type and has a front side and a back side opposite the front side. The emitter layer is of a second conductivity type and is located within the substrate adjacent the front side. The back electric field layer is of a first conductivity type and is located in the substrate near the back surface. The anti-reflective layer is located at the front side. The aluminum oxide layer is located at the back surface. The passivation layer includes a first tantalum nitride layer, a second tantalum nitride layer and a third tantalum nitride layer arranged in sequence. The ratio of the hydrogen content/nitrogen content of the first tantalum nitride layer is smaller than the ratio of the hydrogen content/nitrogen content of the second tantalum nitride layer. The first tantalum nitride layer contacts the aluminum oxide layer, and the nitrogen content of the first tantalum nitride layer and the third tantalum nitride layer are respectively greater than the nitrogen content of the second tantalum nitride layer. The front electrode passes through the anti-reflective layer and contacts the emitter layer. The back electrode passes through the passivation layer and the aluminum oxide layer and contacts the back electric field layer.

相較於先前技術,若本發明之鈍化層的多層氮化矽層(亦即該第一至第三氮化矽層)總厚度降至250nm以下(例如,總厚度降至150nm),則本發明之氫離子濃度梯度的設計仍能有效地提供足夠的氫離子以填補基板表面的缺陷(懸鍵)進而可有效地達成表面鈍化。或者,相較於先前技術,若本發明之鈍化層的多層氮化矽層總厚度維持在250nm(例如該第一、第二及第三氮化矽層之膜厚分別為10nm、10nm及230nm),則由於本發明之氫離子濃度梯度的設計可更充分地達成基板表面鈍化,因此本發明之太陽能電池的性能(例如,串聯電阻Rs、短路電流Isc、開路電壓Voc及填充因子FF)可再提升。 Compared with the prior art, if the total thickness of the multilayer tantalum nitride layer (that is, the first to third tantalum nitride layers) of the passivation layer of the present invention is reduced to less than 250 nm (for example, the total thickness is reduced to 150 nm), The design of the hydrogen ion concentration gradient of the invention is still effective in providing sufficient hydrogen ions to fill defects (dangling bonds) on the surface of the substrate to effectively achieve surface passivation. Or, compared with the prior art, if the total thickness of the multilayer tantalum nitride layer of the passivation layer of the present invention is maintained at 250 nm (for example, the film thicknesses of the first, second, and third tantalum nitride layers are 10 nm, 10 nm, and 230 nm, respectively). ), since the design of the hydrogen ion concentration gradient of the present invention can more fully achieve substrate surface passivation, the performance of the solar cell of the present invention (for example, series resistance Rs, short circuit current Isc, open circuit voltage Voc, and fill factor FF) can be Improve again.

1‧‧‧太陽能電池 1‧‧‧Solar battery

11‧‧‧基板 11‧‧‧Substrate

111‧‧‧正面 111‧‧‧ positive

112‧‧‧背面 112‧‧‧Back

112H‧‧‧開孔處 112H‧‧‧ Openings

112M‧‧‧開口周圍處 112M‧‧‧around the opening

12‧‧‧射極層 12‧‧ ‧ emitter layer

13‧‧‧抗反射層 13‧‧‧Anti-reflective layer

14‧‧‧鈍化層 14‧‧‧ Passivation layer

14’‧‧‧鈍化層 14'‧‧‧ Passivation layer

141‧‧‧第一氮化矽層 141‧‧‧First tantalum layer

142‧‧‧第二氮化矽層 142‧‧‧Second tantalum layer

1421‧‧‧第一氮化矽薄膜 1421‧‧‧First tantalum nitride film

1422‧‧‧第二氮化矽薄膜 1422‧‧‧Second tantalum nitride film

143‧‧‧第三氮化矽層 143‧‧‧the third layer of tantalum nitride

1431‧‧‧外側 1431‧‧‧ outside

144‧‧‧緩衝層 144‧‧‧buffer layer

1441‧‧‧第三氮化矽薄膜 1441‧‧‧The third tantalum nitride film

1442‧‧‧第四氮化矽薄膜 1442‧‧‧4th tantalum nitride film

1443‧‧‧第五氮化矽薄膜 1443‧‧‧Film nitride film

145‧‧‧第四氮化矽層 145‧‧‧4th tantalum nitride layer

146‧‧‧矽氮氧化物層 146‧‧‧矽Nitrogen oxide layer

147‧‧‧矽氧化物層 147‧‧‧矽Oxide layer

15‧‧‧正面電極 15‧‧‧Front electrode

16‧‧‧背面電極 16‧‧‧Back electrode

17‧‧‧背電場層 17‧‧‧ Back electric field layer

18‧‧‧氧化鋁層 18‧‧‧Alumina layer

9‧‧‧太陽能電池 9‧‧‧Solar battery

91‧‧‧基板 91‧‧‧Substrate

92‧‧‧射極層 92‧‧ ‧ emitter layer

93‧‧‧抗反射層 93‧‧‧Anti-reflective layer

94‧‧‧鈍化層 94‧‧‧ Passivation layer

95‧‧‧正面電極 95‧‧‧ front electrode

96‧‧‧背面電極 96‧‧‧Back electrode

圖1為習知射極鈍化及背電極太陽能電池之剖面示意圖。 1 is a schematic cross-sectional view of a conventional emitter passivation and back electrode solar cell.

