TW201732448A - 自度量衡資料源分離 - Google Patents

自度量衡資料源分離 Download PDF

Info

Publication number
TW201732448A
TW201732448A TW105141137A TW105141137A TW201732448A TW 201732448 A TW201732448 A TW 201732448A TW 105141137 A TW105141137 A TW 105141137A TW 105141137 A TW105141137 A TW 105141137A TW 201732448 A TW201732448 A TW 201732448A
Authority
TW
Taiwan
Prior art keywords
substrate
contribution
radiation
target
lithography
Prior art date
Application number
TW105141137A
Other languages
English (en)
Other versions
TWI623822B (zh
Inventor
史考特 安德森 米德克魯克斯
歐瑪 阿布貝克 歐瑪 亞當
安卓尼斯 康納力司 馬修士 庫博曼
亨力克斯 喬漢那 蘭伯特 麥更
包伊夫 亞歷 傑福瑞 丹
Original Assignee
Asml荷蘭公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asml荷蘭公司 filed Critical Asml荷蘭公司
Publication of TW201732448A publication Critical patent/TW201732448A/zh
Application granted granted Critical
Publication of TWI623822B publication Critical patent/TWI623822B/zh

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70633Overlay, i.e. relative alignment between patterns printed by separate exposures in different layers, or in the same layer in multiple exposures or stitching
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/705Modelling or simulating from physical phenomena up to complete wafer processes or whole workflow in wafer productions
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/70508Data handling in all parts of the microlithographic apparatus, e.g. handling pattern data for addressable masks or data transfer to or from different components within the exposure apparatus
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70625Dimensions, e.g. line width, critical dimension [CD], profile, sidewall angle or edge roughness

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本文中揭示一種方法及一種電腦程式產品,其係關於微影裝置及程序,且更特定言之,係關於用以檢測藉由該等微影裝置及該等程序生產之基板的一種方法及電腦程式。該方法及/或該電腦程式產品包含:使用一電腦自結果判定來自獨立源之貢獻,該等結果係自一微影程序或藉由該微影程序處理之一基板予以量測;其中使用複數個不同基板量測配方來量測該等結果。

