TW523745B - Microelectronic programmable device and methods of forming and programming the same - Google Patents
Microelectronic programmable device and methods of forming and programming the same Download PDFInfo
- Publication number
- TW523745B TW523745B TW90122333A TW90122333A TW523745B TW 523745 B TW523745 B TW 523745B TW 90122333 A TW90122333 A TW 90122333A TW 90122333 A TW90122333 A TW 90122333A TW 523745 B TW523745 B TW 523745B
- Authority
- TW
- Taiwan
- Prior art keywords
- electrode
- scope
- patent application
- item
- ion conductor
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
- G11C13/0002—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
- G11C13/0009—RRAM elements whose operation depends upon chemical change
- G11C13/0011—RRAM elements whose operation depends upon chemical change comprising conductive bridging RAM [CBRAM] or programming metallization cells [PMCs]
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C2213/00—Indexing scheme relating to G11C13/00 for features not covered by this group
- G11C2213/50—Resistive cell structure aspects
- G11C2213/51—Structure including a barrier layer preventing or limiting migration, diffusion of ions or charges or formation of electrolytes near an electrode
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C2213/00—Indexing scheme relating to G11C13/00 for features not covered by this group
- G11C2213/50—Resistive cell structure aspects
- G11C2213/55—Structure including two electrodes, a memory active layer and at least two other layers which can be a passive or source or reservoir layer or a less doped memory active layer
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C2213/00—Indexing scheme relating to G11C13/00 for features not covered by this group
- G11C2213/70—Resistive array aspects
- G11C2213/72—Array wherein the access device being a diode
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C2213/00—Indexing scheme relating to G11C13/00 for features not covered by this group
- G11C2213/70—Resistive array aspects
- G11C2213/79—Array wherein the access device being a transistor
Landscapes
- Semiconductor Memories (AREA)
Abstract
Description
經濟部智慧財產局員工消費合作社印製 523745 A7 _ B7 五、發明說明(1 ) 參考相關申請案 本申請案聲明下列利益:美國專利申請書序號 09/502,9 1 5,名爲:微電子可程式裝置與形成及程式化 的方法,2000年4月19日提出申請;美國專利申請書 序號09/5 5 5,6 1 2,名爲:可程式表面內聚集金屬化單位 結構及其形成的方法,1 998年12月4日提出申請;美 國專利申請書序號60/23 1,343,名爲:可程式金屬化單 位的共用電極結構,2000年9月8日提出申請;美國專 利申請書序號60/23 1,345,名爲:玻璃合成物適合可程 式金屬化單位及其形成的方法,2 000年9月8日提出申 請;美國專利申請書序號60/23 1,350,名爲:極低能量 可程式金屬化單位裝置及其形成的方法,2000年9月8 日提出申請;美國專利申請書序號60/23 1,427,名爲: 可程式金屬化單位的電極,2000年9月8日提出申請; 美國專利申請書序號60/23 1,346,名爲:可程式金屬化 單位固態溶劑及其形成的方法,2000年9月8日提出 申請;美國專利申請書序號60/23 1,432,名爲:具浮動 電極可程式金屬化單位及其程式化與形成的方法,2000 年9月8日提出申請;美國專利申請書序號60/282,045, 名爲:可程式金屬化單位的最佳化電極,2001年4月6 日提出申請;美國專利申請書序號60/2 83,5 9 1,名爲: 可程式金屬化單位的最佳化玻璃合成物,200 1年4月 13日提出申請;美國專利申請書序號60/29 1,886,名 4S&W/0112TW/AXON,29089.1120 1 ^了長尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) > — — — — — — — — — — — — ·1111111 ·11111111 I . (請先閱讀背面之注意事項再填寫本頁) 523745 A7 B7 五、發明說明ο) 爲:可程式金屬化單位的電極,2001年5月18日提出 申請。 (請先閱讀背面之注意事項再填寫本頁) 發明領域 本發明係關於一種微電子裝置,特別是關於一種適 用於積體電路的可程式微電子結構。 發明背景 於電子系統與電腦中常用記憶體儲存以二進位資料 形成的資訊。這些記憶體可以各種不同型式表現其特徵, 每種型式都結合其不同的優缺點。 經濟部智慧財產局員工消費合作社印製 •例如:存在於個人電腦中的隨機存取記憶體 (“RAM”),是典型的揮發性的(volatile)半導體記憶 體;亦即,如果電源切斷或移除,則會失去儲存的資料。 動態隨機存取記憶體(“DRAM”)則爲揮發性記憶體,其 必須在每數微秒內更新(refreshedM即補充 (recharged)),以維護儲存的資料。而靜態隨機存取記 憶體(“SRAM”)則是只要電源不中斷,即可保留每次寫 入後的資料;然而,一旦電源中斷,便會失去資料。因 此,在這些揮發性的記憶體結構中,只要系統電源沒有關 閉,資訊就會保留。總之,這些隨機存取記憶體裝置佔用 重要的晶片範圍,因此,製造與消費相當大量能量在資料 4S&W/0112TW/AX0N, 29089.1120 9 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 523745 A7 B7 經濟部智慧財產局員工消費合作社印製 五、發明說明(3) 的儲存上是昂貴的。於是乎,適用於個人電腦等機具上的 改良記憶體裝置是迫切需要的。 其他儲存裝置,如磁性的儲存裝置(例:軟碟、硬 碟及磁帶)以及其他系統,如:光碟、CD-RW及DVD-RW則爲非揮發性的,有極大的容量,且可以多次重複寫 入。不幸地,這些記憶體裝置體積龐大,對衝擊與震動敏 感,需要昂貴的機械動力裝置,且會消耗相當大量的電 力。這些負面因素使得這種記憶體裝置對低功率攜帶式應 用裝置,如膝上電腦、掌上電腦、個人數位助理 (“PDAs”)等不盡理想。 由於許多儲存資訊定期改變的小型低功率可攜式電 腦系統快速成長,至少在某種程度上,低能量讀寫半導體 記憶體變得越來越普遍需要。此外,由於這些可攜式系統 於電源關閉時通常需要儲存資料,因此,這類系統期望能 應用非揮發的儲存裝置。 一種可程式半導體非揮發記億體裝置,叫做“可程 式唯讀記憶體”(“PROM”)裝置,則適用於這類系統。 其中一種可程式唯讀記憶體,一次寫入多次讀取 (“WORM”)裝置,使用一列可熔合聯動裝置。一旦編制 程式後,該多次讀取裝置便不能再編制程式。 其他型式的可程式唯讀記憶體裝置,包括可抹去可程式唯 讀記億體(“EPROM”)和電子可抹去可程式唯讀記憶體 (“EEPROM,,)裝置,在啓始程式後是可變動的。可抹去 4S&W/0112TW/AX0N, 29089.1120 3 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) I I I ϋ — — — — — — — — — — — — — — I— « — — — — — — I— I (請先閱讀背面之注意事項再填寫本頁) 523745 經濟部智慧財產局員工消費合作社印製 A7 ________B7_ 五、發明說明(+) 可程式唯讀記憶體裝置通常在編制程式前需要一個暴露於 紫外光下的抹去步驟。因此,該裝置不普遍地適於用在可 攜式電子裝置。電子可抹去可程式唯讀記憶體裝置通常較 易於編制程式,但有其他缺陷。特別地,電子可抹去可程 式唯讀記憶體裝置較爲複雜,生產上相當困難,且相當龐 大。此外,包含電子可抹去可程式唯讀記憶體裝置的電路 必須經得起編制程式所需的高電壓。所以,相較於其他資 料儲存方式,電子可抹去可程式唯讀記憶體記憶體容量每 位元成本非常高。電子可抹去可程式唯讀記憶體裝置的另 一個缺點是,雖然它們可在無電源連接下保留資料,但是 它們需要相當大量電力來編制程式。此電力負擔對以電池 供電的小型可攜式系統來說相當大。 由於上述與傳統資料儲存裝置有關的各種問題,一 個生產容易與價廉的非揮發可程式裝置是需要的。此外, 該記憶體技術應符合新一代可攜式電腦裝置的需要,於提 供高儲存密度時,能在相當低的電壓下運作,而且生產成 本低廉。 發明之目的趄槪沭 本發明提供一種應用於積體電路上,改良的微電子 裝置。更特別地,本發明提供一種非揮發可程式裝置,適 合用在記憶體以及其他積體電路上。 4S&W/0112TW/AX0N, 29089.1120 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) ♦ ‘ ir----------,¾ ϋ a.·— l_i n ·ϋ n ϋ 一· 1 me— i mmmt ι ϋ I n i-i ϋ 1-· ·ϋ ·ϋ —i ϋ ϋ I n ϋ I n ·ϋ ϋ I (請先閱讀背面之注意事項再填寫本頁) 523745 經濟部智慧財產局員工消費合作社印製 A7 B7 五、發明說明(5) 本發明所指出已知可程式裝置各種不同缺點的方式 將詳細討論於下。然而,本發明提供一個可程式裝置,此 裝置容易生產及編制程式,而且價格不貴。 根據本發明的一典範實施例,可程式結構包括一個 離子導體和至少二個電極。當一個偏壓加在二個電極間 時,會造成該結構的一個或多個電氣特性改變。具體而 言,當偏壓加在電極時,此結構的電阻會改變。再者,此 結構的電容或其他電氣特性會隨著跨越電極的偏壓應用而 改變。這些電氣特性的改變會適時地被偵測,因此,儲存 的資訊會從包含該結構的電路恢復。 根據本發明的另一個實施例,可程式結構包貪一個 離子導體,至少二個電極,以及介於一電極的至少一部份 和離子導體間的壁障(barrier)。根據此實施例,此壁障 材料包含一爲減少離子在該離子導體與至少一個電極間擴 散而安裝的材料。此擴散壁障亦會在此結構的一部份中阻 止不希望得到的電沉澱物成長。從另一觀點來看,該壁障 材料包含一絕緣物質。包含一絕緣物質會增加用來減少此 裝置重阻Μ電J1。依此實施例的另一觀點,該壁障包含引 導離子的材料,但其對電子傳導有相對地抵抗。利用該種 材料會減少在電極上有不希望得到的電鍍,以及增加該裝 置的熱量穩定性。 根據本發明的另一個實施例,可程式微電子結構藉 著在基質上形成第一個電極而在基質的表面上成形,在第 一個電極上放置一層離子導體材料,以及在離子導體材料 4S&W/0112TW/AXON, 29089.1120 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) ---------------------訂--------—AWI (請先閱讀背面之注意事項再填寫本頁) 523745 經濟部智慧財產局員工消費合作社印製 A7 B7 五、發明說明() 上放置傳導性物質。依此實施例的觀點,包含離子導體和 額外的傳導物質的固態溶劑係藉由消溶(例如,經由火力 及或光電消溶)離子導體上的一部份傳導物質而形成。依 進一步的觀點,只有一部份傳導物質被分解,該部份傳導 物質遺留在離子導體的表面,形成一個在離子導體材料表 面上的電極。 依本發明的另一個實施例,至少一部份可程式結構 疋在絕緣材料中之一穿洞(through-hole)或穿孔(via)中 形成。依此實施例的觀點,第一個電極特性是在基質的表 面形成,絕緣材料沉澱在電極特性的表面,穿孔在絕緣材 料中形成’且一部份可程式結構在該穿孔中形成。該穿孔 在絕緣材料中形成後,在穿孔中的一部分結構藉由在傳導 性材料上放置離子傳導物質而成形,放置第二個電極材料 在離子傳導物質上,如果有需要,移除任何多餘的電極、 離子導體、及/或絕緣材料。依此實施例的另一觀點,只 有離子導體在穿孔中成形。在此範例中,第一個電極在絕 緣材料之下形成且與離子導體有接觸,而第二個電極在絕 緣材料之上形成且與離子導體有接觸。穿孔的結構會變 化’以改變(如:減少)在一個或多個電極與離子導體之 間的接觸面積。減少離子導體與電極間介面的截面積會增 加此裝置的效能(依提供的電力改變裝置的電氣特性)。 依此實施例的另一觀點,穿孔會經由較低的電極延伸以減 少離子導體與電極間的介面區域。依此實施例的另一觀 點,離子導體的一部分會從穿孔中移除,或離子導體材料 4S&W/0112TW/AXON, 29089.1120 6 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) " — — — — — — — — — — — — I — — — — — — II ^ »1 — — — — — — — I - (請先閱讀背面之注意事項再填寫本頁) 523745 A7 B7 五、發明說明(q) 會僅沉澱於部分的穿孔中,以更減少電極與離子導體間的 介面。 <請先閱讀背面之注意事項再填寫本頁) 依照本發明的另一實施例,可程式裝置會在基質的 表面形成。 依照本發明另一實施例,大量資訊儲存於單一可程 式結構中。依此實施例的觀點,可程式結構包括一個浮動 電極插在兩個額外的電極間。 依照本發明的另一實施例,利用一個共用電極 (如:一個共用的陽極或一個共用的陰極)可將多個可程 式裝置結合在一起。 依照本發明的另一個實施例,多個可程式裝置共享 一個共用電極。 此外,依照本發明另一實施例,可程式結構的電流 容量會因在結構的離子導體中的離子的遷移而改變。 圖示簡單說明 參考詳細說明與申請專利範圍可對本發明有更完整 的認識,圖示中之元件均附有參考編號。 經濟部智慧財產局員工消費合作社印製 圖一揭示本發明在基底表面形成之可程式結構剖面 圖。 圖二揭示本發明另一實施例之可程式結構剖面圖。 圖三揭示一電流電壓曲線圖,以“開啓”與“關 閉”狀態圖示出圖二所說明的裝置中電流與電壓的特性。 4S&W/0112TW/AX0N,29089.1120 7 本紙張尺度適用中國國家標準(CNS〉A4規格(210 X 297公釐) 523745 經濟部智慧財產局員工消費合作社印製 A7 B7 五、發明說明(g ) 圖四仍揭示本發明另一實施例的可程式結構剖面 圖。 圖五揭示本發明一典範實施例之部分記憶體裝置槪 要圖示。 圖六揭示本發明另一實施例之部分記憶體裝置槪要 圖示。 圖七與圖八揭示本發明另一實施例的可程式結構剖 面圖,該結構具有一個離子導體電極接觸介面,此介面形 成於離子導體周圍。 圖九與圖十仍揭示本發明另一實施例的可程式結構 剖面圖,該結構有一個離子導體電極接觸介面,此介面形 成於離子導體周圍。 圖十一與圖十二揭示本發明的一具有一水平結構之 可程式裝置。 圖十三至圖十九揭示本發明的可程式裝置係由減少 的離子/電極導體介面表面面積組織而成。 圖二十揭示本發明的可程式裝置具有一頭變尖細的 離子導體。 圖21至圖24揭示本發明的可程式裝置包含一浮動 電極。 圖25至圖29揭示本發明建構的共用電極可程式裝 置。 4S&W/0112TW/AX0N, 29089.1120 8 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) -I I ϋ ϋ ϋ n ϋ 一: 口、· ϋ ·1 n n n I 1 ϋ ϋ β— ϋ ·1 a— n ϋ n ·1 ϋ -1 I ϋ ϋ ϋ I ϋ I (請先閱讀背面之注意事項再填寫本頁) 523745 A7 B7 五、發明說明( 熟習此項技術者可了解的是這些圖示係簡單明瞭說 明本發明,並不依照正確比例畫出。例如,爲幫助加強了 解本發明之實施例,圖示誇張表示某些要素與其他要素的 相對比例。 經 濟 部 智 慧 財 產 局 員 工 消 費 合 作 社 印 製 元件符號說明 100 > 200.1 1 10 1 12 120,130 140 155 160 165 255 400 402 420 , 430 440 460 470 510 , 610 520 , 620 可程式微電子結構 基底 絕緣物質 電極 離子導體 緩衝器 電沉澱物 接觸器 壁障階層 可程式化結構 積體電路 電極 離子導體 接觸器 非結晶矽兩極真空管 位元線 字元線 4S&W/0112TW/AXON, 29089.1120 -1 ϋ ϋ ϋ ϋ ea§ ϋ · -I ϋ ^-1 n I I I ϋ n n n ϋ n ϋ ϋ ϋ ϋ ϋ ϋ n I I · (請先閱讀背面之注音5事項再填寫本頁) -¾ 9 523745 A7 B7 五、發明說明(〖〇 ) 經濟部智慧財產局員工消費合作社印製 610 電晶體 700 可程式裝置 710 惰性電極 720 可氧化電極 730 離子導體 740, 750 絕緣層 900 可程式裝置 910 惰性電極 920 可氧化電極 930 離子導體 940, 950 絕緣層 1100 可程式裝置 1110 ,1 120 電極 1130 離子導體 1140 絕緣原料 1300 可程式裝置 1310 ,1320 電極 1330 離子導體 1340 絕緣層 1400 可程式裝置 1410 ,1420 電極 1430 離子導體 1450 絕緣原料 4S&W/0112TW/AX0N, 29089.1120 1〇 (請先閱讀背面之注意事項再填寫本頁) 訂------^---線! 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 523745 A7 B7 五、發明說明(u) 經濟部智慧財產局員工消費合作社印製 1500 可程式裝置 1530 離子導體 1540 穿孔 1600 可程式裝置 1700 可程式裝置 1720 電極 1730 離子導體 1800 可程式裝置 1810, 1820 電極 1830 離子導體 1840 絕緣層 1850 絕緣柱 1900 可程式裝置 1930 離子導體 1950 柱子 2000 可程式裝置 2010, 2020 電極 2030 離子導體 2040 絕緣層 2100 可程式裝置 2110 第一電極 2120 第二電極 2130 第三電極 2140, 2150 離子導體部分 4S&W/0112TW/AX0N, 29089.1120 11 (請先閱讀背面之注意事項再填寫本頁)Printed by the Intellectual Property Bureau of the Ministry of Economic Affairs' Consumer Cooperatives 523745 A7 _ B7 V. Description of the Invention (1) Reference to the related application This application declares the following benefits: US Patent Application Serial No. 09 / 502,9 1 5. Name: Microelectronics Programmable device and method of formation and stylization, filed on April 19, 2000; US patent application serial number 09/5 5 5, 6 1 2, named: Aggregated metallized unit structure within a programmable surface and its formation Method, filed on December 4, 1998; US patent application serial number 60/23 1,343, entitled: Common electrode structure of programmable metallization unit, filed on September 8, 2000; US patent application serial number 60/23 1,345, titled: Glass composition suitable for programmable metallization units and methods of forming it, filed September 8, 2000; US Patent Application Serial No. 60/23 1,350, titled: Extremely Low Energy programmable metallization unit device and method of forming the same, application filed on September 8, 2000; US patent application serial number 60/23 1,427, entitled: Electrode of programmable metallization unit, September 8, 2000 Filed today; US patent application Application No. 60/23 1,346, titled: Programmable Metallized Unit Solid Solvent and Method for Forming It, filed on September 8, 2000; US Patent Application No. 60/23 1,432, titled: Floating electrode programmable metallization unit and method of programming and forming, applied on September 8, 2000; US patent application serial number 60 / 282,045, entitled: Optimized electrode of programmable metallization unit, 2001 Filed on April 6; US Patent Application Serial No. 60/2 83,5 91, titled: Optimized Glass Composition of Programmable Metallization Unit, filed April 13, 2001; US Patent Application Book No. 60/29 1,886, titled 4S & W / 0112TW / AXON, 29089.1120 1 ^ The long scale applies the Chinese National Standard (CNS) A4 specification (210 X 297 mm) > — — — — — — — — — — — — — · 1111111 · 11111111 I. (Please read the notes on the back before filling out this page) 523745 A7 B7 V. Description of the invention ο): Programmable metallization unit electrode, application was made on May 18, 2001. (Please read the notes on the back before filling this page) FIELD OF THE INVENTION The present invention relates to a microelectronic device, and more particularly to a programmable microelectronic structure suitable for integrated circuits. BACKGROUND OF THE INVENTION Commonly used memories in electronic systems and computers store information formed as binary data. These memories can be characterized in a variety of different styles, each of which combines its advantages and disadvantages. Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs • For example: Random Access Memory ("RAM"), which is present in personal computers, is typically volatile semiconductor memory; that is, if the power is turned off Or remove, you will lose the stored data. Dynamic random access memory ("DRAM") is volatile memory that must be updated every few microseconds (refreshedM is recharged) to maintain stored data. The static random access memory ("SRAM") retains the data after each write as long as the power is not interrupted; however, once the power is interrupted, the data will be lost. Therefore, in these volatile memory structures, information is retained as long as the system power is not turned off. In short, these random access memory devices occupy an important chip range. Therefore, a considerable amount of energy is manufactured and consumed in the data 4S & W / 0112TW / AX0N, 29089.1120 9 This paper standard applies to the Chinese National Standard (CNS) A4 specification (210 X (297 mm) 523745 A7 B7 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs V. Invention Description (3) Storage is expensive. Therefore, an improved memory device suitable for a machine such as a personal computer is urgently needed. Other storage devices, such as magnetic storage devices (such as floppy disks, hard disks, and magnetic tapes) and other systems, such as optical disks, CD-RW, and DVD-RW are non-volatile, have a large capacity, and can be more Repeated writes. Unfortunately, these memory devices are bulky, sensitive to shocks and vibrations, require expensive mechanical power devices, and consume considerable amounts of power. These negative factors make this memory device less than ideal for low-power portable applications such as laptops, PDAs, and personal digital assistants ("PDAs"). Due to the rapid growth of many small, low-power portable computer systems where stored information changes regularly, at least to some extent, low-energy read-write semiconductor memory is becoming more and more common. In addition, since these portable systems often need to store data when the power is off, such systems are expected to be able to use non-volatile storage devices. A programmable semiconductor non-volatile memory device called a "programmable read-only memory" ("PROM") device is suitable for this type of system. One type of programmable read-only memory, write-once-read-many ("WORM") devices, uses a row of fusible linkages. Once the program is programmed, the multiple reading device can no longer program. Other types of programmable read-only memory devices, including erasable programmable read-only memory ("EPROM") and electronic erasable programmable read-only memory ("EEPROM,") devices, It can be changed afterwards. 4S & W / 0112TW / AX0N, 29089.1120 can be erased. 