圖2為本發明之一實施例之太陽能電池之剖面示意圖。 2 is a schematic cross-sectional view of a solar cell according to an embodiment of the present invention.

圖3為本發明之一實施例之太陽能電池之局部剖面示意圖。 3 is a partial cross-sectional view showing a solar cell according to an embodiment of the present invention.

圖4為本發明之另一實施例之太陽能電池之局部剖面示意圖。 4 is a partial cross-sectional view showing a solar cell according to another embodiment of the present invention.

為讓本發明之上述目的、特徵和特點能更明顯易懂,茲配合圖式將本發明相關實施例詳細說明如下。 The above described objects, features, and characteristics of the present invention will become more apparent from the aspects of the invention.

參考圖2,其顯示本發明之一實施例之太陽能電池。該太陽能電池1包括一基板11、一射極層12、一背電場層17、一抗反射層13、一氧化鋁層18、一鈍化層14、一正面電極15及一背面電極16。該基板11為第一導電型(例如矽基板),並具有一正面111和一與該正面111相對的背面112。該射極層12為第二導電型,並位於該基板12內靠近該正面111處。該背電場層17為第一導電型,並位於該基板11內靠近該背面112處。該抗反射層13位於該正面111處。該氧化鋁層18位於該背面112處。該正面電極15穿過該抗反射層13,並接觸該射極層12。該背面電極16穿過該鈍化層14及該氧化鋁層18,並接觸該背電場層17。 Referring to Figure 2, there is shown a solar cell of one embodiment of the present invention. The solar cell 1 includes a substrate 11, an emitter layer 12, a back electric field layer 17, an anti-reflection layer 13, an aluminum oxide layer 18, a passivation layer 14, a front electrode 15, and a back electrode 16. The substrate 11 is of a first conductivity type (for example, a germanium substrate) and has a front surface 111 and a back surface 112 opposite to the front surface 111. The emitter layer 12 is of a second conductivity type and is located within the substrate 12 near the front side 111. The back electric field layer 17 is of a first conductivity type and is located in the substrate 11 near the back surface 112. The anti-reflection layer 13 is located at the front surface 111. The aluminum oxide layer 18 is located at the back side 112. The front electrode 15 passes through the anti-reflection layer 13 and contacts the emitter layer 12. The back electrode 16 passes through the passivation layer 14 and the aluminum oxide layer 18 and contacts the back electric field layer 17.

在本實施例中,本發明之太陽能電池1可為射極鈍化及背電極之太陽能電池(PERC:Passivated Emitter Rear Cell),僅於對應之開口處112H有重摻雜(例如P+ doping),亦即比基板11(例如P型導電型)摻雜濃度略高,如此之開孔處112H稱為局部背電場(LBSF:local back-surface field)。在另一實施例中,本發明之太陽能電池1可為射極鈍化及背面完全擴散之太陽能電池(PERT:Passivated Emitter,Rear Totally-Diffused),開口處112H有重摻雜(例如P++doping),開口周圍處112M有摻雜(例如P+doping),亦即比基板11(例如P型導電型)摻雜濃度高的P++ doping及P+ doping兩者同時存在。 In this embodiment, the solar cell 1 of the present invention may be a passive passivated and back electrode solar cell (PERC: Passive Emitter Rear Cell), which is heavily doped (for example, P+ doping) only at the corresponding opening 112H. That is, the doping concentration is slightly higher than that of the substrate 11 (for example, a P-type conductivity type), and such an opening portion 112H is referred to as a local back-surface field (LBSF). In another embodiment, the solar cell 1 of the present invention may be an emitter-passivated and fully diffused solar cell (PERT: Rear-Rand Totally-Diffused), and the opening 112H is heavily doped (for example, P++doping) There is a doping (for example, P+doping) at the periphery of the opening 112M, that is, both P++ doping and P+ doping having a higher doping concentration than the substrate 11 (for example, a P-type conductivity type).