Description

自度量衡資料源分離
本文中之描述係關於微影裝置及程序,且更特定言之,係關於一種用以檢測藉由微影裝置及程序而生產之基板的工具及方法。
微影裝置可用於(例如)積體電路(IC)或其他器件之製造中。在此狀況下,圖案化器件(例如,光罩)可含有或提供對應於器件之個別層之電路圖案(「設計佈局」),且可藉由諸如經由圖案化器件上之電路圖案而輻照已經塗佈有輻射敏感材料(「抗蝕劑」)層之基板(例如,矽晶圓)上之目標部分(例如,包含一或多個晶粒)的方法將此電路圖案轉印至該目標部分上。一般而言,單一基板含有複數個鄰近目標部分,電路圖案係由微影裝置順次地轉印至該複數個鄰近目標部分,一次一個目標部分。在一種類型之微影裝置中,將整個圖案化器件上之電路圖案一次性轉印至一個目標部分上;此裝置通常被稱作晶圓步進器(wafer stepper)。在通常被稱作步進掃描裝置(step-and-scan apparatus)之替代裝置中,投影光束在給定參考方向(「掃描」方向)上遍及圖案化器件進行掃描,同時平行或反平行於此參考方向而同步地移動基板。圖案化器件上之電路圖案之不同部分逐漸地轉印至一個目標部分。 在將電路圖案自圖案化器件轉印至基板之前,基板可經歷各種工序,諸如,上底漆、抗蝕劑塗佈及軟烘烤。在曝光之後,基板可經受其他工序,諸如,曝光後烘烤(PEB)、顯影、硬烘烤,及經轉印電路圖案之量測/檢測。此工序陣列用作製造一器件(例如,IC)之個別層的基礎。基板可接著經歷各種工序,諸如蝕刻、離子植入(摻雜)、金屬化、氧化、化學-機械拋光等等,該等工序皆意欲精整器件之個別層。若在器件中需要若干層,則針對每一層來重複此等工序中之一些或全部或其變體。最終,在基板上之每一目標部分中將存在一器件。若存在複數個器件,則接著藉由諸如切塊或鋸切之技術將此等器件彼此分離,據此,可將個別器件安裝於載體上、連接至銷釘,等等。
本文中揭示一種方法,其包含:使用一電腦自結果判定來自獨立源之貢獻,該等結果係自一微影程序或藉由該微影程序處理之一基板予以量測;其中使用複數個不同基板量測配方來量測該等結果。 根據一實施例,該方法進一步包含縮減該等結果之尺寸之一數目。 根據一實施例,縮減尺寸之該數目包含使用主成份分析(PCA)。 根據一實施例,該等結果為該等貢獻之線性組合。 根據一實施例,該方法進一步包含將該等貢獻編譯成一矩陣。 根據一實施例,該等結果包含自複數個不同部位獲得之疊對值。 根據一實施例,該等基板量測配方在該等基板量測配方進行之一量測之一參數方面不同,或在藉由該等基板量測配方量測之一圖案之一參數方面不同。 根據一實施例,該等貢獻包含來自藉由該等基板量測配方量測之一特性之一真值的一貢獻。 根據一實施例,該方法進一步包含識別來自該真值之該貢獻。 根據一實施例,該方法進一步包含自來自該真值之該貢獻判定該真值。 根據一實施例,識別來自該真值之該貢獻包含運用其他資料進行驗證。 根據一實施例,識別來自該真值之該貢獻包含尋找該等貢獻中之哪一者跨越該複數個基板量測配方係一致的。 根據一實施例,該方法進一步包含自該等貢獻判定該等基板量測配方之準確度。 本文中揭示一種電腦程式產品,其包含經記錄有指令之一電腦可讀媒體,該等指令在由一電腦執行時實施上文之該等方法中之任一者。
儘管在本文中可特定地參考IC之製造,但應明確理解,本文中之描述具有許多其他可能應用。舉例而言,其可用於整合式光學系統之製造中、用於磁疇記憶體之導引及偵測圖案、液晶顯示面板、薄膜磁頭等等。熟習此項技術者應瞭解,在此等替代應用之內容背景中,本文中對術語「倍縮光罩」、「晶圓」或「晶粒」之任何使用應被認為分別與更一般之術語「光罩」、「基板」及「目標部分」可互換。 在本文件中,術語「輻射」及「光束」用以涵蓋所有類型之電磁輻射,包括紫外線輻射(例如,具有365奈米、248奈米、193奈米、157奈米或126奈米之波長),及極紫外線輻射(EUV,例如,具有在5奈米至20奈米之範圍內之波長)。 如本文中所使用之術語「最佳化(optimizing/optimization)」意謂調整一裝置(例如微影裝置)使得(例如微影之)器件製作結果及/或程序具有一或多個理想特性,諸如基板上之設計佈局之投影的較高準確度、較大程序窗口,等等。 作為簡要介紹,圖1說明例示性微影裝置10A。主要組件包括:照明光學件,其定義部分相干性(被表示為均方偏差),且可包括:塑形來自輻射源12A之輻射的光學件14A、16Aa及16Ab,該輻射源12A可為深紫外線準分子雷射源或包括極紫外線(EUV)源的其他類型之源(如本文中所論述,微影裝置自身無需具有輻射源);及光學件16Ac,其將圖案化器件18A之圖案化器件圖案之影像投影至基板平面22A上。投影光學件之光瞳平面處的可調整濾光器或孔徑20A可限定照射於基板平面22A上之光束角度之範圍,其中最大可能角度定義投影光學件之數值孔徑NA=sin(Θmax )。 在微影裝置中,投影光學件經由圖案化器件而導向來自源之照明且將該照明導向至基板上且塑形該照明。此處,術語「投影光學件」被廣泛地定義為包括可變更輻射光束之波前的任何光學組件。舉例而言,投影光學件可包括組件14A、16Aa、16Ab及16Ac中之至少一些。空中影像(AI)為基板位階處之輻射強度分佈。曝光基板上之抗蝕劑層,且將空中影像轉印至抗蝕劑層以在其中作為潛伏「抗蝕劑影像」(RI)。可將抗蝕劑影像(RI)定義為抗蝕劑層中之抗蝕劑的空間溶解度分佈。可使用抗蝕劑模型以自空中影像計算抗蝕劑影像,可在全部揭示內容據此以引用方式併入之美國專利申請公開案第US 2009-0157630號中找到此情形之實例。抗蝕劑模型僅與抗蝕劑層之屬性(例如,在曝光、曝光後烘烤(PEB)及顯影期間發生的化學程序之效應)有關。微影裝置之光學屬性(例如,源、圖案化器件及投影光學件之屬性)規定空中影像。由於可改變用於微影裝置中之圖案化器件,故需要使圖案化器件之光學屬性與至少包括源及投影光學件的微影裝置之其餘部分之光學屬性分離。 如圖2A中所展示,微影裝置LA可形成微影製造單元LC (有時亦被稱作叢集)之部件,微影製造單元LC亦包括用以對基板執行一或多個曝光前程序及曝光後程序之裝置。通常,此等裝置包括用以沈積抗蝕劑層之一或多個旋塗器SC、用以顯影經曝光抗蝕劑之一或多個顯影器DE、一或多個冷卻板CH及一或多個烘烤板BK。基板處置器或機器人RO自輸入/輸出通口I/O1、I/O2拾取基板、在不同程序器件之間移動基板且將基板遞送至微影裝置之裝載匣LB。常常被集體地稱作塗佈顯影系統(track)之此等器件係在塗佈顯影系統控制單元TCU之控制下,塗佈顯影系統控制單元TCU自身受到監督控制系統SCS控制,監督控制系統SCS亦經由微影控制單元LACU而控制微影裝置。因此,不同裝置可經操作以最大化產出率及處理效率。微影製造單元LC可進一步包含用以蝕刻基板之一或多個蝕刻器,及經組態以量測基板之參數之一或多個量測器件。量測器件可包含經組態以量測基板之實體參數之光學量測器件,諸如,散射計、掃描電子顯微鏡等等。 在半導體器件製作程序(例如微影程序)中,基板可在該程序期間或之後經受各種類型之量測。量測可判定一特定基板是否有缺陷、可建立對程序及用於程序中之裝置之調整(例如,將基板上之兩個層對準或將光罩對準至基板)、可量測程序及裝置之效能,或可用於其他目的。基板量測之實例包括光學成像(例如,光學顯微鏡)、非成像光學量測(例如,基於繞射之量測,諸如ASML YieldStar、ASML SMASH GridAlign)、機械量測(例如,使用觸控筆之剖面探測、原子力顯微法(AFM))、非光學成像(例如,掃描電子顯微法(SEM))。如全文以引用方式併入本文中之美國專利第6,961,116號中所描述之智慧型對準感測器混合式(SMASH)系統使用自參考干涉計,該自參考干涉計產生對準標記之兩個重疊且相對旋轉之影像、偵測在使影像之傅立葉變換進行干涉之光瞳平面中之強度,且自兩個影像之繞射階之間的相位差提取位置資訊,該相位差表現為經干涉階中之強度變化。為了獲得有用資料,基板量測配方應足夠準確且精確的。 術語「基板量測配方」可包括量測自身之參數、經量測之圖案之參數,或此兩者。舉例而言,若用於基板量測配方中之量測為非成像以繞射為基礎之光學量測,則量測之參數可包括經繞射之光的波長、偏振、相對於基板之入射角、相對於基板上之圖案之相對定向。經量測之圖案可為繞射被量測之圖案。經量測之圖案可為出於量測目的而特殊設計之圖案(亦被稱作「目標」或「目標結構」)。可將一目標之多個複本置放於基板上之許多地點上。經量測之圖案之參數可包括此等圖案之形狀、定向及大小。基板量測配方可用以將相對於基板上之現有圖案而成像的圖案之層對準。基板量測配方可用以藉由量測基板之相對位置而將光罩對準至基板。 可以數學形式表達基板量測配方:,其中為量測之參數,且為經量測圖案之參數。圖3示意性地展示具有兩個相異目標P及Q之基板,其中每一目標之複本被置放於基板之四個不同區域中。該等目標可包括具有(例如)相互垂直方向之光柵。圖3之基板可經受使用兩個基板量測配方A及B之量測。基板量測配方A及B至少在經量測之目標方面不同(例如,A量測目標P且B量測目標Q)。基板量測配方A及B亦可在其量測之參數方面不同。基板量測配方A及B可甚至不基於同一量測技術。舉例而言,配方A可基於SEM量測且配方B可基於AFM量測。 由散射計使用之目標可包含相對大週期性結構佈局(例如包含一或多個光柵),例如40微米乘40微米。在彼狀況下,量測光束常常具有小於週期性結構佈局之光點大小(亦即,佈局填充不足使得週期性結構中之一或多者並未完全由光點覆蓋)。此情形簡化目標之數學重新建構,此係因為可將目標視為無限的。然而,舉例而言,因此可將目標定位於產品特徵當中而非切割道中,目標之大小已縮減(例如)至20微米乘20微米或更小,或縮減至10微米乘10微米或更小。在此情形下,可使週期性結構佈局小於量測光點(亦即,週期性結構佈局填充過度)。通常使用暗場散射量測來量測此目標,其中阻擋零繞射階(對應於鏡面反射),且僅處理高階。可在PCT專利申請公開案第WO 2009/078708號及第WO 2009/106279號中找到暗場度量衡之實例,該等專利申請公開案之全文據此以引用方式併入。美國專利申請公開案US2011/0027704、US2011/0043791及US2012/0242970中已描述技術之進一步開發,該等專利申請公開案之全文據此以引用方式併入。使用繞射階之暗場偵測的以繞射為基礎之疊對實現對較小目標之疊對量測。此等目標可小於照明光點且可由基板上之產品結構環繞。在一實施例中,可在一個影像中量測多個目標。 在一實施例中,基板上之目標可包含一或多個1-D週期性光柵,其經印刷成使得在顯影之後,長條係由固體抗蝕劑線形成。在一實施例中,目標可包含一或多個2-D週期性光柵,其經印刷成使得在顯影之後,該一或多個光柵係由抗蝕劑中之固體抗蝕劑導柱或通孔形成。長條、導柱或通孔可替代地經蝕刻至基板中。光柵之圖案對微影投影裝置(特別是投影系統PL)中之色像差敏感,且照明對稱性及此等像差之存在將使其自身顯現為經印刷光柵之變化。因此,經印刷光柵之經量測資料可用以重新建構光柵。自印刷步驟及/或其他量測程序之知識,可將1-D光柵之參數(諸如,線寬及形狀)或2-D光柵之參數(諸如,導柱或通孔寬度或長度或形狀)輸入至藉由處理單元PU執行之重新建構程序。 圖2B展示暗場度量衡裝置。圖2C更詳細地說明目標T (包含諸如光柵之週期性結構)及繞射射線。暗場度量衡裝置可為單機器件或(例如)在量測站處併入微影裝置LA或併入微影製造單元LC中。貫穿裝置具有若干分支之光軸係由點線O表示。在此裝置中,由輸出件11 (例如,諸如雷射或氙氣燈之源,或連接至源之開口)發射之輻射係由包含透鏡12、14及接物鏡16之光學系統經由稜鏡15而導向至基板W上。