3 This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) III ϋ — — — — — — — — — — — — — — — I— «— — — — — — — I— I (Please read the notes on the back before filling this page) 523745 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs A7 ________B7_ V. Description of Invention (+) Yes Programmable read-only memory devices usually require an erase step that is exposed to ultraviolet light before programming. Therefore, the device is not universally suitable for use in portable electronic devices. Electronically erasable programmable read-only memory Devices are usually easier to program, but have other disadvantages. In particular, electronically erasable programmable read-only memory devices are more complex, difficult to produce, and relatively large. In addition, electronically erasable The circuit of a programmable read-only memory device must be able to withstand the high voltages required for programming. Therefore, compared to other data storage methods, electronically erasable programmable read-only memory memory capacity has a very high cost per bit. Another disadvantage of electronically erasable programmable read-only memory devices is that, although they can retain data without a power connection, they require a considerable amount of power to program. This power burden is important for small, battery-powered portable devices. The system is quite large. Due to the above-mentioned problems associated with traditional data storage devices, a non-volatile programmable device that is easy to produce and inexpensive is needed. In addition, the memory technology should be compatible with the new generation of portable computer devices It can operate at a relatively low voltage when providing high storage density, and the production cost is low. OBJECTS OF THE INVENTION The present invention provides an improved microelectronic device applied to integrated circuits. More particularly The present invention provides a non-volatile programmable device suitable for use in memory and other integrated circuits. mp; W / 0112TW / AX0N, 29089.1120 This paper size is applicable to China National Standard (CNS) A4 (210 X 297 mm) ♦ 'ir ----------, ¾ ϋ a. · — l_i n · Ϋ n ϋ 一 · 1 me— i mmmt ι ϋ I n ii ϋ 1- · · ϋ · ϋ —i ϋ ϋ I n ϋ I n · ϋ ϋ I (Please read the notes on the back before filling this page) 523745 Printed by the Consumers ’Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs A7 B7 V. Description of the Invention (5) The various disadvantages of the known programmable devices pointed out by the present invention will be discussed in detail below. However, the present invention provides a programmable device which is easy to produce and program and is inexpensive. According to an exemplary embodiment of the present invention, the programmable structure includes an ionic conductor and at least two electrodes. When a bias voltage is applied between two electrodes, one or more electrical characteristics of the structure are changed. Specifically, when a bias voltage is applied to the electrodes, the resistance of the structure changes. Furthermore, the capacitance or other electrical characteristics of this structure will change with the application of bias across the electrodes. These changes in electrical characteristics are detected in a timely manner, so the stored information is recovered from the circuit containing the structure. According to another embodiment of the present invention, the programmable structure includes an ion conductor, at least two electrodes, and a barrier between at least a part of an electrode and the ion conductor. According to this embodiment, the barrier material includes a material installed to reduce diffusion of ions between the ion conductor and at least one electrode. This diffusion barrier will also prevent unwanted electrodeposition growth in part of the structure. From another perspective, the barrier material contains an insulating substance. The inclusion of an insulating substance will increase the resistance of the device to minimise the resistance of the electric current J1. According to another aspect of this embodiment, the barrier contains a material that guides ions, but it is relatively resistant to electron conduction. Utilizing this material reduces the undesirable plating on the electrodes and increases the thermal stability of the device. According to another embodiment of the present invention, the programmable microelectronic structure is formed on the surface of the substrate by forming a first electrode on the substrate, placing a layer of ionic conductive material on the first electrode, and 4S & W / 0112TW / AXON, 29089.1120 This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) --------------------- Order- -------— AWI (Please read the notes on the back before filling out this page) 523745 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs A7 B7 V. Description of Invention () A conductive substance is placed on it. From the viewpoint of this embodiment, a solid solvent containing an ionic conductor and an additional conductive substance is formed by dissolving (eg, dissolving via thermal and / or photoelectric dissolution) a portion of the conductive substance on the ionic conductor. According to a further point of view, only a part of the conductive material is decomposed, and the part of the conductive material remains on the surface of the ion conductor, forming an electrode on the surface of the ion conductor material. According to another embodiment of the present invention, at least a part of the programmable structure 疋 is formed in a through-hole or a via in the insulating material. From the viewpoint of this embodiment, the first electrode characteristic is formed on the surface of the substrate, the insulating material is deposited on the electrode characteristic surface, the perforations are formed in the insulating material 'and a part of the programmable structure is formed in the perforations. After the perforation is formed in the insulating material, a part of the structure in the perforation is formed by placing an ion conductive material on the conductive material, and a second electrode material is placed on the ion conductive material. If necessary, remove any excess Electrodes, ionic conductors, and / or insulating materials. According to another aspect of this embodiment, only the ion conductor is formed in the perforation. In this example, the first electrode is formed under the insulating material and is in contact with the ion conductor, and the second electrode is formed over the insulating material and is in contact with the ion conductor. The structure of the perforations will change 'to change (eg, reduce) the contact area between one or more electrodes and the ion conductor. Reducing the cross-sectional area of the interface between the ionic conductor and the electrode will increase the performance of the device (change the electrical characteristics of the device based on the power provided). According to another aspect of this embodiment, the perforation extends through the lower electrode to reduce the interface area between the ion conductor and the electrode. According to another aspect of this embodiment, a part of the ionic conductor will be removed from the perforation, or the ionic conductor material 4S & W / 0112TW / AXON, 29089.1120 6 This paper size applies the Chinese National Standard (CNS) A4 specification (210 X 297 Mm) " — — — — — — — — — — — — — I — — — — — — II ^ »1 — — — — — — I-(Please read the notes on the back before filling this page) 523745 A7 B7 V. Description of the invention (q) It will only be deposited in part of the perforations to further reduce the interface between the electrode and the ion conductor. < Please read the notes on the back before filling this page) According to another embodiment of the present invention, the programmable device is formed on the surface of the substrate. According to another embodiment of the present invention, a large amount of information is stored in a single programmable structure. From the viewpoint of this embodiment, the programmable structure includes a floating electrode interposed between two additional electrodes. According to another embodiment of the present invention, a plurality of programmable devices can be combined using a common electrode (such as a common anode or a common cathode). According to another embodiment of the present invention, a plurality of programmable devices share a common electrode. In addition, according to another embodiment of the present invention, the current capacity of the programmable structure is changed by the migration of ions in the ionic conductor of the structure. Brief description of the drawings A more complete understanding of the present invention can be obtained by referring to the detailed description and the scope of patent application. Elements in the diagrams are provided with reference numbers. Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs. Figure 1 discloses a cross-sectional view of the programmable structure formed on the surface of the substrate according to the present invention. FIG. 2 is a cross-sectional view of a programmable structure according to another embodiment of the present invention. Figure 3 reveals a current-voltage curve diagram showing the current and voltage characteristics in the device illustrated in Figure 2 in "on" and "off" state diagrams. 4S & W / 0112TW / AX0N, 29089.1120 7 This paper size applies to Chinese national standard (CNS> A4 specification (210 X 297 mm) 523745 Printed by A7 B7, Consumer Cooperative of Intellectual Property Bureau of the Ministry of Economic Affairs 5. Illustration of invention (g) 4 still shows a cross-sectional view of a programmable structure according to another embodiment of the present invention. FIG. 5 shows a part of a memory device of an exemplary embodiment of the present invention. FIG. 6 shows a part of a memory device of another embodiment of the present invention. Figures 7 and 8 disclose cross-sectional views of a programmable structure according to another embodiment of the invention. The structure has an ion conductor electrode contact interface formed around the ion conductor. Figures 9 and 10 still disclose the invention A cross-sectional view of a programmable structure according to another embodiment, the structure has an ion conductor electrode contact interface, and the interface is formed around the ion conductor. Figures 11 and 12 disclose a programmable device with a horizontal structure according to the present invention. Figures 13 to 19 show that the programmable device of the present invention is organized by reducing the surface area of the ion / electrode conductor interface. The programmable device of the invention has a tapered ion conductor. Figures 21 to 24 show that the programmable device of the present invention includes a floating electrode. Figures 25 to 29 show the common electrode programmable device constructed by the present invention. 4S & W / 0112TW / AX0N, 29089.1120 8 This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) -II ϋ ϋ ϋ n ϋ One: Mouth, · ϋ · 1 nnn I 1 ϋ ϋ β— ϋ · 1 a— n ϋ n · 1 ϋ -1 I ϋ ϋ ϋ I ϋ I (Please read the precautions on the back before filling out this page) 523745 A7 B7 V. Description of the invention (those familiar with this technology can understand these drawings The illustration is a simple and clear illustration of the present invention, and is not drawn to the correct scale. For example, to help enhance the understanding of the embodiment of the present invention, the illustration exaggerates the relative proportions of certain elements to other elements. Employees ’Cooperatives, Intellectual Property Bureau, Ministry of Economic Affairs 100 > 200.1 1 10 1 12 120, 130 140 155 160 165 255 400 402 420, 430 440 460 470 510, 610 520, 620 Programmable microelectronic structure substrate insulating material electrode Ion Conductor Buffer Electroprecipitate Contactor Barrier Level Programmable Structure Integrated Circuit Electrode Ion Conductor Contactor Amorphous Silicon Diode Vacuum Tube Bit Line Character Line 4S & W / 0112TW / AXON, 29089.1120 -1 ϋ ϋ ϋ ϋ ea§ ϋ · -I ϋ ^ -1 n III ϋ nnn ϋ n ϋ ϋ ϋ ϋ ϋ ϋ n II · (Please read the 5 notes on the back before filling this page) -¾ 9 523745 A7 B7 V. Description of the invention ( 〖〇) Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 610 Transistor 700 Programmable device 710 Inert electrode 720 Oxidizable electrode 730 Ion conductor 740, 750 Insulation layer 900 Programmable device 910 Inert electrode 920 Oxidizable electrode 930 Ion conductor 940 950 insulating layer 1100 programmable device 1110, 1 120 electrode 1130 ion conductor 1140 insulating material 1300 programmable device 1310, 1320 electrode 1330 ion conductor 1340 insulating layer 1400 programmable device 1410, 1420 electrode 1430 ion conductor 1450 insulating material 4S & W / 0112TW / AX0N, 29089.1120 1〇 (Please read the precautions on the back before filling this page ) Order ------ ^ --- line! This paper size is in accordance with Chinese National Standard (CNS) A4 (210 X 297 mm) 523745 A7 B7 V. Description of the invention (u) Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economy 1500 Programmable device 1530 Ion conductor 1540 Perforated 1600 can Programmable device 1700 Programmable device 1720 Electrode 1730 Ion conductor 1800 Programmable device 1810, 1820 Electrode 1830 Ion conductor 1840 Insulation layer 1850 Insulation column 1900 Programmable device 1930 Ion conductor 1950 Pillar 2000 Programmable device 2010, 2020 Electrode 2030 Ion conductor 2040 Insulation Layer 2100 Programmable device 2110 First electrode 2120 Second electrode 2130 Third electrode 2140, 2150 Ion conductor part 4S & W / 0112TW / AX0N, 29089.1120 11 (Please read the precautions on the back before filling this page)
