TW201807417A - Sensor circuit - Google Patents

Sensor circuit Download PDF

Info

Publication number
TW201807417A
TW201807417A TW106127049A TW106127049A TW201807417A TW 201807417 A TW201807417 A TW 201807417A TW 106127049 A TW106127049 A TW 106127049A TW 106127049 A TW106127049 A TW 106127049A TW 201807417 A TW201807417 A TW 201807417A
Authority
TW
Taiwan
Prior art keywords
signal
circuit
physical quantity
control circuit
outputs
Prior art date
Application number
TW106127049A
Other languages
Chinese (zh)
Other versions
TWI701444B (en
Inventor
挽地友生
有山稔
矢野宏伯
Original Assignee
精工半導體有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 精工半導體有限公司 filed Critical 精工半導體有限公司
Publication of TW201807417A publication Critical patent/TW201807417A/en
Application granted granted Critical
Publication of TWI701444B publication Critical patent/TWI701444B/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/3181Functional testing
    • G01R31/3187Built-in tests
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/282Testing of electronic circuits specially adapted for particular applications not provided for elsewhere
    • G01R31/2829Testing of circuits in sensor or actuator systems

Abstract

Provided is a sensor circuit that has little possibility of being accidentally put into a test mode in response to an external input of noise or the like. The sensor circuit includes a clock generation circuit configured to output a control signal that is used to control intermittent operation to a physical quantity detection unit, and to output a sampling signal in a sleep period, a potential detection circuit configured to detect a potential at an output terminal and to output a detection signal, and a clock control circuit configured to output a mode switching signal that is a command to switch the clock generation circuit to a test mode, when a given signal pattern is detected in data that is obtained by sampling the detection signal based on the sampling signal.

Description

感測電路Sensing circuit

本發明是有關於一種感測(sensor)電路,尤其是有關於一種具有測試(test)電路的感測電路。The present invention relates to a sensor circuit, and more particularly, to a sensor circuit with a test circuit.

以往,將檢測各種物理量的感測電路搭載於電子機器中來有效利用。感測電路有時搭載於電源端子、接地端子、輸出端子這三端子的封裝(package)中。如此,搭載於端子數少的封裝中的感測電路多無法設置用於切換至測試模式(test mode)的專用端子。因此,在端子數少的感測電路中,將輸出端子兼用作測試端子。Conventionally, a sensing circuit that detects various physical quantities is mounted in an electronic device and is effectively used. The sensing circuit is sometimes mounted in a three-terminal package including a power terminal, a ground terminal, and an output terminal. In this way, many sensing circuits mounted in packages with a small number of terminals cannot be provided with dedicated terminals for switching to a test mode. Therefore, in a sensing circuit with a small number of terminals, the output terminal is also used as a test terminal.

現有的感測電路具備:第1反轉部,輸出檢測部的輸出信號的電位位準(level);第2反轉部,將檢測部的輸出信號的電位位準予以反轉後輸出至輸出端子;以及模式切換電路,根據第1反轉部的電位位準與第2反轉部的電位位準而切換至測試模式。並且,藉由從輸出端子強制性地輸入電壓,模式切換電路檢測出常規不可能引起的電位狀態(同電位)而切換至測試模式(例如參照專利文獻1)。A conventional sensing circuit includes a first inversion unit that outputs a potential level of an output signal of a detection unit, and a second inversion unit that inverts a potential level of an output signal of the detection unit and outputs the output level to an output. A terminal; and a mode switching circuit that switches to a test mode according to a potential level of the first inversion portion and a potential level of the second inversion portion. In addition, by forcibly inputting a voltage from the output terminal, the mode switching circuit detects a potential state (same potential) that would not normally occur and switches to a test mode (for example, refer to Patent Document 1).

現有技術文獻 專利文獻 專利文獻1:日本專利特開2009-31225號公報Prior Art Literature Patent Literature Patent Literature 1: Japanese Patent Laid-Open No. 2009-31225

[發明所欲解決之問題] 然而,專利文獻1的磁感測電路對於從輸出端子重疊的雜訊(noise)等意料外的外部輸入,有可能誤切換至測試模式。而且,在輸出端子的負載容量大的情況下,亦有可能因與檢測結果相應的常規的輸出端子的電位位準的變化發生延遲,而意外地切換至測試模式。[Problems to be Solved by the Invention] However, the magnetic sensing circuit of Patent Document 1 may accidentally switch to a test mode for an unexpected external input such as noise overlapping from an output terminal. Moreover, when the load capacity of the output terminal is large, there may be a delay in the change in the potential level of the conventional output terminal corresponding to the detection result, and it may be unexpectedly switched to the test mode.

[解決問題之手段] 本發明的感測電路包括:時脈(clock)產生電路,對物理量檢測部輸出用於控制間歇動作的控制信號,在休止期間輸出取樣信號;電位檢測電路,檢測輸出端子的電位,並輸出檢測信號;以及時脈控制電路,在基於取樣信號對檢測信號進行取樣所得的資料中檢測出規定的信號圖案(Pattern)時,輸出將時脈產生電路切換至測試模式的模式切換信號。[Means for Solving the Problem] The sensing circuit of the present invention includes: a clock generating circuit that outputs a control signal for controlling an intermittent operation to a physical quantity detecting section and outputs a sampling signal during a rest period; a potential detecting circuit that detects an output terminal And a clock control circuit that outputs a mode that switches the clock generation circuit to a test mode when a predetermined signal pattern (Pattern) is detected in the data obtained by sampling the detection signal based on the sampling signal. Switch signals.

[發明的效果] 根據本發明的感測電路,誤切換至測試模式的可能性低,可實現穩定的動作。[Effects of the Invention] According to the sensing circuit of the present invention, the possibility of erroneous switching to the test mode is low, and stable operation can be realized.

以下,對於本發明的感測電路,以對霍爾(Hall)元件的輸出電壓與基準電壓進行比較的結果進行二進制(binary)輸出的磁開關為例進行說明。In the following, the sensing circuit of the present invention is described by taking a magnetic switch having a binary output as a result of comparing the output voltage of a Hall element with a reference voltage as an example.

