TW201813314A - Clock data recovery module - Google Patents

Clock data recovery module Download PDF

Info

Publication number
TW201813314A
TW201813314A TW105128654A TW105128654A TW201813314A TW 201813314 A TW201813314 A TW 201813314A TW 105128654 A TW105128654 A TW 105128654A TW 105128654 A TW105128654 A TW 105128654A TW 201813314 A TW201813314 A TW 201813314A
Authority
TW
Taiwan
Prior art keywords
signal
clock
unit
data recovery
data
Prior art date
Application number
TW105128654A
Other languages
Chinese (zh)
Other versions
TWI628918B (en
Inventor
陳彥中
康文柱
李易霖
Original Assignee
創意電子股份有限公司
台灣積體電路製造股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 創意電子股份有限公司, 台灣積體電路製造股份有限公司 filed Critical 創意電子股份有限公司
Priority to TW105128654A priority Critical patent/TWI628918B/en
Publication of TW201813314A publication Critical patent/TW201813314A/en
Application granted granted Critical
Publication of TWI628918B publication Critical patent/TWI628918B/en

Links

Landscapes

  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

The present disclosure is a clock data recovery circuit that includes a Clock and Data Recovery (CDR) loop and a Spread Spectrum Clock (SSC) tracking circuit. The CDR loop includes a CDR unit and a Phase Interpolator (PI) unit. The PI unit is coupled to the CDR unit. The CDR unit generates a phase signal according to a data signal, and the PI unit generates a data clock signal and an edge clock signal according to the phase signal and a reference clock signal. The SSC tracking circuit generates the reference clock signal according to the data signal, and transmits the reference clock signal to the PI unit. The CDR unit further generates the phase signal according to the data signal, the data clock signal and the edge clock signal. The SSC tracking circuit and the CDR loop are in decoupling arrangement.

Description

時脈資料回復模組  Clock data recovery module  

本發明係關於一種訊號處理電路,特別係關於一種時脈資料回復模組。 The present invention relates to a signal processing circuit, and more particularly to a clock data recovery module.

隨著訊號傳輸技術的快速發展,接收端對於訊號抖動容許度(jitter tolerance)的要求日趨嚴格。因此,為了達到更趨嚴格訊號抖動容許度,通常會於接收端中設置時脈資料回復(Clock and Data Recovery,CDR)電路以還原受到訊號抖動影響的資料訊號。 With the rapid development of signal transmission technology, the requirements of the receiver for jitter jitter are becoming stricter. Therefore, in order to achieve more stringent signal jitter tolerance, a Clock and Data Recovery (CDR) circuit is usually set in the receiving end to restore the data signal affected by the signal jitter.

然而,除了資料訊號於傳送時所造成的訊號抖動外,時脈資料回復電路本身的運作亦會造成資料訊號的訊號抖動。為了降低時脈資料回復電路所產生的訊號抖動,一般作法為增加相位追蹤電路中的相位內插器(Phase Interpolator,PI)的相位內插解析度(PI resolution),但此種作法卻與頻率追蹤電路中的相位內插器運作時需要較小的相位內插解析度的作法背離。 However, in addition to the signal jitter caused by the transmission of the data signal, the operation of the clock data recovery circuit itself will also cause signal jitter of the data signal. In order to reduce the signal jitter generated by the clock data recovery circuit, it is common practice to increase the phase interpolation resolution (PI resolution) of the phase interpolator (PI) in the phase tracking circuit, but the method and frequency are The phase interpolator in the tracking circuit requires less phase interpolation resolution when operating.

因此,如何在兼顧時脈資料回復電路的運作與整體訊號抖動降低的前提下,進行時脈資料回復模組的設計,是一大挑戰。 Therefore, how to design the clock data recovery module under the premise of balancing the operation of the clock data recovery circuit and the overall signal jitter is a big challenge.

本發明揭示的一態樣係關於一種時脈資料回復模組包含時脈資料回復迴路與展頻時脈追蹤電路。時脈資料回復迴路包含時脈資料回復單元與第一相位內插單元,且第一相位內插單元耦接於時脈資料回復單元。時脈資料回復單元用以依據資料訊號而產生相位訊號,第一相位內插單元用以依據相位訊號與參考時脈訊號而產生資料時脈訊號與邊緣時脈訊號。展頻時脈追蹤電路用以依據資料訊號而產生參考時脈訊號,並將參考時脈訊號傳送至第一相位內插單元。時脈資料回復單元更依據資料訊號、資料時脈訊號以及邊緣時脈訊號而產生相位訊號。另外,展頻時脈追蹤電路與時脈資料回復迴路為解耦配置。 One aspect of the present invention relates to a clock data recovery module including a clock data recovery loop and a spread spectrum clock tracking circuit. The clock data recovery loop includes a clock data recovery unit and a first phase interpolation unit, and the first phase interpolation unit is coupled to the clock data recovery unit. The clock data recovery unit is configured to generate a phase signal according to the data signal, and the first phase interpolation unit is configured to generate the data clock signal and the edge clock signal according to the phase signal and the reference clock signal. The spread spectrum clock tracking circuit is configured to generate a reference clock signal according to the data signal, and transmit the reference clock signal to the first phase interpolation unit. The clock data recovery unit generates a phase signal based on the data signal, the data clock signal, and the edge clock signal. In addition, the spread spectrum clock tracking circuit and the clock data recovery loop are decoupled configurations.