參考圖3,在本實施例中,該鈍化層14包括依序排列的一第一氮化矽層141、一第二氮化矽層142及一第三氮化矽層143。該第一氮化矽層141接觸該氧化鋁層18。該第一氮化矽層141的折射率小於該第二氮化矽層142的折射率,且該第三氮化矽層143的折射率也小於該第二氮化矽層142的折射率,例如該第一及第三氮化矽層141、143的折射率皆小於2,且該第二氮化矽層142的折射率大於2.4,如此可推算得知該第一氮化矽層141及該第三氮化矽層142的氮含量分別大於該第二氮化矽層142的氮含量,亦即該第一氮化矽層141及該第三氮化矽層143的氫含量也分別小於該第二氮化矽層142的氫含量。因此,該第一氮化矽層141的氫含量/氮含量的比值小於該第二氮化矽層142的氫含量/氮含量的比值,可形成氫離子之濃度梯度。此氫離子濃度梯度的設計會使氫離子有效地由濃度高之該第二氮化矽層142往濃度低之該第一氮化矽層141的方向移動,再加上該基板11(例如矽基板)表面的缺陷(懸鍵)也會吸引氫離子往該基板11的方向移動。另外,該第三氮化矽層143的氫含量/氮含量的比值小於該第二氮化矽層142的氫含量/氮含量的比值,使該第三氮化矽層143作為氫離子阻隔層。 Referring to FIG. 3, in the embodiment, the passivation layer 14 includes a first tantalum nitride layer 141, a second tantalum nitride layer 142, and a third tantalum nitride layer 143. The first tantalum nitride layer 141 contacts the aluminum oxide layer 18. The refractive index of the first tantalum nitride layer 141 is smaller than the refractive index of the second tantalum nitride layer 142, and the refractive index of the third tantalum nitride layer 143 is also smaller than the refractive index of the second tantalum nitride layer 142. For example, the refractive indices of the first and third tantalum nitride layers 141 and 143 are both less than 2, and the refractive index of the second tantalum nitride layer 142 is greater than 2.4, so that the first tantalum nitride layer 141 and The nitrogen content of the third tantalum nitride layer 142 is greater than the nitrogen content of the second tantalum nitride layer 142, that is, the hydrogen content of the first tantalum nitride layer 141 and the third tantalum nitride layer 143 are also less than The hydrogen content of the second tantalum nitride layer 142. Therefore, the ratio of the hydrogen content/nitrogen content of the first tantalum nitride layer 141 is smaller than the ratio of the hydrogen content/nitrogen content of the second tantalum nitride layer 142, and a concentration gradient of hydrogen ions can be formed. The hydrogen ion concentration gradient is designed such that the hydrogen ions are effectively moved from the second concentration of the second tantalum nitride layer 142 to the lower concentration of the first tantalum nitride layer 141, and the substrate 11 is added (for example, germanium). Defects (dangling bonds) on the surface of the substrate also attract hydrogen ions to move in the direction of the substrate 11. In addition, the ratio of the hydrogen content/nitrogen content of the third tantalum nitride layer 143 is smaller than the ratio of the hydrogen content/nitrogen content of the second tantalum nitride layer 142, and the third tantalum nitride layer 143 is used as the hydrogen ion barrier layer. .

相較於先前技術,若本發明之鈍化層14的多層氮化矽層(亦即該第一至第三氮化矽層141、142、143)總厚度降至250nm以下(例如,總厚度降至150nm),則本發明之氫離子濃度梯度的設計仍能有效地提供足夠的氫離子以填補基板表面的缺陷(懸鍵)進而可有效地達成表面鈍化。或者,相較於先前技術,若本發明之鈍化層14的多層氮化矽層總厚度維持在250nm(例如該第一、第二及第三氮化矽層141、142、143之膜厚分別為10nm、10nm及230nm),則由於本發明之氫離子濃度梯度的設計可更充分地達成基板表面鈍化,因此本發明之太陽能電池的性能(例如,串聯電阻Rs、短路電流Isc、開路電壓Voc及填充因子FF)可再提升。 Compared with the prior art, if the multilayer tantalum nitride layer of the passivation layer 14 of the present invention (that is, the first to third tantalum nitride layers 141, 142, 143) has a total thickness of less than 250 nm (for example, total thickness drop) Up to 150 nm), the design of the hydrogen ion concentration gradient of the present invention is still effective in providing sufficient hydrogen ions to fill defects (dangling bonds) on the surface of the substrate to effectively achieve surface passivation. Alternatively, compared to the prior art, if the total thickness of the multilayer tantalum nitride layer of the passivation layer 14 of the present invention is maintained at 250 nm (for example, the film thicknesses of the first, second, and third tantalum nitride layers 141, 142, and 143, respectively) 10 nm, 10 nm, and 230 nm), since the design of the hydrogen ion concentration gradient of the present invention can more fully achieve substrate surface passivation, the performance of the solar cell of the present invention (for example, series resistance Rs, short-circuit current Isc, open circuit voltage Voc) And the fill factor FF) can be further improved.

參考圖4,在另一實施例中,該鈍化層14’之第二氮化矽層142包括第一及第二氮化矽薄膜1421、1422。該鈍化層14’更包 括一緩衝層144,該緩衝層144包括第三、第四及第五氮化矽薄膜1441、1442、1443。該第一氮化矽層141、該第三氮化矽薄膜1441、該第一氮化矽薄膜1421、該第四氮化矽薄膜1442、該第二氮化矽薄膜1422、該第五氮化矽薄膜1443及該第三氮化矽層143依序排列。 Referring to FIG. 4, in another embodiment, the second tantalum nitride layer 142 of the passivation layer 14' includes first and second tantalum nitride films 1421, 1422. The passivation layer 14' further includes a buffer layer 144 including third, fourth, and fifth tantalum nitride films 1441, 1442, and 1443. The first tantalum nitride layer 141, the third tantalum nitride film 1441, the first tantalum nitride film 1421, the fourth tantalum nitride film 1442, the second tantalum nitride film 1422, and the fifth nitride The tantalum film 1443 and the third tantalum nitride layer 143 are sequentially arranged.