此等透鏡係以4F配置之雙重序列進行配置。可使用不同透鏡配置,其限制條件為:該透鏡配置仍將基板影像提供至偵測器上。 在一實施例中,透鏡配置允許接取中間光瞳平面以用於空間頻率濾光。因此,可藉由界定在呈現基板平面之空間光譜之平面(此處被稱作(共軛)光瞳平面)中的空間強度分佈來選擇輻射入射於基板上之角度範圍。詳言之,可(例如)藉由在為接物鏡光瞳平面之背向投影式影像之平面中在透鏡12與14之間插入合適形式之孔徑板13來進行此選擇。在所說明實例中,孔徑板13具有不同形式(被標註為13N及13S),從而允許選擇不同照明模式。本實例中之照明系統形成離軸照明模式。在第一照明模式中,孔徑板13N自僅出於描述起見而經指明為「北」之方向提供離軸照明。在第二照明模式中,孔徑板13S用以提供相似照明,但提供自被標註為「南」之相對方向之照明。藉由使用不同孔徑,其他照明模式係可能的。光瞳平面之其餘部分理想地暗,此係因為所要照明模式外部之任何不必要輻射可干涉所要量測信號。 如圖2C中所展示,目標T經置放成使得基板W實質上垂直於接物鏡16之光軸O。與軸線O成一角度而照射於目標T上之照明射線I引起一個零階射線(實線0)及兩個一階射線(點鏈線+1及雙點鏈線-1)。在運用填充過度之小目標T的情況下,此等射線僅僅為覆蓋包括度量衡目標T及其他特徵之基板區域的許多平行射線中之一者。由於板13中之孔徑具有有限寬度(為接納有用量之輻射所必要),故入射射線I事實上將佔據一角度範圍,且繞射射線0及+1/-1將稍微散開。根據小目標之點散佈函數(point spread function),每一階+1及-1將遍及一角度範圍而進一步散佈,而非如所展示之單一理想射線。應注意,週期性結構間距及照明角度可經設計或經調整成使得進入接物鏡之一階射線與中心光軸緊密地對準。圖2B及圖2C中所說明之射線被展示為稍微離軸,以純粹地使其能夠在圖解中被更容易地區分。 由基板W上之目標繞射之至少0階及+1階係由接物鏡16收集,且被返回導向通過稜鏡15。返回至圖2B,藉由指明被標註為北(N)及南(S)之完全相反孔徑來說明第一照明模式及第二照明模式兩者。當入射射線I係來自光軸之北側時,亦即,當使用孔徑板13N來應用第一照明模式時,被標註為+1(N)之+1繞射射線進入接物鏡16。與此對比,當使用孔徑板13S來應用第二照明模式時,-1繞射射線(被標註為-1(S))為進入透鏡16之繞射射線。因此,在一實施例中,藉由在某些條件下量測目標兩次(例如,在使目標旋轉或改變照明模式或改變成像模式以分離地獲得-1繞射階強度及+1繞射階強度之後)來獲得量測結果。針對一給定目標比較此等強度提供該目標中之不對稱性之量測,且該目標中之不對稱性可用作例如疊對誤差之微影程序之參數的指示符。在上文所描述之情形下,改變照明模式。 光束分光器17將繞射光束劃分成兩個量測分支。在第一量測分支中,光學系統18使用零階繞射光束及一階繞射光束而在第一感測器19 (例如,CCD或CMOS感測器)上形成目標之繞射光譜(光瞳平面影像)。每一繞射階射中感測器上之不同點,使得影像處理可比較及對比若干階。由感測器19捕捉之光瞳平面影像可用於聚焦度量衡裝置及/或正規化一階光束之強度量測。光瞳平面影像亦可用於諸如重新建構之許多量測目的,其未在此處被詳細描述。 在第二量測分支中,光學系統20、22在感測器23 (例如,CCD或CMOS感測器)上形成基板W上之目標之影像。在第二量測分支中,在與光瞳平面共軛之平面中提供孔徑光闌21。孔徑光闌21用以阻擋零階繞射光束,使得形成於感測器23上之目標之影像DF係由-1或+1一階光束形成。將由感測器19及23捕捉之影像輸出至影像處理器及控制器PU,影像處理器及控制器PU之功能將取決於正被執行之量測之特定類型。應注意,此處在廣泛意義上使用術語「影像」。因而若僅存在-1階及+1階中之一者,則將不形成週期性結構特徵(例如,光柵線)之影像。 圖2D及圖2E中所展示之孔徑板13及光闌21之特定形式純粹為實例。在本發明之另一實施例中,使用目標之同軸照明,且使用具有離軸孔徑之孔徑光闌以將實質上僅一個一階繞射輻射傳遞至感測器。在又其他實施例中,代替一階光束或除了一階光束以外,亦可將二階、三階及高階光束(圖中未繪示)用於量測。 為了使照明可適應於此等不同類型之量測,孔徑板13可包含圍繞一圓盤而形成之數個孔徑圖案,該圓盤旋轉以使所要圖案處於適當位置。應注意,使用孔徑板13N或13S以量測在一個方向(取決於設置為X或Y)上定向之目標之週期性結構。為了量測正交週期性結構,可能實施達90°及270°之目標旋轉。圖2D及圖2E中展示不同孔徑板。圖2D說明離軸照明模式之另外兩種類型。在圖2D之第一照明模式中,孔徑板13E提供來自僅出於描述起見相對於先前所描述之「北」被指明為「東」之方向的離軸照明。在圖2E之第二照明模式中,孔徑板13W係用以提供相似照明,但提供來自被標註為「西」之相對方向之照明。圖2E說明離軸照明模式之另外兩種類型。在圖2E之第一照明模式中,孔徑板13NW提供來自被指明為如先前所描述之「北」及「西」之方向的離軸照明。在第二照明模式中,孔徑板13SE係用以提供相似照明,但提供來自被標註為如先前所描述之「南」及「東」之相對方向的照明。舉例而言,上文所提及之先前公佈之專利申請公開案中描述裝置之此等及眾多其他變化及應用的使用。 圖2F描繪形成於基板上之實例複合度量衡目標。該複合目標包含緊密定位在一起之四個週期性結構(在此狀況下,為光柵) 32、33、34、35。在一實施例中,該等週期性結構足夠緊密地定位在一起,使得其皆在由度量衡裝置之照明光束形成之量測光點31內。在彼狀況下,該四個週期性結構因此皆被同時地照明且同時地成像於感測器19及23上。在專用於疊對量測之一實例中,週期性結構32、33、34、35自身為由上覆週期性結構而形成之複合週期性結構(例如,複合光柵),亦即,週期性結構在形成於基板W上之器件之不同層中經圖案化且使得一個層中之至少一個週期性結構與不同層中之至少一個週期性結構疊對。此目標之外部尺寸可在20微米×20微米內或在16微米×16微米內。另外,所有週期性結構用以量測一特定層對之間的疊對。為了促進目標能夠量測多於單一層對,週期性結構32、33、34、35可具有經不同偏置之疊對偏移,以便促進經形成有複合週期性結構之不同部分的不同層之間的疊對之量測。因此,用於基板上之目標之所有週期性結構將用以量測一個層對,且用於基板上之另一相同目標之所有週期性結構將用以量測另一層對,其中不同偏置促進區分該等層對。 圖2G展示在使用來自圖2E之孔徑板13NW或13SE的情況下在圖2B之裝置中使用圖2F之目標而可形成於感測器23上且由感測器23偵測的影像之實例。雖然感測器19不能解析不同個別週期性結構32至35,但感測器23可解析不同個別週期性結構32至35。暗矩形表示感測器上之影像之場,在該場內,基板上之經照明光點31成像至對應圓形區域41中。在此圓形區域內,矩形區域42至45表示週期性結構32至35之影像。若週期性結構位於產品區域中,則在此影像場之周邊中亦可看見產品特徵。影像處理器及控制器PU使用圖案辨識來處理此等影像,以識別週期性結構32至35之分離影像42至45。以此方式,影像並不必須在感測器框架內之特定部位處極精確地對準,此情形極大地改良量測裝置整體上之產出率。 準確度及精度為相關但相異概念。數量之量測準確度為數量之量測值與數量之真值之接近程度。與再現性及可重複性有關的量測之精度為在不變條件下之數量之經重複量測展示相同結果之程度。儘管兩個術語精度及準確度可在口語使用中同義,但其在科學方法之內容背景中及在本發明中故意地形成對比。量測可準確但不精確、精確但不準確、既不準確亦不精確,或準確及精確。舉例而言,若量測含有系統性誤差,則增加樣本大小(亦即,重複之數目)通常會增加精度但不改良準確度。消除系統性誤差會改良準確度但不改變精度。 基於此等定義,確定量測之精度未必需要經量測數量之真值之知識。數量之量測之精度可受到量測之性質、用於量測之裝置、環境或甚至量測中所涉及之物理學限制。然而,在不知曉經量測之數量之真值的情況下,確定量測之準確度可為困難的。 在半導體器件製作程序之內容背景中,判定基板量測配方是否準確且自量測結果獲得真值可具有挑戰性,此係因為真值及系統性誤差兩者在量測之結果中顯現。即,真值及系統性誤差兩者影響結果,且因此,結果可具有來自真值之貢獻及來自系統性誤差之貢獻。若可判定系統性誤差之貢獻,則可自量測之結果判定量測之準確度以及真值。若量測之結果為來自系統性誤差之貢獻與來自真值之貢獻之線性組合(例如,總和),則可藉由自該量測之該等結果移除系統性誤差而獲得來自真值之貢獻且可自來自真值之貢獻判定真值。 圖4A及圖4B示範同一目標可如何將不同系統性誤差引入不同基板量測配方中。圖4A示意性地展示包括渠溝312上方之上部結構311之目標310的橫截面圖,該目標適合於量測上部結構311與渠溝312之間的疊對誤差。渠溝312之底部313由於程序(例如,蝕刻、CMP,或程序中之其他步驟)而傾斜(不平行於基板)。舉例而言,另外兩個相同基板量測配方使用處於相同入射角之光束314及315以用於基板量測,惟光束314及315自不同方向導向至基板上除外。儘管光束314及315具有相對於基板之相同入射角,但其並不具有相對於渠溝312之底部313之相同入射角,此係因為底部313相對於基板而傾斜。因此,光束314及315由目標之散射之特性不同。 圖4B示意性地展示包括渠溝322上方之上部結構321之另一目標320的橫截面圖,該目標適合於量測上部結構321與渠溝322之間的疊對誤差。渠溝322之側壁323由於程序(例如,蝕刻、CMP,或程序中之其他步驟)而傾斜(不垂直於基板)。舉例而言,另外兩個相同基板量測配方使用處於相同入射角之光束324及325以用於基板量測,惟光束324及325自不同方向導向至基板上除外。儘管光束324及325具有相對於基板之相同入射角,但光束324偏斜側壁323,而光束325幾乎垂直於側壁323。因此,光束324幾乎不由側壁323散射,但光束325由側壁323強散射。因此,光束324及325由目標之散射之特性不同。 一種用以判定系統性誤差之貢獻之方式為模型化。若可量測系統性誤差之原因且系統性誤差之原因與系統性誤差之貢獻之間的關係係已知的,則可自該經量測原因及該關係判定系統性誤差之貢獻。令人遺憾的是,原因並非總是可量測的,且關係並未總是已知的。本發明將描述自量測之結果以統計方式判定來自系統性誤差之貢獻之另一途徑。 圖5示意性地展示在量測結果之集合中的來自各種源(諸如系統性誤差及真值)之貢獻之組合。當該組合為線性時,可藉由矩陣表達該組合,其中。常常,量測結果係已知的且問題應為自量測結果找到貢獻。可藉由判定矩陣而判定貢獻。 圖6示意性地展示在基板上之不同部位處量測的十二個疊對值作為結果之實例。此十二個疊對值中之每一者可藉由類似於圖2B中所描繪之度量衡工具的度量衡工具自部位中之一者處之目標而獲得。此十二個疊對值中之每一者可具有來自兩個不同源之貢獻,該兩個源中之一者可為疊對之真值且另一者可為在彼部位處量測之目標中之不對稱性(例如,圖4A及圖4B中所描繪之不對稱性)。當判定出係數時,判定在結果中之每一者中的兩個貢獻中之每一者。在假定貢獻係來自真值的情況下,一旦係已知的,在部位中之每一者處之疊對之真值就為,且可藉由(例如)使用適當模型化而自判定不對稱性。可藉由其他資料驗證貢獻之性質,其他資料例如,與SEM影像之相關性或與自藉由目標之不對稱性而以不同方式影響之另一度量衡工具而在資料中判定的貢獻之一致性。 圖7示意性地展示可將十二個疊對值、疊對之真值及來自不對稱性之貢獻標繪為映射(亦即,依據部位)。 