TW201732734A - 用於加速圖形分析的設備及方法 - Google Patents

用於加速圖形分析的設備及方法 Download PDF

Info

Publication number
TW201732734A
TW201732734A TW105137908A TW105137908A TW201732734A TW 201732734 A TW201732734 A TW 201732734A TW 105137908 A TW105137908 A TW 105137908A TW 105137908 A TW105137908 A TW 105137908A TW 201732734 A TW201732734 A TW 201732734A
Authority
TW
Taiwan
Prior art keywords
gau
processor
field
instruction
unit
Prior art date
Application number
TW105137908A
Other languages
English (en)
Other versions
TWI737651B (zh
Inventor
麥可 安德森
李盛
朴鍾秀
穆斯塔法 帕威利
納達瑟 沙帝許
麥海爾 史美利安斯基
納拉亞南 孫達拉姆
Original Assignee
英特爾股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 英特爾股份有限公司 filed Critical 英特爾股份有限公司
Publication of TW201732734A publication Critical patent/TW201732734A/zh
Application granted granted Critical
Publication of TWI737651B publication Critical patent/TWI737651B/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/30Arrangements for executing machine instructions, e.g. instruction decode
    • G06F9/30003Arrangements for executing specific machine instructions
    • G06F9/30007Arrangements for executing specific machine instructions to perform operations on data operands
    • G06F9/30036Instructions to perform operations on packed data, e.g. vector, tile or matrix operations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F12/00Accessing, addressing or allocating within memory systems or architectures
    • G06F12/02Addressing or allocation; Relocation
    • G06F12/08Addressing or allocation; Relocation in hierarchically structured memory systems, e.g. virtual memory systems
    • G06F12/0802Addressing of a memory level in which the access to the desired data or data block requires associative addressing means, e.g. caches
    • G06F12/0806Multiuser, multiprocessor or multiprocessing cache systems
    • G06F12/084Multiuser, multiprocessor or multiprocessing cache systems with a shared cache
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/30Arrangements for executing machine instructions, e.g. instruction decode
    • G06F9/30003Arrangements for executing specific machine instructions
    • G06F9/30007Arrangements for executing specific machine instructions to perform operations on data operands
    • G06F9/30032Movement instructions, e.g. MOVE, SHIFT, ROTATE, SHUFFLE
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/30Arrangements for executing machine instructions, e.g. instruction decode
    • G06F9/38Concurrent instruction execution, e.g. pipeline, look ahead
    • G06F9/3877Concurrent instruction execution, e.g. pipeline, look ahead using a slave processor, e.g. coprocessor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F12/00Accessing, addressing or allocating within memory systems or architectures
    • G06F12/02Addressing or allocation; Relocation
    • G06F12/08Addressing or allocation; Relocation in hierarchically structured memory systems, e.g. virtual memory systems
    • G06F12/0802Addressing of a memory level in which the access to the desired data or data block requires associative addressing means, e.g. caches
    • G06F12/0806Multiuser, multiprocessor or multiprocessing cache systems
    • G06F12/0811Multiuser, multiprocessor or multiprocessing cache systems with multilevel cache hierarchies
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2212/00Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
    • G06F2212/45Caching of specific data in cache memory
    • G06F2212/455Image or video data

Abstract

描述用於加速圖形分析的設備及方法。例如,處理器之一實施例包含:指令提取單元,用以提取包括集合交集和集合聯集操作之程式碼;圖形加速器單元(GAU),用以執行關於該集合交集和集合聯集操作之該程式碼的至少第一部分並產生結果;及執行單元,用以使用從該GAU所提供的該些結果來執行該程式碼之至少第二部分。

Description

用於加速圖形分析的設備及方法
本發明一般係有關電腦處理器之領域。更特別地,本發明係有關用於加速圖形分析的設備及方法。
相關技術之描述 1.處理器微架構
指令集,或指令集架構(ISA),為關於編程之電腦架構的部分,包括本機資料類型、指令、暫存器架構、地址模式、記憶體架構、中斷和例外處置、及外部輸入和輸出(I/O)。應注意:術語「指令」於此通常指的是巨集指令-其為提供給處理器以供執行之指令-相對於微指令或微操作(micro-ops)-其為處理器之解碼器解碼巨集指令的結果。微指令或微操作可組態成指示處理器上之執行單元履行操作以實施與巨集指令相關的邏輯。
ISA不同於微架構,其為用以實施指令集之處理器設計技術的集合。具有不同微架構之處理器可共用一共同的指令集。例如,Intel® Pentium 4處理器,Intel® CoreTM 處理器、及來自Advanced Micro Devices,Inc.of Sunnyvale CA之處理器係實施幾乎相同版本的x86指令集(具有其已被加入較新版本的某些延伸),但具有不同的內部設計。例如,ISA之相同的暫存器架構可使用眾所周知的技術而以不同方式被實施於不同的微架構中,包括專屬的實體暫存器、使用暫存器重新命名機制之一或更多動態配置的實體暫存器(例如,使用暫存器別名表(RAT)、重排序緩衝器(ROB)及撤回暫存器檔)。除非另有指明,否則用語暫存器架構、暫存器檔、及暫存器於文中係用以指稱軟體/程式設計師可見者以及其中指令指明暫存器之方式。當需要分別時,形容詞「邏輯的」、「架構的」、或「軟體可見的」將被用以指示暫存器架構中之暫存器/檔,而不同的形容詞將被用以指定既定微架構中之暫存器(例如,實體暫存器、重排序緩衝器、撤回暫存器、暫存器池)。
2.圖形處理
圖形處理為今日大資料分析之骨幹。有數個圖形框架,諸如GraphMat(Intel PCL)及EmptyHeaded(Stanford)。兩者均根據於經分類集合上所履行的「集合聯集」及「集合交集」操作。集合聯集操作係識別結合集合中之所有不同元件,而集合交集操作係識別兩集合所共有的所有元件。
集合交集和集合聯集之目前軟體實施方式正挑戰當今 的系統並遠遠落後頻寬界限性能,特別於具有高頻寬記憶體(HBM)之系統上。特別地,現代CPU上之性能係由分支錯誤預測、快取未中及有效利用SIMD之困難所限制。雖然某些現存的指令有助於利用集合交集(例如,vconflict)中之SIMD,但整體性能仍低且遠遠落後頻寬界限性能,特別於HBM之存在時。
雖然目前加速器提案提供了針對圖形問題之子類的高性能及能量效率,但其範圍是有限的。對於緩慢鏈結之鬆散耦合阻止了介於CPU與加速器之間的快速通訊,因此迫使軟體開發商保存完整資料集於加速器之記憶體中,其針對實際資料集可能是太小的。特殊化計算引擎缺乏支援新的圖形演算法及現存演算法內之新的使用者定義功能之彈性。
100‧‧‧一般性向量友善指令格式
105‧‧‧無記憶體存取
110‧‧‧無記憶體存取、全捨入控制類型操作
112‧‧‧無記憶體存取、寫入遮蔽控制、部分捨入控制類型操作
115‧‧‧無記憶體存取、資料變換類型操作
117‧‧‧無記憶體存取、寫入遮蔽控制、v大小類型操作
120‧‧‧記憶體存取
125‧‧‧記憶體存取、暫時
127‧‧‧記憶體存取、寫入遮蔽控制
130‧‧‧記憶體存取、非暫時
140‧‧‧格式欄位
142‧‧‧基礎操作欄位
144‧‧‧暫存器指標欄位
146‧‧‧修飾符欄位
150‧‧‧擴增操作欄位
152‧‧‧α欄位
152A‧‧‧RS欄位
152A.1‧‧‧捨入
152A.2‧‧‧資料變換
152B‧‧‧逐出暗示欄位
152B.1‧‧‧暫時
152B.2‧‧‧非暫時
154‧‧‧β欄位
154A‧‧‧捨入控制欄位
154B‧‧‧資料變換欄位
154C‧‧‧資料調處欄位
156‧‧‧SAE欄位
157A‧‧‧RL欄位
157A.1‧‧‧捨入
157A.2‧‧‧向量長度(VSIZE)
157B‧‧‧廣播欄位
158‧‧‧捨入操作控制欄位
159A‧‧‧捨入操作欄位
159B‧‧‧向量長度欄位
160‧‧‧比例欄位
162A‧‧‧置換欄位
162B‧‧‧置換因數欄位
164‧‧‧資料元件寬度欄位
168‧‧‧類別欄位
168A‧‧‧類別A
168B‧‧‧類別B
170‧‧‧寫入遮蔽欄位
172‧‧‧即刻欄位
174‧‧‧全運算碼欄位
200‧‧‧特定向量友善指令格式
202‧‧‧EVEX前綴
205‧‧‧REX欄位
210‧‧‧REX’欄位
215‧‧‧運算碼映圖欄位
220‧‧‧VVVV欄位
225‧‧‧前綴編碼欄位
230‧‧‧真實運算碼欄位
240‧‧‧MOD R/M欄位
242‧‧‧MOD欄位
244‧‧‧Reg欄位
246‧‧‧R/M欄位
254‧‧‧SIB.xxx
256‧‧‧SIB.bbb
300‧‧‧暫存器架構
310‧‧‧向量暫存器
315‧‧‧寫入遮蔽暫存器
325‧‧‧通用暫存器
345‧‧‧純量浮點堆疊暫存器檔
350‧‧‧MMX緊縮整數平坦暫存器檔
400‧‧‧處理器管線
402‧‧‧提取級
404‧‧‧長度解碼級
406‧‧‧解碼級
408‧‧‧配置級
410‧‧‧重新命名級
412‧‧‧排程級
414‧‧‧暫存器讀取/記憶體讀取級
416‧‧‧執行級
418‧‧‧寫入回/記憶體寫入級
422‧‧‧例外處置級
424‧‧‧確定級
430‧‧‧前端單元
432‧‧‧分支預測單元
434‧‧‧指令快取單元
436‧‧‧指令變換後備緩衝(TLB)
438‧‧‧指令提取單元
440‧‧‧解碼單元
450‧‧‧執行引擎單元
452‧‧‧重新命名/配置器單元
454‧‧‧撤回單元
456‧‧‧排程器單元
458‧‧‧實體暫存器檔單元
460‧‧‧執行叢集
462‧‧‧執行單元
464‧‧‧記憶體存取單元
470‧‧‧記憶體單元
472‧‧‧資料TLB單元
474‧‧‧資料快取單元
476‧‧‧第二階(L2)快取單元
490‧‧‧處理器核心
500‧‧‧指令解碼器
502‧‧‧晶粒上互連網路
504‧‧‧第二階(L2)快取
506‧‧‧L1快取
506A‧‧‧L1資料快取
508‧‧‧純量單元
510‧‧‧向量單元
512‧‧‧純量暫存器
514‧‧‧向量暫存器
520‧‧‧拌合單元
522A-B‧‧‧數字轉換單元
524‧‧‧複製單元
526‧‧‧寫入遮蔽暫存器
528‧‧‧16寬的ALU
600‧‧‧處理器
602A-N‧‧‧核心
606‧‧‧共用快取單元
608‧‧‧特殊用途邏輯
610‧‧‧系統代理
612‧‧‧環狀為基的互連單元
614‧‧‧集成記憶體控制器單元
616‧‧‧匯流排控制器單元
700‧‧‧系統
710、715‧‧‧處理器
720‧‧‧控制器集線器
740‧‧‧記憶體
745‧‧‧共處理器
750‧‧‧輸入/輸出集線器(IOH)
760‧‧‧輸入/輸出(I/O)裝置
790‧‧‧圖形記憶體控制器集線器(GMCH)
795‧‧‧連接
800‧‧‧多處理器系統
814‧‧‧I/O裝置
815‧‧‧額外處理器
816‧‧‧第一匯流排
818‧‧‧匯流排橋接器
820‧‧‧第二匯流排
822‧‧‧鍵盤及/或滑鼠
824‧‧‧音頻I/O
827‧‧‧通訊裝置
828‧‧‧儲存單元
830‧‧‧指令/碼及資料
832‧‧‧記憶體
834‧‧‧記憶體
838‧‧‧共處理器
839‧‧‧高性能介面
850‧‧‧點對點互連
852、854‧‧‧P-P介面
870‧‧‧第一處理器
872、882‧‧‧集成記憶體控制器(IMC)單元
876、878‧‧‧點對點(P-P)介面
880‧‧‧第二處理器
886、888‧‧‧P-P介面
890‧‧‧晶片組
894、898‧‧‧點對點介面電路
896‧‧‧介面
900‧‧‧系統
914‧‧‧I/O裝置
915‧‧‧舊有I/O裝置
1000‧‧‧SoC
1002‧‧‧互連單元
1010‧‧‧應用程式處理器
1020‧‧‧共處理器
1030‧‧‧靜態隨機存取記憶體(SRAM)單元
1032‧‧‧直接記憶體存取(DMA)單元
1040‧‧‧顯示單元
1102‧‧‧高階語言
1104‧‧‧x86編譯器
1106‧‧‧x86二元碼
1108‧‧‧指令集編譯器
1110‧‧‧指令集二元碼
1112‧‧‧指令轉換器
1114‧‧‧沒有至少一x86指令集核心之處理器
1116‧‧‧具有至少一x86指令集核心之處理器
1250‧‧‧集合交集
1251‧‧‧集合聯集
1300‧‧‧主記憶體
1301‧‧‧分支目標緩衝器(BTB)
1302‧‧‧分支預測單元
1303‧‧‧下一指令指針
1304‧‧‧指令變換後備緩衝(ITLB)
1305‧‧‧通用暫存器(GPR)
1306‧‧‧向量暫存器
1307‧‧‧遮蔽暫存器
1310‧‧‧指令提取單元
1311‧‧‧第二階(L2)快取
1312‧‧‧第一階(L1)快取
1316‧‧‧第三階(L3)快取
1320‧‧‧解碼單元
1321‧‧‧資料快取
1330‧‧‧解碼單元
1340‧‧‧執行單元
1350‧‧‧寫回單元
1311a-c‧‧‧共用L2快取
1320a-c‧‧‧I-快取
1321a-c‧‧‧D-快取
1340‧‧‧執行單元
1345‧‧‧GAU
1401a-c‧‧‧核心
1411a-c‧‧‧執行資源
1420a-c‧‧‧介面
1445a-c‧‧‧GAU
1450‧‧‧核心間結構
從以下配合後附圖形之詳細描述可獲得對本發明之較佳瞭解,其中:圖1A及1B為闡明一般性向量友善指令格式及其指令模板的方塊圖,依據本發明之實施例。
圖2A-D為闡明範例特定向量友善指令格式的方塊圖,依據本發明之實施例;圖3為一暫存器架構之方塊圖,依據本發明之一實施例;及圖4A為闡明範例依序提取、解碼、撤回管線及範例 暫存器重新命名、失序發送/執行管線兩者之方塊圖,依據本發明之實施例;圖4B為一方塊圖,其闡明將包括於依據本發明之實施例的處理器中之依序提取、解碼、撤回核心的範例實施例及範例暫存器重新命名、失序發送/執行架構核心兩者;圖5A為單一處理器核心、連同其與晶粒上互連網路之連接的方塊圖;圖5B闡明圖5A中之處理器核心的部分之延伸視圖,依據本發明之實施例;圖6為具有集成記憶體控制器及圖形之單核心處理器和多核心處理器的方塊圖,依據本發明之實施例;圖7闡明一系統之方塊圖,依據本發明之一實施例;圖8闡明一第二系統之方塊圖,依據本發明之實施例;圖9闡明一第三系統之方塊圖,依據本發明之實施例;圖10闡明依據本發明之實施例的系統單晶片(SoC)的方塊圖;圖11闡明對照軟體指令轉換器之使用的方塊圖,該轉換器係用以將來源指令集中之二元指令轉換至目標指令集中之二元指令,依據本發明之實施例;圖12A闡明範例集合交集和集合聯集程式碼;圖12B闡明範例矩陣操作; 圖13闡明配備有圖形加速器單元(GAU)之範例處理器;圖14闡明配備有GAU之範例組的核心;及圖15闡明依據本發明之一實施例的方法。
【發明內容與實施方式】
於以下說明中,為了解釋之目的,提出數個特定細節以提供下述本發明的實施例之透徹瞭解。然而,熟悉此項技術人士將清楚本發明之實施例可被實行而無這些特定細節之若干部分。於其他例子中,眾所周知的結構及裝置被顯示以方塊圖形式中,以避免混淆本發明的實施例之主要原則。
範例處理器架構及資料類型
指令集包括一或更多指令格式。既定指令格式係界定各種欄位(位元之數目、位元之位置)以指明待履行之操作(運算碼)以及將於其上履行操作之運算元(亦指明它物)。一些指令格式係透過指令模板(或子格式)之定義而被進一步分解。例如,既定指令格式之指令模板可被定義以具有指令格式之欄位的不同子集(所包括的欄位通常係以相同順序,但至少某些具有不同的位元位置,因為包括了較少的欄位)及/或被定義以具有被不同地解讀之既定欄位。因此,ISA之各指令係使用既定指令格式(以及,假如被定義的話,以該指令格式之指令模板的既定一 者)而被表達,並包括用以指明操作及運算元之欄位。例如,範例ADD指令具有特定運算碼及一指令格式,其包括用以指明該運算碼之運算碼欄位及用以選擇運算元(來源1/目的地及來源2)之運算元欄位;而於一指令串中之此ADD指令的出現將具有特定內容於其選擇特定運算元之運算元欄位中。被稱為先進向量延伸(AVX)(AVX1及AVX2)並使用向量延伸(VEX)編碼技術之一組SIMD延伸已被釋出及/或出版(例如,參見Intel® 64及IA-32架構軟體開發商手冊,2011年十月;及參見Intel®先見向量延伸編程參考,2011年六月)。
範例指令格式
文中所述之指令的實施例可被實施以不同的格式。此外,範例系統、架構、及管線被詳述於下。指令之實施例可被執行於此等系統、架構、及管線上,但不限定於那些細節。
A.一般性向量友善指令格式
向量友善指令格式是一種適於向量指令之指令格式(例如,有向量操作特定的某些欄位)。雖然實施例係描述其中向量和純量操作兩者均透過向量友善指令格式而被支援,但替代實施例僅使用具有向量友善指令格式之向量操作。
圖1A-1B為闡明一般性向量友善指令格式及其指令模 板的方塊圖,依據本發明之實施例。圖1A為闡明一般性向量友善指令格式及其類別A指令模板的方塊圖,依據本發明之實施例;而圖1B為闡明一般性向量友善指令格式及其類別B指令模板的方塊圖,依據本發明之實施例。明確地,針對一般性向量友善指令格式100係定義類別A及類別B指令模板,其兩者均包括無記憶體存取105指令模板及記憶體存取120指令模板。於向量友善指令格式之背景下,術語「一般性」指的是不與任何特定指令集連結的指令格式。
雖然本發明之實施例將描述其中向量友善指令格式支援以下:具有32位元(4位元組)或64位元(8位元組)資料元件寬度(或大小)之64位元組向量運算元長度(或大小)(且因此,64位元組向量係由16雙字元大小的元件、或替代地8四字元大小的元件所組成);具有16位元(2位元組)或8位元(1位元組)資料元件寬度(或大小)之64位元組向量運算元長度(或大小);具有32位元(4位元組)、64位元(8位元組)、16位元(2位元組)、或8位元(1位元組)資料元件寬度(或大小)之32位元組向量運算元長度(或大小);及具有32位元(4位元組)、64位元(8位元組)、16位元(2位元組)、或8位元(1位元組)資料元件寬度(或大小)之16位元組向量運算元長度(或大小);但是替代實施例可支援具有更大、更小、或不同資料元件寬度(例如,128位元(16位元組)資料元件寬度)之更大、更小 及/或不同的向量運算元大小(例如,256位元組向量運算元)。
圖1A中之類別A指令模板包括:1)於無記憶體存取105指令模板內,顯示有無記憶體存取、全捨入控制類型操作110指令模板及無記憶體存取、資料變換類型操作115指令模板;以及2)於記憶體存取120指令模板內,顯示有記憶體存取、暫時125指令模板及記憶體存取、非暫時130指令模板。圖1B中之類別B指令模板包括:1)於無記憶體存取105指令模板內,顯示有無記憶體存取、寫入遮蔽控制、部分捨入控制類型操作112指令模板及無記憶體存取、寫入遮蔽控制、v大小類型操作117指令模板;以及2)於記憶體存取120指令模板內,顯示有記憶體存取、寫入遮蔽控制127指令模板。
一般性向量友善指令格式100包括以下欄位,依圖1A-1B中所示之順序列出如下。
格式欄位140-此欄位中之一特定值(指令格式識別符值)係獨特地識別向量友善指令格式、以及因此在指令串中之向量友善指令格式的指令之發生。如此一來,此欄位是選擇性的,因為針對一僅具有一般性向量友善指令格式之指令集而言此欄位是不需要的。
基礎操作欄位142-其內容係分辨不同的基礎操作。
暫存器指標欄位144-其內容(直接地或透過位址產生)係指明來源及目的地運算元之位置,假設其係於暫存器中或記憶體中。這些包括足夠數目的位元以從PxQ(例 如,32x512、16x128、32x1024、64x1024)暫存器檔選擇N個暫存器。雖然於一實施例中N可高達三個來源及一個目的地暫存器,但是替代實施例可支援更多或更少的來源及目的地暫存器(例如,可支援高達兩個來源,其中這些來源之一亦作用為目的地;可支援高達三個來源,其中這些來源之一亦作用為目的地;可支援高達兩個來源及一個目的地)。
修飾符欄位146-其內容係從不指明記憶體存取之那些指令分辨出其指明記憶體存取之一般性向量指令格式的指令之發生,亦即,介於無記憶體存取105指令模板與記憶體存取120指令模板之間。記憶體存取操作係讀取及/或寫入至記憶體階層(於使用暫存器中之值以指明來源及/或目的地位址之某些情況下),而非記憶體存取操作則不會如此(例如,來源及目的地為暫存器)。雖然於一實施例中此欄位亦於三個不同方式之間選擇以履行記憶體位址計算,但是替代實施例可支援更多、更少、或不同方式以履行記憶體位址計算。
擴增操作欄位150-其內容係分辨多種不同操作之哪一個將被履行,除了基礎操作之外。此欄位是背景特定的。於本發明之一實施例中,此欄位被劃分為類別欄位168、α欄位152、及β欄位154。擴增操作欄位150容許操作之共同群組將被履行以單指令而非2、3、或4指令。
比例欄位160-其內容容許指標欄位之內容的定標, 以供記憶體位址產生(例如,以供其使用2比例*指標+基礎之位址產生)。
置換欄位162A-其內容被使用為記憶體位址產生之部分(例如,以供其使用2比例*指標+基礎+置換之位址產生)。
置換因數欄位162B(注意:直接在置換因數欄位162B上方之置換欄位162A的並列指示一者或另一者被使用)-其內容被使用為位址產生之部分;其指明將被記憶體存取之大小(N)所定標的置換因數-其中N為記憶體存取中之位元組數目(例如,以供其使用2比例*指標+基礎+定標置換之位址產生)。冗餘低階位元被忽略而因此,置換因數欄位之內容被乘以記憶體運算元總大小(N)來產生最終置換以供使用於計算有效位址。N之值係在運作時間由處理器硬體所判定,根據全運算碼欄位174(稍後描述於文中)及資料調處欄位154C。置換欄位162A及置換因數欄位162B是選擇性的,因為其未被使用於無記憶體存取105指令模板及/或不同的實施例可實施該兩欄位之僅一者或者無任何者。
資料元件寬度欄位164-其內容係分辨數個資料元件之哪一個將被使用(於某些實施例中針對所有指令;於其他實施例中針對僅某些指令)。此欄位是選擇性的,在於其假如僅有一資料元件寬度被支援及/或資料元件寬度係使用運算碼之某形態而被支援則此欄位是不需要的。
寫入遮蔽欄位170-其內容係根據每資料元件位置以 控制其目的地向量運算元中之資料元件位置是否反映基礎操作及擴增操作之結果。類別A指令模板支援合併-寫入遮蔽,而類別B指令模板支援合併-及歸零-寫入遮蔽兩者。當合併時,向量遮蔽容許目的地中之任何組的元件被保護自任何操作之執行期間(由基礎操作及擴增操作所指明)的更新;於另一實施例中,保留其中相應遮蔽位元具有0之目的地的各元件之舊值。反之,當歸零時,向量遮蔽容許目的地中之任何組的元件被歸零於任何操作之執行期間(由基礎操作及擴增操作所指明);於一實施例中,當相應遮蔽位元具有0值時則目的地之一元件被設為0。此功能之子集是其控制被履行之操作的向量長度(亦即,被修飾之元件的範圍,從第一者至最後者)的能力;然而,其被修飾之元件不需要是連續的。因此,寫入遮蔽欄位170容許部分向量操作,包括載入、儲存、運算、邏輯,等等。雖然本發明之實施例係描述其中寫入遮蔽欄位170之內容選擇其含有待使用之寫入遮蔽的數個寫入遮蔽暫存器之一(且因此寫入遮蔽欄位170之內容間接地識別將被履行之遮蔽),但是替代實施例取代地或者額外地容許寫入遮蔽欄位170之內容直接地指明將被履行之遮蔽。
即刻欄位172-其內容容許即刻之指明。此欄位是選擇性的,由於此欄位存在於其不支援即刻之一般性向量友善格式的實施方式中且此欄位不存在於其不使用即刻之指令中。
類別欄位168-其內容分辨於不同類別的指令之間。 參考圖1A-B,此欄位之內容選擇於類別A與類別B指令之間。於圖1A-B中,圓化角落的方形被用以指示一特定值存在於一欄位中(例如,針對類別欄位168之類別A 168A及類別B 168B,個別地於圖1A-B中)。
類別A之指令模板
於類別A之非記憶體存取105指令模板的情況下,α欄位152被解讀為RS欄位152A,其內容係分辨不同擴增操作類型之哪一個將被履行(例如,捨入152A.1及資料變換152A.2被個別地指明給無記憶體存取、捨入類型操作110及無記憶體存取、資料變換類型操作115指令模板),而β欄位154係分辨該些指明類型的操作之哪個將被履行。於無記憶體存取105指令模板中,比例欄位160、置換欄位162A、及置換比例欄位162B不存在。
無記憶體存取指令模板-全捨入控制類型操作
於無記憶體存取全捨入類型操作110指令模板中,β欄位154被解讀為捨入控制欄位154A,其內容係提供靜態捨入。雖然於本發明之所述實施例中,捨入控制欄位154A包括抑制所有浮點例外(SAE)欄位156及捨入操作控制欄位158,但替代實施例可支援可將這兩個觀念均編碼入相同欄位或僅具有這些觀念/欄位之一者或另一者(例如,可僅具有捨入操作控制欄位158)。
SAE欄位156-其內容係分辨是否除能例外事件報 告;當SAE欄位156之內容指示抑制被致能時,則一既定指令不報告任何種類的浮點例外旗標且不引發任何浮點例外處置器。
捨入操作控制欄位158-其內容係分辨一群捨入操作之哪一個將被履行(例如向上捨入、向下捨入、朝零捨入及捨入至最接近)。因此,捨入操作控制欄位158容許以每指令為基之捨入模式的改變。於本發明之一實施例中,其中處理器包括一用以指明捨入模式之控制暫存器,捨入操作控制欄位150之內容係撤銷該暫存器值。
無記憶體存取指令模板-資料變換類型操作
於無記憶體存取資料變換類型操作115指令模板中,β欄位154被解讀為資料變換欄位154B,其內容係分辨數個資料變換之哪一個將被履行(例如,無資料變換、拌合、廣播)。
於類別A之記憶體存取120指令模板之情況中,α欄位152被解讀為逐出暗示欄位152B,其內容係分辨逐出暗示之哪一個將被使用(於圖1A中,暫時152B.1及非暫時152B.2被個別地指明給記憶體存取、暫時125指令模板及記憶體存取、非暫時130指令模板),而β欄位154被解讀為資料調處欄位154C,其內容係分辨數個資料調處操作(亦已知為基元)之哪一個將被履行(例如,無調處;廣播;來源之向上轉換;及目的地之向下轉換)。記憶體存取120指令模板包括比例欄位160、及選擇性地置 換欄位162A或置換比例欄位162B。
向量記憶體指令係履行向量載入自及向量儲存至記憶體,具有轉換支援。至於一般向量指令,向量記憶體指令係以資料元件式方式轉移資料自/至記憶體,以其被實際地轉移之元件由其被選為寫入遮蔽的向量遮蔽之內容所主宰。
記憶體存取指令模板-暫時
暫時資料為可能會夠早地被再使用以受惠自快取的資料。然而,此為一暗示,且不同的處理器可以不同的方式來實施,包括完全地忽略該暗示。
記憶體存取指令模板-非暫時
非暫時資料為不太可能會夠早地被再使用以受惠自第一階快取中之快取且應被給予逐出之既定優先權的資料。然而,此為一暗示,且不同的處理器可以不同的方式來實施,包括完全地忽略該暗示。
類別B之指令模板
於類別B之指令模板的情況下,α欄位152被解讀為寫入遮蔽控制(Z)欄位152C,其內容係分辨由寫入遮蔽欄位170所控制的寫入遮蔽是否應為合併或歸零。
於類別B之非記憶體存取105指令模板的情況下,β欄位154之部分被解讀為RL欄位157A,其內容係分辨不 同擴增操作類型之哪一個將被履行(例如,捨入157A.1及向量長度(VSIZE)157A.2被個別地指明給無記憶體存取、寫入遮蔽控制、部分捨入控制類型操作112指令模板及無記憶體存取、寫入遮蔽控制、VSIZE類型操作117指令模板),而剩餘的β欄位154係分辨該些指明類型的操作之哪個將被履行。於無記憶體存取105指令模板中,比例欄位160、置換欄位162A、及置換比例欄位162B不存在。
於無記憶體存取中,寫入遮蔽控制、部分捨入控制類型操作110指令模板、及剩餘的β欄位154被解讀為捨入操作欄位159A且例外事件報告被除能(既定指令則不報告任何種類的浮點例外旗標且不引發任何浮點例外處置器)。
捨入操作控制欄位159A-正如捨入操作控制欄位158,其內容係分辨一群捨入操作之哪一個將被履行(例如向上捨入、向下捨入、朝零捨入及捨入至最接近)。因此,捨入操作控制欄位159A容許以每指令為基之捨入模式的改變。於本發明之一實施例中,其中處理器包括一用以指明捨入模式之控制暫存器,捨入操作控制欄位150之內容係撤銷該暫存器值。
於無記憶體存取、寫入遮蔽控制、VSIZE類型操作117指令模板中,剩餘的β欄位154被解讀為向量長度欄位159B,其內容係分辨數個資料向量長度之哪一個將被履行(例如,128、256、或512位元組)。
於類別B之記憶體存取120指令模板的情況下,β欄位154之部分被解讀為廣播欄位157B,其內容係分辨廣播類型資料調處操作是否將被履行,而剩餘的β欄位154被解讀為向量長度欄位159B。記憶體存取120指令模板包括比例欄位160、及選擇性地置換欄位162A或置換比例欄位162B。
關於一般性向量友善指令格式100,全運算碼欄位174被顯示為包括格式欄位140、基礎操作欄位142、及資料元件寬度欄位164。雖然一實施例被顯示為其中全運算碼欄位174包括所有這些欄位,而在不支援其所有欄位之實施例中,全運算碼欄位174包括少於所有這些欄位。全運算碼欄位174提供操作碼(運算碼)。
擴增操作欄位150、資料元件寬度欄位164、及寫入遮蔽欄位170容許這些特徵以每指令為基被指明以一般性向量友善指令格式。
寫入遮蔽欄位與資料元件寬度欄位之組合產生類型化的指令,在於其容許遮蔽根據不同資料元件寬度而被施加。
類別A及類別B中所尋獲之各種指令模板在不同情況下是有利的。於本發明之某些實施例中,不同處理器或一處理器中之不同核心可支援僅類別A、僅類別B、或兩類別。例如,用於通用計算之高性能通用失序核心可支援僅類別B;主要用於圖形及/或科學(通量)計算之核心可支援僅類別A;及用於兩者之核心可支援兩者(當然, 一種具有來自兩類別之模板和指令的某混合但非來自兩類別之所有模板和指令的核心是落入本發明之範圍內)。同時,單一處理器可包括多核心,其所有均支援相同的類別或者其中不同的核心支援不同的類別。例如,於一具有分離的圖形和通用核心之處理器中,主要用於圖形及/或科學計算的圖形核心之一可支援僅類別A;而通用核心之一或更多者可為高性能通用核心,其具有用於支援僅類別B之通用計算的失序執行和暫存器重新命名。不具有分離的圖形核心之另一處理器可包括支援類別A和類別B兩者之一或更多通用依序或失序核心。當然,在本發明之不同實施例中,來自一類別之特徵亦可被實施於另一類別中。以高階語言撰寫之程式將被置入(例如,即時編譯或靜態地編譯)多種不同的可執行形式,包括:1)僅具有由用於執行之目標處理器所支援的(一或多)類別之指令的形式;或2)具有其使用所有類別之指令的不同組合所寫入之替代常式並具有控制流碼的形式,該控制流碼係根據由目前正執行該碼之處理器所支援的指令以選擇用來執行之常式。
B.範例特定向量友善指令格式
圖2為闡明範例特定向量友善指令格式的方塊圖,依據本發明之實施例。圖2顯示特定向量友善指令格式200,其之特定在於其指明欄位之位置、大小、解讀及順序,以及那些欄位之部分的值。特定向量友善指令格式 200可被用以延伸x86指令集,而因此某些欄位係類似於或相同於現存x86指令集及其延伸(例如,AVX)中所使用的那些。此格式保持與下列各者一致:具有延伸之現存x86指令集的前綴編碼欄位、真實運算碼位元組欄位、MOD R/M欄位、SIB欄位、置換欄位、及即刻欄位。闡明來自圖1之欄位投映入來自圖2之欄位。
應理解:雖然本發明之實施例係參考為說明性目的之一般性向量友善指令格式100的背景下之特定向量友善指令格式200而描述,但除非其中有聲明否則本發明不限於特定向量友善指令格式200。例如,一般性向量友善指令格式100係考量各個欄位之多種可能大小,而特定向量友善指令格式200被顯示為具有特定大小之欄位。舉特定例而言,雖然資料元件寬度欄位164被闡明為特定向量友善指令格式200之一位元欄位,但本發明未如此限制(亦即,一般性向量友善指令格式100係考量資料元件寬度欄位164之其他大小)。
一般性向量友善指令格式100包括以下欄位,依圖2A中所示之順序列出如下。
EVEX前綴(位元組0-3)202-被編碼以四位元組形式。
格式欄位140(EVEX位元組0,位元[7:0])-第一位元組(EVEX位元組0)為格式欄位140且其含有0x62(用於分辨本發明之一實施例中的向量友善指令格式之獨特值)。
第二-第四位元組(EVEX位元組1-3)包括數個提供特定能力之位元欄位。
REX欄位205(EVEX位元組1,位元[7-5])-係包括:EVEX.R位元欄位(EVEX位元組1,位元[7]-R)、EVEX.X位元欄位(EVEX位元組1,位元[6]-X)、及157BEX位元組1,位元[5]-B)。EVEX.R、EVEX.X、及EVEX.B位元欄位提供如相應VEX位元欄位之相同功能,且係使用1互補形式而被編碼,亦即,ZMM0被編碼為1111B,ZMM15被編碼為0000B。指令之其他欄位編碼該些暫存器指標之較低三位元如本技術中所已知者(rrr、xxx、及bbb),以致Rrrr、Xxxx、及Bbbb可藉由加入EVEX.R、EVEX.X、及EVEX.B而被形成。
REX'欄位110-此為REX'欄位110之第一部分且為EVER.R'位元欄位(EVEX位元組1,位元[4]-R’),其被用以編碼延伸的32暫存器集之上16個或下16個。於本發明之一實施例中,此位元(連同如以下所指示之其他者)被儲存以位元反轉格式來分辨(於眾所周知的x86 32-位元模式中)自BOUND指令,其真實運算碼位元組為62,但於MOD R/M欄位(描述於下)中不接受MOD欄位中之11的值;本發明之替代實施例不以反轉格式儲存此及如下其他指示的位元。1之值被用以編碼下16暫存器。換言之,R'Rrrr係藉由結合EVEX.R'、EVEX.R、及來自其他欄位之其他RRR而被形成。
運算碼映圖欄位215(EVEX位元組1,位元[3:0]- mmmm)-其內容係編碼一暗示的領先運算碼位元組(0F、0F 38、或0F 3)。
資料元件寬度欄位164(EVEX位元組2,位元[7]-W)係由記號EVEX.W所表示。EVEX.W被用以界定資料類型(32位元資料元件或64位元資料元件)之粒度(大小)。
EVEX.vvvv 220(EVEX位元組2,位元[6:3]-vvvv)-EVEX.vvvv之角色可包括以下:1)EVEX.vvvv編碼其以反轉(1之補數)形式所指明的第一來源暫存器運算元且針對具有2或更多來源運算元為有效的;2)EVEX.vvvv針對某些向量位移編碼其以1之補數形式所指明的目的地暫存器運算元;或3)EVEX.vvvv未編碼任何運算元,該欄位被保留且應含有1111b。因此,EVEX.vvvv欄位220係編碼其以反轉(1之補數)形式所儲存的第一來源暫存器指明符之4個低階位元。根據該指令,一額外的不同EVEX位元欄位被用以延伸指明符大小至32暫存器。
EVEX.U 168類別欄位(EVEX位元組2,位元[2]-U)-假如EVEX.U=0,則其指示類別A或EVEX.U0;假如EVEX.U=1,則其指示類別B或EVEX.U1。
前綴編碼欄位225(EVEX位元組2,位元[1:0]-pp)提供額外位元給基礎操作欄位。除了提供針對EVEX前綴格式之舊有SSE指令的支援,此亦具有壓縮SIMD前綴之優點(不需要一位元組來表達SIMD前綴,EVEX前 綴僅需要2位元)。於一實施例中,為了支援其使用以舊有格式及以EVEX前綴格式兩者之SIMD前綴(66H、F2H、F3H)的舊有SSE指令,這些舊有SIMD前綴被編碼為SIMD前綴編碼欄位;且在運作時間被延伸入舊有SIMD前綴,在其被提供至解碼器的PLA以前(以致PLA可執行這些舊有指令之舊有和EVEX格式兩者而無須修改)。雖然較新的指令可將EVEX前綴編碼欄位之內容直接地使用為運算碼延伸,但某些實施例係以類似方式延伸以符合一致性而容許不同的意義由這些舊有SIMD前綴來指明。替代實施例可重新設計PLA以支援2位元SIMD前綴編碼,而因此不需要延伸。
α欄位152(EVEX位元組3,位元[7]-EH;亦已知為EVEX.EH、EVEX.rs、EVEX.RL、EVEX.寫入遮蔽控制、及EVEX.N;亦闡明以α)-如先前所描述,此欄位是背景特定的。
β欄位154(EVEX位元組3,位元[6:4]-SSS,亦已知為EVEX.s2-0、EVEX.r2-0、EVEX.rr1、EVEX.LL0、EVEX.LLB;亦闡明以βββ)-如先前所描述,此欄位是背景特定的。
REX'欄位110-此為REX'欄位之剩餘部分且為EVER.V'位元欄位(EVEX位元組3,位元[3]-V’),其被用以編碼延伸的32暫存器集之上16個或下16個。此位元被儲存以位元反轉格式。1之值被用以編碼下16暫存器。換言之,V'VVVV係藉由結合EVEX.V'、 EVEX.vvvv所形成。
寫入遮蔽欄位170(EVEX位元組3,位元[2:0]-kkk)-其內容係指明在如先前所述之寫入遮蔽暫存器中的暫存器之指標。於本發明之一實施例中,特定值EVEX.kkk=000具有一特殊行為,其係暗示無寫入遮蔽被用於特別指令(此可被實施以多種方式,包括使用其固線至所有各者之寫入遮蔽或者其旁路遮蔽硬體之硬體)。
真實運算碼欄位230(位元組4)亦已知為運算碼位元組。運算碼之部分被指明於此欄位。
MOD R/M欄位240(位元組5)包括MOD欄位242、Reg欄位244、及R/M欄位246。如先前所述MOD欄位242之內容係分辨於記憶體存取與非記憶體存取操作之間。Reg欄位244之角色可被概述為兩情況:編碼目的地暫存器運算元或來源暫存器運算元、或者被視為運算碼延伸而不被用以編碼任何指令運算元。R/M欄位246之角色可包括以下:編碼其參考記憶體位址之指令運算元;或者編碼目的地暫存器運算元或來源暫存器運算元。
比例、指標、基礎(SIB)位元組(位元組6)-如先前所述,比例欄位150之內容被用於記憶體位址產生。SIB.xxx 254及SIB.bbb 256-這些欄位之內容先前已被參考針對暫存器指標Xxxx及Bbbb。
置換欄位162A(位元組7-10)-當MOD欄位242含有10時,位元組7-10為置換欄位162A,且其如舊有32位元置換(disp32)般相同之方式運作且以位元組粒度 運作。
置換因數欄位162B(位元組7)-當MOD欄位242含有01時,位元組7為置換因數欄位162B。此欄位之位置係相同於舊有x86指令集8位元置換(disp8)之位置,其以位元組粒度運作。因為disp8是符號延伸的,所以其可僅定址於-128與127位元組偏移之間;關於64位元組快取線,disp8係使用其可被設為僅四個實際有用值-128、-64、0及64之8位元;因為較大範圍經常是需要的,所以disp32被使用;然而,disp32需要4位元組。相對於disp8及disp32,置換因數欄位162B為disp8之再解讀;當使用置換因數欄位162B時,實際置換係由置換因數欄位之內容乘以記憶體運算元存取之大小(N)所判定。此類型之置換被稱為disp8*N。此係減少平均指令長度(用於置換之單一位元組但具有更大的範圍)。此壓縮置換是基於假設其有效置換為記憶體存取之粒度的數倍,而因此,位址偏移之冗餘低階位元無須被編碼。換言之,置換因數欄位162B取代舊有x86指令集8位元置換。因此,置換因數欄位162B被編碼以如x86指令集8位元置換之相同方式(以致ModRM/SIB編碼規則並無改變),唯一例外是其disp8被超載至disp8*N。換言之,編碼規則或編碼長度沒有改變,但僅於藉由硬體之置換值的解讀(其需由記憶體運算元之大小來定標置換以獲得位元組式的位址偏移)。
即刻欄位172係操作如先前所述。
全運算碼欄位
圖2B為闡明其組成全運算碼欄位174之特定向量友善指令格式200的欄位之方塊圖,依據本發明之一實施例。明確地,全運算碼欄位174包括格式欄位140、基礎操作欄位142、及資料元件寬度(W)欄位164。基礎操作欄位142包括前綴編碼欄位225、運算碼映圖欄位215、及真實運算碼欄位230。
暫存器指標欄位
圖2C為闡明其組成暫存器指標欄位144之特定向量友善指令格式200的欄位之方塊圖,依據本發明之一實施例。明確地,暫存器指標欄位144包括REX欄位205、REX'欄位210、MODR/M.reg欄位244、MODR/M.r/m欄位246、VVVV欄位220、xxx欄位254、及bbb欄位256。
擴增操作欄位
圖2D為闡明其組成擴增操作欄位150之特定向量友善指令格式200的欄位之方塊圖,依據本發明之一實施例。當類別(U)欄位168含有0時,則其表示EVEX.U0(類別A 168A);當其含有1時,則其表示EVEX.U1(類別B 168B)。當U=0且MOD欄位242含有11(表示無記憶體存取操作)時,則α欄位152(EVEX位元組 3,位元[7]-EH)被解讀為rs欄位152A。當rs欄位152A含有1(捨入152A.1)時,則β欄位154(EVEX位元組3,位元[6:4]-SSS)被解讀為捨入控制欄位154A。捨入控制欄位154A包括一位元SAE欄位156及二位元捨入操作欄位158。當rs欄位152A含有0(資料變換152A.2)時,則β欄位154(EVEX位元組3,位元[6:4]-SSS)被解讀為三位元資料變換欄位154B。當U=0且MOD欄位242含有00、01、或10(表示記憶體存取操作)時,則α欄位152(EVEX位元組3,位元[7]-EH)被解讀為逐出暗示(EH)欄位152B且β欄位154(EVEX位元組3,位元[6:4]-SSS)被解讀為三位元資料調處欄位154C。
當U=1時,則α欄位152(EVEX位元組3,位元[7]-EH)被解讀為寫入遮蔽控制(Z)欄位152C。當U=1且MOD欄位242含有11(表示無記憶體存取操作)時,則β欄位154之部分(EVEX位元組3,位元[4]-S0)被解讀為RL欄位157A;當其含有1(捨入157A.1)時,則β欄位154之剩餘部分(EVEX位元組3,位元[6-5]-S2-1)被解讀為捨入操作欄位159A;而當RL欄位157A含有0(VSIZE 157.A2)時,則β欄位154之剩餘部分(EVEX位元組3,位元[6-5]-S2-1)被解讀為向量長度欄位159B(EVEX位元組3,位元[6-5]-L1-0)。當U=1且MOD欄位242含有00、01、或10(表示記憶體存取操作)時,則β欄位154(EVEX位元組3,位元[6:4]- SSS)被解讀為向量長度欄位159B(EVEX位元組3,位元[6-5]-L1-0)及廣播欄位157B(EVEX位元組3,位元[4]-B)。
C.範例暫存器架構
圖3為一暫存器架構300之方塊圖,依據本發明之一實施例。於所示之實施例中,有32個向量暫存器310,其為512位元寬;這些暫存器被稱為zmm0至zmm31。較低的16個zmm暫存器之較低階256位元被重疊於暫存器ymm0-16上。較低的16個zmm暫存器之較低階128位元(ymm暫存器之較低階128位元)被重疊於暫存器xmm0-15上。特定向量友善指令格式200係操作於這些重疊的暫存器檔上,如以下表中所闡明。
換言之,向量長度欄位159B於最大長度與一或更多其他較短長度之間選擇,其中每一此較短長度為前一長度之長度的一半;而無向量長度欄位159B之指令模板係操 作於最大向量長度上。此外,於一實施例中,特定向量友善指令格式200之類別B指令模板係操作於緊縮或純量單/雙精確度浮點資料及緊縮或純量整數資料上。純量操作為履行於zmm/ymm/xmm暫存器中之最低階資料元件上的操作;較高階資料元件位置係根據實施例而被保留如其在該指令前之相同者或者被歸零。
寫入遮蔽暫存器315-於所示之實施例中,有8個寫入遮蔽暫存器(k0至k7),大小各為64位元。於替代實施例中,寫入遮蔽暫存器315之大小為16位元。如先前所述,於本發明之一實施例中,向量遮蔽暫存器k0無法被使用為寫入遮蔽;當其通常將指示k0之編碼被用於寫入遮蔽時,其係選擇0xFFFF之固線寫入遮蔽,有效地除能用於該指令之寫入遮蔽。
通用暫存器325-於所示之實施例中,有十六個64位元通用暫存器,其係連同現存的x86定址模式來用以定址記憶體運算元。這些暫存器被參照以RAX、RBX、RCX、RDX、RBP、RSI、RDI、RSP、及R8至R15之名稱。
純量浮點堆疊暫存器檔(x87堆疊)345,MMX緊縮整數平坦暫存器檔350係別名於其上-於所示之實施例中,x87堆疊為用以使用x87指令集延伸而在32/64/80位元浮點資料上履行純量浮點操作之八元件堆疊;而MMX暫存器被用以履行操作在64位元緊縮整數資料上、及用以保持運算元以供介於MMX與XMM暫存器間所履行的 某些操作。
本發明之替代實施例可使用較寬或較窄的暫存器。此外,本發明之替代實施例可使用更多、更少、或不同的暫存器檔及暫存器。
D.範例核心架構、處理器、及電腦架構
處理器核心可被實施以不同方式、用於不同目的、以及於不同處理器中。例如,此類核心之實施方式可包括:1)用於通用計算之通用依序核心;2)用於通用計算之高性能通用失序核心;3)主要用於圖形及/或科學(通量)計算之特殊用途核心。不同處理器之實施方式可包括:1)CPU,其包括用於通用計算之一或更多通用依序核心及/或用於通用計算之一或更多通用失序核心;及2)核心處理器,其包括主要用於圖形及/或科學(通量)之一或更多特殊用途核心。此等不同處理器導致不同的電腦系統架構,其可包括:1)在與該CPU分離之晶片上的共處理器;2)在與CPU相同的封裝中之分離晶粒上的共處理器;3)在與CPU相同的晶粒上的共處理器(於該情況下,此一處理器有時被稱為特殊用途邏輯,諸如集成圖形及/或科學(通量)邏輯、或稱為特殊用途核心);及4)在一可包括於相同晶粒上之所述CPU(有時稱為應用程式核心或應用程式處理器)、上述共處理器、及額外功能的晶片上之系統。範例核心架構被描述於下,接續著其為範例處理器及電腦架構之描述。
圖4A為闡明範例依序管線及範例暫存器重新命名、失序發送/執行管線兩者之方塊圖,依據本發明之實施例。圖4B為一方塊圖,其闡明將包括於依據本發明之實施例的處理器中之依序架構核心之範例實施例及範例暫存器重新命名、失序發送/執行架構核心兩者。圖4A-B中之實線方塊係闡明依序管線及依序核心,而虛線方塊之選擇性加入係闡明暫存器重新命名、失序發送/執行管線及核心。假設其依序形態為失序形態之子集,將描述失序形態。
於圖4A中,處理器管線400包括提取級402、長度解碼級404、解碼級406、配置級408、重新命名級410、排程(亦已知為分派或發送)級412、暫存器讀取/記憶體讀取級414、執行級416、寫入回/記憶體寫入級418、例外處置級422、及確定級424。
圖4B顯示處理器核心490,其包括一耦合至執行引擎單元450之前端單元430,且兩者均耦合至記憶體單元470。核心490可為減少指令集計算(RISC)核心、複雜指令集計算(CISC)核心、極長指令字元(VLIW)核心、或者併合或替代核心類型。當作又另一種選擇,核心490可為特殊用途核心,諸如(例如)網路或通訊核心、壓縮引擎、共處理器核心、通用計算圖形處理單元(GPGPU)核心、或圖形核心,等等。
前端單元430包括一分支預測單元432,其係耦合至指令快取單元434,其係耦合至指令變換後備緩衝 (TLB)436,其係耦合至指令提取單元438,其係耦合至解碼單元440。解碼單元440(或解碼器)可解碼指令;並可將以下產生為輸出:一或更多微操作、微碼進入點、微指令、其他指令、或其他控制信號,其被解碼自(或者反應)、或被衍生自原始指令。解碼單元440可使用各種不同的機制來實施。適當機制之範例包括(但不限定於)查找表、硬體實施方式、可編程邏輯陣列(PLA)、微碼唯讀記憶體(ROM),等等。於一實施例中,核心490包括微碼ROM或者儲存用於某些巨指令之微碼的其他媒體(例如,於解碼單元440中或者於前端單元430內)。解碼單元440被耦合至執行引擎單元450中之重新命名/配置器單元452。
執行引擎單元450包括重新命名/配置器單元452,其係耦合至撤回單元454及一組一或更多排程器單元456。排程器單元456代表任何數目的不同排程器,包括保留站、中央指令窗,等等。排程器單元456被耦合至實體暫存器檔單元458。實體暫存器檔單元458之各者代表一或更多實體暫存器檔,其不同者係儲存一或更多不同的資料類型,諸如純量整數、純量浮點、緊縮整數、緊縮浮點、向量整數、向量浮點、狀態(例如,其為下一待執行指令之位址的指令指標),等等。於一實施例中,實體暫存器檔單元458包含向量暫存器單元、寫入遮蔽暫存器單元、及純量暫存器單元。這些暫存器單元可提供架構向量暫存器、向量遮蔽暫存器、及通用暫存器。實體暫存器檔單元 458係由撤回單元454所重疊以闡明其中暫存器重新命名及失序執行可被實施之各種方式(例如,使用重排序緩衝器和撤回暫存器檔;使用未來檔、歷史緩衝器、和撤回暫存器檔;使用暫存器映圖和暫存器池,等等)。撤回單元454及實體暫存器檔單元458被耦合至執行叢集460。執行叢集460包括一組一或更多執行單元462及一組一或更多記憶體存取單元464。執行單元462可履行各種操作(例如,偏移、相加、相減、相乘)以及於各種類型的資料上(例如,純量浮點、緊縮整數、緊縮浮點、向量整數、向量浮點)。雖然某些實施例可包括數個專屬於特定功能或功能集之執行單元,但其他實施例可包括僅一個執行單元或者全部履行所有功能之多數執行單元。排程器單元456、實體暫存器檔單元458、及執行叢集460被顯示為可能複數的,因為某些實施例係針對某些類型的資料/操作產生分離的管線(例如,純量整數管線、純量浮點/緊縮整數/緊縮浮點/向量整數/向量浮點管線、及/或記憶體存取管線,其各具有本身的排程器單元、實體暫存器檔單元、及/或執行叢集-且於分離記憶體存取管線之情況下,某些實施例被實施於其中僅有此管線之執行叢集具有記憶體存取單元464)。亦應理解:當使用分離管線時,這些管線之一或更多者可為失序發送/執行而其他者為依序。
該組記憶體存取單元464被耦合至記憶體單元470,其包括資料TLB單元472,其耦合至資料快取單元474, 其耦合至第二階(L2)快取單元476。於一範例實施例中,記憶體存取單元464可包括載入單元、儲存位址單元、及儲存資料單元,其各者係耦合至記憶體單元470中之資料TLB單元472。指令快取單元434被進一步耦合至記憶體單元470中之第二階(L2)快取單元476。L2快取單元476被耦合至一或更多其他階的快取且最終至主記憶體。
舉例而言,範例暫存器重新命名、失序發送/執行核心架構可實施管線400如下:1)指令提取438履行提取和長度解碼級402和404;2)解碼單元440履行解碼級406;3)重新命名/配置器單元452履行配置級408和重新命名級410;4)排程器單元456履行排程級412;5)實體暫存器檔單元458和記憶體單元470履行暫存器讀取/記憶體讀取級414;執行叢集460履行執行級416;6)記憶體單元470和實體暫存器檔單元458履行寫入回/記憶體寫入級418;7)各個單元可涉及例外處置級422;及8)撤回單元454和實體暫存器檔單元458履行確定級424。
核心490可支援一或更多指令集(例如,x86指令集,具有其已被加入以較新版本之某些延伸);MIPS Technologies of Sunnyvale,CA之MIPS指令集;ARM Holdings of Sunnyvale,CA之ARM指令集(具有諸如NEON之選擇性額外延伸),包括文中所述之指令。於一實施例中,核心490包括支援緊縮資料指令集延伸(例 如,AVX1、AVX2)之邏輯,藉此容許由許多多媒體應用程式所使用的操作使用緊縮資料來履行。
應理解:核心可支援多線程(執行二或更多平行組的操作或線緒),並可以多種方式執行,包括時間切割多線程、同時多線程(其中單一實體核心提供邏輯核心給其實體核心正同時地多線程之每一線緒)、或者其組合(例如,時間切割提取和解碼以及之後的同時多線程,諸如於Intel® Hyperthreading科技中一般)。
雖然暫存器重新命名被描述於失序執行之背景,但應理解其暫存器重新命名可被使用於依序架構。雖然處理器之所述的實施例亦包括分離的指令和資料快取單元434/474以及共用L2快取單元476,但替代實施例可具有針對指令和資料兩者之單一內部快取,諸如(例如)第一階(L1)內部快取、或多階內部快取。於某些實施例中,該系統可包括內部快取與外部快取之組合,該外部快取是位於核心及/或處理器之外部。替代地,所有快取可於核心及/或處理器之外部。
圖5A-B闡明更特定的範例依序核心架構之方塊圖,該核心將為晶片中之數個邏輯區塊之一(包括相同類型及/或不同類型之其他核心)。邏輯區塊係透過高頻寬互連網路(例如,環狀網路)來與某些固定功能邏輯、記憶體I/O介面、及其他必要I/O邏輯通訊,此係根據其應用而定。
圖5A為單處理器核心之方塊圖,連同與晶粒上互連 網路502之其連接、以及第二階(L2)快取504之其本地子集,依據本發明之實施例。於一實施例中,指令解碼器500支援具有緊縮資料指令集延伸之x86指令集。L1快取506容許針對快取記憶體之低潛時存取入純量及向量單元。雖然於一實施例中(為了簡化設計),純量單元508及向量單元510使用分離的暫存器組(個別地,純量暫存器512及向量暫存器514),且於其間轉移的資料被寫入至記憶體並接著從第一階(L1)快取506被讀取回;但本發明之替代實施例可使用不同的方式(例如,使用單一暫存器組或者包括一通訊路徑,其容許資料被轉移於兩暫存器檔之間而不被寫入及讀取回)。
L2快取504之本地子集為其被劃分為分離本地子集(每一處理器核心有一個)之總體L2快取的部分。各處理器核心具有一直接存取路徑通至L2快取504之其本身的本地子集。由處理器核心所讀取的資料被儲存於其L2快取子集504中且可被快速地存取,平行於存取其本身本地L2快取子集之其他處理器核心。由處理器核心所寫入之資料被儲存於其本身的L2快取子集504中且被清除自其他子集,假如需要的話。環狀網路確保共用資料之一致性。環狀網路為雙向的,以容許諸如處理器核心、L2快取及其他邏輯區塊等代理於晶片內部與彼此通訊。各環狀資料路徑於每方向為1012位元寬。
圖5B為圖5A中之處理器核心的部分之延伸視圖,依據本發明之實施例。圖5B包括L1快取504之L1資料 快取506A部分、以及有關向量單元510和向量暫存器514之更多細節。明確地,向量單元510為16寬的向量處理單元(VPU)(參見16寬的ALU 528),其係執行整數、單精確度浮點、及雙精確度浮點指令之一或更多者。VPU支援以拌合單元520拌合暫存器輸入、以數字轉換單元522A-B之數字轉換、及於記憶體輸入上以複製單元524之複製。寫入遮蔽暫存器526容許斷定結果向量寫入。
圖6為一種處理器600之方塊圖,該處理器600可具有多於一個核心、可具有集成記憶體控制器、且可,具有集成圖形,依據本發明之實施例。圖6中之實線方塊闡明處理器600,其具有單核心602A、系統代理610、一組一或更多匯流排控制器單元616;而虛線方塊之選擇性加入闡明一替代處理器600,其具有多核心602A-N、系統代理單元610中之一組一或更多集成記憶體控制器單元614、及特殊用途邏輯608。
因此,處理器600之不同實施方式可包括:1)CPU,具有其為集成圖形及/或科學(通量)邏輯(其可包括一或更多核心)之特殊用途邏輯608、及其為一或更多通用核心(例如,通用依序核心、通用失序核心、兩者之組合)之核心602A-N;2)共處理器,具有其為主要用於圖形及/或科學(通量)之大量特殊用途核心的核心602A-N;及3)共處理器,具有其為大量通用依序核心的核心602A-N。因此,處理器600可為通用處理器、共處理器 或特殊用途處理器,諸如(例如)網路或通訊處理器、壓縮引擎、圖形處理器、GPGPU(通用圖形處理單元)、高通量多數集成核心(MIC)共處理器(包括30或更多個核心)、嵌入式處理器,等等。該處理器可被實施於一或更多晶片上。處理器600可為一或更多基底之部分及/或可被實施於其上,使用數個製程技術之任一者,諸如(例如)BiCMOS、CMOS、或NMOS。
記憶體階層包括該些核心內之一或更多階快取、一組或者一或更多共用快取單元606、及耦合至該組集成記憶體控制器單元614之外部記憶體(未顯示)。該組共用快取單元606可包括一或更多中階快取,諸如第二階(L2)、第三階(L3)、第四階(L4)、或其他階快取、最後階快取(LLC)、及/或其組合。雖然於一實施例中環狀為基的互連單元612將以下裝置互連:集成圖形邏輯608、該組共用快取單元606、及系統代理單元610/集成記憶體控制器單元614,但替代實施例可使用任何數目之眾所周知的技術以互連此等單元。於一實施例中,一致性被維持於一或更多快取單元606與核心602-A-N之間。
於某些實施例中,一或更多核心602A-N能夠進行多線程。系統代理610包括協調並操作核心602A-N之那些組件。系統代理單元610可包括(例如)電力控制單元(PCU)及顯示單元。PCU可為或者包括用以調節核心602A-N及集成圖形邏輯608之電力狀態所需的邏輯和組件。顯示單元係用以驅動一或更多外部連接的顯示。
核心602A-N可針對架構指令集為同質的或異質的;亦即,二或更多核心602A-N可執行相同的指令集,而其他者可僅執行該指令集之一子集或不同指令集。
圖7-10為範例電腦架構之方塊圖。用於膝上型電腦、桌上型電腦、手持式PC、個人數位助理、工程工作站、伺服器、網路裝置、網路集線器、開關、嵌入式處理器、數位信號處理器(DSP)、圖形裝置、視頻遊戲裝置、機上盒、微控制器、行動電話、可攜式媒體播放器、手持式裝置、及各種其他電子裝置之技術中已知的其他系統設計和組態亦為適當的。通常,能夠結合處理器及/或其他執行邏輯(如文中所揭露者)之多種系統或電子裝置一般為適當的。
現在參考圖7,其顯示依據本發明之一實施例的系統700之方塊圖。系統700可包括一或更多處理器710、715,其被耦合至控制器集線器720。於一實施例中,控制器集線器720包括圖形記憶體控制器集線器(GMCH)790及輸入/輸出集線器(IOH)750(其可於分離的晶片上);GMCH 790包括記憶體及圖形控制器(耦合至記憶體740及共處理器745);IOH 750將輸入/輸出(I/O)裝置760耦合至GMCH 790。替代地,記憶體與圖形控制器之一或兩者被集成於處理器內(如文中所述者),記憶體740及共處理器745被直接地耦合至處理器710,且控制器集線器720與IOH 750在單一晶片中。
額外處理器715之選擇性本質於圖7中以斷線被標 示。各處理器710、715可包括文中所述的處理核心之一或更多者並可為處理器600之某版本。
記憶體740可為(例如)動態隨機存取記憶體(DRAM)、相位改變記憶體(PCM)、或兩者之組合。針對至少一實施例,控制器集線器720經由諸如前側匯流排(FSB)等多點分支匯流排、諸如QuickPath互連(QPI)等點對點介面、或類似連接795而與處理器710、715通訊。
於一實施例中,共處理器745為特殊用途處理器,諸如(例如)高通量MIC處理器、網路或通訊處理器、壓縮引擎、圖形處理器、GPGPU、或嵌入式處理器,等等。於一實施例中,控制器集線器720可包括集成圖形加速器。
針對包括架構、微架構、熱、功率耗損特性等之價值矩陣之譜而言,實體資源710、715間可有多樣差異。
於一實施例中,處理器710執行其控制一般類型之資料處理操作的指令。指令內所嵌入者可為共處理器指令。處理器710辨識這些共處理器指令為其應由裝附之共處理器745所執行的類型。因此,處理器710將共處理器匯流排或其他互連上之這些共處理器指令(或代表共處理器指令之控制信號)發送至共處理器745。共處理器745接受並執行該些接收的共處理器指令。
現在參考圖8,其顯示依據本發明之實施例的第一更特定範例系統800之方塊圖。如圖8中所示,多處理器系 統800為點對點互連系統,並包括經由點對點互連850而耦合之第一處理器870及第二處理器880。處理器870及880之每一者可為處理器600之某版本。於本發明之一實施例中,處理器870及880個別為處理器710及715,而共處理器838為共處理器745。於另一實施例中,處理器870及880個別為處理器710及共處理器745。
處理器870及880被顯示為個別地包括集成記憶體控制器(IMC)單元872及882。處理器870亦包括其匯流排控制器單元點對點(P-P)介面876及878之部分;類似地,第二處理器880包括P-P介面886及888。處理器870、880可使用P-P介面電路878、888而經由點對點(P-P)介面850來交換資訊。如圖8中所示,IMC 872及882將處理器耦合至個別記憶體,亦即記憶體832及記憶體834,其可為本地地裝附至個別處理器之主記憶體的部分。
處理器870、880可各使用點對點介面電路876、894、886、898經由個別的P-P介面852、854而與晶片組890交換資訊。晶片組890可經由高性能介面839而選擇性地與共處理器838交換資訊。於一實施例中,共處理器838為特殊用途處理器,諸如(例如)高通量MIC處理器、網路或通訊處理器、壓縮引擎、圖形處理器、GPGPU、或嵌入式處理器,等等。
共用快取(未顯示)可被包括於任一處理器中或者於兩處理器外部,但仍經由P-P互連與處理器連接,以致處 理器之任一者或兩者的本地快取資訊可被儲存於共用快取中,假如處理器被置於低功率模式時。
晶片組890可經由一介面896而被耦合至第一匯流排816。於一實施例中,第一匯流排816可為周邊組件互連(PCI)匯流排、或者諸如PCI快速匯流排或其他第三代I/O互連匯流排等匯流排,雖然本發明之範圍未如此限制。
如圖8中所示,各種I/O裝置814可被耦合至第一匯流排816,連同匯流排橋接器818,其係將第一匯流排816耦合至第二匯流排820。於一實施例中,一或更多額外處理器815(諸如共處理器、高通量MIC處理器、GPGPU、加速器(諸如,例如,圖形加速器或數位信號處理(DSP)單元)、場可編程閘極陣列、或任何其他處理器)被耦合至第一匯流排816。於一實施例中,第二匯流排820可為低管腳數(LPC)匯流排。各個裝置可被耦合至第二匯流排820,其包括(例如)鍵盤/滑鼠822、通訊裝置827、及儲存單元828,諸如磁碟機或其他大量儲存裝置(其可包括指令/碼及資料830),於一實施例中。此外,音頻I/O 824可被耦合至第二匯流排820。注意:其他架構是可能的。例如,取代圖8之點對點架構,系統可實施多點分支匯流排或其他此類架構。
現在參考圖9,其顯示依據本發明之實施例的第二更特定範例系統900之方塊圖。圖8與9中之類似元件具有類似的參考數字,且圖8之某些形態已從圖9省略以免混 淆圖9之其他形態。
圖9闡明其處理器870、880可包括集成記憶體及個別地包括I/O控制邏輯(「CL」)872和882。因此,CL 872、882包括集成記憶體控制器單元並包括I/O控制邏輯。圖9闡明不僅記憶體832、834被耦合至CL 872、882,同時I/O裝置914亦被耦合至控制邏輯872、882。舊有I/O裝置915被耦合至晶片組890。
現在參考圖10,其顯示依據本發明之一實施例的SoC 1000之方塊圖。圖6中之類似元件具有類似的參考數字。同時,虛線方塊為更多先進SoC上之選擇性特徵。於圖10中,互連單元1002被耦合至:應用程式處理器1010,其包括一組一或更多核心202A-N及共用快取單元606;系統代理單元610;匯流排控制器單元616;集成記憶體控制器單元614;一組一或更多共處理器1020,其可包括集成圖形邏輯、影像處理器、音頻處理器、及視頻處理器;靜態隨機存取記憶體(SRAM)單元1030;直接記憶體存取(DMA)單元1032;及顯示單元1040,用以耦合至一或更多外部顯示。於一實施例中,共處理器1020包括特殊用途處理器,諸如(例如)網路或通訊處理器、壓縮引擎、GPGPU、高通量MIC處理器、或嵌入式處理器,等等。
文中所揭露之機制的實施例可被實施以硬體、軟體、韌體、或此等實施方式之組合。本發明之實施例可被實施為電腦程式或程式碼,其被執行於可編程系統上,該可編 程系統包含至少一處理器、儲存系統(包括揮發性和非揮發性記憶體及/或儲存元件)、至少一輸入裝置、及至少一輸出裝置。
程式碼(諸如圖8中所示之碼830)可被應用於輸入指令以履行文中所述之功能並產生輸出資訊。輸出資訊可被應用於一或更多輸出裝置,以已知的方式。為了本申請案之目的,處理系統包括任何系統,其具有處理器,諸如(例如)數位信號處理器(DSP)、微控制器、特定應用積體電路(ASIC)、或微處理器。
程式碼可被實施以高階程序或物件導向的編程語言來與處理系統通訊。程式碼亦可被實施以組合或機器語言,假如想要的話。事實上,文中所述之機制在範圍上不限於任何特定編程語言。於任何情況下,該語言可為編譯或解讀語言。
至少一實施例之一或更多形態可由其儲存在機器可讀取媒體上之代表性指令所實施,該機器可讀取媒體代表處理器內之各個邏輯,當由機器讀取時造成該機器製造邏輯以履行文中所述之技術。此等表示(已知為「IP核心」)可被儲存在有形的、機器可讀取媒體上,且被供應至各個消費者或製造設施以載入其實際上製造該邏輯或處理器之製造機器中。
此類機器可讀取儲存媒體可包括(但未限於)由機器或裝置所製造或形成之物件的非暫態、有形配置,包括:儲存媒體,諸如硬碟、包括軟碟、光碟、微型碟唯讀記憶 體(CD-ROM)、微型碟可再寫入(CD-RW)、及磁光碟等任何其他類型的碟片;半導體裝置,諸如唯讀記憶體(ROM)、諸如動態隨機存取記憶體(DRAM)、靜態隨機存取記憶體(SRAM)等隨機存取記憶體(RAM)、可抹除可編程唯讀記憶體(EPROM)、快閃記憶體、電可抹除可編程唯讀記憶體(EEPROM)、相位改變記憶體(PCM)、磁或光學卡、或者適於儲存電子指令之任何其他類型的媒體。
因此,本發明之實施例亦包括含有指令或含有諸如硬體描述語言(HDL)等設計資料之非暫態、有形的機器可讀取媒體,該硬體描述語言(HDL)係定義文中所述之結構、電路、設備、處理器及/或系統特徵。此類實施例亦可被稱為程式產品。
於某些情況下,指令轉換器可被用以將來自來源指令集之指令轉換至目標指令集。例如,指令轉換器可將指令轉譯(例如,使用靜態二元轉譯、動態二元轉譯,包括動態編譯)、變形、仿真、或者轉換至一或更多其他指令以供由核心所處理。指令轉換器可被實施以軟體、硬體、韌體、或其組合。指令轉換器可位於處理器上、處理器外、或者部分於處理器上而部分於處理器外。
圖11為一種對照軟體指令轉換器之使用的方塊圖,該轉換器係用以將來源指令集中之二元指令轉換至目標指令集中之二元指令,依據本發明之實施例。於所述之實施例中,指令轉換器為一種軟體指令轉換器,雖然替代地該 指令轉換器亦可被實施以軟體、韌體、硬體、或其各種組合。圖11顯示一種高階語言1102之程式可使用x86編譯器1104而被編譯以產生x86二元碼1106,其可由具有至少一x86指令集核心之處理器1116來本機地執行。具有至少一x86指令集核心之處理器1116代表任何處理器,其可藉由可相容地執行或者處理以下事項來履行實質上如一種具有至少一x86指令集核心之Intel處理器的相同功能:(1)Intel x86指令集核心之指令集的實質部分或者(2)針對運作於具有至少一x86指令集核心之Intel處理器上的應用程式或其他軟體之物件碼版本,以獲得如具有至少一x86指令集核心之Intel處理器的實質上相同結果。x86編譯器1104代表一種編譯器,其可操作以產生x86二元碼1106(例如,物件碼),其可(具有或沒有額外鏈結處理)被執行於具有至少一x86指令集核心之處理器1116上。類似地,圖11顯示高階語言1102之程式可使用替代的指令集編譯器1108而被編譯以產生替代的指令集二元碼1110,其可由沒有至少一x86指令集核心之處理器1114來本機地執行(例如,具有其執行MIPS Technologies of Sunnyvale,CA之MIPS指令集及/或其執行ARM Holdings of Sunnyvale,CA之ARM指令集的核心之處理器)。指令轉換器1112被用以將x86二元碼1106轉換為其可由沒有至少一x86指令集核心之處理器1114來本機地執行的碼。此已轉換碼不太可能相同於替代的指令集二元碼1110,因為能夠執行此功能之指令很難製 造;然而,已轉換碼將完成一般性操作並由來自替代指令集之指令所組成。因此,指令轉換器1112代表軟體、韌體、硬體、或其組合,其(透過仿真、模擬或任何其他程序)容許處理器或其他不具有x86指令集處理器或核心的電子裝置來執行x86二元碼1106。
用於加速圖形分析的設備及方法
如上所述,集合交集和集合聯集之目前軟體實施方式正挑戰當今的系統並遠遠落後頻寬界限性能,特別於具有高頻寬記憶體(HBM)之系統上。特別地,現代CPU上之性能係由分支錯誤預測、快取未中及有效利用SIMD之困難所限制。雖然某些現存的指令有助於利用集合交集(例如,vconflict)中之SIMD,但整體性能仍低且遠遠落後頻寬界限性能,特別於HBM之存在時。
雖然目前加速器提案提供了針對圖形問題之子類的高性能及能量效率,但其範圍是有限的。對於緩慢鏈結之鬆散耦合阻止了介於CPU與加速器之間的快速通訊,因此迫使軟體開發商保存完整資料集於加速器之記憶體中,其針對實際資料集可能是太小的。特殊化計算引擎缺乏支援新的圖形演算法及現存演算法內之新的使用者定義功能之彈性。
本發明之一實施例包括一種彈性的、緊密耦合的硬體加速器,稱為圖形加速器單元(GAU),用以加速這些運算子而因此加快現代圖形分析之處理。於一實施例中, GAU被集成於多核心處理器架構之各核心內。然而,本發明之主要原理亦可被利用於單核心實施方式上。
一開始,將描述與目前實施方式關聯的某些問題以致其可與文中所述之本發明的實施例進行對比。目前軟體實施方式遠遠落後頻寬界限性能,特別於具有HBM之系統上。假設常使用下列集合之資料結構:typedef struct { int *keys; // keys T *values; // values of user defined datatype T int size; // set size } Set; 圖12A闡明分類輸入集合上所定義的集合交集1250和集合聯集1251之範例。雖然這些操作看起來不同,但其具有數個類似處。兩者均需要找出匹配金鑰:集合交集1250忽略非匹配索引,而集合聯集1251以分類順序將所有索引合併在一起。使用者定義的操作被履行於其相應於匹配金鑰之值上:集合交集可能需要將所有此等值使用者定義之減為單一值(未顯示),而集合聯集可能需要副本值之使用者定義的減少。
這些控制密集碼遭受高比例的分支錯誤預測之困擾而因此造成由於控制發散之SIMD的困難。有許多CPU實施方式會增進圖12A中所示之基礎演算法。例如,位元向量為基的實施方式部分地減輕控制發散並增進SIMD效 率。針對集合交集有先進的演算法,其係運作於log(n)時間,其中n最大值為輸入集合之長度。亦有數個用以加速圖形分析之加速器提案,其係履行相同於集合聯集和集合交集背後運作下之操作。這些方式之共同點在於其支援鬆散耦合(例如,經由快速周邊組件互連(PCIe))全加速器引擎(具有其本身堆疊或嵌入記憶體)及計算引擎(針對固定數目圖形操作而特殊化)。
這些聯集和交集方法被相當廣泛地使用於圖形分析中。考量其被用以實施許多圖形演算法之稀疏矩陣-稀疏向量相乘常式。其中矩陣被表示以CSR格式之y=Ax的一種此類實施方式係如下:y = SpMV_CSR (A, x) For (int i = 0; I < n; i++) {//over rows C = intersection (A[i, :], x, mult); //user func = “*” If (C.length > 0) {y.insert (reduce (C, sum)); } }
以A為CSC格式之y=Ax的另一實施方式係如下:y = SpMV_CSC (A,x) For (int i = 0; I < n; i++) {//over columns If x[i] is nonzero { C = x[i]*A[:, i] y = union (C, y, sum); //user func = “+” } }
