TW201810388A - Low temperature epitaxy method and equipment - Google Patents

Low temperature epitaxy method and equipment Download PDF

Info

Publication number
TW201810388A
TW201810388A TW105137530A TW105137530A TW201810388A TW 201810388 A TW201810388 A TW 201810388A TW 105137530 A TW105137530 A TW 105137530A TW 105137530 A TW105137530 A TW 105137530A TW 201810388 A TW201810388 A TW 201810388A
Authority
TW
Taiwan
Prior art keywords
low
epitaxial
temperature
epitaxial layer
etching gas
Prior art date
Application number
TW105137530A
Other languages
Chinese (zh)
Other versions
TWI591699B (en
Inventor
三重野文健
Original Assignee
上海新昇半導體科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海新昇半導體科技有限公司 filed Critical 上海新昇半導體科技有限公司
Application granted granted Critical
Publication of TWI591699B publication Critical patent/TWI591699B/en
Publication of TW201810388A publication Critical patent/TW201810388A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66787Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
    • H01L29/66795Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Drying Of Semiconductors (AREA)
  • Recrystallisation Techniques (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

The present invention provides a low temperature epitaxy method and equipment. The method comprises the steps of: S1: providing a substrate with a semiconductor fin; S2: growing an epitaxy layer on the sidewalls and top surface of the semiconductor fin; S3: etching the epitaxy layer by ultraviolet light source for cracking a source gas to trim the thickness of the epitaxy layer. The low temperature epitaxy method of the present invention uses etching to trim the thickness of the epitaxy layer in the deposition process can improve the epitaxy layer surface profile on the semiconductor fin in order to eliminate the chance of neighbor epitaxy layers touching each other and reduce the gap between epitaxy layers. It achieved by using UV irradiation to activate etchant gas can increase etching rate of the epitaxy layer as well as lower the etching temperature, that can increase the working window and lower the complexity of the manufacturing process.

Description

一種低溫磊晶方法及裝置 Low-temperature epitaxial method and device

本發明涉及半導體製造技術,特別涉及一種低溫磊晶方法及裝置。 The present invention relates to semiconductor manufacturing technology, and in particular, to a low-temperature epitaxial method and device.

隨著積體電路的尺寸越來越小,以及對於積體電路的要求逐漸增加,電晶體需要隨著越來越小的尺寸而具有較高的驅動電流,因此發展出鰭式場效應電晶體(Fin field-effect transistors;FinFETs)。 As the size of integrated circuits is getting smaller and smaller, and the requirements for integrated circuits are gradually increasing, transistors need to have higher driving currents as the size becomes smaller, so fin-type field effect transistors have been developed ( Fin field-effect transistors; FinFETs).

與平面的電晶體相似,可在鰭式場效電晶體的源極與汲極區上形成源極與汲極矽化物。然而,由於鰭式場效電晶體的鰭片通常很窄,因此會發生電流聚集(current crowding)現象。此外,要在鰭片的源極/汲極上放置接觸插塞很困難,因此使用磊晶製程在鰭片上形成磊晶半導體層,以增加鰭片的體積。 Similar to a planar transistor, a source and drain silicide can be formed on the source and drain regions of a fin-type field effect transistor. However, since the fins of a fin-type field effect transistor are usually narrow, a current crowding phenomenon occurs. In addition, it is difficult to place contact plugs on the source / drain of the fin, so an epitaxial semiconductor layer is formed on the fin using an epitaxial process to increase the volume of the fin.

然而,磊晶製程會有一些缺點。第1圖顯示半導體結構的剖面圖,其包含源極/汲極區(其為原始鰭片2的一部分),以及磊晶生長在源極/汲極區上的磊晶層4。與傳統的平面元件相比較,源極/汲極區2的體積並未被淺溝渠隔絕區6(shallow trench isolation;STI)局限,由於磊晶層4在(111)結晶面上的生長速率小於其他結晶面,因此磊晶層4的外側表面會產生矩形(或近似矩形)的輪廓,其如同原始鰭片2的輪廓。此外,磊晶層4會橫向地延伸, 並形成多個面8(facet),這會造成相鄰的鰭片上所生長的磊晶層之間的距離過度的縮減,因此,其融合窗口(merging window)會減小。在融合窗口的範圍中,相鄰的鰭片上所生長的磊晶層不會融合。再者,即使相鄰的磊晶層4屬於同一個多鰭片鰭式場效電晶體(multi-fin FinFET)的源極/汲極區,相鄰的鰭片2上所生長的磊晶層4的融合也會造成不希望的空隙10產生,如第2圖所示。 However, the epitaxial process has some disadvantages. FIG. 1 shows a cross-sectional view of a semiconductor structure including a source / drain region (which is part of the original fin 2), and an epitaxial layer 4 epitaxially grown on the source / drain region. Compared with conventional planar elements, the volume of source / drain region 2 is not limited by shallow trench isolation (STI) 6 because the growth rate of epitaxial layer 4 on the (111) crystal plane is less than Other crystalline surfaces, so the outer surface of the epitaxial layer 4 will have a rectangular (or approximately rectangular) contour, which is similar to the contour of the original fin 2. In addition, the epitaxial layer 4 extends laterally, A plurality of faces 8 are formed, which will cause the distance between the epitaxial layers grown on the adjacent fins to be excessively reduced, and therefore, the merging window thereof will be reduced. Within the scope of the fusion window, epitaxial layers grown on adjacent fins will not fuse. Furthermore, even if the adjacent epitaxial layer 4 belongs to the same source / drain region of a multi-fin FinFET, the epitaxial layer 4 grown on the adjacent fin 2 Blending also causes undesired voids 10, as shown in Figure 2.

美國專利US2011/0210404A1公開了通過沉積-蝕刻製程來解決上述問題,即首先在半導體鰭片的上表面與側壁上磊晶生長磊晶層,然後通過蝕刻步驟移除一部分磊晶層來改善磊晶層表面輪廓。如第3圖所示,顯示為該專利中經過沉積-蝕刻-再沉積步驟所呈現的半導體結構的剖面圖,其中,基底20中設有兩個淺溝渠隔絕區22,鰭片24水平地介於兩個淺溝渠隔絕區22之間,且位於兩個淺溝渠隔絕區22之上,鰭片24表面的磊晶層36由第一次沉積及蝕刻製程形成的磊晶層36_1與再沉積的磊晶層36_2疊加而成,圖中虛線為兩層磊晶層36_1、36_2的介面,第3圖中還示出了再沉積之後磊晶層所增加的部分的厚度T。在該專利中,通過至少一次沉積-蝕刻迴圈之後,若磊晶層融合,則經由磊晶層的融合所產生的空隙會減小,且可能被消除。然而這種方法中,對沉積-蝕刻過程中製程條件的優化控制比較困難,因為磊晶沉積、蝕刻、再沉積過程是在同一腔體中、原位(in-situ)依次進行的,各階段製程溫度、製程氣壓及運載氣體流量均一致。並且這種方法中,蝕刻磊晶層所需製程溫度較高(750℃以上),對於一些需要低溫磊晶的材料(例如650℃左右磊晶的鍺矽材料),這個製程溫度會對磊晶層產生不良影響,從而劣化元件性能。 US patent US2011 / 0210404A1 discloses that the above-mentioned problem is solved by a deposition-etching process. First, an epitaxial layer is epitaxially grown on the upper surface and sidewalls of a semiconductor fin, and then an epitaxial layer is removed by an etching step to improve the epitaxial layer Layer surface contour. As shown in FIG. 3, a cross-sectional view of the semiconductor structure shown in the patent after the deposition-etching-redeposition step is shown. The substrate 20 is provided with two shallow trench isolation regions 22, and the fins 24 are horizontally interposed. The epitaxial layer 36 on the surface of the fin 24 is between the two shallow trench isolation areas 22 and is located above the two shallow trench isolation areas 22. The epitaxial layer 36_1 formed by the first deposition and etching process and the redeposition The epitaxial layer 36_2 is superimposed. The dotted line in the figure is the interface of the two epitaxial layers 36_1 and 36_2. The thickness T of the increased portion of the epitaxial layer after redeposition is also shown in FIG. In this patent, if the epitaxial layer is fused after at least one deposition-etching loop, the voids generated by the fusion of the epitaxial layer will be reduced and may be eliminated. However, in this method, it is difficult to optimize the control of the process conditions during the deposition-etch process, because the epitaxial deposition, etching, and redeposition processes are sequentially performed in the same cavity in-situ, each stage Process temperature, process pressure and carrier gas flow are all the same. And in this method, the process temperature required to etch the epitaxial layer is relatively high (above 750 ° C). For some materials that require low-temperature epitaxy (such as germanium-silicon materials that are epitaxial at about 650 ° C), this process temperature will affect the epitaxy. Layers adversely affect device performance.