-I · 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 523745 A7 B7 五、發明說明(\L) 2160 ,2170 電沉澱物 2500 可程式裝置 510 電連接器 2520 共用表面電極 523 0 ,2540 電極 2700 可程式裝置 2710 ,2720 共用電極 2725 電極 2730 ,273 5 離子導體 2740 ,2750 絕緣層 2800 可程式裝置 2 830 ,283 5 離子導體 2900 結構 2902 -2916 可程式裝置 2920 電極 2930 -2936 電極 293 8 -2944 電極 較佳實施例之詳細說明 經濟部智慧財產局員工消費合作社印製 本發明係關於一種微電子裝置。更特別地,本發明 與適用於各種不同積體電路應用上的可程式結構或裝置有 關。 4S&W/0112TW/AXON, 29089.1120 12 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 523745 A7 B7 經濟部智慧財產局員工消費合作社印制衣 五、發明說明(Y3 ) 圖1與圖2揭示本發明實施例的可程式微電子結構 100與2 00形成於基底110的表面。結構100與200包 含電極120與130,一個離子導體140,以及選擇性地 包括緩衝器(buffer)或壁障階層(barrier layer)155及/ 或 25 5。 一般來說,結構100與200安裝於當偏壓大於臨界 電壓(VT),詳述如下,在跨越電極120與130的偏壓 應用下,結構100的電氣特性會改變。例如,依本發明 的實施例,當應用跨越電極120與130的電壓V 3 VT 時’離子導體140中的傳導離子開始遷移且在電極120 與130的陰極上或是接近處形成電沉澱物 (electrodeposit)(如:電沉澱物160);然而,對實行 本發明來說,該電沉澱物不是必須的。此處所指之“電沉 激物”係表示在離子導體中任一區域因減少的金屬而相較 增加濃度,或其他傳導物質濃度與該物質於大量離子導體 材料時而相較增加濃度。當電沉澱物形成時,電極12〇 與130間的電阻降低,且其他電氣特性也隨之改變。詳 述如下,在缺乏絕緣壁障的情況下,臨界電壓必須自一個 電極往另一個電極增加電沉澱物,並且因此顯著地減少此 裝置的電阻大約是系統的氧化還原反應電位,典型約爲幾 百毫伏。如果將相同的電壓顛倒應用,電沉澱物將分解回 離子導體且該裝置將回到高電阻狀態。依本發明其他實施 例’在沒有電沉澱物形成情況下,電極120與13〇間的 電場應用會導致離子於導體140內分解遷移,並因此導 4S&W/0112TW/AX0N, 29089.1120 (請先閱讀背面之注意事項再填寫本頁) 0 · •線- 13 523745 經濟部智慧財產局員工消費合作社印製 A7 B7 五、發明說明(1Λ) 致裝置100的電氣特性改變。結構100與200可用於儲 存資訊,因此可應用在記憶體電路。例如,根據本發明結 構100或其他可程式結構可適當地應用於記憶體裝置以 代替動態隨機存取記憶體、靜態隨機存取記憶體、可程 式唯讀記憶體、可抹去可程式唯讀記憶體或電子可抹去可 程式唯讀記憶體等裝置。此外,本發明的可程式結構可用 在其他應用,當其他應用之部分電氣電路的電氣特性需要 程式化或改變時。 基質110可包含任何適當的物質。例如,基質110 可包含半導體的、傳導的、半絕緣的、絕緣的物質或是這 些物質的任何結合。依本發明的實施例,基質110包含 絕緣物質112和一部分114包括以半導體基質形成的微 電子裝置。階層1 12與1 14可被多餘的階層(未列出) 分開,例如,階層典型地用於形成積體電路。由於可程式 結構能在絕緣的或其他物質上形成,本發明的可程式結構 特別適合於用在基質(如半導體材料)空間是額外 (premium)的應用。 電極120與130可由任何適合的傳導物質形成。例 如,電極120與130可由攙添多矽物質或金屬形成。 依本發明之實施例,當一足夠的偏壓(V 3 VT)跨 越電極(可氧化電極)及在操作可程式裝置(惰性電極) 中,其他電極爲相對地惰性及無法分解時,電極120與 130之一由一物質形成,此物質包含在離子導體14〇中 分解的金屬。例如,電極120在寫入過程可爲一陽極, 4S&W/0112TW/AXON, 29089.1120 ία 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注意事項再填寫本頁)-I · This paper size is in accordance with Chinese National Standard (CNS) A4 (210 X 297 mm) 523745 A7 B7 V. Description of the invention (\ L) 2160, 2170 Electrodeposit 2500 Programmable device 510 Electrical connector 2520 Common surface Electrode 523 0, 2540 Electrode 2700 Programmable device 2710, 2720 Common electrode 2725 Electrode 2730, 273 5 Ion conductor 2740, 2750 Insulation layer 2800 Programmable device 2 830, 283 5 Ion conductor 2900 Structure 2902 -2916 Programmable device 2920 Electrode 2930 -2936 Electrode 293 8 -2944 Detailed description of the preferred embodiment of the electrode Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs This invention relates to a microelectronic device. More specifically, the present invention relates to a programmable structure or device suitable for a variety of different integrated circuit applications. 4S & W / 0112TW / AXON, 29089.1120 12 This paper size is applicable to China National Standard (CNS) A4 (210 X 297 mm) 523745 A7 B7 Printed by the Consumers ’Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 5. Description of the invention (Y3) 1 and FIG. 2 show that the programmable microelectronic structures 100 and 200 are formed on the surface of the substrate 110 according to an embodiment of the present invention. Structures 100 and 200 include electrodes 120 and 130, an ion conductor 140, and optionally a buffer or barrier layer 155 and / or 255. Generally, the structures 100 and 200 are installed when the bias voltage is greater than the threshold voltage (VT), as detailed below. Under the application of the bias voltage across the electrodes 120 and 130, the electrical characteristics of the structure 100 will change. For example, according to an embodiment of the present invention, when a voltage V 3 VT across the electrodes 120 and 130 is applied, the conductive ions in the 'ion conductor 140 begin to migrate and an electroprecipitate is formed on or near the cathodes of the electrodes 120 and 130 ( electrodeposit) (eg, electrodeposit 160); however, the electrodeposit is not necessary for practicing the invention. The term "electrodepositor" refers to an increase in concentration in a region of an ionic conductor due to a reduced amount of metal, or an increase in the concentration of another conductive substance compared to the concentration of the substance in a large amount of ionic conductor material. When the electroprecipitation is formed, the resistance between the electrodes 120 and 130 decreases, and other electrical characteristics change accordingly. As detailed below, in the absence of insulation barriers, the critical voltage must increase the electroprecipitation from one electrode to another, and therefore the resistance of this device is significantly reduced. It is approximately the oxidation-reduction reaction potential of the system, typically approximately Hundred millivolts. If the same voltage is applied upside down, the electroprecipitate will decompose back into the ionic conductor and the device will return to a high resistance state. According to other embodiments of the present invention, the application of the electric field between the electrodes 120 and 130 will cause the ions to decompose and migrate in the conductor 140 in the absence of the formation of an electroprecipitation. Read the notes on the back and fill out this page) 0 · • Line-13 523745 Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs A7 B7 V. Description of the invention (1Λ) The electrical characteristics of the device 100 have changed. Structures 100 and 200 can be used to store information, so they can be used in memory circuits. For example, the structure 100 or other programmable structure according to the present invention can be suitably applied to a memory device instead of dynamic random access memory, static random access memory, programmable read-only memory, and programmable read-only memory can be erased Memory or electronics can erase devices such as programmable read-only memory. In addition, the programmable structure of the present invention can be used in other applications when the electrical characteristics of some electrical circuits of other applications need to be programmed or changed. The substrate 110 may include any suitable substance. For example, the substrate 110 may comprise a semiconductor, conductive, semi-insulating, insulating substance or any combination of these substances. According to an embodiment of the present invention, the substrate 110 includes an insulating substance 112 and a portion 114 includes a microelectronic device formed of a semiconductor substrate. Levels 1 12 and 1 14 may be separated by redundant levels (not listed), for example, levels are typically used to form integrated circuits. Since the programmable structure can be formed on an insulating or other substance, the programmable structure of the present invention is particularly suitable for applications where the space of a substrate (such as a semiconductor material) is premium. The electrodes 120 and 130 may be formed of any suitable conductive substance. For example, the electrodes 120 and 130 may be formed of a polysilicon material or a metal. According to the embodiment of the present invention, when a sufficient bias voltage (V 3 VT) crosses the electrode (oxidizable electrode) and in the operation of the programmable device (inert electrode), the other electrodes are relatively inert and cannot be decomposed, the electrode 120 One of 130 and 130 is formed of a substance containing a metal decomposed in the ion conductor 14o. For example, the electrode 120 may be an anode during the writing process. 4S & W / 0112TW / AXON, 29089.1120 ία This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) (Please read the precautions on the back first) (Fill in this page again)
523745523745
且包括分解於離子導體140含有銀的物質;電極13〇在 寫入過程可爲一陰極,由惰性物質如鎢,鎳,鉬,鉑,合 金矽化物等等組成。至少有一個電極由包含在離子導體 140中分解的金屬物質所形成,使容易維持離子導濟 14〇內希望分解的金屬濃度,其依次幫助迅速且穩定的電 沉澱物160形成於離子導體140內,或利用結構1〇〇及 或200時,其他電氣特性的改變。此外,爲其他電栋 (陰極於寫入程序時)利用一惰性物質以促進電沉澱物的 電溶解,其可在應用充分的電壓後使可程式裝置形成及/ 或回復爲擦去的狀態。 在擦去過程中,任一可能已形成的電沉源物的分解 最好由可氧化電極電沉澱物介面上或接近處開始。在可^ 化電極電沉澱物介面上的電沉澱物最初的分解比較容易, 藉由形成結構100使得可氧化電極電沉澱物介面上的電 阻大於沿著電沉澱物任一點上的電阻,尤其是電沉澱物與 惰性電極間的介面。 ~ 在惰性電極得到一相對低的電阻的一個方法是形成 相對惰性的、非氧化的材料,如鉑的電極。利用這些材料 減少離子導體140與該惰性電極間介面上氧化物的形 成’以及該電極材料與離子導體140材料的化合物或混 合物的形成,其典型地具有較該電極材料或離子導體 140材料高的電阻。 藉由在可氧化電極(寫入程序期間的陽極)間形成 壁障階層可於惰性電極獲得一相對低的電阻,其間壁障階 4S&W/0112TW/AXON, 29089.1120 ir 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公f ) (請先閱讀背面之注意事項再填寫本頁) --------訂------- Γ線丨 經濟部智慧財產局員工消費合作社印製 523745 經濟部智慧財產局員工消費合作社印製 五、 A7 —--------B7___ 發明說明(\b) 相對高的電阻的材料組成。典型的高電阻材料包 括介於離子導體140與金屬階層如銀之間的離子傳導材 料(例如 ’Agx〇,AgxS,AgxSe,AgxTe,其中 X 3 2, Agyl’ 其中 x 彐 1,Cul2,CuO,CuS,CuSe,CuTe, G 6 O ? « Or 〇 «* Λ Sl〇2)的階層(例如:階層155及或階層 255) °某些材料有附加的優勢,詳述如下。 極離子導體介面提供粗糙的惰性電極表面 (女口 :均方根値約大於一奈米),電沉澱物的確實成長與 。粗糙的表面可由操作薄膜儲存參數及或經 導體表面電極的一部分而形成。在寫入過程期 胃’ #對胃的電場在粗糙表面的高峰周圍形成,因此電沉 能在高峰周圍形成。結果,當應用電壓跨越電 @ 120 ISI 13()時,電氣特性可經由在惰性電極(陰極於 寫入過程期間)與離子導# 14〇間提供粗糙介面獲得更 可靠與一致的改變。 "^^化電極材料會有熱量分解或擴散到離子導體 140的傾向,尤其是在結構100組建及或操作期間。熱 擴散是不樂見的因爲它會降低結構100的電阻,並因此 減少使用結構100期間電氣特性的改變。 爲了減少不想要的可氧化電極材料熱擴散到離子導 體140及依本發明的另一實施例,可氧化電極包括插入· 轉變金屬硫化物或亞硒酸鹽材料的金屬,如: 其中a是銀(Ag)或銅(Cu),B是硫(S)或 硒(Se),Μ是轉變金屬如鉅(Ta),釩(V)及鉈(Ti), 4S&W/0112TW/AX0N, 29089.1120 16 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注意事項再填寫本頁) · 卜!線- 523745 A7 B7 五、發明說明(丨Γ| ) 且χ的範圍自大約〇 · 1到0 · 7。當提供金屬參與電沉源 物成長於應用充足的電壓跨越電極120與130時,插入 的材料緩和了金屬(銀或銅)不良的熱擴散至離子導體材 料。例如:當銀插入TaS2薄膜,TaS2薄膜能包含高至 百分之66.8原子的銀。原料非結晶的防止 不良的金屬擴散。非結晶的原料會形成,例如藉由包含 Α^ΜΒ^^χ的目標原料自然的汽化沉澱。 心碘化銀(Agl)是可氧化電極與惰性電極的另一個 適合原料。類似前述的Αχ(ΜΒ2)ι·χ原料,當應用充足的 偏壓時,在結構1〇〇作用期間α-碘化銀能作爲銀的來 源’但碘化銀原料中的銀不會快速地熱擴散至離子導體 140。碘化銀對電流傳導有相對低的活化能量且不需要添 加(doping)以達到相對高的導電率。當可氧化電極由碘 化銀形成時,除非提供電極過量的銀,碘化銀層的銀會於 結構1 0 0作用期間會消耗掉。一個提供過量的銀的方 法’係當碘化銀階層作爲緩衝階層時,如前述,在其鄰近 形成一個銀階層。碘化銀階層(例··階層155及或25 5) 減少銀的熱擴散至離子導體140,但在結構1〇〇運作期 間不會嚴重影響銀的傳導。此外,使用碘化銀可增加結構 100的運作效率,因碘化銀緩和非法拉第(non-Faradaic) 的傳導(電子傳導不參與電氣化學的反應)。 其他適合緩衝階層155及或25 5的原料包括Ge02 和SiOx。非結晶的Ge02在裝置100運作期間相當能 滲透且能吸收(soak op)銀,但相較於不包含緩衝階層的 4S&W/0112TW/AXON, 29089.1120 17 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注意事項再填寫本頁) 線- 經濟部智慧財產局員工消費合作社印製 523745It includes a substance containing silver decomposed in the ion conductor 140; the electrode 13 may be a cathode during the writing process, and is composed of inert substances such as tungsten, nickel, molybdenum, platinum, alloy silicide, and the like. At least one electrode is formed of a metal substance contained in the ion conductor 140, which makes it easy to maintain the concentration of the metal desired to be decomposed within the ion conductor 140, which in turn helps the rapid and stable formation of the electrodeposition 160 in the ion conductor 140. When using structures 100 and 200, other electrical characteristics change. In addition, for other electric buildings (cathode during the writing process), an inert substance is used to promote the electrolysis of the electroprecipitate, which can form and / or restore the programmable device to a wiped state after applying a sufficient voltage. During the wiping process, the decomposition of any possible electrodeposition source should preferably begin at or near the electrodepositable surface of the oxidizable electrode. The initial decomposition of the electrodeposition on the electrodepositable electrode interface is easier. By forming the structure 100, the resistance on the electrodeposition interface of the oxidizable electrode is greater than the resistance at any point along the electrodeposition, especially The interface between the electrodeposition and the inert electrode. ~ One way to get a relatively low resistance at an inert electrode is to form a relatively inert, non-oxidizing material, such as a platinum electrode. Use of these materials to reduce the formation of oxides on the interface between the ion conductor 140 and the inert electrode and the formation of a compound or mixture of the electrode material and the ion conductor 140 material, which typically has a higher resistance. By forming a barrier layer between the oxidizable electrodes (the anode during the writing process), a relatively low resistance can be obtained at the inert electrode, during which the barrier step 4S & W / 0112TW / AXON, 29089.1120 ir Standard (CNS) A4 specification (210 X 297 male f) (Please read the precautions on the back before filling this page) -------- Order ------- Γ Line 丨 The Intellectual Property Bureau of the Ministry of Economic Affairs Printed by an employee consumer cooperative 523745 Printed by an employee consumer cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs A7 —-------- B7___ Description of the invention (\ b) Material composition with relatively high resistance. Typical high-resistance materials include ion-conducting materials (eg, 'Agx〇, AgxS, AgxSe, AgxTe, between X 3 2, Agyl', where x 彐 1, Cul2, CuO, CuS, CuSe, CuTe, G 6 O? «Or 〇« * Λ Sl〇2) Hierarchy (eg: Tier 155 and / or Tier 255) ° Some materials have additional advantages, as detailed below. The polar ionic conductor interface provides a rough surface of the inert electrode (female mouth: rms 値 is greater than about one nanometer), and the electrodeposition does grow. The rough surface can be formed by manipulating the storage parameters of the film and / or by a part of the electrode on the conductor surface. During the writing process, the stomach ’s electric field to the stomach is formed around the peaks of the rough surface, so the electrosink can be formed around the peaks. As a result, when the applied voltage crosses the electrical @ 120 ISI 13 (), the electrical characteristics can be changed more reliably and consistently by providing a rough interface between the inert electrode (cathode during the write process) and the ion guide # 14〇. " ^^ Electrode materials have a tendency to decompose or diffuse into the ionic conductor 140, especially during the construction and / or operation of the structure 100. Thermal diffusion is undesirable because it reduces the resistance of the structure 100 and therefore reduces changes in electrical characteristics during the use of the structure 100. In order to reduce the thermal diffusion of the unwanted oxidizable electrode material to the ion conductor 140 and another embodiment of the present invention, the oxidizable electrode includes a metal that inserts / converts a metal sulfide or selenite material, such as: where a is silver (Ag) or copper (Cu), B is sulfur (S) or selenium (Se), and M is a transition metal such as giant (Ta), vanadium (V) and thorium (Ti), 4S & W / 0112TW / AX0N, 29089.1120 16 This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) (Please read the precautions on the back before filling this page). Line-523745 A7 B7 V. Description of the Invention (丨 Γ |) and χ ranges from approximately 0.1 to 0.7. When a metal is provided to participate in the electrode sink source to grow to apply sufficient voltage across the electrodes 120 and 130, the inserted material mitigates the poor thermal diffusion of the metal (silver or copper) to the ionic conductor material. For example, when silver is inserted into a TaS2 film, the TaS2 film can contain up to 66.8 percent silver. The non-crystalline material prevents poor metal diffusion. An amorphous raw material is formed, for example, by natural vaporization of the target raw material containing A ^ ΜΒ ^^ χ. Cardiac silver iodide (Agl) is another suitable raw material for oxidizable and inert electrodes. Similar to the aforementioned Αχ (ΜΒ2) ι · χ raw material, when a sufficient bias voltage is applied, α-silver iodide can be used as a source of silver during the structure's 1000 'operation. 140. Silver iodide has relatively low activation energy for current conduction and does not need to be doped to achieve relatively high electrical conductivity. When the oxidizable electrode is formed of silver iodide, the silver of the silver iodide layer will be consumed during the action of the structure 100 unless the electrode is provided with an excessive amount of silver. A method of providing excess silver 'is to use a silver iodide layer as a buffer layer, as described above, to form a silver layer adjacent to it. Silver iodide grades (eg, grades 155 and or 25 5) reduce the thermal diffusion of silver to the ionic conductor 140, but do not seriously affect the conduction of silver during the operation of the structure 100. In addition, the use of silver iodide can increase the operational efficiency of structure 100, since silver iodide mitigates non-Faradaic conduction (electron conduction does not participate in electrochemical reactions). Other raw materials suitable for buffer levels 155 and or 255 include Ge02 and SiOx. Amorphous Ge02 is quite permeable and absorbs silver during the operation of the device 100, but compared to 4S & W / 0112TW / AXON, 29089.1120, which does not include a buffer layer, this paper size applies Chinese National Standard (CNS) A4 size (210 X 297 mm) (Please read the precautions on the back before filling out this page) Line-Printed by the Intellectual Property Bureau of the Ministry of Economic Affairs Consumer Cooperatives 523745