圖8示意性地展示根據一實施例用於在結果810之集合中判定來自不同源之貢獻之方法的流程圖,該等結果係自微影程序或藉由該微影程序處理之基板予以量測。使用多個不同基板量測配方來量測結果810。在820中,視情況縮減結果810中之尺寸之數目。舉例而言,結果可為自多個不同部位獲得且在每一部位處使用多個不同基板量測配方獲得的疊對值。基板量測配方可在一些參數方面不同,諸如用於基板量測配方中之光之偏振及波長。參數中之每一者為結果810之尺寸。該等參數中之一些可並非獨立的。縮減尺寸之數目可使用諸如主成份分析(PCA)之合適演算法來達成。PCA為使用正交變換將可能相關變數之觀測之集合轉換成被稱為主成份的線性不相關變數值之集合的統計工序。在830中,自視情況具有縮減數目個尺寸的結果810判定來自獨立源之貢獻850。一種用以判定貢獻之方式係藉由獨立成份分析(ICA)。ICA將資料分離成來自以統計方式相互獨立源與非高斯源的相加貢獻。可將貢獻850編譯為矩陣840,該矩陣將獨立源投影至結果810。 圖9示意性地展示根據一實施例可根據貢獻850當中之量測識別來自真值之貢獻850T。可藉由運用其他資料(SEM影像)進行驗證來識別貢獻850T。可藉由尋找貢獻850中之哪一者與另一量測之結果中判定的貢獻一致來識別貢獻850T,此係因為真值應相似地影響對同一特性之不同量測且其他源可不同地影響此等量測。舉例而言,因為用於圖8中之基板量測配方皆用以量測同一特性(例如疊對),所以該特性之真值應在結果810中具有相似貢獻。若在貢獻850當中來自源之貢獻跨越結果810相似,則彼貢獻很可能為來自真值之貢獻。 圖10示意性地展示可自貢獻850 (或矩陣840)判定用以獲得結果810之基板量測配方之準確度860。按照定義,準確基板量測配方應導致結果具有來自真值之大貢獻及來自其他源之小貢獻。因此,若貢獻850展示一特定基板量測配方具有來自真值之大貢獻及來自其他源之小貢獻,則彼特定基板量測配方為準確的。 圖11A、圖11B及圖11C各自展示在使用十六個不同基板量測配方(水平軸線)獲得之結果中的來自三個源之正規化貢獻(垂直軸線)。由箭頭標記之基板量測配方相對準確,此係因為其導致結果具有來自三個源中之一者之大貢獻(該源很可能為真值)及來自另外兩個源之小貢獻。 圖12為說明可輔助實施本文中所揭示之方法及流程之電腦系統100的方塊圖。電腦系統100包括用以傳達資訊之一匯流排102或其他通信機構,及與匯流排102耦接以處理資訊之一處理器104 (或多個處理器104及105)。電腦系統100亦可包括耦接至匯流排102以儲存及/或供應待由處理器104執行之資訊及指令的主記憶體106,諸如隨機存取記憶體(RAM)或其他動態儲存器件。主記憶體106可用於在待由處理器104執行之指令之執行期間儲存及/或供應暫時性變數或其他中間資訊。電腦系統100可進一步包括耦接至匯流排102以儲存及/或供應用於處理器104之靜態資訊及指令的唯讀記憶體(ROM) 108或其他靜態儲存器件。可提供諸如磁碟或光碟之儲存器件110,且可將該儲存器件110耦接至匯流排102以儲存及/或供應資訊及指令。 電腦系統100可經由匯流排102而耦接至用以向電腦使用者顯示資訊之顯示器112,諸如陰極射線管(CRT)或平板顯示器或觸控面板顯示器。包括文數字及其他按鍵之輸入器件114可耦接至匯流排102以將資訊及命令選擇傳達至處理器104。另一類型之使用者輸入器件可為用以將方向資訊及命令選擇傳達至處理器104且控制顯示器112上之游標移動的游標控制件116,諸如滑鼠、軌跡球或游標方向按鍵。此輸入器件通常具有在兩個軸線(第一軸線(例如,x)及第二軸線(例如,y))上之兩個自由度,其允許該器件指定在平面中之位置。觸控面板(螢幕)顯示器亦可用作輸入器件。 根據一項實施例,可由電腦系統100回應於處理器104執行主記憶體106中含有之一或多個指令之一或多個序列而執行最佳化程序之部分。可將此等指令自另一電腦可讀媒體(諸如,儲存器件110)讀取至主記憶體106中。主記憶體106中含有之指令序列之執行使處理器104執行本文中所描述之程序步驟。呈多處理配置之一或多個處理器可用以執行主記憶體106中所含有之指令序列。在一替代實施例中,可代替或結合軟體指令而使用硬連線電路系統。因此,本文中之描述不限於硬體電路系統與軟體之任何特定組合。 本文中所使用之術語「電腦可讀媒體」係指參與將指令提供至處理器104以供執行之任何媒體。此媒體可採取許多形式,包括但不限於非揮發性媒體、揮發性媒體及傳輸媒體。非揮發性媒體包括(例如)光碟或磁碟,諸如儲存器件110。揮發性媒體包括動態記憶體,諸如主記憶體106。傳輸媒體包括同軸纜線、銅線及光纖,其包括包含匯流排102之電線。傳輸媒體亦可採取聲波或光波之形式,諸如在射頻(RF)及紅外線(IR)資料通信期間產生之聲波或光波。電腦可讀媒體之常見形式包括(例如)軟碟、可撓性碟、硬碟、磁帶、任何其他磁性媒體、CD-ROM、DVD、任何其他光學媒體、打孔卡、紙帶、具有孔圖案之任何其他實體媒體、RAM、PROM及EPROM、FLASH-EPROM、任何其他記憶體晶片或卡匣、如下文所描述之載波,或可供電腦讀取之任何其他媒體。 各種形式之電腦可讀媒體可涉及將一或多個指令之一或多個序列攜載至處理器104以供執行。舉例而言,最初可將該等指令承載於遠端電腦之磁碟或記憶體上。遠端電腦可將該等指令載入至其動態記憶體中,且在通信路徑上方發送該等指令。電腦系統100可自路徑接收資料且將資料置放於匯流排102上。匯流排102將資料攜載至主記憶體106,處理器104自該主記憶體106擷取並執行指令。由主記憶體106接收之指令可視情況在由處理器104執行之前或之後儲存於儲存器件110上。 電腦系統100可包括耦接至匯流排102之通信介面118。通信介面118提供對網路鏈路120之雙向資料通信耦合,網路鏈路120連接至網路122。舉例而言,通信介面118可提供有線或無線資料通信連接。在任何此類實施中,通信介面118發送及接收攜載表示各種類型之資訊之數位資料串流的電信號、電磁信號或光學信號。 網路鏈路120通常經由一或多個網路向其他資料器件提供資料通信。舉例而言,網路鏈路120可經由網路122而向主機電腦124或向由網際網路服務業者(ISP) 126操作之資料設備提供連接。ISP 126又經由全球封包資料通信網路(現在通常被稱作「網際網路」) 128而提供資料通信服務。網路122及網際網路128兩者皆使用攜載數位資料串流之電信號、電磁信號或光學信號。經由各種網路之信號及在網路鏈路120上且經由通信介面118之信號(該等信號將數位資料攜載至電腦系統100及自電腦系統100攜載數位資料)為輸送資訊的載波之例示性形式。 電腦系統100可經由該(該等)網路、網路鏈路120及通信介面118而發送訊息及接收資料(包括程式碼)。在網際網路實例中,伺服器130可能經由網際網路128、ISP 126、網路122及通信介面118而傳輸用於應用程式之所請求程式碼。舉例而言,一個此類經下載應用程式可提供用以實施本文中之方法之程式碼。所接收程式碼可在其被接收時由處理器104執行,及/或儲存於儲存器件110或其他非揮發性儲存器中以供稍後執行。以此方式,電腦系統100可獲得呈載波之形式的應用程式碼。 圖13示意性地描繪例示性微影裝置。該裝置包含: -照明系統IL,其用以調節輻射光束B。在此特定狀況下,照明系統亦包含輻射源SO; -第一物件台(例如,光罩台) MT,其具備用以固持圖案化器件MA (例如倍縮光罩)之圖案化器件固持器,且連接至用以相對於項目PS來準確地定位該圖案化器件之第一定位器PM; -第二物件台(基板台) WT,其具備用以固持基板W (例如,抗蝕劑塗佈矽晶圓)之基板固持器,且連接至用以相對於項目PS來準確地定位該基板之第二定位器PW; -投影系統PS (例如,折射、反射或反射折射光學系統),其用以將圖案化器件MA之經輻照部分成像至基板W之目標部分C (例如,包含一或多個晶粒)上。 如本文中所描繪,裝置屬於透射類型(亦即,具有透射光罩)。然而,一般而言,其亦可屬於(例如)反射類型(具有反射光罩)。替代地,裝置可使用另一種類之圖案化器件作為對經典光罩之使用的替代例;實例包括可程式化鏡面陣列或LCD矩陣。 源SO (例如,水銀燈或準分子雷射)產生輻射光束。此光束直接地或在已橫穿諸如光束擴展器之調節器之後經饋入至照明系統(照明器) IL中。照明器IL可包含經組態以設定光束中之強度分佈之外部徑向範圍及/或內部徑向範圍(通常分別被稱作σ外部及σ內部)之調整器AD。另外,照明器IL通常將包含各種其他組件,諸如,積光器IN及聚光器CO。以此方式,照射於圖案化器件MA上之光束B在其橫截面中具有所要均一性及強度分佈。 關於圖13應注意,源SO可在微影裝置之外殼內(此常常為當源SO為(例如)水銀燈時之狀況),但其亦可在微影裝置之遠端,其所產生之輻射光束被導引至該裝置中(例如,憑藉合適導向鏡面BD);此後一情境常常為當源SO為準分子雷射(例如,基於KrF、ArF或F2 雷射作用)時之狀況。 光束B隨後截取被固持於圖案化器件台MT上之圖案化器件MA。在已橫穿圖案化器件MA的情況下,光束B傳遞通過投影系統PS,投影系統PS將該光束B聚焦至基板W之目標部分C上。憑藉第二定位器PW(及干涉計IF),可準確地移動基板台WT,例如,以便使不同目標部分C定位於光束B之路徑中。相似地,第一定位器PM可用以(例如)在自圖案化器件庫對圖案化器件MA之機械擷取之後或在掃描期間相對於光束B之路徑來準確地定位圖案化器件MA。一般而言,將憑藉未在圖13中明確地描繪之長衝程模組(粗略定位)及短衝程模組(精細定位)來實現物件台MT、WT之移動。 可使用光罩對準標記M1、M2及基板對準標記P1、P2來對準圖案化器件(例如,光罩) MA及基板W。儘管如所說明之基板對準標記佔據專用目標部分,但該等標記可位於目標部分之間的空間中(此等標記被稱為切割道對準標記)。相似地,在多於一個晶粒提供於圖案化器件(例如光罩) MA上之情形中,圖案化器件對準標記可位於該等晶粒之間。小對準標記亦可包括於器件特徵當中之晶粒內,在此狀況下,需要使標記儘可能地小且無需與相鄰特徵不同的任何成像或程序條件。 圖14示意性地描繪另一例示性微影裝置1000。該微影裝置1000包括: -源收集器模組SO -照明系統(照明器) IL,其經組態以調節輻射光束B (例如,EUV輻射)。 -支撐結構(例如,光罩台) MT,其經建構以支撐圖案化器件(例如,光罩或倍縮光罩) MA,且連接至經組態以準確地定位該圖案化器件之第一定位器PM; -基板台(例如,晶圓台) WT,其經建構以固持基板(例如,抗蝕劑塗佈晶圓) W,且連接至經組態以準確地定位該基板之第二定位器PW;及 -投影系統(例如,反射投影系統) PS,其經組態以將由圖案化器件MA賦予至輻射光束B之圖案投影至基板W之目標部分C (例如,包含一或多個晶粒)上。 如此處所描繪,裝置1000屬於反射類型(例如,使用反射光罩)。應注意,因為大多數材料在EUV波長範圍內具吸收性,所以圖案化器件可具有包含(例如)鉬與矽之多堆疊的多層反射器。在一項實例中,多堆疊反射器具有鉬及矽之40層對。可運用X射線微影來產生甚至更小波長。由於大多數材料在EUV及x射線波長下具吸收性,所以圖案化器件構形(topography)上之經圖案化吸收材料薄片段(例如,多層反射器之頂部上之TaN吸收器)界定特徵將印刷(正型抗蝕劑)或不印刷(負型抗蝕劑)之處。 參看圖14,照明器IL自源收集器模組SO接收極紫外線(EUV)輻射光束。