TW201810620A - Method for preparing vacuum field effect transistor nonvolatile memory - Google Patents
Method for preparing vacuum field effect transistor nonvolatile memory Download PDFInfo
- Publication number
- TW201810620A TW201810620A TW105125665A TW105125665A TW201810620A TW 201810620 A TW201810620 A TW 201810620A TW 105125665 A TW105125665 A TW 105125665A TW 105125665 A TW105125665 A TW 105125665A TW 201810620 A TW201810620 A TW 201810620A
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- gate
- dielectric layer
- manufacturing
- flash memory
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 25
- 230000005669 field effect Effects 0.000 title description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 11
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 9
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000001301 oxygen Substances 0.000 claims abstract description 6
- 230000003647 oxidation Effects 0.000 claims abstract description 5
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 5
- 239000010410 layer Substances 0.000 claims description 147
- 239000000758 substrate Substances 0.000 claims description 22
- 238000004519 manufacturing process Methods 0.000 claims description 19
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 claims description 13
- 229910052715 tantalum Inorganic materials 0.000 claims description 13
- 229910052719 titanium Inorganic materials 0.000 claims description 13
- 239000010936 titanium Substances 0.000 claims description 13
- 239000000463 material Substances 0.000 claims description 11
- 238000000137 annealing Methods 0.000 claims description 10
- 229910052802 copper Inorganic materials 0.000 claims description 9
- 229910052733 gallium Inorganic materials 0.000 claims description 9
- 238000010438 heat treatment Methods 0.000 claims description 9
- 229910052738 indium Inorganic materials 0.000 claims description 9
- 239000011229 interlayer Substances 0.000 claims description 9
- 229910052721 tungsten Inorganic materials 0.000 claims description 9
- 229910052782 aluminium Inorganic materials 0.000 claims description 5
- 229910052804 chromium Inorganic materials 0.000 claims description 5
- 229910052742 iron Inorganic materials 0.000 claims description 5
- 229910052750 molybdenum Inorganic materials 0.000 claims description 5
- 229910052758 niobium Inorganic materials 0.000 claims description 5
- 229910052763 palladium Inorganic materials 0.000 claims description 5
- 229910052720 vanadium Inorganic materials 0.000 claims description 5
- 229910052726 zirconium Inorganic materials 0.000 claims description 5
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 4
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 4
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 3
- 239000007789 gas Substances 0.000 claims description 3
- 229910052710 silicon Inorganic materials 0.000 claims description 3
- 239000010703 silicon Substances 0.000 claims description 3
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 3
- -1 silicon oxide nitride Chemical class 0.000 claims description 3
- 238000005121 nitriding Methods 0.000 claims description 2
- 230000008021 deposition Effects 0.000 claims 2
- 229910052751 metal Inorganic materials 0.000 abstract description 4
- 239000002184 metal Substances 0.000 abstract description 4
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 abstract 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 abstract 1
- 230000014759 maintenance of location Effects 0.000 abstract 1
- 229910000069 nitrogen hydride Inorganic materials 0.000 abstract 1
- 239000004065 semiconductor Substances 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 238000005240 physical vapour deposition Methods 0.000 description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000006163 transport media Substances 0.000 description 1
- 238000009966 trimming Methods 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B69/00—Erasable-and-programmable ROM [EPROM] devices not provided for in groups H10B41/00 - H10B63/00, e.g. ultraviolet erasable-and-programmable ROM [UVEPROM] devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/324—Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/10—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
- H01L29/1025—Channel region of field-effect devices
- H01L29/1029—Channel region of field-effect devices of field-effect transistors
- H01L29/1033—Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/423—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
- H01L29/42312—Gate electrodes for field effect devices
- H01L29/42316—Gate electrodes for field effect devices for field-effect transistors
- H01L29/4232—Gate electrodes for field effect devices for field-effect transistors with insulated gate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/423—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
- H01L29/42312—Gate electrodes for field effect devices
- H01L29/42316—Gate electrodes for field effect devices for field-effect transistors
- H01L29/4232—Gate electrodes for field effect devices for field-effect transistors with insulated gate
- H01L29/42364—Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Semiconductor Memories (AREA)
- Non-Volatile Memory (AREA)
Abstract
Description
本發明涉及半導體製造領域,尤其涉及一種真空管快閃記憶體結構及其製造方法。 The invention relates to the field of semiconductor manufacturing, in particular to a vacuum tube flash memory structure and a manufacturing method thereof.