因此,如何提供一種低溫磊晶方法及裝置,以在較低的製程溫度條件下實現半導體鰭片表面磊晶層的蝕刻,改善磊晶層的表面輪廓,避免磊晶層的融合,或減小融合後所產生的空隙,成為本領域技術人員亟待解決的一個重要技術問題。 Therefore, how to provide a low-temperature epitaxial method and device to achieve the etching of the epitaxial layer on the surface of the semiconductor fin at a lower process temperature, improve the surface profile of the epitaxial layer, avoid the fusion of the epitaxial layer, or reduce The gap generated after the fusion has become an important technical problem to be solved urgently by those skilled in the art.

鑒於以上所述現有技術的缺點,本發明的目的在於提供一種低溫磊晶方法及裝置,用於解決現有技術中相鄰半導體鰭片表面的磊晶層容易融合,且存在較大融合間隙的問題。 In view of the shortcomings of the prior art described above, an object of the present invention is to provide a low-temperature epitaxial method and device for solving the problem that the epitaxial layer on the surface of adjacent semiconductor fins is easy to fuse and there is a large fusion gap in the prior art. .

為實現上述目的及其他相關目的,本發明提供一種低溫磊晶方法,所述低溫磊晶方法包括如下步驟:S1:提供一基板,所述基板包括基底及突出於所述基底表面的至少一條半導體鰭片;S2:在所述半導體鰭片的側壁及上表面磊晶生長磊晶層;S3:採用經過紫外光照射而裂解的蝕刻氣體對所述磊晶層進行蝕刻,以減薄所述磊晶層的厚度。 In order to achieve the above and other related objectives, the present invention provides a low-temperature epitaxial method. The low-temperature epitaxial method includes the following steps: S1: Provide a substrate, the substrate including a substrate and at least one semiconductor protruding from a surface of the substrate. Fins; S2: epitaxial layers are grown on the sidewalls and upper surfaces of the semiconductor fins; S3: the epitaxial layer is etched with an etching gas that is cracked by ultraviolet light irradiation to thin the epitaxial layers The thickness of the crystal layer.

可選地,重複所述步驟S2-S3至少一次。 Optionally, the steps S2-S3 are repeated at least once.

可選地,基於所述半導體鰭片的側壁及上表面的磊晶層製作鰭式場效應電晶體的源極或汲極。 Optionally, a source or a drain of the fin-type field effect transistor is fabricated based on the sidewall and the epitaxial layer on the upper surface of the semiconductor fin.

可選地,繼續在減薄後的磊晶層表面進行磊晶層的生長。 Optionally, the epitaxial layer growth is continued on the surface of the epitaxial layer after the thinning.

可選地,基於所述半導體鰭片的側壁及上表面的磊晶層製作鰭式場效應電晶體的源極或汲極。 Optionally, a source or a drain of the fin-type field effect transistor is fabricated based on the sidewall and the epitaxial layer on the upper surface of the semiconductor fin.

可選地,所述步驟S2及步驟S3在同一反應腔體內完成。 Optionally, steps S2 and S3 are completed in the same reaction chamber.

可選地,於所述步驟S3中,所述蝕刻氣體在未被裂解的狀態下包括Cl2、HCl及HF中的至少一種。 Optionally, in the step S3, the etching gas includes at least one of Cl 2 , HCl, and HF in a non-cracked state.

可選地,於所述步驟S3中,選用的溫度範圍是650-750℃。 Optionally, in the step S3, the selected temperature range is 650-750 ° C.

可選地,於所述步驟S3中,所述蝕刻氣體混合有運載氣體,所述運載氣體包括H2、N2、He及Ar中的至少一種。 Optionally, in the step S3, the etching gas is mixed with a carrier gas, and the carrier gas includes at least one of H 2 , N 2 , He, and Ar.

可選地,所述磊晶層的材料為Si或SiGe。 Optionally, the epitaxial layer is made of Si or SiGe.

可選地,所述半導體鰭片的材料選用單晶矽或鍺矽。 Optionally, a material of the semiconductor fin is monocrystalline silicon or silicon germanium.

可選地,於所述步驟S3中,經過減薄的磊晶層具有弧形的表面輪廓。 Optionally, in the step S3, the thinned epitaxial layer has an arc-shaped surface profile.

本發明還提供一種低溫磊晶裝置,所述低溫磊晶裝置包括反應腔、連接於所述反應腔的蝕刻氣體輸入端以及設置於所述反應腔外部的紫外光源;所述紫外光源通過對蝕刻氣體進行照射使其裂解,實現半導體鰭片側壁及上表面上的磊晶層減薄。 The invention also provides a low-temperature epitaxial device. The low-temperature epitaxial device includes a reaction chamber, an etching gas input end connected to the reaction chamber, and an ultraviolet light source provided outside the reaction chamber. The gas is irradiated to crack it, so that the epitaxial layer on the sidewall and the upper surface of the semiconductor fin is thinned.

可選地,所述紫外光源包括設置於蝕刻氣體供應管路及所述蝕刻氣體輸入端之間的紫外光裂解單元,用於在蝕刻氣體通過所述蝕刻氣體輸入端輸入進所述反應腔之前對蝕刻氣體進行裂解。 Optionally, the ultraviolet light source includes an ultraviolet light cracking unit disposed between the etching gas supply pipe and the etching gas input end, and is used to input the etching gas into the reaction chamber through the etching gas input end. The etching gas is cracked.

可選地,所述紫外光裂解單元包括裂解腔以及設置於所述裂解腔外部的紫外光單元;所述蝕刻氣體供應管路供應的蝕刻氣體經過所述裂解腔之後再通過所述蝕刻氣體輸入端輸入進所述反應腔。 Optionally, the ultraviolet light cracking unit includes a cracking chamber and a UV light unit provided outside the cracking chamber; the etching gas supplied by the etching gas supply pipeline passes through the cracking chamber and is then input through the etching gas. End input into the reaction chamber.

可選地,所述裂解腔採用可透過紫外光的材質。 Optionally, the cracking cavity is made of a material that can transmit ultraviolet light.

可選地,所述低溫磊晶裝置採用紅外光單元作為加熱裝置。 Optionally, the low-temperature epitaxial device uses an infrared light unit as a heating device.

可選地,所述反應腔上方同時設置有紫外光單元及紅外光單 元;所述反應腔下方設置有紅外光單元。 Optionally, an ultraviolet light unit and an infrared light unit are simultaneously provided above the reaction chamber. An infrared light unit is arranged below the reaction chamber.

可選地,所述反應腔採用可透過紫外光及紅外光的材質。 Optionally, the reaction chamber is made of a material that can transmit ultraviolet light and infrared light.