<第1實施方式><First Embodiment>

圖1是第1實施方式的感測電路100的方塊圖。FIG. 1 is a block diagram of a sensing circuit 100 according to the first embodiment.

第1實施方式的感測電路100包含物理量檢測部10、時脈產生電路20、輸出驅動器30、電位檢測電路40及時脈控制電路50。The sensing circuit 100 according to the first embodiment includes a physical quantity detection unit 10, a clock generation circuit 20, an output driver 30, and a potential detection circuit 40 and a clock control circuit 50.

物理量檢測部10根據所施加的物理量而輸出二個不同的電位位準的物理量檢測信號12。The physical quantity detection unit 10 outputs physical quantity detection signals 12 at two different potential levels according to the applied physical quantity.

輸出驅動器30的輸入連接於物理量檢測部10的輸出,輸出連接於輸出端子31。輸出驅動器30將物理量檢測部10的物理量檢測信號12的電位位準反轉,並向輸出端子31輸出感測電路100的輸出邏輯信號32。The input of the output driver 30 is connected to the output of the physical quantity detection unit 10, and the output is connected to the output terminal 31. The output driver 30 inverts the potential level of the physical quantity detection signal 12 of the physical quantity detection unit 10 and outputs an output logic signal 32 of the sensing circuit 100 to the output terminal 31.

電位檢測電路40的輸入連接於輸出端子31,基於輸出端子31的電位來輸出二進制的電位檢測信號41。An input of the potential detection circuit 40 is connected to the output terminal 31, and a binary potential detection signal 41 is output based on the potential of the output terminal 31.

時脈產生電路20向物理量檢測部10輸出用於控制檢測動作的控制信號21,在休止期間,對時脈控制電路50輸出取樣信號22。The clock generation circuit 20 outputs a control signal 21 for controlling the detection operation to the physical quantity detection unit 10, and outputs a sampling signal 22 to the clock control circuit 50 during the rest period.

時脈控制電路50輸入電位檢測信號41、取樣信號22與物理量檢測信號12,對時脈產生電路20輸出模式切換信號51。The clock control circuit 50 inputs a potential detection signal 41, a sampling signal 22 and a physical quantity detection signal 12, and outputs a mode switching signal 51 to the clock generation circuit 20.

物理量檢測部10是對S極或N極的磁場進行檢測的磁開關,根據從外部施加的磁通密度的大小來切換物理量檢測信號12的電位位準。而且,物理量檢測部10進行具有動作期間與休止期間的間歇動作,所述動作期間是根據控制信號21來進行物理量的檢測或者檢測解除的期間,所述休止期間是將內部電路的動作電流的大部分予以阻斷的期間。The physical quantity detection unit 10 is a magnetic switch that detects the magnetic field of the S pole or the N pole, and switches the potential level of the physical quantity detection signal 12 in accordance with the magnitude of the magnetic flux density applied from the outside. In addition, the physical quantity detection unit 10 performs an intermittent operation including an operation period in which a physical quantity is detected or canceled based on a control signal 21, and an inactivity period during which the operation current of the internal circuit is increased. Partially blocked period.

時脈控制電路50是與取樣信號22同步地對電位檢測信號41進行取樣,並將該資料保持於移位暫存器(shift register)等中。時脈控制電路50在從電位檢測信號41獲得規定的信號圖案(此處為LHHL、HLLH)時,將模式切換信號51切換至與測試模式對應的位準。而且,時脈控制電路50在物理量檢測信號12發生變化時,將模式切換信號51切換至與常規模式對應的位準。The clock control circuit 50 samples the potential detection signal 41 in synchronization with the sampling signal 22 and holds the data in a shift register or the like. When the clock control circuit 50 obtains a predetermined signal pattern (here, LHHL, HLLH) from the potential detection signal 41, it switches the mode switching signal 51 to a level corresponding to the test mode. The clock control circuit 50 switches the mode switching signal 51 to a level corresponding to the normal mode when the physical quantity detection signal 12 changes.

物理量檢測部10例如是以進行以下所示的動作的方式而構成。The physical quantity detection unit 10 is configured to perform, for example, the operations described below.

物理量檢測部10在控制信號21為H位準時成為動作期間,將霍爾元件的輸出電壓與基準電壓進行比較,在控制信號21為L位準時成為休止期間,若所施加的磁通密度小於規定的值,則輸出L位準的物理量檢測信號12,若大於規定的值,則輸出H位準的物理量檢測信號12。The physical quantity detection unit 10 compares the output voltage of the Hall element with the reference voltage when the control signal 21 is at the H level and becomes a rest period. When the control signal 21 is at the L level, it becomes a rest period. If the value is, the physical quantity detection signal 12 at the L level is output, and if it is larger than a predetermined value, the physical quantity detection signal 12 at the H level is output.

輸出驅動器30例如使用互補金屬氧化物半導體(Complementary Metal-Oxide-Semiconductor,CMOS)驅動器。輸出驅動器30在所施加的物理量小時,例如在作為輸入的物理量檢測信號12為L位準時,Nch驅動器斷開而Pch驅動器導通,將H位準的輸出邏輯信號32輸出至輸出端子31。當所施加的物理量大時,例如,當作為輸入的物理量檢測信號12為H位準時,Nch驅動器導通而Pch驅動器斷開,將L位準的輸出邏輯信號32輸出至輸出端子31。The output driver 30 is, for example, a complementary metal-oxide semiconductor (Complementary Metal-Oxide-Semiconductor, CMOS) driver. When the applied physical quantity is small, for example, when the input physical quantity detection signal 12 is at the L level, the Nch driver is turned off and the Pch driver is turned on, and the output logic signal 32 at the H level is output to the output terminal 31. When the applied physical quantity is large, for example, when the input physical quantity detection signal 12 is at the H level, the Nch driver is turned on and the Pch driver is turned off, and the output logic signal 32 at the L level is output to the output terminal 31.

電位檢測電路40例如包含斯密特觸發(schmitt trigger)電路、或包含差動對與基準電壓電路的比較器(comparator)等。電位檢測電路40在輸出端子31的電位為H位準時,輸出H位準的電位檢測信號41,在輸出端子31的電位為L位準時,輸出L位準的電位檢測信號41。The potential detection circuit 40 includes, for example, a Schmitt trigger circuit, a comparator including a differential pair and a reference voltage circuit, and the like. The potential detection circuit 40 outputs an H-level potential detection signal 41 when the potential of the output terminal 31 is H level, and outputs an L-level potential detection signal 41 when the potential of the output terminal 31 is L level.

接下來,對第1實施方式的感測電路100的動作進行說明。Next, an operation of the sensing circuit 100 according to the first embodiment will be described.

圖2是表示第1實施方式的感測電路100的動作的時序圖。FIG. 2 is a timing chart showing the operation of the sensing circuit 100 according to the first embodiment.

圖2中,將施加至感測電路100的磁通密度設為Bin、將物理量檢測信號12的電壓設為V12、將輸出端子31的電壓設為V31、將電位檢測信號41的電壓設為V41、將控制信號21的電壓設為V21、將取樣信號22的電壓設為V22、將模式切換信號51的電壓設為V51。而且,將物理量檢測部10檢測物理量的臨限值設為BOP、將解除檢測的臨限值設為BRP。In FIG. 2, the magnetic flux density applied to the sensing circuit 100 is Bin, the voltage of the physical quantity detection signal 12 is V12, the voltage of the output terminal 31 is V31, and the voltage of the potential detection signal 41 is V41. The voltage of the control signal 21 is V21, the voltage of the sampling signal 22 is V22, and the voltage of the mode switching signal 51 is V51. The threshold value of the physical quantity detected by the physical quantity detection unit 10 is set to BOP, and the threshold value of the release detection is set to BRP.

對於感測電路100,施加有時序圖所示的磁通密度Bin。磁通密度Bin在時刻t0以前低於臨限值BRP,因此物理量檢測信號12為L位準,輸出端子31及電位檢測信號41的電壓為H位準。For the sensing circuit 100, a magnetic flux density Bin shown in a timing chart is applied. The magnetic flux density Bin is lower than the threshold BRP before time t0. Therefore, the physical quantity detection signal 12 is at the L level, and the voltages at the output terminal 31 and the potential detection signal 41 are at the H level.

感測電路100在時刻t1之前為常規動作時的休止期間,模式切換信號51維持L位準,從時脈產生電路20輸出取樣信號22。在時刻t1前為止的取樣信號22中,時脈控制電路50連續保持有電位檢測信號41的H位準,因此維持常規動作(模式切換信號51為L位準)。此處,時脈控制電路50在取樣信號22的上升邊緣(edge)讀取電位檢測信號41的電位。Before the sensing circuit 100 is in the rest period during the normal operation before time t1, the mode switching signal 51 maintains the L level, and the sampling signal 22 is output from the clock generating circuit 20. In the sampling signal 22 before time t1, the clock control circuit 50 continuously maintains the H level of the potential detection signal 41, and thus maintains the normal operation (the mode switching signal 51 is at the L level). Here, the clock control circuit 50 reads the potential of the potential detection signal 41 on the rising edge of the sampling signal 22.

感測電路100在時刻t1至時刻t2的期間,為常規動作時的動作期間,時脈產生電路20將控制信號21設為H位準。物理量檢測部10在動作期間中檢測磁通密度Bin高於臨限值BOP的情況並進行信號處理,當控制信號21成為L位準時,將物理量檢測信號12設為H位準。與此相應地,輸出端子31及電位檢測信號41的電壓成為L位準。並且,感測電路100再次成為常規動作時的休止期間,模式切換信號51維持L位準,從時脈產生電路20輸出取樣信號22。The period from time t1 to time t2 of the sensing circuit 100 is an operation period during normal operation. The clock generation circuit 20 sets the control signal 21 to the H level. The physical quantity detection unit 10 detects that the magnetic flux density Bin is higher than the threshold BOP during the operation period and performs signal processing. When the control signal 21 becomes the L level, the physical quantity detection signal 12 is set to the H level. In response to this, the voltages of the output terminal 31 and the potential detection signal 41 become the L level. In addition, when the sensing circuit 100 is in the rest period during the normal operation again, the mode switching signal 51 maintains the L level, and the sampling signal 22 is output from the clock generation circuit 20.

時脈控制電路50在時刻t3,根據取樣信號22來讀取電位檢測信號41的L位準。The clock control circuit 50 reads the L level of the potential detection signal 41 based on the sampling signal 22 at time t3.

此處,當在時刻t4至時刻t7,從外部對輸出端子31強制性地輸入H位準時,時脈控制電路50在時刻t5、t6,根據取樣信號22來讀取電位檢測信號41的H位準,進而,在時刻t8,根據取樣信號22來讀取電位檢測信號41的L位準。Here, when the H level is forcibly input to the output terminal 31 externally from time t4 to time t7, the clock control circuit 50 reads the H position of the potential detection signal 41 based on the sampling signal 22 at time t5 and t6. At the time t8, the L level of the potential detection signal 41 is read based on the sampling signal 22.

因而,由於所輸入的信號圖案為LHHL的位準,因此時脈控制電路50在時刻t8至時刻t9的期間內判斷為測試模式輸入信號,從常規動作切換至測試模式,輸出H位準的模式切換信號51。Therefore, since the input signal pattern is at the level of LHHL, the clock control circuit 50 determines that it is a test mode input signal during the period from time t8 to time t9, switches from the normal operation to the test mode, and outputs the H level mode Switching signal 51.

感測電路100維持測試模式至時刻t10為止,隨後,當物理量檢測部10檢測出磁通密度Bin為小於或等於解除臨限值BRP時,物理量檢測信號12變化為L位準。時脈控制電路50接收物理量檢測信號12變化為L位準的情況,從測試模式切換至常規動作,輸出L位準的模式切換信號51。The sensing circuit 100 maintains the test mode until time t10, and when the physical quantity detection unit 10 detects that the magnetic flux density Bin is less than or equal to the release threshold BRP, the physical quantity detection signal 12 changes to the L level. The clock control circuit 50 receives a change in the physical quantity detection signal 12 to the L level, switches from the test mode to a normal operation, and outputs a mode switching signal 51 at the L level.

如以上所說明,本實施方式的感測電路100採用下述結構:在常規動作時的休止期間,從外部對輸出端子31強制性地輸入具有規定的信號圖案的電壓,藉由檢測該電壓而從常規動作切換至測試模式,並接收物理量檢測信號12的位準發生變化的情況,而從測試模式切換至常規動作。因而,本實施方式的感測電路100誤切換至測試模式的可能性低,可實現穩定的動作。As described above, the sensing circuit 100 according to the present embodiment has a structure in which a voltage having a predetermined signal pattern is forcibly input to the output terminal 31 from the outside during a rest period during normal operation, and the voltage is detected by detecting the voltage. The normal operation is switched to the test mode, and the level of the physical quantity detection signal 12 is changed, and the test mode is switched to the normal operation. Therefore, the probability that the sensing circuit 100 according to the present embodiment is switched to the test mode by mistake is low, and stable operation can be realized.

另外,圖2的時序圖中,進行了從磁通密度Bin高於檢測臨限值BOP的狀態開始切換至測試模式的說明,在從磁通密度Bin低於解除臨限值BRP的狀態開始切換至測試模式的情況下亦同樣。此時,可將輸出端子31強制性地設為L位準的電位,將信號圖案設為HLLH,藉此,時脈控制電路50判斷為測試模式輸入信號,而從常規動作切換至測試模式。In addition, in the timing chart of FIG. 2, the description is switched from the state where the magnetic flux density Bin is higher than the detection threshold BOP to the test mode, and when the magnetic flux density Bin is lower than the release threshold BRP, the switching is started The same goes for the test mode. At this time, the output terminal 31 can be forcibly set to the L level potential and the signal pattern is set to HLLH, whereby the clock control circuit 50 determines that it is a test mode input signal and switches from the normal operation to the test mode.

而且,將信號圖案設為LHHL或HLLH進行了說明,但並不限於此,亦可為更複雜的信號圖案或更短的信號圖案。In addition, although the signal pattern is described as LHHL or HLLH, it is not limited to this, and it may be a more complex signal pattern or a shorter signal pattern.

<第2實施方式><Second Embodiment>

圖3是第2實施方式的感測電路200的方塊圖。第2實施方式的感測電路200是在圖1的感測電路100中追加具備計數器(counter)60,所述計數器60對超時(time out)時間進行計數。而且,第2實施方式中的時脈控制電路50採用了接收計數器60所輸出的超時信號61的結構。其他結構與圖1的感測電路100相同,因此對於同一構成要素標註同一符號,並省略說明。FIG. 3 is a block diagram of a sensing circuit 200 according to the second embodiment. In the sensing circuit 200 according to the second embodiment, a counter 60 is added to the sensing circuit 100 of FIG. 1, and the counter 60 counts time-out times. In addition, the clock control circuit 50 in the second embodiment adopts a configuration in which the timeout signal 61 output from the counter 60 is received. Other structures are the same as those of the sensing circuit 100 of FIG. 1, and therefore the same components are denoted by the same reference numerals, and descriptions thereof are omitted.

計數器60輸入從電位檢測電路40輸出的電位檢測信號41,對時脈控制電路50輸出超時信號61。時脈控制電路50在收到H位準的超時信號61時,屏蔽(mask)取樣信號22。The counter 60 receives a potential detection signal 41 output from the potential detection circuit 40 and outputs a time-out signal 61 to the clock control circuit 50. When the clock control circuit 50 receives the H-level time-out signal 61, it masks the sampling signal 22.

接下來,對第2實施方式的感測電路200的動作進行說明。Next, an operation of the sensing circuit 200 according to the second embodiment will be described.

圖4是表示第2實施方式的感測電路200的動作的時序圖。FIG. 4 is a timing chart showing the operation of the sensing circuit 200 according to the second embodiment.

圖4中,將超時信號61的電壓設為V61。而且,對於與圖2的時序圖相同的動作,省略其說明。In FIG. 4, the voltage of the time-out signal 61 is V61. The same operations as those in the timing chart of FIG. 2 will be omitted.

在時刻t1,物理量檢測信號12成為H位準,輸出端子31的電壓成為L位準。At time t1, the physical quantity detection signal 12 becomes the H level, and the voltage of the output terminal 31 becomes the L level.

在時刻t2,當來自外部的雜訊重疊於輸出端子31時,如圖所示,電壓V31發生變動,輸出H位準的電位檢測信號41。因而,時脈控制電路50根據取樣信號22來讀取電位檢測信號41的H位準。At time t2, when noise from the outside is superimposed on the output terminal 31, as shown in the figure, the voltage V31 changes, and a potential detection signal 41 of the H level is output. Therefore, the clock control circuit 50 reads the H level of the potential detection signal 41 based on the sampling signal 22.

計數器60接收電位檢測信號41的變動而開始計數,當在時刻t3達到超時時間時,將超時信號61由L位準設為H位準。時脈控制電路50在收到H位準的超時信號61時,屏蔽取樣信號22,因此不讀取時刻4時來自外部的雜訊所造成的電位檢測信號41的H位準。The counter 60 starts counting after receiving the change in the potential detection signal 41, and when the time-out time is reached at time t3, the time-out signal 61 is set from the L level to the H level. When the clock control circuit 50 receives the H-level time-out signal 61, it shields the sampling signal 22, and therefore does not read the H-level of the potential detection signal 41 caused by external noise at time 4.

因而,時脈控制電路50不將時刻t2以後的信號圖案辨識為HLLH,因此即使如圖4所示存在雜訊,亦不會誤切換至測試模式。Therefore, the clock control circuit 50 does not recognize the signal pattern after time t2 as HLLH, so even if there is noise as shown in FIG. 4, it will not switch to the test mode by mistake.

如以上所說明,第2實施方式的感測電路中,具備輸出超時信號61的計數器60,因此可更切實地防止誤切換至測試模式的誤動作。As described above, since the sensing circuit according to the second embodiment includes the counter 60 that outputs the timeout signal 61, it is possible to more reliably prevent a malfunction caused by erroneous switching to the test mode.

另外,計數器60亦可包含使用基於正反器(flip-flop)的邏輯電路的數位(digital)電路,還可包含基於定電流源與電容元件的類比(analog)計時電路。而且,超時信號61例如只要在時刻t5或t6,根據控制信號21而由H位準重置為L位準即可。In addition, the counter 60 may include a digital circuit using a flip-flop-based logic circuit, and may include an analog timing circuit based on a constant current source and a capacitive element. The timeout signal 61 may be reset from the H level to the L level based on the control signal 21 at time t5 or t6, for example.

<第3實施方式><Third Embodiment>

圖5是第3實施方式的感測電路300的方塊圖。第3實施方式的感測電路300是在圖1的感測電路100中追加具備死區時間(dead time)控制電路70,所述死區時間控制電路70接收控制信號21而輸出死區時間信號71。而且,第3實施方式中的時脈控制電路50採用了接收死區時間控制電路70所輸出的死區時間信號71的結構。其他結構與圖1的感測電路100相同,因此對於同一構成要素標註同一符號,並省略說明。FIG. 5 is a block diagram of a sensing circuit 300 according to the third embodiment. The sensing circuit 300 according to the third embodiment is provided with a dead time control circuit 70 in addition to the sensing circuit 100 of FIG. 1. The dead time control circuit 70 receives a control signal 21 and outputs a dead time signal. 71. The clock control circuit 50 in the third embodiment adopts a configuration that receives the dead time signal 71 output from the dead time control circuit 70. Other structures are the same as those of the sensing circuit 100 of FIG. 1, and therefore the same components are denoted by the same reference numerals, and descriptions thereof are omitted.

死區時間控制電路70輸入電位檢測信號41,對時脈控制電路50輸出死區時間信號71。時脈控制電路50在收到H位準的死區時間信號71時,屏蔽取樣信號22。The dead time control circuit 70 inputs a potential detection signal 41 and outputs a dead time signal 71 to the clock control circuit 50. The clock control circuit 50 masks the sampling signal 22 when receiving the dead time signal 71 at the H level.

接下來,對第3實施方式的感測電路300的動作進行說明。Next, an operation of the sensing circuit 300 according to the third embodiment will be described.

圖6是表示第3實施方式的感測電路300的動作的時序圖。FIG. 6 is a timing chart showing the operation of the sensing circuit 300 according to the third embodiment.

圖6中,將死區時間信號71的電壓設為V71。而且,對於與圖2的時序圖相同的動作,省略其說明。In FIG. 6, the voltage of the dead time signal 71 is set to V71. The same operations as those in the timing chart of FIG. 2 will be omitted.

在時刻t1,物理量檢測信號12成為H位準,輸出驅動器30將輸出設為L位準。此處,在輸出端子31的電容負載大的情況下,輸出端子31的電壓V31依照由輸出端子31的電容負載與輸出驅動器30的導通電阻所決定的時間常數,耗費相對較長的時間而穩定。At time t1, the physical quantity detection signal 12 becomes the H level, and the output driver 30 sets the output to the L level. Here, when the capacitive load of the output terminal 31 is large, the voltage V31 of the output terminal 31 is stable in accordance with the time constant determined by the capacitive load of the output terminal 31 and the on-resistance of the output driver 30, which takes a relatively long time. .

死區時間控制電路70接收控制信號21成為H位準的情況,即在向休止期間轉變後的規定期間,輸出H位準的死區時間信號71。時脈控制電路50屏蔽取樣信號22而不進行取樣動作,直至死區時間信號71維持H位準的時刻t3為止。因而,時脈控制電路50不讀取時刻t1至時刻t3為止的電位檢測信號41的H位準。When the dead-time control circuit 70 receives the control signal 21 at the H level, that is, the dead-time signal 71 at the H level is output in a predetermined period after the transition to the rest period. The clock control circuit 50 masks the sampling signal 22 without performing a sampling operation until the time t3 at which the dead-time signal 71 maintains the H level. Therefore, the clock control circuit 50 does not read the H level of the potential detection signal 41 from time t1 to time t3.

在時刻t2,輸出端子31的電壓V31低於電位檢測電路40的判定臨限值Vth,因此電位檢測信號41成為L位準。因而,死區時間信號71維持H位準的時間只要長於電壓V31低於判定臨限值Vth的時間即可。At time t2, since the voltage V31 of the output terminal 31 is lower than the determination threshold Vth of the potential detection circuit 40, the potential detection signal 41 becomes the L level. Therefore, the time for which the dead time signal 71 maintains the H level may be longer than the time when the voltage V31 is lower than the determination threshold Vth.

因而,即使在時刻t4有雜訊重疊於輸出端子31,時脈控制電路50亦不會將時刻t1以後的信號圖案辨識為HLLH,因此不會誤切換至測試模式。Therefore, even if noise overlaps the output terminal 31 at time t4, the clock control circuit 50 does not recognize the signal pattern after time t1 as HLLH, so it does not switch to the test mode by mistake.

如此,第3實施方式的感測電路300具備對時脈控制電路50輸出死區時間信號71的死區時間控制電路70,因此可更切實地防止誤切換至測試模式的誤動作。As described above, since the sensing circuit 300 according to the third embodiment includes the dead-time control circuit 70 that outputs the dead-time signal 71 to the clock control circuit 50, it is possible to more reliably prevent a malfunction caused by an erroneous switching to the test mode.

另外,死區時間控制電路70亦可包含基於正反器的邏輯電路,還可包含基於定電流源、電容元件與臨限值電路的計時電路。In addition, the dead time control circuit 70 may include a logic circuit based on a flip-flop, and may also include a timing circuit based on a constant current source, a capacitive element, and a threshold circuit.

而且,對死區時間信號71接收控制信號21成為H位準的情況而輸出H位準的情況進行了說明,但只要符合發明的主旨,以任何信號作為起點皆可。Furthermore, the case where the dead time signal 71 receives the control signal 21 and becomes the H level has been described, but any signal may be used as a starting point as long as it conforms to the gist of the invention.

<第4實施方式><Fourth Embodiment>

圖7是第4實施方式的感測電路400的方塊圖。第4實施方式的感測電路400是在圖1的感測電路100中追加具備重置電路80,所述重置電路80輸出重置信號81。而且,第4實施方式中的時脈控制電路50採用了接收重置電路80所輸出的重置信號81的結構。其他結構與圖1的感測電路100相同,因此對於同一構成要素標註同一符號,並省略說明。FIG. 7 is a block diagram of a sensing circuit 400 according to the fourth embodiment. In the sensing circuit 400 according to the fourth embodiment, a reset circuit 80 is additionally added to the sensing circuit 100 of FIG. 1, and the reset circuit 80 outputs a reset signal 81. In addition, the clock control circuit 50 in the fourth embodiment is configured to receive a reset signal 81 output from the reset circuit 80. Other structures are the same as those of the sensing circuit 100 of FIG. 1, and therefore the same components are denoted by the same reference numerals, and descriptions thereof are omitted.

重置電路80輸入電位檢測信號41,對時脈控制電路50輸出重置信號81。時脈控制電路50在收到H位準的重置信號81時,對保持信號圖案的移位暫存器進行重置。The reset circuit 80 receives a potential detection signal 41 and outputs a reset signal 81 to the clock control circuit 50. When the clock control circuit 50 receives the H-level reset signal 81, it resets the shift register holding the signal pattern.

接下來,對第4實施方式的感測電路400的動作進行說明。Next, an operation of the sensing circuit 400 according to the fourth embodiment will be described.

圖8是表示第4實施方式的感測電路400的動作的時序圖。FIG. 8 is a timing chart showing the operation of the sensing circuit 400 according to the fourth embodiment.

圖8中,將重置信號81的電壓設為V81。而且,對於與圖2的時序圖相同的動作,省略其說明。In FIG. 8, the voltage of the reset signal 81 is V81. The same operations as those in the timing chart of FIG. 2 will be omitted.

在時刻t1,物理量檢測信號12成為H位準,輸出驅動器30將輸出設為L位準。重置信號81在成為休止期間時,重置為L位準。At time t1, the physical quantity detection signal 12 becomes the H level, and the output driver 30 sets the output to the L level. When the reset signal 81 is in a rest period, it is reset to the L level.

在時刻t2,當來自外部的雜訊重疊於輸出端子31時,如圖所示,電壓V31發生變動,輸出H位準的電位檢測信號41。因而,時脈控制電路50根據取樣信號22來讀取電位檢測信號41的H位準。At time t2, when noise from the outside is superimposed on the output terminal 31, as shown in the figure, the voltage V31 changes, and a potential detection signal 41 of the H level is output. Therefore, the clock control circuit 50 reads the H level of the potential detection signal 41 based on the sampling signal 22.

此處,重置電路80具有對電位檢測信號41的信號的寬度進行檢測的功能。例如,當如圖8的時刻t2所示檢測出寬度小時,例如在時刻t3,對時脈控制電路50輸出H位準的重置信號81。時脈控制電路50在收到H位準的重置信號81時,對保持信號圖案的移位暫存器進行重置。即,在時刻t2讀取至移位暫存器中的H位準被重置。Here, the reset circuit 80 has a function of detecting the width of the signal of the potential detection signal 41. For example, when it is detected that the width is small as shown at time t2 in FIG. 8, for example, at time t3, the reset signal 81 of the H level is output to the clock control circuit 50. When the clock control circuit 50 receives the H-level reset signal 81, it resets the shift register holding the signal pattern. That is, the H level read into the shift register at time t2 is reset.

因而,在時刻t4,即使有來自外部的雜訊重疊於輸出端子31,時脈控制電路50亦不會誤將電位檢測信號41的圖案辨識為HLLH。Therefore, at time t4, the clock control circuit 50 does not mistakenly recognize the pattern of the potential detection signal 41 as HLLH even if noise from the outside overlaps the output terminal 31.

如此,第4實施方式的感測電路400具備對時脈控制電路50輸出重置信號81的重置電路80,因此可更切實地防止誤切換至測試模式的誤動作。As described above, since the sensing circuit 400 according to the fourth embodiment includes the reset circuit 80 that outputs a reset signal 81 to the clock control circuit 50, it is possible to more reliably prevent a malfunction caused by an erroneous switching to the test mode.

另外,重置信號81在圖8中,是接收控制信號21成為H位準的情況而成為L位準,但例如亦可設為單擊脈波(one shot pulse)。In addition, the reset signal 81 is set to the L level when the reception control signal 21 is set to the H level in FIG. 8. However, the reset signal 81 may be set to, for example, one shot pulse.

如以上所說明,本發明的感測電路具備與取樣信號22同步地對電位檢測信號41進行取樣的時脈控制電路50、及在休止期間輸出取樣信號22的時脈產生電路20,因此可更切實地防止誤切換至測試模式的誤動作。As described above, the sensing circuit of the present invention includes the clock control circuit 50 that samples the potential detection signal 41 in synchronization with the sampling signal 22 and the clock generation circuit 20 that outputs the sampling signal 22 during the rest period. Reliably prevent malfunction caused by erroneous switching to test mode.

另外,實施方式中,將物理量檢測部10設為磁感測電路進行了說明,但只要是將物理量的檢測結果從輸出端子31作為二進制信號而輸出的結構,則並不限制於此。例如,物理量檢測部10亦可為溫度感測電路或光感測電路。In the embodiment, the physical quantity detection unit 10 has been described as a magnetic sensing circuit. However, the configuration is not limited to this as long as the detection result of the physical quantity is output from the output terminal 31 as a binary signal. For example, the physical quantity detection unit 10 may be a temperature sensing circuit or a light sensing circuit.

而且,本發明的感測電路未必限制於該結構或感測器元件,可在不脫離發明主旨的範圍內進行各種變更或組合等。例如,亦可將各實施方式的電路適當組合。進而,亦可採用下述結構:具備多組物理量檢測部10、輸出端子31與時脈控制電路50的組合,對各輸出端子強制性地施加電壓,利用該組合來切換至測試模式。Furthermore, the sensing circuit of the present invention is not necessarily limited to the structure or the sensor element, and various changes or combinations can be made without departing from the spirit of the invention. For example, the circuits of the respective embodiments may be appropriately combined. Furthermore, it is also possible to adopt a configuration including a combination of a plurality of sets of the physical quantity detection unit 10, the output terminal 31, and the clock control circuit 50, forcibly applying a voltage to each output terminal, and using this combination to switch to the test mode.