該第三、第四及第五氮化矽薄膜1441、1442、1443的折射率小於該第一及第二氮化矽薄膜1421、1422的折射率。該第一及第三氮化矽層141、143的折射率小於該第三、第四及第五氮化矽薄膜1441、1442、1443的折射率。例如,該第一及第三氮化矽層141、143的折射率皆小於1.9,該第三、第四及第五氮化矽薄膜1441、1442、1443的折射率皆介於1.9與2.4之間,且該第一及第二氮化矽薄膜1421、1422的折射率大於2.4,如此可推算得知該第一氮化矽層141與該第三氮化矽層142的氮含量大於該緩衝層144(包括第三、第四及第五氮化矽薄膜1441、1442、1443),該緩衝層144(包括第三、第四及第五氮化矽薄膜1441、1442、1443)的氮含量大於該第二氮化矽層142(包括該第一及第二氮化矽薄膜1421、1422)的氮含量;亦即該第一氮化矽層141及該第三氮化矽層143的氫含量小於該緩衝層144(包括第三、第四及第五氮化矽薄膜1441、1442、1443)的氫含量,該緩衝層144(包括第三、第四及第五氮化矽薄膜1441、1442、1443)的氫含量小於該第二氮化矽層142(包括該第一及第二氮化矽薄膜1421、1422)的氫含量。因此,該第一氮化矽層141的氫含量/氮含量的比值小於該緩衝層144(包括第三、第四及第五氮化矽薄膜1441、1442、1443)的氫含量/氮含量的比值,該緩衝層144(包括第三及第四氮化矽薄膜1441、1442)的氫含量/氮含量的比值小於該第二氮化矽層142(包括該第一及第二氮化矽薄膜1421、1422)的氫含量/氮含量的比值,可形成氫離子之濃度梯度。此氫離子濃度梯度的設計會使氫離子有效地由濃度高之該第二氮化矽層142(包括該第一及第二氮化矽薄膜1421、1422)往濃度低之該第一氮化矽層141的方向移動,再加上該基板11(例如矽基板)表面的缺陷(懸鍵)也會吸引氫離子往該基板11的方向移動。另外,該第三氮化矽層143的氫含量/氮含 量的比值小於該第二氮化矽層142(包括該第一及第二氮化矽薄膜1421、1422)的氫含量/氮含量的比值,使該第三氮化矽層143作為氫離子阻隔層。該緩衝層144(包括第三、第四及第五氮化矽薄膜1441、1442、1443)作為移動時之緩衝。 The refractive indices of the third, fourth, and fifth tantalum nitride films 1441, 1442, and 1443 are smaller than the refractive indices of the first and second tantalum nitride films 1421, 1422. The refractive indices of the first and third tantalum nitride layers 141, 143 are smaller than the refractive indices of the third, fourth, and fifth tantalum nitride films 1441, 1442, and 1443. For example, the first and third tantalum nitride layers 141, 143 have refractive indices of less than 1.9, and the third, fourth, and fifth tantalum nitride films 1441, 1442, and 1443 have refractive indices of between 1.9 and 2.4. The refractive index of the first and second tantalum nitride films 1421, 1422 is greater than 2.4, so that the nitrogen content of the first tantalum nitride layer 141 and the third tantalum nitride layer 142 is greater than the buffer. Layer 144 (including third, fourth, and fifth tantalum nitride films 1441, 1442, 1443), the buffer layer 144 (including the third, fourth, and fifth tantalum nitride films 1441, 1442, 1443) nitrogen content The nitrogen content of the second tantalum nitride layer 142 (including the first and second tantalum nitride films 1421, 1422); that is, the hydrogen of the first tantalum nitride layer 141 and the third tantalum nitride layer 143 The content of hydrogen is less than the hydrogen content of the buffer layer 144 (including the third, fourth, and fifth tantalum nitride films 1441, 1442, and 1443), and the buffer layer 144 includes third, fourth, and fifth tantalum nitride films 1441. The hydrogen content of 1442, 1443) is less than the hydrogen content of the second tantalum nitride layer 142 (including the first and second tantalum nitride films 1421, 1422). Therefore, the ratio of the hydrogen content/nitrogen content of the first tantalum nitride layer 141 is smaller than the hydrogen content/nitrogen content of the buffer layer 144 (including the third, fourth, and fifth tantalum nitride films 1441, 1442, and 1443). The ratio of the hydrogen content/nitrogen content of the buffer layer 144 (including the third and fourth tantalum nitride films 1441, 1442) is smaller than the second tantalum nitride layer 142 (including the first and second tantalum nitride films) The ratio of hydrogen content to nitrogen content of 1421, 1422) can form a concentration gradient of hydrogen ions. The hydrogen ion concentration gradient is designed such that the hydrogen ions are effectively concentrated from the second tantalum nitride layer 142 having a high concentration (including the first and second tantalum nitride films 1421, 1422) to the first concentration of the first nitride. The movement of the ruthenium layer 141 in the direction of the substrate 11 (for example, a ruthenium substrate) also attracts hydrogen ions to move in the direction of the substrate 11. In addition, the ratio of the hydrogen content/nitrogen content of the third tantalum nitride layer 143 is smaller than the hydrogen content/nitrogen content of the second tantalum nitride layer 142 (including the first and second tantalum nitride films 1421, 1422). The ratio is such that the third tantalum nitride layer 143 functions as a hydrogen ion barrier layer. The buffer layer 144 (including the third, fourth, and fifth tantalum nitride films 1441, 1442, and 1443) serves as a buffer for movement.