綜上所述,本發明之技術方案與現有技術相比具有明顯的優點和有益效果。藉由上述技術方案,可達到相當的技術進步,並具有產業上的廣泛利用價值,本發明將時脈資料回復模組中的時脈資料回復迴路與展頻時脈追蹤電路之間進行解耦,讓時脈資料回復迴路與展頻時脈追蹤電路分別進行相位與頻率的追蹤,並整合其相位與頻率的追蹤結果以進行資料訊號的還原。藉由本發明技術,解耦後的時脈資料回復迴路與展頻時脈電路得以分別實施不同的相位內插解析度,讓其各自達到相位內插解析度的全局最佳解(global optimum),藉以提升相位與頻率追蹤的精準度與效率,從而讓經時脈資料回復模組還原後的資料訊號符合顯示埠(如:DisplayPort 1.3)對於訊號抖動容許度的規定。 In summary, the technical solution of the present invention has obvious advantages and beneficial effects compared with the prior art. With the above technical solution, considerable technological progress can be achieved, and the industrial use value is widely used. The present invention decouples the clock data recovery loop and the spread spectrum clock tracking circuit in the clock data recovery module. The clock data recovery loop and the spread spectrum clock tracking circuit respectively track the phase and frequency, and integrate the phase and frequency tracking results to restore the data signal. According to the technique of the present invention, the decoupled clock data recovery loop and the spread spectrum clock circuit can respectively implement different phase interpolation resolutions, so that they respectively reach the global optimum of the phase interpolation resolution. In order to improve the accuracy and efficiency of phase and frequency tracking, the data signal restored by the clock data recovery module conforms to the display threshold (such as DisplayPort 1.3) for signal jitter tolerance.

100、100A、100B‧‧‧時脈資料回復模組 100, 100A, 100B‧‧‧ clock data recovery module

110‧‧‧時脈資料回復迴路 110‧‧‧ Clock data recovery loop

112‧‧‧時脈資料回復單元 112‧‧‧clock data recovery unit

114‧‧‧第一相位內插單元 114‧‧‧First phase interpolation unit

116‧‧‧取樣單元 116‧‧‧Sampling unit

118‧‧‧位元數轉換單元 118‧‧‧ digit conversion unit

120、120A‧‧‧展頻時脈追蹤電路 120, 120A‧‧‧ Spread spectrum clock tracking circuit

120B‧‧‧時脈資料回復電路 120B‧‧‧clock data recovery circuit

122‧‧‧頻率偵測單元 122‧‧‧Frequency detection unit

124‧‧‧頻率產生單元 124‧‧‧frequency generation unit

126‧‧‧第二相位內插單元 126‧‧‧Second phase interpolation unit

Sdata‧‧‧資料訊號 Sdata‧‧‧Information Signal

第1圖為依據本發明揭示的實施例所繪製的時脈資料回復模組的方塊圖;第2圖為依據本發明揭示的一實施例所繪製的時脈資料回復模組的方塊圖;以及第3圖為依據本發明揭示的又一實施例所繪製的時脈資料回復模組的方塊圖。 1 is a block diagram of a clock data recovery module according to an embodiment of the present disclosure; and FIG. 2 is a block diagram of a clock data recovery module according to an embodiment of the present disclosure; FIG. 3 is a block diagram of a clock data recovery module according to still another embodiment of the present disclosure.

下文是舉實施例配合所附圖式作詳細說明,以更好地理解本發明的態樣,但所提供的實施例並非用以限制本揭示所涵蓋的範圍,而結構操作的描述非用以限制其執行的順序,任何由元件重新組合的結構,所產生具有均等功效的裝置,皆為本揭示所涵蓋的範圍。此外,根據業界的標準及慣常做法,圖式僅以輔助說明為目的,並未依照原尺寸作圖,實際上各種特徵的尺寸可任意地增加或減少以便於說明。下述說明中相同元件將以相同的符號標示來進行說明以便於理解。 The following is a detailed description of the embodiments in order to provide a better understanding of the aspects of the present invention, but the embodiments are not intended to limit the scope of the disclosure, and the description of structural operation is not used. Limiting the order in which they are performed, any device that is recombined by components, produces equal-efficiency devices, and is covered by the disclosure. In addition, according to industry standards and practices, the drawings are only for the purpose of assisting the description, and are not drawn according to the original size. In fact, the dimensions of the various features may be arbitrarily increased or decreased for convenience of explanation. In the following description, the same elements will be denoted by the same reference numerals for convenience of understanding.

在全篇說明書與申請專利範圍所使用的用詞(terms),除有特別註明外,通常具有每個用詞使用在此領域中、在此揭示的內容中與特殊內容中的平常意義。某些用以描述本發明揭示的用詞將於下或在此說明書的別處討論,以提供本領域技術人員在有關本發明揭示的描述上額外的引導。 The terms used in the entire specification and the scope of the patent application, unless otherwise specified, generally have the ordinary meaning of each term used in the field, the content disclosed herein, and the particular content. Certain terms used to describe the present disclosure are discussed below or elsewhere in the specification to provide additional guidance to those skilled in the art in the description of the present disclosure.

此外,在本發明中所使用的用詞『包含』、『包 括』、『具有』、『含有』等等,均為開放性的用語,即意指『包含但不限於』。此外,本發明中所使用的『及/或』,包含相關列舉項目中一或多個項目的任意一個以及其所有組合。 In addition, the terms "including", "including", "having", "containing", and the like, which are used in the present invention, are all open terms, meaning "including but not limited to". Further, "and/or" as used in the present invention includes any one or a combination of one or more of the related listed items.

於本發明中,當一元件被稱為『連接』或『耦接』時,可指『電性連接』或『電性耦接』。『連接』或『耦接』亦可用以表示二或多個元件間相互搭配操作或互動。此外,雖然本發明中使用『第一』、『第二』、…等用語描述不同元件,該用語僅是用以區別以相同技術用語描述的元件或操作。除非上下文清楚指明,否則該用語並非特別指稱或暗示次序或順位,亦非用以限定本發明。 In the present invention, when an element is referred to as "connected" or "coupled", it may mean "electrically connected" or "electrically coupled". "Connected" or "coupled" can also be used to indicate that two or more components operate or interact with each other. Further, although the terms "first", "second", and the like are used in the present invention to describe different elements, the terms are used to distinguish the elements or operations described in the same technical terms. The use of the term is not intended to be a limitation or a