10‧‧‧物理量檢測部
20‧‧‧時脈產生電路
30‧‧‧輸出驅動器
31‧‧‧輸出端子
40‧‧‧電位檢測電路
50‧‧‧時脈控制電路
60‧‧‧計數器
70‧‧‧死區時間控制電路
80‧‧‧重置電路
100、200、300、400‧‧‧感測電路
10‧‧‧Physical quantity detection department
20‧‧‧ clock generation circuit
30‧‧‧ output driver
31‧‧‧output terminal
40‧‧‧Potential detection circuit
50‧‧‧clock control circuit
60‧‧‧Counter
70‧‧‧Dead time control circuit
80‧‧‧ reset circuit
100, 200, 300, 400‧‧‧ sensing circuits

圖1是第1實施方式的感測電路的方塊圖。 圖2是表示第1實施方式的感測電路的動作的時序圖。 圖3是第2實施方式的感測電路的方塊圖。 圖4是表示第2實施方式的感測電路的動作的時序圖。 圖5是第3實施方式的感測電路的方塊圖。 圖6是表示第3實施方式的感測電路的動作的時序圖。 圖7是第4實施方式的感測電路的方塊圖。 圖8是表示第4實施方式的感測電路的動作的時序圖。FIG. 1 is a block diagram of a sensing circuit according to the first embodiment. FIG. 2 is a timing chart showing the operation of the sensing circuit according to the first embodiment. FIG. 3 is a block diagram of a sensing circuit according to a second embodiment. FIG. 4 is a timing chart showing the operation of the sensing circuit according to the second embodiment. 5 is a block diagram of a sensing circuit according to a third embodiment. FIG. 6 is a timing chart showing the operation of the sensing circuit according to the third embodiment. FIG. 7 is a block diagram of a sensing circuit according to a fourth embodiment. FIG. 8 is a timing chart showing the operation of the sensing circuit according to the fourth embodiment.

10‧‧‧物理量檢測部 10‧‧‧Physical quantity detection department

12‧‧‧物理量檢測信號 12‧‧‧ physical quantity detection signal

20‧‧‧時脈產生電路 20‧‧‧ clock generation circuit

21‧‧‧控制信號 21‧‧‧Control signal

22‧‧‧取樣信號 22‧‧‧Sampling signal

30‧‧‧輸出驅動器 30‧‧‧ output driver

31‧‧‧輸出端子 31‧‧‧output terminal

32‧‧‧輸出邏輯信號 32‧‧‧ output logic signal

40‧‧‧電位檢測電路 40‧‧‧Potential detection circuit

41‧‧‧電位檢測信號 41‧‧‧Potential detection signal

50‧‧‧時脈控制電路 50‧‧‧clock control circuit

51‧‧‧模式切換信號 51‧‧‧mode switching signal

100‧‧‧感測電路 100‧‧‧sensing circuit

Claims (5)

一種感測電路,進行具備動作期間與休止期間的間歇動作,所述感測電路的特徵在於包括: 物理量檢測部,根據所施加的物理量而輸出二個不同電位位準的物理量檢測信號; 輸出驅動器,接收所述物理量檢測信號,並將邏輯信號輸出至輸出端子; 時脈產生電路,對所述物理量檢測部輸出用於控制所述間歇動作的控制信號,在所述休止期間輸出取樣信號; 電位檢測電路,檢測所述輸出端子的電位,並輸出檢測信號;以及 時脈控制電路,輸入所述取樣信號與所述檢測信號,對所述時脈產生電路輸出模式切換信號, 所述時脈控制電路在基於所述取樣信號對所述檢測信號進行取樣所得的資料中檢測出規定的信號圖案時,輸出將所述時脈產生電路切換至測試模式的模式切換信號。A sensing circuit performs an intermittent operation including an operation period and a rest period. The sensing circuit includes: a physical quantity detection unit that outputs two physical quantity detection signals of different potential levels according to an applied physical quantity; an output driver Receiving the physical quantity detection signal and outputting a logic signal to an output terminal; a clock generation circuit that outputs a control signal for controlling the intermittent operation to the physical quantity detection unit, and outputs a sampling signal during the rest period; a potential A detection circuit that detects a potential of the output terminal and outputs a detection signal; and a clock control circuit that inputs the sampling signal and the detection signal, and outputs a mode switching signal to the clock generation circuit, the clock control When the circuit detects a predetermined signal pattern in the data obtained by sampling the detection signal based on the sampling signal, it outputs a mode switching signal that switches the clock generation circuit to a test mode. 如申請專利範圍第1項所述的感測電路,其中 所述時脈控制電路進而輸入所述物理量檢測部所輸出的所述物理量檢測信號, 當在所述測試模式下,所述物理量檢測信號發生變化時,輸出切換至常規模式的模式切換信號。The sensing circuit according to item 1 of the patent application range, wherein the clock control circuit further inputs the physical quantity detection signal output by the physical quantity detection unit, and when in the test mode, the physical quantity detection signal When a change occurs, a mode switching signal to switch to the normal mode is output. 如申請專利範圍第1項或第2項所述的感測電路,更包括: 計數器, 所述計數器接收所述檢測信號的變動而開始計數,一旦達到超時時間,則對所述時脈控制電路輸出超時信號, 所述時脈控制電路藉由所述超時信號來屏蔽所述取樣信號。The sensing circuit according to item 1 or item 2 of the scope of patent application, further comprising: a counter that starts to count after receiving a change in the detection signal, and once the timeout period is reached, the clock control is performed. The circuit outputs a timeout signal, and the clock control circuit shields the sampling signal by the timeout signal. 如申請專利範圍第1項或第2項所述的感測電路,更包括: 死區時間控制電路, 所述死區時間控制電路在轉變至所述休止期間後的規定期間,對所述時脈控制電路輸出死區時間信號, 所述時脈控制電路藉由所述死區時間信號來屏蔽所述取樣信號。The sensing circuit according to item 1 or item 2 of the patent application scope further includes: a dead-time control circuit, wherein the dead-time control circuit controls the time during a predetermined period after the transition to the rest period. The pulse control circuit outputs a dead time signal, and the clock control circuit shields the sampling signal by the dead time signal. 如申請專利範圍第1項或第2項所述的感測電路,更包括: 重置電路, 所述重置電路在檢測出所述檢測信號的寬度小時,對所述時脈控制電路輸出重置信號, 所述時脈控制電路藉由所述重置信號來屏蔽所述取樣信號。The sensing circuit according to item 1 or item 2 of the scope of patent application, further comprising: a reset circuit, wherein when the width of the detection signal is detected to be small, the reset circuit outputs a heavy signal to the clock control circuit. Setting signal, the clock control circuit shields the sampling signal by the reset signal.
TW106127049A 2016-08-26 2017-08-10 Sensing circuit TWI701444B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-165827 2016-08-26
JP2016165827 2016-08-26
JP2017132422A JP6883482B2 (en) 2016-08-26 2017-07-06 Sensor circuit
JP2017-132422 2017-07-06