可選地,所述低溫磊晶裝置還包括連接於所述反應腔的製程氣體輸入端,用於輸入磊晶反應源氣體、摻雜氣體或運載氣體。 Optionally, the low-temperature epitaxial device further includes a process gas input end connected to the reaction chamber for inputting an epitaxial reaction source gas, a doping gas, or a carrier gas.

可選地,所述反應腔內設有支撐襯底,用於支撐需要進行磊晶的基板;所述基板包括基底及突出於所述基底表面的至少一條半導體鰭片。 Optionally, a support substrate is provided in the reaction chamber for supporting a substrate to be epitaxially formed; the substrate includes a substrate and at least one semiconductor fin protruding from a surface of the substrate.

可選地,所述磊晶層的材料為Si或SiGe。 Optionally, the epitaxial layer is made of Si or SiGe.

可選地,所述蝕刻氣體在未被裂解的狀態下包括Cl2、HCl及HF中的至少一種。 Optionally, the etching gas includes at least one of Cl 2 , HCl, and HF in a non-cracked state.

可選地,所述低溫磊晶裝置在通過蝕刻氣體減薄磊晶層時選用的溫度範圍是650-750℃。 Optionally, a temperature range selected by the low-temperature epitaxial device when the epitaxial layer is thinned by an etching gas is 650-750 ° C.

如上所述,本發明的低溫磊晶方法及裝置,具有以下有益效果: As described above, the low-temperature epitaxial method and device of the present invention have the following beneficial effects:

第一,本發明採用紫外光照射的方式對蝕刻氣體進行裂解,可以提高蝕刻氣體對磊晶層的蝕刻速率,並降低蝕刻磊晶層時的製程溫度; First, the invention uses ultraviolet light to crack the etching gas, which can increase the etching rate of the epitaxial layer by the etching gas, and reduce the process temperature when etching the epitaxial layer;

第二,本發明可以擴大製程窗口,降低製程難度;蝕刻氣體可採用Cl2、HCl及HF中的任意一種,或者採用其中任意一種組合; Second, the present invention can expand the process window and reduce the difficulty of the process; the etching gas can be any of Cl 2 , HCl and HF, or any combination thereof;

第三,本發明在磊晶生長過程中通過蝕刻來減薄磊晶層,可以改善半導體鰭片表面磊晶層的表面輪廓,避免相鄰半導體鰭片表面磊晶層之間的融合,或者減小磊晶層融合後所產生的空隙; Third, the invention reduces the thickness of the epitaxial layer by etching during the epitaxial growth process, which can improve the surface profile of the epitaxial layer on the surface of the semiconductor fins, avoid fusion between the epitaxial layers on the surfaces of adjacent semiconductor fins, or reduce Voids produced by the fusion of the small epitaxial layer;

第四,本發明在半導體鰭片上形成的弧形表面輪廓磊晶層可 以擴大鰭片體積,滿足先進邏輯元件的源汲極的製作需求; Fourth, the curved surface profile epitaxial layer formed on the semiconductor fin according to the present invention may In order to expand the volume of fins, meet the production needs of source and drain of advanced logic components;

第五,本發明製程及裝置簡單,在半導體製造領域具有廣泛的應用前景。 Fifth, the process and device of the present invention are simple and have broad application prospects in the field of semiconductor manufacturing.

2、24‧‧‧鰭片 2, 24‧‧‧ fins

4、36、36_1、36_2‧‧‧磊晶層 4, 36, 36_1, 36_2‧‧‧ epitaxial layer

6、22‧‧‧淺溝渠隔絕區 6, 22‧‧‧ shallow trench isolation area

8‧‧‧面 8‧‧‧ noodles

10‧‧‧空隙 10‧‧‧Gap

20‧‧‧基底 20‧‧‧ substrate

T‧‧‧磊晶層所增加的部分的厚度 T‧‧‧thickness of epitaxial layer

101‧‧‧基底 101‧‧‧ substrate

102‧‧‧淺溝渠隔離結構 102‧‧‧Shallow trench isolation structure

103‧‧‧半導體鰭片 103‧‧‧Semiconductor Fins

104、105‧‧‧磊晶層 104, 105‧‧‧Epitaxial layer

106‧‧‧反應腔 106‧‧‧ reaction chamber

107‧‧‧蝕刻氣體輸入端 107‧‧‧Etching gas input

108‧‧‧蝕刻氣體供應管路 108‧‧‧Etching gas supply line

109‧‧‧裂解腔 109‧‧‧lysis chamber

110,112‧‧‧紫外光單元 110, 112‧‧‧ UV light unit

111‧‧‧紅外光單元 111‧‧‧ infrared light unit

113‧‧‧製程氣體輸入端 113‧‧‧process gas input

114‧‧‧支撐襯底 114‧‧‧Support substrate

115‧‧‧基板 115‧‧‧ substrate

116‧‧‧尾氣輸出端 116‧‧‧ tail gas output

第1圖顯示為現有技術中的半導體結構的剖面圖。 FIG. 1 is a cross-sectional view of a semiconductor structure in the prior art.

第2圖顯示為現有技術中相鄰的鰭片上所生長的磊晶層的融合造成不希望的空隙產生的示意圖。 FIG. 2 is a schematic diagram showing the generation of undesired voids caused by the fusion of epitaxial layers grown on adjacent fins in the prior art.

第3圖顯示為現有技術中經過沉積-蝕刻-再沉積步驟所呈現的半導體結構的剖面圖。 FIG. 3 is a cross-sectional view of a semiconductor structure presented through a deposition-etch-redeposition step in the prior art.

第4圖顯示為本發明的低溫磊晶方法的製程流程圖。 FIG. 4 is a process flow chart of the low-temperature epitaxial method of the present invention.

第5圖-第10圖顯示為本發明的低溫磊晶方法各步驟所呈現的結構剖面圖。 5 to 10 are cross-sectional views showing the structure of each step of the low-temperature epitaxial method of the present invention.

第11圖顯示為本發明的低溫磊晶設備的結構示意圖。 FIG. 11 is a schematic structural view of a low-temperature epitaxial device according to the present invention.

以下通過特定的具體實例說明本發明的實施方式,本領域技術人員可由本說明書所揭露的內容輕易地瞭解本發明的其他優點與功效。本發明還可以通過另外不同的具體實施方式加以實施或應用,本說明書中的各項細節也可以基於不同觀點與應用,在沒有背離本發明的精神下進行各種修飾或改變。 The following describes the embodiments of the present invention through specific specific examples. Those skilled in the art can easily understand other advantages and effects of the present invention from the content disclosed in this specification. The present invention can also be implemented or applied through different specific implementations, and various details in this specification can also be modified or changed based on different viewpoints and applications without departing from the spirit of the present invention.

請參閱第4圖至第11圖。需要說明的是,本實施例中所提供的圖示僅以示意方式說明本發明的基本構想,遂圖式中僅顯示與本發明中 有關的組件而非按照實際實施時的元件數目、形狀及尺寸繪製,其實際實施時各元件的型態、數量及比例可為一種隨意的改變,且其元件佈局型態也可能更為複雜。 See Figures 4 to 11. It should be noted that the illustrations provided in this embodiment only illustrate the basic idea of the present invention in a schematic manner, and the drawings only show the same as in the present invention. Relevant components are not drawn according to the number, shape, and size of the components during actual implementation. The type, quantity, and proportion of each component during actual implementation may be changed at will, and the component layout may be more complicated.