第1圖為依據本發明揭示的實施例所繪製的時脈資料回復模組的方塊圖。如第1圖所示,時脈資料回復模組100包含時脈資料回復迴路110與展頻時脈追蹤電路120。時脈資料回復迴路110包含時脈資料回復單元112、第一相位內插單元114,且時脈資料回復單元112耦接於第一相位內插單元114。另外,時脈資料回復迴路110與展頻時脈追蹤電路120為解耦配置。舉例而言,展頻時脈追蹤電路120作為可獨立進行運作的電路,並非作為時脈資料回復迴路110中的元件或電路。 FIG. 1 is a block diagram of a clock data recovery module according to an embodiment of the present disclosure. As shown in FIG. 1, the clock data recovery module 100 includes a clock data recovery loop 110 and a spread spectrum clock tracking circuit 120. The clock data recovery circuit 110 includes a clock data recovery unit 112, a first phase interpolation unit 114, and the clock data recovery unit 112 is coupled to the first phase interpolation unit 114. In addition, the clock data recovery loop 110 and the spread spectrum clock tracking circuit 120 are decoupled. For example, the spread spectrum clock tracking circuit 120 acts as a circuit that can operate independently, and is not a component or circuit in the clock data recovery loop 110.

時脈資料回復單元112用以接收資料訊號Sdata,再依據資料訊號Sdata而產生相位訊號,並將相位訊號傳送至第一相位內插單元114。展頻時脈追蹤電路120用以接收資料訊號Sdata,再依據資料訊號Sdata而產生參考時脈訊號,並將參考時脈訊號傳送至第一相位內插單元114。第一相位內插單元用以依據來自時脈資料回復單元112的相位訊號以 及展頻時脈追蹤電路120的參考時脈訊號,而產生資料時脈訊號與邊緣時脈訊號。 The clock data recovery unit 112 is configured to receive the data signal Sdata, generate a phase signal according to the data signal Sdata, and transmit the phase signal to the first phase interpolation unit 114. The spread spectrum clock tracking circuit 120 is configured to receive the data signal Sdata, generate a reference clock signal according to the data signal Sdata, and transmit the reference clock signal to the first phase interpolation unit 114. The first phase interpolation unit is configured to generate the data clock signal and the edge clock signal according to the phase signal from the clock data recovery unit 112 and the reference clock signal of the spread spectrum clock tracking circuit 120.

隨後,時脈資料回復單元112更用以依據資料訊號Sdata、資料時脈訊號以及邊緣時脈訊號而產生相位訊號。舉例而言,第一相位內插單元114所產生的資料時脈訊號與邊緣時脈訊號可直接或再經過訊號處理後回傳至時脈資料回復單元112,而由時脈資料回復單元112進行相位訊號的再產生。 Then, the clock data recovery unit 112 is further configured to generate a phase signal according to the data signal Sdata, the data clock signal, and the edge clock signal. For example, the data clock signal and the edge clock signal generated by the first phase interpolating unit 114 can be directly or again processed by the signal and then sent back to the clock data replying unit 112, and the clock data replying unit 112 performs the clock data replying unit 112. Regeneration of the phase signal.

於一實施例中,時脈資料回復迴路110更包含取樣單元116,且取樣單元116耦接於第一相位內插單元114。取樣單元116用以接收第一相位內插單元114所產生的資料時脈訊號與邊緣時脈訊號,並對其進行取樣而產生資料取樣訊號與邊緣取樣訊號。 In one embodiment, the clock data recovery loop 110 further includes a sampling unit 116, and the sampling unit 116 is coupled to the first phase interpolation unit 114. The sampling unit 116 is configured to receive the data clock signal and the edge clock signal generated by the first phase interpolation unit 114, and sample the data to generate the data sampling signal and the edge sampling signal.

於另一實施例中,時脈資料回復迴路110更包含位元數轉換單元118,且位元數轉換單元118耦接於取樣單元116。位元數轉換單元118用以接收取樣單元116所產生的資料取樣訊號與邊緣取樣訊號,並對其進行位元數轉換。隨後,位元數轉換單元118將經轉換後的資料取樣訊號與邊緣取樣訊號傳送至時脈資料回復單元112,而由時脈資料回復單元112進行相位訊號的再產生。因此,時脈資料回復單元112、第一相位內插單元114、取樣單元116以及位元數轉換單元118形成第一迴圈電路,從而時脈資料回復單元112可以依據接收到的資料訊號Sdata與經轉換後的資料取樣訊號與邊緣取樣訊號疊代地(iteratively)進行運作。舉例而言,位元數轉換單元118係依據時脈資料回復單元112可支援的訊號形式,為資料取樣訊 號與邊緣取樣訊號進行位元數轉換。 In another embodiment, the clock data recovery loop 110 further includes a bit number conversion unit 118, and the bit number conversion unit 118 is coupled to the sampling unit 116. The bit number converting unit 118 is configured to receive the data sampling signal and the edge sampling signal generated by the sampling unit 116, and perform bit number conversion thereon. Then, the bit number converting unit 118 transmits the converted data sampling signal and the edge sampling signal to the clock data replying unit 112, and the clock data replying unit 112 performs the regenerating of the phase signal. Therefore, the clock data replying unit 112, the first phase interpolating unit 114, the sampling unit 116, and the bit number converting unit 118 form a first loop circuit, so that the clock data replying unit 112 can be based on the received data signal Sdata and The converted data sampling signal and the edge sampling signal are iteratively operated. For example, the bit number conversion unit 118 performs bit number conversion for the data sampling signal and the edge sampling signal according to the signal form supported by the clock data replying unit 112.

於又一實施例中,取樣單元116所產生的資料取樣訊號與邊緣取樣訊號透過二位元訊號流的形式呈現,且位元數轉換單元118將資料取樣訊號與邊緣取樣訊號由二位元訊號流轉換為四位元訊號流。當位元數轉換單元118將資料取樣訊號與邊緣取樣訊號轉換為四位元訊號流後,再將轉換後的資料取樣訊號與邊緣取樣訊號傳送至時脈資料回復單元112,而由時脈資料回復單元112進行相位訊號的再產生。應瞭解到,上述關於位元數轉換單元118的具體實施僅用以示範,並非用以限制本發明之實施。 In another embodiment, the data sampling signal and the edge sampling signal generated by the sampling unit 116 are presented in the form of a binary signal stream, and the bit number converting unit 118 uses the data sampling signal and the edge sampling signal from the binary signal. The stream is converted to a four-bit signal stream. After the bit number conversion unit 118 converts the data sample signal and the edge sample signal into a four-bit signal stream, the converted data sample signal and the edge sample signal are transmitted to the clock data recovery unit 112, and the clock data is obtained. The reply unit 112 performs re-generation of the phase signal. It should be understood that the above specific implementation of the bit number conversion unit 118 is for illustrative purposes only and is not intended to limit the implementation of the present invention.