用以產生EUV輻射之方法包括但未必限於運用在EUV範圍內之一或多種發射譜線將具有至少一個元素(例如,氙、鋰或錫)之材料轉換成電漿狀態。在一種此類方法(常常被稱為雷射產生電漿(「LPP」))中,可藉由用雷射光束來輻照燃料(諸如,具有譜線發射元素之材料小滴、串流或叢集)而產生電漿。源收集器模組SO可為包括雷射(圖14中未繪示)之EUV輻射系統之部件,該雷射用以提供用以激發燃料之雷射光束。所得電漿發射輸出輻射,例如,EUV輻射,該輸出輻射係使用安置於源收集器模組中之輻射收集器予以收集。舉例而言,當使用CO2 雷射以提供用於燃料激發之雷射光束時,雷射與源收集器模組可為分離實體。 在此等狀況下,不認為雷射形成微影裝置之部件,且輻射光束係憑藉包含(例如)合適導向鏡面及/或光束擴展器之光束遞送系統而自雷射傳遞至源收集器模組。在其他狀況下,舉例而言,當源為放電產生電漿EUV產生器(常常被稱為DPP源)時,源可為源收集器模組之整體部件。 照明器IL可包含經組態以調整輻射光束之角強度分佈之調整器。通常,可調整照明器之光瞳平面中之強度分佈的至少外部徑向範圍及/或內部徑向範圍(通常分別被稱作σ外部及σ內部)。另外,照明器IL可包含各種其他組件,諸如琢面化場鏡面器件及琢面化光瞳鏡面器件。照明器可用以調節輻射光束,以在其橫截面中具有所要均一性及強度分佈。 輻射光束B入射於被固持於支撐結構(例如,光罩台) MT上之圖案化器件(例如,光罩) MA上,且係藉由該圖案化器件而圖案化。在自圖案化器件(例如,光罩) MA反射之後,輻射光束B傳遞通過投影系統PS,投影系統PS將該光束聚焦至基板W之目標部分C上。憑藉第二定位器PW及位置感測器PS2 (例如,干涉量測器件、線性編碼器或電容性感測器),可準確地移動基板台WT,例如,以便使不同目標部分C定位於輻射光束B之路徑中。相似地,第一定位器PM及另一位置感測器PS1可用以相對於輻射光束B之路徑來準確地定位圖案化器件(例如,光罩) MA。可使用圖案化器件對準標記M1、M2及基板對準標記P1、P2來對準圖案化器件(例如,光罩) MA及基板W。 所描繪裝置可用於以下模式中之至少一者中: 1.  在步進模式中,在將被賦予至輻射光束之整個圖案一次性投影至目標部分C上時,使支撐結構(例如,光罩台) MT及基板台WT保持基本上靜止(亦即,單次靜態曝光)。接著,使基板台WT在X及/或Y方向上移位使得可曝光不同目標部分C。 2.  在掃描模式中,在將被賦予至輻射光束之圖案投影至目標部分C上時,在給定方向(所謂「掃描方向」)上同步地掃描支撐結構(例如,光罩台) MT及基板台WT (亦即,單次動態曝光)。可藉由投影系統PS之放大率(縮小率)及影像反轉特性來判定基板台WT相對於支撐結構(例如,光罩台) MT之速度及方向。 3.  在另一模式中,在將被賦予至輻射光束之圖案投影至目標部分C上時,使支撐結構(例如,光罩台) MT保持基本上靜止,從而固持可程式化圖案化器件,且移動或掃描基板台WT。在此模式中,通常使用脈衝式輻射源,且在基板台WT之每一移動之後或在掃描期間之順次輻射脈衝之間根據需要而更新可程式化圖案化器件。此操作模式可易於應用於利用可程式化圖案化器件(諸如,上文所提及之類型之可程式化鏡面陣列)之無光罩微影。 另外,微影裝置可屬於具有兩個或多於兩個台(例如,兩個或多於兩個基板台、兩個或多於兩個圖案化器件台,及/或一基板台及不具有基板之一台)之類型。在此等「多載物台」器件中,可並行地使用額外台,或可在一或多個台上進行預備步驟,同時將一或多個其他台用於曝光。舉例而言,全文以引用方式併入本文中之美國專利第5,969,441號中描述雙載物台微影裝置。 圖15更詳細地展示裝置1000,其包括源收集器模組SO、照明系統IL及投影系統PS。源收集器模組SO經建構及配置成使得可將真空環境維持於源收集器模組SO之圍封結構220中。可由放電產生電漿源形成EUV輻射發射電漿210。可由氣體或蒸汽(例如,Xe氣體、Li蒸汽或Sn蒸汽)產生EUV輻射,其中產生極熱電漿210以發射在電磁光譜之EUV範圍內之輻射。舉例而言,藉由造成至少部分離子化電漿之放電來產生極熱電漿210。為了輻射之有效率產生,可需要為(例如) 10帕斯卡之分壓之Xe、Li、Sn蒸汽或任何其他合適氣體或蒸汽。在一實施例中,提供受激發錫(Sn)電漿以產生EUV輻射。 由熱電漿210發射之輻射係經由經定位於源腔室211中之開口中或後方的選用氣體障壁或污染物截留器230 (在一些狀況下,亦被稱作污染物障壁或箔片截留器)而自源腔室211傳遞至收集器腔室212中。污染物截留器230可包括通道結構。污染截留器230亦可包括氣體障壁,或氣體障壁與通道結構之組合。本文中進一步所指示之污染物截留器或污染物障壁230至少包括通道結構,如此項技術中所知。 收集器腔室211可包括可為所謂的掠入射收集器之輻射收集器CO。輻射收集器CO具有上游輻射收集器側251及下游輻射收集器側252。橫穿收集器CO之輻射可自光柵光譜濾光器240被反射以沿著由點虛線「O」指示之光軸聚焦於虛擬源點IF中。虛擬源點IF通常被稱作中間焦點,且源收集器模組經配置成使得中間焦點IF位於圍封結構220中之開口221處或附近。虛擬源點IF為輻射發射電漿210之影像。 隨後,輻射橫穿照明系統IL,照明系統IL可包括琢面化場鏡面器件22及琢面化光瞳鏡面器件24,琢面化場鏡面器件22及琢面化光瞳鏡面器件24經配置以提供在圖案化器件MA處的輻射光束21之所要角分佈,以及在圖案化器件MA處的輻射強度之所要均一性。在由支撐結構MT固持之圖案化器件MA處的輻射光束21之反射後,形成經圖案化光束26,且由投影系統PS經由反射元件28、30將經圖案化光束26成像至由基板台WT固持之基板W上。 比所展示之元件多的元件通常可存在於照明光學件單元IL及投影系統PS中。取決於微影裝置之類型,可視情況存在光柵光譜濾光器240。另外,可存在比諸圖所展示之鏡面多的鏡面,例如,在投影系統PS中可存在比圖15所展示之反射元件多1至6個的額外反射元件。 如圖15所說明之收集器光學件CO被描繪為具有掠入射反射器253、254及255之巢套式收集器,僅僅作為收集器(或收集器鏡面)之實例。掠入射反射器253、254及255經安置成圍繞光軸O軸向地對稱,且此類型之收集器光學件CO理想地結合放電產生電漿源(常常被稱為DPP源)予以使用。替代地,源收集器模組SO可為LPP輻射系統之部分。 本文中所使用之術語「投影系統」應被廣泛地解譯為涵蓋適於所使用之曝光輻射或適於諸如浸潤液體之使用或真空之使用之其他因素的任何類型之投影系統,包括折射、反射、反射折射、磁性、電磁及靜電光學系統,或其任何組合。 微影裝置亦可屬於如下類型:其中基板之至少一部分可由具有相對高折射率之液體(例如,水)覆蓋,以便填充投影系統與基板之間的空間。亦可將浸潤液體施加至微影裝置中之其他空間,例如,光罩與投影系統之間的空間。浸潤技術在此項技術中被熟知用於增加投影系統之數值孔徑。如本文中所使用之術語「浸潤」並不意謂諸如基板之結構必須浸沒於液體中,而是僅意謂液體在曝光期間位於投影系統與基板之間。 本文所揭示之概念可用以模擬或數學地模型化涉及微影裝置之任何器件製造程序,且可在使用能夠產生愈來愈小大小之波長之新興成像技術的情況下尤其有用。已經在使用中之新興技術包括深紫外線(DUV)微影,其能夠藉由使用ArF雷射來產生193奈米之波長且甚至能夠藉由使用氟雷射來產生157奈米之波長。此外,EUV微影能夠產生在5奈米至20奈米之範圍內之波長。 雖然本文中所揭示之概念可用於在諸如矽晶圓之基板上之器件製造,但應理解,所揭示概念可供任何類型之微影成像系統使用,例如,用於在除了矽晶圓以外的基板上之成像之微影成像系統。 上文所提及之圖案化器件包含或可形成設計佈局。可利用電腦輔助設計(CAD)程式來產生設計佈局。此程序常常被稱作電子設計自動化(EDA)。大多數CAD程式遵循預定設計規則集合,以便產生功能設計佈局/圖案化器件。藉由處理及設計限制來設定此等規則。舉例而言,設計規則界定電路器件(諸如,閘、電容器等等)或互連線之間的空間容許度,以便確保該等電路器件或線彼此不會以不當方式相互作用。設計規則限制通常被稱作「臨界尺寸」(CD)。可將電路之臨界尺寸定義為線或孔之最小寬度,或兩條線或兩個孔之間的最小空間。因此,CD判定經設計電路之總大小及密度。當然,積體電路製作中之目標中之一者係在基板上如實地再生原始電路設計(經由圖案化器件)。 如本文中所使用之術語「光罩」或「圖案化器件」可被廣泛地解譯為係指可用以向入射輻射光束賦予經圖案化橫截面之通用圖案化器件,經圖案化橫截面對應於待在基板之目標部分中產生之圖案;術語「光閥」亦可用於此內容背景中。除了經典光罩(透射或反射;二元、相移、混合式等等)以外,其他此等圖案化器件之實例亦包括: -可程式化鏡面陣列。此器件之一實例為具有黏彈性控制層及反射表面之矩陣可定址表面。此裝置所隱含之基本原理為(例如):反射表面之經定址區域使入射輻射反射作為繞射輻射,而未經定址區域使入射輻射反射作為非繞射輻射。在使用適當濾光器的情況下,可自反射光束濾出該非繞射輻射,從而僅留下繞射輻射;以此方式,光束根據矩陣可定址表面之定址圖案而變得圖案化。可使用合適電子構件來執行所需矩陣定址。可(例如)自以引用方式併入本文中之美國專利第5,296,891號及第5,523,193號搜集到關於此等鏡面陣列之更多資訊。 -可程式化LCD陣列。以引用方式併入本文中之美國專利第5,229,872號中給出此類構造之一實例。 如所提及,微影蝕刻術(microlithography)為在諸如IC之器件之製造時的重要步驟,其中形成於基板上之圖案界定IC之功能元件,諸如,微處理器、記憶體晶片,等等。相似微影技術亦用於形成平板顯示器、微機電系統(MEMS)及其他器件。 供印刷尺寸小於微影裝置之經典解析度極限之特徵的程序根據解析度公式CD=k1 ×λ/NA通常被稱作低k1 微影,其中λ為所使用輻射之波長(當前在大多數狀況下為248奈米或193奈米),NA為微影裝置中之投影光學件之數值孔徑,CD為「臨界尺寸」(通常為所印刷之最小特徵大小),且k1 為經驗解析度因數。一般而言,k1 愈小,在基板上再生類似於由電路設計者規劃之形狀及尺寸以便達成特定電功能性及效能的圖案變得愈困難。為了克服此等困難,將複雜微調步驟應用於微影裝置及/或設計佈局。此等步驟包括(例如,但不限於) NA及光學相干設定之最佳化、定製照明方案、相移圖案化器件之使用、設計佈局中之光學近接校正(OPC,有時亦被稱作「光學及程序校正」),或通常被定義為「解析度增強技術」(RET)之其他方法。 作為實例,OPC處理如下事實:投影於基板上之設計佈局之影像的最終大小及置放將不相同於或簡單地僅取決於該設計佈局在圖案化器件上之大小及置放。熟習此項技術者將認識到,尤其在微影模擬/最佳化之內容背景中,術語「光罩」/「圖案化器件」及「設計佈局」可被互換地使用,此係因為:在微影模擬/最佳化中,未必使用實體圖案化器件,但可使用設計佈局以表示實體圖案化器件。對於存在於某一設計佈局上之小特徵大小及高特徵密度,給定特徵之特定邊緣之位置將在某種程度上受到其他鄰近特徵之存在或不存在的影響。此等近接效應起因於自一個特徵耦合至另一特徵的微小量之輻射及/或諸如繞射及干涉之非幾何光學效應。相似地,近接效應可起因於在通常跟隨微影之曝光後烘烤(PEB)、抗蝕劑顯影及蝕刻期間之擴散及其他化學效應。 為了幫助確保設計佈局之經投影影像係根據給定目標電路設計之要求,可使用設計佈局之複雜數值模型、校正或預失真來預測及補償近接效應。