用於一般化的稀疏矩陣-矩陣相乘(SpGEMM)之演算法亦使用這些SpMV基元而被建立。Gustafson演算法之變化(類似於其由Matlab所使用者)可被實施以SpMV_CSC,如以下虛擬碼所描述者:SpGEMM_CSC (A, B, C) For (int j = 0; j < n; j++) {// Over columns of B and C C[:,j] = SpMV_CSC (A, B[:,j]) }
類似地,以下虛擬碼係計算針對CSR矩陣之SpGEMM,根據SpMV_CSR和集合交集:SpGEMM_CSR (A, B, C) For (int i = 0; i < n; i++) {// Over columns of B and C C[i,:]= SpMV_CSR (B, A[i,:]) }
填磚式(tiling)、或編塊式(blocking),SpGEMM需要集合聯集操作,當中間磚被累積為乘積矩陣時。圖12B顯示SpGEMM之2D填磚。為了計算磚C1,1,首先以下磚SpGEMMs發生A1,1 x B1,1及A1,2 x B2,1,其產生中間磚乘積。接著兩個中間磚乘積需被相加,實質上一集合聯集操作,假設其該些乘積仍為稀疏的。
利用圖形加速器單元(GAU)的本發明之一實施例支援對於任意使用者定義類型及操作之一般化集合聯集和集合交集操作。此係藉由以下方式而被完成於一實施例中:(1)從GAU上所執行之一般集合操作解耦處理器核心上 所執行之使用者特定的操作;(2)以SIMD友善的格式緊縮GAU上之中間輸出以致使用者定義的操作以SIMD友善的方式被執行於處理器核心上;及(3)緊密地耦合GAU至處理器核心以消除介於CPU與GAU之間的通訊負擔。
圖13闡明依據本發明之一實施例的處理器架構。如圖所示,本實施例包括每核心之GAU 1345,用以履行文中所述之技術,於範例指令處理管線之背景內。範例實施例包括複數核心0-N,各包括GAU 1345,用以於任意使用者定義的類型及操作上履行集合聯集和集合交集操作。雖然闡明單一核心(核心0)之細節以利簡化,但剩餘的核心1-N仍可包括如針對單一核心所示之相同或類似功能。
於一實施例中,各核心包括用以履行記憶體操作(例如,諸如載入/儲存操作)之記憶體管理單元1390、一組通用暫存器(GPR)1305、一組向量暫存器1306、及一組遮蔽暫存器1307。於一實施例中,多數向量資料元件被緊縮入各向量暫存器1306中,其可具有512位元寬度以儲存兩個256位元值、四個128位元值、八個64位元值、十六個32位元值,等等。然而,本發明之主要原理不限於任何特定尺寸/類型的向量資料。於一實施例中,遮蔽暫存器1307包括八個64位元運算元遮蔽暫存器,用以履行位元遮蔽操作於向量暫存器1306中所儲存的值上(例如,實施為如上所述的遮蔽暫存器k0-k7)。然而, 本發明之主要原理不限於任何特定的遮蔽暫存器尺寸/類型。
各核心亦可包括專屬的第一階(L1)快取1312及第二階(L2)快取1311,用以依據指定的快取管理策略來快取指令和資料。L1快取1312包括用以儲存指令之分離的指令快取1320及用以儲存資料之分離的資料快取1321。各個處理器快取內所儲存之指令及資料係以其可為固定大小(例如,長度為64、128、512位元組)之快取線的粒度來管理。此範例實施例之各核心具有指令提取單元1310,用以從主記憶體1300及/或共用的第三階(L3)快取1316提取指令;解碼單元1320,用以解碼指令(例如,將程式指令解碼為微操作或「uops」);執行單元1340,用以執行指令;及寫回單元1350,用以撤回指令並寫回結果。
指令提取單元1310包括各種眾所周知的組件,包括下一指令指針1303,用以儲存欲從記憶體1300(或快取之一)提取之下一指令的位址;指令變換後備緩衝(ITLB)1304,用以儲存最近使用之虛擬至實體指令的映圖來增進位址轉譯的速度;分支預測單元1302,用以臆測地預測指令分支位址;及分支目標緩衝器(BTB)1301,用以儲存分支位址和目標位址。一旦提取了,指令便接著被串流至指令管線之剩餘階段,包括解碼單元1330、執行單元1340、及寫回單元1350。這些單元之各者的結構及功能被那些熟悉此技藝人士所熟知,且將不會 被詳細地描述於此以避免混淆本發明之不同實施例的相關形態。
現在回到GAU 1345之一實施例的細節,針對如Pagerank及單一來源最短路徑之圖形演算法,總指令之約70-75%係於具有使用者定義功能之聯集和交集操作。因此,GAU 1345將顯著地有益於這些(及其他)應用。
本發明之實施例包括下列組件之一或更多者:(1)針對GAU 1345之集合聯集和交集的解耦彈性卸載,(2)GAU與處理器核心之執行單元的緊密集成,及(3)GAU 1345之兩個新穎的硬體實施方式。
1.解耦彈性卸載
一實施例將集合交集和集合聯集操作分解為一般非使用者特定的部分(其可被執行於GAU 1345上)及使用者特定的部分(其將執行於核心之執行單元1340中)。於此實施例中,GAU 1345係履行資料移動而無算術,將該資料置於其對供執行單元1340操作為友善的格式。於一實施例中,以下操作被履行於GAU上:
1.識別相同金鑰
2.針對集合交集,GAU 1345識別針對輸入串之各者的匹配索引,收集相應於這些匹配索引之值,及將其連續地複製入兩個輸出串。當值為結構時,GAU亦可履行結構之陣列(AoS)至陣列之結構(SoA)轉換。
3.針對集合聯集,GAU 1345亦識別匹配索引。其 接著履行聯集並移除副本(亦即,其金鑰匹配第一輸入集合之第二輸入集合的元件)。其產生一輸出集合及兩個副本指標向量(div),其後者被用以履行使用者定義的副本減少。輸出集合於是將含有已移除所有副本之兩輸入集合的聯集。第一副本指標向量將含有其金鑰匹配第二輸入集合中之索引的輸出集合中之元件的索引。第二副本指標向量含有其金鑰匹配輸出集合中之索引的第二集合中之元件的索引。此係用以履行從第二集合至輸出集合上之副本的使用者定義的減少。一種用以提供第二副本指標向量之添加的選項是連續地從第二輸入集合複製值以避免使用者收集操作,如以下所描述。
注意:上述操作僅需要針對「相等」(以執行交集)及「小於」(針對聯集)的記憶體移動和整數金鑰比較。除了針對金鑰比較之外,GAU1345之最簡單實施例不需要其他算術操作,其(於一實施例中)將被履行於具有使用者定義碼之核心執行邏輯1340上。如此一來,僅有無特定結構的記憶體移動操作(組成集合聯集和交集操作且阻礙現代處理器的性能之分類、合併、間接存取、及移位的結果)被卸載至GAU 1345。
於一實施例中,以下操作係由核心之執行單元1340所履行(例如,以使用者定義的碼):
1.針對集合交集,執行單元1340取用兩輸出串並履行減少,諸如兩浮點向量之內積,以產生單一值。假如其GAU 1345將輸出資料置於相連記憶體位置中,則使用 者定義的減少可被履行以一種SIMD友善的方式。
2.針對集合聯集,執行單元1340將使用副本指標向量以從第二輸入集合收集元件並將其減少(使用使用者定義的減少)成輸出集合。此亦被執行以SIMD友善的方式。
注意:由於其GAU 1345係履行資料移動且除了整數比較之外無其他算術,所以其可被與執行單元1340異步地運作而因此將集合處理與使用者定義的操作重疊在一起。此等操作很可能涉及算術邏輯單元(ALU)及暫存器檔1305-1307之重度使用。
以下係闡明針對具有兩個匹配元件之兩個範例集合的交集操作之範例,個別以粗體/斜體及底線來強調。
is1:
is2:
由於集合聯集,以下兩個輸出集合係由GAU聯集(s1,s2)所返回:
os1:2.5 3.5
os2:3.0 4.5
這些值係相應於匹配索引。以下係闡明針對上述兩個 範例集合之集合聯集操作的範例:
交集(s1,s2):
0 1 2 3 4 5 6 7
os:
注意div1如何含有具有輸出集合中之金鑰5和11的元件之索引,其係相應於上述第二輸入集合is2中之副本索引。div2含有is2中之這些副本元件的索引0和2。為了履行副本減少,如於稀疏矩陣-矩陣相乘演算法中之情況一般,編程者可使用全SIMD以履行以下操作:
1.根據div1指標以收集os.值
2.根據div2指標以收集is2.值
3.將收集自os.值之元件加至其收集自is2.值之元件
4.根據div1指標以將所得值分散回入os.值
2.緊密集成同調圖形加速器單元(GAU)
於一實施例中,上述卸載之彈性係藉由將GAU 1345置於核心內或附近而被致能。GAU 1345為適於集合處理之眾所周知的直接記憶體存取(DMA)引擎概念之延伸。
圖14闡明一實施例,其中GAU 1445a-c被集成於其經由核心間結構1450而耦合的各核心1401a-c內。明確 地,GAU 1445a-c係經由共用L2快取1311a-c介面1420a-c而被裝附至各核心1401a-c,且其作用為集合操作之批次工作處理器,其中工作請求被產生為記憶體中之控制區塊。如圖所示,其他執行資源1411a-c(例如,執行單元之功能性單元)、I-快取1320a-c、及D-快取1321a-c係經由介面1420a-c以存取L2快取1311a-c。於一實施例中,GAU 1445a-c係代表核心請求以執行這些集合處理請求並可經由記憶體映射I/O(MMIO)請求而為編程者可存取的。
於一實施例中,集合操作描述控制區塊(CB)被寫入至記憶體結構,填入各個欄位以代表不同的操作。一旦CB準備好,其位址便被寫入至其指定給GAU 1445a-c之特定記憶體位置,其觸發GAU以讀取該CB並履行該操作。當GAU 1445a-c正履行該操作時,核心1401a-c之執行資源1411a-c可繼續進行其他工作。當核心軟體準備好使用該集合操作之結果時,其係輪詢記憶體中之CB以判斷是否完成該狀態或者是否遭遇錯誤。
以下討論將假設以下集合資料結構,以描述GAU控制區塊之一實施例的操作:typedef struct { int *keys; // keys void *values; // values int size; // set size } Set; 以下範例顯示集合處理控制區塊(CB)之一潛在實施例。
typedef struct { // input enum{Union=0, Intersection} operation; int valueSize; // size of value datatype in bytes Set *set1; // first input set Set *set2; // second input set // output union { struct { int nmatches; // number of matching (intersection) indices void *set1 values; // values of first intersecting set void *set2; // values of second intersecting set } SetIntersectionOutput; struct { void *set; // union set with duplicates removed int *div1; // first duplicate index vector int *div2; // second duplicate index vector } SetUnionOutput; } Output; bool status; // status flag } CB; 於一實施例中,在GAU 1345完成一操作之後,其修改狀態位元(例如,上述bool狀態)。運作於核心1401之執行資源1411上的軟體係重複地檢查狀態位元以被告知有關完成。因為GAU 1401存取記憶體,所以其可被提供以用於記憶體存取之變換後備緩衝(TLB)。於一實施例中,GAU 1401亦含有夠深的輸入佇列以儲存來自多重執行緒之集合處理請求。
3. GAU之硬體實施方式
GAU 1445可被實施以各種不同的方式而仍符合本發明之主要原理。兩個此類實施例被描述於下。
a.根據內容可定址記憶體(CAM):一種方式係根據CAM硬體結構,其被設計以提供相關的存取及分類順序兩者。CAM為基的實施方式之一實施例係如下工作。最短的輸入向量被置入CAM中。其他輸入向量係從記憶體被串流入GAU 1445中,而第二輸入向量之每一元件指標被查找於CAM中。針對聯集,於CAM中未被尋獲的第二向量之元件被插入CAM中;匹配導致各於div1及div2向量中之項目的產生。針對交集,於CAM中未被尋獲的元件被忽略。來自各集合(其索引被匹配於CAM中)之值被複製入輸出集合中,如先前所述者。當其被置入CAM中之第一輸入向量不適配於CAM中時,其可被分割 開採。
b.根據簡單集合處理引擎(SEP)之陣列:CAM為基的實施方式係藉由針對高性能處理器及網路裝置平衡現存的高度最佳化CAM結構以加速單一集合操作。然而,CAM為基的實施方式針對硬體實施可能是昂貴的,由於相關的匹配邏輯(特別當項目數很大時)且需要提供分類順序。然而,於圖形分析時,許多集合操作係履行於不同的輸入流上。因此一種替代提議係建立針對通量而最佳化的較便宜硬體,儘管有較低的單一操作潛時。明確地,GAU 1445之一實施例被設計為集合處理引擎(SPE)之1-D陣列。各SPE係由其本身的有限狀態機器(FSM)所驅動並可使用以硬體(使用FSM)實施的基礎依序演算法(類似於CPU)來執行單一聯集或交集操作。多重SPE將同時地執行不同的聯集/交集操作,其增進整體通量。 此實施方式需要極少的內部狀態於GAU之各者上。此實施方式之一額外利益在於其可支援有效率的OS背景切換。
再者,針對其使用基元資料類型(諸如float32或int)的集合,GAU 1445之更先進的實施例可包括相應的算術單元,用以於這些資料類型上履行基礎操作(‘+’,‘*’,‘min’,等等)而避免輸出之額外寫入共用L2快取1311中。
一種依據本發明之一實施例的方法被顯示於圖15中。該方法可被實施於以上所描述之處理器及系統架構的 背景內,但不限定於任何特定的架構。
於1501,包括集合交集和集合聯集操作之程式碼被提取自記憶體(例如,藉由處理器之指令提取單元)。於1502,程式碼之一部分被識別,其可由處理器內之圖形加速器單元(GAU)所有效地執行。如上所述,此可包括識別副本金鑰、識別針對集合交集的匹配索引、收集相應於匹配索引之值並將其連續地複製入兩個輸出串中、識別針對集合聯集的匹配索引、移除副本、及產生待處理的輸出集合和兩個副本指標向量。
於1503,程式碼之第二部分被執行於處理器之通用執行管線內;而於1504,執行單元係使用來自GAU之結果以完成程式碼之處理。如上所述,此可包括履行針對集合交集之輸出串的減少(例如,使用內積);及針對集合聯集,使用副本指標向量以收集來自第二輸入集合之元件並將其減少(例如,以使用者定義的減少)成輸出集合。
於前述說明書中,本發明之實施例已參考其特定範例實施例而被描述。然而,將清楚明白的是:可對其進行各種修改而不背離如後附申請專利範圍中所提出之本發明的較寬廣範圍及精神。說明書及圖式因此將被視為說明性意義而非限制性意義。
本發明之實施例可包括各個步驟,其已被描述於上。該些步驟可被實施於機器可執行指令中,其可被用以致使通用或特殊用途處理器履行該些步驟。替代地,這些步驟可由含有硬線邏輯以履行該些步驟之特定硬體組件所履 行,或者可由已編程的電腦組件及訂製硬體組件之任何組合所履行。
如文中所述,指令可指稱其組態成履行某些操作或具有預定功能之硬體的特定組態(諸如特定應用積體電路(ASIC))、或者其被儲存於記憶體中之軟體指令,該記憶體係實施於非暫態電腦可讀取媒體中。因此,圖形中所顯示之技術可使用一或更多電子裝置(例如,終端站、網路元件,等等)上所儲存或執行的碼及資料來實施。此類電子裝置係使用電腦機器可讀取媒體來儲存及傳遞(內部地及/或透過網路而與其他電子裝置)碼和資料,諸如非暫態電腦機器可讀取儲存媒體(例如,磁碟、光碟、隨機存取記憶體;唯讀記憶體;快閃記憶體裝置;相位改變記憶體)及暫態電腦機器可讀取通訊媒體(例如,電、光、聲或其他形式的傳播信號-諸如載波、紅外線信號、數位信號,等等)。此外,此類電子裝置通常包括一組一或更多處理器,其係耦合至一或更多其他組件,諸如一或更多儲存裝置(非暫態機器可讀取儲存媒體)、使用者輸入/輸出裝置(例如,鍵盤、觸控式螢幕、及/或顯示器)、及網路連接。該組處理器與其他組件之耦合通常係透過一或更多匯流排及橋接器(亦稱為匯流排控制器)。攜載網路流量之儲存裝置及信號個別地代表一或更多機器可讀取儲存媒體及機器可讀取通訊媒體。因此,既定電子裝置之儲存裝置通常係儲存碼及/或資料以供執行於該電子裝置之該組一或更多處理器上。當然,本發明之實施例 的一或更多部分可使用軟體、韌體、及/或硬體之不同組合來實施。遍及此詳細描述,為了解釋之目的,提出數個特定細節以提供本發明之透徹瞭解。然而,熟悉此項技術人士將清楚其本發明可被實行而無這些特定細節之部分。於某些例子中,眾所周知的結構及功能未被詳細地描述以免混淆本發明之請求標的。因此,本發明之範圍及精神應根據以下的申請專利範圍來判斷。

