TWI703578B - Memory device including ovonic threshold switch adjusing threshold voltage thereof - Google Patents

Memory device including ovonic threshold switch adjusing threshold voltage thereof Download PDF

Info

Publication number
TWI703578B
TWI703578B TW105141660A TW105141660A TWI703578B TW I703578 B TWI703578 B TW I703578B TW 105141660 A TW105141660 A TW 105141660A TW 105141660 A TW105141660 A TW 105141660A TW I703578 B TWI703578 B TW I703578B
Authority
TW
Taiwan
Prior art keywords
layer
selection element
variable resistance
conductive lines
element layer
Prior art date
Application number
TW105141660A
Other languages
Chinese (zh)
Other versions
TW201730880A (en
Inventor
寺井真之
高寬協
姜大煥
Original Assignee
南韓商三星電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南韓商三星電子股份有限公司 filed Critical 南韓商三星電子股份有限公司
Publication of TW201730880A publication Critical patent/TW201730880A/en
Application granted granted Critical
Publication of TWI703578B publication Critical patent/TWI703578B/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/828Current flow limiting means within the switching material region, e.g. constrictions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/841Electrodes
    • H10N70/8413Electrodes adapted for resistive heating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Memories (AREA)

Abstract

A memory device may include a substrate, a first conductive line on the substrate and extending in a first direction, a second conductive line over the first conductive line and extending in a second direction crossing the first direction, a third conductive line over the second conductive line and extending in the first direction, a first memory cell at an intersection of the first conductive line and the second conductive line and including a first selection element layer and a first variable resistance layer, and a second memory cell at an intersection of the second conductive line and the third conductive line and including a second selection element layer and a second variable resistance layer. A first height of the first selection element layer in a third direction perpendicular to the first and second directions is different than a second height of the second selection element layer in the third direction.

Description

包含調整臨界電壓之雙向臨界開關的記憶體裝置Memory device including bidirectional threshold switch for adjusting threshold voltage [相關申請案的交叉參考] [Cross reference of related applications]

本申請案主張2016年2月22日在韓國智慧財產局申請的韓國專利申請案第10-2016-0020680號及2016年4月25日在韓國智慧財產局申請的韓國專利申請案第10-2016-0050113號的優先權,這些韓國專利申請案的揭露內容的全文是以引用的方式併入本文中。 This application claims the Korean Patent Application No. 10-2016-0020680 filed in the Korean Intellectual Property Office on February 22, 2016 and the Korean Patent Application No. 10-2016 filed in the Korean Intellectual Property Office on April 25, 2016 -0050113 priority, the entire disclosure of these Korean patent applications is incorporated herein by reference.

本揭露內容的實施例是關於記憶體裝置。更具體言之,本揭露內容的實施例是關於具有交叉點結構(cross-point structure)的記憶體裝置。 The embodiment of the disclosure relates to a memory device. More specifically, the embodiment of the present disclosure relates to a memory device having a cross-point structure.

隨著電子裝置的大小已縮減,半導體記憶體裝置的積集度已增加。因此,已研究包含安置於彼此交叉的兩個電極的相交點(intersection point)處的多個記憶體單元(memory cell)的三維交 叉點記憶體裝置以按比例縮小。然而,在按比例縮小製程中,因為用以形成三維交叉點陣列記憶體裝置的層的厚度亦縮減,所以暴露於高溫製程的層可容易損壞及降低品質。因此,三維交叉點記憶體裝置的電特性可能會降低品質。 As the size of electronic devices has been reduced, the integration of semiconductor memory devices has increased. Therefore, it has been studied to include a three-dimensional intersection of a plurality of memory cells arranged at the intersection point of two electrodes that cross each other. The cross point memory device is scaled down. However, in the scaling down process, because the thickness of the layer used to form the three-dimensional cross-point array memory device is also reduced, the layer exposed to the high temperature process can be easily damaged and degraded in quality. Therefore, the electrical characteristics of the three-dimensional cross-point memory device may degrade the quality.