實施例一Example one

本發明提供一種低溫磊晶方法,請參閱第4圖,顯示為該方法的製程流程圖,包括如下步驟:S1:提供一基板,所述基板包括基底及突出於所述基底表面的至少一條半導體鰭片;S2:在所述半導體鰭片的側壁及上表面磊晶生長磊晶層;S3:採用經過紫外光照射而裂解的蝕刻氣體對所述磊晶層進行蝕刻,以減薄所述磊晶層的厚度。 The present invention provides a low-temperature epitaxial method. Please refer to FIG. 4, which shows a process flow chart of the method, including the following steps: S1: Provide a substrate, the substrate including a substrate and at least one semiconductor protruding from a surface of the substrate Fins; S2: epitaxial layers are grown on the sidewalls and upper surfaces of the semiconductor fins; S3: the epitaxial layer is etched with an etching gas that is cracked by ultraviolet light irradiation to thin the epitaxial layers The thickness of the crystal layer.

首先請參閱第5圖,執行步驟S1:提供一基板,所述基板包括基底101及突出於所述基底101表面的至少一條半導體鰭片103。 First, referring to FIG. 5, step S1 is performed: a substrate is provided. The substrate includes a substrate 101 and at least one semiconductor fin 103 protruding from a surface of the substrate 101.

具體的,所述基底101包括但不限於矽、鍺、鍺矽等常規半導體襯底。所述基底101可以為P型摻雜,也可以為N型摻雜。 Specifically, the substrate 101 includes, but is not limited to, conventional semiconductor substrates such as silicon, germanium, and silicon germanium. The substrate 101 may be P-type doped or N-type doped.

本實施例中,所述基底101中還形成有淺溝渠隔離結構102。所述淺溝渠隔離結構102可通過在所述基底101中形成多個間隔排列的溝槽,並在所述溝槽內填充絕緣介電層得到。所述絕緣介電層包括但不限於二氧化矽材料。 In this embodiment, a shallow trench isolation structure 102 is also formed in the substrate 101. The shallow trench isolation structure 102 can be obtained by forming a plurality of spaced-apart trenches in the substrate 101 and filling an insulating dielectric layer in the trenches. The insulating dielectric layer includes, but is not limited to, a silicon dioxide material.

所述半導體鰭片103在水平方向上介於兩個淺溝渠隔離結構102之間,並位於所述淺溝渠隔離結構102之上。 The semiconductor fin 103 is interposed between two shallow trench isolation structures 102 in a horizontal direction, and is located above the shallow trench isolation structures 102.

在一種實施例中,所述半導體鰭片103的材質與所述基底101可以採用相同的材料。例如所述半導體鰭片103與所述基底101的材質均為單晶矽,或者均為鍺矽。在這種情況下,所述半導體鰭片103可通過移除所述淺溝渠隔離結構102的頂端部分得到。當然,所述半導體鰭片103也可以通過磊晶得到。 In one embodiment, the semiconductor fin 103 may be made of the same material as the substrate 101. For example, the semiconductor fin 103 and the substrate 101 are made of single crystal silicon or silicon germanium. In this case, the semiconductor fin 103 may be obtained by removing a top portion of the shallow trench isolation structure 102. Of course, the semiconductor fin 103 can also be obtained by epitaxy.

在另一種實施例中,所述半導體鰭片103的材質與所述基底101也可以採用不同的材料。例如,所述基底101選用矽襯底與鍺襯底其中之一,所述半導體鰭片103採用鍺矽材料;或者所述基底101選用鍺矽襯底與鍺襯底其中之一,所述半導體鰭片103採用單晶矽材料。 In another embodiment, the material of the semiconductor fin 103 and the substrate 101 may be different materials. For example, the substrate 101 is selected from one of a silicon substrate and a germanium substrate, and the semiconductor fin 103 is made of a silicon germanium material; or the substrate 101 is selected from one of a silicon germanium substrate and a germanium substrate, and the semiconductor The fin 103 is made of a single crystal silicon material.

然後請參閱第6圖,執行步驟S2:在所述半導體鰭片103的側壁及上表面磊晶生長磊晶層104。 Referring to FIG. 6, step S2 is performed: an epitaxial layer 104 is epitaxially grown on a sidewall and an upper surface of the semiconductor fin 103.

具體的,所述磊晶層104的材質可以與所述半導體鰭片103相同,也可以不同。作為示例,所述磊晶層104的材料為Si或SiGe。其中SiGe中Ge的組分可以根據實際需要進行調整。 Specifically, the material of the epitaxial layer 104 may be the same as or different from the semiconductor fin 103. As an example, the material of the epitaxial layer 104 is Si or SiGe. The composition of Ge in SiGe can be adjusted according to actual needs.

所述磊晶層104可通過氣相磊晶製程得到。具體的,將所述基板置於反應腔中,將所述基板加熱至預設溫度,並在反應腔內通入磊晶反應源氣體,在所述半導體鰭片103暴露出來的部分上磊晶生長所述磊晶層104。 The epitaxial layer 104 can be obtained by a vapor phase epitaxy process. Specifically, the substrate is placed in a reaction chamber, the substrate is heated to a preset temperature, and an epitaxial reaction source gas is passed into the reaction chamber to epitaxially epitaxially be exposed on the semiconductor fin 103. The epitaxial layer 104 is grown.

作為示例,磊晶生長Si磊晶層所選用的溫度範圍是750℃-850℃,磊晶生長SiGe磊晶層所選用的溫度範圍是650℃-800℃。本實施例中,優選在690℃的溫度下磊晶生長SiGe磊晶層。 As an example, the temperature range selected for epitaxial growth of Si epitaxial layer is 750 ° C-850 ° C, and the temperature range selected for epitaxial growth of SiGe epitaxial layer is 650 ° C-800 ° C. In this embodiment, the SiGe epitaxial layer is preferably epitaxially grown at a temperature of 690 ° C.

作為示例,所述反應源氣體中的矽源選自二氯氫矽 (SiH2Cl2)、三氯氫矽(SiHCl3)、四氯化矽(SiCl4)及矽烷(SiH4)中的一種或多種;所述反應源中的鍺源選用鍺烷(GeH4)。在形成SiGe磊晶層,可通過調整鍺源的流量來實現特定Ge組分的SiGe磊晶層。 As an example, the silicon source in the reaction source gas is selected from the group consisting of silicon dichlorohydrogen (SiH 2 Cl 2 ), silicon trichlorohydrogen (SiHCl 3 ), silicon tetrachloride (SiCl 4 ), and silane (SiH 4 ). One or more kinds; the germanium source in the reaction source is germane (GeH 4 ). In forming the SiGe epitaxial layer, a SiGe epitaxial layer with a specific Ge composition can be realized by adjusting the flow rate of the germanium source.

在磊晶生長過程中,可同時通入運載氣體。作為示例,所述運載氣體包括H2、N2、He及Ar中的一種或兩種以上組合,在本實施例中,所述運載氣體選用為H2During epitaxial growth, a carrier gas can be introduced at the same time. As an example, the carrier gas includes one or a combination of two or more of H 2 , N 2 , He, and Ar. In this embodiment, the carrier gas is selected as H 2 .

磊晶生長時,常需要控制摻雜,以保證控制電阻率。N型磊晶層所用的摻雜劑一般為磷烷(PH3)\三氯化磷(PCl3)或砷烷(AsH3)等;P型磊晶層所用的摻雜劑一般為乙硼烷(B2H6)或三氯化硼(BCl3)等。因此,在磊晶生長過程中,可同時通入摻雜氣體,以實現更多的磊晶功能,所述摻雜氣體可以包含N型摻雜氣體以及P型摻雜氣體中的一種或多種。 During epitaxial growth, doping is often required to ensure controlled resistivity. The dopant used in the N-type epitaxial layer is generally phosphine (PH 3 ) \ phosphorus trichloride (PCl 3 ) or arsenic (AsH 3 ); the dopant used in the P-type epitaxial layer is generally diboron Alkane (B 2 H 6 ) or boron trichloride (BCl 3 ) and the like. Therefore, during the epitaxial growth process, a dopant gas may be simultaneously introduced to achieve more epitaxial functions. The dopant gas may include one or more of an N-type dopant gas and a P-type dopant gas.

此外,在磊晶的過程中,可同時通入選擇氣體,例如HCl氣體,使得磊晶層104選擇性地在所述半導體鰭片103表面生長,但是不會在淺溝渠隔離結構102上生長。 In addition, during the epitaxial process, a selective gas, such as HCl gas, may be introduced at the same time, so that the epitaxial layer 104 selectively grows on the surface of the semiconductor fin 103, but does not grow on the shallow trench isolation structure 102.

如第6圖所示,由於磊晶層在不同的表面晶向上有不同的生長速率,因此可能會形成多個面。隨著磊晶生長的進行,磊晶層的多個面之間會逐漸形成尖角,使得磊晶層的橫向寬度增大,而磊晶層體積還不足夠。 As shown in FIG. 6, since the epitaxial layer has different growth rates on different surface crystal directions, multiple faces may be formed. As the epitaxial growth progresses, sharp angles will gradually be formed between the multiple surfaces of the epitaxial layer, so that the lateral width of the epitaxial layer increases, and the volume of the epitaxial layer is not sufficient.

再請參閱第7圖,執行步驟S3:採用經過紫外光照射而裂解的蝕刻氣體對所述磊晶層104進行蝕刻,以減薄所述磊晶層104的厚度。 Referring to FIG. 7 again, step S3 is performed: the epitaxial layer 104 is etched with an etching gas that is decomposed by ultraviolet light irradiation to reduce the thickness of the epitaxial layer 104.

作為示例,所述蝕刻氣體在未被裂解的狀態下包括Cl2、HCl及HF中的至少一種。其中,Cl2的最大光吸收波長(Optical Absorption wave length)為332nm(在此波長下,吸光度值達到最大),HCl的最大光吸收波長為154nm,HF的最大光吸收波長為332nm,均在紫外光譜(10~380nm)範圍內。 As an example, the etching gas includes at least one of Cl 2 , HCl, and HF in a non-cracked state. Among them, the maximum light absorption wavelength (Optical Absorption Wave Length) of Cl 2 is 332nm (at this wavelength, the absorbance value reaches the maximum), the maximum light absorption wavelength of HCl is 154nm, the maximum light absorption wavelength of HF is 332nm, both in the ultraviolet Spectrum (10 ~ 380nm).

本步驟中採用紫外光照射蝕刻氣體,可以裂解(或稱為分解)蝕刻氣體,使蝕刻氣體充分活化(activate),具有更強的蝕刻能力,並可以實現低溫蝕刻。例如氯氣分子在紫外光作用下,吸收能量,使共價鍵斷裂離解成為兩個活化氯原子,而活化氯原子半徑較小,奪取或吸引電子的能力較強,非常活潑,在較低溫度下即可實現對磊晶層的蝕刻。 In this step, the etching gas is irradiated with ultraviolet light, and the etching gas can be cracked (or decomposed) to fully activate the etching gas, which has stronger etching ability and can achieve low-temperature etching. For example, under the action of ultraviolet light, chlorine gas molecules absorb energy to break the covalent bond and dissociate into two activated chlorine atoms. The radius of activated chlorine atoms is small, and the ability to capture or attract electrons is strong. It is very lively and at a lower temperature. The epitaxial layer can be etched.

作為示例,本步驟中蝕刻選用的溫度範圍是650-750℃,例如660℃、670℃、680℃、690℃、695℃、700℃、710℃、720℃、730℃、740℃等。 As an example, the temperature range selected for etching in this step is 650-750 ° C, such as 660 ° C, 670 ° C, 680 ° C, 690 ° C, 695 ° C, 700 ° C, 710 ° C, 720 ° C, 730 ° C, 740 ° C, and the like.

本步驟與所述步驟S2可在同一反應腔體內完成,且所述蝕刻氣體可混合有運載氣體。作為示例,所述運載氣體包括H2、N2、He及Ar中的至少一種。 This step and the step S2 may be completed in the same reaction chamber, and the etching gas may be mixed with a carrier gas. As an example, the carrier gas includes at least one of H 2 , N 2 , He, and Ar.

如第7圖所示,採用虛線示出了所述磊晶層104減薄前輪廓,而經過本步驟的蝕刻,減薄後的磊晶層104具有弧形的表面輪廓,降低了相鄰半導體鰭片103上磊晶層的融合概率。 As shown in FIG. 7, the outline of the epitaxial layer 104 before thinning is shown by a dashed line. After the etching in this step, the thinned epitaxial layer 104 has an arc-shaped surface profile, which reduces adjacent semiconductors. The fusion probability of the epitaxial layer on the fin 103.

所述磊晶層105與磊晶層104可以採用相同的材質,也可以採用不同的材質。第10圖中所述磊晶層105與磊晶層104的界限採用虛線表示,意味著此介面可能是不可見的。 The epitaxial layer 105 and the epitaxial layer 104 may be made of the same material or different materials. The boundary between the epitaxial layer 105 and the epitaxial layer 104 in FIG. 10 is indicated by a dotted line, which means that this interface may not be visible.

在另一實施例中,可選擇重複所述步驟S2-S3至少一次,以增加磊晶層的體積。第8圖顯示為採用所述步驟S2的方法進一步在所述磊晶 層104表面生長磊晶層105的示意圖,第9圖顯示為採用所述步驟S3的方法進一步減薄所述磊晶層105的示意圖。 In another embodiment, the steps S2-S3 can be repeated at least once to increase the volume of the epitaxial layer. FIG. 8 shows that the method of step S2 is further used in the epitaxy. A schematic diagram of the epitaxial layer 105 growing on the surface of the layer 104 is shown in FIG. 9. FIG. 9 is a schematic diagram of further thinning the epitaxial layer 105 by using the method of step S3.

在另一實施例中,也可以在繼續在減薄後的磊晶層表面進行磊晶層的生長,而無需進一步進行減薄,因為前面的蝕刻步驟降低了進一步磊晶產生融合的概率。或者在重複所述步驟S2-S3至少一次之後,繼續在減薄後的磊晶層表面進行磊晶層的生長,而無需進一步進行減薄。 In another embodiment, the epitaxial layer can be grown on the surface of the thinned epitaxial layer without further thinning, because the previous etching step reduces the probability of further epitaxial fusion. Alternatively, after repeating the steps S2-S3 at least once, the epitaxial layer growth is continued on the surface of the epitaxial layer after the thinning, without further thinning.

本發明的低溫磊晶方法在磊晶生長過程中通過蝕刻來減薄磊晶層,可以改善半導體鰭片表面磊晶層的表面輪廓,避免相鄰半導體鰭片表面磊晶層之間的融合,或者減小磊晶層融合後所產生的空隙。其中,紫外光照射蝕刻氣體的方式可以提高蝕刻氣體對磊晶層的蝕刻速率,並降低蝕刻磊晶層時的製程溫度,從而擴大製程窗口,降低製程難度。由於半導體鰭片上形成的弧形表面輪廓的磊晶層擴大了鰭片體積,可以滿足先進邏輯元件(例如鰭式場效應電晶體)的源極或汲極的製作需求。 The low-temperature epitaxial method of the present invention reduces the epitaxial layer by etching during the epitaxial growth process, which can improve the surface profile of the epitaxial layer on the surface of the semiconductor fin and avoid fusion between the epitaxial layers on the surface of the adjacent semiconductor fin. Or reduce the void generated after the epitaxial layer is fused. The method of irradiating the etching gas with ultraviolet light can increase the etching rate of the epitaxial layer by the etching gas, and reduce the process temperature when etching the epitaxial layer, thereby expanding the process window and reducing the difficulty of the process. As the epitaxial layer with an arc-shaped surface profile formed on the semiconductor fin expands the volume of the fin, it can meet the manufacturing requirements of the source or drain of an advanced logic element (such as a fin-type field effect transistor).