五、發明說明(θ ) ’ 結構或裝置,會妨礙銀的熱擴散至離子導體140。當離 子導體140包含鍺,Ge02會經由暴露離子導體140於 約3 00 °C至8 00 °C的氧化環境而形成,或經由暴露離 子導體140於有能量大於離子導體原料頻帶差距的放射 物存在的氧化環境而形成。Ge02亦可用自然汽化沉澱物 (來自一 Ge02目標)或化學汽化沉澱物(來自一 GeH4 及一個〇2)而沉激。 藉著在離子導體140與惰性電極間放置緩衝階層 (例如:Ge02或SiOx),緩衝階層亦可用來增加一“寫 入電壓”。緩衝原料可爲金屬如銀以擴散緩衝與參加電氣 化學的反應。 ' 依本發明的另一實施例,至少一個電極120及130 由適於用作互相連接的金屬形成。例如:電極1 3 0可於 半導體積體電路內形成互連結構的一部分。依本實施例之 另一觀點,電極130係由大體上不易溶解於包含離子導 體140的原料所形成。同時適於互連與電極130原料的 典型原料包括金屬及化合物,例如:鎢,鎳,鉬,鉑,合 金矽化物,以及諸如此類。 階層155及或25 5亦包括限制離子在導體140與 電極間遷移的原料。依本發明的典型實施例,壁障階層包 含傳導物質如鈦氮化物(titanium nitride),欽鎢 (titanium tungsten)及其化合物,或諸如此類。壁障可 能具有電的惰性,亦即,壁障允許電子在結構1〇〇或 200中傳導,但卻不提供離子在結構200中傳導。具有 4S&W/0112TW/AXON, 29089.1120 ι〇 本紙張尺度適用中國國家標準(CNS)A4規格(210 x 297公釐) 丨>丨----------碟 (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 一OJ_ MV MM W MM W W 麵 MM SB MM W MM MM MB an·· w AM· aw· w ma w 523745 經濟部智慧財產局員工消費合作社印製 五、發明說明(丨(¾ ) A7 B75. Description of the Invention (θ) ′ The structure or device prevents the heat of the silver from diffusing to the ion conductor 140. When the ion conductor 140 contains germanium, Ge02 is formed by exposing the ion conductor 140 to an oxidizing environment at about 300 ° C to 800 ° C, or by exposing the ion conductor 140 to radiation having an energy greater than the gap between the ion conductor raw materials and the frequency band. Formed by an oxidizing environment. Ge02 can also be stimulated with natural vaporized precipitates (from a Ge02 target) or chemical vaporized precipitates (from a GeH4 and a 02). By placing a buffer layer (e.g., Ge02 or SiOx) between the ion conductor 140 and the inert electrode, the buffer layer can also be used to increase a "write voltage". The buffer raw material may be a metal such as silver to diffuse the buffer and participate in the electrochemical reaction. According to another embodiment of the present invention, at least one of the electrodes 120 and 130 is formed of a metal suitable for use as an interconnection. For example, the electrode 130 can form part of an interconnect structure in a semiconductor integrated circuit. According to another aspect of the present embodiment, the electrode 130 is formed of a material that does not easily dissolve in the raw material including the ion conductor 140. Typical raw materials suitable for both interconnect and electrode 130 materials include metals and compounds such as tungsten, nickel, molybdenum, platinum, alloy silicides, and the like. Steps 155 and or 255 also include materials that limit the migration of ions between the conductor 140 and the electrode. According to a typical embodiment of the present invention, the barrier layer includes a conductive substance such as titanium nitride, titanium tungsten, a compound thereof, or the like. The barrier may be electrically inert, that is, the barrier allows electrons to conduct in the structure 100 or 200, but does not provide ions to conduct in the structure 200. With 4S & W / 0112TW / AXON, 29089.1120 ι This paper size is applicable to the Chinese National Standard (CNS) A4 specification (210 x 297 mm) 丨 > 丨 ---------- disc (please read first Note on the back, please fill out this page again) Printed by OJ_ MV MM W MM WW MM SB MM W MM MM MB an · w AM · aw · w ma w 523745 Intellectual Property of Ministry of Economic Affairs Printed by the Bureau ’s Consumer Cooperatives V. Invention Description (丨 (¾) A7 B7
電惰性的壁障會在可程式裝置運作期間減少不想要的樹模 石(dendrite)成長,且當應用與用於生長電沉锻物相反 的偏壓時,因此促進電沉澱物160的擦去或溶解。此 外,利用傳導壁障可允許“惰性的”電極由可氧化原料形 成,因爲該壁障會阻止電極原料擴散至離子導體。 離子導體140由在應用充分電壓時傳導離子的原料 形成。適合離子導體140的原料有玻璃及半導體原料。 本發明的典型實施例中,離子導體140由硫屬薄膜材料 (chalcogenide)原料形成。 離子導體M0亦適當地包含具有分解傳導性的原 料。例如,離子導體140包含固態溶劑包括分解金屬及 或金屬離子。依本發明的典型實施例,導體140包括分 解於硫屬薄膜材料玻璃中的金屬及或金屬離子。依本發明 具有分解金屬的典型硫屬薄膜材料玻璃包括ASxSl_x-Ag, GexSebX-Ag,GexSbx-Ag,AsxS!_x-Cu,GexSe 卜 x-Cu,GexS^x-Cu的固態溶劑,其中x在大約〇1至 0.5範圍內,其他硫屬薄膜材料原料包括銀、銅、鋅、這 些原料的化合物、以及諸如此類的。此外,導體14〇包 括影響離子在導體1 4 0中移動性的網路改性劑。例如, 金屬原料(如:銀),鹵素,鹵化物,或氫會被加入導體 140以提高離子流動性,且因此增加結構擦去寫入 (erase/write)的速度。 一適用於離子導體140的固態溶劑可由各種不同方 法形成。例如,該固態溶劑可經由沉澱一個傳導原料的階 4S&W/0112TW/AXON, 29089.1120 19 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297¾^ (請先閱讀背面之注意事項再填寫本頁) . 523745 A7 經濟部智慧財產局員工消費合作社印製 ------------B7___五、發明說明(丄0) 層形成,如金屬覆蓋在離子導體原料如硫屬薄膜材料玻璃 上且暴露該金屬與玻璃於熱量的及或影像分解過程。依本 發明的典型實施例,As2S3-Ag的固態溶劑是經由使 AhS3沉澱於基質上,使Ag的薄膜沉澱於As2S3上, 再暴露這些薄膜於能羹大於A^S3的光學差距的光下而 开夕成,例如,波長小於約5 〇 〇奈米的光。如有需要,網 路改性劑能在導體140的儲存期間(例如··改性劑在沉澱 原料中或在導體140的原料沉澱期間呈現)或是在導體 14〇的原料沉澱之後(例如:經由暴露導體14〇於含有網 路改性劑的環境中)加入導體140。 依本發明的另〜實施例,一固態溶劑可由沉澱某一 成分於基質或另一原料階層上且使第一個成分與第二個成 分起化學反應而形成。例如,鍺(最好是非結晶的)會沉 澱於一部分基質上,且鍺會與H2Se起化學變化形成 Ge-Se玻璃。於是,銀或其他金屬能加入該玻璃,如上 所述。 . 依本發明的實施例,一固態溶劑離子導體140可由 沉澱充足的金屬於離子導體原料上而形成,如此金屬的一 部分能在離子導體原料中被分解,且金屬的一部分留在離 子導體表面形成電極(如電極120)。依本發明的另一替代 實施例,包含分解金屬的固態溶劑會直接地置於基質 1 10和電極上,然後形成離子導體。 許多傳導性物質,如金屬,在離子傳導原料如硫屬 薄膜材料中分解會依靠數種要素,如大量可用來分解的金 4S&W/0112TW/AXON, 29089.1120 (請先閱讀背面之注意事項再填寫本頁) - · --線. 本紙張尺度適用中國國家標準(CNS)A4規格(210 x 297公釐) 523745 A7 —------ B7_ 五、發明說明(Μ) 屬及在分解過程中應用的能量。然而,冑金屬及能量的量 足多勺用末以光i解(ph〇t〇diSs〇luti〇n)在硫屬薄膜材料 中分解,分解過程將會自我設限,實質上停止當金屬陽離 子減少到其取低的氧化狀態。在As2S3-Ag例中,此狀 況發生於Ag4As2S3 = 2Ag2s + AS2S,銀濃度大約爲 原子的百分之44。另一方面,如果提供足量的金屬以熱 分解在硫屬薄膜材料中分解,將獲得較高的金屬濃度。 依本發明的另一實施例,固態溶劑藉由光分解形 成’利用熱擴散將大量同質的三元化合物及添加的金屬加 入ί谷劑(例’在惰性的環境溫度約在cc到15〇 〇c ) 形成一固態溶劑’此固態溶劑含有,例如,大約原子的百 分之30到50最好是34的銀。具有高於光分解可溶性標 準的金屬濃度的離子導體可促進電沉澱物的形成,此電沉 殿物在裝置100及200的操作溫度(約85到150 °C)下是穩定的。換言之,固態溶劑可經由於上述溫度熱 消溶金屬成離子導體而形成,然而,僅由光分解形成的固 態溶劑被認爲比利用光分解及熱溶解形成有類似金屬濃度 的薄膜具有較少的同質性。 離子導體140亦包含一塡充原料,其塡補空隙或裂 縫。適合的塡充原料包括非氧化及無銀的基礎原料,例 如I :無傳導性、不融合的矽氧化物及/或矽氮化物,具有 交疊面積的尺寸約小於1奈米,其對電沉殿物的成長無 幫助。於此例,塡充原料以相當大的比例約百分之五出現 於離子導體中’以減少當裝置暴露於升高的溫度時電沉源 4S&W/0112TW/AXON, 29089.1120 Ί 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注意事項再填寫本頁) · I- !線· 經濟部智慧財產局員工消費合作社印製 523745 A7 經濟部智慧財產局員工消費合作社印製 ---------_—五、發明說明 物自行分解爲三元原料的可能性,其導致該裝置無須改變 性能即可有較穩定的作業。離子導體140亦包含塡充原 料以減少離子導體的有效橫剖面面積。於此例,塡充原 料,其可爲與前述相同的塡充原料但其橫剖面面積的尺寸 約達50奈米’出現在離子導體原料中的濃度高達約百分 之五十。塡充原料亦包括金屬,如銀或銅,用來塡補離子 導體原料中的空隙。 依本發明的模範實施例,離子導體140包括有銀散 佈其間的硒化鍺玻璃(germanium-selenide glass)。硒 化鍺原料一般是由硒及Ge(Se) 4/2四面體形成的,其可 以各種不同方式結合。在富有硒的部位,鍺是四價調和的 而硒是二價調和的’此表示玻璃合成物近似於鍺0.2,硒 0.8,其有一平均的價數値約2.4。限制計數理論認爲此 一價數値的玻璃是限制得最理想的,因此,關於使玻璃成 不透明結晶是非常穩定的。此種玻璃的網絡可自行組織且 變成無壓力’對任何一種添加物如銀來說,都可容易的做 到精巧地分散與混合玻璃固體的溶劑。因此,依本發明的 實施例,離子導體140包括一具有Ge〇.17Se0.83至 Ge〇.25Se().75合成物的玻璃。 離子導體140原料的合成物與結構通常依所使用的 起始原料或目標原料來形成導體。一般而言,需要形成一 個同質的原料階層,使導體140可促進可靠的可重複的 裝置性能。依本發明的一實施例,適合離子導體140的 原料物理蒸鍍的目標由精選恰當的安瓿,調製安瓿,在形 4S&W/0112TW/AXON, 29089.1120 22 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注意事項再填寫本頁) .·% 訂.— I!——l·!線! ^ ϋ .1 ϋ n ϋ ϋ ϋ I I ϋ ϋ .1 H - 523745 A7 B7 五、發明說明(z3) 成玻璃的期間保持適當的溫度,慢慢的搖動合成物,冷卻 合成物而形成。 容積與內壁厚度是選擇形成玻璃的安瓿時要考慮的 重要因素。內壁厚度必須厚到足以經得起玻璃形成過程期 間產生的氣體壓力,且最好薄到能於形成過程中促進熱度 交換。依本發明的模範實施例,利用內壁厚度約1毫米 的石英安瓿來形成以硒及碲爲基礎的硫屬薄膜材料玻璃, 而內壁厚度約1.5毫米的石英安瓿用來形成以硫爲基礎 的硫屬薄膜材料玻璃。此外,安瓿的容積最好大於液態玻 璃前導物質5倍。 當爲玻璃的構成而準備的安瓿一經挑選出,依本發 明的實施例,以氫氟酸、乙醇及丙酮淸洗安瓿,以約 120 °C乾燥安瓿至少24小時,排空並加熱安瓿至變成 櫻桃紅色,接著,在真空狀態下冷卻安瓿,將安瓿塡滿電 荷,排空安瓿,加熱安瓿同時避免熔化組成要素釋出任何 剩餘的氧氣,將安瓿密封。此過程可減少氧氣污染,並促 進玻璃的大量同質成長。 玻璃形成過程的熔化溫度依玻璃原料而定。在以鍺 爲基礎的玻璃一例中,需要有足夠的時間I襄氧硫族兀素 (chalcogen)在低溫與所有可用的鍺起反應,以避免在隨 後升高的溫度(硒在920 °C的汽化壓力是10 ATM·, 在720°C是20 ATM.)爆炸。爲降低爆炸的風險,對 鍺基礎玻璃,以急速升高的安瓿溫度至約1小時3 00 °C 來開始玻璃的形成過程(對硫基礎玻璃爲約200 °C), 4S&W/0112TW/AXON, 29089.1120 23 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) -------------釀 (請先閱讀背面之注咅?事項再填寫本頁) 訂-! l·!線! 經濟部智慧財產局員工消費合作社印製 523745 A7 B7 經濟部智慧財產局員工消費合作社印製 五、發明說明(2斗) 並維持此溫度約12小時。接下來,溫度慢慢地升高(約 每分鐘〇·5 °C)直到較原料的液態溫度高約50。(:的溫 度,使安瓿保持在約此溫度約12小時。然後溫度升到約 940 °C以保證熔化所有無反應的鍺於鍺基礎玻璃,或約 700 °C於硫基礎玻璃。安瓿須保持在此高溫24小時。 此熔化玻璃合成物最好以每分鐘20次的速度慢慢 搖動至少約6小時以增加玻璃的同質性。 淬火最好在氣體與液體均勢時的溫度執行,以將所 需的合成物生產成玻璃狀之物。在此例中,淬火溫度約高 於玻璃原料液態溫度50 °C。富硫屬薄膜材料玻璃包含 濃度範圍低限度與高限度的玻璃。當玻璃合成物價數遠高 於理想價數(如,鍺硒系統的價數約爲2 · 4 ),淬火速率 必須快到以保證玻璃化,如在冰水或相當強的冷卻劑如尿 素與冰水混合物中淬火。至於最理想的玻璃,淬火能在約 25 °C大氣中執行。 依本發明的模範實施例,至少一部分的結構1〇〇是 在絕緣物質150的穿孔中形成。在絕緣物質150的穿孔 中形成結構100的一部分是令人滿意的,因爲除了別的 原因之外,如此的形成可允許相對小的結構,例如,在 10奈米狀況下形成。此外,絕緣原料150幫助隔離不同 電氣要素的結構100。 絕緣原料150適當地包含原料,其可防止來自結構 100不良的電子或離子擴散。依本發明的實施例,原料 4S&W/0112TW/AXON, 29089.1120 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) ---------------------訂----丨!--線-- (請先閱讀背面之注意事項再填寫本頁) 523745 A7 B7 五、發明說明(>$) 150包含矽氮化物,矽氧氮化物,聚合的原料如多硫亞氨 或聚對位二甲苯(parylene)及其化合物。· 一接觸器(contact)165會適當地用電力耦合一個或 多個電極120,130以幫助形成與各個電極的電氣接 點。接觸器165可由任一種傳導物質形成’最好是由金 屬如鋁,鋁合金,鎢,或銅所形成。 經濟部智慧財產局員工消費合作社印製 (請先閱讀背面之注意事項再填寫本頁) 」!線_ 依本發明的實施例,結構100是藉由在基質110上 形成電極130而形成。電極130可用任何適當的方法形 成,例如,沉澱電極130原料的階層,仿造電極原料的 模式,及蝕刻原料以形成電極130。絕緣的階層150可 經由沉澱絕緣物於電極130與基質110上形成,且在絕 緣物質使用適當的模仿及蝕刻過程形成穿孔。離子導體 140及電極120即可在絕緣階層150藉由在穿孔中沉澱 離子導體140原料及電極120原料而形成。這些離子導 體及電極原料沉澱物是有選擇性的,也就是說,原料實質 上只在穿孔中沉澱,或沉澱過程相對地是沒有選擇性的。 如果使用一個或多個無選擇性的沉澱過程,使用如化學機 械磨光或蝕刻技術,任何殘留在絕緣階層150表面上的 過量原料會被除去。壁障階層155及或25 5同樣地可由 任何適合的沉澱及或蝕刻過程形成。 利用本發明的可程式結構資訊可藉由運用一個或多 個結構的電氣特性儲存。例如,在適當的寫入操作期間, 結構的電阻可從“0”或關閉狀態改變成“1”或開啓狀 態。同樣地,在擦去操作期間,裝置可由“1”狀態改變 4S&W/0112TW/AXON, 29089.1120 25 本紙張尺度適用中國國家標準(CNS)A4規格(21〇 X 297公餐) 523745 A7 B7 經濟部智慧財產局員工消費合作社印製 五、發明說明(¾) 爲“0”狀態。再者,詳述如下,結構會有多個可程式狀 態,多位元資訊可儲存在單一的結構。 寫入操作 圖3說明依本發明之一可程式結構(例,結構200) 的電流電壓特性。圖示揭示穿孔的尺寸D大約4微米, 導體140大約35奈米厚且由Ge3Se7-Ag (近 AS8Ge3Se7)形成,電極130是惰性的且由鎳形成,電 極120係由銀所形成,壁障25 5是天然的鎳氧化物。如 圖3所示,在關閉狀態經過結構200的電流將會因爲1 伏的偏壓而開始上升(如曲線310);然而,一旦寫入步驟 開始執行(即電沉澱物形成),流過導體140的電阻顯著 下降(即,至約200歐姆),由圖3中曲線32〇所示。 如上述,當電極130與一電壓供應器的陰極偶合,相較 於電極120,一電沉澱物開始在電極130附近形成且向 電極120方向生長。一有效的臨界電壓(即需要引發電 沉澱物生長並穿透壁障25 5的電壓,由此耦合電極320 與3 3 0因壁障2 5 5的緣故相對的高。尤其,電壓V彐VT 必須適用於結構200足以導致電子穿透壁障25 5 (當壁 障25 5含有絕緣層)形成電沉澱物並克服壁障(如穿透或 洩漏)且傳導過導體140及至少一部分壁障25 5。 4S&W/0112TW/AXGN, 29089.1120 26 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) <請先閲讀背面之注意事項再填寫本頁) d · --線. 523745 A7 B7 五、發明說明(上/]) 依本發明的實施例,當沒有曝曬壁障層出現時’因 爲沒有絕緣壁障在離子導體140與任一電極120 ’ 130 之間形成,起始的寫入臨界電壓相對的低。 讀取操作 元件的狀態可以在沒有嚴重地攪亂狀態下被讀取’ 例如,加入一個較臨界電壓(約1.4V如圖3所示結構) 小的正向或反向偏壓於電沉澱物,或藉使用電流限制其小 於或等於最低的程式化電流(將產生最高電阻値的電 流)。電流限制(約1毫安培)讀取操作顯示於圖3 °在 本案中,電壓自〇延伸至約2伏,且電流上升至設定的 範圍(自〇至0.2V),指出低電阻(歐姆的/線性的電流 電壓)開啓狀態。執行無干擾讀取操作的另一個方法是加 入一個相當短暫的脈衝,其會有高於電氣化學的沉锻物起 始電位的電壓,如此就沒有相當可觀的法拉第電流通過, 即,幾乎所有的電流都會將裝置極化/充電’但不會進入 電沉積過程中。 擦去操作 一可程式結構(如結構200)可利用與運用於寫入 操作相反的偏壓來擦去,其中該運用的偏壓等級等於或大 於相反方向電沉澱物的臨界電壓。依本發明的模範實施 例,一足夠的擦去電壓(ν3ντ)應用於結構200,週期 4S&W/0112TW/AXON, 29089.1120 27 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注咅?事項再填寫本頁) . •線_ 經濟部智慧財產局員工消費合作社印製 523745 Α7 Β7 五、發明說明(β ) 是視其起始的導電週期長度而定,但一般小於1毫秒, 以回復結構200至其有超過百萬歐姆電阻的關閉狀態。 當可程式結構在導體140與電極120間不包含壁障時, 擦去結構的臨界電壓遠低於寫入結構的臨界電壓,因爲, 不同於寫入操作,擦去操作不需要電子隧穿壁障或使壁障 崩潰。 操作參數的控制 離子導體的導電原料濃度能藉由加入跨越可程式裝 置的偏壓來控制。例如,利用負向電壓超過傳導原料的還 原電位可將如銀的金屬自溶劑中取出。相反地,利用加入 一個超過原料的氧化電位偏壓可將傳導原料加進離子導體 中(自電極)。因此,例如,如果傳導原料濃度超過特定 裝置應用所需求的濃度,該濃度能利用相反的偏壓以減少 導電物質濃度來降低。同樣地,加入足夠的順向偏壓也可 以將金屬從可氧化電極加入溶劑中。此外,在正常操作情 況下,長時間利用反向偏壓或延伸偏壓於所需擦去的裝置 上,移除惰性電極所產生的多餘金屬是可能的。傳導物質 的控制可藉由適合的微處理器自動地實現。 這項技術亦可用來從離子導體原料中的物質形成電 極。例如,離子導體的銀可電鍍以形成可氧化電極。此允 許可氧化電極可在元件完全形成之後形成’因此’緩和了 4S&W/0112TW/AXON, 29089.1120 28 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注咅?事項再填寫本頁) 訂: I-.!線. 經濟部智慧財產局員工消費合作社印製 523745 A7 B7 ------- ---- 五、發明說明($ ) 在裝置製造期間從可氧化電極擴散的傳導物質相關的問 題。 如上所述,依本發明的另一實施例,藉由控制在寫 入過程期間形成的大量電沉澱物,多位元資料可儲存在單 一個可程式結構中。在寫入過程期間形成的大囊電沉澱物 取決於在寫入過程期間提供給結構的庫侖或電荷數量,且 可利用電流限制電力來源來控制。此例中,可程式結構的 電阻由方程式1決定’其中R。11是開啓狀態電阻,vT是 電沉積的臨界電位,Ilim是寫入操作期間允許通過的最 大電流。 ντElectrically inert barriers reduce unwanted dendrite growth during the operation of the programmable device, and thus facilitate the wiping off of the electroprecipitate 160 when a bias voltage opposite to that used to grow the electro sinker is applied. Or dissolved. In addition, the use of a conductive barrier allows an "inert" electrode to be formed from an oxidizable material because the barrier prevents the electrode material from diffusing into the ion conductor. The ion conductor 140 is formed of a material that conducts ions when a sufficient voltage is applied. Suitable materials for the ion conductor 140 include glass and semiconductor materials. In the exemplary embodiment of the present invention, the ion conductor 140 is formed of a chalcogenide material. The ionic conductor M0 also suitably contains a material having decomposition conductivity. For example, the ionic conductor 140 includes a solid solvent including decomposed metals and or metal ions. According to an exemplary embodiment of the present invention, the conductor 140 includes a metal and / or metal ions decomposed in a chalcogen thin film material glass. Typical chalcogen film material glasses with decomposed metals according to the present invention include ASxSl_x-Ag, GexSebX-Ag, GexSbx-Ag, AsxS! _X-Cu, GexSe and x-Cu, GexS ^ x-Cu solid solvents, where x is in In the range of about 0.01 to 0.5, other chalcogen thin film material raw materials include silver, copper, zinc, compounds of these raw materials, and the like. In addition, the conductor 140 includes a network modifier that affects the mobility of ions in the conductor 140. For example, metal materials (such as silver), halogens, halides, or hydrogen may be added to the conductor 140 to improve ion mobility, and thus increase the speed of erase / write of the structure. A solid solvent suitable for the ion conductor 140 can be formed by various methods. For example, the solid solvent can be precipitated through a step 4S & W / 0112TW / AXON, 29089.1120 19 This paper size is applicable to China National Standard (CNS) A4 specification (210 X 297¾ ^ (Please read the precautions on the back before filling (This page). 