根據實例實施例,一種記憶體裝置可包含:基板(substrate);多個第一導電線(conductive line),在基板上,所述多個第一導電線在平行於基板的頂部表面的第一方向上延伸且在與第一方向交叉的第二方向上彼此隔開;多個第二導電線,在所述多個第一導電線上方,所述多個第二導電線在第二方向上延伸且在第一方向上彼此隔開;多個第三導電線,在所述多個第二導電線上方,所述多個第三導電線在第一方向上延伸且在第二方向上彼此隔開;多個第一記憶體單元,在所述多個第一導電線與所述多個第二導電線的各別相交點處,所述多個第一記憶體單元中的每一者包含第一選擇元件層(selection element layer)及第一可變電阻層(variable resistance layer);以及多個第二記憶體單元,在所述多個第二導電線與所述多個第三導電線的各別相交點處,所述多個第二記憶體單元中的每一者包含第二選擇元件層及第二可變電阻層。第一選擇元件層在垂直於第一方向及第二方向的第三方向上的第一高度可不同於第二選擇元件層在第三方向上的第二高度。第一可變電阻層與第二可變電阻層可由相同材料製成,且第一選擇元件層與第二選擇元件層可由相同材料製成。 According to example embodiments, a memory device may include: a substrate; a plurality of first conductive lines, on the substrate, the plurality of first conductive lines are arranged at first parallel to the top surface of the substrate. Extending in the direction and spaced apart from each other in a second direction crossing the first direction; a plurality of second conductive lines, above the plurality of first conductive lines, the plurality of second conductive lines in the second direction Extending and spaced apart from each other in the first direction; a plurality of third conductive lines above the plurality of second conductive lines, the plurality of third conductive lines extending in the first direction and mutually in the second direction Spaced apart; a plurality of first memory cells, at respective intersections of the plurality of first conductive lines and the plurality of second conductive lines, each of the plurality of first memory cells Comprising a first selection element layer and a first variable resistance layer; and a plurality of second memory cells, between the plurality of second conductive lines and the plurality of third conductive lines At respective intersections of the lines, each of the plurality of second memory cells includes a second selection element layer and a second variable resistance layer. The first height of the first selection element layer in the third direction perpendicular to the first direction and the second direction may be different from the second height of the second selection element layer in the third direction. The first variable resistance layer and the second variable resistance layer can be made of the same material, and the first selection element layer and the second selection element layer can be made of the same material.

根據實例實施例,一種記憶體裝置可包含:基板;多個第一導電線,在基板上,所述多個第一導電線在平行於基板的頂部表面的第一方向上延伸且在與第一方向交叉的第二方向上彼此隔開;多個第二導電線,在所述多個第一導電線上方,所述多個第二導電線在第二方向上延伸且在第一方向上彼此隔開;多個第三導電線,在所述多個第二導電線上方,所述多個第三導電線在第一方向上延伸且在第二方向上彼此隔開;多個第一記憶體單元,在所述多個第一導電線與所述多個第二導電線的各別相交點處,所述多個第一記憶體單元中的每一者包含在垂直於第一方向及第二方向的第三方向上依序地堆疊的第一選擇元件層及第一可變電阻層;以及多個第二記憶體單元,在所述多個第二導電線與所述多個第三導電線的各別相交點處,所述多個第二記憶體單元中的每一者包含在第三方向上依序地堆疊的第二選擇元件層及第二可變電阻層。第一選擇元件層在第三方向上的厚度可大於第二選擇元件層在第三方向上的厚度。第一可變電阻層與第二可變電阻層可由相同材料製成,且第一選擇元件層與第二選擇元件層可由相同材料製成。 According to example embodiments, a memory device may include: a substrate; a plurality of first conductive lines, on the substrate, the plurality of first conductive lines extend in a first direction parallel to the top surface of the substrate and are aligned with the first One direction is separated from each other in a second direction crossing; a plurality of second conductive lines above the plurality of first conductive lines, the plurality of second conductive lines extending in the second direction and in the first direction Spaced apart from each other; a plurality of third conductive lines, above the plurality of second conductive lines, the plurality of third conductive lines extend in the first direction and are spaced apart from each other in the second direction; a plurality of first A memory cell, where each of the plurality of first memory cells is included in a direction perpendicular to the first direction at respective intersections of the plurality of first conductive lines and the plurality of second conductive lines And the first selection element layer and the first variable resistance layer sequentially stacked in the third direction in the second direction; and a plurality of second memory cells, between the plurality of second conductive lines and the plurality of first At respective intersections of the three conductive lines, each of the plurality of second memory cells includes a second selection element layer and a second variable resistance layer sequentially stacked in the third direction. The thickness of the first selection element layer in the third direction may be greater than the thickness of the second selection element layer in the third direction. The first variable resistance layer and the second variable resistance layer can be made of the same material, and the first selection element layer and the second selection element layer can be made of the same material.