該鈍化層14’更包括一第四氮化矽層145,該第四氮化矽層145配置於該第三氮化矽層143之一外側1431,且該第四氮化矽層145的矽含量大於該第一、第二及第三氮化矽層141、142、143的矽含量。例如,該第四氮化矽層145的折射率大於2.4。該第四氮化矽層145可作為氫離子最後阻隔層。 The passivation layer 14 ′ further includes a fourth tantalum nitride layer 145 disposed on an outer side 1431 of the third tantalum nitride layer 143 and having a defect of the fourth tantalum nitride layer 145 . The content is greater than the germanium content of the first, second and third tantalum nitride layers 141, 142, 143. For example, the fourth tantalum nitride layer 145 has a refractive index greater than 2.4. The fourth tantalum nitride layer 145 can serve as a hydrogen ion last barrier layer.

該鈍化層14’更包括一矽氮氧化物層146,該矽氮氧化物層146配置於該第四氮化矽層145之一外側1451。該矽氮氧化物層146可作為膠擴散阻隔層(paste diffusion block layer)。該鈍化層14’更包括一矽氧化物層147例如二氧化矽層,該矽氧化物層147配置於該氧化鋁層18與該基板11的背面112之間。該矽氧化物層147之膜厚可為1~2nm,且該氧化鋁層18之膜厚可為4~8nm。 The passivation layer 14' further includes a tantalum oxynitride layer 146 disposed on an outer side 1451 of the fourth tantalum nitride layer 145. The tantalum oxynitride layer 146 can serve as a paste diffusion block layer. The passivation layer 14' further includes a tantalum oxide layer 147 such as a hafnium oxide layer disposed between the aluminum oxide layer 18 and the back surface 112 of the substrate 11. The thickness of the tantalum oxide layer 147 may be 1 to 2 nm, and the thickness of the aluminum oxide layer 18 may be 4 to 8 nm.

相較於先前技術,若本發明之鈍化層14’的多層氮化矽層及矽氮氧化物層(亦即該第一至第三氮化矽層141、142、143、該緩衝層144、該第四氮化矽層145及該矽氮氧化物層146)的總厚度降至250nm以下,則本發明之氫離子濃度梯度的設計仍能有效地提供足夠的氫離子以填補基板表面的缺陷(懸鍵)進而可有效地達成表面鈍化。例如,該第一氮化矽層141之膜厚為10nm,該第二氮化矽層142之該第一及第二氮化矽薄膜1421、1422)之膜厚皆為5nm,該第三氮化矽層143之膜厚為60nm,該緩衝層144之第三、第四及第五氮化矽薄膜1441、1442、1443)之膜厚皆為15nm,該第四氮化矽層145之膜厚為20nm,且該矽氮氧化物層146之膜厚為5nm,因此該鈍化層14’的多層氮化矽層及矽氮氧化物層總厚度可降至150nm。或者,相較於先前技術,若本發明之鈍化層14’的多層氮化矽層及矽氮氧化物層的總厚度維持在250nm,則由於本發明之氫離子濃度梯度的設計可 更充分地達成基板表面鈍化,因此本發明之太陽能電池的性能(例如,串聯電阻Rs、短路電流Isc、開路電壓Voc及填充因子FF)可再提升。 Compared with the prior art, if the passivation layer 14' of the present invention has a plurality of tantalum nitride layers and a hafnium oxynitride layer (that is, the first to third tantalum nitride layers 141, 142, 143, the buffer layer 144, The total thickness of the fourth tantalum nitride layer 145 and the tantalum oxynitride layer 146) is reduced to less than 250 nm, and the hydrogen ion concentration gradient of the present invention is designed to effectively provide sufficient hydrogen ions to fill defects on the substrate surface. (Danging) In turn, surface passivation can be effectively achieved. For example, the first tantalum nitride layer 141 has a film thickness of 10 nm, and the first and second tantalum nitride films 1421 and 1422 of the second tantalum nitride layer 142 have a film thickness of 5 nm. The film thickness of the ruthenium layer 143 is 60 nm, and the film thicknesses of the third, fourth, and fifth tantalum nitride films 1441, 1442, and 1443 of the buffer layer 144 are both 15 nm, and the film of the fourth tantalum nitride layer 145 The thickness is 20 nm, and the film thickness of the tantalum oxynitride layer 146 is 5 nm, so that the total thickness of the multilayer tantalum nitride layer and the tantalum nitride layer of the passivation layer 14' can be reduced to 150 nm. Alternatively, if the total thickness of the multilayer tantalum nitride layer and the tantalum oxynitride layer of the passivation layer 14' of the present invention is maintained at 250 nm compared to the prior art, the design of the hydrogen ion concentration gradient of the present invention can be more fully The substrate surface passivation is achieved, so the performance of the solar cell of the present invention (for example, the series resistance Rs, the short-circuit current Isc, the open circuit voltage Voc, and the fill factor FF) can be further increased.