523745 A7 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs ------------ B7___ V. Description of Invention (丄 0) Layer formation, such as metal coating on ion conductor raw materials such as sulfur It belongs to the thin film material glass and exposes the metal and glass to thermal and / or image decomposition process. According to a typical embodiment of the present invention, the solid solvent of As2S3-Ag is through the precipitation of AhS3 on the substrate, and the Ag film is precipitated on As2S3 On the other hand, these films are exposed to light with an optical gap larger than A ^ S3, for example, light having a wavelength of less than about 500 nm. If necessary, the network modifier can be applied to the conductor 140. Storage period (for example, when the modifier appears in the precipitation material or during the precipitation of the conductor 140) or after the precipitation of the conductor 140 (for example, by exposing the conductor 14 to the network modifier containing Environment) join Conductor 140. According to another embodiment of the present invention, a solid solvent may be formed by precipitating a component on a substrate or another raw material layer and chemically reacting the first component with the second component. For example, germanium (most Fortunately, it will be precipitated on a part of the substrate, and germanium will chemically change with H2Se to form Ge-Se glass. Therefore, silver or other metals can be added to the glass, as described above. According to the embodiment of the present invention, a The solid solvent ion conductor 140 can be formed by precipitating a sufficient amount of metal on the ion conductor raw material, so that a part of the metal can be decomposed in the ion conductor raw material, and a part of the metal is left on the surface of the ion conductor to form an electrode (such as the electrode 120). In another alternative embodiment of the invention, a solid solvent containing a decomposed metal is placed directly on the substrate 110 and the electrode, and then forms an ionic conductor. Many conductive materials, such as metals, are decomposed in ion-conducting materials such as chalcogen film materials Will rely on several factors, such as a large amount of gold 4S & W / 0112TW / AXON, 29089.1120 (Please read the precautions on the back before (Write this page)-· --- line. This paper size is applicable to China National Standard (CNS) A4 (210 x 297 mm) 523745 A7 ------- B7_ V. Description of invention (M) The energy applied in the process. However, the amount of thorium metal and energy is sufficient to decompose in the chalcogenide film material by photolysis (ph〇t〇diSs〇luti〇n), the decomposition process will set limits on itself, It essentially stops when the metal cations are reduced to their low oxidation state. In the case of As2S3-Ag, this situation occurs when Ag4As2S3 = 2Ag2s + AS2S, and the silver concentration is about 44% of the atom. On the other hand, if a sufficient amount of metal is provided for thermal decomposition to decompose in the chalcogen film material, a higher metal concentration will be obtained. According to another embodiment of the present invention, a solid solvent is formed by photodecomposition, and a large amount of homogeneous ternary compounds and added metals are added to cereals by thermal diffusion (for example, in an inert ambient temperature of about cc to 150 °). c) Forming a solid solvent 'This solid solvent contains, for example, about 30 to 50 percent of the atom, preferably 34 silver. Ionic conductors with a metal concentration higher than the photodegradable soluble standard can promote the formation of electrodeposits, which are stable at the operating temperatures of the devices 100 and 200 (about 85 to 150 ° C). In other words, a solid solvent can be formed by thermally dissolving a metal into an ionic conductor at the above temperature, however, a solid solvent formed only by photodecomposition is considered to have less homogeneity than a film formed with similar metal concentration by photodecomposition and thermal dissolution. Sex. The ionic conductor 140 also contains a filling material, which fills gaps or cracks. Suitable filling materials include non-oxidizing and silver-free basic materials, such as I: non-conductive, non-fused silicon oxide and / or silicon nitride, with a size of overlapping area less than about 1 nm, The growth of Shen Dianwu was not helpful. In this example, the filling material appears in the ionic conductor at a considerable proportion of about 5% to reduce the source of the electrosink when the device is exposed to elevated temperatures. 4S & W / 0112TW / AXON, 29089.1120 Ί Size of this paper Applicable to China National Standard (CNS) A4 specification (210 X 297 mm) (Please read the notes on the back before filling out this page) · I-! Line · Printed by the Intellectual Property Bureau of the Ministry of Economic Affairs and Consumer Cooperatives 523745 A7 Wisdom of the Ministry of Economic Affairs Printed by the Consumer Cooperative of the Property Bureau -----------_- V. The possibility of the invention's description breaking down into ternary raw materials by itself, which leads to a more stable operation of the device without changing the performance. The ionic conductor 140 also contains halogenated materials to reduce the effective cross-sectional area of the ionic conductor. In this example, the filling material can be the same filling material as described above, but its cross-sectional area is about 50 nanometers', and its concentration in the ion conductor material is as high as about 50%. The filling materials also include metals, such as silver or copper, to fill the voids in the ionic conductor materials. According to an exemplary embodiment of the present invention, the ion conductor 140 includes a germanium-selenide glass with silver interspersed therebetween. The germanium selenide raw material is generally formed of selenium and Ge (Se) 4/2 tetrahedron, which can be combined in various ways. In the selenium-rich parts, germanium is quaternary and selenium is bivalent. This means that the glass composition is similar to germanium 0.2 and selenium 0.8, which has an average valence of about 2.4. The theory of limited counts considers that this monovalent glass is most ideally restricted, and therefore, it is very stable with respect to making the glass into opaque crystals. This network of glass can self-organize and become pressure-free. For any kind of additive such as silver, a solvent for delicately dispersing and mixing glass solids can be easily made. Therefore, according to an embodiment of the present invention, the ion conductor 140 includes a glass having a composition of Ge.17Se0.83 to Ge.25Se (). 75. The composition and structure of the raw material of the ion conductor 140 usually forms a conductor according to the starting material or the target material used. Generally speaking, it is necessary to form a homogeneous raw material layer so that the conductor 140 can promote reliable and repeatable device performance. According to an embodiment of the present invention, the target for physical vapor deposition of raw materials suitable for the ion conductor 140 is to select appropriate ampoules, prepare ampoules, and shape the 4S & W / 0112TW / AXON, 29089.1120 22 This paper standard is applicable to Chinese National Standards (CNS) A4 specification (210 X 297 mm) (Please read the notes on the back before filling this page). ·% Order. — I! —— l ·! Line! ^ ϋ .1 ϋ n ϋ ϋ I I I ϋ ϋ .1 H-523745 A7 B7 V. Description of the Invention (z3) During the formation of the glass, maintain the appropriate temperature, slowly shake the composition, and cool the composition. Volume and wall thickness are important factors to consider when choosing a glass ampoule. The thickness of the inner wall must be thick enough to withstand the gas pressure generated during the glass formation process, and preferably thin enough to facilitate heat exchange during the formation process. According to the exemplary embodiment of the present invention, a quartz ampoule with an inner wall thickness of about 1 mm is used to form a chalcogen film material glass based on selenium and tellurium, and a quartz ampoule with an inner wall thickness of about 1.5 mm is used to form a sulfur-based Chalcogen film material glass. In addition, the volume of the ampoule is preferably 5 times larger than that of the liquid glass precursor. Once the ampoule prepared for the glass composition is selected, the ampoule is rinsed with hydrofluoric acid, ethanol, and acetone according to the embodiment of the present invention, the ampoule is dried at about 120 ° C for at least 24 hours, and the ampoule is drained and heated to become Cherry red, then, the ampule is cooled under vacuum, the ampule is fully charged, the ampule is emptied, the ampule is heated while avoiding the melting of the constituent elements to release any remaining oxygen, and the ampule is sealed. This process reduces oxygen contamination and promotes massive homogeneous growth of the glass. The melting temperature during glass formation depends on the glass material. In the case of germanium-based glass, sufficient time is required for the chalcogen to react with all available germanium at low temperatures to avoid subsequent rise in temperature (selenium at 920 ° C The vaporization pressure is 10 ATM · and 20 ATM at 720 ° C.) Explosion. In order to reduce the risk of explosion, the glass formation process was started with a rapidly increasing ampoule temperature to about 1 hour 3 00 ° C for germanium-based glass (about 200 ° C for sulfur-based glass), 4S & W / 0112TW / AXON, 29089.1120 23 This paper size is applicable to China National Standard (CNS) A4 (210 X 297 mm) ------------- Brew (Please read the note on the back? Matters before filling in this Page) Order-! L ·! Line! Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 523745 A7 B7 Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 5. Description of the Invention (2 buckets) and maintain this temperature for about 12 hours. Next, the temperature is slowly increased (about 0.5 ° C per minute) until it is about 50 higher than the liquid temperature of the raw material. (: The temperature, keep the ampoule at about this temperature for about 12 hours. Then the temperature is raised to about 940 ° C to ensure that all non-reactive germanium is in the germanium-based glass, or about 700 ° C in the sulfur-based glass. The ampule must be kept At this high temperature for 24 hours. The molten glass composition is preferably shaken slowly at a rate of 20 times per minute for at least about 6 hours to increase the homogeneity of the glass. Quenching is preferably performed at a temperature when the gas and liquid are in equilibrium, so that The required composition is produced into a glass-like substance. In this example, the quenching temperature is about 50 ° C higher than the liquid temperature of the glass raw material. The chalcogen-rich thin film material glass contains glass with a low concentration range and a high limit. When the glass composition price The number is much higher than the ideal valence (for example, the germanium-selenium system has a valence of about 2 · 4), and the quenching rate must be fast enough to ensure vitrification, such as in ice water or a relatively strong coolant such as urea and ice water Quenching. As for the most ideal glass, quenching can be performed at about 25 ° C. According to the exemplary embodiment of the present invention, at least a part of the structure 100 is formed in the perforation of the insulating substance 150. In the insulating substance Forming a portion of the structure 100 in the perforations of 150 is satisfactory because such formation may allow relatively small structures, for example, to be formed at 10 nm, among other reasons. In addition, the insulating raw material 150 helps isolate Structure 100 with different electrical elements. Insulating raw material 150 suitably contains raw materials, which can prevent poor electron or ion diffusion from the structure 100. According to the embodiment of the present invention, the raw material 4S & W / 0112TW / AXON, 29089.1120 This paper size applies to China National Standard (CNS) A4 Specification (210 X 297 mm) --------------------- Order ---- 丨!-Line-- (please first Read the notes on the back and fill in this page) 523745 A7 B7 V. Description of the invention (> $) 150 Contains silicon nitride, silicon oxynitride, and raw materials for polymerization such as polythioimide or parylene And its compounds. · A contactor 165 will suitably electrically couple one or more electrodes 120, 130 to help form an electrical contact with each electrode. The contactor 165 may be formed of any conductive material, preferably Formed from metals such as aluminum, aluminum alloys, tungsten, or copper Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs (please read the precautions on the back before filling this page)! LINE_ According to the embodiment of the present invention, the structure 100 is formed by forming an electrode 130 on the substrate 110. The electrode The 130 may be formed by any suitable method, for example, precipitating a layer of the raw material of the electrode 130, imitating a pattern of the electrode material, and etching the material to form the electrode 130. The insulating layer 150 may be formed on the electrode 130 and the substrate 110 via a precipitation insulator, and Use appropriate imitation and etching processes to form perforations in the insulating material. The ion conductor 140 and the electrode 120 can be formed on the insulating layer 150 by precipitating the raw material of the ion conductor 140 and the raw material of the electrode 120 in the perforation. These ionic conductor and electrode raw material precipitates are selective, that is, the raw materials are only precipitated in the perforation, or the precipitation process is relatively non-selective. If one or more non-selective precipitation processes are used, using, for example, chemical mechanical polishing or etching techniques, any excess material remaining on the surface of the insulating layer 150 will be removed. The barrier layers 155 and or 255 may likewise be formed by any suitable precipitation and or etching process. Programmable structure information utilizing the present invention can be stored by using the electrical characteristics of one or more structures. For example, during a proper write operation, the resistance of the structure may be changed from a "0" or off state to a "1" or on state. Similarly, during the erase operation, the device can be changed from "1" state 4S & W / 0112TW / AXON, 29089.1120 25 This paper size applies the Chinese National Standard (CNS) A4 specification (21〇X 297 meals) 523745 A7 B7 Economy Printed by the Consumer Cooperatives of the Ministry of Intellectual Property Bureau V. Invention Description (¾) is "0". Furthermore, as detailed below, the structure will have multiple programmable states, and multi-bit information can be stored in a single structure. Write Operation FIG. 3 illustrates the current-voltage characteristics of a programmable structure (eg, structure 200) according to one embodiment of the present invention. The figure shows that the size D of the perforation is about 4 microns, the conductor 140 is about 35 nanometers thick and formed of Ge3Se7-Ag (near AS8Ge3Se7), the electrode 130 is inert and formed of nickel, the electrode 120 is formed of silver, and the barrier 25 5 is a natural nickel oxide. As shown in FIG. 3, the current passing through the structure 200 in the closed state will start to rise due to a bias of 1 volt (such as curve 310); however, once the writing step is performed (that is, the formation of an electrodeposition) flows through the conductor The resistance of 140 drops significantly (ie, to about 200 ohms), as shown by curve 32 in FIG. 3. As described above, when the electrode 130 is coupled to the cathode of a voltage supplier, compared to the electrode 120, an electrodeposition starts to form near the electrode 130 and grows toward the electrode 120. An effective threshold voltage (that is, a voltage that needs to induce the growth of the electroprecipitate and penetrate the barrier 25 5, and thus the coupling electrodes 320 and 3 3 0 are relatively high due to the barrier 2 5 5. In particular, the voltage V 彐 VT Must be suitable for a structure 200 sufficient to cause electrons to penetrate the barrier 25 5 (when the barrier 25 5 contains an insulating layer) to form an electrical deposit and overcome the barrier (such as penetration or leakage) and conduct through the conductor 140 and at least a portion of the barrier 25 5. 