根據實例實施例,一種記憶體裝置可包含:基板;第一字元線層(word line layer),安置於基板上;共同位元線層(common bit line layer),安置於第一字元線層上;第二字元線層,安置於共同位元線層上,使得共同位元線層垂直地位於第一字元線層與第二字元線層之間;第一記憶體單元層(memory cell layer),包含垂直地堆疊的第一可變電阻層及第一雙向臨界切換層(ovonic threshold switching layer),第一記憶體單元層在垂直方向上安置 於第一字元線層與共同位元線層之間;以及第二記憶體單元層,包含垂直地堆疊的第二可變電阻層及第二雙向臨界切換層,第二記憶體單元層在垂直方向上安置於第二字元線層與共同位元線層之間。第一可變電阻層與第二可變電阻層可由相同材料製成,且第一雙向臨界切換層與第二雙向臨界切換層可由相同材料製成。第一雙向臨界切換層在垂直方向上的第一厚度可不同於第二雙向臨界切換層在垂直方向上的第二厚度。 According to example embodiments, a memory device may include: a substrate; a first word line layer (word line layer) disposed on the substrate; a common bit line layer (common bit line layer) disposed on the first word line The second word line layer is arranged on the common bit line layer, so that the common bit line layer is vertically located between the first word line layer and the second word line layer; the first memory cell layer (memory cell layer), including a first variable resistance layer and a first ovonic threshold switching layer stacked vertically, the first memory cell layer is arranged in the vertical direction Between the first word line layer and the common bit line layer; and the second memory cell layer, including a second variable resistance layer and a second bidirectional critical switching layer stacked vertically, the second memory cell layer It is vertically arranged between the second word line layer and the common bit line layer. The first variable resistance layer and the second variable resistance layer can be made of the same material, and the first bidirectional critical switching layer and the second bidirectional critical switching layer can be made of the same material. The first thickness of the first bidirectional critical switching layer in the vertical direction may be different from the second thickness of the second bidirectional critical switching layer in the vertical direction.

2A-2A'、A-A'、B-B':線 2A-2A', A-A', B-B': line

40:電壓-電流曲線 40: voltage-current curve

41:第一曲線 41: The first curve

42:第二曲線 42: second curve

43:第一電壓位準 43: first voltage level

44:第二電壓位準 44: second voltage level

46:第一電流位準 46: First current level

47:第二電流位準 47: second current level

56(V1):第一臨界電壓 56 (V 1 ): the first critical voltage

58(V2):第二臨界電壓 58 (V 2 ): the second critical voltage

60:電壓-電流圖形 60: voltage-current graph

62:第一實驗實例 62: The first experimental example

64:第二實驗實例 64: second experimental example

100、100A、100B、100C、100D、100E、100F、100G、200、800、1112:記憶體裝置 100, 100A, 100B, 100C, 100D, 100E, 100F, 100G, 200, 800, 1112: memory device