Claims (25)

  1. 一種處理器,包含:指令提取單元,用以提取包括集合交集和集合聯集操作之程式碼;圖形加速器單元(GAU),用以執行關於該集合交集和集合聯集操作之該程式碼的至少第一部分並產生結果;及執行單元,用以使用從該GAU所提供的該些結果來執行該程式碼之至少第二部分。
  2. 如申請專利範圍第1項之處理器,其中該GAU係用以識別與該集合交集及/或集合聯集操作相關的副本金鑰。
  3. 如申請專利範圍第2項之處理器,其中該GAU係用以進一步識別針對集合交集的匹配索引、收集相應於該些匹配索引之值並將其連續地複製入兩個輸出串、識別針對集合聯集的匹配索引、移除副本、及產生待處理的輸出集合和至少兩個副本指標向量,該些結果包含該兩個輸出串、該輸出集合、及該些至少兩個副本指標向量。
  4. 如申請專利範圍第3項之處理器,其中該執行單元係用以履行針對集合交集之該些輸出串的減少;及針對集合聯集,使用該些副本指標向量以收集來自第二輸入集合之元件並將其減少成該輸出集合。
  5. 如申請專利範圍第4項之處理器,其中該執行單元係用以履行複數內積操作來履行針對集合交集之該些輸 出串的該減少。
  6. 如申請專利範圍第5項之處理器,其中該執行單元係用以履行複數單指令多資料(SIMD)操作於緊縮資料,來履行針對集合交集之該些輸出串的該減少,並使用針對集合聯集之該些副本指標向量。
  7. 如申請專利範圍第1項之處理器,進一步包含:集成至一或更多核心之共用快取,該GAU係藉由複製該些結果至該共用快取,以提供其結果至該執行單元。
  8. 如申請專利範圍第7項之處理器,其中該共用快取包含第二階(L2)快取。
  9. 如申請專利範圍第1項之處理器,其中集合操作描述控制區塊(CB)係用以被寫入至指定給該GAU之特定記憶體位置,該GAU係用以存取該集合操作控制區塊來履行其操作。
  10. 如申請專利範圍第1項之處理器,進一步包含:狀態旗標,以供當該GAU完成操作時,由該GAU所更新,該執行單元係用以重複地檢查該狀態旗標以被告知有關完成。
  11. 如申請專利範圍第1項之處理器,進一步包含:內容可定址記憶體(CAM),其係通訊地耦合至或集成至該GAU,該CAM係用以儲存關於該些集合交集及/或集合聯集操作之一或更多指標向量。
  12. 如申請專利範圍第11項之處理器,其中該GAU包含集合處理引擎(SPE)之陣列,各SPE係由有限狀態 機器(FSM)所驅動並組態成執行聯集或交集操作。
  13. 一種方法,包含:提取包括集合交集和集合聯集操作之程式碼;於圖形加速器單元(GAU)上執行關於該集合交集和集合聯集操作之該程式碼的至少第一部分並產生結果;及使用從該GAU所提供的該些結果以於執行單元上執行該程式碼之至少第二部分。
  14. 如申請專利範圍第13項之方法,其中該GAU係用以識別與該集合交集及/或集合聯集操作相關的副本金鑰。
  15. 如申請專利範圍第14項之方法,其中該GAU係用以進一步識別針對集合交集的匹配索引、收集相應於該些匹配索引之值並將其連續地複製入兩個輸出串、識別針對集合聯集的匹配索引、移除副本、及產生待處理的輸出集合和至少兩個副本指標向量,該些結果包含該兩個輸出串、該輸出集合、及該些至少兩個副本指標向量。
  16. 如申請專利範圍第15項之方法,其中該執行單元係用以履行針對集合交集之該些輸出串的減少;及針對集合聯集,使用該些副本指標向量以收集來自第二輸入集合之元件並將其減少成該輸出集合。
  17. 如申請專利範圍第16項之方法,其中該執行單元係用以履行複數內積操作來履行針對集合交集之該些輸出串的該減少。
  18. 如申請專利範圍第17項之方法,其中該執行單 元係用以履行複數單指令多資料(SIMD)操作於緊縮資料來履行針對集合交集之該些輸出串的該減少並使用針對集合聯集之該些副本指標向量。
  19. 如申請專利範圍第13項之方法,進一步包含:集成至一或更多核心之共用快取,該GAU係藉由複製該些結果至該共用快取以提供其結果至該執行單元。
  20. 如申請專利範圍第19項之方法,其中該共用快取包含第二階(L2)快取。
  21. 如申請專利範圍第13項之方法,其中集合操作描述控制區塊(CB)係用以被寫入至其指定給該GAU之特定記憶體位置,該GAU係用以存取該集合操作控制區塊來履行其操作。
  22. 如申請專利範圍第13項之方法,進一步包含:狀態旗標,以供當該GAU完成操作時由該GAU所更新,該執行單元係用以重複地檢查該狀態旗標以被告知有關完成。
  23. 如申請專利範圍第13項之方法,進一步包含:內容可定址記憶體(CAM),其係通訊地耦合至或集成至該GAU,該CAM係用以儲存關於該些集合交集及/或集合聯集操作之一或更多指標向量。
  24. 如申請專利範圍第23項之方法,其中該GAU包含集合處理引擎(SPE)之陣列,各SPE係由有限狀態機器(FSM)所驅動並組態成執行聯集或交集操作。
  25. 一種系統,包含: 記憶體,用以儲存指令和資料,該些指令包括第一指令;複數核心,用以執行該些指令並處理該資料;圖形處理器,用以回應於圖形指令而履行圖形操作;網路介面,用以透過網路而接收並傳輸資料;介面,用以接收來自滑鼠或游標控制裝置之使用者輸入,該些複數核心係回應於該使用者輸入以執行該些指令並處理該資料;該些核心之至少一者包含:指令提取單元,用以提取包括集合交集和集合聯集操作之程式碼;圖形加速器單元(GAU),用以執行關於該集合交集和集合聯集操作之該程式碼的至少第一部分並產生結果;及執行單元,用以使用從該GAU所提供的該些結果來執行該程式碼之至少第二部分。
TW105137908A 2015-12-22 2016-11-18 用於加速圖形分析的處理器、方法及系統 TWI737651B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/978,229 2015-12-22
US14/978,229 US20170177361A1 (en) 2015-12-22 2015-12-22 Apparatus and method for accelerating graph analytics