於一實施例中,展頻時脈追蹤電路120更用以調整參考時脈訊號的頻率,藉以使參考時脈的頻率逼近資料訊號Sdata所對應的頻率,從而降低參考時脈訊號的抖動(jitter)。於另一實施例中,展頻時脈追蹤電路120依據資料訊號Sdata而產生多個參考時脈訊號,且每一個參考時脈訊號均具有相同頻率,但相位相異。 In an embodiment, the spread spectrum clock tracking circuit 120 is further configured to adjust the frequency of the reference clock signal, so that the frequency of the reference clock is approximated to the frequency corresponding to the data signal Sdata, thereby reducing jitter of the reference clock signal (jitter) ). In another embodiment, the spread spectrum clock tracking circuit 120 generates a plurality of reference clock signals according to the data signal Sdata, and each of the reference clock signals has the same frequency but different phases.

於一實施例中,第一相位內插單元114用以依據相位訊號對展頻時脈追蹤電路120所產生的多個參考時脈訊號中進行相位內插處理,從而產生資料時脈訊號與邊緣時脈訊號。舉例而言,當第一相位內插單元114對多個參考時脈訊號進行相位內插處理時,其可先由多個參考時脈訊號中選擇其中兩個參考時脈訊號,再依據所選擇的兩個時脈訊號,從而產生資料時脈訊號與邊緣時脈訊號。舉例而言,資料時脈訊號與邊緣時脈訊號的相位係介於第一相位內插單元114所選擇的兩個 參考時脈訊號的相位之間。 In one embodiment, the first phase interpolating unit 114 is configured to perform phase interpolation processing on the plurality of reference clock signals generated by the spread spectrum clock tracking circuit 120 according to the phase signal, thereby generating data clock signals and edges. Clock signal. For example, when the first phase interpolating unit 114 performs phase interpolation processing on the plurality of reference clock signals, it may first select two of the reference clock signals from the plurality of reference clock signals, and then select according to the selected Two clock signals, which generate data clock signals and edge clock signals. For example, the phase of the data clock signal and the edge clock signal is between the phases of the two reference clock signals selected by the first phase interpolation unit 114.

另外,第一相位內插單元114的運作係相關於相位內插解析度。舉例而言,當相位內插解析度的單位區間愈小時,第一相位內插單元114所產生的資料時脈訊號與邊緣時脈訊號相較於資料訊號Sdata所對應的時脈訊號的誤差應可縮小,但第一相位內插單元114產生的資料時脈訊號與邊緣時脈訊號所需要的運作時間卻可能相對地延長,反之,第一相位內插單元114所產生的資料時脈訊號與邊緣時脈訊號相較於資料訊號Sdata所對應的時脈訊號的誤差可能較大,但第一相位內插單元114產生的資料時脈訊號與邊緣時脈訊號的運作時間應可相對地縮短。 In addition, the operation of the first phase interpolating unit 114 is related to the phase interpolation resolution. For example, when the unit interval of the phase interpolation resolution is smaller, the error of the data clock signal and the edge clock signal generated by the first phase interpolation unit 114 compared with the clock signal corresponding to the data signal Sdata should be The operation time required for the data clock signal and the edge clock signal generated by the first phase interpolating unit 114 may be relatively extended. Conversely, the data clock signal generated by the first phase interpolating unit 114 and The error of the edge clock signal may be larger than that of the clock signal corresponding to the data signal Sdata, but the operation time of the data clock signal and the edge clock signal generated by the first phase interpolation unit 114 may be relatively shortened.

另一方面,透過加大第一相位內插單元114中的相位內插解析度的單位區間,可以進一步降低時脈資料回復單元112對資料訊號Sdata進行處理所造成的高頻抖動(dither jitter)或追蹤抖動(hunting jitter)。於一實施例中,相位內插解析度的單位區間可介於1/32至1/128。應瞭解到,上述關於相位內插解析度的具體實施僅用以示範,並非用以限制本發明之實施。 On the other hand, by increasing the unit interval of the phase interpolation resolution in the first phase interpolating unit 114, the dither jitter caused by the processing of the data signal Sdata by the clock data recovery unit 112 can be further reduced. Or tracking jitter. In an embodiment, the unit interval of the phase interpolation resolution may be between 1/32 and 1/128. It should be understood that the above specific implementation of the phase interpolation resolution is for illustrative purposes only and is not intended to limit the implementation of the present invention.

於一實施例中,時脈資料回復單元112為二階(second order)時脈資料回復單元,且其運作時脈頻率係相關於資料訊號Sdata所對應的傳送速率(data rate)。舉例而言,時脈資料回復模組100可應用於顯示埠(如,DisplayPort 1.3)所支援的裝置,由於DisplayPort 1.3中的資料訊號Sdata所對應的傳輸速率為8.1Gbps,時脈資料回復單元112的運作時脈 頻率可為傳輸速率的四分之一的數值所對應的頻率(約略為2GHz)。應瞭解到,上述關於時脈資料回復單元112的運作時脈頻率的具體實施僅用以示範,並非用以限制本發明之實施。 In an embodiment, the clock data replying unit 112 is a second order clock data replying unit, and the operating clock frequency is related to the data rate corresponding to the data signal Sdata. For example, the clock data recovery module 100 can be applied to a device supported by a display port (eg, DisplayPort 1.3). Since the data rate corresponding to the data signal Sdata in the DisplayPort 1.3 is 8.1 Gbps, the clock data recovery unit 112 The operating clock frequency can be a frequency corresponding to a value of one quarter of the transmission rate (approximately 2 GHz). It should be understood that the above specific implementation of the operating clock frequency of the clock data replying unit 112 is for exemplary purposes only and is not intended to limit the implementation of the present invention.