實施例二Example two

本發明還提供一種低溫磊晶裝置,請參閱第11圖,顯示為該裝置的結構示意圖,包括反應腔106、連接於所述反應腔106的蝕刻氣體輸入端107以及設置於所述反應腔106外部的紫外光源;所述紫外光源通過對蝕刻氣體進行照射使其裂解,實現半導體鰭片側壁及上表面上的磊晶層減薄。 The invention also provides a low-temperature epitaxial device. Please refer to FIG. 11, which is a schematic structural diagram of the device, including a reaction chamber 106, an etching gas input end 107 connected to the reaction chamber 106, and a reaction chamber 106. An external ultraviolet light source; the ultraviolet light source is irradiated by an etching gas to cause cracking, so that the epitaxial layer on the side wall and the upper surface of the semiconductor fin is thinned.

作為示例,所述紫外光源包括設置於蝕刻氣體供應管路108及所述蝕刻氣體輸入端107之間的紫外光裂解單元,用於在蝕刻氣體通過所述蝕刻氣體輸入端107輸入進所述反應腔106之前對蝕刻氣體進行裂解。 As an example, the ultraviolet light source includes an ultraviolet light cracking unit disposed between the etching gas supply pipe 108 and the etching gas input terminal 107, and is configured to input the etching gas into the reaction through the etching gas input terminal 107. The chamber 106 is previously cracked by the etching gas.

作為示例,所述紫外光裂解單元包括裂解腔109以及設置於所述裂解腔109外部的紫外光單元110;所述蝕刻氣體供應管路108供應的蝕刻氣體經過所述裂解腔109之後再通過所述蝕刻氣體輸入端107輸入進所述反應腔106。 As an example, the ultraviolet light cracking unit includes a cracking chamber 109 and an ultraviolet light unit 110 provided outside the cracking chamber 109; the etching gas supplied by the etching gas supply pipe 108 passes through the cracking chamber 109 and then passes through the cracking chamber 109. The etching gas input terminal 107 is input into the reaction chamber 106.

作為示例,所述紫外光單元110採用紫外光燈,所述裂解腔109採用可透過紫外光的材質,例如石英玻璃等。 As an example, the ultraviolet light unit 110 is an ultraviolet light, and the cracking cavity 109 is a material that can transmit ultraviolet light, such as quartz glass.

作為示例,所述反應腔106上方還可進一步設置有紫外光單元112,用於對部分還沒有被裂解的蝕刻氣體進一步進行裂解,進一步提高蝕刻氣體的利用率。 As an example, an ultraviolet light unit 112 may be further disposed above the reaction chamber 106, which is used for further cracking a part of the etching gas that has not been cracked to further improve the utilization rate of the etching gas.

作為示例,所述蝕刻氣體在未被裂解的狀態下包括Cl2、HCl及HF中的至少一種。在紫外光照射下,蝕刻氣體裂解(或稱為分解)為原子,使蝕刻氣體充分活化(activate),具有更強的蝕刻能力,並可以實現低溫蝕刻。例如氯氣分子在紫外光作用下,吸收能量,使共價鍵斷裂離解成為兩個活化氯原子,而活化氯原子半徑較小,奪取或吸引電子的能力較強,非常活潑,在較低溫度下即可實現對磊晶層的蝕刻。作為示例,所述低溫磊晶裝置在通過蝕刻氣體減薄磊晶層時選用的溫度範圍是650-750℃。 As an example, the etching gas includes at least one of Cl 2 , HCl, and HF in a non-cracked state. Under the irradiation of ultraviolet light, the etching gas is cracked (or decomposed) into atoms, so that the etching gas is fully activated, which has stronger etching ability and can achieve low-temperature etching. For example, under the action of ultraviolet light, chlorine gas molecules absorb energy to break the covalent bond and dissociate into two activated chlorine atoms. The radius of activated chlorine atoms is small, and the ability to capture or attract electrons is strong. It is very lively and at a lower temperature. The epitaxial layer can be etched. As an example, a temperature range selected by the low-temperature epitaxial device when the epitaxial layer is thinned by an etching gas is 650-750 ° C.

如圖11所示,所述低溫磊晶裝置採用紅外光單元111作為加熱裝置。所述紅外光單元111具體可選用紅外光燈。作為示例,所述反應腔106上方和下方均設置有所述紅外光單元111,其中,設置於所述反應腔106上方的紅外光單元111與所述紫外光單元112交替排列。另外,所述紅外光111均勻分佈於所述反應腔106上方和下方,所述紫外光單元112均勻分佈於所述反應腔106上方,這樣均勻的設置可以提高加熱的溫度均勻性,提高磊晶晶 體的品質及磊晶層蝕刻的均勻性。作為示例,所述磊晶層的材料為Si或SiGe。 As shown in FIG. 11, the low-temperature epitaxial device uses an infrared light unit 111 as a heating device. The infrared light unit 111 may specifically be an infrared light. As an example, the infrared light units 111 are disposed above and below the reaction chamber 106, and the infrared light units 111 and the ultraviolet light units 112 are alternately arranged above the reaction chamber 106. In addition, the infrared light 111 is evenly distributed above and below the reaction chamber 106, and the ultraviolet light unit 112 is evenly distributed above the reaction chamber 106. Such a uniform arrangement can improve the uniformity of the heating temperature and the epitaxy. crystal Body quality and uniformity of epitaxial layer etching. As an example, the material of the epitaxial layer is Si or SiGe.

由於所述紫外光單元112及紅外光單元111均設置於所述反應腔外部,因此所述反應腔優選採用可透過紫外光及紅外光的材質。 Since the ultraviolet light unit 112 and the infrared light unit 111 are both disposed outside the reaction chamber, the reaction chamber is preferably made of a material that can transmit ultraviolet light and infrared light.

當然,所述紫外光單元及紅外光單元的設置位置可以依據需求進行改變,並不限於此處所列舉的示例。 Of course, the setting positions of the ultraviolet light unit and the infrared light unit can be changed according to requirements, and are not limited to the examples listed here.

如第11圖所示,所述低溫磊晶裝置進一步包括連接於所述反應腔106的製程氣體輸入端113,用於輸入磊晶反應源氣體、摻雜氣體或運載氣體等,實現磊晶層的磊晶生長。 As shown in FIG. 11, the low-temperature epitaxial device further includes a process gas input terminal 113 connected to the reaction chamber 106 for inputting an epitaxial reaction source gas, a doping gas, or a carrier gas, etc. to realize an epitaxial layer. Epitaxial growth.

需要指出的是,為了圖示的方便,第11圖中僅示出了一根製程氣體輸入端113,然而在現實運用中,所述製程氣體輸入端113的數量可以根據需要進行調整,例如2根、3根甚至更多,此處不應過分限制本發明的保護範圍。 It should be noted that for the convenience of illustration, only one process gas input terminal 113 is shown in FIG. 11. However, in actual use, the number of the process gas input terminals 113 can be adjusted according to needs, for example, 2 Root, 3 roots or more, and the protection scope of the present invention should not be excessively limited here.

所述反應腔106內還設有支撐襯底114,用於支撐需要進行磊晶的基板115;所述基板115包括基底及突出於所述基底表面的至少一條半導體鰭片。作為示例,所述支撐襯底114選用SiC覆蓋的石墨襯底。 A support substrate 114 is also provided in the reaction chamber 106 for supporting a substrate 115 that needs to be epitaxially formed. The substrate 115 includes a substrate and at least one semiconductor fin protruding from a surface of the substrate. As an example, the supporting substrate 114 is a graphite substrate covered by SiC.