101、102:基板 101, 102: substrate

104:裝置隔離層 104: Device isolation layer

105、212A、212B、212C:層間絕緣層 105, 212A, 212B, 212C: interlayer insulation layer

106:絕緣間隔件 106: insulating spacer

108:蝕刻終止層 108: Etch stop layer

110:第一導電線 110: The first conductive thread

110L:第一導電線層 110L: the first conductive wire layer

110P:第一導電層 110P: the first conductive layer

120:第二導電線 120: second conductive wire

120L:第二導電線層 120L: second conductive wire layer

120P:第二導電層 120P: second conductive layer

130:第三導電線 130: third conductive thread

130L:第三導電線層 130L: third conductive wire layer

130P:第三導電層 130P: third conductive layer

140-1、MC1:第一記憶體單元 140-1, MC1: the first memory unit

140-2、MC2:第二記憶體單元 140-2, MC2: second memory unit

141-1:第一電極層 141-1: First electrode layer

141-1L:第一電極層線 141-1L: first electrode layer line

141-1P:初步第一電極層 141-1P: preliminary first electrode layer

141-2:第五電極層 141-2: Fifth electrode layer

141-2L:第五電極層線 141-2L: Fifth electrode layer line

141-2P:初步第五電極層 141-2P: preliminary fifth electrode layer

143-1:第一選擇元件層 143-1: first choice component layer

143-1L:第一選擇元件層線 143-1L: first choice component layer line

143-1P:初步第一選擇元件層 143-1P: Initial first choice component layer

143-2:第二選擇元件層 143-2: The second choice component layer

143-2L:第二選擇元件層線 143-2L: Second choice component layer line

143-2P:初步第二選擇元件層 143-2P: Preliminary second choice component layer

145-1:第二電極層 145-1: second electrode layer

145-1L:第二電極層線 145-1L: second electrode layer line

145-1P:初步第二電極層 145-1P: preliminary second electrode layer

145-2:第六電極層 145-2: The sixth electrode layer

145-2L:第六電極層線 145-2L: sixth electrode layer line

145-2P:初步第六電極層 145-2P: preliminary sixth electrode layer

147-1:第三電極層 147-1: third electrode layer

147-1L:第三電極層線 147-1L: third electrode layer line

147-1P:初步第三電極層 147-1P: preliminary third electrode layer

147-2:第七電極層 147-2: seventh electrode layer

147-2L:第七電極層線 147-2L: seventh electrode layer line

147-2P:初步第七電極層 147-2P: Preliminary seventh electrode layer

148-1:第四電極層 148-1: Fourth electrode layer

148-1L:第四電極層線 148-1L: Fourth electrode layer line

148-1P:初步第四電極層 148-1P: preliminary fourth electrode layer

148-2:第八電極層 148-2: Eighth electrode layer

148-2L:第八電極層線 148-2L: Eighth electrode layer line

148-2P:初步第八電極層 148-2P: preliminary eighth electrode layer

149-1:第一可變電阻層 149-1: The first variable resistance layer

149-1L:第一可變電阻層線 149-1L: The first variable resistance layer line

149-1P:初步第一可變電阻層 149-1P: preliminary first variable resistance layer

149-2:第二可變電阻層 149-2: Second variable resistance layer

149-2L:第二可變電阻層線 149-2L: Second variable resistance layer line

149-2P:初步第二可變電阻層 149-2P: Preliminary second variable resistance layer

152-1:第一內部間隔件 152-1: The first internal spacer

152-2:第二內部間隔件 152-2: The second inner spacer

155-1:第一上部間隔件 155-1: First upper spacer

155-2:第二上部間隔件 155-2: The second upper spacer

162-1:第一絕緣層 162-1: The first insulating layer

162-2:第二絕緣層 162-2: second insulating layer

163:第三絕緣層 163: third insulating layer

210:驅動電路區 210: Drive circuit area

214:多層級內連線結構 214: Multi-level interconnect structure

216A:第一接觸件 216A: first contact

216B:第二接觸件 216B: second contact

218A:第一內連線層 218A: The first interconnection layer

218B:第二內連線層 218B: The second interconnection layer

220:上部層間絕緣層 220: upper interlayer insulation layer

410:第一遮罩圖案 410: The first mask pattern

420:第二遮罩圖案 420: The second mask pattern

430:第三遮罩圖案 430: The third mask pattern

810:記憶體單元陣列 810: Memory cell array

820:解碼器 820: decoder

830:讀取/寫入電路 830: read/write circuit

840:輸入/輸出緩衝器 840: input/output buffer

850:控制器 850: Controller

1100:電子系統 1100: Electronic System

1110:記憶體系統 1110: memory system

1114:記憶體控制器 1114: Memory Controller

1120:處理器 1120: processor

1130:隨機存取記憶體 1130: random access memory

1140:輸入/輸出單元 1140: input/output unit