於一實施例中,展頻時脈追蹤電路120分別耦接於時脈資料回復迴路110中的第一相位內插單元114與位元數轉換單元118。位元數轉換單元118用以將經轉換後的資料取樣訊號與邊緣取樣訊號傳送至展頻時脈追蹤電路120,而由展頻時脈追蹤電路120進行頻率訊號的再產生。因此,展頻時脈追蹤電路120與時脈資料回復迴路110中的第一相位內插單元114、取樣單元116以及位元數轉換單元118形成第二迴圈電路,從而展頻時脈追蹤電路120可以依據接收到的資料訊號Sdata與經轉換後的資料取樣訊號與邊緣取樣訊號疊代地進行運作。 In one embodiment, the spread spectrum clock tracking circuit 120 is coupled to the first phase interpolation unit 114 and the bit number conversion unit 118 in the clock data recovery loop 110, respectively. The bit number conversion unit 118 is configured to transmit the converted data sample signal and the edge sample signal to the spread spectrum clock tracking circuit 120, and the spread spectrum clock tracking circuit 120 performs frequency signal regeneration. Therefore, the spread spectrum clock tracking circuit 120 and the first phase interpolation unit 114, the sampling unit 116, and the bit number conversion unit 118 in the clock data recovery loop 110 form a second loop circuit, thereby spreading the clock tracking circuit. 120 can operate according to the received data signal Sdata and the converted data sampling signal and the edge sampling signal.

第2圖為依據本發明揭示的實施例所繪製的時脈資料回復模組的方塊圖。於一實施例中,第1圖所示之時脈資料回復模組100可為第2圖之時脈資料回復模組100A所實施,但本發明並不以此為限。 FIG. 2 is a block diagram of a clock data recovery module according to an embodiment of the present disclosure. In an embodiment, the clock data recovery module 100 shown in FIG. 1 can be implemented by the clock data recovery module 100A of FIG. 2, but the invention is not limited thereto.

相較於第1圖,第2圖詳細繪示第1圖之展頻時脈追蹤電路120的實施方式之一,如展頻時脈追蹤電路120A。展頻時脈追蹤電路120A包含頻率偵測單元122、頻率產生單元124以及第二相位內插單元126。頻率偵測單元122耦接於頻率產生單元124,頻率產生單元124更耦接於第二相位內插單元126。另外,時脈資料回復迴路110與展頻時脈追蹤電路120A為解耦配置。舉例而言,展頻時脈追蹤電路120A作為可獨立 進行運作的電路,並非作為時脈資料回復迴路110中的元件或電路。關於時脈資料回復迴路110中的時脈資料回復單元112、第一相位內插單元114、取樣單元116以及位元數轉換單元118的功能與配置已於先前實施例中進行詳細描述,故於此不重複贅述。 In contrast to FIG. 1, FIG. 2 illustrates in detail one of the embodiments of the spread spectrum clock tracking circuit 120 of FIG. 1, such as the spread spectrum clock tracking circuit 120A. The spread spectrum clock tracking circuit 120A includes a frequency detecting unit 122, a frequency generating unit 124, and a second phase interpolating unit 126. The frequency detecting unit 122 is coupled to the frequency generating unit 124, and the frequency generating unit 124 is further coupled to the second phase interpolating unit 126. In addition, the clock data recovery loop 110 and the spread spectrum clock tracking circuit 120A are decoupled. For example, the spread spectrum clock tracking circuit 120A functions as a circuit that can operate independently, not as a component or circuit in the clock data recovery loop 110. The functions and configurations of the clock data replying unit 112, the first phase interpolating unit 114, the sampling unit 116, and the bit number converting unit 118 in the clock data recovery loop 110 have been described in detail in the previous embodiments. This is not repeated.

頻率偵測單元122用以偵測資料訊號Sdata之頻率而產生頻率偵測訊號,再將頻率偵測訊號傳送至頻率產生單元124。頻率產生單元124用以依據來自頻率偵測單元122的頻率偵測訊號而產生頻率訊號,再將頻率訊號傳送至第二相位內插單元126。第二相位內插單元126用以依據來自頻率產生單元124的頻率訊號而產生參考時脈訊號,再將參考時脈訊號傳送至時脈資料回復迴路110中的第一相位內插單元114。 The frequency detecting unit 122 is configured to detect the frequency of the data signal Sdata to generate a frequency detecting signal, and then transmit the frequency detecting signal to the frequency generating unit 124. The frequency generating unit 124 is configured to generate a frequency signal according to the frequency detecting signal from the frequency detecting unit 122, and then transmit the frequency signal to the second phase interpolating unit 126. The second phase interpolating unit 126 is configured to generate a reference clock signal according to the frequency signal from the frequency generating unit 124, and then transmit the reference clock signal to the first phase interpolating unit 114 in the clock data recovery loop 110.

於一實施例中,第二相位內插單元126更用以調整參考時脈訊號的頻率,藉以使參考時脈的頻率逼近資料訊號Sdata所對應的時脈頻率,從而降低參考時脈訊號的抖動。於一實施例中,第二相位內插單元126依據頻率產生單元124所產生的頻率訊號而產生多個參考時脈訊號,且每一個參考時脈訊號均具有相同頻率,但相位相異。 In an embodiment, the second phase interpolating unit 126 is further configured to adjust the frequency of the reference clock signal, so that the frequency of the reference clock is approximated to the clock frequency corresponding to the data signal Sdata, thereby reducing the jitter of the reference clock signal. . In one embodiment, the second phase interpolating unit 126 generates a plurality of reference clock signals according to the frequency signals generated by the frequency generating unit 124, and each of the reference clock signals has the same frequency but different phases.