綜上所述,乃僅記載本發明為呈現解決問題所採用的技術手段之較佳實施方式或實施例而已,並非用來限定本發明專利實施之範圍。即凡與本發明專利申請範圍文義相符,或依本發明專利範圍所做的均等變化與修飾,皆為本發明專利範圍所涵蓋。 In summary, the present invention is only described as a preferred embodiment or embodiment of the technical means for solving the problem, and is not intended to limit the scope of the invention. That is, the equivalent changes and modifications made in accordance with the scope of the patent application of the present invention or the scope of the invention are covered by the scope of the invention.

Claims (16)

一種太陽能電池,包括:一基板,為第一導電型,該基板具有一正面和一與該正面相對的背面;一射極層,為第二導電型,該射極層位於該基板內靠近該正面處;一背電場層,為第一導電型,該背電場層位於該基板內靠近該背面處;一抗反射層,位於該正面處;一氧化鋁層,位於該背面處;一鈍化層,包括依序排列的一第一氮化矽層、一第二氮化矽層及一第三氮化矽層,其中:該第一氮化矽層的氫含量/氮含量的比值小於該第二氮化矽層的氫含量/氮含量的比值;以及該第一氮化矽層接觸該氧化鋁層,且該第一氮化矽層及該第三氮化矽層的氮含量分別大於該第二氮化矽層的氮含量;一正面電極,穿過該抗反射層,並接觸該射極層;以及一背面電極,穿過該鈍化層及該氧化鋁層,並接觸該背電場層。  A solar cell comprising: a substrate having a first conductivity type, the substrate having a front surface and a back surface opposite to the front surface; an emitter layer being of a second conductivity type, the emitter layer being located in the substrate adjacent to the a front side; a back electric field layer, a first conductivity type, the back electric field layer is located in the substrate near the back surface; an anti-reflection layer is located at the front surface; an aluminum oxide layer is located at the back surface; a passivation layer The first tantalum nitride layer, the second tantalum nitride layer and the third tantalum nitride layer are arranged in sequence, wherein: the ratio of the hydrogen content/nitrogen content of the first tantalum nitride layer is smaller than the first a ratio of hydrogen content/nitrogen content of the hafnium nitride layer; and the first tantalum nitride layer is in contact with the aluminum oxide layer, and the nitrogen content of the first tantalum nitride layer and the third tantalum nitride layer are respectively greater than a nitrogen content of the second tantalum nitride layer; a front electrode passing through the antireflection layer and contacting the emitter layer; and a back electrode passing through the passivation layer and the aluminum oxide layer and contacting the back electric field layer .   如申請專利範圍第1項所述之太陽能電池,其中該第一氮化矽層的氫含量小於該第二氮化矽層的氫含量。  The solar cell of claim 1, wherein the first tantalum nitride layer has a hydrogen content smaller than a hydrogen content of the second tantalum nitride layer.   如申請專利範圍第2項所述之太陽能電池,其中該第三氮化矽層的氫含量也小於該第二氮化矽層的氫含量。  The solar cell of claim 2, wherein the third tantalum nitride layer has a hydrogen content that is less than a hydrogen content of the second tantalum nitride layer.   如申請專利範圍第1或3項所述之太陽能電池,其中該第一氮化矽層的折射率小於該第二氮化矽層的折射率。  The solar cell of claim 1 or 3, wherein the first tantalum nitride layer has a refractive index smaller than a refractive index of the second tantalum nitride layer.   如申請專利範圍第4項所述之太陽能電池,其中該第三氮化矽層的折射率也小於該第二氮化矽層的折射率。  The solar cell of claim 4, wherein the third tantalum nitride layer has a refractive index smaller than a refractive index of the second tantalum nitride layer.   如申請專利範圍第5項所述之太陽能電池,其中該第一及第三氮化矽層的折射率皆小於2,且該第二氮化矽層的折射率大於2.4。  The solar cell of claim 5, wherein the first and third tantalum nitride layers have a refractive index of less than 2, and the second tantalum nitride layer has a refractive index greater than 2.4.   如申請專利範圍第1或3項所述之太陽能電池,其中:該第二氮化矽層包括第一及第二氮化矽薄膜;該鈍化層更包括一緩衝層,該緩衝層包括第三、第四及第五氮化矽薄膜;以及該第一氮化矽層、該第三氮化矽薄膜、該第一氮化矽薄膜、該第四氮化矽薄膜、該第二氮化矽薄膜、該第五氮化矽薄膜及該第三氮化矽層依序排列。  The solar cell of claim 1 or 3, wherein the second tantalum nitride layer comprises first and second tantalum nitride films; the passivation layer further comprises a buffer layer, the buffer layer comprising a third And a fourth and fifth tantalum nitride film; and the first tantalum nitride layer, the third tantalum nitride film, the first tantalum nitride film, the fourth tantalum nitride film, and the second tantalum nitride The film, the fifth tantalum nitride film, and the third tantalum nitride layer are sequentially arranged.   如申請專利範圍第7項所述之太陽能電池,其中該第三、第四及第五氮化矽薄膜的折射率小於該第一及第二氮化矽薄膜的折射率。  The solar cell of claim 7, wherein the third, fourth and fifth tantalum nitride films have a refractive index smaller than a refractive index of the first and second tantalum nitride films.   如申請專利範圍第8項所述之太陽能電池,其中該第一及第三氮化矽層的折射率小於該第三、第四及第五氮化矽薄膜的折射率。  The solar cell of claim 8, wherein the first and third tantalum nitride layers have a refractive index smaller than a refractive index of the third, fourth and fifth tantalum nitride films.   如申請專利範圍第9項所述之太陽能電池,其中該第一及第三氮化矽層的折射率皆小於1.9,該第三、第四及第五氮化矽薄膜的折射率介於1.9與2.4之間,且該第一及第二氮化矽薄膜的折射率大於2.4。  