本發明的低溫磊晶裝置可以實現磊晶層的生長及磊晶層的低溫蝕刻,改善半導體鰭片表面磊晶層的表面輪廓,滿足先進邏輯元件的源汲極的製作需求。 The low-temperature epitaxial device of the present invention can realize the growth of the epitaxial layer and the low-temperature etching of the epitaxial layer, improve the surface profile of the epitaxial layer on the surface of the semiconductor fin, and meet the manufacturing requirements of the source and drain of the advanced logic element.

綜上所述,本發明的低溫磊晶方法及裝置,具有以下有益效果:第一,本發明採用紫外光照射的方式對蝕刻氣體進行裂解,可以提高蝕刻氣體對磊晶層的蝕刻速率,並降低蝕刻磊晶層時的製程溫度; 第二,本發明可以擴大製程窗口,降低製程難度;蝕刻氣體可採用Cl2、HCl及HF中的任意一種,或者採用其中任意一種組合;第三,本發明通過蝕刻磊晶層,可以改善半導體鰭片表面磊晶層的表面輪廓,避免相鄰半導體鰭片表面磊晶層之間的融合,或者減小磊晶層融合後所產生的空隙;第四,本發明在半導體鰭片上形成的弧形表面輪廓磊晶層可以擴大鰭片體積,滿足先進邏輯元件的源汲極的製作需求;第五,本發明製程及裝置簡單,在半導體製造領域具有廣泛的應用前景。 In summary, the low-temperature epitaxial method and device of the present invention have the following beneficial effects: First, the present invention uses an ultraviolet light irradiation method to crack the etching gas, which can increase the etching rate of the epitaxial layer by the etching gas, and Reduce the process temperature when etching the epitaxial layer; Second, the present invention can expand the process window and reduce the difficulty of the process; the etching gas can be any one of Cl 2 , HCl and HF, or any combination thereof; third, this By etching the epitaxial layer, the invention can improve the surface profile of the epitaxial layer on the surface of the semiconductor fin, avoid fusion between the epitaxial layers on the surface of adjacent semiconductor fins, or reduce the gap generated after the epitaxial layer is fused; The arc-shaped surface epitaxial layer formed on the semiconductor fin according to the present invention can expand the volume of the fin and meet the manufacturing requirements of the source and drain of the advanced logic element. Fifth, the process and device of the present invention are simple and widely used in the field of semiconductor manufacturing. Application prospects.

所以,本發明有效克服了現有技術中的種種缺點而具高度產業利用價值。 Therefore, the present invention effectively overcomes various shortcomings in the prior art and has high industrial utilization value.

上述實施例僅例示性說明本發明的原理及其功效,而非用於限制本發明。任何熟悉此技術的人士皆可在不違背本發明的精神及範疇下,對上述實施例進行修飾或改變。因此,舉凡所屬技術領域中具有通常知識者在未脫離本發明所揭示的精神與技術思想下所完成的一切等效修飾或改變,仍應由本發明的權利要求所涵蓋。 The above-mentioned embodiments merely illustrate the principle of the present invention and its effects, but are not intended to limit the present invention. Anyone familiar with this technology can modify or change the above embodiments without departing from the spirit and scope of the present invention. Therefore, all equivalent modifications or changes made by those with ordinary knowledge in the technical field to which they belong without departing from the spirit and technical ideas disclosed by the present invention should still be covered by the claims of the present invention.

S1~S3‧‧‧步驟 Steps S1 ~ S3‧‧‧‧

Claims (24)