4S & W / 0112TW / AXGN, 29089.1120 26 This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) < Please read the notes on the back before filling this page) d · --line 523745 A7 B7 V. Description of the invention (top /]) According to the embodiment of the present invention, when no exposure barrier layer appears, 'because there is no insulation barrier formed between the ion conductor 140 and any of the electrodes 120'130, The initial write threshold voltage is relatively low. The state of the read operating element can be read without severely disturbing the state. For example, adding a smaller forward or reverse bias voltage than the critical voltage (about 1.4V as shown in Figure 3) to the electrodeposition, Or use current to limit it to less than or equal to the lowest stylized current (current that will produce the highest resistance 値). The current limit (about 1 milliamp) read operation is shown in Figure 3 ° In this case, the voltage extends from 0 to about 2 volts, and the current rises to a set range (from 0 to 0.2V), indicating low resistance (ohmic / Linear current voltage) on state. Another way to perform a glitch-free read operation is to add a fairly short pulse, which will have a voltage higher than the starting potential of the electrochemical sinker, so that no considerable Faraday current passes, that is, almost all The current will polarize / charge the device but will not enter the electrodeposition process. Erase operation A programmable structure (such as structure 200) can be erased with a bias voltage that is opposite to that used for a write operation, where the applied bias level is equal to or greater than the threshold voltage of the electrodeposit in the opposite direction. According to the exemplary embodiment of the present invention, a sufficient erasing voltage (ν3ντ) is applied to the structure 200 with a period of 4S & W / 0112TW / AXON, 29089.1120 27 This paper size applies to China National Standard (CNS) A4 (210 X 297) (Please read the note on the back? Matters before filling out this page). • Line _ Printed by the Employees' Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 523745 Α7 Β7 5. The description of the invention (β) is based on the length of the conductive cycle It depends, but it is generally less than 1 millisecond to restore the structure 200 to its off state with a resistance of more than one million ohms. When the programmable structure does not include a barrier between the conductor 140 and the electrode 120, the critical voltage of the erase structure is much lower than the critical voltage of the write structure, because, unlike a write operation, the erase operation does not require electron tunneling through the wall Barrier or collapse the barrier. Control of operating parameters The concentration of the conductive material of the ion conductor can be controlled by adding a bias voltage across the programmable device. For example, a metal such as silver can be removed from a solvent by using a negative potential exceeding the reduction potential of the conductive material. Conversely, a conductive material can be added to the ion conductor (self-electrode) by applying an oxidation potential bias exceeding the material. Thus, for example, if the concentration of the conductive material exceeds the concentration required for a particular device application, the concentration can be reduced using a reverse bias to reduce the concentration of the conductive material. Similarly, adding sufficient forward bias voltage can also add metal from the oxidizable electrode to the solvent. In addition, under normal operating conditions, it is possible to remove excess metal from an inert electrode by using a reverse bias or extended bias on the device to be wiped for a long time. Control of the conductive material can be achieved automatically by a suitable microprocessor. This technique can also be used to form electrodes from substances in ionic conductor raw materials. For example, silver of the ionic conductor may be plated to form an oxidizable electrode. This allows the oxidizable electrode to be formed after the element is fully formed. “So” mitigates 4S & W / 0112TW / AXON, 29089.1120 28 This paper size applies to the Chinese National Standard (CNS) A4 specification (210 X 297 mm) (Please read first Note on the back? Matters need to be completed on this page.) Order: I-.! Line. Printed by the Consumers' Cooperative of Intellectual Property Bureau of the Ministry of Economic Affairs 523745 A7 B7 ------- ---- V. Description of Invention ($) Problems related to conductive substances that diffuse from oxidizable electrodes during device fabrication. As described above, according to another embodiment of the present invention, multi-bit data can be stored in a single programmable structure by controlling a large amount of electroprecipitate formed during the writing process. The large-capsule electroprecipitation formed during the writing process depends on the amount of coulomb or charge provided to the structure during the writing process and can be controlled using a current-limited power source. In this example, the resistance of the programmable structure is determined by Equation 1 'where R is. 11 is the on-state resistance, vT is the critical potential for electrodeposition, and Ilim is the maximum current allowed during a write operation. ντ
Ron = XXXX 方程式1 實際上,每個單元儲存資訊量的限度依據電阻狀態 經由時間衰退後有多穩定而定。例如’如果結構的程式化 電阻範圍約3.5 kQ且其電阻在每個狀態的特定時間飄 移約土250 Ω的話,大約7個相同大小波段的電阻(7個 狀態)會形成,允許3個位元的資料儲存在單一的結構 中。在此界限下,在特定時間限制中電阻將幾乎無飄移’ 資訊能在連續狀態儲存,即在類比狀態。 在積體電路402的部分,包含可程式化結構400, 形成以從電子裝置提供額外的絕緣標示於圖4中。依本 發明的模範實施例,結構400包括電極420與430,一 4S&W/0112TW/AXON,29089.1120 29 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注意事項再填寫本頁) • % 線· 經濟部智慧財產局員工消費合作社印製 523745 經濟部智慧財產局員工消費合作社印制衣 A7 B7 五、發明說明(>) 離子導體440,接觸點460,以及一非結晶矽兩極真空 管470,如蕭特基或是p-η接合兩極真空管,在接觸點 460與電極420間形成。可程式結構400的許多行與列 可被製造成高密度結構,以適合於記憶體電路中提供相當 大的儲存密度。一般說來,記憶裝置的最大儲存密度受限 於行與列解碼電路的大小與複雜度。然而,可程式結構儲 存堆疊可以被適當地組裝於積體電路上,其全部半導體晶 片範圍專用於行列解碼器,感應放大器,及資料管理電路 (未顯示)因爲結構400不需要用到任何基質不動產。以 此方式,使用本發明的可程式結構能達到每平方公分數十 億位元的儲存密度。利用本方法,可程式結構實質上是一 個附加的技術,增加能力及功能於現有的半導體積體電路 技術。 圖五綱要性地說明記憶裝置的一部分,包括結構 400,其有一絕緣p-n接點470在記憶體電路的位元線 510與字元線520的交點上。圖6圖示一替代的絕緣系 統,利用一電晶體610插入一電極與一位於記憶體裝置 的位元線615與字元線620交點上可程式結構的接觸點 之間。 圖7至10說明依本發明的另一實施例的可程式裝 置。圖示於圖7至10的裝置包括一個電極(如,寫入過 程期間的陰極),有比圖1、2及4圖示的裝置較小的交 叉區域與離子導體連接。較小的電極介面區域被認爲能增 加裝置的效率及耐久率,因爲在固態溶劑中所增加的離子 4S&W/0112TW/AXON, 29089.1120 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注意事項再填寫本頁) --------^---一---^---^!a_w---------------------- 523745 A7 B7 五 經濟部智慧財產局員工消費合作社印製 發明說明(巧) 能參加電沉澱物形成過程。因此減少任何由不參與電沉澱 過程的離子而來的陰極電鍍。 圖7與圖8說明可程式裝置700的橫剖面部分及頂 部切除槪觀,包括惰性電極710,可氧化電極720,及 離子導體730之前佈於一絕緣層740上者,如矽氧化 物,矽氮化物,或諸如此類。 結構700是藉由沉澱惰性電極原料層與絕緣層750 於絕緣層740上而形成的。一個穿孔因穿透絕緣層750 與電極原料層710而形成,利用非等方性的 (anisotropic)蝕刻流程(如,反作用的離子蝕刻或離子 製造),如此穿孔延伸至及或穿過絕緣層740的一部分。 然後穿孔充滿離子導體原料,且其適於攙添於形成固態溶 劑,如此處所敘述。任何多餘的離子導體原料會自階層 750的表面移除,電極73 0會形成,例如使用沉澱及鈾 刻流程。於此例,與離子導體730連接的惰性電極(寫入 過程中的陰極)區域是在導體730的周圍附近電極710 的表面範圍,而不是佈於離子導體的範圍,如圖1-2及 4所示。 圖9與10說明依本發明的另一實施例,可程式裝 置900具有一個惰性電極910,可氧化電極920,離子 導體930和絕緣層940與95 0。結構900與結構700相 似,除了一旦穿孔形成穿透階層750,等向的蝕刻流程 (例,化學的或等離子體)被利用來形成穿孔穿透電極 4S&W/0112TW/AX0N, 29089.1120 31 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注意事項再填寫本頁) · -卜· -I!線- 45 7 3 2 5 經濟部智慧財產局員工消費合作社印製 五 A7 ________B7__發明說明(苫^) 910 ’如此傾斜的交點在離子導體930與電極91〇間形 成。 圖11與12圖示另一個可程式裝置no〇,依本發 明’其有一降低的電極/離子導體介面。結構1100包括 電極1 1 10與1 120和離子導體1 13〇,此離子導體i 13〇 係於絕緣原料1140的表面形成,而不是如上述在穿孔之 中形成。在本例中,可程式結構的形成是經由限定離子導 體1130輕拍在絕緣原料1140的表面(例,利用沉澱與 倉虫刻技術),且形成電極1 1 1 〇與1 1 2 0,如此每一個電極 都接觸到離子導體的一部分。在此圖示的具體例中,電極 形成於離子導體的一部分以及絕緣物質上,且都有連接。 雖然階層的厚度會依裝置的特定應用而有不同,於本發明 較佳實施例中,離子導體與電極薄膜的厚度爲約1至 100奈米。本裝置部分的平版下的側面尺寸可由過度曝光 及/或過度蝕刻薄膜層而獲得。 依本發明的另一實施例,圖13圖示裝置1 300。結 構1 300近似於圖7與8圖示的裝置,除了與電極相連接 的離子導體的橫剖面面積藉由在穿孔的一部分塡充非離子 導體物質而減少,而非藉由蝕刻穿透電極層而減少。 結構1 300包括電極1310與1 320和在絕緣層 1 340中形成的離子導體1 33 0。本例中,離子導體1330 是藉由在絕緣層1 340創造溝槽(trench)而形成,此溝槽 的直徑由D2表示。該溝槽將以使用例如千擾平版印刷術 (interference lithography techniques)或以絕緣物質 4S&W/0112TW/AX0N, 29089.1120 32 --------------· (請先閱讀背面之注意事項再填寫本頁) 訂---------線! 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 523745Ron = XXXX Equation 1 In fact, the limit of the amount of information stored in each cell depends on how stable the resistance state has decayed over time. For example, 'If the stylized resistance range of the structure is about 3.5 kQ and its resistance drifts about 250 Ω at a specific time in each state, about 7 bands of the same size (7 states) will be formed, allowing 3 bits Data is stored in a single structure. Under this limit, the resistance will have almost no drift within a certain time limit. The information can be stored in a continuous state, that is, in an analog state. A portion of the integrated circuit 402 includes a programmable structure 400 formed to provide additional insulation from the electronic device as shown in FIG. 4. According to the exemplary embodiment of the present invention, the structure 400 includes electrodes 420 and 430, a 4S & W / 0112TW / AXON, 29089.1120 29 This paper size applies the Chinese National Standard (CNS) A4 specification (210 X 297 mm) (Please read first Note on the back, please fill in this page again) •% line · Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 523745 Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs A7 B7 V. Description of the invention (>) Ionic conductor 440, contact Point 460 and an amorphous silicon bipolar vacuum tube 470, such as a Schottky or p-η junction bipolar vacuum tube, are formed between the contact point 460 and the electrode 420. Many of the rows and columns of the programmable structure 400 can be fabricated into a high density structure suitable for providing a relatively large storage density in a memory circuit. In general, the maximum storage density of a memory device is limited by the size and complexity of the row and column decoding circuits. However, the programmable structure storage stack can be appropriately assembled on the integrated circuit, and its entire semiconductor chip range is dedicated to row decoders, sense amplifiers, and data management circuits (not shown) because the structure 400 does not require any substrate real estate. . In this way, storage density of billions of bits per square centimeter can be achieved using the programmable structure of the present invention. Utilizing this method, the programmable structure is essentially an additional technology, adding capabilities and functions to existing semiconductor integrated circuit technology. FIG. 5 outlines a part of a memory device, including a structure 400 having an insulated p-n contact 470 at an intersection of a bit line 510 and a word line 520 of a memory circuit. Figure 6 illustrates an alternative insulation system that uses a transistor 610 to insert an electrode and a programmable structure contact at the intersection of bit line 615 and word line 620 of a memory device. 7 to 10 illustrate a programmable device according to another embodiment of the present invention. The device shown in Figs. 7 to 10 includes an electrode (e.g., a cathode during a write process), and has a smaller cross-sectional area connected to the ion conductor than the device shown in Figs. 1, 2, and 4. The smaller electrode interface area is considered to increase the efficiency and durability of the device, because the added ions in the solid solvent 4S & W / 0112TW / AXON, 29089.1120 This paper size applies to the Chinese National Standard (CNS) A4 specification (210 X 297 mm) (Please read the precautions on the back before filling this page) -------- ^ --- One --- ^ --- ^! A_w --------- ------------- 523745 A7 B7 Five Consumers' Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs printed an invention note (Qiao) Can participate in the process of electrodeposition formation. This reduces any cathodic plating from ions that do not participate in the electrodeposition process. 7 and 8 illustrate a cross-section portion and a top cutaway view of the programmable device 700, including an inert electrode 710, an oxidizable electrode 720, and an ion conductor 730 previously laid on an insulating layer 740, such as silicon oxide, silicon Nitride, or the like. The structure 700 is formed by depositing an inert electrode raw material layer and an insulating layer 750 on the insulating layer 740. A perforation is formed by penetrating the insulating layer 750 and the electrode raw material layer 710. An anisotropic etching process (eg, reactive ion etching or ion manufacturing) is used, and the perforation extends to and / or through the insulating layer 740. a part of. The perforations are then filled with the ionic conductor material and are suitable for being added to form a solid solvent, as described herein. Any excess ionic conductor material will be removed from the surface of layer 750 and electrodes 73 0 will be formed, for example using precipitation and uranium engraving processes. In this example, the area of the inert electrode (cathode during writing) connected to the ion conductor 730 is the surface area of the electrode 710 near the conductor 730, rather than the area of the ion conductor, as shown in Figures 1-2 and 4 As shown. 9 and 10 illustrate a programmable device 900 having an inert electrode 910, an oxidizable electrode 920, an ion conductor 930, and insulating layers 940 and 950 according to another embodiment of the present invention. The structure 900 is similar to the structure 700, except that once the perforation forms the penetration layer 750, an isotropic etching process (eg, chemical or plasma) is used to form the perforation penetration electrode 4S & W / 0112TW / AX0N, 29089.1120 31 papers Standards are applicable to China National Standard (CNS) A4 specifications (210 X 297 mm) (Please read the precautions on the back before filling out this page) ···· -I! Line-45 7 3 2 5 Staff of Intellectual Property Bureau, Ministry of Economic Affairs The consumer cooperative prints five A7 ________B7__Explanation of the invention (苫 ^) 910 'The intersection point so inclined is formed between the ion conductor 930 and the electrode 91. 11 and 12 illustrate another programmable device no0, which has a lowered electrode / ion conductor interface according to the present invention. The structure 1100 includes electrodes 1 1 10 and 1 120 and an ion conductor 1 13 0. The ion conductor i 13 0 is formed on the surface of the insulating raw material 1140 instead of being formed in a perforation as described above. In this example, the programmable structure is formed by tapping on the surface of the insulating material 1140 via a defined ion conductor 1130 (for example, using precipitation and silt engraving techniques), and forming electrodes 1 1 1 0 and 1 1 2 0, so that each One electrode is in contact with a part of the ion conductor. In the specific example shown here, the electrodes are formed on a part of the ionic conductor and the insulating material, and they are all connected. Although the thickness of the layers may vary depending on the particular application of the device, in the preferred embodiment of the present invention, the thickness of the ion conductor and the electrode film is about 1 to 100 nm. The side dimensions under the lithography of this device section can be obtained by overexposing and / or overetching the film layer. According to another embodiment of the present invention, FIG. 13 illustrates the device 1 300. Structure 1 300 is similar to the device shown in Figs. 7 and 8, except that the cross-sectional area of the ionic conductor connected to the electrode is reduced by filling a part of the perforation with a non-ionic conductive substance, rather than penetrating the electrode layer by etching. And decrease. The structure 1 300 includes electrodes 1310 and 1 320 and an ion conductor 1 33 0 formed in an insulating layer 1 340. In this example, the ion conductor 1330 is formed by creating a trench in the insulating layer 1 340, and the diameter of the trench is represented by D2. The grooves will be made using, for example, interference lithography techniques or insulating materials 4S & W / 0112TW / AX0N, 29089.1120 32 -------------- (Please read first Note on the back then fill out this page) Order --------- line! This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) 523745