The solar cell of claim 9, wherein the first and third tantalum nitride layers have refractive indices of less than 1.9, and the third, fourth and fifth tantalum nitride films have a refractive index of 1.9. And 2.4, and the first and second tantalum nitride films have a refractive index greater than 2.4.   如申請專利範圍第9項所述之太陽能電池,其中該鈍化層更包括一第四氮化矽層,該第四氮化矽層配置於該第三氮化矽層之一外側,且該第四氮化矽層的矽含量大於該第一、第二及第三氮化矽層的矽含量。  The solar cell of claim 9, wherein the passivation layer further comprises a fourth tantalum nitride layer, the fourth tantalum nitride layer being disposed outside one of the third tantalum nitride layers, and the first The germanium content of the hafnium nitride layer is greater than the germanium content of the first, second and third tantalum nitride layers.   如申請專利範圍第11項所述之太陽能電池,其中該第四氮化 矽層的折射率大於2.4。  The solar cell of claim 11, wherein the fourth tantalum nitride layer has a refractive index greater than 2.4.   如申請專利範圍第11項所述之太陽能電池,其中該鈍化層更包括一矽氮氧化物層,該矽氮氧化物層配置於該第四氮化矽層之一外側。  The solar cell of claim 11, wherein the passivation layer further comprises a tantalum oxynitride layer disposed outside one of the fourth tantalum nitride layers.   如申請專利範圍第13項所述之太陽能電池,其中該鈍化層更包括一矽氧化物層,該矽氧化物層配置於該氧化鋁層與該基板的背面之間。  The solar cell of claim 13, wherein the passivation layer further comprises a tantalum oxide layer disposed between the aluminum oxide layer and the back surface of the substrate.   一種太陽能電池,包括:一基板,為第一導電型,該基板具有一正面和一與該正面相對的背面;一射極層,為第二導電型,該射極層位於該基板內靠近該正面處;一背電場層,為第一導電型,該背電場層位於該基板內靠近該背面處;一抗反射層,位於該正面處;一氧化鋁層,位於該背面處;一鈍化層,包括依序排列的一第一氮化矽層、一第二氮化矽層及一第三氮化矽層,其中該第一及第三氮化矽層的折射率皆小於該第二氮化矽層的折射率,且該第一氮化矽層接觸該氧化鋁層;一正面電極,穿過該抗反射層,並接觸該射極層;以及一背面電極,穿過該鈍化層及該氧化鋁層,並接觸該背電場層。  A solar cell comprising: a substrate having a first conductivity type, the substrate having a front surface and a back surface opposite to the front surface; an emitter layer being of a second conductivity type, the emitter layer being located in the substrate adjacent to the a front side; a back electric field layer, a first conductivity type, the back electric field layer is located in the substrate near the back surface; an anti-reflection layer is located at the front surface; an aluminum oxide layer is located at the back surface; a passivation layer The first tantalum nitride layer, the second tantalum nitride layer and a third tantalum nitride layer are sequentially arranged, wherein the first and third tantalum nitride layers have refractive indices smaller than the second nitrogen a refractive index of the ruthenium layer, and the first tantalum nitride layer contacts the aluminum oxide layer; a front electrode passes through the anti-reflection layer and contacts the emitter layer; and a back electrode passes through the passivation layer and The aluminum oxide layer is in contact with the back electric field layer.   一種太陽能電池,包括:一基板,為第一導電型,該基板具有一正面和一與該正面相對的背面; 一射極層,為第二導電型,該射極層位於該基板內靠近該正面處;一背電場層,為第一導電型,該背電場層位於該基板內靠近該背面處;一抗反射層,位於該正面處;一氧化鋁層,位於該背面處;一鈍化層,包括依序排列的一第一氮化矽層、一第二氮化矽層及一第三氮化矽層,其中該第一及第三氮化矽層的氫含量皆小於該第二氮化矽層的氫含量,且該第一氮化矽層接觸該氧化鋁層;一正面電極,穿過該抗反射層,並接觸該射極層;以及一背面電極,穿過該氧化鋁層及該鈍化層,並接觸該背電場層。  A solar cell comprising: a substrate having a first conductivity type, the substrate having a front surface and a back surface opposite to the front surface; an emitter layer being of a second conductivity type, the emitter layer being located in the substrate adjacent to the a front side; a back electric field layer, a first conductivity type, the back electric field layer is located in the substrate near the back surface; an anti-reflection layer is located at the front surface; an aluminum oxide layer is located at the back surface; a passivation layer The first tantalum nitride layer, the second tantalum nitride layer and the third tantalum nitride layer are sequentially arranged, wherein the first and third tantalum nitride layers have hydrogen contents smaller than the second nitrogen a hydrogen content of the ruthenium layer, and the first tantalum nitride layer contacts the aluminum oxide layer; a front electrode passes through the anti-reflection layer and contacts the emitter layer; and a back electrode passes through the aluminum oxide layer And the passivation layer and contacting the back electric field layer.  
TW105134042A 2016-10-21 2016-10-21 Solar cell TWI585988B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW105134042A TWI585988B (en) 2016-10-21 2016-10-21 Solar cell
CN201611008511.3A CN107978644A (en) 2016-10-21 2016-11-16 Solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105134042A TWI585988B (en) 2016-10-21 2016-10-21 Solar cell