另外,第二相位內插單元126的運作係相關於相位內插解析度。然而,相較於第一相位內插單元114需要較大的相位內插解析度以降低時脈資料回復單元112所造成的高頻抖動或追蹤抖動,應用於第二相位內插單元126中的相位內插解析度則相反。舉例而言,由於展頻時脈追蹤電路120A中的第二相位內插單元126的運作通常需要支援較快的相位迴轉 (phase rotation)或較高的相位更新速率(phase update rate),因此,第二相位內插單元126需要實施較小的相位內插解析度以符合上述需求。於一實施例中,應用於第二相位內插單元126中的相位內插解析度的單位區間可介於1/32至1/128。應瞭解到,上述關於相位內插解析度的具體實施僅用以示範,並非用以限制本發明之實施。 Additionally, the operation of the second phase interpolation unit 126 is related to phase interpolation resolution. However, compared to the first phase interpolation unit 114, a larger phase interpolation resolution is required to reduce the high frequency jitter or tracking jitter caused by the clock data recovery unit 112, which is applied to the second phase interpolation unit 126. The phase interpolation resolution is reversed. For example, since the operation of the second phase interpolation unit 126 in the spread spectrum clock tracking circuit 120A generally needs to support a faster phase rotation or a higher phase update rate, The second phase interpolation unit 126 needs to implement a smaller phase interpolation resolution to meet the above requirements. In an embodiment, the unit interval of the phase interpolation resolution applied to the second phase interpolation unit 126 may be between 1/32 and 1/128. It should be understood that the above specific implementation of the phase interpolation resolution is for illustrative purposes only and is not intended to limit the implementation of the present invention.

於一實施例中,第二相位內插單元126耦接於時脈資料回復迴路110中的第一相位內插單元114,且頻率偵測單元122耦接於時脈資料回復迴路110中的位元數轉換單元118。位元數轉換單元118用以將經轉換後的資料取樣訊號與邊緣取樣訊號傳送至頻率偵測單元122,而由頻率偵測單元122進行頻率偵測訊號的再產生。因此,展頻時脈追蹤電路120A中的頻率偵測單元122、頻率產生單元124以及第二相位內插單元126與時脈資料回復迴路110中的第一相位內插單元114、取樣單元116以及位元數轉換單元118形成第二迴圈電路,從而頻率偵測單元122可以依據接收到的資料訊號Sdata與經轉換後的資料取樣訊號與邊緣取樣訊號疊代地進行運作。 In one embodiment, the second phase interpolating unit 126 is coupled to the first phase interpolating unit 114 in the clock data recovery loop 110, and the frequency detecting unit 122 is coupled to the bit in the clock data recovery loop 110. The number conversion unit 118. The bit number conversion unit 118 is configured to transmit the converted data sample signal and the edge sample signal to the frequency detection unit 122, and the frequency detection unit 122 performs the regeneration of the frequency detection signal. Therefore, the frequency detecting unit 122, the frequency generating unit 124, and the second phase interpolating unit 126 in the spread spectrum clock tracking circuit 120A and the first phase interpolating unit 114 and the sampling unit 116 in the clock data recovery loop 110 and The bit number converting unit 118 forms a second loop circuit, so that the frequency detecting unit 122 can operate in tandem with the converted data sample signal and the edge sample signal according to the received data signal Sdata.

第3圖為依據本發明揭示的又一實施例所繪製的時脈資料回復模組的方塊圖。於一實施例中,第1圖所示之時脈資料回復模組100可為第3圖之時脈資料回復模組100B所實施,但本發明並不以此為限。 FIG. 3 is a block diagram of a clock data recovery module according to still another embodiment of the present disclosure. In an embodiment, the clock data recovery module 100 shown in FIG. 1 can be implemented by the clock data recovery module 100B of FIG. 3, but the invention is not limited thereto.

相較於第1圖,第3圖詳細繪示第1圖之展頻時脈追蹤電路120的實施方式之一,如時脈資料回復電路120B。於一實施例中,時脈資料回復電路120B用以接收資料訊號 Sdata,再依據資料訊號Sdata而產生頻率訊號,並進一步依據頻率訊號而產生參考時脈訊號,並將其參考時脈訊號傳送至時脈資料回復迴路110中的第一相位內插單元114。應瞭解到,上述關於時脈資料回復電路120B的具體實施僅用以示範,並非用以限制本發明之實施。另外,關於時脈資料回復迴路110中的時脈資料回復單元112、第一相位內插單元114、取樣單元116以及位元數轉換單元118的功能與配置已於先前實施例中進行詳細描述,故於此不重複贅述。 Compared with FIG. 1, FIG. 3 illustrates one of the embodiments of the spread spectrum clock tracking circuit 120 of FIG. 1, such as the clock data recovery circuit 120B. In an embodiment, the clock data recovery circuit 120B is configured to receive the data signal Sdata, generate a frequency signal according to the data signal Sdata, and further generate a reference clock signal according to the frequency signal, and transmit the reference clock signal to the reference clock signal. The clock data is returned to the first phase interpolation unit 114 in the loop 110. It should be understood that the above specific implementation of the clock data recovery circuit 120B is for illustrative purposes only and is not intended to limit the implementation of the present invention. In addition, the functions and configurations of the clock data replying unit 112, the first phase interpolating unit 114, the sampling unit 116, and the bit number converting unit 118 in the clock data recovery loop 110 have been described in detail in the previous embodiments. Therefore, the details are not repeated here.

於一實施例中,時脈資料回復單元112與第二時脈資料回復單元均為二階時脈資料回復單元,且其運作時脈頻率係相關於資料訊號Sdata所對應的傳送速率。舉例而言,時脈資料回復模組100A可應用於DisplayPort 1.3所支援的裝置,鑒於DisplayPort 1.3中的資料訊號Sdata所對應的傳輸速率為8.1Gbps,時脈資料回復單元112與第二時脈資料回復單元的運作時脈頻率可為傳輸速率的四分之一的數值所對應的頻率(約略為2GHz)。應瞭解到,上述關於時脈資料回復單元112與第二時脈資料回復單元的運作時脈頻率的具體實施僅用以示範,並非用以限制本發明之實施。 In an embodiment, the clock data recovery unit 112 and the second clock data recovery unit are both second-order clock data recovery units, and the operating clock frequency is related to the transmission rate corresponding to the data signal Sdata. For example, the clock data recovery module 100A can be applied to a device supported by DisplayPort 1.3. Since the data rate corresponding to the data signal Sdata in DisplayPort 1.3 is 8.1 Gbps, the clock data recovery unit 112 and the second clock data are used. The operating clock frequency of the reply unit can be a frequency corresponding to a value of one quarter of the transmission rate (approximately 2 GHz). It should be understood that the specific implementation of the operating clock frequency of the clock data replying unit 112 and the second clock data replying unit is merely exemplary and is not intended to limit the implementation of the present invention.