Publications (2)

Publication Number Publication Date
TW201732734A true TW201732734A (zh) 2017-09-16
TWI737651B TWI737651B (zh) 2021-09-01

Family

ID=59064378

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105137908A TWI737651B (zh) 2015-12-22 2016-11-18 用於加速圖形分析的處理器、方法及系統

Country Status (5)

Country Link
US (1) US20170177361A1 (zh)
CN (1) CN108292220A (zh)
DE (1) DE112016005909T5 (zh)
TW (1) TWI737651B (zh)
WO (1) WO2017112182A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108897787A (zh) * 2018-06-08 2018-11-27 北京大学 基于simd指令的图数据库中集合求交方法和装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2570118B (en) * 2018-01-10 2020-09-23 Advanced Risc Mach Ltd Storage management methods and systems
US10521207B2 (en) * 2018-05-30 2019-12-31 International Business Machines Corporation Compiler optimization for indirect array access operations
CN109949202B (zh) * 2019-02-02 2022-11-11 西安邮电大学 一种并行的图计算加速器结构
CN112148665B (zh) * 2019-06-28 2024-01-09 深圳市中兴微电子技术有限公司 缓存的分配方法及装置
US11630864B2 (en) * 2020-02-27 2023-04-18 Oracle International Corporation Vectorized queues for shortest-path graph searches
US11222070B2 (en) 2020-02-27 2022-01-11 Oracle International Corporation Vectorized hash tables
US11379390B1 (en) * 2020-12-14 2022-07-05 International Business Machines Corporation In-line data packet transformations

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07262032A (ja) * 1994-03-17 1995-10-13 Fujitsu Ltd 情報処理装置
US6762761B2 (en) * 1999-03-31 2004-07-13 International Business Machines Corporation Method and system for graphics rendering using hardware-event-triggered execution of captured graphics hardware instructions
US7818356B2 (en) * 2001-10-29 2010-10-19 Intel Corporation Bitstream buffer manipulation with a SIMD merge instruction
US8966456B2 (en) * 2006-03-24 2015-02-24 The Mathworks, Inc. System and method for providing and using meta-data in a dynamically typed array-based language
US7908259B2 (en) * 2006-08-25 2011-03-15 Teradata Us, Inc. Hardware accelerated reconfigurable processor for accelerating database operations and queries
US7536532B2 (en) * 2006-09-27 2009-05-19 International Business Machines Corporation Merge operations of data arrays based on SIMD instructions
US8615551B2 (en) * 2009-09-08 2013-12-24 Nokia Corporation Method and apparatus for selective sharing of semantic information sets
US8578117B2 (en) * 2010-02-10 2013-11-05 Qualcomm Incorporated Write-through-read (WTR) comparator circuits, systems, and methods use of same with a multiple-port file
WO2011156247A2 (en) * 2010-06-11 2011-12-15 Massachusetts Institute Of Technology Processor for large graph algorithm computations and matrix operations
WO2013101223A1 (en) * 2011-12-30 2013-07-04 Intel Corporation Efficient zero-based decompression
CN104204990B (zh) * 2012-03-30 2018-04-10 英特尔公司 在使用共享虚拟存储器的处理器中加速操作的装置和方法
EP2831691A4 (en) * 2012-03-30 2015-11-25 Intel Corp METHOD AND APPARATUS FOR FUSIONING AND SORTING SMALLER SORTED VECTORS IN LARGER SORTING VECTORS
US9613096B2 (en) * 2014-03-04 2017-04-04 International Business Machines Corporation Dynamic result set caching with a database accelerator
US20150277904A1 (en) * 2014-03-28 2015-10-01 Roger Espasa Method and apparatus for performing a plurality of multiplication operations
US9275155B1 (en) * 2015-01-23 2016-03-01 Attivio Inc. Querying across a composite join of multiple database tables using a search engine index

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108897787A (zh) * 2018-06-08 2018-11-27 北京大学 基于simd指令的图数据库中集合求交方法和装置
CN108897787B (zh) * 2018-06-08 2020-09-29 北京大学 基于simd指令的图数据库中集合求交方法和装置

Also Published As

Publication number Publication date
US20170177361A1 (en) 2017-06-22
CN108292220A (zh) 2018-07-17
TWI737651B (zh) 2021-09-01
WO2017112182A1 (en) 2017-06-29
DE112016005909T5 (de) 2018-09-20

Similar Documents

Publication Publication Date Title
TWI737651B (zh) 用於加速圖形分析的處理器、方法及系統
TWI556165B (zh) 位元混洗處理器、方法、系統及指令
TWI517031B (zh) 用於呈現各別複數之複數共軛根之向量指令
TWI517039B (zh) 用以對緊縮資料執行差異解碼之系統,設備,及方法
TWI617978B (zh) 用於向量索引載入和儲存之方法和設備
TWI483183B (zh) 混洗浮點或整數值的裝置與方法
TW201814506A (zh) 硬體加速器及用於卸載操作之方法
TWI544411B (zh) 緊縮旋轉處理器、方法、系統與指令
TWI575451B (zh) 用於遮罩及向量暫存器之間的可變擴充的方法及裝置
TWI525538B (zh) 超級乘加(super madd)指令技術
TWI564795B (zh) 四維摩頓座標轉換處理器、方法、系統及指令
TWI498815B (zh) 用以響應於單一指令而執行橫向部分和之系統、裝置及方法
TWI637276B (zh) 執行向量位元混洗的方法與裝置
TW201732570A (zh) 用於聚合集中及跨步的系統、裝置及方法
TW201732572A (zh) 用於跨步的載入(strided load)的系統、設備及方法
JP2018506094A (ja) 多倍長整数(big integer)の算術演算を実行するための方法および装置
TWI637317B (zh) 用於將遮罩擴充為遮罩值之向量的處理器、方法、系統及裝置
TWI567640B (zh) 用於不引發算術旗標的三輸入運算元加法指令之方法及處理器
TWI482086B (zh) 用以於緊縮資料元件上執行差分編碼之系統、裝置及方法
TW201732571A (zh) 用於獲得偶數和奇數資料元素的系統、裝置及方法
TWI470541B (zh) 用於滑動視窗資料收集之設備及方法
TW201810034A (zh) 用於累和的系統、設備及方法
TWI737650B (zh) 用於從鏈結結構取回元件的處理器、系統和方法
TW201643692A (zh) 用於執行自旋迴路跳位的裝置及方法
TWI599953B (zh) 用以執行大整數算數運算之方法及裝置