真空管(Vacuum Tube)是一種電子元件,在電路中控制電子的流動。參與工作的電極被封裝在一個真空的容器內(管壁大多為玻璃),因而得名。在二十世紀中期前,因半導體尚未普及,基本上當時所有的電子器材均使用真空管,形成了當時對真空管的需求。但在半導體技術的發展普及和平民化下,真空管因成本高、不耐用、體積大、效能低等原因,最後被半導體取代了。但是可以在音響、微波爐及人造衛星的高頻發射機看見真空管的身影。部份戰鬥機為防止核爆造成的電磁脈衝損壞,機上的電子設備亦採用真空管,真空管結構如第1圖所示,其包括柵極1、集極3、射極2及發熱電阻絲5,電子4由射極2流向集極3。 A vacuum tube is an electronic component that controls the flow of electrons in a circuit. Participating electrodes are named in a vacuum container (most of the tube wall is glass). Before the middle of the twentieth century, because semiconductors were not yet popular, basically all electronic equipment at that time used vacuum tubes, which formed the demand for vacuum tubes at that time. However, under the development and popularization of semiconductor technology, vacuum tubes were eventually replaced by semiconductors due to high costs, non-durability, large size, and low efficiency. But you can see the vacuum tube in the high-frequency transmitter of the stereo, microwave oven and satellite. In order to prevent damage to electromagnetic pulses caused by nuclear explosions, some fighter aircraft also use vacuum tubes. The structure of the vacuum tube is shown in Figure 1. It includes grid 1, collector 3, emitter 2 and heating resistance wire 5. The electrons 4 flow from the emitter 2 to the collector 3.
早期的電子器件中真空管用來放大、開關或調節電信號。然而,隨著半導體技術的發展,幾十年以來,固態元件已經取代了真空管,例如金氧半場效電晶體(MOSFET)、雙極接面電晶體(BJT)及二極體。 Early electronic devices used vacuum tubes to amplify, switch, or regulate electrical signals. However, with the development of semiconductor technology, solid-state devices have replaced vacuum tubes for decades, such as metal-oxide-semiconductor field-effect transistors (MOSFETs), bipolar junction transistors (BJTs), and diodes.
然而,真空管依然在音響系統和高功率無線電基站使用。這 是由於真空管比固態元件的環境耐性更好,可以在高溫及各種輻射環境中使用。真空原理上是優於固體載體的傳輸媒介。電子在真空的速度是理論上3×1010釐米/秒,但在半導體中的速度僅僅為5×107釐米/秒。因此真空管在某些需求中的表現遠比固態元件優越。 However, vacuum tubes are still used in audio systems and high-power radio base stations. This is because vacuum tubes are more environmentally resistant than solid-state components and can be used in high temperature and various radiation environments. Vacuum is in principle a better transport medium than solid carriers. The speed of electrons in a vacuum is theoretically 3 × 10 10 cm / sec, but the speed in a semiconductor is only 5 × 10 7 cm / sec. Therefore, the performance of the vacuum tube is far superior to the solid-state component in some requirements.
本發明的目的在於提供一種真空管快閃記憶體結構的製造方法,其係利用業界通用的半導體標準製程所製造,且具有更好的程式設計、擦除速度及儲存時間,同樣還能夠提高優越的閘極控制性能及極小的閘極漏電流。 An object of the present invention is to provide a method for manufacturing a vacuum tube flash memory structure, which is manufactured by using a semiconductor standard process commonly used in the industry, and has better programming, erasing speed and storage time, and can also improve superior Gate control performance and minimal gate leakage current.