於上述實施例中,本發明將時脈資料回復模組中的時脈資料回復迴路與展頻時脈追蹤電路之間進行解耦,讓時脈資料回復迴路與展頻時脈追蹤電路分別進行相位與頻率的追蹤,並整合其相位與頻率的追蹤結果以進行資料訊號的還原。藉由本發明技術,解耦後的時脈資料回復迴路與展頻時脈電路得以分別實施不同的相位內插解析度,讓其各自達到相位 內插解析度的全局最佳解,藉以提升相位與頻率追蹤的精準度與效率,從而讓經時脈資料回復模組還原後的資料訊號符合顯示埠(如:DisplayPort 1.3)對於訊號抖動容許度的規定。 In the above embodiment, the present invention decouples the clock data recovery loop and the spread spectrum clock tracking circuit in the clock data recovery module, and causes the clock data recovery loop and the spread spectrum clock tracking circuit to perform respectively. Phase and frequency tracking, and integration of phase and frequency tracking results for data signal restoration. According to the technology of the present invention, the decoupled clock data recovery loop and the spread spectrum clock circuit can respectively implement different phase interpolation resolutions, so that they respectively reach the global optimal solution of the phase interpolation resolution, thereby improving the phase and the phase. The accuracy and efficiency of the frequency tracking, so that the data signal restored by the clock data recovery module meets the requirements of the display 埠 (such as: DisplayPort 1.3) for signal jitter tolerance.

技術領域通常知識者可以容易理解到揭示的實施例實現一或多個前述舉例的優點。閱讀前述說明書之後,技術領域通常知識者將有能力對如同此處揭示內容作多種類的更動、置換、等效物以及多種其他實施例。因此本發明之保護範圍當視申請專利範圍所界定者與其均等範圍為主。 Those skilled in the art will readily appreciate that the disclosed embodiments achieve the advantages of one or more of the foregoing examples. After reading the foregoing description, those skilled in the art will be able to make various modifications, substitutions, equivalents, and various other embodiments. Therefore, the scope of protection of the present invention is defined by the scope of the patent application and its equal scope.

Claims (10)

一種時脈資料回復模組,包含:一時脈資料回復迴路,包含:一時脈資料回復單元,用以依據一資料訊號而產生一相位訊號;以及一第一相位內插單元,耦接於該時脈資料回復單元,用以依據該相位訊號與一參考時脈訊號而產生一資料時脈訊號與一邊緣時脈訊號,其中該時脈資料回復單元更用以依據該資料訊號、該資料時脈訊號以及該邊緣時脈訊號而產生該相位訊號;以及一展頻時脈追蹤電路,用以依據該資料訊號而產生該參考時脈訊號,並將該參考時脈訊號傳送至該第一相位內插單元,其中該展頻時脈追蹤電路與該時脈資料回復迴路為解耦配置。  A clock data recovery module includes: a clock data recovery loop, comprising: a clock data recovery unit for generating a phase signal according to a data signal; and a first phase interpolation unit coupled to the time The data recovery unit is configured to generate a data clock signal and an edge clock signal according to the phase signal and a reference clock signal, wherein the clock data recovery unit is further configured to use the data signal and the data clock. The phase signal is generated by the signal and the edge clock signal; and a spread spectrum clock tracking circuit is configured to generate the reference clock signal according to the data signal, and transmit the reference clock signal to the first phase The plug-in unit, wherein the spread-spectrum clock tracking circuit and the clock data recovery loop are decoupled.   如請求項1所述之時脈資料回復模組,其中該時脈資料回復迴路更包含:一取樣單元,耦接於該第一相位內插單元,用以對該資料時脈訊號與該邊緣時脈訊號進行取樣而產生一資料取樣訊號與一邊緣取樣訊號。  The clock data recovery module of claim 1, wherein the clock data recovery loop further comprises: a sampling unit coupled to the first phase interpolation unit for the data clock signal and the edge The clock signal is sampled to generate a data sample signal and an edge sample signal.   如請求項2所述之時脈資料回復模組,其中該時脈資料回復迴路更包含:一位元數轉換單元,耦接於該取樣單元,用以對該資料 取樣訊號與該邊緣取樣訊號進行位元數轉換,並將經轉換後的該取樣訊號與該邊緣取樣傳送至該時脈資料回復單元。  The clock data recovery module of claim 2, wherein the clock data recovery loop further comprises: a one-digit conversion unit coupled to the sampling unit for sampling the signal and the edge sampling signal Performing bit number conversion, and transmitting the converted sample signal and the edge sample to the clock data recovery unit.   如請求項3所述之時脈資料回復模組,其中該資料取樣訊號與該邊緣取樣訊號皆為二位元訊號流,且該位元數轉換單元用以將二位元訊號流轉換為四位元訊號流。  The clock data recovery module of claim 3, wherein the data sampling signal and the edge sampling signal are both binary signal streams, and the bit number conversion unit is configured to convert the binary signal stream into four Bit signal stream.   如請求項4所述之時脈資料回復模組,其中該展頻時脈追蹤電路包含:一頻率偵測單元,用以偵測該資料訊號之頻率而產生一頻率偵測訊號;以及一頻率產生單元,耦接於該頻率偵測單元,用以依據該頻率偵測訊號而產生一頻率訊號。  The clock data recovery module of claim 4, wherein the spread spectrum clock tracking circuit comprises: a frequency detecting unit for detecting a frequency of the data signal to generate a frequency detecting signal; and a frequency The generating unit is coupled to the frequency detecting unit for generating a frequency signal according to the frequency detecting signal.   如請求項5所述之時脈資料回復模組,其中該展頻時脈追蹤電路更包含:一第二相位內插單元,耦接於該頻率產生單元,用以依據該頻率訊號而產生該參考時脈訊號,並將該參考時脈訊號傳送至該第一相位內插單元。  The clock data recovery module of claim 5, wherein the spread spectrum clock tracking circuit further comprises: a second phase interpolation unit coupled to the frequency generating unit for generating the frequency signal according to the frequency signal Referring to the clock signal, and transmitting the reference clock signal to the first phase interpolation unit.   如請求項6所述之時脈資料回復模組,其中該頻率偵測單元耦接於該位元數轉換單元,該位元數轉換單元對該資料取樣訊號與該邊緣取樣訊號進行位元數轉換,並將經轉換後的該資料取樣訊號與該邊緣取樣訊號傳送至該頻率偵測單元。  The clock data recovery module of claim 6, wherein the frequency detecting unit is coupled to the bit number converting unit, and the bit number converting unit performs bit number on the data sampling signal and the edge sampling signal. Converting, and transmitting the converted data sampling signal and the edge sampling signal to the frequency detecting unit.   如請求項7所述之時脈資料回復模組,其中該資料取樣訊號與該邊緣取樣訊號皆為二位元訊號流,且該位元數轉換單元用以將二位元訊號流轉換為四位元訊號流。  The clock data replying module of claim 7, wherein the data sampling signal and the edge sampling signal are both binary signal streams, and the bit number converting unit is configured to convert the binary signal stream into four Bit signal stream.   如請求項1所述之時脈資料回復模組,其中該展頻時脈追蹤電路包含一時脈資料回復電路,用以依據該資料訊號而產生該參考時脈訊號。  The clock data recovery module of claim 1, wherein the spread spectrum clock tracking circuit comprises a clock data recovery circuit for generating the reference clock signal according to the data signal.   如請求項9所述之時脈資料回復模組,其中該時脈資料回復電路包含:一第二時脈資料回復單元,用以依據該資料訊號而產生一頻率訊號;以及一第二相位內插單元,耦接於該第二時脈資料回復單元,用以依據該頻率訊號而產生該參考時脈訊號,並將該參考時脈訊號傳送至該第一相位內插單元。  The clock data recovery module of claim 9, wherein the clock data recovery circuit comprises: a second clock data recovery unit for generating a frequency signal according to the data signal; and a second phase The plug-in unit is coupled to the second clock data recovery unit for generating the reference clock signal according to the frequency signal, and transmitting the reference clock signal to the first phase interpolation unit.  
TW105128654A 2016-09-05 2016-09-05 Clock data recovery module TWI628918B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105128654A TWI628918B (en) 2016-09-05 2016-09-05 Clock data recovery module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105128654A TWI628918B (en) 2016-09-05 2016-09-05 Clock data recovery module