Publications (2)

Publication Number Publication Date
TW201807417A true TW201807417A (en) 2018-03-01
TWI701444B TWI701444B (en) 2020-08-11

Family

ID=61567306

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106127049A TWI701444B (en) 2016-08-26 2017-08-10 Sensing circuit

Country Status (3)

Country Link
JP (1) JP6883482B2 (en)
KR (1) KR102303877B1 (en)
TW (1) TWI701444B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7465173B2 (en) 2020-08-03 2024-04-10 エイブリック株式会社 Magnetic Sensor Circuit
JP2022153693A (en) 2021-03-30 2022-10-13 エイブリック株式会社 sensor device

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6337270A (en) * 1986-07-31 1988-02-17 Fujitsu Ltd Semiconductor device
JPH1116395A (en) * 1997-06-25 1999-01-22 Mitsubishi Electric Corp Semiconductor memory device
TW419592B (en) * 1998-03-31 2001-01-21 Hitachi Maxell Current accumulating value detecting apparatus, current detecting apparatus and the battery set used
JP3672082B2 (en) * 2000-09-14 2005-07-13 理研計器株式会社 Gas detection alarm device using hot-wire gas sensor
TW559970B (en) * 2001-04-05 2003-11-01 Kawasaki Microelectronics Inc Test circuit, semiconductor product wafer having the test circuit, and method of monitoring manufacturing process using the test circuit
JP2006153699A (en) * 2004-11-30 2006-06-15 Matsushita Electric Ind Co Ltd Magnetic field detection device
US7295051B2 (en) * 2005-06-15 2007-11-13 Cypress Semiconductor Corp. System and method for monitoring a power supply level
DE102006050832B4 (en) * 2006-10-27 2012-07-26 Infineon Technologies Ag In-operation test of a signal path by means of at least two test signals
JP4756701B2 (en) * 2006-12-13 2011-08-24 三洋電機株式会社 Power supply voltage detection circuit
JP5143836B2 (en) * 2007-06-27 2013-02-13 株式会社アドバンテスト Detection device and test device
JP4786608B2 (en) * 2007-07-30 2011-10-05 パナソニック株式会社 Magnetic field detector
JP2007322442A (en) * 2007-09-07 2007-12-13 Matsushita Electric Ind Co Ltd Flow measuring device
US8120354B2 (en) * 2008-05-01 2012-02-21 Broadband Discovery Systems, Inc. Self-calibrating magnetic field monitor
JP5206487B2 (en) * 2009-02-25 2013-06-12 富士通セミコンダクター株式会社 Semiconductor integrated circuit control method and semiconductor integrated circuit
TWI408390B (en) * 2010-06-25 2013-09-11 Princeton Technology Corp Controlling circuit used for analog measure module and controlling module thereof
KR101254263B1 (en) * 2010-11-23 2013-04-12 삼성디스플레이 주식회사 Power converter, display device including dc-dc converter, system including display device and method of driving display device
US8760217B2 (en) * 2011-02-25 2014-06-24 Qualcomm Incorporated Semiconductor device having on-chip voltage regulator
KR101204205B1 (en) * 2011-05-13 2012-11-26 삼성전기주식회사 Apparatus and method for driving inertial sensor
JP5957242B2 (en) * 2012-03-01 2016-07-27 アズビル株式会社 Ultrasonic flowmeter simple diagnostic device
US8943377B2 (en) * 2012-08-15 2015-01-27 International Business Machines Corporation On-chip detection of types of operations tested by an LBIST

Also Published As

Publication number Publication date
JP2018036252A (en) 2018-03-08
TWI701444B (en) 2020-08-11
KR20180023852A (en) 2018-03-07
JP6883482B2 (en) 2021-06-09
KR102303877B1 (en) 2021-09-17

Similar Documents

Publication Publication Date Title
US7746131B2 (en) Reset signal filter
TWI444642B (en) Magnetic sensing circuit
CN107783065B (en) Sensor circuit
JP4559475B2 (en) Ternary decoder circuit and method
TWI701444B (en) Sensing circuit
KR100309233B1 (en) Single-end-zero receiver circiut
TWI801550B (en) Zero-cross detection circuit and sensing device
JP2007104210A (en) Reset circuit
CN105958970B (en) Duty cycle correction circuit and image sensing device including the same
JP5213264B2 (en) PLL circuit
JP4955725B2 (en) Binary circuit
US10868528B2 (en) Signal output device
JP5059801B2 (en) Binary circuit
JP2017207382A (en) Electronic controller
US10425067B2 (en) Memory device and method for operating a memory device
JP2022153693A5 (en)
US9111644B2 (en) Readout circuit and semiconductor device
JPH0668280A (en) Reset circuit
JP2005223837A (en) Signal-determining device
JP2008311998A (en) Clock number count circuit
JPH07120930B2 (en) Binary judgment circuit