為達成上述目的,本發明的真空管快閃記憶體結構的製造方法包括提供一基板;在所述基板上依次形成形成介電層、源極層、第二介電層、閘極層和硬幕罩層;圖案化處理所述第二介電層、閘極層和硬幕罩層形成閘極結構;修剪閘極結構中的第二介電層和閘極層,使剩餘第二介電層和閘極層的寬度小於硬幕罩層;進行熱處理以形成閘介電層於所述閘極層的側壁上;沈積汲極層;以及沈積層間介電層於整個基板上並進行平坦化以在所述閘極中形成真空。 In order to achieve the above object, the method for manufacturing a vacuum tube flash memory structure of the present invention includes providing a substrate; and forming a dielectric layer, a source layer, a second dielectric layer, a gate layer, and a hard curtain on the substrate in order. Cover layer; patterning the second dielectric layer, the gate layer and the hard curtain cover layer to form a gate structure; trimming the second dielectric layer and the gate layer in the gate structure so that the remaining second dielectric layer And the gate layer have a width smaller than the hard curtain layer; heat treatment is performed to form a gate dielectric layer on the side wall of the gate layer; a drain layer is deposited; and an interlayer dielectric layer is deposited on the entire substrate and planarized to A vacuum is formed in the gate.
進一步的,本發明的真空管快閃記憶體結構的製造方法更包含在層間介電層進行平坦化後,採用高溫退火對所述源極層和汲極層進行處理,使其變為圓柱形。 Further, the manufacturing method of the vacuum tube flash memory structure of the present invention further comprises, after planarizing the interlayer dielectric layer, using high temperature annealing to process the source layer and the drain layer to make them cylindrical.
進一步的,其中所述高溫退火使用的氣體為He、N2、Ar或者H2。 Further, the gas used for the high-temperature annealing is He, N 2 , Ar, or H 2 .
進一步的,其中所述高溫退火的溫度範圍是在600~1000℃之 間。 Further, the temperature range of the high-temperature annealing is between 600 and 1000 ° C. between.
進一步的,其中所述閘極中的真空內之氣壓範圍是0.1torr~50torr。 Further, the air pressure in the vacuum in the gate electrode ranges from 0.1 torr to 50 torr.
進一步的,其中所述源極層和汲極層材質為Zr、V、Nb、Ta、Cr、Mo、W、Fe、Co、Pd、Cu、Al、Ga、In、Ti、TiN、TaN、C及其組合。 Further, the material of the source layer and the drain layer is Zr, V, Nb, Ta, Cr, Mo, W, Fe, Co, Pd, Cu, Al, Ga, In, Ti, TiN, TaN, C And combinations.
進一步的,其中所述閘極層材質為Al,poly Si,Cu,Ga,In,Ti,Ta,W,Co,Ti,Ta,TiN,TaN及其組合。 Further, the material of the gate layer is Al, poly Si, Cu, Ga, In, Ti, Ta, W, Co, Ti, Ta, TiN, TaN, and combinations thereof.
進一步的,其中所述熱處理係使用電漿在氧氣、氮氣、N2O或NH3的環境下進行所述閘極層的熱氧化或是熱氮化過程。 Further, the heat treatment uses a plasma to perform a thermal oxidation or thermal nitridation process of the gate layer under an environment of oxygen, nitrogen, N 2 O, or NH 3 .
進一步的,其中所述硬幕罩層的材質為氧化氮化矽(oxynitride)、氮化矽、氮化鈦(TiN)。 Further, the material of the hard curtain cover layer is silicon oxide nitride, silicon nitride, and titanium nitride (TiN).
本發明之另一目的為提供一種真空管快閃記憶體結構,包括一基板;一第一介電層及一源極層於所述基板之上;一閘極結構於所述源極層之上,所述閘極結構包括閘極層和硬幕罩層,一閘介電層於所述閘極層的側壁以及一中空的真空通道,其中所述閘極結構中的所述閘極層的寬度小於所述硬幕罩層的寬度;以及一汲極層於所述閘極結構之上並封閉所述真空通道。 Another object of the present invention is to provide a vacuum flash memory structure including a substrate; a first dielectric layer and a source layer on the substrate; and a gate structure on the source layer The gate structure includes a gate layer and a hard curtain layer, a gate dielectric layer on a side wall of the gate layer, and a hollow vacuum channel, wherein the gate layer in the gate structure The width is smaller than the width of the hard curtain cover layer; and a drain layer is on the gate structure and closes the vacuum channel.