Publications (2)

Publication Number Publication Date
TW201813314A true TW201813314A (en) 2018-04-01
TWI628918B TWI628918B (en) 2018-07-01

Family

ID=62639243

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105128654A TWI628918B (en) 2016-09-05 2016-09-05 Clock data recovery module

Country Status (1)

Country Link
TW (1) TWI628918B (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7724857B2 (en) * 2006-03-15 2010-05-25 Agere Systems Inc. Method and apparatus for improving linearity in clock and data recovery systems
KR101419892B1 (en) * 2007-12-07 2014-07-16 삼성전자주식회사 Receiver and communication system having the same
US8666013B1 (en) * 2011-03-22 2014-03-04 Altera Corporation Techniques for clock data recovery
TWI463804B (en) * 2011-10-28 2014-12-01 Phison Electronics Corp Clock data recovery circuit
US9312865B2 (en) * 2013-12-05 2016-04-12 Samsung Display Co., Ltd. Bimodal serial link CDR architecture
TWI519119B (en) * 2014-04-17 2016-01-21 創意電子股份有限公司 Clock data recovery circuit and method

Also Published As

Publication number Publication date
TWI628918B (en) 2018-07-01

Similar Documents

Publication Publication Date Title
TWI519119B (en) Clock data recovery circuit and method
JP5671752B2 (en) Apparatus, system and method for timing recovery
CN107800427B (en) Clock data recovery module
US9246670B2 (en) Compact low-power fully digital CMOS clock generation apparatus for high-speed SerDes
CN109412585B (en) Electronic circuit configured to adjust skew between clock signals
US10461921B2 (en) Apparatus and method for clock recovery
KR20160044388A (en) Low Power Wideband Non-Coherent BPSK Demodulator to Align the Phase of Sideband Differential Output Comparators for Reducing Jitter, using 1st Order Sideband Filters with Phase 180 Degree Alignment
US20140103978A1 (en) Low power data recovery
US7760116B2 (en) Balanced rotator conversion of serialized data
US20190013929A1 (en) Serializer-deserializer with frequency doubler
JP6165888B2 (en) Method and apparatus for data assisted timing recovery in 10GBASE-T system
TWI628918B (en) Clock data recovery module
US20140119424A1 (en) Feed-forward equalization in a receiver
WO2017031742A1 (en) Optical signal processing method and coherent receiver
US20140333353A1 (en) Managing clock and recovery data
US9625939B2 (en) Clock forwarding over optics
US9369317B2 (en) Circuitry and method for multi-level signals
US11038523B2 (en) Ring oscillator-based analog-to-digital converter
JP2015005812A (en) Receiving circuit and receiving method
KR101037198B1 (en) Apparatus for recovering data of asynchronous communication using phase modulation of sampling clock and method thereof
KR20230047824A (en) A clock data recovery circuit and an appartus including the same
TWI668970B (en) Measurement system and data transmission interface
KR20160056246A (en) Low Power Wideband Non-Coherent BPSK Demodulator to Align the Phase of Sideband Comparators, using 1st Order Sideband Filters with Phase Zero Alignment
US20120020438A1 (en) Reception apparatus
JP2014146964A (en) Signal transmission system