論文「Full-Chip Lithography Simulation and Design Analysis - How OPC Is Changing IC Design」(C. Spence,Proc. SPIE,第5751卷,第1至14頁(2005年))提供當前「以模型為基礎」之光學近接校正程序的綜述。在典型高端設計中,設計佈局之幾乎每一特徵皆具有某種修改,以便達成經投影影像至目標設計之高保真度。此等修改可包括邊緣位置或線寬之移位或偏置,以及意欲輔助其他特徵之投影之「輔助」特徵的應用。 應用OPC通常不為「嚴正科學(exact science)」,而為並不總是補償所有可能近接效應之經驗反覆程序。因此,應藉由設計檢測(亦即,使用經校準數值程序模型之密集型全晶片模擬)來驗證OPC之效應(例如,在應用OPC及任何其他RET之後的設計佈局),以便最小化將設計瑕疵建置至圖案化器件圖案中的可能性。 OPC及全晶片RET驗證兩者可基於如(例如)美國專利申請公開案第US 2005-0076322號及Y. Cao等人之名為「Optimized Hardware and Software For Fast, Full Chip Simulation」(Proc. SPIE,第5754卷,405(2005年))之論文中描述的數值模型化系統及方法。 一個RET係關於設計佈局之全域偏置之調整。全域偏置為設計佈局中之圖案與意欲印刷於基板上之圖案之間的差異。舉例而言,具有25奈米直徑之圓形圖案可藉由設計佈局中之50奈米直徑圖案或藉由設計佈局中之20奈米直徑圖案但以高劑量而印刷於基板上。 除了對設計佈局或圖案化器件之最佳化(例如,OPC)以外,亦可與圖案化器件最佳化聯合地或分離地最佳化照明源,以致力於改良總微影保真度。術語「照明源」及「源」在此文件中可被互換地使用。如為吾人所知,諸如環形、四極及偶極之離軸照明為用以解析圖案化器件中所含有之精細結構(亦即,目標特徵)之證實方式。然而,相比於傳統照明源,離軸照明源通常提供針對空中影像(AI)之較小輻射強度。因此,變得需要嘗試最佳化照明源以在較精細解析度與縮減輻射強度之間達成最佳平衡。 可(例如)在Rosenbluth等人之名為「Optimum Mask and Source Patterns to Print A Given Shape」(Journal of Microlithography, Microfabrication, Microsystems 1(1),第13至20頁(2002年))之論文中找到眾多照明源最佳化途徑。將源分割成若干區,該等區中之每一者對應於光瞳光譜之某一區。接著,將源分佈假定為在每一源區中均一,且針對程序窗來最佳化每一區之亮度。在Granik之名為「Source Optimization for Image Fidelity and Throughput」(Journal of Microlithography, Microfabrication, Microsystems 3(4),第509至522頁(2004年))之論文中闡述的另一實例中,綜述若干現有源最佳化途徑,且提議將源最佳化問題轉換成一系列非負最小平方最佳化的基於照明器像素之方法。 對於低k1 光微影,源及圖案化器件兩者之最佳化有用於確保用於臨界電路圖案之投影的可行程序窗。一些演算法在空間頻域中將照明離散化成獨立源點且將圖案化器件圖案離散化成繞射階,且基於可藉由光學成像模型自源點強度及圖案化器件繞射階而預測之程序窗度量(諸如,曝光寬容度)來分離地公式化成本函數(其被定義為選定設計變數之函數)。如本文中所使用之術語「設計變數」包含裝置或器件製造程序之參數集合,例如,微影裝置之使用者可調整之參數,或使用者可藉由調整彼等參數而調整之影像特性。應瞭解,器件製造程序之任何特性(包括源、圖案化器件、投影光學件之特性及/或抗蝕劑特性)可在最佳化中之設計變數當中。成本函數常常為設計變數之非線性函數。接著使用標準最佳化技術以最小化成本函數。 全文據此以引用方式併入之共同讓與之PCT專利申請公開案第WO2010/059954號描述允許在不具有約束的情況下且在可實行時間量內使用成本函數來同步地最佳化源及圖案化器件(設計佈局)之源及圖案化器件最佳化方法及系統。 全文據此以引用方式併入之美國專利申請公開案第2010/0315614號描述涉及藉由調整源之像素而最佳化源的另一源及光罩最佳化方法及系統。 如本文中所使用之術語「投影光學件」應被廣泛地解譯為涵蓋各種類型之光學系統,包括(例如)折射光學件、反射光學件、孔徑及反射折射光學件。術語「投影光學件」亦可包括用於集體地或單個地導向、塑形或控制投影輻射光束的根據此等設計類型中之任一者而操作之組件。術語「投影光學件」可包括微影裝置中之任何光學組件,而不管該光學組件在微影裝置之光學路徑上位於何處。投影光學件可包括用於在來自源之輻射通過圖案化器件之前塑形、調整及/或投影該輻射的光學組件,及/或用於在輻射通過圖案化器件之後塑形、調整及/或投影該輻射的光學組件。投影光學件通常排除源及圖案化器件。 儘管上文可特定地參考在光學微影之內容背景中對本發明之實施例之使用,但應瞭解,本發明之實施例可用於其他應用(例如,壓印微影)中,且在內容背景允許時不限於光學微影。在壓印微影中,圖案化器件中之構形(topography)界定產生於基板上之圖案。可將圖案化器件之構形壓入被供應至基板之抗蝕劑層中,在基板上,抗蝕劑係藉由施加電磁輻射、熱、壓力或其組合而固化。在抗蝕劑固化之後,將圖案化器件移出抗蝕劑,從而在其中留下圖案。因此,使用壓印技術之微影裝置通常包括用以固持壓印模板之一模板固持器、用以固持基板之一基板台,及用以造成基板與壓印模板之間的相對移動使得可將壓印模板之圖案壓印至基板之層上的一或多個致動器。 以上之描述意欲為說明性而非限制性的。因此,對於熟習此項技術者將顯而易見,可在不脫離下文所闡明之申請專利範圍之範疇的情況下如所描述進行修改。
0‧‧‧零階射線/繞射射線
+1‧‧‧一階射線/繞射射線
-1‧‧‧一階射線/繞射射線
+1(N)‧‧‧+1繞射射線
-1(S)‧‧‧-1繞射射線
10A‧‧‧微影裝置
11‧‧‧輸出件
12‧‧‧透鏡
12A‧‧‧輻射源
13‧‧‧孔徑板
13E‧‧‧孔徑板
13N‧‧‧孔徑板
13NW‧‧‧孔徑板
13S‧‧‧孔徑板
13SE‧‧‧孔徑板
13W‧‧‧孔徑板
14‧‧‧透鏡
14A‧‧‧光學件/組件
15‧‧‧稜鏡
16‧‧‧接物鏡
16Aa‧‧‧光學件/組件
16Ab‧‧‧光學件/組件
16Ac‧‧‧光學件/組件
17‧‧‧光束分光器
18‧‧‧光學系統
18A‧‧‧圖案化器件
19‧‧‧第一感測器
20‧‧‧光學系統
20A‧‧‧可調整濾光器或孔徑
21‧‧‧輻射光束/孔徑光闌
22‧‧‧琢面化場鏡面器件/光學系統
22A‧‧‧基板平面
23‧‧‧感測器
24‧‧‧琢面化光瞳鏡面器件
26‧‧‧經圖案化光束
28‧‧‧反射元件
30‧‧‧反射元件
31‧‧‧量測光點/經照明光點
32‧‧‧週期性結構
33‧‧‧週期性結構
34‧‧‧週期性結構
35‧‧‧週期性結構
41‧‧‧圓形區域
42‧‧‧矩形區域/影像
43‧‧‧矩形區域/影像
44‧‧‧矩形區域/影像
45‧‧‧矩形區域/影像
100‧‧‧電腦系統
102‧‧‧匯流排
104‧‧‧處理器
105‧‧‧處理器
106‧‧‧主記憶體
108‧‧‧唯讀記憶體(ROM)
110‧‧‧儲存器件
112‧‧‧顯示器
114‧‧‧輸入器件
116‧‧‧游標控制件
118‧‧‧通信介面
120‧‧‧網路鏈路
122‧‧‧網路
124‧‧‧主機電腦
126‧‧‧網際網路服務業者(ISP)
128‧‧‧網際網路
130‧‧‧伺服器
210‧‧‧極紫外線(EUV)輻射發射電漿/極熱電漿
211‧‧‧源腔室
212‧‧‧收集器腔室
220‧‧‧圍封結構
221‧‧‧開口
230‧‧‧選用氣體障壁或污染物截留器/污染截留器/污染物障壁
240‧‧‧光柵光譜濾光器
251‧‧‧上游輻射收集器側
252‧‧‧下游輻射收集器側
253‧‧‧掠入射反射器
254‧‧‧掠入射反射器
255‧‧‧掠入射反射器
310‧‧‧目標
311‧‧‧上部結構
312‧‧‧渠溝
313‧‧‧底部
314‧‧‧光束
315‧‧‧光束
320‧‧‧目標
321‧‧‧上部結構
322‧‧‧渠溝
323‧‧‧側壁
324‧‧‧光束
325‧‧‧光束
810‧‧‧結果
820‧‧‧步驟
830‧‧‧步驟
840‧‧‧矩陣
850‧‧‧貢獻
850T‧‧‧貢獻
860‧‧‧準確度
1000‧‧‧微影裝置
AD‧‧‧調整器
B‧‧‧輻射光束
BD‧‧‧導向鏡面
BK‧‧‧烘烤板
C‧‧‧目標部分
CH‧‧‧冷卻板
CO‧‧‧聚光器/輻射收集器/收集器光學件
DE‧‧‧顯影器
DF‧‧‧影像
I‧‧‧照明射線/入射射線
IF‧‧‧干涉計(圖13)/虛擬源點/中間焦點(圖15)
IL‧‧‧照明系統/照明器/照明光學件單元
IN‧‧‧積光器
I/O1‧‧‧輸入/輸出通口
I/O2‧‧‧輸入/輸出通口
LA‧‧‧微影裝置
LACU‧‧‧微影控制單元
LB‧‧‧裝載匣
LC‧‧‧微影製造單元
M1‧‧‧光罩對準標記/圖案化器件對準標記
M2‧‧‧光罩對準標記/圖案化器件對準標記
MA‧‧‧圖案化器件
MT‧‧‧第一物件台/圖案化器件台/支撐結構
O‧‧‧光軸/軸線
P‧‧‧目標
P1‧‧‧基板對準標記
P2‧‧‧基板對準標記
PM‧‧‧第一定位器
PS‧‧‧項目/投影系統
PS1‧‧‧位置感測器
PS2‧‧‧位置感測器
PW‧‧‧第二定位器
PU‧‧‧影像處理器及控制器
Q‧‧‧目標
RO‧‧‧基板處置器或機器人
SC‧‧‧旋塗器
SCS‧‧‧監督控制系統
SO‧‧‧輻射源/源收集器模組
T‧‧‧度量衡目標
TCU‧‧‧塗佈顯影系統控制單元
W‧‧‧基板
WT‧‧‧第二物件台/基板台
圖1為微影系統之各種子系統的方塊圖。 圖2A示意性地描繪在微影程序中預測缺陷之方法。 圖2B為用於使用提供某些照明模式之第一對照明孔徑來量測根據本發明之實施例之目標的暗場量測裝置之示意圖。 圖2C為用於給定照明方向之目標之繞射光譜的示意性細節。 圖2D為在使用量測裝置以用於以繞射為基礎之疊對量測時提供另外照明模式之第二對照明孔徑的示意性說明。 圖2E為在使用量測裝置以用於以繞射為基礎之疊對量測時組合第一對孔徑與第二對孔徑之提供另外照明模式的第三對照明孔徑的示意性說明。 圖2F描繪基板上之多重週期性結構(例如,多重光柵)目標之形式及量測光點之輪廓。 圖2G描繪圖2B之裝置中獲得的圖2F之目標之影像。 圖3示意性地展示具有兩個相異目標P及Q之基板,其中每一目標之複本被置放於基板之四個不同區域中。 圖4A及圖4B示範同一目標可如何將不同系統性誤差引入不同基板量測配方中。 圖5示意性地展示在量測結果之集合中的來自各種源(諸如系統性誤差及真值)之貢獻之組合。 圖6示意性地展示在基板上之不同部位處量測的十二個疊對值作為圖5中之結果之實例。 圖7示意性地展示可將十二個疊對值、疊對之真值及來自不對稱性之貢獻標繪為映射(亦即,依據部位)。 圖8示意性地展示根據一實施例用於在結果之集合中判定來自不同源之貢獻之方法的流程圖,該等結果係自微影程序或藉由該微影程序處理之基板予以量測。 圖9示意性地展示根據一實施例可根據圖8中判定的貢獻當中之量測識別來自真值之貢獻。 圖10示意性地展示根據一實施例可自圖8之流程中判定的貢獻或矩陣判定用以獲得圖8中之結果之基板量測配方的準確度。 圖11A、圖11B及圖11C各自展示在使用十六個不同基板量測配方(水平軸線)獲得之結果中的來自三個源之正規化貢獻(垂直軸線)。 圖12為實例電腦系統之方塊圖。 圖13為微影裝置之示意圖。 圖14為另一微影裝置之示意圖。 圖15為圖14中之裝置的更詳細視圖。