1‧‧‧柵極 1‧‧‧ grid
2‧‧‧射極 2‧‧‧ Emitter
3‧‧‧集極 3‧‧‧collector
4‧‧‧電子 4‧‧‧ Electronics
5‧‧‧發熱電阻絲 5‧‧‧ heating resistance wire
10‧‧‧基板 10‧‧‧ substrate
20‧‧‧第一介質層 20‧‧‧First dielectric layer
30‧‧‧源極層 30‧‧‧Source layer
35‧‧‧第二介質層 35‧‧‧Second dielectric layer
40‧‧‧閘介電層 40‧‧‧ Gate dielectric layer
50‧‧‧閘極層 50‧‧‧Gate layer
60‧‧‧真空通道 60‧‧‧Vacuum channel
70‧‧‧汲極層 70‧‧‧ Drain Layer
80‧‧‧硬幕罩層 80‧‧‧ Hard Curtain Cover
90‧‧‧層間介電層 90‧‧‧ interlayer dielectric layer
第1圖為習知技術中真空管的工作原理示意圖;第2圖為本發明一實施例中真空管快閃記憶體結構的立體結構示意圖; 第3圖為本發明一實施例中的剖面示意圖;第4圖為本發明一實施例中的另一方向的剖面示意圖;第5圖為本發明一實施例中真空管快閃記憶體結構的製造方法的流程圖;第6至13圖為本發明一實施例中真空管快閃記憶體結構在製造過程中的剖面示意圖。 FIG. 1 is a schematic diagram of the working principle of a vacuum tube in the conventional technology; FIG. 2 is a schematic diagram of the three-dimensional structure of the flash memory structure of the vacuum tube in an embodiment of the present invention; FIG. 3 is a schematic cross-sectional view of an embodiment of the present invention; FIG. 4 is a schematic cross-sectional view of another direction in an embodiment of the present invention; and FIG. 5 is a fabrication of a flash memory structure of a vacuum tube in an embodiment of the present invention Method flowchart; Figures 6 to 13 are schematic cross-sectional views of a vacuum tube flash memory structure in a manufacturing process according to an embodiment of the present invention.
以下將結合示意圖對本發明的真空管快閃記憶體結構及其製造方法進行更詳細的描述,其中表示了本發明的較佳實施例,應該理解本領域技術人員可以修改在此描述的本發明,而仍然實現本發明的有利效果。因此,下列描述應當被理解為對於本領域技術人員的廣泛知道,而並非作為對於本發明的限制。 The structure of the vacuum tube flash memory of the present invention and the manufacturing method thereof will be described in more detail with reference to the schematic diagrams, which show the preferred embodiments of the present invention. It should be understood that those skilled in the art can modify the invention described herein, The advantageous effects of the invention are still achieved. Therefore, the following description should be understood as widely known to those skilled in the art, rather than as a limitation on the present invention.
為了清楚說明起見,本說明書並不描述實際實施例的全部特徵。在下列描述中,不詳細描述眾所皆知的功能和結構,因為它們會使本發明由於不必要的細節而混亂。應當認為在任何實際實施例的開發中,必須做出大量實施細節以實現開發者的特定目標,例如按照有關系統或有關商業的限制,由一個實施例改變為另一個實施例。另外,應當認為這種開發工作可能是複雜和耗費時間的,但是對於本領域技術人員來說僅僅是簡易的置換。 In the interest of clarity, not all features of an actual embodiment are described in this specification. In the following description, well-known functions and structures are not described in detail because they may confuse the present invention with unnecessary details. It should be considered that in the development of any actual embodiment, a large number of implementation details must be made to achieve the developer's specific goals, such as changing from one embodiment to another in accordance with system- or business-related restrictions. In addition, it should be considered that such development work may be complicated and time-consuming, but it is only a simple replacement for those skilled in the art.
在下列段落中參照附圖以舉例方式更具體地描述本發明。根據下面說明和權利要求書,本發明的優點和特徵將更清楚。需說明的是,附圖均採用非常簡化的形式且均使用非精准的比例,僅用以方便、明晰地 輔助說明本發明實施例的目的。 The invention is described in more detail by way of example in the following paragraphs with reference to the drawings. The advantages and features of the invention will be apparent from the following description and claims. It should be noted that the drawings are in a very simplified form and all use inaccurate proportions, only for convenience and clarity. Assist in explaining the purpose of the embodiments of the present invention.
請參考第2圖至第4圖,在本實施例中,提出了一種空管快閃記憶體結構,包括:基板10、介電層20、源極層30、閘介電層40、閘極50、汲極70、硬幕罩層80和層間介電層(ILD)90,其中,所述介電層20形成在所述基板10上,所述源極層30、閘介電層40、閘極50及汲極70形成在所述介電層20上,所述源極層30和汲極70分別位於所述閘極50的兩側,所述閘極50中設有真空通道60,暴露出兩側源極層30和汲極70,所述閘介電層40形成在所述真空中閘極50的側壁上。 Please refer to FIG. 2 to FIG. 4. In this embodiment, an empty tube flash memory structure is proposed, which includes a substrate 10, a dielectric layer 20, a source layer 30, a gate dielectric layer 40, and a gate electrode. 50. A drain electrode 70, a hard mask layer 80, and an interlayer dielectric layer (ILD) 90, wherein the dielectric layer 20 is formed on the substrate 10, the source layer 30, the gate dielectric layer 40, A gate electrode 50 and a drain electrode 70 are formed on the dielectric layer 20. The source layer 30 and the drain electrode 70 are located on both sides of the gate electrode 50. A vacuum channel 60 is provided in the gate electrode 50. The source layer 30 and the drain electrode 70 on both sides are exposed, and the gate dielectric layer 40 is formed on a sidewall of the gate electrode 50 in the vacuum.
請參考第5圖,在本實施例的另一方面,還提出了一種真空管快閃記憶體結構的製造方法,用於製備如上文所述的真空管快閃記憶體結構,包括步驟:S100:提供基板;S200:在所述基板上形成介電層;S300:在所述介電上形成源極層;S400:在所述源極層上形成第二介電層;S500:在所述第二介電層上依序形成閘極層和硬幕罩層;S600:圖案化處理所述第二介電層、閘極層和硬幕罩層形成閘極圖案;S700:修剪閘極圖案中的第二介電層、閘極層,使剩餘的閘極層寬度小於硬幕罩層;S800:利用熱處理形成閘介電層於閘極的側壁上;S900:沈積汲極層;S1000:沈積層間介電層於整個基板上並進行平坦化製程; S1100:進行高溫退火以將所述源極層和汲極層形成圓柱狀的源汲電極。 Please refer to FIG. 5. In another aspect of this embodiment, a method for manufacturing a vacuum tube flash memory structure is also provided, for preparing the vacuum tube flash memory structure as described above, including steps: S100: provide Substrate; S200: forming a dielectric layer on the substrate; S300: forming a source layer on the dielectric; S400: forming a second dielectric layer on the source layer; S500: forming a second dielectric layer on the source layer A gate layer and a hard mask layer are sequentially formed on the dielectric layer; S600: the second dielectric layer, the gate layer, and the hard mask layer are patterned to form a gate pattern; S700: the gate pattern is trimmed The second dielectric layer and the gate layer, so that the width of the remaining gate layer is smaller than the hard curtain cover layer; S800: the gate dielectric layer is formed on the side wall of the gate by heat treatment; S900: the deposited drain layer; S1000: the inter-deposited layer A dielectric layer is formed on the entire substrate and a planarization process is performed; S1100: Perform high-temperature annealing to form the source and drain layers into a cylindrical source-drain electrode.
具體的,請參考第6圖,在基板10上形成介電層20,其中,所述基板10可以為矽基板或絕緣體上矽(SOI)等一般基板,介電層20通常為二氧化矽。 Specifically, referring to FIG. 6, a dielectric layer 20 is formed on a substrate 10. The substrate 10 may be a silicon substrate or a general substrate such as silicon on insulator (SOI). The dielectric layer 20 is usually silicon dioxide.
請參考第7圖,依序在所述介電層20上沈積形成源極層30、第二介電層35、閘極層50和硬幕罩層80。其中,所述源極層30的材質為Zr、V、Nb、Ta、Cr、Mo、W、Fe、Co、Pd、Cu、Al、Ga、In、Ti、TiN、TaN或者C等材質。所述源極層30可以採用CVD或者PVD等製程形成。第二介電層35通常也為二氧化矽。閘極層50為金屬閘極,可以採用CVD、MOCVD或PVD形成。在一實施例中,金屬閘極的材質為Al,poly Si,Cu,Ga,In,Ti,Ta,W,Co,Ti,Ta,TiN,TaN等材質。所述硬幕罩層80的材質為氧化氮化矽(oxynitride)、氮化矽、氮化鈦(TiN)等材質,可以採用CVD、MOCVD或ALD等製程形成。 Referring to FIG. 7, a source layer 30, a second dielectric layer 35, a gate layer 50 and a hard curtain cover layer 80 are sequentially deposited on the dielectric layer 20. The source layer 30 is made of Zr, V, Nb, Ta, Cr, Mo, W, Fe, Co, Pd, Cu, Al, Ga, In, Ti, TiN, TaN, or C. The source layer 30 may be formed by a process such as CVD or PVD. The second dielectric layer 35 is also typically silicon dioxide. The gate layer 50 is a metal gate, and can be formed by CVD, MOCVD, or PVD. In one embodiment, the material of the metal gate is Al, poly Si, Cu, Ga, In, Ti, Ta, W, Co, Ti, Ta, TiN, TaN and other materials. The hard curtain cover layer 80 is made of materials such as silicon oxide nitride, silicon nitride, and titanium nitride (TiN), and can be formed by processes such as CVD, MOCVD, or ALD.
請參考第8圖,圖案化處理所述第二介電層35、閘極層50和硬幕罩層80,形成閘極結構31,具體的形成方式可以通過傳統的微影和蝕刻製程進行。 Referring to FIG. 8, the second dielectric layer 35, the gate layer 50, and the hard mask layer 80 are patterned to form a gate structure 31. The specific formation method can be performed by a conventional lithography and etching process.
請參考第9圖,使用選擇性蝕刻修剪閘極結構31中的閘極層50和第二介電層35,使剩餘的閘極層50a和第二介電層35a寬度小於硬幕罩層80。所述選擇性蝕刻可以採用含(如BCl3,Cl2)電漿修剪閘極層50,採用BOE或DHF濕式蝕刻法修剪閘極結構31中的第二介電層35。 Referring to FIG. 9, the gate layer 50 and the second dielectric layer 35 in the gate structure 31 are trimmed by selective etching, so that the width of the remaining gate layer 50 a and the second dielectric layer 35 a is smaller than that of the hard mask layer 80. . The selective etching may include (Such as BCl 3 , Cl 2 ) plasma trim the gate layer 50, and use BOE or DHF wet etching to trim the second dielectric layer 35 in the gate structure 31.
請參考第10圖,利用熱處理形成閘介電層40於裸露出的閘極 50的側壁上如圖中所示。所述熱處理可以是利用電漿在氧氣、氮氣、N2O或NH3的環境下進行金屬閘極的熱氧化或是熱氮化過程。 Referring to FIG. 10, the gate dielectric layer 40 is formed by heat treatment on the exposed side wall of the gate electrode 50 as shown in the figure. The heat treatment may be a process of thermally oxidizing or thermally nitriding a metal gate using a plasma in an environment of oxygen, nitrogen, N 2 O, or NH 3 .