Publications (2)

Publication Number Publication Date
TWI585988B TWI585988B (en) 2017-06-01
TW201817016A true TW201817016A (en) 2018-05-01

Family

ID=59688271

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105134042A TWI585988B (en) 2016-10-21 2016-10-21 Solar cell

Country Status (2)

Country Link
CN (1) CN107978644A (en)
TW (1) TWI585988B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020042261A (en) 2018-09-06 2020-03-19 シャープ株式会社 Electrowetting device
CN110473921A (en) * 2019-06-25 2019-11-19 阜宁苏民绿色能源科技有限公司 A kind of PERC battery back passivating structure and preparation method
CN112234107A (en) * 2020-10-12 2021-01-15 横店集团东磁股份有限公司 Solar single-crystal PERC (Positive electrode collector) battery and preparation method thereof
CN116525689A (en) * 2021-08-26 2023-08-01 上海晶科绿能企业管理有限公司 Solar cell, manufacturing method thereof and photovoltaic module
CN114122157B (en) * 2022-01-28 2022-05-20 浙江晶科能源有限公司 Photovoltaic cell, manufacturing method thereof and photovoltaic module

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1763086A1 (en) * 2005-09-09 2007-03-14 Interuniversitair Micro-Elektronica Centrum Photovoltaic cell with thick silicon oxide and silicon nitride passivation and fabrication method
US7993700B2 (en) * 2007-03-01 2011-08-09 Applied Materials, Inc. Silicon nitride passivation for a solar cell
DE102010000002B4 (en) * 2010-01-04 2013-02-21 Roth & Rau Ag Method for depositing multilayer films and / or gradient films
WO2014044482A2 (en) * 2012-09-24 2014-03-27 Imec Method for fabricating silicon photovoltaic cells
EP3014663B1 (en) * 2013-06-26 2020-09-02 Universität Konstanz Method and device for producing a photovoltaic element with stabilized efficiency
CN104505426B (en) * 2014-10-24 2016-09-28 横店集团东磁股份有限公司 A kind of method and device improving crystal silicon solar battery component photo attenuation
CN105097961A (en) * 2015-06-03 2015-11-25 北京七星华创电子股份有限公司 Preparation method of passivated emitter and rear side cell (PERC) and passivated emitter and rear total diffused (PERT) solar cells

Also Published As

Publication number Publication date
TWI585988B (en) 2017-06-01
CN107978644A (en) 2018-05-01

Similar Documents

Publication Publication Date Title
TWI662715B (en) Solar cell
TWI585988B (en) Solar cell
TWI463682B (en) Heterojunction solar cell having intrinsic amorphous silicon film
US20090283138A1 (en) High performance optoelectronic device
KR20140110213A (en) Solar cell
US20190334048A1 (en) Multi-junction photovoltaic cell having wide bandgap oxide conductor between subcells and method of making same
TW201432925A (en) Silicon solar cell structure
TWI424582B (en) Method of fabricating solar cell
TWI639241B (en) Photovoltaic element and method of producing the same
CN112103392A (en) Composite hole transport layer and perovskite solar cell comprising same
JP6810708B2 (en) Back contact type photovoltaic cell with induced coupling
CN115176345A (en) Solar cell laminated passivation structure and preparation method thereof
CN117219693A (en) Back contact solar cell and cell assembly
JP6042679B2 (en) Photoelectric conversion element and method for producing photoelectric conversion element
TWM511126U (en) Solar cell with cell edge collection structure
CN113875025A (en) Solar cell and method for manufacturing solar cell
WO2023077763A1 (en) Metal oxide doped layer and preparation method therefor, and solar cell and preparation method therefor
TWI578553B (en) Crystalline silicon solar cell and method of fabricating the same
CN108389928B (en) Solar cell and preparation method thereof
JP2014072209A (en) Photoelectric conversion element and photoelectric conversion element manufacturing method
TWI593124B (en) Solar cell
TWI532205B (en) A Method for Fabricating Crystalline Silicon Solar Cell Having Local Rear Contacts and Passivation Layer and the Device
TW201933617A (en) Solar cell
CN215731736U (en) Passivated contact structure and solar cell using same
CN218351477U (en) Solar cell lamination passivation structure

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees