TW201730880A - Memory device including ovonic threshold switch adjusting threshold voltage thereof - Google Patents
Memory device including ovonic threshold switch adjusting threshold voltage thereof Download PDFInfo
- Publication number
- TW201730880A TW201730880A TW105141660A TW105141660A TW201730880A TW 201730880 A TW201730880 A TW 201730880A TW 105141660 A TW105141660 A TW 105141660A TW 105141660 A TW105141660 A TW 105141660A TW 201730880 A TW201730880 A TW 201730880A
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- selection element
- variable resistance
- conductive lines
- element layer
- Prior art date
Links
- 239000000758 substrate Substances 0.000 claims abstract description 36
- 239000000463 material Substances 0.000 claims description 61
- 230000002457 bidirectional effect Effects 0.000 claims description 53
- 125000006850 spacer group Chemical group 0.000 claims description 41
- 238000010438 heat treatment Methods 0.000 claims description 28
- 229910052798 chalcogen Inorganic materials 0.000 claims description 6
- 150000001787 chalcogens Chemical class 0.000 claims description 6
- 239000010410 layer Substances 0.000 description 864
- 238000000034 method Methods 0.000 description 48
- 230000008569 process Effects 0.000 description 44
- 238000005530 etching Methods 0.000 description 23
- 230000005415 magnetization Effects 0.000 description 22
- 229910052714 tellurium Inorganic materials 0.000 description 16
- 229910052751 metal Inorganic materials 0.000 description 15
- 239000002184 metal Substances 0.000 description 15
- 230000004888 barrier function Effects 0.000 description 14
- 230000008859 change Effects 0.000 description 14
- 239000011229 interlayer Substances 0.000 description 14
- 230000005684 electric field Effects 0.000 description 13
- 239000011669 selenium Substances 0.000 description 13
- 150000004770 chalcogenides Chemical class 0.000 description 12
- 230000007547 defect Effects 0.000 description 11
- 239000011810 insulating material Substances 0.000 description 11
- 101100221835 Arabidopsis thaliana CPL2 gene Proteins 0.000 description 10
- 238000010586 diagram Methods 0.000 description 10
- 101150016835 CPL1 gene Proteins 0.000 description 9
- 101100468774 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) RIM13 gene Proteins 0.000 description 9
- 229910052732 germanium Inorganic materials 0.000 description 9
- 239000004065 semiconductor Substances 0.000 description 9
- 239000011135 tin Substances 0.000 description 9
- 101100007583 Entamoeba histolytica CPP2 gene Proteins 0.000 description 8
- 229910052785 arsenic Inorganic materials 0.000 description 8
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 8
- 150000004767 nitrides Chemical class 0.000 description 8
- 229910052711 selenium Inorganic materials 0.000 description 8
- YHVHQZYJGWGAKN-ZUWUZHNASA-N (3s,6s,9r,12s)-6-(4-aminobutyl)-12-benzyl-9-(1h-indol-3-ylmethyl)-3-[(1r)-1-phenylmethoxyethyl]-1,4,7,10,13-pentazacycloicosane-2,5,8,11,14-pentone Chemical compound O([C@H](C)[C@H]1C(NCCCCCCC(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@H](CC=2C3=CC=CC=C3NC=2)C(=O)N[C@@H](CCCCN)C(=O)N1)=O)CC1=CC=CC=C1 YHVHQZYJGWGAKN-ZUWUZHNASA-N 0.000 description 7
- 101150117862 CPP1 gene Proteins 0.000 description 7
- 229910052684 Cerium Inorganic materials 0.000 description 7
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 7
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 7
- 239000004020 conductor Substances 0.000 description 7
- 238000009413 insulation Methods 0.000 description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 7
- 230000002093 peripheral effect Effects 0.000 description 7
- 229910052718 tin Inorganic materials 0.000 description 7
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 6
- 239000012782 phase change material Substances 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 229910052717 sulfur Inorganic materials 0.000 description 6
- 239000010936 titanium Substances 0.000 description 6
- 101150018690 CPS2 gene Proteins 0.000 description 5
- 102100026422 Carbamoyl-phosphate synthase [ammonia], mitochondrial Human genes 0.000 description 5
- 101000855412 Homo sapiens Carbamoyl-phosphate synthase [ammonia], mitochondrial Proteins 0.000 description 5
- 101000983292 Homo sapiens N-fatty-acyl-amino acid synthase/hydrolase PM20D1 Proteins 0.000 description 5
- 101000861263 Homo sapiens Steroid 21-hydroxylase Proteins 0.000 description 5
- 101100020327 Salvia divinorum KPS gene Proteins 0.000 description 5
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 5
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 5
- 229910052787 antimony Inorganic materials 0.000 description 5
- 229910052797 bismuth Inorganic materials 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 101150035574 mcl2 gene Proteins 0.000 description 5
- 238000000059 patterning Methods 0.000 description 5
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 5
- 239000011593 sulfur Substances 0.000 description 5
- 229910000314 transition metal oxide Inorganic materials 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 4
- 239000011651 chromium Substances 0.000 description 4
- 238000002425 crystallisation Methods 0.000 description 4
- 230000008025 crystallization Effects 0.000 description 4
- 238000010893 electron trap Methods 0.000 description 4
- 229910052735 hafnium Inorganic materials 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 4
- 239000003870 refractory metal Substances 0.000 description 4
- 229910052707 ruthenium Inorganic materials 0.000 description 4
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 4
- -1 tantalum nitride Chemical class 0.000 description 4
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 3
- 229910010037 TiAlN Inorganic materials 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 229910052733 gallium Inorganic materials 0.000 description 3
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 3
- 229910000449 hafnium oxide Inorganic materials 0.000 description 3
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 229910052738 indium Inorganic materials 0.000 description 3
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 230000014759 maintenance of location Effects 0.000 description 3
- 239000011572 manganese Substances 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000003607 modifier Substances 0.000 description 3
- 229910052763 palladium Inorganic materials 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- ITWBWJFEJCHKSN-UHFFFAOYSA-N 1,4,7-triazonane Chemical compound C1CNCCNCCN1 ITWBWJFEJCHKSN-UHFFFAOYSA-N 0.000 description 2
- 229910016339 Bi—Sb—Te Inorganic materials 0.000 description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- 229910018110 Se—Te Inorganic materials 0.000 description 2
- 229910004491 TaAlN Inorganic materials 0.000 description 2
- 229910004166 TaN Inorganic materials 0.000 description 2
- 229910003071 TaON Inorganic materials 0.000 description 2
- 229910004200 TaSiN Inorganic materials 0.000 description 2
- 229910010038 TiAl Inorganic materials 0.000 description 2
- 229910010060 TiBN Inorganic materials 0.000 description 2
- 229910010282 TiON Inorganic materials 0.000 description 2
- 229910008482 TiSiN Inorganic materials 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 229910008812 WSi Inorganic materials 0.000 description 2
- 229910008807 WSiN Inorganic materials 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910052741 iridium Inorganic materials 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- QRXWMOHMRWLFEY-UHFFFAOYSA-N isoniazide Chemical compound NNC(=O)C1=CC=NC=C1 QRXWMOHMRWLFEY-UHFFFAOYSA-N 0.000 description 2
- 230000005291 magnetic effect Effects 0.000 description 2
- 239000000696 magnetic material Substances 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 238000007517 polishing process Methods 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 239000011800 void material Substances 0.000 description 2
- 235000012431 wafers Nutrition 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- NZIHMSYSZRFUQJ-UHFFFAOYSA-N 6-chloro-1h-benzimidazole-2-carboxylic acid Chemical compound C1=C(Cl)C=C2NC(C(=O)O)=NC2=C1 NZIHMSYSZRFUQJ-UHFFFAOYSA-N 0.000 description 1
- 229910002909 Bi-Te Inorganic materials 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910000618 GeSbTe Inorganic materials 0.000 description 1
- 229910005939 Ge—Sn Inorganic materials 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 229910017706 MgZn Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 101710110695 Probable chorismate pyruvate-lyase 2 Proteins 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910020938 Sn-Ni Inorganic materials 0.000 description 1
- 229910020923 Sn-O Inorganic materials 0.000 description 1
- 229910002855 Sn-Pd Inorganic materials 0.000 description 1
- 229910018731 Sn—Au Inorganic materials 0.000 description 1
- 229910008937 Sn—Ni Inorganic materials 0.000 description 1
- 229910008772 Sn—Se Inorganic materials 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 239000002885 antiferromagnetic material Substances 0.000 description 1
- MRPWWVMHWSDJEH-UHFFFAOYSA-N antimony telluride Chemical compound [SbH3+3].[SbH3+3].[TeH2-2].[TeH2-2].[TeH2-2] MRPWWVMHWSDJEH-UHFFFAOYSA-N 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- BCZWPKDRLPGFFZ-UHFFFAOYSA-N azanylidynecerium Chemical compound [Ce]#N BCZWPKDRLPGFFZ-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- HPQRSQFZILKRDH-UHFFFAOYSA-M chloro(trimethyl)plumbane Chemical compound C[Pb](C)(C)Cl HPQRSQFZILKRDH-UHFFFAOYSA-M 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- IAOQICOCWPKKMH-UHFFFAOYSA-N dithieno[3,2-a:3',2'-d]thiophene Chemical compound C1=CSC2=C1C(C=CS1)=C1S2 IAOQICOCWPKKMH-UHFFFAOYSA-N 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 239000003302 ferromagnetic material Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- CXXKWLMXEDWEJW-UHFFFAOYSA-N tellanylidenecobalt Chemical compound [Te]=[Co] CXXKWLMXEDWEJW-UHFFFAOYSA-N 0.000 description 1
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 1
- XSOKHXFFCGXDJZ-UHFFFAOYSA-N telluride(2-) Chemical compound [Te-2] XSOKHXFFCGXDJZ-UHFFFAOYSA-N 0.000 description 1
- 229910052716 thallium Inorganic materials 0.000 description 1
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/801—Constructional details of multistable switching devices
- H10N70/821—Device geometry
- H10N70/826—Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
- G11C13/0002—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/011—Manufacture or treatment of multistable switching devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/801—Constructional details of multistable switching devices
- H10N70/821—Device geometry
- H10N70/828—Current flow limiting means within the switching material region, e.g. constrictions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/801—Constructional details of multistable switching devices
- H10N70/841—Electrodes
- H10N70/8413—Electrodes adapted for resistive heating
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/801—Constructional details of multistable switching devices
- H10N70/881—Switching materials
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Semiconductor Memories (AREA)
Abstract
Description
本揭露內容的實施例是關於記憶體裝置。更具體言之,本揭露內容的實施例是關於具有交叉點結構(cross-point structure)的記憶體裝置。Embodiments of the present disclosure are directed to a memory device. More specifically, embodiments of the present disclosure are directed to a memory device having a cross-point structure.
隨著電子裝置的大小已縮減,半導體記憶體裝置的積集度已增加。因此,已研究包含安置於彼此交叉的兩個電極的相交點(intersection point)處的多個記憶體單元(memory cell)的三維交叉點記憶體裝置以按比例縮小。然而,在按比例縮小製程中,因為用以形成三維交叉點陣列記憶體裝置的層的厚度亦縮減,所以暴露於高溫製程的層可容易損壞及降低品質。因此,三維交叉點記憶體裝置的電特性可能會降低品質。As the size of electronic devices has shrunk, the accumulation of semiconductor memory devices has increased. Therefore, a three-dimensional cross-point memory device including a plurality of memory cells disposed at intersection points of two electrodes crossing each other has been studied to be scaled down. However, in the scaling down process, since the thickness of the layer used to form the three-dimensional cross-point array memory device is also reduced, the layer exposed to the high-temperature process can be easily damaged and degraded. Therefore, the electrical characteristics of the three-dimensional cross-point memory device may degrade the quality.
根據實例實施例,一種記憶體裝置可包含:基板(substrate);多個第一導電線(conductive line),在基板上,所述多個第一導電線在平行於基板的頂部表面的第一方向上延伸且在與第一方向交叉的第二方向上彼此隔開;多個第二導電線,在所述多個第一導電線上方,所述多個第二導電線在第二方向上延伸且在第一方向上彼此隔開;多個第三導電線,在所述多個第二導電線上方,所述多個第三導電線在第一方向上延伸且在第二方向上彼此隔開;多個第一記憶體單元,在所述多個第一導電線與所述多個第二導電線的各別相交點處,所述多個第一記憶體單元中的每一者包含第一選擇元件層(selection element layer)及第一可變電阻層(variable resistance layer);以及多個第二記憶體單元,在所述多個第二導電線與所述多個第三導電線的各別相交點處,所述多個第二記憶體單元中的每一者包含第二選擇元件層及第二可變電阻層。第一選擇元件層在垂直於第一方向及第二方向的第三方向上的第一高度可不同於第二選擇元件層在第三方向上的第二高度。第一可變電阻層與第二可變電阻層可由相同材料製成,且第一選擇元件層與第二選擇元件層可由相同材料製成。According to an example embodiment, a memory device may include: a substrate; a plurality of first conductive lines on which the plurality of first conductive lines are parallel to a top surface of the substrate Extending in the direction and spaced apart from each other in a second direction crossing the first direction; a plurality of second conductive lines above the plurality of first conductive lines, the plurality of second conductive lines being in the second direction Extending and spaced apart from each other in a first direction; a plurality of third conductive lines above the plurality of second conductive lines, the plurality of third conductive lines extending in a first direction and in a second direction Separating; a plurality of first memory cells, each of the plurality of first memory cells at respective intersections of the plurality of first conductive lines and the plurality of second conductive lines a first selection element layer and a first variable resistance layer; and a plurality of second memory cells at the plurality of second conductive lines and the plurality of third conductive lines At the respective intersections of the lines, the plurality of second Each memory unit contains a second selection element layer and the second variable resistance layer. The first height of the first selection element layer in a third direction perpendicular to the first direction and the second direction may be different from the second height of the second selection element layer in the third direction. The first variable resistance layer and the second variable resistance layer may be made of the same material, and the first selection element layer and the second selection element layer may be made of the same material.
根據實例實施例,一種記憶體裝置可包含:基板;多個第一導電線,在基板上,所述多個第一導電線在平行於基板的頂部表面的第一方向上延伸且在與第一方向交叉的第二方向上彼此隔開;多個第二導電線,在所述多個第一導電線上方,所述多個第二導電線在第二方向上延伸且在第一方向上彼此隔開;多個第三導電線,在所述多個第二導電線上方,所述多個第三導電線在第一方向上延伸且在第二方向上彼此隔開;多個第一記憶體單元,在所述多個第一導電線與所述多個第二導電線的各別相交點處,所述多個第一記憶體單元中的每一者包含在垂直於第一方向及第二方向的第三方向上依序地堆疊的第一選擇元件層及第一可變電阻層;以及多個第二記憶體單元,在所述多個第二導電線與所述多個第三導電線的各別相交點處,所述多個第二記憶體單元中的每一者包含在第三方向上依序地堆疊的第二選擇元件層及第二可變電阻層。第一選擇元件層在第三方向上的厚度可大於第二選擇元件層在第三方向上的厚度。第一可變電阻層與第二可變電阻層可由相同材料製成,且第一選擇元件層與第二選擇元件層可由相同材料製成。According to an example embodiment, a memory device may include: a substrate; a plurality of first conductive lines, wherein the plurality of first conductive lines extend in a first direction parallel to a top surface of the substrate and Separating from each other in a second direction in which one direction intersects; a plurality of second conductive lines above the plurality of first conductive lines, the plurality of second conductive lines extending in the second direction and in the first direction Separating from each other; a plurality of third conductive lines above the plurality of second conductive lines, the plurality of third conductive lines extending in a first direction and spaced apart from each other in a second direction; a plurality of first a memory unit, each of the plurality of first memory cells being included in a direction perpendicular to the first direction at respective intersections of the plurality of first conductive lines and the plurality of second conductive lines And a first selection element layer and a first variable resistance layer sequentially stacked by the third direction in the second direction; and a plurality of second memory units in the plurality of second conductive lines and the plurality of At respective intersections of the three conductive lines, in the plurality of second memory cells Selecting one element contained in the second layer and the second variable resistance layer are sequentially stacked in the third direction. The thickness of the first selection element layer in the third direction may be greater than the thickness of the second selection element layer in the third direction. The first variable resistance layer and the second variable resistance layer may be made of the same material, and the first selection element layer and the second selection element layer may be made of the same material.
根據實例實施例,一種記憶體裝置可包含:基板;第一字元線層(word line layer),安置於基板上;共同位元線層(common bit line layer),安置於第一字元線層上;第二字元線層,安置於共同位元線上,使得共同位元線層垂直地位於第一字元線層與第二字元線層之間;第一記憶體單元層(memory cell layer),包含垂直地堆疊的第一可變電阻層及第一雙向臨界切換層(ovonic threshold switching layer),第一記憶體單元層在垂直方向上安置於第一字元線層與共同位元線層之間;以及第二記憶體單元層,包含垂直地堆疊的第二可變電阻層及第二雙向臨界切換層,第二記憶體單元層在垂直方向上安置於第二字元線層與共同位元線層之間。第一可變電阻層與第二可變電阻層可由相同材料製成,且第一雙向臨界切換層與第二雙向臨界切換層可由相同材料製成。第一雙向臨界切換層在垂直方向上的第一厚度可不同於第二雙向臨界切換層在垂直方向上的第二厚度。According to an example embodiment, a memory device may include: a substrate; a first word line layer disposed on the substrate; a common bit line layer disposed on the first word line a second word line layer disposed on the common bit line such that the common bit line layer is vertically located between the first word line layer and the second word line layer; the first memory unit layer (memory) The cell layer includes a first variable resistance layer vertically stacked and a first ovonic threshold switching layer, and the first memory cell layer is disposed in the vertical direction on the first word line layer and the common level And a second memory cell layer comprising a second variable resistance layer and a second bidirectional critical switching layer vertically stacked, wherein the second memory cell layer is disposed in the vertical direction on the second word line Between the layer and the common bit line layer. The first variable resistance layer and the second variable resistance layer may be made of the same material, and the first bidirectional critical switching layer and the second bidirectional critical switching layer may be made of the same material. The first thickness of the first bidirectional critical switching layer in the vertical direction may be different from the second thickness of the second bidirectional critical switching layer in the vertical direction.
現在將在下文中參考隨附圖式來更充分地描述本揭露內容,在圖式中展示本發明概念的實例實施例。然而,本發明概念可以不同形式予以體現,且不應被認作限於本文中所闡述的實施例。The disclosure will now be described more fully hereinafter with reference to the accompanying drawings, in which FIG. However, the inventive concept may be embodied in different forms and should not be construed as being limited to the embodiments set forth herein.
圖1為說明根據實例實施例的記憶體裝置的等效電路圖。FIG. 1 is an equivalent circuit diagram illustrating a memory device according to an example embodiment.
如本文中所使用,半導體裝置可指代諸如圖1至圖3及圖7至圖15所展示的各種裝置中的任一者,且亦可指代(例如)諸如半導體晶片(semiconductor chip)(例如,形成於晶粒上的記憶體晶片(memory chip)及/或邏輯晶片(logic chip))、半導體晶片的堆疊、包含堆疊於封裝基板(package substrate)上的一或多個半導體晶片的半導體封裝(semiconductor package)或包含多個封裝的疊層封裝裝置(package-on-package device)的裝置。這些裝置可使用球狀柵格陣列(ball grid array)、線接合(wire bonding)、貫通基板導孔(through substrate via)或其他電連接元件(electrical connection element)而形成,且可包含諸如揮發性記憶體裝置或非揮發性記憶體裝置的記憶體裝置。As used herein, a semiconductor device may refer to any of the various devices such as those illustrated in Figures 1-3 and 7-15, and may also refer to, for example, a semiconductor chip (such as a semiconductor chip). For example, a memory chip and/or a logic chip formed on a die, a stack of semiconductor wafers, a semiconductor including one or more semiconductor wafers stacked on a package substrate A semiconductor package or a device comprising a plurality of packaged package-on-package devices. These devices may be formed using ball grid arrays, wire bonding, through substrate vias or other electrical connection elements, and may include, for example, volatility A memory device or a memory device of a non-volatile memory device.
如本文中所使用,電子裝置可指代這些半導體裝置,但可另外包含具有這些裝置的產品,諸如記憶體模組(memory module)、記憶體卡(memory card)、包含額外組件的硬碟機(hard drive),或行動電話(mobile phone)、膝上型電腦(laptop)、平板電腦(tablet)、桌上型電腦(desktop)、攝影機(camera)或其他消費型電子裝置(consumer electronic device)等等。As used herein, electronic devices may refer to such semiconductor devices, but may additionally include products having such devices, such as a memory module, a memory card, a hard disk drive containing additional components. (hard drive), or mobile phone, laptop, tablet, desktop, camera, or other consumer electronic device and many more.
參看圖1,記憶體裝置100可包含下部字元線(lower word line)WL11及WL12、上部字元線(upper word line)WL21及WL22、共同位元線BL1、BL2、BL3及BL4、第一記憶體單元MC1以及第二記憶體單元MC2。下部字元線WL11及WL12可在X方向(例如,被稱作第一方向)上延伸且可在與第一方向交叉的Y方向(例如,被稱作第二方向)上彼此隔開。上部字元線WL21及WL22可在垂直於第一方向及第二方向的Z方向(例如,被稱作第三方向或垂直方向)上自下部字元線WL11及WL12隔開,可在第一方向上延伸且可在第二方向上彼此隔開。共同位元線BL1、BL2、BL3及BL4可安置於下部字元線WL11及WL12與上部字元線WL21及WL22之間,以在第三方向上自下部字元線WL11及WL12以及上部字元線WL21及WL22隔開。共同位元線BL1、BL2、BL3及BL4可在第二方向上延伸且可在第一方向上彼此隔開。Referring to FIG. 1, the memory device 100 can include lower word lines WL11 and WL12, upper word lines WL21 and WL22, common bit lines BL1, BL2, BL3, and BL4, first. The memory cell MC1 and the second memory cell MC2. The lower word lines WL11 and WL12 may extend in the X direction (eg, referred to as the first direction) and may be spaced apart from each other in the Y direction (eg, referred to as the second direction) that intersects the first direction. The upper word lines WL21 and WL22 may be separated from the lower word lines WL11 and WL12 in a Z direction perpendicular to the first direction and the second direction (for example, referred to as a third direction or a vertical direction), which may be first The directions extend and are spaced apart from each other in the second direction. The common bit lines BL1, BL2, BL3, and BL4 may be disposed between the lower word lines WL11 and WL12 and the upper word lines WL21 and WL22 to be in the third direction from the lower word lines WL11 and WL12 and the upper word lines. WL21 and WL22 are separated. The common bit lines BL1, BL2, BL3, and BL4 may extend in the second direction and may be spaced apart from each other in the first direction.
第一記憶體單元MC1及第二記憶體單元MC2可分別安置於共同位元線BL1、BL2、BL3及BL4與下部字元線WL11及WL12之間以及共同位元線BL1、BL2、BL3及BL4與上部字元線WL21及WL22之間。更具體言之,第一記憶體單元MC1可安置於共同位元線BL1、BL2、BL3及BL4與下部字元線WL11及WL12的各別相交點(或交叉點)處,且可各自包含用於儲存資訊的可變電阻層ME及用於選擇記憶體單元的選擇元件SW。第一記憶體單元MC1可在第一方向及第二方向上以兩個維度而配置以形成第一記憶體單元層。第二記憶體單元MC2可安置於共同位元線BL1、BL2、BL3及BL4與上部字元線WL21及WL22的各別相交點(或交叉點)處,且可各自包含用於儲存資訊的可變電阻層ME及用於選擇記憶體單元的選擇元件SW。第二記憶體單元MC2可在第一方向及第二方向上以兩個維度而配置以形成第二記憶體單元層。選擇元件SW可被稱作切換元件(switching element)或存取元件(access element)。The first memory cell MC1 and the second memory cell MC2 may be respectively disposed between the common bit lines BL1, BL2, BL3, and BL4 and the lower word lines WL11 and WL12 and the common bit lines BL1, BL2, BL3, and BL4, respectively. Between the upper word lines WL21 and WL22. More specifically, the first memory cell MC1 may be disposed at respective intersections (or intersections) of the common bit lines BL1, BL2, BL3, and BL4 and the lower word lines WL11 and WL12, and may each be included The variable resistance layer ME for storing information and the selection element SW for selecting a memory unit. The first memory cell MC1 may be configured in two dimensions in the first direction and the second direction to form a first memory cell layer. The second memory cell MC2 may be disposed at respective intersections (or intersections) of the common bit lines BL1, BL2, BL3, and BL4 and the upper word lines WL21 and WL22, and may each include an information for storing information. A variable resistance layer ME and a selection element SW for selecting a memory unit. The second memory cell MC2 may be configured in two dimensions in the first direction and the second direction to form a second memory cell layer. The selection element SW may be referred to as a switching element or an access element.
第一記憶體單元MC1及第二記憶體單元MC2可經安置為在第三方向上具有相同結構。如圖1所展示,在第一記憶體單元MC1位於下部字元線WL11與共同位元線BL1之間的狀況下,可變電阻層ME可電連接至共同位元線BL1,選擇元件SW可電連接至下部字元線WL11,且可變電阻層ME可與選擇元件SW串聯地連接。此外,在第二記憶體單元MC2位於上部字元線WL21與共同位元線BL1之間的狀況下,可變電阻層ME可電連接至上部字元線WL21,選擇元件SW可電連接至共同位元線BL1,且可變電阻層ME可與選擇元件SW串聯地連接。然而,本發明概念的態樣並不限於此情形。在一些實施例中,在第一記憶體單元MC1及第二記憶體單元MC2中的每一者中,可不同於圖1所展示而翻轉可變電阻層ME及選擇元件SW的配置。舉例而言,第一記憶體單元MC1與第二記憶體單元MC2可相對於共同位元線BL1、BL2、BL3及BL4在第三方向上對稱地配置。舉例而言,在第一記憶體單元MC1中,可變電阻層ME可連接至下部字元線WL11及WL12,且選擇元件SW可連接至共同位元線BL1、BL2、BL3及BL4,且在第二記憶體單元MC2中,可變電阻層ME可連接至上部字元線WL21及WL22,且選擇元件SW可連接至共同位元線BL1、BL2、BL3及BL4,使得第一記憶體單元MC1中的每一者與第二記憶體單元MC2中的每一者可相對於共同位元線BL1、BL2、BL3及BL4中的對應者對稱地配置。The first memory cell MC1 and the second memory cell MC2 may be disposed to have the same structure in the third direction. As shown in FIG. 1 , in a situation where the first memory cell MC1 is located between the lower word line WL11 and the common bit line BL1, the variable resistance layer ME may be electrically connected to the common bit line BL1, and the selection element SW may be Electrically connected to the lower word line WL11, and the variable resistance layer ME can be connected in series with the selection element SW. Further, in a state where the second memory cell MC2 is located between the upper word line WL21 and the common bit line BL1, the variable resistance layer ME may be electrically connected to the upper word line WL21, and the selection element SW may be electrically connected to the common The bit line BL1 and the variable resistance layer ME may be connected in series with the selection element SW. However, aspects of the inventive concept are not limited to this case. In some embodiments, in each of the first memory cell MC1 and the second memory cell MC2, the configuration of the variable resistance layer ME and the selection element SW may be flipped differently than that shown in FIG. For example, the first memory cell MC1 and the second memory cell MC2 may be symmetrically arranged in the third direction with respect to the common bit lines BL1, BL2, BL3, and BL4. For example, in the first memory cell MC1, the variable resistance layer ME may be connected to the lower word lines WL11 and WL12, and the selection element SW may be connected to the common bit lines BL1, BL2, BL3, and BL4, and In the second memory cell MC2, the variable resistance layer ME may be connected to the upper word lines WL21 and WL22, and the selection element SW may be connected to the common bit lines BL1, BL2, BL3, and BL4 such that the first memory cell MC1 Each of the second memory cells MC2 and each of the second memory cells MC2 may be symmetrically arranged with respect to a corresponding one of the common bit lines BL1, BL2, BL3, and BL4.
在下文中,將描述記憶體裝置100的操作方法。Hereinafter, a method of operating the memory device 100 will be described.
舉例而言,可經由下部字元線WL11及WL12與上部字元線W21及W22以及共同位元線BL1、BL2、BL3及BL4將電壓施加至第一記憶體單元MC1中的任一者的可變電阻層ME或第二記憶體單元MC2中的任一者的可變電阻層ME,以允許電流在可變電阻層ME中流動。舉例而言,可變電阻層ME可包含能夠在第一狀態與不同於第一狀態的第二狀態之間可逆地改變的相變材料(phase change material),但並不限於此情形。在一些實施例中,可變電阻層ME可包含電阻值取決於外加電壓而變化的任何種類的可變電阻材料。舉例而言,根據施加至第一記憶體單元MC1及第二記憶體單元MC2中的選定者的可變電阻層ME的電壓,可變電阻層ME的電阻值可在第一狀態與第二狀態之間可逆地變化。For example, a voltage may be applied to any of the first memory cells MC1 via the lower word lines WL11 and WL12 and the upper word lines W21 and W22 and the common bit lines BL1, BL2, BL3, and BL4. The variable resistance layer ME of any one of the variable resistance layer ME or the second memory unit MC2 to allow current to flow in the variable resistance layer ME. For example, the variable resistance layer ME may include a phase change material that can be reversibly changed between the first state and the second state different from the first state, but is not limited thereto. In some embodiments, the variable resistance layer ME may comprise any kind of variable resistance material whose resistance value varies depending on the applied voltage. For example, according to the voltage applied to the variable resistance layer ME of the selected one of the first memory cell MC1 and the second memory cell MC2, the resistance value of the variable resistance layer ME may be in the first state and the second state. Reversible change between.
根據可變電阻層ME的電阻改變,諸如「0」或「1」的數位資料可儲存於第一記憶體單元MC1及第二記憶體單元MC2中且可自第一記憶體單元MC1及第二記憶體單元MC2抹除。舉例而言,在第一記憶體單元MC1及第二記憶體單元MC2中,可將高電阻狀態寫入為資料「0」且可將低電阻狀態寫入為資料「1」。此處,自高電阻狀態(「0」資料狀態)至低電阻狀態(「1」資料狀態)的電阻改變操作可被稱作「設定(set)」操作,且自低電阻狀態(「1」資料狀態)至高電阻狀態(「0」資料狀態)的電阻改變操作可被稱作「重設(reset)」操作。然而,實例實施例並不限於高電阻狀態(「0」資料狀態)及低電阻狀態(「1」資料狀態)的數位資料。舉例而言,記憶體單元MC1及MC2可儲存各種電阻狀態。According to the resistance change of the variable resistance layer ME, digital data such as "0" or "1" may be stored in the first memory unit MC1 and the second memory unit MC2 and may be from the first memory unit MC1 and the second The memory cell MC2 is erased. For example, in the first memory cell MC1 and the second memory cell MC2, the high resistance state can be written as data "0" and the low resistance state can be written as data "1". Here, the resistance change operation from the high resistance state ("0" data state) to the low resistance state ("1" data state) can be referred to as a "set" operation, and the self-low resistance state ("1" Data state) The resistance change operation to the high resistance state ("0" data state) can be referred to as a "reset" operation. However, the example embodiments are not limited to digital data of a high resistance state ("0" data state) and a low resistance state ("1" data state). For example, memory cells MC1 and MC2 can store various resistance states.
藉由選擇字元線WL11、WL12、WL21及WL22中的一者以及共同位元線BL1、BL2、BL3及BL4中的一者,可定址第一記憶體單元MC1及第二記憶體單元MC2當中的任意記憶體單元。藉由在字元線WL11、WL12、WL21及WL22中的對應者與共同位元線BL1、BL2、BL3及BL4中的對應者之間施加某一信號,可程式化第一記憶體單元MC1及第二記憶體單元MC2中的對應者,且藉由量測通過共同位元線BL1、BL2、BL3及BL4中的對應者的電流值,可讀取取決於第一記憶體單元MC1及第二記憶體單元MC2中的對應者的可變電阻層ME的電阻值的資訊。One of the first memory cell MC1 and the second memory cell MC2 can be addressed by selecting one of the word lines WL11, WL12, WL21, and WL22 and one of the common bit lines BL1, BL2, BL3, and BL4. Any memory unit. The first memory cell MC1 can be programmed by applying a certain signal between the corresponding one of the word lines WL11, WL12, WL21, and WL22 and the corresponding one of the common bit lines BL1, BL2, BL3, and BL4. Corresponding to the second memory cell MC2, and by measuring the current value through the corresponding one of the common bit lines BL1, BL2, BL3, and BL4, can be read depending on the first memory cell MC1 and the second Information on the resistance value of the variable resistance layer ME of the corresponding one of the memory cells MC2.
在實例實施例中,第一記憶體單元MC1的選擇元件SW的臨界電壓可與第二記憶體單元MC2的選擇元件SW的臨界電壓實質上相同。舉例而言,第一記憶體單元MC1的選擇元件SW的臨界電壓與第二記憶體單元MC2的選擇元件SW的臨界電壓之間的量值差可小於第一記憶體單元MC1的選擇元件SW的臨界電壓的10%。舉例而言,第一記憶體單元MC1的選擇元件SW的臨界電壓與第二記憶體單元MC2的選擇元件SW的臨界電壓之間的量值差可小於0.5 V。因為第一記憶體單元MC1的選擇元件SW的臨界電壓與第二記憶體單元MC2的選擇元件SW的臨界電壓之間的量值差可能小得多,所以可改良或增加讀取/寫入操作的感測裕度(sensing margin),藉此減少或防止讀取/寫入的失敗。結果,記憶體裝置100可具有改良的可靠性。In an example embodiment, the threshold voltage of the selection element SW of the first memory cell MC1 may be substantially the same as the threshold voltage of the selection element SW of the second memory cell MC2. For example, the magnitude difference between the threshold voltage of the selection element SW of the first memory cell MC1 and the threshold voltage of the selection element SW of the second memory cell MC2 may be smaller than that of the selection element SW of the first memory cell MC1. 10% of the threshold voltage. For example, the magnitude difference between the threshold voltage of the selection element SW of the first memory cell MC1 and the threshold voltage of the selection element SW of the second memory cell MC2 may be less than 0.5 V. Since the magnitude difference between the threshold voltage of the selection element SW of the first memory cell MC1 and the threshold voltage of the selection element SW of the second memory cell MC2 may be much smaller, the read/write operation may be improved or increased. Sensing margin, thereby reducing or preventing read/write failures. As a result, the memory device 100 can have improved reliability.
圖2為說明根據實例實施例的記憶體裝置的透視橫截面圖,且圖3為說明根據實例實施例的沿著圖2的線A-A'及B-B'所採取的橫截面的橫截面圖。2 is a perspective cross-sectional view illustrating a memory device according to an example embodiment, and FIG. 3 is a cross-sectional view taken along lines AA' and BB' of FIG. 2, according to an example embodiment. Sectional view.
參看圖2及圖3,記憶體裝置100可在基板101上包含第一導電線層110L、第二導電線層120L、第三導電線層130L、第一記憶體單元層MCL1以及第二記憶體單元層MCL2。Referring to FIG. 2 and FIG. 3, the memory device 100 can include a first conductive line layer 110L, a second conductive line layer 120L, a third conductive line layer 130L, a first memory cell layer MCL1, and a second memory on the substrate 101. Unit layer MCL2.
記憶體裝置100可更包含安置於基板上的層間絕緣層(interlayer insulating layer)105。層間絕緣層105可包含諸如氧化矽的氧化物及諸如氮化矽的氮化物,且可將第一導電線層110L與基板101電分離。The memory device 100 may further include an interlayer insulating layer 105 disposed on the substrate. The interlayer insulating layer 105 may include an oxide such as hafnium oxide and a nitride such as tantalum nitride, and the first conductive line layer 110L may be electrically separated from the substrate 101.
第一導電線層110L可包含在第一方向(X方向)上延伸且在第二方向(Y方向)上彼此隔開的多個第一導電線110。第二導電線層120L可安置於第一導電線層110L上,且可包含在第二方向上延伸且在第一方向上彼此隔開的多個第二導電線120。第三導電線層130L可安置於第二導電線層120L上,且可包含在第一方向上延伸且在第二方向上彼此隔開的多個第三導電線130。所述多個第三導電線130及所述多個第一導電線110可在第三方向(Z方向)上定位於不同層級(level)處,但可具有實質上相同的配置。The first conductive line layer 110L may include a plurality of first conductive lines 110 extending in the first direction (X direction) and spaced apart from each other in the second direction (Y direction). The second conductive line layer 120L may be disposed on the first conductive line layer 110L, and may include a plurality of second conductive lines 120 extending in the second direction and spaced apart from each other in the first direction. The third conductive line layer 130L may be disposed on the second conductive line layer 120L, and may include a plurality of third conductive lines 130 extending in the first direction and spaced apart from each other in the second direction. The plurality of third conductive lines 130 and the plurality of first conductive lines 110 may be positioned at different levels in a third direction (Z direction), but may have substantially the same configuration.
就記憶體裝置的操作而言,所述多個第一導電線110及逤述多個第三導電線130可對應於字元線(例如,圖1的字元線WL11、Wl2、W21及WL22),且所述多個第二導電線120可對應於位元線(例如,圖1的共同位元線BL1、BL2、BL3及BL4)。在一些實施例中,所述多個第一導電線110及所述多個第三導電線130可對應於位元線(例如,圖1的共同位元線BL1、BL2、BL3及BL4),且所述多個第二導電線120可對應於字元線(例如,圖1的字元線WL11、Wl2、W21及WL22)。在所述多個第一導電線110及所述多個第三導電線130對應於字元線的狀況下,所述多個第一導電線110可對應於下部字元線(例如,圖1的下部字元線W11及W12),且所述多個第三導電線130可對應於上部字元線(例如,圖1的上部字元線W21及W22)。因為所述多個第二導電線120可由所述多個第一導電線110(亦即,下部字元線)及所述多個第三導電線130(亦即,上部字元線)共同地共用,所以所述多個第二導電線120可對應於共同位元線。In terms of operation of the memory device, the plurality of first conductive lines 110 and the plurality of third conductive lines 130 may correspond to word lines (eg, word lines WL11, Wl2, W21, and WL22 of FIG. 1) And the plurality of second conductive lines 120 may correspond to bit lines (eg, common bit lines BL1, BL2, BL3, and BL4 of FIG. 1). In some embodiments, the plurality of first conductive lines 110 and the plurality of third conductive lines 130 may correspond to bit lines (eg, common bit lines BL1, BL2, BL3, and BL4 of FIG. 1). And the plurality of second conductive lines 120 may correspond to word lines (eg, word lines WL11, Wl2, W21, and WL22 of FIG. 1). In a state where the plurality of first conductive lines 110 and the plurality of third conductive lines 130 correspond to word lines, the plurality of first conductive lines 110 may correspond to lower word lines (eg, FIG. 1 Lower word lines W11 and W12), and the plurality of third conductive lines 130 may correspond to upper word lines (eg, upper word lines W21 and W22 of FIG. 1). Because the plurality of second conductive lines 120 can be commonly used by the plurality of first conductive lines 110 (ie, lower word lines) and the plurality of third conductive lines 130 (ie, upper word lines) Shared, so the plurality of second conductive lines 120 may correspond to a common bit line.
所述多個第一導電線110、所述多個第二導電線120及所述多個第三導電線130中的各別導電線可包含金屬、導電金屬氮化物、導電金屬氧化物或其組合。在實例實施例中,所述多個第一導電線110、所述多個第二導電線120及所述多個第三導電線130中的各別導電線可包含W、WN、Au、Ag、Cu、Al、TiAlN、Ir、Pt、Pd、Ru、Zr、Rh、Ni、Co、Cr、Sn、Zn、ITO、其合金或其組合。在一個實施例中,所述多個第一導電線110、所述多個第二導電線120及所述多個第三導電線130中的各別導電線可包含金屬層(metal layer)以及用以覆蓋金屬層的至少一部分的導電障壁層(conductive barrier layer)。導電障壁層可包含(例如)Ti、TiN、Ta、TaN或其組合。Each of the plurality of first conductive lines 110, the plurality of second conductive lines 120, and the plurality of third conductive lines 130 may comprise a metal, a conductive metal nitride, a conductive metal oxide, or combination. In an example embodiment, each of the plurality of first conductive lines 110, the plurality of second conductive lines 120, and the plurality of third conductive lines 130 may include W, WN, Au, and Ag. , Cu, Al, TiAlN, Ir, Pt, Pd, Ru, Zr, Rh, Ni, Co, Cr, Sn, Zn, ITO, alloys thereof or combinations thereof. In one embodiment, each of the plurality of first conductive lines 110, the plurality of second conductive lines 120, and the plurality of third conductive lines 130 may include a metal layer and A conductive barrier layer for covering at least a portion of the metal layer. The conductive barrier layer can comprise, for example, Ti, TiN, Ta, TaN, or a combination thereof.
第一記憶體單元層MCL1可包含在第一方向及第二方向上彼此隔開而以兩個維度而排列的多個第一記憶體單元140-1(例如,圖1的第一記憶體單元MC1)。第二記憶體單元層MCL2可包含在第一方向及第二方向上彼此隔開而以兩個維度而排列的多個第二記憶體單元140-2(例如,圖1的第二記憶體單元MC2)。The first memory cell layer MCL1 may include a plurality of first memory cells 140-1 spaced apart from each other in the first direction and the second direction and arranged in two dimensions (for example, the first memory cell of FIG. 1) MC1). The second memory cell layer MCL2 may include a plurality of second memory cells 140-2 spaced apart from each other in the first direction and the second direction and arranged in two dimensions (eg, the second memory cell of FIG. 1) MC2).
如圖2所展示,所述多個第二導電線120可與所述多個第一導電線110交叉,且所述多個第三導電線130可與所述多個第二導電線120交叉。第一記憶體單元140-1可安置於第一導電線層110L與第二導電線層120L之間及所述多個第一導電線110與所述多個第二導電線120的各別相交點處。第二記憶體單元140-2可安置於第二導電線層120L與第三導電線層130L之間及所述多個第二導電線120與所述多個第三導電線130的各別相交點處。As shown in FIG. 2, the plurality of second conductive lines 120 may intersect the plurality of first conductive lines 110, and the plurality of third conductive lines 130 may cross the plurality of second conductive lines 120 . The first memory unit 140-1 may be disposed between the first conductive line layer 110L and the second conductive line layer 120L and intersect the plurality of first conductive lines 110 and the plurality of second conductive lines 120 Point. The second memory unit 140-2 may be disposed between the second conductive line layer 120L and the third conductive line layer 130L and the plurality of second conductive lines 120 and the plurality of third conductive lines 130 respectively intersect Point.
第一記憶體單元140-1及第二記憶體單元140-2可各自具有諸如正方形支柱的支柱狀結構,但並不限於此情形。舉例而言,第一記憶體單元140-1及第二記憶體單元140-2可各自具有諸如圓柱形支柱、橢圓形支柱或多邊形支柱的各種支柱形狀。根據第一記憶體單元140-1及第二記憶體單元140-2的形成方法,第一記憶體單元140-1及第二記憶體單元140-2中的每一者的下部部分可大於其上部部分(例如,下部部分的寬度大於上部部分的寬度),或第一記憶體單元140-1及第二記憶體單元140-2中的每一者的上部部分可大於其下部部分(例如,上部部分的寬度大於下部部分的寬度)。在一些實施例中,第一記憶體單元140-1及第二記憶體單元140-2可各自具有實質上垂直的側壁,因此在其下部部分及上部部分中幾乎不存在寬度差。儘管第一記憶體單元140-1及第二記憶體單元140-2除了在圖2及圖3中以外亦在其他圖式中被展示為具有實質上垂直的側壁,但第一記憶體單元140-1及第二記憶體單元140-2中的每一者的下部部分可大於或小於其上部部分。The first memory unit 140-1 and the second memory unit 140-2 may each have a pillar-like structure such as a square pillar, but are not limited thereto. For example, the first memory unit 140-1 and the second memory unit 140-2 may each have various pillar shapes such as a cylindrical pillar, an elliptical pillar, or a polygonal pillar. According to the forming method of the first memory unit 140-1 and the second memory unit 140-2, the lower portion of each of the first memory unit 140-1 and the second memory unit 140-2 may be larger than The upper portion (eg, the width of the lower portion is greater than the width of the upper portion), or the upper portion of each of the first memory unit 140-1 and the second memory unit 140-2 may be larger than the lower portion thereof (eg, The width of the upper portion is greater than the width of the lower portion). In some embodiments, the first memory unit 140-1 and the second memory unit 140-2 may each have substantially vertical sidewalls, and thus there is almost no difference in width between the lower portion and the upper portion. Although the first memory unit 140-1 and the second memory unit 140-2 are shown in other figures as having substantially vertical sidewalls in addition to FIGS. 2 and 3, the first memory unit 140 The lower portion of each of -1 and second memory unit 140-2 may be larger or smaller than its upper portion.
第一記憶體單元140-1可各自包含依序地安置(或堆疊)於基板101上的第一電極層(electrode layer)141-1、第一選擇元件層143-1、第二電極層145-1、第三電極層147-1、第一可變電阻層149-1以及第四電極層148-1。第二記憶體單元140-2可各自包含依序地安置(或堆疊)於第一記憶體單元層MCL1(或所述多個第二導電線120)上的第五電極層141-2、第二選擇元件層143-2、第六電極層145-2、第七電極層147-2、第二可變電阻層149-2以及第八電極層148-2。第一記憶體單元1401-1與第二記憶體單元140-2可具有實質上相同的結構及實質上相同的材料。因此,出於簡潔起見,將在下文中主要描述第一記憶體單元140-1。The first memory cells 140-1 may each include a first electrode layer 141-1, a first selection element layer 143-1, and a second electrode layer 145 which are sequentially disposed (or stacked) on the substrate 101. -1, a third electrode layer 147-1, a first variable resistance layer 149-1, and a fourth electrode layer 148-1. The second memory cells 140-2 may each include a fifth electrode layer 141-2, which is sequentially disposed (or stacked) on the first memory cell layer MCL1 (or the plurality of second conductive lines 120) The second element layer 143-2, the sixth electrode layer 145-2, the seventh electrode layer 147-2, the second variable resistance layer 149-2, and the eighth electrode layer 148-2 are selected. The first memory unit 1401-1 and the second memory unit 140-2 may have substantially the same structure and substantially the same material. Therefore, for the sake of brevity, the first memory unit 140-1 will be mainly described below.
第一可變電阻層149-1(例如,圖1的可變電阻層ME)可包含能夠取決於加熱時間而在第一狀態與第二狀態之間可逆地改變的相變材料。舉例而言,可變電阻層149-1可包含某種材料,此材料的相可歸因於由施加至可變電阻層149-1的兩個端子的電壓產生的焦耳熱(joule heat)而可逆地改變,且此材料的電阻可因相變而改變。更具體言之,相變材料可在非晶相(amorphous phase)中展現高電阻狀態且可在晶相(crystalline phase)中展現低電阻狀態。高電阻狀態可被定義為「0」狀態且低電阻狀態可被定義為「1」狀態,且資料可儲存於第一可變電阻層149-1中。The first variable resistance layer 149-1 (eg, the variable resistance layer ME of FIG. 1) may include a phase change material that is reversibly changeable between a first state and a second state depending on a heating time. For example, the variable resistance layer 149-1 may comprise a material whose phase is attributable to joule heat generated by the voltage applied to the two terminals of the variable resistance layer 149-1. It changes reversibly, and the electrical resistance of this material can change due to phase change. More specifically, the phase change material can exhibit a high resistance state in an amorphous phase and can exhibit a low resistance state in a crystalline phase. The high resistance state can be defined as a "0" state and the low resistance state can be defined as a "1" state, and the data can be stored in the first variable resistance layer 149-1.
在一些實施例中,第一可變電阻層149-1可包含來自週期表的第VI族的一或多種元素(例如,一或多種硫族元素),且視情況包含來自第III族、第IV族及/或第V族的一或多種化學改質劑。第一可變電阻層149-1可包含Ge-Sb-Te。由本文中所使用的連字符(-)表示的化學組成物記法表示特定混合物或化合物中所含有的元素,且用來表示含有所表示的元素的所有化學結構。舉例而言,Ge-Sb-Te材料可包含Ge2 Sb2 Te5 、Ge2 Sb2 Te7 、Ge1 Sb2 Te4 或Ge1 Sb4 Te7 。In some embodiments, the first variable resistance layer 149-1 may comprise one or more elements from Group VI of the periodic table (eg, one or more chalcogen elements), and optionally from the third group, One or more chemical modifiers of Group IV and/or Group V. The first variable resistance layer 149-1 may include Ge-Sb-Te. The chemical composition notation represented by the hyphen (-) used herein means an element contained in a specific mixture or compound, and is used to indicate all chemical structures containing the indicated elements. For example, the Ge-Sb-Te material may comprise Ge 2 Sb 2 Te 5 , Ge 2 Sb 2 Te 7 , Ge 1 Sb 2 Te 4 or Ge 1 Sb 4 Te 7 .
第一可變電阻層149-1除了包含Ge-Sb-Te材料以外亦可包含多種相變材料。舉例而言,第一可變電阻層149-1可包含以下各者中的至少一者:Ge-Te、Sb-Te、In-Se、Ga-Sb、In-Sb、As-Te、Al-Te、Bi-Sb-Te(BST)、In-Sb-Te(IST)、Ge-Sb-Te、Te-Ge-As、Te-Sn-Se、Ge-Se-Ga、Bi-Se-Sb、Ga-Se-Te、Sn-Sb-Te、In-Sb-Ge、In-Ge-Te、Ge-Sn-Te、Ge-Bi-Te、Ge-Te-Se、As-Sb-Te、Sn-Sb-Bi、Ge-Te-O、Te-Ge-Sb-S、Te-Ge-Sn-O、Te-Ge-Sn-Au、Pd-Te-Ge-Sn、In-Se-Ti-Co、Ge-Sb-Te-Pd、Ge-Sb-Te-Co、Sb-Te-Bi-Se、Ag-In-Sb-Te、Ge-Sb-Se-Te、Ge-Sn-Sb-Te、Ge-Te-Sn-Ni、Ge-Te-Sn-Pd、Ge-Te-Sn-Pt、In-Sn-Sb-Te、As-Ge-Sb-Te以及其組合。The first variable resistance layer 149-1 may contain a plurality of phase change materials in addition to the Ge-Sb-Te material. For example, the first variable resistance layer 149-1 may include at least one of: Ge-Te, Sb-Te, In-Se, Ga-Sb, In-Sb, As-Te, Al- Te, Bi-Sb-Te (BST), In-Sb-Te (IST), Ge-Sb-Te, Te-Ge-As, Te-Sn-Se, Ge-Se-Ga, Bi-Se-Sb, Ga-Se-Te, Sn-Sb-Te, In-Sb-Ge, In-Ge-Te, Ge-Sn-Te, Ge-Bi-Te, Ge-Te-Se, As-Sb-Te, Sn- Sb-Bi, Ge-Te-O, Te-Ge-Sb-S, Te-Ge-Sn-O, Te-Ge-Sn-Au, Pd-Te-Ge-Sn, In-Se-Ti-Co, Ge-Sb-Te-Pd, Ge-Sb-Te-Co, Sb-Te-Bi-Se, Ag-In-Sb-Te, Ge-Sb-Se-Te, Ge-Sn-Sb-Te, Ge- Te-Sn-Ni, Ge-Te-Sn-Pd, Ge-Te-Sn-Pt, In-Sn-Sb-Te, As-Ge-Sb-Te, and combinations thereof.
構成第一可變電阻層149-1的元素可具有多種化學計算比率(stoichiometric ratio)。根據元素的化學計算比率,可控制第一可變電阻層149-1的結晶溫度(crystallization temperature)、熔化溫度(melting temperature)、取決於結晶能量的相變速率(phase change rate)以及資料保持特性(data retention characteristic)。The elements constituting the first variable resistance layer 149-1 may have various stoichiometric ratios. The crystallization temperature, the melting temperature, the phase change rate depending on the crystallization energy, and the data retention characteristics can be controlled according to the stoichiometric ratio of the elements. (data retention characteristic).
第一可變電阻層149-1可更包含至少一種雜質元素。雜質元素可包含(例如)碳(C)、氮(N)、矽(Si)、鉍(Bi)以及錫(Sn)中的至少一者。記憶體裝置100的操作電流可由雜質元素改變。再者,第一可變電阻層149-1可更包含金屬。舉例而言,第一可變電阻層149-1可包含以下各者中的至少一者:鋁(Al)、鎵(Ga)、鋅(Zn)、鈦(Ti)、鉻(Cr)、錳(Mn)、鐵(Fe)、鈷(Co)、鎳(Ni)、鉬(Mo)、釕(Ru)、鈀(Pa)、鉿(Hf)、鉭(Ta)、銥(Ir)、鉑(Pt)、鋯(Zr)、鉈(Tl)、鉛(Pb)以及釙(Po)。金屬可增加第一可變電阻層149-1的電導率及熱導率以增加其結晶速率,藉此增加設定程式化速度。此外,金屬可改良第一可變電阻層149-1的資料保持特性。The first variable resistance layer 149-1 may further contain at least one impurity element. The impurity element may include, for example, at least one of carbon (C), nitrogen (N), cerium (Si), bismuth (Bi), and tin (Sn). The operating current of the memory device 100 can be changed by an impurity element. Furthermore, the first variable resistance layer 149-1 may further comprise a metal. For example, the first variable resistance layer 149-1 may include at least one of aluminum (Al), gallium (Ga), zinc (Zn), titanium (Ti), chromium (Cr), manganese. (Mn), iron (Fe), cobalt (Co), nickel (Ni), molybdenum (Mo), ruthenium (Ru), palladium (Pa), ruthenium (Hf), ruthenium (Ta), iridium (Ir), platinum (Pt), zirconium (Zr), thallium (Tl), lead (Pb), and bismuth (Po). The metal can increase the electrical conductivity and thermal conductivity of the first variable resistance layer 149-1 to increase its crystallization rate, thereby increasing the setting stylization speed. Further, the metal can improve the data retention characteristics of the first variable resistance layer 149-1.
第一可變電阻層149-1可包含多層結構(multi-layered structure),具有不同物理屬性的兩個或多於兩個層堆疊於此多層結構中。構成多層結構的所述多個層的數目或厚度可不受到限制。障壁層可進一步插入於構成多層結構的所述多個層之間。障壁層可用來防止所述多個層之間的材料的擴散。當形成所述多個層的後續層時,障壁層可縮減所述多個層的先前層中所含有的材料的擴散。The first variable resistance layer 149-1 may comprise a multi-layered structure in which two or more layers having different physical properties are stacked. The number or thickness of the plurality of layers constituting the multilayer structure may not be limited. The barrier layer may be further interposed between the plurality of layers constituting the multilayer structure. A barrier layer can be used to prevent diffusion of material between the plurality of layers. When forming a subsequent layer of the plurality of layers, the barrier layer can reduce the diffusion of material contained in the previous layers of the plurality of layers.
第一可變電阻層149-1可包含由包含不同材料且交替地堆疊於彼此上的多個層建構的超晶格結構。舉例而言,第一可變電阻層149-1可包含堆疊結構,由Ge-Te形成的第一層與由Sb-Te形成的第二層交替地堆疊於此堆疊結構中。然而,第一層及第二層並不限於此情形,且可包含上文所描述的各種材料。The first variable resistance layer 149-1 may include a superlattice structure constructed of a plurality of layers including different materials and alternately stacked on each other. For example, the first variable resistance layer 149-1 may include a stacked structure in which a first layer formed of Ge-Te and a second layer formed of Sb-Te are alternately stacked in the stacked structure. However, the first layer and the second layer are not limited to this case, and may include various materials as described above.
上文可描述作為第一可變電阻層149-1的相變材料,但本發明概念的態樣並不限於此情形。記憶體裝置100的第一可變電阻層149-1可包含具有電阻改變屬性的各種材料。The phase change material as the first variable resistance layer 149-1 can be described above, but the aspect of the inventive concept is not limited to this case. The first variable resistance layer 149-1 of the memory device 100 may include various materials having resistance change properties.
在一些實施例中,在第一可變電阻層149-1包含過渡金屬氧化物的狀況下,記憶體裝置100可為電阻性隨機存取記憶體(resistive random access memory;ReRAM)裝置。在包含過渡金屬氧化物的第一可變電阻層149-1中,可藉由程式化操作來建立至少一個電路徑或使其消失。第一可變電阻層149-1可在電路徑建立時具有低電阻值且可在電路徑消失時具有高電阻值。藉由使用電阻值的差異,記憶體裝置100可儲存資料。In some embodiments, in a state where the first variable resistance layer 149-1 includes a transition metal oxide, the memory device 100 may be a resistive random access memory (ReRAM) device. In the first variable resistance layer 149-1 containing the transition metal oxide, at least one electrical path can be established or eliminated by a stylization operation. The first variable resistance layer 149-1 may have a low resistance value when the electrical path is established and may have a high resistance value when the electrical path disappears. The memory device 100 can store data by using a difference in resistance values.
在第一可變電阻層149-1包含過渡金屬氧化物的狀況下,過渡金屬氧化物可包含Ta、Zr、Ti、Hf、Mn、Y、Ni、Co、Zn、Nb、Cu、Fe以及Cr中的至少一者。舉例而言,包含過渡金屬氧化物的第一可變電阻層149-1可包含單一層或多個層,由以下各者中的至少一者形成:Ta2 O5-x 、ZrO2-x 、TiO2-x 、HfO2-x 、MnO2-x 、Y2 O3-x 、NiO1-y 、Nb2 O5-x 、CuO1-y 以及Fe2 O3-x 。在以上材料中,可分別在0≤x≤1.5及0≤y≤0.5的範圍內選擇值x及值y,但並不限於此情形。In the case where the first variable resistance layer 149-1 contains a transition metal oxide, the transition metal oxide may include Ta, Zr, Ti, Hf, Mn, Y, Ni, Co, Zn, Nb, Cu, Fe, and Cr. At least one of them. For example, the first variable resistance layer 149-1 comprising a transition metal oxide may comprise a single layer or a plurality of layers formed by at least one of: Ta 2 O 5-x , ZrO 2-x TiO 2-x , HfO 2-x , MnO 2-x , Y 2 O 3-x , NiO 1-y , Nb 2 O 5-x , CuO 1-y and Fe 2 O 3-x . In the above materials, the value x and the value y may be selected within the range of 0 ≤ x ≤ 1.5 and 0 ≤ y ≤ 0.5, respectively, but are not limited thereto.
在其他實施例中,在第一可變電阻層149-1包含具有由磁性材料形成的兩個電極以及插入於兩個電極之間的介電層的磁性穿隧接面(magnetic tunnel junction;MTJ)結構的狀況下,記憶體裝置100可為磁性隨機存取記憶體(magnetic random access memory;MRAM)裝置。In other embodiments, the first variable resistance layer 149-1 includes a magnetic tunnel junction (MTJ) having two electrodes formed of a magnetic material and a dielectric layer interposed between the two electrodes. In the case of the structure, the memory device 100 may be a magnetic random access memory (MRAM) device.
兩個電極中的一者可為磁化釘紮層(magnetization pinned layer),且兩個電極中的另一者可為磁化自由層(magnetization free layer)。介電層可為穿隧障壁層(tunnel barrier layer)。磁化釘紮層可具有釘紮磁化方向,且磁化自由層可具有平行於或反平行於磁化釘紮層的釘紮磁化方向的可變磁化方向。磁化釘紮層及磁化自由層的磁化方向可平行於穿隧障壁層的表面,但並不限於此情形。磁化釘紮層及磁化自由層的磁化方向可垂直於穿隧障壁層的表面。One of the two electrodes may be a magnetization pinned layer, and the other of the two electrodes may be a magnetization free layer. The dielectric layer can be a tunnel barrier layer. The magnetized pinned layer may have a pinning magnetization direction, and the magnetization free layer may have a variable magnetization direction parallel or anti-parallel to the pinning magnetization direction of the magnetized pinned layer. The magnetization direction of the magnetized pinned layer and the magnetization free layer may be parallel to the surface of the tunnel barrier layer, but is not limited thereto. The magnetization pinning layer and the magnetization free layer may have a magnetization direction perpendicular to a surface of the tunnel barrier layer.
在磁化自由層的磁化方向平行於磁化釘紮層的磁化方向的狀況下,第一可變電阻層149-1可具有第一電阻值。替代地,在磁化自由層的磁化方向反平行於磁化釘紮層的磁化方向的狀況下,第一可變電阻層149-1可具有第二電阻值。藉由使用第一電阻值與第二電阻值之間的差異,記憶體裝置100可儲存資料。磁化自由層的磁化方向可由程式化電流中的電子的自旋力矩變化。The first variable resistance layer 149-1 may have a first resistance value in a state where the magnetization direction of the magnetization free layer is parallel to the magnetization direction of the magnetization pinning layer. Alternatively, the first variable resistance layer 149-1 may have a second resistance value in a state where the magnetization direction of the magnetization free layer is antiparallel to the magnetization direction of the magnetization pinning layer. The memory device 100 can store data by using a difference between the first resistance value and the second resistance value. The magnetization direction of the magnetization free layer can be varied by the spin torque of the electrons in the stylized current.
磁化釘紮層及磁化自由層可包含磁性材料。磁化釘紮層可更包含在磁化釘紮層中固定鐵磁性材料的磁化方向的反鐵磁性材料。穿隧障壁層可包含具有Mg、Ti、Al、MgZn以及MgB中的至少一者的氧化物,但並不限於此情形。The magnetized pinned layer and the magnetized free layer may comprise a magnetic material. The magnetized pinned layer may further comprise an antiferromagnetic material that fixes the magnetization direction of the ferromagnetic material in the magnetized pinned layer. The tunnel barrier layer may include an oxide having at least one of Mg, Ti, Al, MgZn, and MgB, but is not limited thereto.
第一選擇元件層143-1(例如,圖1的選擇元件SW)可充當用於控制電流流動的電流控制層(current control layer)。第一選擇元件層143-1可包含電阻可取決於施加至其兩個端子的電壓而變化的材料層。舉例而言,第一選擇元件層143-1可包含具有雙向臨界切換(OTS)屬性的材料層。在第一選擇元件層143-1包含具有雙向臨界切換屬性的材料層的狀況下,第一選擇元件層143-1可維持高電阻狀態,其中當小於第一選擇元件層143-1的臨界電壓的電壓施加至第一選擇元件層143-1時,電流幾乎不流動。當大於第一選擇元件層143-1的臨界電壓的電壓施加至第一選擇元件層143-1時,第一選擇元件層143-1可處於低電阻狀態,使得電流開始流動。當流動通過第一選擇元件層143-1的電流小於保持電流(holding current)時,第一選擇元件層143-1可切換至高電阻狀態。稍後將參考圖4來詳細地描述第一選擇元件層143-1的雙向臨界切換屬性。The first selection element layer 143-1 (eg, the selection element SW of FIG. 1) can serve as a current control layer for controlling current flow. The first selection element layer 143-1 may comprise a layer of material whose resistance may vary depending on the voltage applied to its two terminals. For example, the first selection element layer 143-1 can include a layer of material having bidirectional critical switching (OTS) properties. In a state where the first selection element layer 143-1 includes a material layer having a bidirectional critical switching property, the first selection element layer 143-1 can maintain a high resistance state, wherein the threshold voltage is less than the threshold voltage of the first selection element layer 143-1 When a voltage is applied to the first selection element layer 143-1, the current hardly flows. When a voltage greater than the threshold voltage of the first selection element layer 143-1 is applied to the first selection element layer 143-1, the first selection element layer 143-1 may be in a low resistance state such that current begins to flow. When the current flowing through the first selection element layer 143-1 is less than the holding current, the first selection element layer 143-1 can be switched to the high resistance state. The bidirectional critical switching property of the first selection element layer 143-1 will be described in detail later with reference to FIG.
第一選擇元件層143-1可包含硫族化物材料(chalcogenide material)作為雙向臨界切換材料層。第一選擇元件層143-1可包含來自週期表的第VI族的一或多種元素(例如,硫族元素),且視情況包含來自第III族、第IV族及/或第V族的一或多種化學改質劑。第一選擇元件層143-1中所含有的硫族元素可包含硫(S)、硒(Se)及/或碲(Te)。硫族元素的特徵可為二價鍵結(divalent bonding)以及未共用電子對(lone pair electron)的存在。二價鍵結可導致在組合硫族元素以形成硫族化物材料後就形成鏈及環結構,且未共用電子對可提供用於形成導電長絲(conducting filament)的電子源。諸如鋁(Al)、鎵(Ga)、銦(In)、鍺(Ge)、錫(Sn)、矽(Si)、磷(P)、砷(As)以及銻(Sb)的三價改質劑及四價改質劑可進入硫族元素的鏈及環結構,且可影響硫族化物材料的結構剛度。根據經受結晶或其他結構重新配置的能力,硫族化物材料的結構剛度可導致將硫族化物材料分類成臨界切換材料及相變材料中的一者。The first selection element layer 143-1 may comprise a chalcogenide material as a bidirectional critical switching material layer. The first selection element layer 143-1 may comprise one or more elements from Group VI of the periodic table (eg, chalcogen elements), and optionally one from Group III, Group IV, and/or Group V. Or a variety of chemical modifiers. The chalcogen element contained in the first selection element layer 143-1 may include sulfur (S), selenium (Se), and/or tellurium (Te). The chalcogenide can be characterized by the presence of divalent bonding and the absence of a pair of electrons. The divalent linkage can result in the formation of a chain and ring structure upon combining the chalcogenide to form the chalcogenide material, and the unshared electron pair can provide an electron source for forming a conducting filament. Trivalent modification of such as aluminum (Al), gallium (Ga), indium (In), germanium (Ge), tin (Sn), germanium (Si), phosphorus (P), arsenic (As), and antimony (Sb) The agent and the tetravalent modifier can enter the chain and ring structure of the chalcogen element and can affect the structural rigidity of the chalcogenide material. The structural stiffness of the chalcogenide material can result in the classification of the chalcogenide material into one of a critical switching material and a phase change material, depending on the ability to undergo crystallization or other structural reconfiguration.
在一些實施例中,第一選擇元件層143-1可包含矽(Si)、碲(Te)、砷(As)、鍺(Ge)、銦(In)或其組合。舉例而言,第一選擇元件層143-1可包含約14%的矽(Si)濃度、約39%的碲(Te)濃度、約37%的砷(As)濃度、約9%的鍺(Ge)濃度、約1%的銦(In)濃度。此處,百分比為原子百分比(atomic percentage),其合計構成元素的原子的100%。In some embodiments, the first selection element layer 143-1 may comprise germanium (Si), tellurium (Te), arsenic (As), germanium (Ge), indium (In), or a combination thereof. For example, the first selection element layer 143-1 can comprise a germanium (Si) concentration of about 14%, a cerium (Te) concentration of about 39%, an arsenic (As) concentration of about 37%, and about 9% bismuth ( Ge) concentration, about 1% indium (In) concentration. Here, the percentage is an atomic percentage which amounts to 100% of the atoms constituting the element.
在一些實施例中,第一選擇元件層143-1可包含矽(Si)、碲(Te)、砷(As)、鍺(Ge)、硫(S)、硒(Se)或其組合。舉例而言,第一選擇元件層143-1可包含約5%的矽(Si)濃度、約34%的碲(Te)濃度、約28%的砷(As)濃度、約11%的鍺(Ge)濃度、約21%的硫(S)濃度以及約1%的硒(Se)濃度。In some embodiments, the first selection element layer 143-1 may comprise germanium (Si), tellurium (Te), arsenic (As), germanium (Ge), sulfur (S), selenium (Se), or a combination thereof. For example, the first selection element layer 143-1 may comprise about 5% cerium (Si) concentration, about 34% cerium (Te) concentration, about 28% arsenic (As) concentration, about 11% bismuth ( Ge) concentration, sulfur (S) concentration of about 21%, and selenium (Se) concentration of about 1%.
在一些實施例中,第一選擇元件層143-1可包含碲(Te)、砷(As)、鍺(Ge)、硫(S)、硒(Se)、銻(Sb)或其組合。舉例而言,第一選擇元件層143-1可包含約21%的碲(Te)濃度、約10%的砷(As)濃度、約15%的鍺(Ge)濃度、約2%的硫(S)濃度、約50%的硒(Se)濃度以及約2%的銻(Sb)濃度。In some embodiments, the first selection element layer 143-1 may comprise tellurium (Te), arsenic (As), germanium (Ge), sulfur (S), selenium (Se), antimony (Sb), or a combination thereof. For example, the first selection element layer 143-1 may comprise about 21% cerium (Te) concentration, about 10% arsenic (As) concentration, about 15% cerium (Ge) concentration, about 2% sulfur ( S) concentration, about 50% selenium (Se) concentration, and about 2% strontium (Sb) concentration.
在根據實例實施例的記憶體裝置100中,第一選擇元件層143-1並不限於雙向臨界切換材料,而是包含能夠用來選擇裝置的各種材料。舉例而言,第一選擇元件層143-1可包含二極體、穿隧接面、雙極接面電晶體或混合式離子電子傳導開關(mixed ionic-electronic conduction switch;MIEC)。In the memory device 100 according to example embodiments, the first selection element layer 143-1 is not limited to the bidirectional critical switching material, but includes various materials that can be used to select the device. For example, the first selection element layer 143-1 may include a diode, a tunnel junction, a bipolar junction transistor, or a mixed ionic-electronic conduction switch (MIEC).
第一電極層141-1、第二電極層145-1、第三電極層147-1及第四電極層148-1可充當電路徑且可由導電材料形成。第一電極層141-1、第二電極層145-1、第三電極層147-1及第四電極層148-1可包含金屬、導電金屬氮化物、導電金屬氧化物或其組合。舉例而言,第一電極層141-1、第二電極層145-1、第三電極層147-1及第四電極層148-1中的每一者可包含TiN層,但並不限於此情形。在一些實施例中,第一電極層141-1、第二電極層145-1、第三電極層147-1及第四電極層148-1中的每一者可包含由金屬或導電金屬氮化物形成的導電層以及覆蓋導電層的至少一部分的至少一個導電障壁層。導電障壁層可包含金屬氧化物、金屬氮化物或其組合,但並不限於此情形。The first electrode layer 141-1, the second electrode layer 145-1, the third electrode layer 147-1, and the fourth electrode layer 148-1 may serve as an electrical path and may be formed of a conductive material. The first electrode layer 141-1, the second electrode layer 145-1, the third electrode layer 147-1, and the fourth electrode layer 148-1 may include a metal, a conductive metal nitride, a conductive metal oxide, or a combination thereof. For example, each of the first electrode layer 141-1, the second electrode layer 145-1, the third electrode layer 147-1, and the fourth electrode layer 148-1 may include a TiN layer, but is not limited thereto. situation. In some embodiments, each of the first electrode layer 141-1, the second electrode layer 145-1, the third electrode layer 147-1, and the fourth electrode layer 148-1 may comprise a metal or a conductive metal nitrogen. And a conductive layer formed by the compound and at least one conductive barrier layer covering at least a portion of the conductive layer. The conductive barrier layer may include a metal oxide, a metal nitride, or a combination thereof, but is not limited thereto.
在一些實施例中,接觸第一可變電阻層149-1的第三電極層147-1及/或第四電極層148-1可包含能夠產生足以改變第一可變電阻層149-1的相的熱的導電材料。舉例而言,第三電極層147-1或第四電極層148-1可包含耐火金屬、耐火金屬氮化物及/或碳基導電材料。第三電極層147-1或第四電極層148-1可包含(例如)TiN、TiSiN、TiAlN、TaSiN、TaAlN、TaN、WSi、WN、TiW、MoN、NbN、TiBN、ZrSiN、WSiN、WBN、ZrAlN、MoAlN、TiAl、TiON、TiAlON、WON、TaON、C、SiC、SiCN、CN、TiCN、TaCN或其組合。然而,第三電極層147-1或第四電極層148-1並不限於此情形。In some embodiments, the third electrode layer 147-1 and/or the fourth electrode layer 148-1 contacting the first variable resistance layer 149-1 may comprise a level sufficient to change the first variable resistance layer 149-1. The phase of the hot conductive material. For example, the third electrode layer 147-1 or the fourth electrode layer 148-1 may comprise a refractory metal, a refractory metal nitride, and/or a carbon-based conductive material. The third electrode layer 147-1 or the fourth electrode layer 148-1 may include, for example, TiN, TiSiN, TiAlN, TaSiN, TaAlN, TaN, WSi, WN, TiW, MoN, NbN, TiBN, ZrSiN, WSiN, WBN, ZrAlN, MoAlN, TiAl, TiON, TiAlON, WON, TaON, C, SiC, SiCN, CN, TiCN, TaCN or a combination thereof. However, the third electrode layer 147-1 or the fourth electrode layer 148-1 is not limited to this case.
在一些實施例中,加熱電極層(heating electrode layer)可進一步插入於第一可變電阻層149-1與第三電極層147-1之間或第一可變電阻層149-1與第四電極層148-1之間。加熱電極層可包含能夠產生足以改變可變電阻層149-1的相的熱的導電材料。舉例而言,加熱電極層可包含耐火金屬、耐火金屬氮化物或碳基導電材料。加熱電極層可包含(例如)TiN、TiSiN、TiAlN、TaSiN、TaAlN、TaN、WSi、WN、TiW、MoN、NbN、TiBN、ZrSiN、WSiN、WBN、ZrAlN、MoAlN、TiAl、TiON、TiAlON、WON、TaON、C、SiC、SiCN、CN、TiCN、TaCN或其組合,但並不限於此情形。In some embodiments, a heating electrode layer may be further interposed between the first variable resistance layer 149-1 and the third electrode layer 147-1 or the first variable resistance layer 149-1 and the fourth Between the electrode layers 148-1. The heating electrode layer may comprise a conductive material capable of generating heat sufficient to change the phase of the variable resistance layer 149-1. For example, the heating electrode layer may comprise a refractory metal, a refractory metal nitride or a carbon-based conductive material. The heating electrode layer may include, for example, TiN, TiSiN, TiAlN, TaSiN, TaAlN, TaN, WSi, WN, TiW, MoN, NbN, TiBN, ZrSiN, WSiN, WBN, ZrAlN, MoAlN, TiAl, TiON, TiAlON, WON, TaON, C, SiC, SiCN, CN, TiCN, TaCN or a combination thereof, but is not limited to this case.
儘管第一可變電阻層149-1在圖2及圖3中被展示為安置於第一選擇元件層143-1上,其中第二電極層145-1及第三電極層147-1插入於第一可變電阻層149-1與第一選擇元件層143-1之間,但本發明概念的態樣並不限於此情形。不同於圖2及圖3所展示的情形,第一選擇元件層143-1安置於第一可變電阻層149-1上,其中第二電極層145-1及第三電極層147-1插入於第一選擇元件層143-1與第一可變電阻層149-1之間,且第一可變電阻層149-1可插入於第一電極層141-1與第二電極層145-1之間。舉例而言,接觸第一可變電阻層149-1的第一電極層141-1及/或第二電極層145-1可包含能夠產生足以改變第一可變電阻層149-1的相的熱的導電材料。再者,加熱電極層可進一步插入於第一可變電阻層149-1與第一電極層141-1之間以及第一可變電阻層149-1與第二電極層145-1之間。Although the first variable resistance layer 149-1 is shown as being disposed on the first selection element layer 143-1 in FIGS. 2 and 3, the second electrode layer 145-1 and the third electrode layer 147-1 are inserted in The first variable resistance layer 149-1 is interposed between the first selection element layer 143-1, but the aspect of the inventive concept is not limited to this case. Unlike the case shown in FIGS. 2 and 3, the first selection element layer 143-1 is disposed on the first variable resistance layer 149-1, wherein the second electrode layer 145-1 and the third electrode layer 147-1 are inserted. Between the first selection element layer 143-1 and the first variable resistance layer 149-1, and the first variable resistance layer 149-1 is insertable into the first electrode layer 141-1 and the second electrode layer 145-1 between. For example, the first electrode layer 141-1 and/or the second electrode layer 145-1 contacting the first variable resistance layer 149-1 may include a phase capable of generating a phase sufficient to change the first variable resistance layer 149-1. Hot conductive material. Furthermore, the heating electrode layer may be further interposed between the first variable resistance layer 149-1 and the first electrode layer 141-1 and between the first variable resistance layer 149-1 and the second electrode layer 145-1.
可視情況形成第一電極層141-1及第四電極層148-1。舉例而言,可省略第一電極層141-1及第四電極層148-1。然而,第一電極層141-1及第四電極層148-1中的至少一者可分別安置於第一導電線110及第二導電線120中的一者與第一選擇元件層143-1之間及/或第一導電線110及第二導電線120中的一者與第一可變電阻層149-1之間,以便防止歸因於第一導電線110及第二導電線120中的一者與第一選擇元件層143-1之間及/或第一導電線110及第二導電線120中的一者與第一可變電阻層149-1之間的直接接觸而產生的污染或接觸失敗。The first electrode layer 141-1 and the fourth electrode layer 148-1 may be formed as appropriate. For example, the first electrode layer 141-1 and the fourth electrode layer 148-1 may be omitted. However, at least one of the first electrode layer 141-1 and the fourth electrode layer 148-1 may be respectively disposed on one of the first conductive line 110 and the second conductive line 120 and the first selection element layer 143-1 Between and/or between one of the first conductive line 110 and the second conductive line 120 and the first variable resistance layer 149-1, so as to prevent being attributed to the first conductive line 110 and the second conductive line 120 Between one of the first selection element layers 143-1 and/or one of the first conductive line 110 and the second conductive line 120 and the first variable resistance layer 149-1 Pollution or contact failure.
第二電極層145-1及第三電極層147-1中的至少一者可必要地安置於第一選擇元件層143-1與第一可變電阻層149-1之間。當第一選擇元件層143-1是基於雙向臨界切換屬性時,第一選擇元件層143-1可包含處於非晶狀態的硫族化物材料。根據按比例縮小記憶體裝置100的趨勢,在可變電阻層149-1、選擇元件層143-1、第二電極層145-1及第三電極層147-1中,可縮減其厚度、其寬度及其間的距離。因此,在記憶體裝置100的操作時,加熱電極層(或在另外加熱電極層未被形成時的第三電極層147-1)可經加熱以導致第一可變電阻層149-1的相變,使得相鄰的第一選擇元件層143-1可受到熱影響。舉例而言,第一選擇元件層143-1可部分地因來自相鄰的第一可變電阻層149-1的熱而結晶,藉此在第一選擇元件層143-1中造成降低品質或損壞。因此,第二電極層145-1及第三電極層147-1中的至少一者可必要地安置於第一選擇元件層143-1與第一可變電阻層149-1之間,以防止或減少第一選擇元件層143-1中的降低品質或損壞。At least one of the second electrode layer 145-1 and the third electrode layer 147-1 may be necessarily disposed between the first selection element layer 143-1 and the first variable resistance layer 149-1. When the first selection element layer 143-1 is based on a bidirectional critical switching property, the first selection element layer 143-1 may comprise a chalcogenide material in an amorphous state. According to the trend of scaling down the memory device 100, the thickness of the variable resistance layer 149-1, the selection element layer 143-1, the second electrode layer 145-1, and the third electrode layer 147-1 can be reduced, and Width and the distance between them. Therefore, at the time of operation of the memory device 100, the heating electrode layer (or the third electrode layer 147-1 when the additional heating electrode layer is not formed) may be heated to cause the phase of the first variable resistance layer 149-1 The change causes the adjacent first selection element layer 143-1 to be thermally affected. For example, the first selection element layer 143-1 may be partially crystallized by heat from the adjacent first variable resistance layer 149-1, thereby causing degradation in quality in the first selection element layer 143-1 or damage. Therefore, at least one of the second electrode layer 145-1 and the third electrode layer 147-1 may be necessarily disposed between the first selection element layer 143-1 and the first variable resistance layer 149-1 to prevent Or reducing the degradation quality or damage in the first selection element layer 143-1.
第一電極層141-1、第二電極層145-1、第三電極層147-1與第四電極層148-1可由各種材料形成。根據加熱電極層的配置,第一電極層141-1、第二電極層145-1、第三電極層147-1與第四電極層148-1可分別具有變化的厚度。舉例而言,在加熱電極層插入於第三電極層147-1與可變電阻層149-1之間的狀況下,第三電極層147-1及第二電極層145-1可被形成為足夠厚以防止加熱電極層的熱傳輸至第一選擇元件層143-1。當加熱電極未被形成且第三電極層147-1是由能夠產生足以改變第一可變電阻層149-1的相的熱的導電材料形成時,第二電極層145-1可被形成為足夠厚以防止第三電極層147-1的熱傳輸至第一選擇元件層143-1。舉例而言,第二電極層145-1及第三電極層147-1可具有10 nm至100 nm的厚度,但並不限於此情形。此外,第二電極層145-1及第三電極層147-1中的每一者可具有用來阻斷熱的至少一個熱障壁層。在第二電極層145-1及第三電極層147-1中的每一者具有兩個或多於兩個熱障壁層的狀況下,第二電極層145-1及第三電極層147-1中的每一者可具有堆疊結構,熱障壁層與電極材料層交替地堆疊於此堆疊結構中。The first electrode layer 141-1, the second electrode layer 145-1, the third electrode layer 147-1, and the fourth electrode layer 148-1 may be formed of various materials. The first electrode layer 141-1, the second electrode layer 145-1, the third electrode layer 147-1, and the fourth electrode layer 148-1 may each have a varying thickness depending on the configuration of the heating electrode layer. For example, in a state where the heating electrode layer is interposed between the third electrode layer 147-1 and the variable resistance layer 149-1, the third electrode layer 147-1 and the second electrode layer 145-1 may be formed as Thick enough to prevent heat transfer from the heating electrode layer to the first selection element layer 143-1. When the heating electrode is not formed and the third electrode layer 147-1 is formed of a conductive material capable of generating heat sufficient to change the phase of the first variable resistance layer 149-1, the second electrode layer 145-1 may be formed as Thick enough to prevent heat transfer from the third electrode layer 147-1 to the first selection element layer 143-1. For example, the second electrode layer 145-1 and the third electrode layer 147-1 may have a thickness of 10 nm to 100 nm, but are not limited thereto. Further, each of the second electrode layer 145-1 and the third electrode layer 147-1 may have at least one thermal barrier layer for blocking heat. In a state where each of the second electrode layer 145-1 and the third electrode layer 147-1 has two or more than two thermal barrier layers, the second electrode layer 145-1 and the third electrode layer 147- Each of 1 may have a stacked structure in which a thermal barrier layer and an electrode material layer are alternately stacked.
第一絕緣層162-1可安置於多個第一導電線110之間。第一絕緣層162-1及第三絕緣層163可安置於第一記憶體單元層MCL1的第一記憶體單元140-1之間。舉例而言,第一絕緣層162-1可安置於在第二方向(Y方向)上配置的第一記憶體單元140-1之間,且第三絕緣層163可安置於在第一方向(X方向)上配置的第一記憶體單元140-1之間。第三絕緣層163可安置於在第一方向上配置的第二導電線120之間。第二絕緣層162-2可安置於在第二方向上配置的第二記憶體單元層MCL2的第二記憶體單元140-2之間,且可安置於在第二方向上配置的第三導電線130之間。第一絕緣層162-1、第二絕緣層162-2與第三絕緣層163可由相同絕緣材料形成,或第一絕緣層162-1、第二絕緣層162-2與第三絕緣層163中的至少一者可由不同於第一絕緣層162-1、第二絕緣層162-2與第三絕緣層163中的其他者的材料形成。第一絕緣層162-1、第二絕緣層162-2與第三絕緣層163中的每一者可由氧化物或氮化物形成,且可將每一記憶體單元層的記憶體單元(或元件)彼此電分離。在一些實施例中,第一絕緣層162-1、第二絕緣層162-2與第三絕緣層163中的至少一者可由空隙(air space)替換。舉例而言,可不形成第一絕緣層162-1、第二絕緣層162-2與第三絕緣層163中的至少一者,藉此在第一記憶體單元140-1之間及在第二記憶體單元140-2之間形成空隙。在形成空隙的狀況下,具有某一厚度的絕緣襯層(insulating liner)可安置於空隙與第一記憶體單元140-1及第二記憶體單元140-2中的至少一者之間。The first insulating layer 162-1 may be disposed between the plurality of first conductive lines 110. The first insulating layer 162-1 and the third insulating layer 163 may be disposed between the first memory cells 140-1 of the first memory cell layer MCL1. For example, the first insulating layer 162-1 may be disposed between the first memory cells 140-1 disposed in the second direction (Y direction), and the third insulating layer 163 may be disposed in the first direction ( Between the first memory cells 140-1 disposed on the X direction). The third insulating layer 163 may be disposed between the second conductive lines 120 disposed in the first direction. The second insulating layer 162-2 may be disposed between the second memory cells 140-2 of the second memory cell layer MCL2 disposed in the second direction, and may be disposed in the third conductive region disposed in the second direction Between lines 130. The first insulating layer 162-1, the second insulating layer 162-2, and the third insulating layer 163 may be formed of the same insulating material, or the first insulating layer 162-1, the second insulating layer 162-2, and the third insulating layer 163. At least one of the materials may be formed of a material different from the other of the first insulating layer 162-1, the second insulating layer 162-2, and the third insulating layer 163. Each of the first insulating layer 162-1, the second insulating layer 162-2, and the third insulating layer 163 may be formed of an oxide or a nitride, and a memory cell (or component) of each memory cell layer may be ) Electrically separated from each other. In some embodiments, at least one of the first insulating layer 162-1, the second insulating layer 162-2, and the third insulating layer 163 may be replaced by an air space. For example, at least one of the first insulating layer 162-1, the second insulating layer 162-2, and the third insulating layer 163 may not be formed, thereby being between the first memory unit 140-1 and in the second A gap is formed between the memory cells 140-2. In the case of forming a void, an insulating liner having a certain thickness may be disposed between the void and at least one of the first memory unit 140-1 and the second memory unit 140-2.
如圖3所說明,第一記憶體單元140-1的第一選擇元件層143-1可在第三方向(圖2的Z方向)上具有第一高度(或厚度)H1,且第二記憶體單元140-2的第二選擇元件層143-2可在第三方向上具有小於第一高度H1的第二高度(或厚度)H2。在一些實施例中,第一記憶體單元140-1的第一選擇元件層143-1的第一高度H1的範圍可為10 nm至500 nm,且第二記憶體單元140-2的第二選擇元件層143-2的第二高度H2的範圍可為5 nm至450 nm,但並不限於此情形。As illustrated in FIG. 3, the first selection element layer 143-1 of the first memory unit 140-1 may have a first height (or thickness) H1 in the third direction (the Z direction of FIG. 2), and the second memory The second selection element layer 143-2 of the body unit 140-2 may have a second height (or thickness) H2 that is smaller than the first height H1 in the third direction. In some embodiments, the first height H1 of the first selection element layer 143-1 of the first memory unit 140-1 may range from 10 nm to 500 nm, and the second of the second memory unit 140-2 The second height H2 of the selection element layer 143-2 may range from 5 nm to 450 nm, but is not limited thereto.
在一些實施例中,第二選擇元件層143-2的第二高度H2的範圍可為(例如)第一選擇元件層143-1的第一高度H1的50%至90%,但並不限於此情形。In some embodiments, the second height H2 of the second selection element layer 143-2 may range from, for example, 50% to 90% of the first height H1 of the first selection element layer 143-1, but is not limited thereto. This situation.
可控制第一選擇元件層143-1的第一高度H1及第二選擇元件層143-2的第二高度H2,使得第一選擇元件層143-1的第一臨界電壓VT1 的量值與第二選擇元件層143-2的第二臨界電壓VT2 的量值實質上相同。The first height H1 of the first selection element layer 143-1 and the second height H2 of the second selection element layer 143-2 may be controlled such that the magnitude of the first threshold voltage V T1 of the first selection element layer 143-1 is The magnitude of the second threshold voltage V T2 of the second selection element layer 143-2 is substantially the same.
在一些實施例中,可控制第一選擇元件層143-1的第一高度H1及第二選擇元件層143-2的第二高度H2,使得第一選擇元件層143-1的第一臨界電壓VT1 與第二選擇元件層143-2的第二臨界電壓VT2 之間的量值差小於0.5 V。舉例而言,第二選擇元件層143-2的第二臨界電壓VT2 的量值可比第一選擇元件層143-1的第一臨界電壓VT1 的量值小或大不到0.5 V。In some embodiments, the first height H1 of the first selection element layer 143-1 and the second height H2 of the second selection element layer 143-2 may be controlled such that the first threshold voltage of the first selection element layer 143-1 The magnitude difference between V T1 and the second threshold voltage V T2 of the second selection element layer 143-2 is less than 0.5 V. For example, the magnitude of the second threshold voltage V T2 of the second selection element layer 143-2 may be less than or less than 0.5 V greater than the magnitude of the first threshold voltage V T1 of the first selection element layer 143-1.
在一些實施例中,可控制第一選擇元件層143-1的第一高度H1及第二選擇元件層143-2的第二高度H2,使得第二選擇元件層143-2的第二臨界電壓VT2 的量值的範圍為(例如)第一選擇元件143-1的第一臨界電壓VT1 的量值的80%至120%。第二選擇元件層143-2的第二臨界電壓VT2 的量值的範圍可為(例如)第一選擇元件143-1的第一臨界電壓VT1 的量值的90%至110%。In some embodiments, the first height H1 of the first selection element layer 143-1 and the second height H2 of the second selection element layer 143-2 may be controlled such that the second threshold voltage of the second selection element layer 143-2 The magnitude of V T2 ranges from, for example, 80% to 120% of the magnitude of the first threshold voltage V T1 of the first selection element 143-1. The magnitude of the second threshold voltage V T2 of the second selection element layer 143-2 may range from, for example, 90% to 110% of the magnitude of the first threshold voltage V T1 of the first selection element 143-1.
在第二選擇元件層143-2的第二臨界電壓VT2 的量值的範圍為(例如)第一選擇元件143-1的第一臨界電壓VT1 的量值的80%至120%的狀況下,可縮減第一記憶體單元MC1的電屬性與第二記憶體單元MC2的電屬性的差,藉此增加記憶體裝置100的讀取/寫入操作的感測裕度。The magnitude of the magnitude of the second threshold voltage V T2 at the second selection element layer 143-2 is, for example, 80% to 120% of the magnitude of the first threshold voltage V T1 of the first selection element 143-1. Next, the difference between the electrical properties of the first memory cell MC1 and the electrical properties of the second memory cell MC2 can be reduced, thereby increasing the sensing margin of the read/write operation of the memory device 100.
在下文中,將參考圖4至圖6來詳細地描述具有雙向臨界切換(OTS)屬性的選擇元件層143-1及143-2的臨界電壓與電屬性之間的關係。Hereinafter, the relationship between the threshold voltage and the electrical properties of the selection element layers 143-1 and 143-2 having the bidirectional critical switching (OTS) attribute will be described in detail with reference to FIGS. 4 to 6.
圖4為說明表示雙向臨界切換(OTS)屬性的雙向臨界切換元件的電壓-電流曲線40的示意性圖形。圖4示意性地說明回應於施加至雙向臨界切換元件的兩個端子的電壓而流動通過雙向臨界切換元件的電流。4 is a schematic diagram illustrating a voltage-current curve 40 of a bidirectional critical switching element representing bidirectional critical switching (OTS) properties. Figure 4 schematically illustrates the current flowing through the bidirectional critical switching element in response to the voltage applied to the two terminals of the bidirectional critical switching element.
參看圖4,第一曲線41可表示在電流不會流動通過雙向臨界切換元件的狀態下的電壓-電流關係。此處,雙向臨界切換元件可用作具有處於第一電壓位準(voltage level)43的臨界電壓VT 的切換元件。當電壓自電流及電壓處於零的狀態逐漸地增加時,電流可幾乎不流動通過雙向臨界切換元件,直至電壓達到臨界電壓VT (亦即,第一電壓位準43)為止。然而,一旦電壓超過臨界電壓VT ,流動通過雙向臨界切換元件的電流就可急劇地增加,且橫跨雙向臨界切換元件所施加的電壓可減小至第二電壓位準44(或飽和電壓Vs)。Referring to FIG. 4, the first curve 41 may represent a voltage-current relationship in a state where current does not flow through the bidirectional critical switching element. Here, the bidirectional critical switching element can be used as a switching element having a threshold voltage V T at a first voltage level 43. When the voltage gradually increases from the state where the current and the voltage are at zero, the current can hardly flow through the bidirectional critical switching element until the voltage reaches the threshold voltage V T (ie, the first voltage level 43). However, once the voltage exceeds the threshold voltage V T , the current flowing through the bidirectional critical switching element can be sharply increased, and the voltage applied across the bidirectional critical switching element can be reduced to the second voltage level 44 (or the saturation voltage Vs). ).
第二曲線42可表示在電流流動通過雙向臨界切換元件的狀態下的電壓-電流關係。隨著流動通過雙向臨界切換元件的電流增加得大於第一電流位準46,橫跨雙向臨界切換元件所施加的電壓可增加得略微大於第二電壓位準44。舉例而言,儘管流動通過雙向臨界切換元件的電流自第一電流位準46顯著地增加至第二電流位準47,但橫跨雙向臨界切換元件所施加的電壓可自第二電壓階位準44稍微增加。舉例而言,一旦電流流動通過雙向臨界切換元件,橫跨雙向臨界切換元件所施加的電壓就可幾乎維持於飽和電壓Vs(亦即,第二電壓位準44)。當電流減小至小於維持電流位準(亦即,小於第一電流位準46)時,雙向臨界切換元件可切換回至電阻狀態,藉此有效地阻斷電流,直至電壓增加至臨界電壓VT 為止。The second curve 42 may represent a voltage-current relationship in a state where current flows through the bidirectional critical switching element. As the current flowing through the bidirectional critical switching element increases more than the first current level 46, the voltage applied across the bidirectional critical switching element may increase slightly above the second voltage level 44. For example, although the current flowing through the bidirectional critical switching element increases significantly from the first current level 46 to the second current level 47, the voltage applied across the bidirectional critical switching element can be from the second voltage level. 44 increased slightly. For example, once current flows through the bidirectional critical switching element, the voltage applied across the bidirectional critical switching element can be maintained at approximately the saturation voltage Vs (ie, the second voltage level 44). When the current is reduced to less than the sustain current level (ie, less than the first current level 46), the bidirectional critical switching element can be switched back to the resistive state, thereby effectively blocking the current until the voltage is increased to the threshold voltage V. T so far.
圖5A及圖5B為說明根據實例實施例的具有堆疊式交叉點結構的記憶體裝置的操作方法的示意圖。5A and 5B are schematic diagrams illustrating an operation method of a memory device having a stacked cross-point structure, according to an example embodiment.
圖5A及圖5B說明具有堆疊式交叉點結構的記憶體裝置的讀取操作或寫入操作,在堆疊式交叉點結構中,第一下部記憶體單元MC11及第二下部記憶體單元MC12以及第一上部記憶體單元MC21及第二上部記憶體單元MC22可分別安置於共同位元線BL與共同位元線BL下方的第一下部字元線WL11及第二下部字元線WL12之間以及共同位元線BL與共同位元線BL上方的第一上部字元線WL21及第二上部字元線WL22之間。5A and 5B illustrate a read operation or a write operation of a memory device having a stacked cross-point structure in which a first lower memory cell MC11 and a second lower memory cell MC12 and The first upper memory cell MC21 and the second upper memory cell MC22 are respectively disposed between the common bit line BL and the first lower word line WL11 and the second lower word line WL12 below the common bit line BL. And between the common bit line BL and the first upper word line WL21 and the second upper word line WL22 above the common bit line BL.
參看圖5A,可選擇第一下部字元線WL11與共同位元線BL的相交點處的第一下部記憶體單元MC11。為了選擇第一下部字元線WL11,可將較低電壓Vlow(例如,位元線選擇電壓或禁止電壓)施加至共同位元線BL且可將字元線選擇電壓VWL(Sel) 施加至第一下部字元線WL11。Referring to FIG. 5A, the first lower memory cell MC11 at the intersection of the first lower word line WL11 and the common bit line BL may be selected. In order to select the first lower word line WL11, a lower voltage Vlow (eg, a bit line selection voltage or a disable voltage) may be applied to the common bit line BL and the word line selection voltage V WL (Sel) may be applied. To the first lower word line WL11.
舉例而言,可進行寫入操作以將資料儲存於第一下部記憶體單元MC11中(例如,可藉由重設操作及設定操作來進行寫入操作),且可進行讀取操作以讀取儲存於第一下部記憶體單元MC11中的資料。可將具有相對較高值的字元線選擇電壓VWL(Sel) 施加至選定的第一下部字元線WL11,且可將具有相對較低值的較低電壓Vlow施加至共同位元線BL,因此可橫跨第一下部記憶體單元MC11施加具有差值(VWL(Sel) - Vlow)的第一切換電壓。第一切換電壓的量值可大於具有雙向臨界切換屬性的選擇元件SW的臨界電壓的量值。因此,可接通第一下部記憶體單元MC11的選擇元件SW,使得第一電流IMC11 流動通過第一下部記憶體單元MC11的可變電阻層R。在一個實施例中,第一電流IMC11 的量值可基於第一下部記憶體單元MC11的可變電阻層R的電阻狀態(例如,設定或重設)而變化。For example, a write operation may be performed to store data in the first lower memory unit MC11 (for example, a write operation may be performed by a reset operation and a set operation), and a read operation may be performed to read The data stored in the first lower memory cell MC11 is taken. A word line select voltage V WL(Sel) having a relatively higher value may be applied to the selected first lower word line WL11, and a lower voltage Vlow having a relatively lower value may be applied to the common bit line BL, therefore, a first switching voltage having a difference (V WL(Sel) - Vlow) can be applied across the first lower memory cell MC11. The magnitude of the first switching voltage may be greater than the magnitude of the threshold voltage of the selection element SW having the bidirectional critical switching property. Therefore, the selection element SW of the first lower memory cell MC11 can be turned on, so that the first current I MC11 flows through the variable resistance layer R of the first lower memory cell MC11. In one embodiment, the magnitude of the first current I MC11 may vary based on the resistance state (eg, set or reset) of the variable resistance layer R of the first lower memory cell MC11.
同時,可將字元線未選擇電壓VWL(Unsel) 施加至未選定的第二下部字元線WL12以及第一上部字元線WL21及第二上部字元線WL22。因此,可橫跨未選定記憶體單元MC12、MC21及MC22施加具有差值(VWL(Unsel) - Vlow)的關斷電壓(off voltage)。關斷電壓的量值可小於具有雙向臨界切換屬性的選擇元件SW的臨界電壓的量值,因此可不接通選擇元件SW。結果,電流可不流動通過未選定記憶體單元MC12、MC21及MC22的可變電阻層R。Meanwhile, the word line unselected voltage V WL (Unsel) may be applied to the unselected second lower word line WL12 and the first upper word line WL21 and the second upper word line WL22. Therefore, an off voltage having a difference (V WL (Unsel) - Vlow) can be applied across the unselected memory cells MC12, MC21, and MC22. The magnitude of the turn-off voltage may be less than the magnitude of the threshold voltage of the select element SW having the bidirectional critical switching property, so the select element SW may not be turned on. As a result, current may not flow through the variable resistance layer R of the unselected memory cells MC12, MC21, and MC22.
參看圖5B,可選擇第一上部字元線WL21與共同位元線BL的相交點處的第一上部記憶體單元MC21。為了選擇第一上部記憶體單元MC21,可將較低電壓Vlow施加至共同位元線BL且可將字元線選擇電壓VWL(Sel) 施加至第一上部字元線WL21。因此,可橫跨第一上部記憶體單元MC21施加具有差電壓(VWL(Sel) - Vlow)的第二切換電壓。第二切換電壓的量值可大於具有雙向臨界切換屬性的選擇元件SW的臨界電壓。因此,可接通第一上部記憶體單元MC21的選擇元件SW,使得第二電流IMC21 流動通過第一上部記憶體單元MC21的可變電阻R。Referring to FIG. 5B, the first upper memory cell MC21 at the intersection of the first upper word line WL21 and the common bit line BL may be selected. In order to select the first upper memory cell MC21, a lower voltage Vlow may be applied to the common bit line BL and a word line selection voltage V WL (Sel) may be applied to the first upper word line WL21. Therefore, a second switching voltage having a difference voltage (V WL(Sel) - Vlow) can be applied across the first upper memory cell MC21. The magnitude of the second switching voltage may be greater than the threshold voltage of the selection element SW having the bidirectional critical switching property. Therefore, the selection element SW of the first upper memory cell MC21 can be turned on, so that the second current I MC21 flows through the variable resistor R of the first upper memory cell MC21.
相比於圖5A及圖5B,橫跨選定的第一下部記憶體單元MC11所施加的第一切換電壓的量值可等於橫跨選定的第一上部記憶體單元MC21所施加的第二切換電壓的量值。然而,流動通過第一下部記憶體單元MC11的第一電流IMC11 的方向可不同於流動通過第一上部記憶體單元MC21的第二電流IMC21 的方向。因此,流動通過第一下部記憶體單元MC11的第一電流IMC11 的量可不同於流動通過第一上部記憶體單元MC21的第二電流IMC21 的量。5A and 5B, the magnitude of the first switching voltage applied across the selected first lower memory cell MC11 may be equal to the second switching applied across the selected first upper memory cell MC21. The magnitude of the voltage. However, the direction of the first current I MC11 flowing through the first lower memory cell MC11 may be different from the direction of the second current I MC21 flowing through the first upper memory cell MC21. Therefore, the amount of the first current I MC11 flowing through the first lower memory cell MC11 may be different from the amount of the second current I MC21 flowing through the first upper memory cell MC21.
舉例而言,可相對於第一下部記憶體單元MC11的選擇元件SW將相對高電壓施加至第一下部字元線WL11,且可相對於第一上部記憶體單元MC21的選擇元件SW將相對高電壓施加至第一上部字元線WL21。因此,第一下部記憶體單元MC11的選擇元件SW及第一上部記憶體單元MC21的選擇元件SW可分別在不同方向上經受電場。將參考圖6來描述由不同方向上的電場引起的影響或效應。For example, a relatively high voltage may be applied to the first lower word line WL11 relative to the select element SW of the first lower memory cell MC11, and may be relative to the select element SW of the first upper memory cell MC21 A relatively high voltage is applied to the first upper word line WL21. Therefore, the selection element SW of the first lower memory cell MC11 and the selection element SW of the first upper memory cell MC21 can respectively be subjected to an electric field in different directions. The influence or effect caused by the electric field in different directions will be described with reference to FIG.
圖6說明關於分別將正電壓及負電壓施加至雙向臨界切換元件的電壓-電流圖形60。Figure 6 illustrates a voltage-current graph 60 for applying a positive voltage and a negative voltage to a bidirectional critical switching element, respectively.
參看圖6,在具有不同尺寸的第一實驗實例62的雙向臨界切換元件及第二實驗實例64的雙向臨界切換元件中,已發現,當施加正電壓及負電壓時獲得不同的電壓-電流分佈(voltage-current profile)。更具體言之,第一實驗實例62的雙向臨界切換元件在正電壓的時段中具有第一臨界電壓56(V1 )且在負電壓的時段中具有第二臨界電壓58(V2 )。已明確地發現,第一臨界電壓56(V1 )的量值大於第二臨界電壓58(V2 )的量值。Referring to Fig. 6, in the bidirectional critical switching element of the first experimental example 62 having different sizes and the bidirectional critical switching element of the second experimental example 64, it has been found that different voltage-current distributions are obtained when a positive voltage and a negative voltage are applied. (voltage-current profile). More specifically, the bidirectional critical switching element of the first experimental example 62 has a first threshold voltage 56 (V 1 ) in a period of a positive voltage and a second threshold voltage 58 (V 2 ) in a period of a negative voltage. It has been clearly found that the magnitude of the first threshold voltage 56 (V 1 ) is greater than the magnitude of the second threshold voltage 58 (V 2 ).
舉例而言,流動通過選擇元件SW的電流及選擇元件SW的臨界電壓可取決於作用於選擇元件SW的電場的方向而變化。在圖5A及圖5B中,即使將具有相同量值的選擇電壓VWL(Sel) 施加至第一下部字元線WL11及第一上部字元線WL21,連接至第一下部字元線WL11的第一下部記憶體單元MC11與連接至第一上部字元線WL21的第一上部記憶體單元MC21亦可具有彼此不同的電流分佈及彼此不同的臨界電壓。For example, the current flowing through the selection element SW and the threshold voltage of the selection element SW may vary depending on the direction of the electric field acting on the selection element SW. In FIGS. 5A and 5B, even if the selection voltage V WL (Sel) having the same magnitude is applied to the first lower word line WL11 and the first upper word line WL21, the first lower word line is connected. The first lower memory cell MC11 of the WL11 and the first upper memory cell MC21 connected to the first upper word line WL21 may also have different current distributions and different threshold voltages from each other.
此現象可被理解為由選擇元件SW中的不對稱缺陷密度及組成物分佈引起。舉例而言,具有雙向臨界切換屬性的選擇元件SW可包含硫族化物材料。在硫族化物材料的切換機制(switching mechanism)中,當將高電場施加至硫族化物材料時,已知的是,硫族化物材料中的電子阱位點(electron trap site)不均勻地分佈,使得電子沿著電子阱位點以相對高速度而移動。This phenomenon can be understood as caused by the asymmetric defect density and composition distribution in the selection element SW. For example, the selection element SW having a bidirectional critical switching property may comprise a chalcogenide material. In a switching mechanism of a chalcogenide material, when a high electric field is applied to the chalcogenide material, it is known that the electron trap sites in the chalcogenide material are unevenly distributed. , causing electrons to move at relatively high speeds along the electron trap site.
再者,在選擇元件SW中產生大量缺陷的狀況下,電子阱位點的密度可增加。因此,在甚至小的電場中,電子仍可沿著電子阱位點而移動,使得選擇元件SW的臨界電壓變得縮減。Furthermore, in the case where a large number of defects are generated in the selection element SW, the density of the electron trap sites can be increased. Therefore, in even a small electric field, electrons can still move along the electron trap sites, so that the threshold voltage of the selection element SW becomes reduced.
再次參看圖2及圖3,第一記憶體單元140-1的第一選擇元件層143-1的第一高度H1可大於第二記憶體單元140-2的第二選擇元件層143-2的第二高度H2。可作為如下結果而形成此類結構:考慮到第一選擇元件層143-1及第二選擇元件層143-2中的缺陷密度,控制第一高度H1及第二高度H2,使得第一選擇元件層143-1的臨界電壓的量值實質上等於第二選擇元件層143-2的臨界電壓的量值。Referring again to FIGS. 2 and 3, the first height H1 of the first selection element layer 143-1 of the first memory unit 140-1 may be greater than the second selection element layer 143-2 of the second memory unit 140-2. The second height H2. Such a structure can be formed as follows: the first height H1 and the second height H2 are controlled in consideration of the defect density in the first selection element layer 143-1 and the second selection element layer 143-2, so that the first selection element The magnitude of the threshold voltage of layer 143-1 is substantially equal to the magnitude of the threshold voltage of second select element layer 143-2.
定位於基板101上方的第一層級處的第一選擇元件層143-1的缺陷密度可不同於定位於基板101上方的第二層級處的第二選擇元件層143-2的缺陷密度。此處,相比於第一層級,第二層級意謂在第三方向(Z方向)上較遠離於基板101的位置。舉例而言,意謂第一選擇元件層143-1相比於第二選擇元件層143-2較接近於基板101的頂部表面。The defect density of the first selection element layer 143-1 located at the first level above the substrate 101 may be different from the defect density of the second selection element layer 143-2 positioned at the second level above the substrate 101. Here, the second level means a position farther from the substrate 101 in the third direction (Z direction) than the first level. For example, it means that the first selection element layer 143-1 is closer to the top surface of the substrate 101 than the second selection element layer 143-2.
相比於第二層級處的第二選擇元件層143-2,第一層級處的第一選擇元件層143-1可長時間地暴露於製程環境,諸如形成後繼層的沈積製程及/或蝕刻製程。在此類製程環境中,可自基板101下方的夾盤或自加熱器供應熱以維持範圍為數十攝氏度至數百攝氏度的處理溫度。因此,相比於第二層級處的第二選擇元件層143-2,第一層級處的第一選擇元件層143-1可長時間地在高溫氛圍下暴露於沈積環境及/或蝕刻環境。結果,相比於第二選擇元件層143-2,第一選擇元件層143-1可歸因於長時間地暴露於沈積環境及/或蝕刻環境而容易損壞,使得第一層級處的第一選擇元件層143-1的缺陷密度會大於第二層級處的第二選擇元件層143-2的缺陷密度。The first selection element layer 143-1 at the first level may be exposed to the process environment for a long time, such as a deposition process and/or etching to form a subsequent layer, compared to the second selection element layer 143-2 at the second level. Process. In such a process environment, heat may be supplied from a chuck below the substrate 101 or from a heater to maintain a processing temperature ranging from tens of degrees Celsius to hundreds of degrees Celsius. Therefore, the first selection element layer 143-1 at the first level may be exposed to the deposition environment and/or the etching environment for a long time under a high temperature atmosphere compared to the second selection element layer 143-2 at the second level. As a result, the first selection element layer 143-1 can be easily damaged due to prolonged exposure to the deposition environment and/or the etching environment compared to the second selection element layer 143-2, such that the first level at the first level The defect density of the selection element layer 143-1 may be greater than the defect density of the second selection element layer 143-2 at the second level.
如上文所描述,根據選擇元件層143-1及143-2的切換機制,在第一選擇元件層143-1的缺陷密度大於第二第一選擇元件層143-2的缺陷密度的狀況下,第一層級處的第一選擇元件層143-1的臨界電壓可在量值上小於第二層級處的第二選擇元件層143-2的臨界電壓。第一選擇元件層143-1的臨界電壓與第二選擇元件層143-2的臨界電壓之間的量值差可在寫入操作及/或讀取操作中造成較少感測裕度,藉此在記憶體裝置100的寫入操作及/或讀取操作中誘發失敗。As described above, according to the switching mechanism of the selection element layers 143-1 and 143-2, in the case where the defect density of the first selection element layer 143-1 is larger than the defect density of the second first selection element layer 143-2, The threshold voltage of the first selection element layer 143-1 at the first level may be smaller in magnitude than the threshold voltage of the second selection element layer 143-2 at the second level. The magnitude difference between the threshold voltage of the first selection element layer 143-1 and the threshold voltage of the second selection element layer 143-2 may cause less sensing margin in the write operation and/or the read operation, This induces a failure in the write operation and/or the read operation of the memory device 100.
根據如上文所描述的實例實施例,可控制第一記憶體單元140-1的第一選擇元件層143-1的第一高度H1及第二記憶體單元140-2的第二選擇元件層143-2的第二高度H2,使得第一選擇元件層143-1的臨界電壓的量值與第二選擇元件層143-2的臨界電壓的量值實質上相同。According to the example embodiment as described above, the first height H1 of the first selection element layer 143-1 of the first memory unit 140-1 and the second selection element layer 143 of the second memory unit 140-2 may be controlled. The second height H2 of -2 is such that the magnitude of the threshold voltage of the first selection element layer 143-1 is substantially the same as the magnitude of the threshold voltage of the second selection element layer 143-2.
舉例而言,因為第一記憶體單元140-1的第一選擇元件層143-1的第一高度H1大於第二記憶體單元140-2的第二選擇元件層143-2的第二高度H2,所以即使施加至第一選擇元件層143-1的切換電壓與施加至第二選擇元件層143-2的切換電壓相同,作用於第一選擇元件層143-1的電場的量值會小於作用於第二選擇元件層143-2的電場的量值。因此,在第一選擇元件層143-1包含較大缺陷密度的狀況下,可防止第一選擇元件層143-1的臨界電壓歸因於缺陷的縮減,且可縮減第一選擇元件層143-1的臨界電壓與第二選擇元件層143-2的臨界電壓的差。For example, because the first height H1 of the first selection element layer 143-1 of the first memory unit 140-1 is greater than the second height H2 of the second selection element layer 143-2 of the second memory unit 140-2. , so even if the switching voltage applied to the first selection element layer 143-1 is the same as the switching voltage applied to the second selection element layer 143-2, the magnitude of the electric field acting on the first selection element layer 143-1 is less than the effect The magnitude of the electric field of the second selection element layer 143-2. Therefore, in the case where the first selection element layer 143-1 contains a large defect density, the threshold voltage of the first selection element layer 143-1 can be prevented from being attributed to the reduction of the defect, and the first selection element layer 143 can be reduced. The difference between the threshold voltage of 1 and the threshold voltage of the second selection element layer 143-2.
再者,第一選擇元件層143-1的第一高度H1與第二選擇元件層143-2的第二高度H2的差的存在可為如下結果:考慮到施加至第一選擇元件層143-1及第二選擇元件層143-2的電場的方向而控制第一高度H1及第二高度H2,使得第一選擇元件層143-1的臨界電壓與第二選擇元件層143-2的臨界電壓實質上相同。Furthermore, the presence of the difference between the first height H1 of the first selection element layer 143-1 and the second height H2 of the second selection element layer 143-2 may be a result of the application to the first selection element layer 143- The first height H1 and the second height H2 are controlled by the direction of the electric field of the first and second selection element layers 143-2 such that the threshold voltage of the first selection element layer 143-1 and the threshold voltage of the second selection element layer 143-2 Essentially the same.
如參考圖5A、圖5B及圖6所描述,相比於當將正電壓施加至第一選擇元件層143-1及第二選擇元件層143-2時,當將負電壓施加至第一選擇元件層143-1及第二選擇元件層143-2時,已發現,第一選擇元件層143-1及第二選擇元件層143-2具有較低的臨界電壓。因此,在第一選擇元件層143-1與第二選擇元件層143-2具有相同高度的一般狀況下,當將負電壓施加至第一選擇元件層143-1且將正電壓施加至第二選擇元件層143-2時,第一選擇元件層143-1的臨界電壓(例如,圖6的58(V2 ))可在量值上小於第二選擇元件層143-2的臨界電壓(例如,圖6的56(V1 ))。舉例而言,當將相對較低電壓施加至第二導電線120(例如,共同位元線BL)且將相對較高電壓施加至第一導電線110(例如,第一下部字元線WL11)及第三導電線130(例如,第一上部字元線WL21)時(亦即,當將禁止電壓施加至第二導電線120且將大於禁止電壓的字元線選擇電壓施加至第一導電線110及第三導電線130時),第一選擇元件層143-1的臨界電壓(例如,圖6的58(V2 ))可在量值上小於第二選擇元件層143-2的臨界電壓(例如,圖6的56(V1 ))。As described with reference to FIGS. 5A, 5B, and 6, when a positive voltage is applied to the first selection element layer 143-1 and the second selection element layer 143-2, when a negative voltage is applied to the first selection When the element layer 143-1 and the second selection element layer 143-2 are used, it has been found that the first selection element layer 143-1 and the second selection element layer 143-2 have a lower threshold voltage. Therefore, in the general case where the first selection element layer 143-1 and the second selection element layer 143-2 have the same height, when a negative voltage is applied to the first selection element layer 143-1 and a positive voltage is applied to the second When the element layer 143-2 is selected, the threshold voltage of the first selection element layer 143-1 (eg, 58 (V 2 ) of FIG. 6) may be smaller in magnitude than the threshold voltage of the second selection element layer 143-2 (eg, , 56 (V 1 ) of Fig. 6). For example, when a relatively lower voltage is applied to the second conductive line 120 (eg, the common bit line BL) and a relatively higher voltage is applied to the first conductive line 110 (eg, the first lower word line WL11) And the third conductive line 130 (eg, the first upper word line WL21) (ie, when a disable voltage is applied to the second conductive line 120 and a word line select voltage greater than the inhibit voltage is applied to the first conductive The line 110 and the third conductive line 130), the threshold voltage of the first selection element layer 143-1 (eg, 58 (V 2 ) of FIG. 6) may be smaller than the threshold of the second selection element layer 143-2. Voltage (for example, 56 (V 1 ) of Fig. 6).
根據如上文所描述的實例實施例,因為第一選擇元件層143-1的第一高度H1大於第二選擇元件層143-2的第二高度H2,所以當將負電壓施加至第一選擇元件層143-1且將正電壓施加至第二選擇元件層143-2時,作用於第一選擇元件層143-1的電場可在量值上小於作用於第二選擇元件層143-2的電場。因此,可縮減第一選擇元件層143-1的臨界電壓與第二選擇元件層143-2的臨界電壓的量值差,且可縮減第一記憶體單元140-1的電屬性與第二記憶體單元140-2的電屬性的差異。According to the example embodiment as described above, since the first height H1 of the first selection element layer 143-1 is greater than the second height H2 of the second selection element layer 143-2, when a negative voltage is applied to the first selection element When the layer 143-1 and a positive voltage are applied to the second selection element layer 143-2, the electric field acting on the first selection element layer 143-1 may be smaller in magnitude than the electric field acting on the second selection element layer 143-2. . Therefore, the magnitude difference between the threshold voltage of the first selection element layer 143-1 and the threshold voltage of the second selection element layer 143-2 can be reduced, and the electrical properties of the first memory unit 140-1 and the second memory can be reduced. The difference in electrical properties of body unit 140-2.
結果,因為縮減了第一選擇元件層143-1的臨界電壓與第二選擇元件層143-2的臨界電壓的量值差,所以可增加記憶體裝置100的寫入操作及/或讀取操作中的感測裕度,且可防止或減少記憶體裝置100的寫入操作及/或讀取操作歸因於感測裕度縮減的失敗。因此,可改良記憶體裝置100的可靠性。As a result, since the magnitude difference between the threshold voltage of the first selection element layer 143-1 and the threshold voltage of the second selection element layer 143-2 is reduced, the writing operation and/or the reading operation of the memory device 100 can be increased. The sensing margin in and can prevent or reduce the write operation and/or read operation of the memory device 100 due to the failure of the sensing margin reduction. Therefore, the reliability of the memory device 100 can be improved.
圖7至圖13分別為說明根據實例實施例的記憶體裝置100A、100B、100C、100D、100E、100F及100G的橫截面圖,且說明沿著圖2的線A-A'及B-B'所採取的橫截面。在與圖7至圖13有關的實施例中,與圖1至圖6的實施例中所描述的元件相同的元件將由相同圖式元件符號或相同參考指定符號指示。7 through 13 are cross-sectional views illustrating memory devices 100A, 100B, 100C, 100D, 100E, 100F, and 100G, respectively, and illustrating lines A-A' and B-B along FIG. 2, according to an example embodiment. 'The cross section taken. In the embodiments related to FIGS. 7 through 13, the same elements as those described in the embodiments of FIGS. 1 through 6 will be denoted by the same drawing element symbols or the same reference designating symbols.
參看圖7,在根據實例實施例的記憶體裝置100A中,第一記憶體單元140-1的第一選擇元件層143-1的第一高度H1A小於第二記憶體單元140-2的第二選擇元件層143-2的第二高度H2A。可控制第一選擇元件層143-1的第一高度H1A及第二選擇元件層143-2的第二高度H2A,使得第一選擇元件層143-1的第一臨界電壓VT1 的量值與第二選擇元件層143-2的第二臨界VT2 的量值實質上相同。舉例而言,第二選擇元件層143-2的第二臨界VT2 的量值的範圍可為(例如)第一選擇元件層143-1的第一臨界電壓VT1 的量值的80%至120%,較佳地為90%至110%。Referring to FIG. 7, in the memory device 100A according to an example embodiment, the first height H1A of the first selection element layer 143-1 of the first memory unit 140-1 is smaller than the second level of the second memory unit 140-2. The second height H2A of the element layer 143-2 is selected. The first height H1A of the first selection element layer 143-1 and the second height H2A of the second selection element layer 143-2 may be controlled such that the magnitude of the first threshold voltage V T1 of the first selection element layer 143-1 is The magnitude of the second critical V T2 of the second selection element layer 143-2 is substantially the same. For example, the magnitude of the second critical V T2 of the second selection element layer 143-2 may be, for example, 80% of the magnitude of the first threshold voltage V T1 of the first selection element layer 143-1 to 120%, preferably 90% to 110%.
在一些實施例中,可控制第一選擇元件層143-1的第一高度H1A及第二選擇元件層143-2的第二高度H2A,使得第一選擇元件層143-1的第一臨界電壓VT1 與第二選擇元件層143-2的第二臨界VT2 之間的量值差在小於0.5 V的範圍內。In some embodiments, the first height H1A of the first selection element layer 143-1 and the second height H2A of the second selection element layer 143-2 may be controlled such that the first threshold voltage of the first selection element layer 143-1 The magnitude difference between V T1 and the second critical V T2 of the second selection element layer 143-2 is in the range of less than 0.5 V.
在一些實施例中,第一選擇元件層143-1的第一高度H1A的範圍可為(例如)5 nm至450 nm,且第二選擇元件層143-2的第二高度H2A可為(例如)10 nm至500 nm,但並不限於此情形。舉例而言,第一選擇元件層143-1的第一高度H1A的範圍可為第二選擇元件層143-2的第二高度H2A的50%至90%,但並不限於此情形。In some embodiments, the first height H1A of the first selection element layer 143-1 may range from, for example, 5 nm to 450 nm, and the second height H2A of the second selection element layer 143-2 may be (eg, ) 10 nm to 500 nm, but is not limited to this case. For example, the first height H1A of the first selection element layer 143-1 may range from 50% to 90% of the second height H2A of the second selection element layer 143-2, but is not limited thereto.
如參考圖5A、圖5B及圖6所描述,相比於當將正電壓施加至第一選擇元件層143-1及第二選擇元件層143-2時,當將負電壓施加至第一選擇元件層143-1及第二選擇元件層143-2時,已發現,第一選擇元件層143-1及第二選擇元件層143-2具有較低的臨界電壓。因此,在第一選擇元件層143-1與第二選擇元件層143-2具有相同高度的一般狀況下,當將正電壓施加至第一選擇元件層143-1且將負電壓施加至第二選擇元件層143-2時,考慮到電場的方向,第二選擇元件層143-2的臨界電壓可在量值上小於第一選擇元件層143-1的臨界電壓。舉例而言,當將相對較高電壓施加至第二導電線120(例如,共同位元線BL)且將相對較低電壓施加至第一導電線110(例如,第一下部字元線WL11)及第三導電線130(例如,第一上部字元線WL21)時(亦即,當將禁止電壓施加至第二導電線120且將小於禁止電壓的字元線選擇電壓施加至第一導電線110及第三導電線130時),第二選擇元件層143-2的臨界電壓可在量值上小於第一選擇元件層143-1的臨界電壓。As described with reference to FIGS. 5A, 5B, and 6, when a positive voltage is applied to the first selection element layer 143-1 and the second selection element layer 143-2, when a negative voltage is applied to the first selection When the element layer 143-1 and the second selection element layer 143-2 are used, it has been found that the first selection element layer 143-1 and the second selection element layer 143-2 have a lower threshold voltage. Therefore, in the general case where the first selection element layer 143-1 and the second selection element layer 143-2 have the same height, when a positive voltage is applied to the first selection element layer 143-1 and a negative voltage is applied to the second When the element layer 143-2 is selected, the threshold voltage of the second selection element layer 143-2 may be smaller in magnitude than the threshold voltage of the first selection element layer 143-1 in consideration of the direction of the electric field. For example, when a relatively higher voltage is applied to the second conductive line 120 (eg, the common bit line BL) and a relatively lower voltage is applied to the first conductive line 110 (eg, the first lower word line WL11) And the third conductive line 130 (eg, the first upper word line WL21) (ie, when a disable voltage is applied to the second conductive line 120 and a word line select voltage less than the inhibit voltage is applied to the first conductive When the line 110 and the third conductive line 130 are), the threshold voltage of the second selection element layer 143-2 may be smaller than the threshold voltage of the first selection element layer 143-1.
根據實例實施例,因為第二選擇元件層143-2的第二高度H2A大於第一選擇元件層143-1的第一高度H1A,所以當將正電壓施加至第一選擇元件層143-1且將負電壓施加至第二選擇元件層143-2時,作用於第二選擇元件層143-2的電場可在量值上小於作用於第一選擇元件層143-1的電場。舉例而言,可縮減第一選擇元件層143-1的臨界電壓與第二選擇元件層143-2的臨界電壓的量值差,且可縮減第一記憶體單元140-1的電屬性與第二記憶體單元140-2的電屬性的差異。According to an example embodiment, since the second height H2A of the second selection element layer 143-2 is greater than the first height H1A of the first selection element layer 143-1, when a positive voltage is applied to the first selection element layer 143-1 and When a negative voltage is applied to the second selection element layer 143-2, the electric field acting on the second selection element layer 143-2 may be smaller in magnitude than the electric field acting on the first selection element layer 143-1. For example, the magnitude difference between the threshold voltage of the first selection element layer 143-1 and the threshold voltage of the second selection element layer 143-2 may be reduced, and the electrical properties of the first memory unit 140-1 may be reduced. The difference in electrical properties of the two memory cells 140-2.
結果,因為縮減了第一選擇元件層143-1的臨界電壓與第二選擇元件層143-2的臨界電壓的量值差,所以可增加記憶體裝置100A的寫入操作及/或讀取操作中的感測裕度,且可防止或少減記憶體裝置100A的寫入操作及/或讀取操作歸因於感測裕度縮減的失敗。因此,可改良記憶體裝置100A的可靠性。As a result, since the magnitude difference between the threshold voltage of the first selection element layer 143-1 and the threshold voltage of the second selection element layer 143-2 is reduced, the writing operation and/or the reading operation of the memory device 100A can be increased. The sensing margin in and can prevent or reduce the write operation and/or read operation of the memory device 100A due to the failure of the sensing margin reduction. Therefore, the reliability of the memory device 100A can be improved.
參看圖8,在根據實例實施例的記憶體裝置100B中,第一內部間隔件(inner spacer)152-1可形成於第一記憶體單元140-1的側壁上,且第二內部間隔件152-2可形成於第二記憶體單元140-2的側壁上。第一內部間隔件152-1可覆蓋第一記憶體單元140-1的第一電極層141-1及第一選擇元件層143-1的側壁,且第二內部間隔件152-2可覆蓋第二記憶體單元140-2的第五電極層141-2及第二選擇元件層143-2的側壁。第一內部間隔件152-1及第二內部間隔件152-2可圍封第一記憶體單元140-1及第二記憶體單元140-2的側壁以分別保護第一記憶體單元140-1及第二記憶體單元140-2,較佳地為分別保護第一選擇元件層143-1及第二選擇元件層143-2。舉例而言,第一內部間隔件152-1及第二內部間隔件152-2中的每一者可包含絕緣材料。Referring to FIG. 8, in a memory device 100B according to an example embodiment, a first inner spacer 152-1 may be formed on a sidewall of the first memory unit 140-1, and a second internal spacer 152. -2 may be formed on the sidewall of the second memory unit 140-2. The first inner spacer 152-1 may cover the first electrode layer 141-1 of the first memory unit 140-1 and the sidewall of the first selection element layer 143-1, and the second inner spacer 152-2 may cover the first The sidewalls of the fifth electrode layer 141-2 and the second selection element layer 143-2 of the two memory cells 140-2. The first inner spacer 152-1 and the second inner spacer 152-2 may enclose the sidewalls of the first memory unit 140-1 and the second memory unit 140-2 to respectively protect the first memory unit 140-1 And the second memory unit 140-2 preferably protects the first selection element layer 143-1 and the second selection element layer 143-2, respectively. For example, each of the first inner spacer 152-1 and the second inner spacer 152-2 may comprise an insulating material.
儘管第一選擇元件層143-1的第一高度H1大於第二選擇元件層143-2的第二高度H2,如圖8所說明,但本發明概念的態樣並不限於此情形。舉例而言,第一選擇元件層143-1的第一高度H1小於第二選擇元件層143-2的第二高度H2。Although the first height H1 of the first selection element layer 143-1 is greater than the second height H2 of the second selection element layer 143-2, as illustrated in FIG. 8, the aspect of the inventive concept is not limited to this case. For example, the first height H1 of the first selection element layer 143-1 is smaller than the second height H2 of the second selection element layer 143-2.
儘管第一電極層141-1與第五電極層141-2具有相同厚度,如圖8所說明,但本發明概念的態樣並不限於此情形。舉例而言,第一電極層141-1的厚度大於或小於第五電極層141-2的厚度。Although the first electrode layer 141-1 and the fifth electrode layer 141-2 have the same thickness as illustrated in FIG. 8, the aspect of the inventive concept is not limited to this case. For example, the thickness of the first electrode layer 141-1 is greater or smaller than the thickness of the fifth electrode layer 141-2.
在一些實施例中,可藉由鑲嵌製程(damascene process)來形成第一電極層141-1、第五電極層141-2以及第一選擇元件層143-1及第二選擇元件層143-2,可藉由蝕刻製程來形成第二電極層145-1、第三電極層147-1、第四電極層148-1、第六電極層145-2、第七電極層147-2、第八電極層148-2以及第一可變電阻層149-1及第二可變電阻層149-2。因此,第一電極層141-1、第五電極層141-2以及第一選擇元件層143-1及第二選擇元件層143-2可分別具有寬度(例如,在第一方向或第二方向上)向下較窄的結構。In some embodiments, the first electrode layer 141-1, the fifth electrode layer 141-2, and the first selection element layer 143-1 and the second selection element layer 143-2 may be formed by a damascene process. The second electrode layer 145-1, the third electrode layer 147-1, the fourth electrode layer 148-1, the sixth electrode layer 145-2, the seventh electrode layer 147-2, and the eighth layer can be formed by an etching process. The electrode layer 148-2 and the first variable resistance layer 149-1 and the second variable resistance layer 149-2. Therefore, the first electrode layer 141-1, the fifth electrode layer 141-2, and the first selection element layer 143-1 and the second selection element layer 143-2 may each have a width (eg, in the first direction or the second direction) Upper) a narrower structure down.
在一些實施例中,當藉由鑲嵌製程來形成第一電極層141-1及第一選擇元件層143-1時,可將第一內部間隔件152-1形成於溝槽(未圖示)的側壁上,且接著可將第一電極層141-1及第一選擇元件層143-1依序地形成於具有第一內部間隔件152-1的溝槽中以填充溝槽。可將第二電極層145-1、第三電極層147-1、第四電極層148-1以及第一可變電阻層149-1形成於第一選擇元件層143-1上。可藉由與形成第一電極層141-1及第一選擇元件層143-1的製程相似的製程來形成第五電極層141-2及第二選擇元件層143-2。In some embodiments, when the first electrode layer 141-1 and the first selection element layer 143-1 are formed by a damascene process, the first inner spacer 152-1 may be formed in a trench (not shown). On the sidewalls, and then the first electrode layer 141-1 and the first selection element layer 143-1 may be sequentially formed in the trenches having the first internal spacers 152-1 to fill the trenches. The second electrode layer 145-1, the third electrode layer 147-1, the fourth electrode layer 148-1, and the first variable resistance layer 149-1 may be formed on the first selection element layer 143-1. The fifth electrode layer 141-2 and the second selection element layer 143-2 may be formed by a process similar to the process of forming the first electrode layer 141-1 and the first selection element layer 143-1.
參看圖9,在根據實例實施例的記憶體裝置100C中,第一上部間隔件(upper spacer)155-1可形成於第一記憶體單元140-1的側壁上,且第二上部間隔件155-2可形成於第二記憶體單元140-2的側壁上。上部間隔件155-1可覆蓋第一記憶體單元140-1的第一可變電阻層149-1的側壁,且第二上部間隔件155-2可覆蓋第二記憶體單元140-2的第二可變電阻層149-2的側壁。第一上部間隔件155-1及第二上部間隔件155-2可圍封第一記憶體單元140-1及第二記憶體單元140-2的側壁以分別保護第一記憶體單元140-1及第二記憶體單元140-2,較佳地為分別保護第一可變電阻層149-1及第二可變電阻層149-2。舉例而言,第一上部間隔件155-1及第二上部間隔件155-2中的每一者可包含絕緣材料。Referring to FIG. 9, in a memory device 100C according to an example embodiment, a first upper spacer 155-1 may be formed on a sidewall of the first memory unit 140-1, and a second upper spacer 155. -2 may be formed on the sidewall of the second memory unit 140-2. The upper spacer 155-1 may cover the sidewall of the first variable resistance layer 149-1 of the first memory unit 140-1, and the second upper spacer 155-2 may cover the second memory unit 140-2 The sidewall of the second variable resistance layer 149-2. The first upper spacer 155-1 and the second upper spacer 155-2 may enclose the sidewalls of the first memory unit 140-1 and the second memory unit 140-2 to respectively protect the first memory unit 140-1 And the second memory unit 140-2 preferably protects the first variable resistance layer 149-1 and the second variable resistance layer 149-2, respectively. For example, each of the first upper spacer 155-1 and the second upper spacer 155-2 may comprise an insulating material.
儘管第一選擇元件層143-1的第一高度H1大於第二選擇元件層143-2的第二高度H2,如圖9所說明,但本發明概念的態樣並不限於此情形。舉例而言,第一選擇元件層143-1的第一高度H1小於第二選擇元件層143-2的第二高度H2。Although the first height H1 of the first selection element layer 143-1 is greater than the second height H2 of the second selection element layer 143-2, as illustrated in FIG. 9, the aspect of the inventive concept is not limited to this case. For example, the first height H1 of the first selection element layer 143-1 is smaller than the second height H2 of the second selection element layer 143-2.
在一些實施例中,可藉由鑲嵌製程來形成第一可變電阻層149-1及第二可變電阻層149-2,可藉由蝕刻製程來形成第一電極層141-1、第二電極層145-1、第三電極層147-1、第四電極層148-1、第一選擇元件層143-1及第二選擇元件層143-2以及第五電極層141-2、第六電極層145-2、第七電極層147-2、第八電極層148-2。因此,第一可變電阻層149-1及可變電阻層149-2可分別具有寬度(例如,在第一方向或第二方向上)向下較窄的結構。In some embodiments, the first variable resistance layer 149-1 and the second variable resistance layer 149-2 may be formed by a damascene process, and the first electrode layer 141-1 and the second electrode may be formed by an etching process. Electrode layer 145-1, third electrode layer 147-1, fourth electrode layer 148-1, first selection element layer 143-1 and second selection element layer 143-2, and fifth electrode layer 141-2, sixth Electrode layer 145-2, seventh electrode layer 147-2, and eighth electrode layer 148-2. Therefore, the first variable resistance layer 149-1 and the variable resistance layer 149-2 may each have a structure in which the width (for example, in the first direction or the second direction) is narrower downward.
在一些實施例中,當藉由鑲嵌製程來形成第一可變電阻層149-1時,可將第一上部間隔件155-1形成於溝槽(未圖示)的側壁上,且接著可將第一可變電阻層149-1形成於具有第一上部間隔件155-1的溝槽中以填充溝槽。可藉由與形成第一可變電阻層149-1的製程相似的製程來形成第二可變電阻層149-2。In some embodiments, when the first variable resistance layer 149-1 is formed by a damascene process, the first upper spacers 155-1 may be formed on sidewalls of the trenches (not shown), and then The first variable resistance layer 149-1 is formed in the trench having the first upper spacer 155-1 to fill the trench. The second variable resistance layer 149-2 can be formed by a process similar to the process of forming the first variable resistance layer 149-1.
在實例實施例中,記憶體裝置(未圖示)可包含多個第一記憶體單元140-1及多個第二記憶體單元140-2。第一記憶體單元140-1中的每一者可包含形成於第一選擇元件層143-1的側壁上的第一內部間隔件152-1以及形成於第一可變電阻層149-1的側壁上的第一上部間隔件155-1。第二記憶體單元140-2中的每一者可包含形成於第二選擇元件層143-2的側壁上的第二內部間隔件152-2以及形成於第二可變電阻層149-2的側壁上的第二上部間隔件155-2。In an example embodiment, the memory device (not shown) may include a plurality of first memory cells 140-1 and a plurality of second memory cells 140-2. Each of the first memory cells 140-1 may include a first internal spacer 152-1 formed on a sidewall of the first selection element layer 143-1 and a first variable resistance layer 149-1 formed on the first variable resistance layer 149-1 A first upper spacer 155-1 on the side wall. Each of the second memory cells 140-2 may include a second internal spacer 152-2 formed on a sidewall of the second selection element layer 143-2 and a second variable resistance layer 149-2 formed on the second variable resistance layer 149-2. A second upper spacer 155-2 on the side wall.
參看圖10,在根據實例實施例的記憶體裝置100D中,第一可變電阻層149-1及第二可變電阻層149-2可被形成為具有「L」截面形狀。具體言之,可藉由蝕刻製程來形成第一電極層141-1、第二電極層145-1、第三電極層147-1、第四電極層148-1、第一選擇元件層143-1及第二選擇元件層143-2以及第五電極層141-2、第六電極層145-2、第七電極層147-2、第八電極層148-2,且可藉由鑲嵌製程來形成第一可變電阻層149-1及第二可變電阻層149-2。Referring to FIG. 10, in the memory device 100D according to example embodiments, the first variable resistance layer 149-1 and the second variable resistance layer 149-2 may be formed to have an "L" sectional shape. Specifically, the first electrode layer 141-1, the second electrode layer 145-1, the third electrode layer 147-1, the fourth electrode layer 148-1, and the first selection element layer 143 may be formed by an etching process. 1 and the second selection element layer 143-2 and the fifth electrode layer 141-2, the sixth electrode layer 145-2, the seventh electrode layer 147-2, and the eighth electrode layer 148-2, and can be fabricated by a damascene process The first variable resistance layer 149-1 and the second variable resistance layer 149-2 are formed.
第一上部間隔件155-1及第二上部間隔件155-2可分別形成於第一可變電阻層149-1的側壁及第二可變電阻層149-2的側壁上。因為第一可變電阻層149-1及第二可變電阻層149-2具有「L」截面形狀,所以第一上部間隔件155-1及第二上部間隔件155-2可分別被形成為不對稱結構。The first upper spacers 155-1 and the second upper spacers 155-2 may be formed on sidewalls of the first variable resistance layer 149-1 and sidewalls of the second variable resistance layer 149-2, respectively. Since the first variable resistance layer 149-1 and the second variable resistance layer 149-2 have an "L" sectional shape, the first upper spacers 155-1 and the second upper spacers 155-2 may be formed as Asymmetric structure.
根據用於形成第一可變電阻層149-1及第二可變電阻層149-2的實例製程,可在第三電極層147-1及第七電極層147-2中的每一者上形成絕緣層,且可在絕緣層中形成溝槽。溝槽可被形成為與鄰近的第一選擇元件層143-1及鄰近的第二選擇元件層143-2中的各別者重疊。可在溝槽中及在絕緣層上薄薄地形成用於形成可變電阻層的第一材料層,且接著可形成用於形成上部間隔件的第二材料層。可對第一材料層及第二材料層執行諸如化學機械拋光製程(chemical mechanical polishing process)的平坦化製程(planarization process),直至暴露絕緣層的頂部表面為止。在平坦化製程之後,可使用遮罩圖案(mask pattern)來蝕刻第一材料層及第二材料層以作為蝕刻遮罩(etch mask)而與第一記憶體單元140-1及第二記憶體單元140-2對準。因此,第一可變電阻層149-1及第二可變電阻層149-2可被形成為具有「L」截面形狀,且第一上部間隔件155-1及第二上部間隔件155-2分別形成於第一可變電阻層149-1的側壁及第二可變電阻層149-2的側壁上。According to an exemplary process for forming the first variable resistance layer 149-1 and the second variable resistance layer 149-2, on each of the third electrode layer 147-1 and the seventh electrode layer 147-2 An insulating layer is formed, and a trench can be formed in the insulating layer. The trench may be formed to overlap with each of the adjacent first selection element layer 143-1 and the adjacent second selection element layer 143-2. A first material layer for forming a variable resistance layer may be thinly formed in the trench and on the insulating layer, and then a second material layer for forming the upper spacer may be formed. A planarization process such as a chemical mechanical polishing process may be performed on the first material layer and the second material layer until the top surface of the insulating layer is exposed. After the planarization process, the first material layer and the second material layer may be etched using a mask pattern to serve as an etch mask with the first memory unit 140-1 and the second memory. Unit 140-2 is aligned. Therefore, the first variable resistance layer 149-1 and the second variable resistance layer 149-2 may be formed to have an "L" sectional shape, and the first upper spacer 155-1 and the second upper spacer 155-2 The sidewalls of the first variable resistance layer 149-1 and the sidewalls of the second variable resistance layer 149-2 are formed respectively.
參看圖11,在根據實例實施例的記憶體裝置100E中,第一可變電阻層149-1及第二可變電阻層149-2可被形成為具有「I」截面形狀。可藉由與形成具有圖10的「L」截面形狀的第一可變電阻層149-1及第二可變電阻層149-2的製程相似的製程來形成具有「I」截面形狀的第一可變電阻層149-1及第二可變電阻層149-2。舉例而言,在溝槽中及在絕緣層上薄薄地形成用於形成可變電阻層的第一材料層之後,可對第一材料層執行非等向性蝕刻製程(anisotropic etching process),使得第一材料層僅留存於溝槽的側壁上。可形成包含絕緣材料的第二材料層以覆蓋第一材料層。可執行平坦化製程(例如,化學機械拋光製程)以暴露絕緣層的頂部表面。在平坦化製程之後,可使用遮罩圖案來蝕刻第二材料層以作為蝕刻遮罩而與第一記憶體單元140-1及第二記憶體單元140-2對準。因此,第一可變電阻層149-1及第二可變電阻層149-2可被形成為具有「I」截面形狀,且第一上部間隔件155-1及第二上部間隔件155-2分別形成於第一可變電阻層149-1的側壁及第二可變電阻層149-2的側壁上。Referring to FIG. 11, in the memory device 100E according to example embodiments, the first variable resistance layer 149-1 and the second variable resistance layer 149-2 may be formed to have an "I" sectional shape. The first shape having the "I" cross-sectional shape can be formed by a process similar to the process of forming the first variable resistance layer 149-1 and the second variable resistance layer 149-2 having the "L" cross-sectional shape of FIG. Variable resistance layer 149-1 and second variable resistance layer 149-2. For example, after the first material layer for forming the variable resistance layer is thinly formed in the trench and on the insulating layer, an anisotropic etching process may be performed on the first material layer, such that an anisotropic etching process is performed. The first material layer remains only on the sidewalls of the trench. A second material layer comprising an insulating material may be formed to cover the first material layer. A planarization process (eg, a chemical mechanical polishing process) may be performed to expose the top surface of the insulating layer. After the planarization process, a mask pattern can be used to etch the second material layer to align with the first memory cell 140-1 and the second memory cell 140-2 as an etch mask. Therefore, the first variable resistance layer 149-1 and the second variable resistance layer 149-2 may be formed to have an "I" sectional shape, and the first upper spacer 155-1 and the second upper spacer 155-2 The sidewalls of the first variable resistance layer 149-1 and the sidewalls of the second variable resistance layer 149-2 are formed respectively.
參看圖12,在根據實例實施例的記憶體裝置100F中,第一加熱電極層146-1可進一步形成於第一可變電阻層149-1與第三電極層147-1之間,且第二加熱電極層146-2可進一步形成於第二可變電阻層149-2與第八電極層148-2之間。Referring to FIG. 12, in the memory device 100F according to an example embodiment, the first heating electrode layer 146-1 may be further formed between the first variable resistance layer 149-1 and the third electrode layer 147-1, and The second heating electrode layer 146-2 may be further formed between the second variable resistance layer 149-2 and the eighth electrode layer 148-2.
如圖12所說明,可在自第二導電線120朝向第一導電線110的方向上按次序配置第一可變電阻層149-1及第一加熱電極層146-1,且可在自第二導電線120朝向第三導電線130的方向上按次序配置第二可變電阻層149-2及第二加熱電極層146-2。因此,相對於第二導電線120,第一記憶體單元140-1中的第一可變電阻層149-1及第一加熱電極層146-1的配置可與第二記憶體單元140-2中的第二可變電阻層149-2及第二加熱電極層146-2的配置對稱。因此,可縮減第一可變電阻層149-1的電阻值與第二可變電阻層149-2的電阻值之間的差。舉例而言,當第一可變電阻層149-1及第二可變電阻層149-2中的每一者包含GeSbTe時,正離子(例如,Sb+ )的擴散率(diffusion rate)與負離子(例如,Te+ )的擴散率可在第一可變電阻層149-1及第二可變電阻層149-2中彼此不同。當將負電壓施加至第一可變電阻層149-1且將正電壓施加至第二可變電阻層149-2時,在第一可變電阻層149-1及第二可變電阻層149-2中,負離子的擴散率與正離子的擴散率之間的差異可誘發局域濃度改變(local concentration change)。因此,第一可變電阻層149-1的電阻值與第二可變電阻層149-2的電阻值可彼此不同。As illustrated in FIG. 12, the first variable resistance layer 149-1 and the first heating electrode layer 146-1 may be disposed in order from the second conductive line 120 toward the first conductive line 110, and may be in the first The second variable resistance layer 149-2 and the second heating electrode layer 146-2 are disposed in this order in the direction in which the two conductive lines 120 are directed toward the third conductive line 130. Therefore, the arrangement of the first variable resistance layer 149-1 and the first heating electrode layer 146-1 in the first memory unit 140-1 may be opposite to the second memory unit 140-2 with respect to the second conductive line 120. The arrangement of the second variable resistance layer 149-2 and the second heating electrode layer 146-2 is symmetrical. Therefore, the difference between the resistance value of the first variable resistance layer 149-1 and the resistance value of the second variable resistance layer 149-2 can be reduced. For example, when each of the first variable resistance layer 149-1 and the second variable resistance layer 149-2 includes GeSbTe, a diffusion rate and an anion of a positive ion (eg, Sb + ) The diffusivity of (e.g., Te + ) may be different from each other in the first variable resistance layer 149 - 1 and the second variable resistance layer 149 - 2 . When a negative voltage is applied to the first variable resistance layer 149-1 and a positive voltage is applied to the second variable resistance layer 149-2, the first variable resistance layer 149-1 and the second variable resistance layer 149 In -2, the difference between the diffusivity of the negative ions and the diffusivity of the positive ions induces a local concentration change. Therefore, the resistance value of the first variable resistance layer 149-1 and the resistance value of the second variable resistance layer 149-2 may be different from each other.
根據實例實施例,因為相對於第二導電線120,第一記憶體單元140-1中的第一可變電阻層149-1及第一加熱電極層146-1的堆疊式結構與第二記憶體單元140-2中的第二加熱電極層146-2及第二可變電阻層149-2的堆疊式結構對稱,所以可縮減第一可變電阻層149-1的電阻值與第二可變電阻層149-2的電阻值之間的差,使得第一記憶體單元140-1及第二記憶體單元140-2中的每一者可具有均一操作屬性。第一可變電阻層149-1及第二可變電阻層149-2中的每一者的電阻值被假定為處於相同狀態(例如,設定狀態或重設狀態)。According to an example embodiment, the stacked structure of the first variable resistance layer 149-1 and the first heating electrode layer 146-1 in the first memory unit 140-1 and the second memory are opposite to the second conductive line 120 The stacked structure of the second heating electrode layer 146-2 and the second variable resistance layer 149-2 in the body unit 140-2 is symmetrical, so that the resistance value of the first variable resistance layer 149-1 can be reduced and the second The difference between the resistance values of the variable resistance layer 149-2 is such that each of the first memory unit 140-1 and the second memory unit 140-2 can have a uniform operational property. The resistance values of each of the first variable resistance layer 149-1 and the second variable resistance layer 149-2 are assumed to be in the same state (for example, a set state or a reset state).
參看圖13,在根據實例實施例的記憶體裝置100G中,第一加熱電極層146-1可進一步形成於第一可變電阻層149-1與第四電極層148-1之間,且第二加熱電極層146-2可進一步形成於第二可變電阻層149-2與第七電極層147-2之間。Referring to FIG. 13, in the memory device 100G according to an example embodiment, the first heating electrode layer 146-1 may be further formed between the first variable resistance layer 149-1 and the fourth electrode layer 148-1, and The second heating electrode layer 146-2 may be further formed between the second variable resistance layer 149-2 and the seventh electrode layer 147-2.
如圖13所說明,相對於第二導電線120,第一記憶體單元140-1中的第一可變電阻層149-1及第一加熱電極層146-1的配置可與第二記憶體單元140-2中的第二可變電阻層149-2及第二加熱電極層146-2的配置對稱。如上文所描述,可縮減第一可變電阻層149-1的電阻值與第二可變電阻層149-2的電阻值之間的差,使得第一記憶體單元140-1及第二記憶體單元140-2中的每一者可具有統一操作屬性。As illustrated in FIG. 13 , the first variable resistance layer 149 - 1 and the first heating electrode layer 146-1 in the first memory unit 140 - 1 may be disposed opposite to the second conductive line 120 . The arrangement of the second variable resistance layer 149-2 and the second heating electrode layer 146-2 in the unit 140-2 is symmetrical. As described above, the difference between the resistance value of the first variable resistance layer 149-1 and the resistance value of the second variable resistance layer 149-2 can be reduced, so that the first memory unit 140-1 and the second memory Each of the body units 140-2 can have uniform operational attributes.
儘管第一選擇元件層143-1的第一高度H1大於第二選擇元件層143-2的第二高度H2,如圖10至圖13所說明,但本發明概念的態樣並不限於此情形。舉例而言,第一選擇元件層143-1的第一高度H1可被形成為小於第二選擇元件層143-2的第二高度H2。Although the first height H1 of the first selection element layer 143-1 is greater than the second height H2 of the second selection element layer 143-2, as illustrated in FIGS. 10 to 13, the aspect of the inventive concept is not limited to this case. . For example, the first height H1 of the first selection element layer 143-1 may be formed to be smaller than the second height H2 of the second selection element layer 143-2.
在參考圖1至13所描述的實例實施例中,描述第一記憶體單元140-1及第二記憶體單元140-2垂直地配置於第一導電線110、第二導電線120與第三導電線130之間的結構,但本發明概念的態樣並不限於此情形。在一些實施例中,絕緣層(未圖示)可形成於第三導電線130上,且具有如參考圖1至圖13所描述的交叉點陣列的至少一個堆疊結構可安置於絕緣層上。In the example embodiment described with reference to FIGS. 1 to 13, the first memory unit 140-1 and the second memory unit 140-2 are vertically disposed on the first conductive line 110, the second conductive line 120, and the third. The structure between the conductive lines 130, but the aspect of the inventive concept is not limited to this case. In some embodiments, an insulating layer (not shown) may be formed on the third conductive line 130, and at least one stacked structure having an array of intersections as described with reference to FIGS. 1 through 13 may be disposed on the insulating layer.
圖14為說明根據實例實施例的記憶體裝置200的透視圖,且圖15為根據實例實施例的沿著圖14的線2A-2A'所採取的橫截面圖。FIG. 14 is a perspective view illustrating a memory device 200 according to an example embodiment, and FIG. 15 is a cross-sectional view taken along line 2A-2A' of FIG. 14 according to an example embodiment.
參看圖14及圖15,記憶體裝置200可包含安置於基板102上的第一層級處的驅動電路區(drive circuit region)210,以及安置於驅動電路區210上的第二層級處的記憶體單元陣列區(memory cell array region)MCA。Referring to FIGS. 14 and 15, the memory device 200 can include a drive circuit region 210 disposed at a first level on the substrate 102, and a memory at a second level disposed on the drive circuit region 210. Memory cell array region MCA.
此處,層級意謂在垂直方向(亦即,圖14及圖15的Z方向)上與基板102相隔的高度(或位置)。第一層級相比於第二層級較接近於基板102。驅動電路區210可為用於驅動記憶體單元區MCA中的記憶體單元的周邊電路(或驅動電路)被安置的區。舉例而言,驅動電路區210中的周邊電路可包含處理輸入至記憶體單元陣列區MCA中的記憶體單元或自記憶體單元陣列區MCA中的記憶體單元輸出的資料的電路。周邊電路可包含(例如)頁面緩衝器(page buffer)、閂鎖器電路(latch circuit)、快取記憶體電路(cache circuit)、行解碼器(column decoder)、感測放大器(sense amplifier)、資料輸入/輸出電路(data in/out circuit)或列解碼器(row decoder)。Here, the level means the height (or position) spaced apart from the substrate 102 in the vertical direction (that is, the Z direction of FIGS. 14 and 15). The first level is closer to the substrate 102 than the second level. The driving circuit region 210 may be a region in which peripheral circuits (or driving circuits) for driving the memory cells in the memory cell region MCA are disposed. For example, the peripheral circuits in the driver circuit region 210 may include circuitry for processing data input to the memory cells in the memory cell array region MCA or from the memory cells in the memory cell array region MCA. Peripheral circuits may include, for example, a page buffer, a latch circuit, a cache circuit, a column decoder, a sense amplifier, Data in/out circuit or row decoder.
用於周邊電路(或驅動電路)的主動區(active region)AC可由基板102中的裝置隔離層(device isolation layer)104界定。構成驅動電路區210中的周邊電路的多個電晶體TR可形成於主動區AC上及主動區AC中。所述多個電晶體TR可各自包含閘極G、閘極絕緣層GD以及源極/汲極區SD。絕緣間隔件(insulating spacer)106可形成於閘極G的相對側壁上,且蝕刻終止層(etch stop layer)108可形成於閘極G及絕緣間隔件106上。蝕刻終止層108可包含絕緣材料,例如,氮化矽或氮氧化矽。An active region AC for a peripheral circuit (or drive circuit) may be defined by a device isolation layer 104 in the substrate 102. A plurality of transistors TR constituting peripheral circuits in the driving circuit region 210 may be formed on the active region AC and in the active region AC. The plurality of transistors TR may each include a gate G, a gate insulating layer GD, and a source/drain region SD. Insulating spacers 106 may be formed on opposite sidewalls of the gate G, and an etch stop layer 108 may be formed on the gate G and the insulating spacers 106. The etch stop layer 108 may comprise an insulating material such as tantalum nitride or hafnium oxynitride.
多個層間絕緣層212A、212B及212C可依序地堆疊於蝕刻終止層108上。所述多個層間絕緣層212A、212B及212C中的每一者可包含(例如)氧化矽、氮化矽及/或氮氧化矽。A plurality of interlayer insulating layers 212A, 212B, and 212C may be sequentially stacked on the etch stop layer 108. Each of the plurality of interlayer insulating layers 212A, 212B, and 212C may include, for example, hafnium oxide, tantalum nitride, and/or hafnium oxynitride.
驅動電路區210可包含電連接至所述多個電晶體TR的多層級內連線結構(multilevel interconnection structure)214。多層級內連線結構214可由所述多個層間絕緣層212A、212B及212C覆蓋。多層級內連線結構214可包含依序地在基板102上以彼此電連接的第一接觸件(contact)216A、第一內連線層(interconnection layer)218A、第二接觸件216b以及第二內連線層218B。第一內連線層218A及第二內連線層218B可包含金屬、導電金屬氮化物、金屬矽化物或其組合。第一內連線層218A及第二內連線層218B可包含(例如)鎢、鉬、鈦、鈷、鉭、鎳、矽化鎢、矽化鈦、矽化鈷、矽化鉭或矽化鎳。The driver circuit region 210 may include a multilevel interconnection structure 214 electrically connected to the plurality of transistors TR. The multi-level interconnect structure 214 may be covered by the plurality of interlayer insulating layers 212A, 212B, and 212C. The multi-level interconnect structure 214 can include a first contact 216A, a first interconnect layer 218A, a second contact 216b, and a second that are electrically connected to each other sequentially on the substrate 102. Interconnect layer 218B. The first interconnect layer 218A and the second interconnect layer 218B may comprise a metal, a conductive metal nitride, a metal telluride, or a combination thereof. The first interconnect layer 218A and the second interconnect layer 218B may comprise, for example, tungsten, molybdenum, titanium, cobalt, rhenium, nickel, tungsten telluride, titanium telluride, cobalt telluride, antimony telluride or nickel telluride.
儘管多層級內連線結構214包含具有第一內連線層218A及第二內連線層218B的兩層級內連線結構,如圖15所說明,但本發明概念的態樣並不限於此情形。舉例而言,根據驅動電路區210的佈局及閘極G的配置或類型,多層級內連線結構214可包含三層級或多於三層級內連線結構。Although the multi-level interconnect structure 214 includes a two-level interconnect structure having a first interconnect layer 218A and a second interconnect layer 218B, as illustrated in FIG. 15, the aspects of the inventive concept are not limited thereto. situation. For example, depending on the layout of the driver circuit region 210 and the configuration or type of gate G, the multi-level interconnect structure 214 may comprise a three-level or more than three-level interconnect structure.
上部層間絕緣層220可形成於層間絕緣層212C上。記憶體單元陣列區MCA可安置於上部層間絕緣層220上。在記憶體單元陣列區MCA中,可安置如參考圖1至圖13所描述的記憶體裝置100、100A、100B、100C、100D、100E、100F及100G中的至少一者或其組合。The upper interlayer insulating layer 220 may be formed on the interlayer insulating layer 212C. The memory cell array region MCA may be disposed on the upper interlayer insulating layer 220. In the memory cell array region MCA, at least one or a combination of the memory devices 100, 100A, 100B, 100C, 100D, 100E, 100F, and 100G as described with reference to FIGS. 1 through 13 may be disposed.
可進一步安置穿透上部層間絕緣層220的內連線結構(未圖示),以將記憶體單元陣列區MCA中的記憶體單元電連接至驅動電路區210中的周邊電路。An interconnect structure (not shown) penetrating the upper interlayer insulating layer 220 may be further disposed to electrically connect the memory cells in the memory cell array region MCA to peripheral circuits in the driving circuit region 210.
在根據實例實施例的記憶體裝置200中,因為記憶體單元陣列區MCA安置於驅動電路區210上,所以可增加記憶體裝置200的積集度。In the memory device 200 according to the example embodiment, since the memory cell array region MCA is disposed on the driving circuit region 210, the degree of accumulation of the memory device 200 can be increased.
儘管第一選擇元件層143-1的第一高度H1大於第二選擇元件層143-2的第二高度H2,如圖15所說明,但本發明概念的態樣並不限於此情形。舉例而言,第一選擇元件層143-1的第一高度H1可被形成為小於第二選擇元件層143-2的第二高度H2。Although the first height H1 of the first selection element layer 143-1 is greater than the second height H2 of the second selection element layer 143-2, as illustrated in FIG. 15, the aspect of the inventive concept is not limited to this case. For example, the first height H1 of the first selection element layer 143-1 may be formed to be smaller than the second height H2 of the second selection element layer 143-2.
圖16A至圖16I為說明根據實例實施例的製造記憶體裝置100的方法的階段的橫截面圖。16A-16I are cross-sectional views illustrating stages of a method of fabricating a memory device 100, in accordance with an example embodiment.
參考圖16A至圖16I來描述如圖2及圖3所說明的製造記憶體裝置100的方法。圖16A至圖16I說明對應於根據製程階段沿著圖2的線A-A'及B-B'所採取的橫截面的橫截面架構。使用相同圖式元件符號以表示與圖1至圖15中的元件相同的元件,且出於簡潔起見而省略其重複描述。A method of manufacturing the memory device 100 as illustrated in FIGS. 2 and 3 will be described with reference to FIGS. 16A through 16I. 16A through 16I illustrate cross-sectional structures corresponding to cross sections taken along lines AA' and BB' of Fig. 2 in accordance with the process stages. The same drawing element symbols are used to denote the same elements as those in FIGS. 1 to 15, and repeated description thereof is omitted for the sake of brevity.
參看圖16A,層間絕緣層105可形成於基板101上。層間絕緣層105可由氧化矽、氮化矽以及氮氧化矽中的至少一者形成。Referring to FIG. 16A, an interlayer insulating layer 105 may be formed on the substrate 101. The interlayer insulating layer 105 may be formed of at least one of cerium oxide, cerium nitride, and cerium oxynitride.
第一導電層110P可形成於層間絕緣層105上,且可形成第一堆疊結構CPS1,其中初步第一電極層141-1P、初步第一選擇元件層143-1P、初步第二電極層145-1P、初步第三電極層147-1P、初步第一可變電阻層149-1P及初步第四電極層148-1P依序地形成於第一導電層110P上。第一堆疊結構CPS1可用來形成交叉點陣列。The first conductive layer 110P may be formed on the interlayer insulating layer 105, and may form the first stacked structure CPS1, wherein the preliminary first electrode layer 141-1P, the preliminary first selection element layer 143-1P, and the preliminary second electrode layer 145- 1P, the preliminary third electrode layer 147-1P, the preliminary first variable resistance layer 149-1P, and the preliminary fourth electrode layer 148-1P are sequentially formed on the first conductive layer 110P. The first stack structure CPS1 can be used to form an array of cross points.
第一導電層110P、初步第一電極層141-1P、初步第一選擇元件層143-1P、初步第二電極層145-1P、初步第三電極層147-1P、初步第一可變電阻層149-1P及初步第四電極層148-1P可由與如參考圖2及圖3所描述的第一導電線110、第一電極層141-1、第一選擇元件層143-1、第二電極層145-1、第三電極層147-1、第一可變電阻層149-1及第四電極層148-1的材料相同的材料形成。First conductive layer 110P, preliminary first electrode layer 141-1P, preliminary first selection element layer 143-1P, preliminary second electrode layer 145-1P, preliminary third electrode layer 147-1P, preliminary first variable resistance layer The 149-1P and the preliminary fourth electrode layer 148-1P may be the first conductive line 110, the first electrode layer 141-1, the first selection element layer 143-1, and the second electrode as described with reference to FIGS. 2 and 3. The material of the layer 145-1, the third electrode layer 147-1, the first variable resistance layer 149-1, and the fourth electrode layer 148-1 is formed of the same material.
第一遮罩圖案410可形成於初步第四電極層148-1P上。The first mask pattern 410 may be formed on the preliminary fourth electrode layer 148-1P.
第一遮罩圖案410可包含在第一方向(圖2的X方向)上延伸且在第二方向(圖2的Y方向)上彼此隔開的多個線圖案(line pattern)。第一遮罩圖案410可包含單一層或多層堆疊。第一遮罩圖案410可包含(例如)光阻圖案(photoresist pattern)、氧化矽圖案(silicon oxide pattern)、氮化矽圖案(silicon nitride pattern)、氮氧化矽圖案(silicon oxynitride pattern)、多晶矽圖案(poly-silicon pattern)或其組合,但並不限於此情形。第一遮罩圖案410可由各種材料形成。The first mask pattern 410 may include a plurality of line patterns extending in the first direction (X direction of FIG. 2) and spaced apart from each other in the second direction (Y direction of FIG. 2). The first mask pattern 410 may comprise a single layer or a multi-layer stack. The first mask pattern 410 may include, for example, a photoresist pattern, a silicon oxide pattern, a silicon nitride pattern, a silicon oxynitride pattern, and a polysilicon pattern. (poly-silicon pattern) or a combination thereof, but is not limited to this case. The first mask pattern 410 may be formed of various materials.
參看圖16B,可使用第一遮罩圖案410作為蝕刻遮罩來依序非等向性地蝕刻第一堆疊結構CPS1及第一導電層110P,以將第一堆疊結構CPS1分離成多個第一堆疊線CPL1且將第一導電層110P分離成多個第一導電線110。Referring to FIG. 16B, the first stacked pattern CPS1 and the first conductive layer 110P may be sequentially anisotropically etched using the first mask pattern 410 as an etch mask to separate the first stacked structure CPS1 into a plurality of first The line CPL1 is stacked and the first conductive layer 110P is separated into a plurality of first conductive lines 110.
結果,多個第一導電線110及多個第一堆疊線CPL1可被形成為在第一方向上延伸。所述多個第一導電線110可在第二方向上彼此隔開,且所述多個第一堆疊線CPL1可在第二方向上彼此隔開。所述多個第一導電線110可形成第一導電線層110L。所述多個第一堆疊線CPL1可各自包含第一電極層線141-1L、第一選擇元件層線143-1L、第二電極層線145-1L、第三電極層線147-1L、第一可變電阻層線149-1L以及第四電極層線148-1L。As a result, the plurality of first conductive lines 110 and the plurality of first stack lines CPL1 may be formed to extend in the first direction. The plurality of first conductive lines 110 may be spaced apart from each other in the second direction, and the plurality of first stack lines CPL1 may be spaced apart from each other in the second direction. The plurality of first conductive lines 110 may form a first conductive line layer 110L. The plurality of first stacking lines CPL1 may each include a first electrode layer line 141-1L, a first selection element layer line 143-1L, a second electrode layer line 145-1L, and a third electrode layer line 147-1L, A variable resistance layer line 149-1L and a fourth electrode layer line 148-1L.
再者,可藉由非等向性蝕刻製程在所述多個導電線110之間及在所述多個第一堆疊線CPL1之間形成多個第一間隙GX1。所述多個第一間隙GX1可在第一方向上延伸且可在第二方向上彼此隔開。基板101的頂部表面的一部分可由所述多個第一間隙GX1曝露。Furthermore, a plurality of first gaps GX1 may be formed between the plurality of conductive lines 110 and between the plurality of first stack lines CPL1 by an anisotropic etching process. The plurality of first gaps GX1 may extend in the first direction and may be spaced apart from each other in the second direction. A portion of the top surface of the substrate 101 may be exposed by the plurality of first gaps GX1.
參看圖16C,可移除遮罩圖案410以暴露第四電極線148-1L的頂部表面,且接著可形成第一絕緣層162-1以填充所述多個第一間隙GX1。Referring to FIG. 16C, the mask pattern 410 may be removed to expose the top surface of the fourth electrode line 148-1L, and then the first insulating layer 162-1 may be formed to fill the plurality of first gaps GX1.
在一些實施例中,第一絕緣層162-1的形成可包含在基板101上形成絕緣材料以填充所述多個第一間隙GX1以及平坦化絕緣材料的上部部分,直至暴露所述多個第一堆疊線CPL1的頂部表面為止。第一絕緣層162-1可包含(例如)氧化矽層、氮化矽層及/或氮氧化矽層。第一絕緣層162-1可由一種類型的絕緣層或多個絕緣層製成,但並不限於此情形。In some embodiments, the forming of the first insulating layer 162-1 may include forming an insulating material on the substrate 101 to fill the plurality of first gaps GX1 and an upper portion of the planarizing insulating material until the plurality of the first portions are exposed One stacks the top surface of the line CPL1. The first insulating layer 162-1 may include, for example, a hafnium oxide layer, a tantalum nitride layer, and/or a hafnium oxynitride layer. The first insulating layer 162-1 may be made of one type of insulating layer or a plurality of insulating layers, but is not limited thereto.
參看圖16D,第二導電層120P可形成於第四電極線148-1L的經暴露的頂部表面及第一絕緣層162-1的經暴露的頂部表面上。Referring to FIG. 16D, a second conductive layer 120P may be formed on the exposed top surface of the fourth electrode line 148-1L and the exposed top surface of the first insulating layer 162-1.
第二堆疊結構CPS2可形成於第二導電層120P上。第二堆疊結構CPS2可包含依序地形成於第二導電層120P上的初步第五電極層141-2P、初步第二選擇元件層143-2P、初步第六電極層145-2P、初步第七電極層147-2P、初步第二可變電阻層149-2P以及初步第八電極層148-2P。The second stack structure CPS2 may be formed on the second conductive layer 120P. The second stacked structure CPS2 may include a preliminary fifth electrode layer 141-2P sequentially formed on the second conductive layer 120P, a preliminary second selection element layer 143-2P, a preliminary sixth electrode layer 145-2P, and a preliminary seventh The electrode layer 147-2P, the preliminary second variable resistance layer 149-2P, and the preliminary eighth electrode layer 148-2P.
第二導電層120P、初步第五電極層141-2P、初步第二選擇元件層143-2P、初步第六電極層145-2P、初步第七電極層147-2P、初步第二可變電阻層149-2P及初步第八電極層148-2P可由與如參考圖2及圖3所描述的第二導電線120、第五電極層141-2、第二選擇元件層143-2、第六電極層145-2、第七電極層147-2、第二可變電阻層149-2及第八電極層148-2的材料相同的材料形成。Second conductive layer 120P, preliminary fifth electrode layer 141-2P, preliminary second selection element layer 143-2P, preliminary sixth electrode layer 145-2P, preliminary seventh electrode layer 147-2P, preliminary second variable resistance layer The 149-2P and the preliminary eighth electrode layer 148-2P may be the second conductive line 120, the fifth electrode layer 141-2, the second selection element layer 143-2, and the sixth electrode as described with reference to FIGS. 2 and 3. The material of the layer 145-2, the seventh electrode layer 147-2, the second variable resistance layer 149-2, and the eighth electrode layer 148-2 is formed of the same material.
遮罩圖案420可形成於初步第八電極層148-2P上。遮罩圖案420可包含在第二方向上延伸且在第一方向上彼此隔開的多個線圖案。The mask pattern 420 may be formed on the preliminary eighth electrode layer 148-2P. The mask pattern 420 may include a plurality of line patterns extending in the second direction and spaced apart from each other in the first direction.
參看圖16E,可使用第二遮罩圖案420作為蝕刻遮罩圖案來依序非等向性地蝕刻第二堆疊結構CPS2、第二導電層120P及所述多個第一堆疊線CPL1,以將第二堆疊結構CPS2分離成多個第二堆疊線CPL2,將第二導電層120P分離成多個第二導電線120,且將所述多個第一堆疊線CPL1分離成多個第一堆疊圖案CPP1。Referring to FIG. 16E, the second mask pattern 420 may be used as an etch mask pattern to sequentially etch the second stack structure CPS2, the second conductive layer 120P, and the plurality of first stack lines CPL1 in an unequal manner to The second stack structure CPS2 is separated into a plurality of second stack lines CPL2, the second conductive layer 120P is separated into a plurality of second conductive lines 120, and the plurality of first stack lines CPL1 are separated into a plurality of first stacked patterns CPP1.
結果,所述多個第二堆疊線CPL2可在第二方向上延伸且可在第一方向上彼此隔開,且所述多個第二導電線120可在第二方向上延伸且可在第一方向上彼此隔開。再者,所述多個第一堆疊圖案CPP1可在第一方向及第二方向上彼此隔開。所述多個第二導電線120可形成第二導電線層120L。所述多個第二堆疊線CPL2可各自包含第五電極層線141-2L、第二選擇元件層線143-2L、第六電極層線145-2L、第七電極層線147-2L、第二可變電阻層線149-2L以及第八電極層線148-2L。所述多個第一堆疊圖案CPP1可包含第一電極層141-1、第一選擇元件層143-1、第二電極層145-1、第三電極層147-1、第一可變電阻層149-1以及第四電極層148-1。As a result, the plurality of second stacking lines CPL2 may extend in the second direction and may be spaced apart from each other in the first direction, and the plurality of second conductive lines 120 may extend in the second direction and may be in the They are separated from each other in one direction. Furthermore, the plurality of first stacked patterns CPP1 may be spaced apart from each other in the first direction and the second direction. The plurality of second conductive lines 120 may form a second conductive line layer 120L. The plurality of second stacking lines CPL2 may each include a fifth electrode layer line 141-2L, a second selection element layer line 143-2L, a sixth electrode layer line 145-2L, and a seventh electrode layer line 147-2L, Two variable resistance layer lines 149-2L and an eighth electrode layer line 148-2L. The plurality of first stacked patterns CPP1 may include a first electrode layer 141-1, a first selection element layer 143-1, a second electrode layer 145-1, a third electrode layer 147-1, and a first variable resistance layer. 149-1 and fourth electrode layer 148-1.
再者,可藉由非等向性蝕刻製程在所述多個第二堆疊線CPL2之間、在所述多個第二線120之間及在所述多個第一堆疊圖案CPP1之間形成多個第二間隙GY1。所述多個第二間隙GY1可在第二方向上延伸且可在第一方向上彼此隔開。Furthermore, an anisotropic etching process may be formed between the plurality of second stacking lines CPL2, between the plurality of second lines 120, and between the plurality of first stacked patterns CPP1. A plurality of second gaps GY1. The plurality of second gaps GY1 may extend in the second direction and may be spaced apart from each other in the first direction.
在一些實施例中,可執行非等向性蝕刻製程,直至暴露所述多個第一導電線110的頂部表面為止。儘管未繪示,但可藉由非等向性蝕刻製程在所述多個第一導電線110的上部部分中形成具有某一深度的凹槽。In some embodiments, an anisotropic etch process can be performed until the top surface of the plurality of first conductive lines 110 is exposed. Although not shown, a groove having a certain depth may be formed in an upper portion of the plurality of first conductive lines 110 by an anisotropic etching process.
在一些實施例中,可執行非等向性蝕刻製程,直至暴露第一電極層線141-1L的頂部表面為止,且接著可在某一蝕刻條件下執行蝕刻製程,在此蝕刻條件下,第一電極層線141-1L相對於所述多個第一導電線110具有蝕刻選擇性(etching selectivity)以移除由所述多個第二間隙GY1暴露的第一電極層線141-1L中的每一者的一部分,以暴露所述多個第一導電線110的頂部表面。In some embodiments, an anisotropic etching process may be performed until the top surface of the first electrode layer line 141-1L is exposed, and then an etching process may be performed under a certain etching condition, under the etching condition, An electrode layer line 141-1L has an etching selectivity with respect to the plurality of first conductive lines 110 to remove the first electrode layer line 141-1L exposed by the plurality of second gaps GY1 A portion of each of the plurality of first conductive lines 110 is exposed to expose a top surface of the plurality of first conductive lines 110.
參看圖16F,可移除第二遮罩圖案420以暴露所述多個第二堆疊線CPL2的頂部表面。可形成第二絕緣層163以填充所述多個第二間隙GY1。Referring to FIG. 16F, the second mask pattern 420 may be removed to expose top surfaces of the plurality of second stack lines CPL2. A second insulating layer 163 may be formed to fill the plurality of second gaps GY1.
在一些實施例中,第二絕緣層163的形成可包含在所述多個第一導電線110上、在所述多個第一堆疊圖案CPP1的側壁上及在所述多個第二堆疊線CPL2的側壁上形成絕緣材料以填充所述多個第二間隙GY1以及平坦化絕緣材料的上部部分,直至暴露所述多個第二堆疊線CPL2的頂部表面為止。In some embodiments, the forming of the second insulating layer 163 may be included on the plurality of first conductive lines 110, on sidewalls of the plurality of first stacked patterns CPP1, and on the plurality of second stacked lines An insulating material is formed on the sidewall of the CPL 2 to fill the plurality of second gaps GY1 and the upper portion of the planarization insulating material until the top surfaces of the plurality of second stacking lines CPL2 are exposed.
參看圖16G,第三導電層130P可形成於所述多個第二堆疊線CPL2及第二絕緣層163上。Referring to FIG. 16G, a third conductive layer 130P may be formed on the plurality of second stack lines CPL2 and the second insulating layer 163.
第三遮罩圖案430可形成於第三導電層130P上。第三遮罩圖案430可包含在第一方向上延伸且在第二方向上彼此隔開的多個線圖案。The third mask pattern 430 may be formed on the third conductive layer 130P. The third mask pattern 430 may include a plurality of line patterns extending in the first direction and spaced apart from each other in the second direction.
參看圖16H,可使用第三遮罩圖案430作為蝕刻遮罩來依序非等向性地蝕刻第三導電層130P及所述多個第二堆疊線CPL2,以將第三導電線130P分離成多個第三導電線130且將所述多個第二堆疊線CPL2分離成多個第二堆疊圖案CPP2。Referring to FIG. 16H, the third conductive layer 130P and the plurality of second stacked lines CPL2 may be sequentially anisotropically etched using the third mask pattern 430 as an etch mask to separate the third conductive line 130P into The plurality of third conductive lines 130 and the plurality of second stacked lines CPL2 are separated into a plurality of second stacked patterns CPP2.
結果,所述多個第三導電線130可在第一方向上延伸且可在第二方向上彼此隔開,所述多個第二堆疊圖案CPP2可在第一方向及第二方向上彼此隔開。所述多個第三導電線130可形成第三導電線層130L。所述多個第二堆疊圖案CPP2可包含第五電極層141-2、第二選擇元件層143-2、第六電極層145-2、第七電極層147-2、第二可變電阻層149-2以及第八電極層148-2。As a result, the plurality of third conductive lines 130 may extend in the first direction and may be spaced apart from each other in the second direction, and the plurality of second stacked patterns CPP2 may be spaced apart from each other in the first direction and the second direction open. The plurality of third conductive lines 130 may form a third conductive line layer 130L. The plurality of second stacked patterns CPP2 may include a fifth electrode layer 141-2, a second selection element layer 143-2, a sixth electrode layer 145-2, a seventh electrode layer 147-2, and a second variable resistance layer. 149-2 and the eighth electrode layer 148-2.
再者,可藉由非等向性蝕刻製程在所述多個第三導電線130之間及在所述多個第二堆疊圖案CPP2之間形成多個第三間隙GX2。所述多個第三間隙GX2可在第一方向上延伸且可在第二方向上彼此隔開。Furthermore, a plurality of third gaps GX2 may be formed between the plurality of third conductive lines 130 and between the plurality of second stacked patterns CPP2 by an anisotropic etching process. The plurality of third gaps GX2 may extend in the first direction and may be spaced apart from each other in the second direction.
在一些實施例中,可執行非等向性蝕刻製程,直至暴露所述多個第二導電線120的頂部表面為止。儘管未繪示,但可藉由非等向性蝕刻製程在所述多個第二導電線120的上部部分中形成具有某一深度的凹槽。In some embodiments, an anisotropic etch process can be performed until the top surface of the plurality of second conductive lines 120 is exposed. Although not shown, a groove having a certain depth may be formed in an upper portion of the plurality of second conductive lines 120 by an anisotropic etching process.
在一些實施例中,可執行非等向性蝕刻製程,直至暴露第五電極層線141-2L的頂部表面為止,且接著可在某一蝕刻條件下執行蝕刻製程,在此蝕刻條件下,第五電極層線141-2L相對於所述多個第二導電線120具有蝕刻選擇性以移除由所述多個第三間隙GX2暴露的第五電極層線141-2L中的每一者的一部分,以暴露多個第二導電線120的頂部表面。In some embodiments, an anisotropic etching process may be performed until the top surface of the fifth electrode layer line 141-2L is exposed, and then an etching process may be performed under a certain etching condition, under the etching condition, The five-electrode layer line 141-2L has an etch selectivity with respect to the plurality of second conductive lines 120 to remove each of the fifth electrode layer lines 141-2L exposed by the plurality of third gaps GX2 A portion to expose a top surface of the plurality of second conductive lines 120.
參看圖16I,可移除第三遮罩圖案430以暴露所述多個第二堆疊圖案CPP2的頂部表面。可形成第三絕緣層162-2以填充所述多個第三間隙GX2。Referring to FIG. 16I, the third mask pattern 430 may be removed to expose top surfaces of the plurality of second stacked patterns CPP2. A third insulating layer 162-2 may be formed to fill the plurality of third gaps GX2.
在一些實施例中,第三絕緣層162-2的形成可包含在所述多個第三導電線130上及在所述多個第二堆疊圖案CPP2的側壁上形成絕緣材料以填充所述多個第三間隙GX2以及平坦化絕緣材料的上部部分,以暴露所述多個第三導電線130的頂部表面。In some embodiments, the forming of the third insulating layer 162-2 may include forming an insulating material on the plurality of third conductive lines 130 and sidewalls of the plurality of second stacked patterns CPP2 to fill the plurality of The third gap GX2 and the upper portion of the planarization insulating material expose the top surface of the plurality of third conductive lines 130.
結果,可藉由執行上文所描述的製程來實現記憶體裝置100。As a result, the memory device 100 can be implemented by performing the processes described above.
所述多個第一堆疊圖案CPP1可為多個第一記憶體單元140-1,且所述多個第二堆疊圖案CPP2可為多個第二記憶體單元140-2。此外,所述多個第一記憶體單元140-1可形成第一記憶體單元層MCL1,且所述多個第二記憶體單元140-2可形成第二記憶體單元層MCL2。The plurality of first stacked patterns CPP1 may be a plurality of first memory cells 140-1, and the plurality of second stacked patterns CPP2 may be a plurality of second memory cells 140-2. In addition, the plurality of first memory cells 140-1 may form a first memory cell layer MCL1, and the plurality of second memory cells 140-2 may form a second memory cell layer MCL2.
根據製造記憶體裝置100的方法,可依序地執行使用在第一方向上延伸的第一遮罩圖案410的第一圖案化製程(patterning process)、使用在第二方向上延伸的第二遮罩圖案420的第二圖案化製程以及使用在第一方向上延伸的第三遮罩圖案430的第三圖案化製程。結果,可形成在第一方向上延伸的所述多個第一導電線110、在第二方向上延伸的所述多個第二導電線120、在第一方向上延伸的所述多個第三導電線130、在所述多個第一導電線110與所述多個第二導電線120的各別相交點處的所述多個第一記憶體單元140-1以及在所述多個第二導電線120與所述多個第三導電線130的各別相交點處的所述多個第二記憶體單元140-2。According to the method of manufacturing the memory device 100, a first patterning process using the first mask pattern 410 extending in the first direction, and a second mask extending in the second direction may be sequentially performed A second patterning process of the cap pattern 420 and a third patterning process using the third mask pattern 430 extending in the first direction. As a result, the plurality of first conductive lines 110 extending in the first direction, the plurality of second conductive lines 120 extending in the second direction, and the plurality of first lines extending in the first direction may be formed a plurality of conductive lines 130, the plurality of first memory cells 140-1 at respective intersections of the plurality of first conductive lines 110 and the plurality of second conductive lines 120, and the plurality of The plurality of second memory cells 140-2 at the intersection of the second conductive line 120 and the plurality of third conductive lines 130.
因此,因為僅使用三個圖案化製程來形成所述多個第一記憶體單元140-1及所述多個第二記憶體單元140-2,所以可防止第一可變電阻層149-1及第二可變電阻層149-2及/或第一選擇元件層143-1及第二選擇元件層143-2在圖案化製程期間歸因於暴露於蝕刻氛圍的降低品質或損壞。此外,可減少記憶體裝置100的製造成本。Therefore, since the plurality of first memory cells 140-1 and the plurality of second memory cells 140-2 are formed using only three patterning processes, the first variable resistance layer 149-1 can be prevented. And the second variable resistance layer 149-2 and/or the first selection element layer 143-1 and the second selection element layer 143-2 are attributed to reduced quality or damage to the etching atmosphere during the patterning process. In addition, the manufacturing cost of the memory device 100 can be reduced.
圖17為說明根據某些實施例的記憶體裝置的方塊圖。17 is a block diagram illustrating a memory device in accordance with some embodiments.
參看圖17,記憶體裝置800可包含記憶體單元陣列810、解碼器、讀取/寫入電路830、輸入/輸出緩衝器以及控制器850。記憶體單元陣列810可包含參考圖1至圖15所描述的記憶體裝置100、100A、100B、100C、100D、100E、100F、100G及200中的至少一者。Referring to FIG. 17, the memory device 800 can include a memory cell array 810, a decoder, a read/write circuit 830, an input/output buffer, and a controller 850. The memory cell array 810 can include at least one of the memory devices 100, 100A, 100B, 100C, 100D, 100E, 100F, 100G, and 200 described with reference to FIGS. 1 through 15.
記憶體單元陣列810中的多個記憶體單元可經由多個字元線WL而連接至解碼器820,且可經由多個位元線BL而連接至讀取/寫入電路830。解碼器820可自記憶體裝置800的外部接收位址ADD,且可藉由回應於控制信號CTRL而操作的控制器850的控制來解碼列位址及行位址以在記憶體單元陣列810中存取。A plurality of memory cells in the memory cell array 810 may be connected to the decoder 820 via a plurality of word lines WL and may be connected to the read/write circuit 830 via a plurality of bit lines BL. The decoder 820 can receive the address ADD from the outside of the memory device 800, and can decode the column address and the row address in the memory cell array 810 by the control of the controller 850 operating in response to the control signal CTRL. access.
讀取/寫入電路830可自輸入/輸出緩衝器及多個資料線DL接收資料,且可藉由控制器850的控制而將經接收的資料寫入於記憶體單元陣列810的選定記憶體單元中。讀取/寫入電路830可藉由控制器850的控制而自記憶體單元陣列810的選定記憶體單元讀取資料,且可將經讀取的資料傳送至輸入/輸出緩衝器。The read/write circuit 830 can receive data from the input/output buffer and the plurality of data lines DL, and can write the received data to the selected memory of the memory cell array 810 by the control of the controller 850. In the unit. The read/write circuit 830 can read data from the selected memory cells of the memory cell array 810 by the control of the controller 850, and can transfer the read data to the input/output buffer.
圖18為說明根據某些實施例的電子系統的方塊圖。18 is a block diagram illustrating an electronic system in accordance with some embodiments.
參看圖18,電子系統1100可包含記憶體系統(memory system)1110、處理器(processor)1120、隨機存取記憶體(random access memory;RAM)1130、輸入/輸出(input/output;I/O)單元1140、電力供應單元(power supply unit)1150。記憶體系統1110可包含記憶體裝置1112以及記憶體控制器1114。儘管未圖示,但電子系統1100可更包含與視訊卡、音效卡、記憶體卡、USB裝置或其他電子裝置通信的埠。電子系統1100可為個人電腦或行動電子裝置,諸如筆記型電腦、行動電話、個人數位助理(personal digital assistant;PDA)或攝影機。Referring to FIG. 18, the electronic system 1100 can include a memory system 1110, a processor 1120, a random access memory (RAM) 1130, and an input/output (I/O). A unit 1140, a power supply unit 1150. The memory system 1110 can include a memory device 1112 and a memory controller 1114. Although not shown, the electronic system 1100 can further include a device that communicates with a video card, a sound card, a memory card, a USB device, or other electronic device. The electronic system 1100 can be a personal computer or a mobile electronic device such as a notebook computer, a mobile phone, a personal digital assistant (PDA), or a video camera.
處理器1120可執行特定計算或任務。處理器1120可為微處理器(microprocessor)或中央處理單元(central processing unit;CPU)。處理器1120可經由匯流排1160(諸如位址匯流排、控制匯流排或資料匯流排)而與隨機存取記憶體1130、輸入/輸出單元1140及記憶體系統1110通信。此處,記憶體系統1110或隨機存取記憶體1130可包含參考圖1至圖15所描述的記憶體裝置100、100A、100B、100C、100D、100E、100F、100G及200中的至少一者。The processor 1120 can perform a particular calculation or task. The processor 1120 can be a microprocessor or a central processing unit (CPU). The processor 1120 can communicate with the random access memory 1130, the input/output unit 1140, and the memory system 1110 via a bus 1160, such as an address bus, a control bus, or a data bus. Here, the memory system 1110 or the random access memory 1130 may include at least one of the memory devices 100, 100A, 100B, 100C, 100D, 100E, 100F, 100G, and 200 described with reference to FIGS. 1 through 15. .
在一些實施例中,處理器1120可連接至擴充匯流排(expansion bus),諸如周邊組件互連(peripheral component interconnection;PCI)匯流排。In some embodiments, processor 1120 can be coupled to an expansion bus, such as a peripheral component interconnection (PCI) bus.
隨機存取記憶體1130可儲存對於操作電子系統1100所必要的資料。隨機存取記憶體1130可包含DRAM、行動DRAM、SRAM、ReRAM、FRAM、MRAM或PRAM。The random access memory 1130 can store the data necessary to operate the electronic system 1100. The random access memory 1130 may comprise DRAM, mobile DRAM, SRAM, ReRAM, FRAM, MRAM or PRAM.
輸入/輸出單元1140可包含諸如小鍵盤(keypad)、鍵盤(keyboard)或滑鼠的輸入單元以及諸如顯示器或印表機的輸出單元。電力供應單元1150可供應對於操作電子系統1100所必要的工作電壓。The input/output unit 1140 may include an input unit such as a keypad, a keyboard, or a mouse, and an output unit such as a display or a printer. The power supply unit 1150 can supply an operating voltage necessary for operating the electronic system 1100.
上文所揭露的主題應被視為說明性的而非限定性的,且所附申請專利範圍意欲涵蓋屬於本發明概念的真實精神及範疇內的所有此類修改、增強及其他實施例。因此,在法律所允許的最大程度上,範疇應是藉由以下申請專利範圍及其等效者的最廣泛的准許解釋予以判定,且不應受到前述詳細描述限定或限制。The above-disclosed subject matter is intended to be illustrative and not restrictive, and the scope of the appended claims are intended to be Therefore, to the extent permitted by law, the scope should be judged by the broadest permitted interpretation of the scope of the following claims and their equivalents, and should not be limited or limited by the foregoing detailed description.
2A-2A'、A-A'、B-B'‧‧‧線
40‧‧‧電壓-電流曲線
41‧‧‧第一曲線
42‧‧‧第二曲線
43‧‧‧第一電壓位準
44‧‧‧第二電壓位準
46‧‧‧第一電流位準
47‧‧‧第二電流位準
56(V1
)‧‧‧第一臨界電壓
58(V2
)‧‧‧第二臨界電壓
60‧‧‧電壓-電流圖形
62‧‧‧第一實驗實例
64‧‧‧第二實驗實例
100、100A、100B、100C、100D、100E、100F、100G、200、800、1112‧‧‧記憶體裝置
101、102‧‧‧基板
104‧‧‧裝置隔離層
105、212A、212B、212C‧‧‧層間絕緣層
106‧‧‧絕緣間隔件
108‧‧‧蝕刻終止層
110‧‧‧第一導電線
110L‧‧‧第一導電線層
110P‧‧‧第一導電層
120‧‧‧第二導電線
120L‧‧‧第二導電線層
120P‧‧‧第二導電層
130‧‧‧第三導電線
130L‧‧‧第三導電線層
130P‧‧‧第三導電層
140-1、MC1‧‧‧第一記憶體單元
140-2、MC2‧‧‧第二記憶體單元
141-1‧‧‧第一電極層
141-1L‧‧‧第一電極層線
141-1P‧‧‧初步第一電極層
141-2‧‧‧第五電極層
141-2L‧‧‧第五電極層線
141-2P‧‧‧初步第五電極層
143-1‧‧‧第一選擇元件層
143-1L‧‧‧第一選擇元件層線
143-1P‧‧‧初步第一選擇元件層
143-2‧‧‧第二選擇元件層
143-2L‧‧‧第二選擇元件層線
143-2P‧‧‧初步第二選擇元件層
145-1‧‧‧第二電極層
145-1L‧‧‧第二電極層線
145-1P‧‧‧初步第二電極層
145-2‧‧‧第六電極層
145-2L‧‧‧第六電極層線
145-2P‧‧‧初步第六電極層
147-1‧‧‧第三電極層
147-1L‧‧‧第三電極層線
147-1P‧‧‧初步第三電極層
147-2‧‧‧第七電極層
147-2L‧‧‧第七電極層線
147-2P‧‧‧初步第七電極層
148-1‧‧‧第四電極層
148-1L‧‧‧第四電極層線
148-1P‧‧‧初步第四電極層
148-2‧‧‧第八電極層
148-2L‧‧‧第八電極層線
148-2P‧‧‧初步第八電極層
149-1‧‧‧第一可變電阻層
149-1L‧‧‧第一可變電阻層線
149-1P‧‧‧初步第一可變電阻層
149-2‧‧‧第二可變電阻層
149-2L‧‧‧第二可變電阻層線
149-2P‧‧‧初步第二可變電阻層
152-1‧‧‧第一內部間隔件
152-2‧‧‧第二內部間隔件
155-1‧‧‧第一上部間隔件
155-2‧‧‧第二上部間隔件
162-1‧‧‧第一絕緣層
162-2‧‧‧第二絕緣層
163‧‧‧第三絕緣層
210‧‧‧驅動電路區
214‧‧‧多層級內連線結構
216A‧‧‧第一接觸件
216B‧‧‧第二接觸件
218A‧‧‧第一內連線層
218B‧‧‧第二內連線層
220‧‧‧上部層間絕緣層
410‧‧‧第一遮罩圖案
420‧‧‧第二遮罩圖案
430‧‧‧第三遮罩圖案
810‧‧‧記憶體單元陣列
820‧‧‧解碼器
830‧‧‧讀取/寫入電路
840‧‧‧輸入/輸出緩衝器
850‧‧‧控制器
1100‧‧‧電子系統
1110‧‧‧記憶體系統
1114‧‧‧記憶體控制器
1120‧‧‧處理器
1130‧‧‧隨機存取記憶體
1140‧‧‧輸入/輸出單元
1150‧‧‧電力供應單元
1160‧‧‧匯流排
AC‧‧‧主動區
BL‧‧‧位元線
BL1、BL2、BL3、BL4‧‧‧共同位元線
CPL1‧‧‧第一堆疊線
CPL2‧‧‧第二堆疊線
CPP1‧‧‧第一堆疊圖案
CPP2‧‧‧第二堆疊圖案
CPS1‧‧‧第一堆疊結構
CPS2‧‧‧第二堆疊結構
DL‧‧‧資料線
G‧‧‧閘極
GD‧‧‧閘極絕緣層
GX1‧‧‧第一間隙
GY1‧‧‧第二間隙
GX2‧‧‧第三間隙
H1、H1A‧‧‧第一高度
H2、H2A‧‧‧第二高度
IMC11
‧‧‧第一電流
IMC21
‧‧‧第二電流
MC11‧‧‧第一下部記憶體單元
MC12‧‧‧第二下部記憶體單元
MC21‧‧‧第一上部記憶體單元
MC22‧‧‧第二上部記憶體單元
MCA‧‧‧記憶體單元陣列區
MCL1‧‧‧第一記憶體單元層
MCL2‧‧‧第二記憶體單元層
ME、R‧‧‧可變電阻層
SD‧‧‧源極/汲極區
SW‧‧‧選擇元件
TR‧‧‧電晶體
Vlow‧‧‧較低電壓
VS
‧‧‧飽和電壓
VT
‧‧‧臨界電壓
VT1
‧‧‧第一臨界電壓
VT2
‧‧‧第二臨界電壓
VWL(Sel)
‧‧‧字元線選擇電壓
VWL(Unsel)
‧‧‧字元線未選擇電壓
WL‧‧‧字元線
WL11、WL12‧‧‧下部字元線
WL21、WL22‧‧‧上部字元線
X、Y、Z‧‧‧方向2A-2A', A-A', B-B'‧‧‧ line
40‧‧‧Voltage-current curve
41‧‧‧First curve
42‧‧‧second curve
43‧‧‧First voltage level
44‧‧‧second voltage level
46‧‧‧First current level
47‧‧‧second current level
56(V 1 )‧‧‧First threshold voltage
58(V 2 )‧‧‧second threshold voltage
60‧‧‧Voltage-current graph
62‧‧‧First experimental example
64‧‧‧Second experimental example
100, 100A, 100B, 100C, 100D, 100E, 100F, 100G, 200, 800, 1112‧‧‧ memory devices
101, 102‧‧‧ substrate
104‧‧‧Device isolation
105, 212A, 212B, 212C‧‧‧ interlayer insulation
106‧‧‧Insulation spacers
108‧‧‧etch stop layer
110‧‧‧First conductive line
110L‧‧‧First conductive layer
110P‧‧‧first conductive layer
120‧‧‧Second conductive line
120L‧‧‧Second conductive layer
120P‧‧‧Second conductive layer
130‧‧‧ third conductive line
130L‧‧‧3rd conductive layer
130P‧‧‧3rd conductive layer
140-1, MC1‧‧‧ first memory unit
140-2, MC2‧‧‧ second memory unit
141-1‧‧‧First electrode layer
141-1L‧‧‧First electrode layer line
141-1P‧‧‧ Preliminary first electrode layer
141-2‧‧‧ fifth electrode layer
141-2L‧‧‧ fifth electrode layer line
141-2P‧‧‧ preliminary fifth electrode layer
143-1‧‧‧First selection component layer
143-1L‧‧‧First selection component layer line
143-1P‧‧‧ Preliminary first selection component layer
143-2‧‧‧Second selection component layer
143-2L‧‧‧Second selection component layer line
143-2P‧‧‧ preliminary second selection component layer
145-1‧‧‧Second electrode layer
145-1L‧‧‧Second electrode layer line
145-1P‧‧‧ Preliminary second electrode layer
145-2‧‧‧ sixth electrode layer
145-2L‧‧‧ sixth electrode layer line
145-2P‧‧‧ preliminary sixth electrode layer
147-1‧‧‧ third electrode layer
147-1L‧‧‧ third electrode layer line
147-1P‧‧‧ Preliminary third electrode layer
147-2‧‧‧ seventh electrode layer
147-2L‧‧‧ seventh electrode layer line
147-2P‧‧‧ preliminary seventh electrode layer
148-1‧‧‧fourth electrode layer
148-1L‧‧‧fourth electrode layer line
148-1P‧‧‧ preliminary fourth electrode layer
148-2‧‧‧8th electrode layer
148-2L‧‧‧8th electrode layer line
148-2P‧‧‧ preliminary eighth electrode layer
149-1‧‧‧First variable resistance layer
149-1L‧‧‧First variable resistance layer line
149-1P‧‧‧ Preliminary first variable resistance layer
149-2‧‧‧Second variable resistance layer
149-2L‧‧‧Second variable resistance layer line
149-2P‧‧‧ Preliminary second variable resistance layer
152-1‧‧‧First internal spacer
152-2‧‧‧Second internal spacer
155-1‧‧‧First upper spacer
155-2‧‧‧Second upper spacer
162-1‧‧‧First insulation layer
162-2‧‧‧Second insulation
163‧‧‧ Third insulation layer
210‧‧‧Drive circuit area
214‧‧‧Multi-level interconnect structure
216A‧‧‧First contact
216B‧‧‧second contact
218A‧‧‧First interconnect layer
218B‧‧‧Second inner layer
220‧‧‧ Upper interlayer insulation
410‧‧‧First mask pattern
420‧‧‧Second mask pattern
430‧‧‧ third mask pattern
810‧‧‧Memory cell array
820‧‧‧Decoder
830‧‧‧Read/Write Circuit
840‧‧‧Input/Output Buffer
850‧‧‧ Controller
1100‧‧‧Electronic system
1110‧‧‧Memory System
1114‧‧‧Memory Controller
1120‧‧‧ processor
1130‧‧‧ random access memory
1140‧‧‧Input/output unit
1150‧‧‧Power supply unit
1160‧‧ ‧ busbar
AC‧‧ Active Area
BL‧‧‧ bit line
BL1, BL2, BL3, BL4‧‧‧ common bit line
CPL1‧‧‧ first stacking line
CPL2‧‧‧Second stacking line
CPP1‧‧‧ first stacking pattern
CPP2‧‧‧ second stacking pattern
CPS1‧‧‧ first stack structure
CPS2‧‧‧Second stacking structure
DL‧‧‧ data line
G‧‧‧ gate
GD‧‧‧ gate insulation
GX1‧‧‧ first gap
GY1‧‧‧Second gap
GX2‧‧‧ third gap
H1, H1A‧‧‧ first height
H2, H2A‧‧‧ second height
I MC11 ‧‧‧First current
I MC21 ‧‧‧second current
MC11‧‧‧First lower memory unit
MC12‧‧‧Second lower memory unit
MC21‧‧‧First upper memory unit
MC22‧‧‧Second upper memory unit
MCA‧‧‧ memory cell array area
MCL1‧‧‧ first memory unit layer
MCL2‧‧‧Second memory unit layer
ME, R‧‧‧variable resistance layer
SD‧‧‧Source/Bungee Zone
SW‧‧‧Select components
TR‧‧‧O crystal
Vlow‧‧‧lower voltage
V S ‧‧‧Saturation voltage
V T ‧‧‧ threshold voltage
V T1 ‧‧‧first threshold voltage
V T2 ‧‧‧second threshold voltage
V WL(Sel) ‧‧‧ character line selection voltage
V WL (Unsel) ‧‧‧ character line not selected voltage
WL‧‧‧ character line
WL11, WL12‧‧‧ lower word line
WL21, WL22‧‧‧ upper word line
X, Y, Z‧‧ Direction
將自結合隨附圖式所採取的以下詳細描述更清楚地理解本揭露內容的實例實施例,在圖式中: 圖1為說明根據實例實施例的記憶體裝置的等效電路圖。 圖2為說明根據實例實施例的記憶體裝置的透視橫截面圖,且圖3為說明根據實例實施例的沿著圖2的線A-A'及B-B'所採取的橫截面的橫截面圖。 圖4為說明表示雙向臨界切換(ovonic threshold switching;OTS)屬性的雙向臨界切換元件的電壓-電流曲線的示意性圖形。 圖5A及圖5B為說明根據實例實施例的具有堆疊式交叉點結構的記憶體裝置的操作方法的示意圖。 圖6說明關於分別將正電壓及負電壓施加至雙向臨界切換元件的電壓-電流圖形。 圖7至圖13分別為說明根據實例實施例的記憶體裝置的橫截面圖。 圖14為說明根據實例實施例的記憶體裝置的透視圖,且圖15為根據實例實施例的沿著圖14的線2A-2A'所採取的橫截面圖。 圖16A至圖16I為說明根據實例實施例的製造記憶體裝置的方法的階段的橫截面圖。 圖17為說明根據某些實施例的記憶體裝置的方塊圖。 圖18為說明根據某些實施例的電子系統的方塊圖。Example embodiments of the present disclosure will be more clearly understood from the following detailed description taken in conjunction with the accompanying drawings in which: FIG. 1 is an equivalent circuit diagram illustrating a memory device in accordance with an example embodiment. 2 is a perspective cross-sectional view illustrating a memory device according to an example embodiment, and FIG. 3 is a cross-sectional view taken along lines AA' and BB' of FIG. 2, according to an example embodiment. Sectional view. 4 is a schematic diagram illustrating a voltage-current curve of a bidirectional critical switching element representing an ovonic threshold switching (OTS) attribute. 5A and 5B are schematic diagrams illustrating an operation method of a memory device having a stacked cross-point structure, according to an example embodiment. Figure 6 illustrates a voltage-current graph for applying a positive voltage and a negative voltage to a bidirectional critical switching element, respectively. 7 through 13 are cross-sectional views illustrating a memory device, respectively, according to an example embodiment. FIG. 14 is a perspective view illustrating a memory device according to an example embodiment, and FIG. 15 is a cross-sectional view taken along line 2A-2A′ of FIG. 14 according to an example embodiment. 16A-16I are cross-sectional views illustrating stages of a method of fabricating a memory device, in accordance with an example embodiment. 17 is a block diagram illustrating a memory device in accordance with some embodiments. 18 is a block diagram illustrating an electronic system in accordance with some embodiments.
100‧‧‧記憶體裝置 100‧‧‧ memory device
BL1、BL2、BL3、BL4‧‧‧共同位元線 BL1, BL2, BL3, BL4‧‧‧ common bit line
MC1‧‧‧第一記憶體單元 MC1‧‧‧ first memory unit
MC2‧‧‧第二記憶體單元 MC2‧‧‧Second memory unit
ME‧‧‧可變電阻層 ME‧‧‧variable resistance layer
SW‧‧‧選擇元件 SW‧‧‧Select components
WL11、WL12‧‧‧下部字元線 WL11, WL12‧‧‧ lower word line
WL21、WL22‧‧‧上部字元線 WL21, WL22‧‧‧ upper word line
X、Y、Z‧‧‧方向 X, Y, Z‧‧ Direction
Claims (20)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2016-0020680 | 2016-02-22 | ||
KR20160020680 | 2016-02-22 | ||
KR10-2016-0050113 | 2016-04-25 | ||
KR1020160050113A KR102507303B1 (en) | 2016-02-22 | 2016-04-25 | Memory device |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201730880A true TW201730880A (en) | 2017-09-01 |
TWI703578B TWI703578B (en) | 2020-09-01 |
Family
ID=59760705
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW105141660A TWI703578B (en) | 2016-02-22 | 2016-12-16 | Memory device including ovonic threshold switch adjusing threshold voltage thereof |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR102507303B1 (en) |
TW (1) | TWI703578B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111987107A (en) * | 2019-05-23 | 2020-11-24 | 爱思开海力士有限公司 | Non-volatile memory device |
US11908518B2 (en) | 2021-09-17 | 2024-02-20 | Kioxia Corporation | Memory system |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101997987B1 (en) * | 2017-11-07 | 2019-07-08 | 포항공과대학교 산학협력단 | Capacitance based multi-level synapse device and fabrication method thereof |
KR102471157B1 (en) * | 2017-11-09 | 2022-11-25 | 삼성전자주식회사 | Memory devices |
KR102707836B1 (en) * | 2019-01-23 | 2024-09-23 | 삼성전자주식회사 | Variable resistance memory Device |
JP6778355B1 (en) | 2019-01-31 | 2020-10-28 | 日精エー・エス・ビー機械株式会社 | Resin container manufacturing equipment, temperature control equipment, resin container manufacturing method, and temperature control method |
US11850788B2 (en) | 2019-01-31 | 2023-12-26 | Nissei Asb Machine Co., Ltd. | Device and method for producing resin container |
KR20240028554A (en) | 2019-01-31 | 2024-03-05 | 닛세이 에이. 에스. 비 기카이 가부시키가이샤 | Temperature adjustment device and temperature adjustment method for preform and manufacturing device and manufacturing method for resin molding container |
KR102643807B1 (en) | 2019-01-31 | 2024-03-05 | 닛세이 에이. 에스. 비 기카이 가부시키가이샤 | Manufacturing equipment and manufacturing method for resin containers |
KR102699481B1 (en) * | 2021-01-06 | 2024-08-30 | 포항공과대학교 산학협력단 | Method of forming a chalcogenide thin film, semiconductor device comprising the chalcogenide thin film |
US12073883B2 (en) | 2022-05-11 | 2024-08-27 | Macronix International Co., Ltd. | Ternary content addressable memory |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6795338B2 (en) * | 2002-12-13 | 2004-09-21 | Intel Corporation | Memory having access devices using phase change material such as chalcogenide |
US7459716B2 (en) * | 2007-06-11 | 2008-12-02 | Kabushiki Kaisha Toshiba | Resistance change memory device |
KR20100039193A (en) * | 2008-10-06 | 2010-04-15 | 삼성전자주식회사 | Cross point array memory device and manufacturing method for the same |
KR20110035783A (en) * | 2009-09-30 | 2011-04-06 | 주식회사 하이닉스반도체 | Fabrication method of phase change random access memory device |
US8654560B2 (en) * | 2009-10-28 | 2014-02-18 | Intermolecular, Inc. | Variable resistance memory with a select device |
US8705266B2 (en) * | 2012-03-23 | 2014-04-22 | Kabushiki Kaisha Toshiba | Semiconductor device and method for controlling the same |
KR20140127577A (en) * | 2013-04-25 | 2014-11-04 | 에스케이하이닉스 주식회사 | 3 Dimension Resistive Variable Memory Device and Method of Manufacturing The Same |
KR20150041705A (en) * | 2013-10-08 | 2015-04-17 | 삼성전자주식회사 | Semiconductor device having selector and resistive change device and method of forming the same |
-
2016
- 2016-04-25 KR KR1020160050113A patent/KR102507303B1/en active IP Right Grant
- 2016-12-16 TW TW105141660A patent/TWI703578B/en active
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111987107A (en) * | 2019-05-23 | 2020-11-24 | 爱思开海力士有限公司 | Non-volatile memory device |
CN111987107B (en) * | 2019-05-23 | 2024-06-04 | 爱思开海力士有限公司 | Nonvolatile memory device |
US11908518B2 (en) | 2021-09-17 | 2024-02-20 | Kioxia Corporation | Memory system |
TWI844811B (en) * | 2021-09-17 | 2024-06-11 | 日商鎧俠股份有限公司 | Memory system |
Also Published As
Publication number | Publication date |
---|---|
KR102507303B1 (en) | 2023-03-08 |
KR20170098673A (en) | 2017-08-30 |
TWI703578B (en) | 2020-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107104123B (en) | Memory device | |
TWI703578B (en) | Memory device including ovonic threshold switch adjusing threshold voltage thereof | |
US11183538B2 (en) | Memory device and method of manufacturing the same | |
KR102582666B1 (en) | memory device and method of manufacturing the same | |
KR102465966B1 (en) | Memory device and electronic apparatus comprising the same memory device | |
US10546894B2 (en) | Memory device | |
US20170244026A1 (en) | Variable resistance memory device and method of manufacturing the same | |
JP6151650B2 (en) | Storage device | |
TWI409942B (en) | Thermally stabilized electrode structure | |
US11031435B2 (en) | Memory device containing ovonic threshold switch material thermal isolation and method of making the same | |
KR102602498B1 (en) | Memory cell device with thin-film transistor selector and methods for forming the same | |
JP5634002B2 (en) | Phase change nonvolatile memory and semiconductor device | |
US20090146131A1 (en) | Integrated Circuit, and Method for Manufacturing an Integrated Circuit | |
KR102672267B1 (en) | Resistance variable memory device | |
KR20240115516A (en) | Resistance variable memory device |