請參考第11圖,沈積汲極層70於基板10表面。所述汲極層70的材質為Zr、V、Nb、Ta、Cr、Mo、W、Fe、Co、Pd、Cu、Al、Ga、In、Ti、TiN、TaN或者C等材質。所述汲極層70可以採用CVD、PVD或是濺鍍等製程形成。因此,真空的閘極通道60由源極30、汲極70和閘極結構50進行密封而形成,真空內的氣壓範圍是0.1torr~50torr。 Referring to FIG. 11, a drain layer 70 is deposited on the surface of the substrate 10. The material of the drain layer 70 is Zr, V, Nb, Ta, Cr, Mo, W, Fe, Co, Pd, Cu, Al, Ga, In, Ti, TiN, TaN, or C. The drain layer 70 may be formed by a process such as CVD, PVD, or sputtering. Therefore, the vacuum gate channel 60 is formed by sealing the source electrode 30, the drain electrode 70, and the gate structure 50, and the air pressure in the vacuum ranges from 0.1 torr to 50 torr.
請參考第12圖,沈積層間介電層90於基板10表面。其中,所述層間介電層90通常也為二氧化矽,可以採用CVD、PECVD,HDP CVD等製程形成。 Referring to FIG. 12, an interlayer dielectric layer 90 is deposited on the surface of the substrate 10. The interlayer dielectric layer 90 is also usually silicon dioxide, and can be formed by processes such as CVD, PECVD, and HDP CVD.
請參考第13圖,對沈積層間介電層90進行平坦化後再採用高溫退火製程對所述源極30和汲極70進行處理,使其變為圓柱形,避免存在棱角,造成後續元件製程會在棱角處發生可靠性較差等問題,其中,所述平坦化可以使用化學機械研磨或是回蝕刻等製程,所述高溫退火製程使用的氣體為He、N2、Ar或者H2。所述高溫退火製程的溫度範圍是600攝氏度~1000攝氏度,例如是800攝氏度。 Please refer to FIG. 13, after the flattened interlayer dielectric layer 90 is planarized, the source electrode 30 and the drain electrode 70 are processed by a high-temperature annealing process to make them cylindrical, avoiding edges and corners, resulting in subsequent component processing. Problems such as poor reliability may occur at the edges and corners. The planarization may use a process such as chemical mechanical polishing or etch back. The gas used in the high-temperature annealing process is He, N 2 , Ar, or H 2 . The temperature range of the high temperature annealing process is 600 degrees Celsius to 1000 degrees Celsius, for example, 800 degrees Celsius.
綜上,在本發明實施例提供的真空管快閃記憶體結構及其製造方法中,在溝道中形成真空,其中,閘介電層係使用電漿在氧氣、氮氣、N2O或NH3的環境下進行所述閘極層的熱氧化或是熱氮化過程所生成。本發明所揭露的結構,能夠使形成的元件具有更好的程式設計、抹除速度及儲存時間,同時還能夠提高優越的閘極控制性能及極小的閘極漏電流。 In summary, in the vacuum tube flash memory structure and the manufacturing method thereof provided in the embodiments of the present invention, a vacuum is formed in the channel, wherein the gate dielectric layer uses a plasma in the presence of oxygen, nitrogen, N 2 O, or NH 3 . It is generated by performing thermal oxidation or thermal nitridation of the gate layer in an environment. The structure disclosed by the invention can make the formed component have better programming, erasing speed and storage time, and can also improve superior gate control performance and extremely small gate leakage current.
上述僅為本發明的較佳實施例而已,並非用來限制本發明。 任何所屬技術领域的人士,在不脫離本發明的技術方案的範圍內,對本發明揭露的技術方案和技術內容做任何形式的均等替换或修改等變動,均屬於不脫離本發明的技術方案的內容,仍屬於本發明的保護範圍之內。 The above are merely preferred embodiments of the present invention, and are not intended to limit the present invention. Any person in the technical field, within the scope not departing from the technical solution of the present invention, make any form of equal replacement or modification of the technical solution and technical content disclosed in the present invention, which all belong to the content without departing from the technical solution of the present invention. , Still belongs to the protection scope of the present invention.
顯然,本領域的技術人員可以對本發明進行各種修改和變型而不脫離本發明的精神和範圍。這樣,倘若本發明的這些修改和變型屬於本發明申請專利範圍及其等同技術的範圍之內,則本發明也意圖包含這些修改和變型在內。 Obviously, those skilled in the art can make various modifications and variations to the present invention without departing from the spirit and scope of the present invention. In this way, if these modifications and variations of the present invention fall within the scope of the patent application for the present invention and the scope of equivalent technology, the present invention also intends to include these modifications and variations.
S100~S1100‧‧‧真空管快閃記憶體結構之製造方法之流程步驟 S100 ~ S1100 ‧‧‧ Vacuum tube flash memory structure manufacturing process steps
Claims (14)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610173638.4A CN107248515B (en) | 2016-03-24 | 2016-03-24 | Vacuum tube flash memory structure and manufacturing method thereof |
??201610173638.4 | 2016-03-24 |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI590389B TWI590389B (en) | 2017-07-01 |
TW201810620A true TW201810620A (en) | 2018-03-16 |
Family
ID=60016086
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW105125665A TWI590389B (en) | 2016-03-24 | 2016-08-11 | Method for preparing vacuum field effect transistor nonvolatile memory |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN107248515B (en) |
TW (1) | TWI590389B (en) |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW523745B (en) * | 2000-09-08 | 2003-03-11 | Axon Technologies Corp | Microelectronic programmable device and methods of forming and programming the same |
US20070212850A1 (en) * | 2002-09-19 | 2007-09-13 | Applied Materials, Inc. | Gap-fill depositions in the formation of silicon containing dielectric materials |
US20110061812A1 (en) * | 2009-09-11 | 2011-03-17 | Applied Materials, Inc. | Apparatus and Methods for Cyclical Oxidation and Etching |
US9082651B2 (en) * | 2013-09-27 | 2015-07-14 | Taiwan Semiconductor Manufacturing Company, Ltd. | Memory devices and method of forming same |
CN107170681B (en) * | 2016-03-03 | 2019-10-25 | 上海新昇半导体科技有限公司 | The manufacturing method of vacuum tube flash memory structure |
-
2016
- 2016-03-24 CN CN201610173638.4A patent/CN107248515B/en active Active
- 2016-08-11 TW TW105125665A patent/TWI590389B/en active
Also Published As
Publication number | Publication date |
---|---|
CN107248515B (en) | 2020-06-16 |
CN107248515A (en) | 2017-10-13 |
TWI590389B (en) | 2017-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI556413B (en) | Vacuum field effect transistor nonvolatile memory and method for preparing the same | |
US20200286781A1 (en) | Contact structure for semiconductor device | |
TWI569420B (en) | Method for preparing vacuum field effect transistor nonvolatile memory | |
KR100618815B1 (en) | Semiconductor device having different gate dielectric layers and method for manufacturing the same | |
KR101166437B1 (en) | Semiconductor Field Effect Transistors and Fabrication Thereof | |
TW201640681A (en) | Semiconductor device and manufacturing method thereof | |
US8039337B2 (en) | Nonvolatile memory device with multiple blocking layers and method of fabricating the same | |
KR20060124001A (en) | Method of manufacturing a flash memory device | |
US20010024860A1 (en) | Method for manufacturing a gate structure incorporating therein aluminum oxide as a gate dielectric | |
JP2023536856A (en) | Conformal oxidation for gate-all-around nanosheet input/output devices | |
JP2004193409A (en) | Method for forming insulation film | |
CN107230632B (en) | Dual-gate graphene field effect transistor and manufacturing method thereof | |
JP2007123662A (en) | Semiconductor device and manufacturing method thereof | |
CN104681440A (en) | Semiconductor device and preparation method thereof | |
TW201810620A (en) | Method for preparing vacuum field effect transistor nonvolatile memory | |
JP2011176348A (en) | Semiconductor device | |
US6355548B1 (en) | Method for manufacturing a gate structure incorporated therein a high K dielectric | |
WO2004097922A1 (en) | Production method for semiconductor device | |
JP4562751B2 (en) | Formation method of insulating film | |
TWI753297B (en) | Methods of forming silicon-containing layers | |
JP5374947B2 (en) | Semiconductor device and manufacturing method thereof | |
KR100680970B1 (en) | Method for forming gate of semiconductor device | |
KR100650758B1 (en) | Method for forming gate of semiconductor device | |
KR100650756B1 (en) | Method for forming gate of semiconductor device | |
KR100650757B1 (en) | Method for forming gate of semiconductor device |