Claims (14)

  1. 一種方法,其包含: 使用一電腦自結果而判定來自獨立源之貢獻,該等結果係自一微影程序或藉由該微影程序處理之一基板予以量測; 其中使用複數個不同基板量測配方來量測該等結果。
  2. 如請求項1之方法,其進一步包含縮減該等結果之尺寸之一數目。
  3. 如請求項2之方法,其中縮減尺寸之該數目包含使用主成份分析(PCA)。
  4. 如請求項1至3中任一項之方法,其中該等結果為該等貢獻之線性組合。
  5. 如請求項1至3中任一項之方法,其進一步包含將該等貢獻編譯成一矩陣。
  6. 如請求項1至3中任一項之方法,其中該等結果包含自複數個不同部位獲得之疊對值。
  7. 如請求項1至3中任一項之方法,其中該等基板量測配方在該等基板量測配方進行之一量測之一參數方面不同,或在藉由該等基板量測配方量測之一圖案之一參數方面不同。
  8. 如請求項1至3中任一項之方法,其中該等貢獻包含來自藉由該等基板量測配方量測之一特性之一真值的一貢獻。
  9. 如請求項8之方法,其進一步包含識別來自該真值之該貢獻。
  10. 如請求項9之方法,其進一步包含自來自該真值之該貢獻判定該真值。
  11. 如請求項9之方法,其中識別來自該真值之該貢獻包含:運用其他資料進行驗證。
  12. 如請求項9之方法,其中識別來自該真值之該貢獻包含:尋找該等貢獻中之哪一者跨越該複數個基板量測配方係一致的。
  13. 如請求項1至3中任一項之方法,其進一步包含自該等貢獻判定該等基板量測配方之準確度。
  14. 一種電腦程式產品,其包含上面經記錄有指令之一電腦可讀媒體,該等指令在由一電腦執行時實施如請求項1至13中任一項之方法。
TW105141137A 2015-12-17 2016-12-13 用以檢測基板的方法及電腦程式 TWI623822B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562268982P 2015-12-17 2015-12-17
US62/268,982 2015-12-17