一種低溫磊晶方法,其特徵在於,所述低溫磊晶方法包括如下步驟:S1:提供一基板,所述基板包括基底及突出於所述基底表面的至少一條半導體鰭片;S2:在所述半導體鰭片的側壁及上表面磊晶生長磊晶層;S3:採用經過紫外光照射而裂解的蝕刻氣體對所述磊晶層進行蝕刻,以減薄所述磊晶層的厚度。 A low-temperature epitaxial method, characterized in that the low-temperature epitaxial method includes the following steps: S1: providing a substrate, the substrate including a substrate and at least one semiconductor fin protruding from the surface of the substrate; S2: in the The epitaxial layer is epitaxially grown on the side wall and the upper surface of the semiconductor fin; S3: the epitaxial layer is etched with an etching gas that is cracked by ultraviolet light irradiation to reduce the thickness of the epitaxial layer. 根據權利要求1所述的低溫磊晶方法,其中重複所述步驟S2-S3至少一次。 The low-temperature epitaxial method according to claim 1, wherein the steps S2-S3 are repeated at least once. 根據權利要求1或2所述的低溫磊晶方法,其中基於所述半導體鰭片的側壁及上表面的磊晶層製作鰭式場效應電晶體的源極或汲極。 The low-temperature epitaxial method according to claim 1 or 2, wherein a source or a drain of a fin-type field effect transistor is made based on an epitaxial layer on a sidewall and an upper surface of the semiconductor fin. 根據權利要求1或2所述的低溫磊晶方法,其中繼續在減薄後的磊晶層表面進行磊晶層的生長。 The low-temperature epitaxial method according to claim 1 or 2, wherein the epitaxial layer is continuously grown on the surface of the epitaxial layer after the thinning. 根據權利要求4所述的低溫磊晶方法,其中基於所述半導體鰭片的側壁及上表面的磊晶層製作鰭式場效應電晶體的源極或汲極。 The low-temperature epitaxial method according to claim 4, wherein a source or a drain of a fin-type field effect transistor is fabricated based on an epitaxial layer on a sidewall and an upper surface of the semiconductor fin. 根據權利要求1所述的低溫磊晶方法,其中所述步驟S2及步驟S3在同一反應腔體內完成。 The low-temperature epitaxial method according to claim 1, wherein the steps S2 and S3 are completed in a same reaction chamber. 根據權利要求1所述的低溫磊晶方法,其中於所述步驟S3中,所述蝕刻氣體在未被裂解的狀態下包括Cl2、HCl及HF中的至少一種。 The low-temperature epitaxial method according to claim 1, wherein in the step S3, the etching gas includes at least one of Cl 2 , HCl, and HF in an uncracked state. 根據權利要求1所述的低溫磊晶方法,其中於所述步驟S3中,選用的溫度範圍是650-750℃。 The low-temperature epitaxial method according to claim 1, wherein in the step S3, a selected temperature range is 650-750 ° C. 根據權利要求1所述的低溫磊晶方法,其中於所述步驟S3中,所述蝕刻氣體混合有運載氣體,所述運載氣體包括H2、N2、He及Ar中的至少一種。 Low Wen Leijing method of claim 1, wherein in said step S3, the etching gas mixed with carrier gas, the carrier gas comprises H 2, N 2, at least one of Ar and He. 根據權利要求1所述的低溫磊晶方法,其中所述磊晶層的材料為Si或SiGe。 The low-temperature epitaxial method according to claim 1, wherein a material of the epitaxial layer is Si or SiGe. 根據權利要求1所述的低溫磊晶方法,其中所述半導體鰭片的材料選用單晶矽或鍺矽。 The low-temperature epitaxial method according to claim 1, wherein a material of the semiconductor fin is monocrystalline silicon or silicon germanium. 根據權利要求1所述的低溫磊晶方法,其中於所述步驟S3中,經過減薄的磊晶層具有弧形的表面輪廓。 The low-temperature epitaxial method according to claim 1, wherein in the step S3, the thinned epitaxial layer has an arc-shaped surface profile. 一種低溫磊晶裝置,其特徵在於,所述低溫磊晶裝置包括反應腔、連接於所述反應腔的蝕刻氣體輸入端以及設置於所述反應腔外部的紫外光源;所述紫外光源通過對蝕刻氣體進行照射使其裂解,實現半導體鰭片側壁及上表面上的磊晶層減薄。 A low-temperature epitaxial device, characterized in that the low-temperature epitaxial device includes a reaction chamber, an etching gas input end connected to the reaction chamber, and an ultraviolet light source provided outside the reaction chamber; The gas is irradiated to crack it, so that the epitaxial layer on the sidewall and the upper surface of the semiconductor fin is thinned. 根據權利要求13所述的低溫磊晶裝置,其中所述紫外光源包括設置於蝕刻氣體供應管路及所述蝕刻氣體輸入端之間的紫外光裂解單元,用於在蝕刻氣體通過所述蝕刻氣體輸入端輸入進所述反應腔之前對蝕刻氣體進行裂解。 The low-temperature epitaxial device according to claim 13, wherein the ultraviolet light source comprises an ultraviolet light cracking unit provided between an etching gas supply pipe and the etching gas input end, and is configured to pass an etching gas through the etching gas. Before the input end is input into the reaction chamber, the etching gas is cracked. 根據權利要求14所述的低溫磊晶裝置,其中所述紫外光裂解單元包 括裂解腔以及設置於所述裂解腔外部的紫外光單元;所述蝕刻氣體供應管路供應的蝕刻氣體經過所述裂解腔之後再通過所述蝕刻氣體輸入端輸入進所述反應腔。 The low-temperature epitaxial device according to claim 14, wherein the ultraviolet light cracking unit pack It includes a cracking chamber and an ultraviolet light unit provided outside the cracking chamber; the etching gas supplied by the etching gas supply pipeline passes through the cracking chamber and is then input into the reaction chamber through the etching gas input end. 根據權利要求15所述的低溫磊晶裝置,其中所述裂解腔採用可透過紫外光的材質。 The low-temperature epitaxial device according to claim 15, wherein the cracking cavity is made of a material that can transmit ultraviolet light. 根據權利要求13所述的低溫磊晶裝置,其中所述低溫磊晶裝置採用紅外光單元作為加熱裝置。 The low-temperature epitaxial device according to claim 13, wherein the low-temperature epitaxial device uses an infrared light unit as a heating device. 根據權利要求13所述的低溫磊晶裝置,其中所述反應腔上方同時設置有紫外光單元及紅外光單元;所述反應腔下方設置有紅外光單元。 The low-temperature epitaxial device according to claim 13, wherein an ultraviolet light unit and an infrared light unit are simultaneously provided above the reaction chamber; and an infrared light unit is provided below the reaction chamber. 根據權利要求13所述的低溫磊晶裝置,其中所述反應腔採用可透過紫外光及紅外光的材質。 The low-temperature epitaxial device according to claim 13, wherein the reaction chamber is made of a material that can transmit ultraviolet light and infrared light. 根據權利要求13所述的低溫磊晶裝置,其中所述低溫磊晶裝置還包括連接於所述反應腔的製程氣體輸入端,用於輸入磊晶反應源氣體、摻雜氣體或運載氣體。 The low-temperature epitaxial device according to claim 13, wherein the low-temperature epitaxial device further comprises a process gas input terminal connected to the reaction chamber for inputting an epitaxial reaction source gas, a doping gas, or a carrier gas. 根據權利要求13所述的低溫磊晶裝置,其中所述反應腔內設有支撐襯底,用於支撐需要進行磊晶的基板;所述基板包括基底及突出於所述基底表面的至少一條半導體鰭片。 The low-temperature epitaxial device according to claim 13, wherein a support substrate is provided in the reaction chamber for supporting a substrate to be epitaxially formed; the substrate comprises a substrate and at least one semiconductor protruding from a surface of the substrate Fins. 根據權利要求13所述的低溫磊晶裝置,其中所述磊晶層的材料為Si或SiGe。 The low-temperature epitaxial device according to claim 13, wherein a material of the epitaxial layer is Si or SiGe. 根據權利要求13所述的低溫磊晶裝置,其中所述蝕刻氣體在未被裂解的狀態下包括Cl2、HCl及HF中的至少一種。 The low-temperature epitaxial device according to claim 13, wherein the etching gas includes at least one of Cl 2 , HCl, and HF in a state where it is not cracked. 根據權利要求13所述的低溫磊晶裝置,其中所述低溫磊晶裝置在通過蝕刻氣體減薄磊晶層時選用的溫度範圍是650-750℃。 The low-temperature epitaxial device according to claim 13, wherein a temperature range selected by the low-temperature epitaxial device when the epitaxial layer is thinned by an etching gas is 650-750 ° C.
TW105137530A 2016-06-17 2016-11-16 Low temperature epitaxy method and equipment TWI591699B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610435872.XA CN107516636A (en) 2016-06-17 2016-06-17 A kind of low-temperature epitaxy method and device
??201610435872.X 2016-06-17

Publications (2)

Publication Number Publication Date
TWI591699B TWI591699B (en) 2017-07-11
TW201810388A true TW201810388A (en) 2018-03-16

Family

ID=60048475

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105137530A TWI591699B (en) 2016-06-17 2016-11-16 Low temperature epitaxy method and equipment

Country Status (2)

Country Link
CN (1) CN107516636A (en)
TW (1) TWI591699B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110592665A (en) * 2019-08-09 2019-12-20 上海新昇半导体科技有限公司 Method for improving flatness of semiconductor film

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0738380B2 (en) * 1985-06-28 1995-04-26 日本電気株式会社 Surface treatment method
JPH06244106A (en) * 1993-02-19 1994-09-02 Nippondenso Co Ltd Manufacture of semiconductor substrate
CN101802985A (en) * 2007-09-14 2010-08-11 高通Mems科技公司 Etching processes used in mems production
US8263451B2 (en) * 2010-02-26 2012-09-11 Taiwan Semiconductor Manufacturing Company, Ltd. Epitaxy profile engineering for FinFETs

Also Published As

Publication number Publication date
TWI591699B (en) 2017-07-11
CN107516636A (en) 2017-12-26

Similar Documents

Publication Publication Date Title
US11018003B2 (en) Method of selective silicon germanium epitaxy at low temperatures
US9929055B2 (en) Method to grow thin epitaxial films at low temperature
US9805942B2 (en) Method of modifying epitaxial growth shape on source drain area of transistor
US8796093B1 (en) Doping of FinFET structures
TWI420573B (en) Method of forming integrated circuit structure
US10205002B2 (en) Method of epitaxial growth shape control for CMOS applications
TWI677906B (en) Method of selective epitaxy
KR102321839B1 (en) Selective etching method for epitaxial films on source/drain regions of transistors
US20170025509A1 (en) Strained silicon germanium fin with controlled junction for finfet devices
TWI591699B (en) Low temperature epitaxy method and equipment
TWI748021B (en) Method of forming strained channel layer
CN105097520A (en) Formation method of semiconductor structure
CN109309004A (en) Semiconductor structure and forming method thereof
CN106856191B (en) Semiconductor structure and forming method thereof
US20180033621A1 (en) Method of forming structures with v shaped bottom on silicon substrate
US20220319844A1 (en) Anisotropic epitaxial growth
WO2017091327A1 (en) Method for modifying epitaxial growth shape
CN106960792A (en) Nmos pass transistor and forming method thereof
CN105097694B (en) Preparation method of semiconductor device
CN114078705A (en) Method for forming semiconductor structure
CN103681258A (en) Source and drain double epitaxial layer formation method
CN103151294A (en) Device isolation structure and manufacturing method thereof