五、發明說明(33) 給穿孔等角地(conformally)加襯來塡充,且利用非等方 性的蝕刻流程移除某些絕緣物質,留下一個直徑D3的穿 孔。結構1 300利用此技術形成具有一離子導體橫剖面面 積小到只有約10奈米與電極1310與1 320連接在一 起。 圖14-17揭示本發明的另一實施例,其中離子導體 .與電極介面的橫剖面面積相對地小。結構1 400,如圖 14所示,包括電極1410與1420和離子導體1 430。結 構1400以與結構700類似的方式形成,除了離子導體 原料是等角沉澱的,利用如化學的汽化沉澱或物理的汽化 沉澱進入溝槽,且此溝槽沒有塡滿離子導體原料。 結構1 5 00與結構1 400類似,除了離子導體1530 是經由蝕刻離子導體1430的一部分形成的,如此穿孔 1 540穿透電極1410而形成。結構1 600與結構1500 類似且經由等角沉澱離子導體原料如上述而形成,然後在 沉澱電極1 420原料之前,從絕緣物質1 450的表面移除 離子導體原料。最後,結構1 700可藉由選擇性的沉澱離 子導體1 73 0原料進入在絕緣物質1 450 (例,使用有角 的(angled)沉澱及或蔽蔭技術(shadowing techniques))形成的溝塹的一部分而形成,移除絕緣體 1 450表面上多餘的離子導體原料,形成電極1 720佈於 絕緣體上,且與離子導體1 73 0相連接。 圖1 8與19說明本發明的另一實施例,其中溝槽中 的柱子或牆是用來減少離子導體與一或多個電極介面的一 4S&W/0112TW/AX0N, 29089.1120 〇〇 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注音?事項再填寫本頁) · 經濟部智慧財產局員工消費合作社印制衣 523745 A7 B7 經濟部智慧財產局員工消費合作社印制π 五、發明說明( 橫剖面面積。結構1 8 00,如圖18所示,包括電極18 10 與1 820和在絕緣層1 840中形成的離子導體1 83 0。此 外,結構1800包含在階層1 840溝槽中形成的絕緣柱 1850 (如,用於形成階層1 840的絕緣物質)。結構 1 800可用前述之蔽蔭沉澱技術形成。結構1900與結構 1 800類似,除了結構1 900包括不完全的柱子1 950以 及離子導體1 930,此離子導體塡滿前述溝槽的剩餘部 分。 圖20說明依本發明的另一結構2000。結構2000 包括電極2010與2020及在絕緣層2040中形成的離子 導體2030。結構2000利用非等方性的或非等方性的化 合物與等向的蝕刻過程形成一頭尖細的穿孔而形成。離子 導體203 0於是利用前述技術在溝槽中形成。 圖21-24說明依本發明另一實施例的可程式裝置。 圖21-24所說明的結構包含一浮動電極,其允許多位元 資訊儲存在單一的可程式裝置中。 結構2100包括一第一電極2110,一第二浮動電極 2120,一第三電極2130,一離子導體部分2140與 2150,上述可全在基質上形成或全部或部分如前述在穿 孔中形成。雖然結構2 100以垂直的結構圖示,但是其可 和結構1100 —樣以水平的結構形成。依本發明的觀點, 第一與第三電極爲惰性電極,而第二電極則爲可氧化電極 原料所形成的。或者,第一與第三電極爲可氧化電極原料 形成的,而第二電極,浮動電極,爲惰性電極原料所形成 4S&W/0112TW/AXON, 29089.1120 34 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注音心事項再填寫本頁) d · 線· 523745V. Description of the invention (33) The perforations are lined conformally to fill, and the non-isotropic etching process is used to remove some insulating materials, leaving a through-hole with a diameter of D3. Structure 1 300 uses this technique to form an ion conductor with a cross-sectional area as small as about 10 nanometers connected to electrodes 1310 and 1 320. 14-17 disclose another embodiment of the present invention, wherein the cross-sectional area of the ion conductor and the electrode interface is relatively small. Structure 1 400, as shown in FIG. 14, includes electrodes 1410 and 1420 and an ion conductor 1 430. The structure 1400 is formed in a similar manner to the structure 700, except that the ionic conductor raw material is precipitated at an equiangular angle, such as chemical vapor deposition or physical vapor deposition, into the groove, and the groove is not filled with the ionic conductor material. The structure 1 500 is similar to the structure 1 400, except that the ion conductor 1530 is formed by etching a part of the ion conductor 1430, and thus the perforations 1 540 are formed through the electrode 1410. The structure 1 600 is similar to the structure 1500 and is formed by isotropically precipitating the ionic conductor material as described above, and then the ionic conductor material is removed from the surface of the insulating substance 1 450 before the electrode 1 420 material is precipitated. Finally, the structure 1 700 can enter the trench formed in the insulating material 1 450 (eg, using angled precipitation and or shadowing techniques) by selective precipitation of the ionic conductor 1 73 0 material. Partially formed, the excess ion conductor raw material on the surface of the insulator 1 450 is removed, and the electrode 1 720 is formed on the insulator and is connected to the ion conductor 1 73 0. Figures 18 and 19 illustrate another embodiment of the present invention, in which the pillars or walls in the trench are a 4S & W / 0112TW / AX0N, 29089.1120 paper used to reduce the interface between the ion conductor and one or more electrodes. Standards are applicable to China National Standard (CNS) A4 specifications (210 X 297 mm) (Please read the note on the back? Matters before filling out this page) · Intellectual Property Bureau of the Ministry of Economic Affairs Printed Clothing for Consumer Cooperatives 523745 A7 B7 Intellectual Property of the Ministry of Economic Affairs Printed by the Consumer Cooperative of the Bureau π V. Description of the invention (cross-sectional area. The structure 1 800, as shown in FIG. 18, includes electrodes 18 10 and 1 820 and an ion conductor 1 83 0 formed in an insulating layer 1 840. In addition, The structure 1800 includes an insulating pillar 1850 formed in a trench of the layer 1 840 (eg, an insulating substance for forming the layer 1 840). The structure 1 800 can be formed by the aforementioned shadow deposition technique. The structure 1900 is similar to the structure 1 800, Except for structure 1 900, which includes incomplete pillars 1 950 and ion conductors 1 930, this ion conductor fills the remainder of the aforementioned groove. Figure 20 illustrates another structure 2000 according to the present invention. Structure 2000 includes electrodes 2010 and 20 20 and the ionic conductor 2030 formed in the insulating layer 2040. The structure 2000 is formed using a non-isotropic or non-isotropic compound and an isotropic etching process to form a sharp perforation. The ionic conductor 2030 uses the aforementioned Technology is formed in the trench. Figures 21-24 illustrate a programmable device according to another embodiment of the invention. The structure illustrated in Figures 21-24 includes a floating electrode that allows multi-bit information to be stored in a single programmable device The structure 2100 includes a first electrode 2110, a second floating electrode 2120, a third electrode 2130, and an ion conductor portion 2140 and 2150, all of which can be formed on the substrate or can be formed wholly or partially in the perforation as described above. Although the structure 2 100 is illustrated in a vertical structure, it can be formed in a horizontal structure like the structure 1100. According to the viewpoint of the present invention, the first and third electrodes are inert electrodes, and the second electrode is an oxidizable electrode. The first and third electrodes are formed of oxidizable electrode materials, and the second electrode, the floating electrode, is formed of inert electrode materials. 4S & W / 0112TW / AXON, 29089.1120 34 This paper size is in accordance with Chinese National Standard (CNS) A4 (210 X 297 mm) (Please read the note on the back before filling in this page) d · line · 523745
i、發明說明(^) 的。任一種情況,該結構包括兩個“半個單位”’其中每 一個半個單位可當作一個如前述與圖1有關的可程式裝 置。每半個單位最好裝配成與另一個半個單位不同的電 阻,當兩個單位同時在擦去狀態時。 當浮動電極2120由可氧化電極原料形成時’資料 的位元可儲存如下。結構2100的全部阻抗大約等於 2140與2150的電阻。當任一部份中都沒有電沉澱物形 成時,此高電阻狀態可以狀態00表示。當電壓通過結構 2100,電極2130相對於電極2110是正的,且所用的 偏壓大於在2140形成電沉澱物所需的臨界電位’ 一電沉 澱物2160將從電極2110穿過導體部分2140流向浮動 電極2120而形成,如圖22所示。因爲2150是在相反 偏壓情況下,因此不會幫助電沉澱物的生長’在此情況 下,一電沉澱物將不會在導體部分2150中形成。電沉澱 物的生長將改變2140的阻抗由Ζτ到ΖΓ,因此改變結 構2100的全部阻抗會以狀態〇1表示。形成電沉澱物 2160的電流標準應是挑選出來的,所以是足夠低的,允 許電沉澱物在應用足夠反向偏壓時分解。第三種狀態可由 顛倒跨越電極2110與2130偏壓的兩極而形成,因此大 部分的電壓落差發生在跨越高電阻離子導體部分2150與 電沉澱物2170開始形成時,如圖23所示,沒有導致電 沉澱物2160分解。部分2150的阻抗從Z2改變成 Z2’,且結構2100的全部阻抗是Z】’加上Z2’,其會以 狀態11表示。當兩個半個單位都在寫入狀態時,電沉澱 4S&W/0112TW/AXON, 29089.1120 35 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 請 先 閱 讀 背 面 之 注 意 事i. Description of the invention (^). In either case, the structure includes two "half units" ', each of which can be regarded as a programmable device as described above with reference to FIG. Each half unit is preferably assembled with a different resistance from the other half unit when both units are in the wiped state at the same time. When the floating electrode 2120 is formed of an oxidizable electrode material, the bits of the data can be stored as follows. The overall impedance of structure 2100 is approximately equal to the resistance of 2140 and 2150. When no electrodeposition is formed in any part, this high-resistance state can be represented by the state 00. When the voltage passes through the structure 2100, the electrode 2130 is positive relative to the electrode 2110, and the bias voltage used is greater than the critical potential required to form an electroprecipitation at 2140. An electroprecipitation 2160 will flow from the electrode 2110 through the conductor portion 2140 to the floating electrode. 2120, as shown in FIG. Because 2150 is under the opposite bias condition, it will not help the growth of the electrodeposition '. In this case, an electrodeposition will not be formed in the conductor portion 2150. The growth of the electrodeposition will change the impedance of 2140 from Zτ to ZΓ, so changing the entire impedance of the structure 2100 will be represented by the state 01. The current standard for the formation of the electroprecipitate 2160 should be chosen so that it is low enough to allow the electroprecipitate to decompose when a sufficient reverse bias is applied. The third state can be formed by reversing the bias across the electrodes 2110 and 2130, so most of the voltage drop occurs when the high-resistance ion conductor portion 2150 and the electrodeposition 2170 begin to form, as shown in Figure 23, without causing Electroprecipitation 2160 decomposes. The impedance of the part 2150 is changed from Z2 to Z2 ', and the entire impedance of the structure 2100 is Z]' plus Z2 ', which will be represented by state 11. When two and a half units are in the writing state, electrodeposition 4S & W / 0112TW / AXON, 29089.1120 35 This paper size is applicable to China National Standard (CNS) A4 (210 X 297 mm) Please read the notes on the back first thing
I 經濟部智慧財產局員工消費合作社印制衣I Printing of clothing by employees' cooperatives in the Intellectual Property Bureau of the Ministry of Economic Affairs
523745 A7 B7 物2160及/或2170會藉由利用足夠偏壓跨越一個或兩 個半個單位而被分解。電沉澱物2170能被擦去,例如, 藉由充分地加偏壓於電極2130與電極2110,其可表示 狀態〇〇。四種可能的狀態,在形成狀態的電流限制以 外,描繪於表1中。 請 先 閱 讀 背 面 之 注 序號 極性 電流標 準 Z半個單 位1 z半個單位 2 肤態値 事 項 再 1 近起始 零 Zl Z2 00 填 2 上+下- 低 Ζι5 Z2 01 寫 本 3 上-下+ 低 Zl5 Z2, 11 頁 4 上-下+ 高 Zl Z2, 10 螓 表 I I I I I 訂 經濟部智慧財產局員工消費合作社印製 利用一個低電流標準偏壓使電沉澱物2150在部分 2140生長能將結構2100從狀態10改變成狀態11。同 樣地,利用一個相對高的電流標準偏壓分解電沉澱物 2170能將結構2100從狀態11改變成狀態01,因此上 電極2130是正有關下電極2110。最後,利用短的電流 脈衝熱分解電沉澱物2160能將結構2100轉回狀態 〇〇,利用夠高的電流可導致電沉澱物局部加熱。此將增 加半個單位的金屬濃度,但是此過量金屬能以電力從單位 移除利用電鍍還原到浮動電極上。此順序總結於表2。 4S&W/0112TW/AXON, 29089.1120 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 36 523745 Α7 厂 _Β7五、發明說明) 序號 極性 電流標 準 Z半個單 位1 Z半個單位 2 狀態値 4 現行狀態 - Zl z2, 10 5 上+下- 低 ΖΓ Z2, 11 6 上+下- 高 Zl? Z2 01 n β - 7 上+下- 熱 Zl Z2 00 > kj /3 經濟部智慧財產局員工消費合作社印製 亦有其他可能的寫入及抹去順序(如其他不同狀態的 定義由半個單位的阻抗表示)。例如,根據選定的寫入極 性,從狀態〇〇到狀態01或狀態10都是可能的。同樣 地,從狀態11到狀態10或狀態0 1都是可能的。利用夠 高且短的電流脈衝(以任一方向)同時在兩個半個單位熱 分解電沉澱物,也可能使狀態從狀態11到狀態〇〇。 除了以數位型式儲存資訊,結構2100亦能做爲耐 干擾的、低能量的抗熔(anti-fuse)元素,應用在專業可 程式閘門陣列(FPGAs)與專業可結構化電路與系統。 大部分物理的抗熔技術需要大量電流與電壓造成永久的連 接。如此高能量狀態轉換刺激的需要一般被視爲有助於其 減少抗熔意外地形成電氣干擾狀態連接的可能性。然而, 使用局電阻與大量電流於晶片上表示一個重大問題,在可 程式電路上的所有要素一般都按尺寸排列,且高能量消耗 減少攜帶式系統電池壽命。 圖25-29說明依本發明另一實施例,多功可程式裝 置結構包括一共用電極(例,裝置分享共用的陽極或陰 極)。形成多結構分享共用電極的結構是有益的,因爲這 種結構允許在指定的基質表面範圍形成較高密度的單位。 4S&W/0112TW/AXON,29089.1120 37 謂背面之注意事項再填寫本頁) · •線. 太紙張尺度適用中國國家標準(CNS)A4規格X ?Q7 替、 J > * - 一 523745523745 A7 B7 objects 2160 and / or 2170 are broken down by using a sufficient bias across one or two and a half units. The electrodeposition 2170 can be wiped away, for example, by sufficiently biasing the electrode 2130 and the electrode 2110, it can indicate the state 0o. The four possible states, in addition to the current limit of the formation state, are depicted in Table 1. Please read the note on the back of the page. Polarity current standard Z Half unit 1 Z half unit 2 Skin state matters 1 Then start near zero Zl Z2 00 Fill in 2 Up + Down-Low Z 5 5 Z2 01 Write 3 Up-Down + Low Zl5 Z2, 11 Page 4 Up-Down + High Zl Z2, 10 螓 Table IIIII Order Printed by the Intellectual Property Bureau Employees Consumer Cooperatives of the Ministry of Economic Affairs Printed using a low current standard bias to make the electroprecipitate 2150 grow in part 2140 can structure 2100 from State 10 changes to state 11. Similarly, using a relatively high current standard bias to decompose the electroprecipitate 2170 can change the structure 2100 from state 11 to state 01, so the upper electrode 2130 is positively related to the lower electrode 2110. Finally, using a short current pulse to thermally decompose the electroprecipitate 2160 can turn the structure 2100 back to the state OO. Using a sufficiently high current can cause the electroprecipitate to locally heat. This will increase the metal concentration by half a unit, but this excess metal can be removed from the unit with electricity and reduced to the floating electrode using electroplating. This sequence is summarized in Table 2. 4S & W / 0112TW / AXON, 29089.1120 This paper size is applicable to China National Standard (CNS) A4 (210 X 297 mm) 36 523745 Α7 Factory_B7 V. Description of the invention) Serial number Polarity current standard Z half unit 1 Z half Units 2 status 値 4 current status-Zl z2, 10 5 up + down-low ZΓ Z2, 11 6 up + down-high Zl? Z2 01 n β-7 up + down-hot Zl Z2 00 > kj / 3 There are also other possible writing and erasing sequences printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs (such as the definition of other different states represented by the impedance of half a unit). For example, depending on the selected write polarity, from state 00 to state 01 or state 10 is possible. Likewise, it is possible to go from state 11 to state 10 or state 01. Using sufficiently high and short current pulses (in either direction) to simultaneously decompose the electroprecipitate in two and a half units, it is also possible to change the state from state 11 to state 〇〇. In addition to storing information in digital form, the Structure 2100 can also be used as an interference-resistant, low-energy anti-fuse element for professional programmable gate arrays (FPGAs) and professional structured circuits and systems. Most physical anti-fuse technologies require large amounts of current and voltage to make a permanent connection. The need for such a high-energy state transition stimulus is generally considered to help it reduce the possibility that anti-melt accidentally makes an electrical interference state connection. However, the use of local resistance and a large amount of current on the chip represents a major problem. All the elements on the programmable circuit are generally arranged in size, and the high energy consumption reduces the battery life of the portable system. 25-29 illustrate that according to another embodiment of the present invention, a multi-function programmable device structure includes a common electrode (for example, devices share a common anode or cathode). It is beneficial to form a structure that shares a common electrode with multiple structures, as this structure allows higher density units to be formed over a specified range of substrate surfaces. 4S & W / 0112TW / AXON, 29089.1120 37 Please refer to the note on the back side to fill in this page) • • Line. Too large paper size applies Chinese National Standard (CNS) A4 specification X? Q7 replacement, J > *-a 523745