Publications (2)

Publication Number Publication Date
TW201732448A true TW201732448A (zh) 2017-09-16
TWI623822B TWI623822B (zh) 2018-05-11

Family

ID=57354393

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105141137A TWI623822B (zh) 2015-12-17 2016-12-13 用以檢測基板的方法及電腦程式

Country Status (4)

Country Link
US (1) US11016397B2 (zh)
KR (1) KR102166322B1 (zh)
TW (1) TWI623822B (zh)
WO (1) WO2017102264A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180239851A1 (en) * 2017-02-21 2018-08-23 Asml Netherlands B.V. Apparatus and method for inferring parameters of a model of a measurement structure for a patterning process
WO2021229030A1 (en) * 2020-05-14 2021-11-18 Asml Netherlands B.V. Method for predicting stochastic contributors
EP3910418A1 (en) * 2020-05-14 2021-11-17 ASML Netherlands B.V. Method for direct decomposition of stochastic contributors
WO2023041488A1 (en) * 2021-09-15 2023-03-23 Asml Netherlands B.V. Source separation from metrology data

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5523193A (en) 1988-05-31 1996-06-04 Texas Instruments Incorporated Method and apparatus for patterning and imaging member
ATE123885T1 (de) 1990-05-02 1995-06-15 Fraunhofer Ges Forschung Belichtungsvorrichtung.
US5229872A (en) 1992-01-21 1993-07-20 Hughes Aircraft Company Exposure device including an electrically aligned electronic mask for micropatterning
DE69735016T2 (de) 1996-12-24 2006-08-17 Asml Netherlands B.V. Lithographisches Gerät mit zwei Objekthaltern
DE60319462T2 (de) 2002-06-11 2009-03-12 Asml Netherlands B.V. Lithographischer Apparat und Verfahren zur Herstellung eines Artikels
KR100539279B1 (ko) * 2003-05-20 2005-12-27 삼성전자주식회사 오버레이 측정 방법
US7003758B2 (en) 2003-10-07 2006-02-21 Brion Technologies, Inc. System and method for lithography simulation
US20090157630A1 (en) 2007-10-26 2009-06-18 Max Yuan Method of extracting data and recommending and generating visual displays
NL1036245A1 (nl) 2007-12-17 2009-06-18 Asml Netherlands Bv Diffraction based overlay metrology tool and method of diffraction based overlay metrology.
NL1036597A1 (nl) 2008-02-29 2009-09-01 Asml Netherlands Bv Metrology method and apparatus, lithographic apparatus, and device manufacturing method.
WO2010059954A2 (en) 2008-11-21 2010-05-27 Brion Technologies Inc. Fast freeform source and mask co-optimization method
US8786824B2 (en) 2009-06-10 2014-07-22 Asml Netherlands B.V. Source-mask optimization in lithographic apparatus
KR101429629B1 (ko) 2009-07-31 2014-08-12 에이에스엠엘 네델란즈 비.브이. 계측 방법 및 장치, 리소그래피 시스템, 및 리소그래피 처리 셀
WO2011023517A1 (en) 2009-08-24 2011-03-03 Asml Netherlands B.V. Metrology method and apparatus, lithographic apparatus, lithographic processing cell and substrate comprising metrology targets
WO2012062501A1 (en) 2010-11-12 2012-05-18 Asml Netherlands B.V. Metrology method and apparatus, and device manufacturing method
EP2694983B1 (en) 2011-04-06 2020-06-03 KLA-Tencor Corporation Method and system for providing a quality metric for improved process control
NL2009294A (en) 2011-08-30 2013-03-04 Asml Netherlands Bv Method and apparatus for determining an overlay error.
US9383661B2 (en) 2013-08-10 2016-07-05 Kla-Tencor Corporation Methods and apparatus for determining focus
US10935893B2 (en) * 2013-08-11 2021-03-02 Kla-Tencor Corporation Differential methods and apparatus for metrology of semiconductor targets
WO2015031337A1 (en) * 2013-08-27 2015-03-05 Kla-Tencor Corporation Removing process-variation-related inaccuracies from scatterometry measurements
CN105765461B (zh) * 2013-10-02 2018-01-05 Asml荷兰有限公司 用于获得与工业过程有关的诊断信息的方法和设备
CN105900015B (zh) 2013-11-26 2019-07-05 Asml荷兰有限公司 用于光刻度量的方法、设备和衬底

Also Published As

Publication number Publication date
US20200192229A1 (en) 2020-06-18
US11016397B2 (en) 2021-05-25
TWI623822B (zh) 2018-05-11
WO2017102264A1 (en) 2017-06-22
KR20180095638A (ko) 2018-08-27
KR102166322B1 (ko) 2020-10-16

Similar Documents

Publication Publication Date Title
TWI797362B (zh) 針對模擬系統之用於判定晶圓之層的蝕刻輪廓的方法
US10871716B2 (en) Metrology robustness based on through-wavelength similarity
KR102375664B1 (ko) 리소그래피 장치의 초점 성능을 측정하기 위한 방법 및 패터닝 디바이스 및 장치, 및 디바이스 제조 방법
CN109923476B (zh) 量测目标测量选配方案的自动选择
TWI623822B (zh) 用以檢測基板的方法及電腦程式
TWI787561B (zh) 基於局域電場調整圖案化製程之模型中之目標特徵之方法
US10983440B2 (en) Selection of substrate measurement recipes
TWI620997B (zh) 藉由重建之度量衡
TWI836599B (zh) 判定來自統計獨立源之度量衡貢獻值之方法、判定微影程序之感興趣參數之方法及其相關聯電腦程式與非暫時性電腦程式載體
US20230408931A1 (en) Method of determining mark structure for overlay fingerprints
TW202321806A (zh) 自度量衡資料之源分離
KR20240058872A (ko) 계측 데이터로부터의 소스 분리