經濟部智慧財產局員工消費合作社印製 31、發明說明(3¾) 圖25與26說明一結構2500,此結構具有水平的 結構與共用電極。結構2500包括一電連接器2510,此 電連接器與公共表面電極2520耦合,電極253 0與 254〇,及佈於絕緣層2170上之離子導體部分2550與 2560。結構2500可用來形成字元線與位元線如前述, 藉由形成一列電極(例,陽極)與導體2510耦合,以及 相反的偏壓電極(例,陰極)欄垂直的運作成電極 2520。一傳導的栓塞,由任何適合的傳導原料形成可用 來耦合電極2520與導體2510。雖然圖示爲水平的架 構,共用電極結構依本實施例可用垂直的架構形成。 圖27與28揭示附加的結構2700與2800具有一 共用電極供兩個或多個裝置共用。結構2700與2800包 括一個共用電極,電極2720與2725,離子導體分別爲 2730,2735 與 2830,2835,絕緣層 2740 與 2750 ° 結構2700與2800可利用上述圖15與16有關技術形 成,例如,利用等角沉澱離子導體原料在一絕緣層的一溝. 槽中。依本發明的另一實施例,指向性的沉澱可用來形成 與結構1 700類似的結構。結構2700與2800各具有兩 個可程式裝置包括共用電極2710與離子導體(例,導體 273 5)和另一個電極(例,電極2725)。電介質原料 2750是一絕緣的物質,不干擾表面電沉澱物的生長,如 石夕氧化物,砂氮化物,諸如此類。 圖29揭示一結構2900包括多個可程式裝置 2902 - 29 1 6形成於共用電極2920的附近。裝置 4S&W/0112TW/AXON, 29089.1120 38 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) ϋ ϋ *1 ϋ ϋ ϋ ϋ n ϋ n I I ϋ ·1 ϋ I ·ϋ ϋ 1 一St · ϋ 1 -ϋ ϋ ϋ H ϋ I 1· ·ϋ (請先閱讀背面之注意事項再填寫本頁) 523745 ^__I_^_ 經濟部智慧財產局員工消費合作社印製 A7 B7 發明說明(3^) 2902-291 6中每一個皆可使用圖21所述方法形成。圖 29實施例揭示,各個電極29 3 0-293 6與29 3 8-29 44可 與共用電極2920在垂直的方向耦合在一起,如此電極 2920形成一位元線而電極2930-2936與電極293 8-2944則形成字元線。結構2900可用與上述結構2100 類似的方法操作及被編寫程式。 依本發明的另一實施例,一可程式結構或裝置以儲 存與生長一電沉澱物相反的一電荷的方式儲存資訊。結構 或裝置的電流容量依所加上跨越裝置電極的偏壓而改變, 如此正電離子移向其中一個電極。如果所加偏壓小於寫入 臨界電壓,電極間就不會形成短路。離子移動造成結構的 電流容量改變。當所用偏壓移除,金屬離子有從電極或接 近電極的壁障擴散的傾向。然而,離子導體與壁障間的一 介面通常是有瑕疵的,並且包括可抑制離子的缺點。因 此,至少一部份離子留在壁障與離子導體介面上或其附 近。如果寫入電壓是顛倒的,離子會被適當地從介面驅 散。 依本發明的可程式結構可用在許多應用上,其不然 就要用傳統的技術如電子可抹去唯讀記憶體,快閃記憶體 (flash)或動態隨機存取記憶體。本發明所提供的優勢 超過目前的記憶體技術包括,除了別的以外,較低的生產 成本及使用有彈性製造技術的能力,易於適應各種不同的 應用。本發明的可程式結構特別地有利於以成本爲首要考 量的應用,如智慧卡(smart card))與電子存貨標籤 4S&W/0112TW/AXON, 29089.1120 〇〇 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) • I ϋ ϋ ϋ ϋ ϋ .1 ϋ n H ϋ n 1 I (請先閱讀背面之注意事項再填寫本頁) . -!線· 523745 經濟部智慧財產局員工消費合作社印製 Α7 Β7 五、發明說明(知) (electronic inventory tag)。而且,直接在塑膠卡片 上形成記憶體的能力是這些應用中最主要的優勢,因對於 其他半導體記憶體型式通常是不可能辦到的。 再者,依本發明的程式化結構,記憶體元素可按尺 寸比例排列到小於數平方微米,裝置中活動的部分小於j 微米。其提供顯著的優勢超過傳統的半導體技術,其中每 個裝置及其相關的連結要佔用數十個平方微米。 因此’本發明的裝置需要相對低的能量且不需要補 充。因此’這些裝置非常適合攜帶式裝置應用。 本發明以一較佳實施例說明如上,僅用於幫助了解 本發明之實施,並非用以限定本發明。例如,當程式化結 構合宜地如上所描述與程式化記憶體裝置連接,本發明並 沒有受限:本發明的結構可適當地利用於微電子電路中可 程式的活潑的或惰性的裝置。而且,雖然只有某些裝置被 圖示出來如包括緩衝器,壁障,或電晶體零件,但這些零 件中的任何一個都可加入本發明的裝置中。任何熟習此項 &柿丨者’在不脫離本發明之精神何範圍內,當可做些許之 更動與潤飾’因此本發明之保護範圔當視後附之申請專利 範圍所界定者爲準。 4S&W/0112TW/AXON, 29089.1120 40 本紙張尺度適用中國國家標準(CNS)A4規格(21〇 χ 297公釐) ' --------訂---------線- (請先閱讀背面之注意事項再填寫本頁)Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 31. Description of the Invention (3¾) Figures 25 and 26 illustrate a structure 2500, which has a horizontal structure and common electrodes. Structure 2500 includes an electrical connector 2510, which is coupled to a common surface electrode 2520, electrodes 2530 and 2540, and ionic conductor portions 2550 and 2560 disposed on an insulating layer 2170. The structure 2500 can be used to form word lines and bit lines as described above. A column of electrodes (eg, anodes) is coupled to the conductor 2510, and a column of opposite bias electrodes (eg, cathodes) operates vertically as electrodes 2520. A conductive plug is formed from any suitable conductive material and can be used to couple the electrode 2520 with the conductor 2510. Although the horizontal structure is shown, the common electrode structure may be formed by a vertical structure according to this embodiment. Figures 27 and 28 reveal that additional structures 2700 and 2800 have a common electrode for use by two or more devices. Structures 2700 and 2800 include a common electrode, electrodes 2720 and 2725, ion conductors are 2730, 2735 and 2830, 2835, and insulation layers 2740 and 2750 °. Structures 2700 and 2800 can be formed using the above-mentioned technologies of FIGS. 15 and 16, for example, using Isotropic precipitation of ionic conductor material in a groove in a dielectric layer. According to another embodiment of the present invention, a directional precipitation can be used to form a structure similar to the structure 1700. Structures 2700 and 2800 each have two programmable devices including a common electrode 2710 and an ion conductor (e.g., conductor 273 5) and another electrode (e.g., electrode 2725). The dielectric material 2750 is an insulating material that does not interfere with the growth of surface electrodepositions, such as stone oxidants, sand nitrides, and the like. FIG. 29 reveals that a structure 2900 includes a plurality of programmable devices 2902-29 16 formed near the common electrode 2920. Device 4S & W / 0112TW / AXON, 29089.1120 38 This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) ϋ ϋ * 1 ϋ ϋ ϋ ϋ n ϋ n II ϋ · 1 ϋ I · ϋ ϋ 1 一 St · ϋ 1 -ϋ ϋ ϋ H ϋ I 1 ·· ϋ (Please read the precautions on the back before filling out this page) 523745 ^ __ I _ ^ _ Printed by A7 B7 Invention Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs ’ 3 ^) Each of 2902-291 6 can be formed using the method described in FIG. 21. The embodiment shown in FIG. 29 shows that each of the electrodes 29 3 0-293 6 and 29 3 8-29 44 can be coupled with the common electrode 2920 in a vertical direction, so that the electrode 2920 forms a bit line and the electrodes 2930-2936 and the electrode 293 8-2944 forms a character line. The structure 2900 can be operated and programmed in a similar manner to the structure 2100 described above. According to another embodiment of the present invention, a programmable structure or device stores information in a manner that stores a charge opposite to the growth of an electroprecipitate. The current capacity of the structure or device changes depending on the bias voltage applied across the device electrodes, so that positively charged ions move to one of the electrodes. If the applied bias voltage is less than the write threshold voltage, there will be no short circuit between the electrodes. Ion movement causes a change in the current capacity of the structure. When the bias used is removed, metal ions tend to diffuse from the electrode or the barrier near the electrode. However, the interface between the ionic conductor and the barrier is often flawed and includes the disadvantage of suppressing ions. Therefore, at least part of the ions remain on or near the barrier and ion conductor interface. If the writing voltage is reversed, the ions will be properly scattered from the interface. The programmable structure according to the present invention can be used in many applications, otherwise it is necessary to use conventional techniques such as electronic erasable read-only memory, flash memory or dynamic random access memory. The advantages provided by the present invention over current memory technologies include, among other things, lower production costs and the ability to use flexible manufacturing technologies, which are easily adaptable to a variety of different applications. The programmable structure of the present invention is particularly advantageous for applications where cost is a primary consideration, such as smart cards and electronic inventory labels 4S & W / 0112TW / AXON, 29089.1120. This paper standard is applicable to Chinese national standards (CNS ) A4 size (210 X 297 mm) • I ϋ ϋ ϋ ϋ ϋ .1 ϋ n H ϋ n 1 I (Please read the notes on the back before filling out this page).-! Line · 523745 Intellectual Property Bureau, Ministry of Economic Affairs Printed by employees' consumer cooperatives A7 B7 V. Description of invention (knowledge) (electronic inventory tag). Moreover, the ability to form memory directly on plastic cards is the main advantage in these applications, as it is often not possible for other semiconductor memory types. Furthermore, according to the stylized structure of the present invention, the memory elements can be arranged to be smaller than a few square microns in proportion to the size, and the moving part in the device is smaller than j microns. It offers significant advantages over traditional semiconductor technology, where each device and its associated connections occupy tens of square micrometers. Therefore, the device of the present invention requires relatively low energy and does not need to be replenished. So these devices are very suitable for portable device applications. The present invention is described above with a preferred embodiment, and is only used to help understand the implementation of the present invention, but not to limit the present invention. For example, when a stylized structure is suitably connected to a stylized memory device as described above, the present invention is not limited: the structure of the present invention can be suitably used for a programmable active or inert device in a microelectronic circuit. Moreover, although only certain devices are illustrated, such as including bumpers, barriers, or transistor parts, any of these parts can be added to the device of the present invention. Anyone who is familiar with this & persimmon 'can be changed and retouched within the scope without departing from the spirit of the invention'. Therefore, the scope of protection of the present invention shall be determined by the scope of the attached patent application. . 4S & W / 0112TW / AXON, 29089.1120 40 This paper size applies to China National Standard (CNS) A4 (21〇χ 297 mm) '-------- Order --------- Line -(Please read the notes on the back before filling this page)
Claims (1)
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US23134300P | 2000-09-08 | 2000-09-08 | |
US23134600P | 2000-09-08 | 2000-09-08 | |
US23134500P | 2000-09-08 | 2000-09-08 | |
US23142700P | 2000-09-08 | 2000-09-08 | |
US23135000P | 2000-09-08 | 2000-09-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW523745B true TW523745B (en) | 2003-03-11 |
Family
ID=28046916
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW90122333A TW523745B (en) | 2000-09-08 | 2001-09-10 | Microelectronic programmable device and methods of forming and programming the same |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW523745B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107248515A (en) * | 2016-03-24 | 2017-10-13 | 上海新昇半导体科技有限公司 | Vacuum tube flash memory structure and its manufacture method |
US10466969B2 (en) | 2017-05-08 | 2019-11-05 | Arizona Board Of Regents On Behalf Of Arizona State University | Tunable true random number generator using programmable metallization cell(s) |
-
2001
- 2001-09-10 TW TW90122333A patent/TW523745B/en not_active IP Right Cessation
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107248515A (en) * | 2016-03-24 | 2017-10-13 | 上海新昇半导体科技有限公司 | Vacuum tube flash memory structure and its manufacture method |
CN107248515B (en) * | 2016-03-24 | 2020-06-16 | 上海新昇半导体科技有限公司 | Vacuum tube flash memory structure and manufacturing method thereof |
US10466969B2 (en) | 2017-05-08 | 2019-11-05 | Arizona Board Of Regents On Behalf Of Arizona State University | Tunable true random number generator using programmable metallization cell(s) |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6825489B2 (en) | Microelectronic device, structure, and system, including a memory structure having a variable programmable property and method of forming the same | |
US6635914B2 (en) | Microelectronic programmable device and methods of forming and programming the same | |
US8213217B2 (en) | Microelectronic programmable device and methods of forming and programming the same | |
US6985378B2 (en) | Programmable microelectronic device, structure, and system and method of forming the same | |
US8022384B2 (en) | Optimized solid electrolyte for programmable metallization cell devices and structures | |
US6927411B2 (en) | Programmable structure, an array including the structure, and methods of forming the same | |
US6487106B1 (en) | Programmable microelectronic devices and method of forming and programming same | |
EP1159743B1 (en) | Programmable microelectronic devices and methods of forming and programming same | |
US7372065B2 (en) | Programmable metallization cell structures including an oxide electrolyte, devices including the structure and method of forming same | |
US8218350B2 (en) | Programmable metallization cell structure including an integrated diode, device including the structure, and method of forming same | |
WO2002021542A1 (en) | Microelectronic programmable device and methods of forming and programming the same | |
US8134140B2 (en) | Programmable metallization cell structure including an integrated diode, device including the structure, and method of forming same | |
WO2002082452A2 (en) | Microelectronic device, structure, and system, including a memory structure having a variable programmable property and method of forming the same | |
TW523745B (en) | Microelectronic programmable device and methods of forming and programming the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GD4A | Issue of patent certificate for granted invention patent | ||
MK4A | Expiration of patent term of an invention patent |