1150:電力供應單元 1150: power supply unit

1160:匯流排 1160: bus

AC:主動區 AC: Active area

BL:位元線 BL: bit line

BL1、BL2、BL3、BL4:共同位元線 BL1, BL2, BL3, BL4: common bit line

CPL1:第一堆疊線 CPL1: first stacking line

CPL2:第二堆疊線 CPL2: second stacking line

CPP1:第一堆疊圖案 CPP1: first stack pattern

CPP2:第二堆疊圖案 CPP2: second stack pattern

CPS1:第一堆疊結構 CPS1: The first stack structure

CPS2:第二堆疊結構 CPS2: second stack structure

DL:資料線 DL: Data line

G:閘極 G: Gate

GD:閘極絕緣層 GD: gate insulation layer

GX1:第一間隙 GX1: first gap

GY1:第二間隙 GY1: second gap

GX2:第三間隙 GX2: third gap

H1、H1A:第一高度 H1, H1A: first height

H2、H2A:第二高度 H2, H2A: second height

IMC11:第一電流 I MC11 : first current

IMC21:第二電流 I MC21 : second current

MC11:第一下部記憶體單元 MC11: The first lower memory unit

MC12:第二下部記憶體單元 MC12: The second lower memory unit

MC21:第一上部記憶體單元 MC21: The first upper memory unit

MC22:第二上部記憶體單元 MC22: The second upper memory unit

MCA:記憶體單元陣列區 MCA: Memory cell array area

MCL1:第一記憶體單元層 MCL1: The first memory cell layer

MCL2:第二記憶體單元層 MCL2: The second memory cell layer

ME、R:可變電阻層 ME, R: Variable resistance layer

SD:源極/汲極區 SD: source/drain region

SW:選擇元件 SW: Select component

TR:電晶體 TR: Transistor

Vlow:較低電壓 Vlow: lower voltage

VS:飽和電壓 V S : saturation voltage

VT:臨界電壓 V T : critical voltage

VT1:第一臨界電壓 V T1 : the first threshold voltage

VT2:第二臨界電壓 V T2 : second threshold voltage

VWL(Sel):字元線選擇電壓 V WL(Sel) : character line selection voltage

VWL(Unsel):字元線未選擇電壓 V WL(Unsel) : No voltage selected for word line

WL:字元線 WL: Character line

WL11、WL12:下部字元線 WL11, WL12: lower character line

WL21、WL22:上部字元線 WL21, WL22: upper character line

X、Y、Z:方向 X, Y, Z: direction

將自結合隨附圖式所採取的以下詳細描述更清楚地理解本揭露內容的實例實施例,在圖式中:圖1為說明根據實例實施例的記憶體裝置的等效電路圖。 The following detailed description taken in conjunction with the accompanying drawings will give a clearer understanding of example embodiments of the present disclosure. In the drawings: FIG. 1 is an equivalent circuit diagram illustrating a memory device according to an example embodiment.

圖2為說明根據實例實施例的記憶體裝置的透視橫截面圖,且圖3為說明根據實例實施例的沿著圖2的線A-A'及B-B'所採取的橫截面的橫截面圖。 FIG. 2 is a perspective cross-sectional view illustrating a memory device according to an example embodiment, and FIG. 3 is a cross-sectional view illustrating a cross section taken along the lines A-A' and B-B' of FIG. 2 according to an example embodiment Sectional view.

圖4為說明表示雙向臨界切換(ovonic threshold switching;OTS)屬性的雙向臨界切換元件的電壓-電流曲線的示意性圖形。 FIG. 4 is a schematic diagram illustrating a voltage-current curve of a bidirectional threshold switching element representing the properties of ovonic threshold switching (OTS).

圖5A及圖5B為說明根據實例實施例的具有堆疊式交叉點結構的記憶體裝置的操作方法的示意圖。 5A and 5B are schematic diagrams illustrating an operation method of a memory device having a stacked cross-point structure according to example embodiments.

圖6說明關於分別將正電壓及負電壓施加至雙向臨界切換元件的電壓-電流圖形。 FIG. 6 illustrates voltage-current graphs regarding the application of positive voltage and negative voltage to the bidirectional critical switching element, respectively.

圖7至圖13分別為說明根據實例實施例的記憶體裝置的橫截面圖。 7 to 13 are respectively cross-sectional views illustrating a memory device according to example embodiments.

圖14為說明根據實例實施例的記憶體裝置的透視圖,且圖15為根據實例實施例的沿著圖14的線2A-2A'所採取的橫截面圖。 FIG. 14 is a perspective view illustrating a memory device according to an example embodiment, and FIG. 15 is a cross-sectional view taken along line 2A-2A' of FIG. 14 according to an example embodiment.

圖16A至圖16I為說明根據實例實施例的製造記憶體裝置的方法的階段的橫截面圖。 16A to 16I are cross-sectional views illustrating stages of a method of manufacturing a memory device according to example embodiments.

圖17為說明根據某些實施例的記憶體裝置的方塊圖。 Figure 17 is a block diagram illustrating a memory device according to certain embodiments.

圖18為說明根據某些實施例的電子系統的方塊圖。 Figure 18 is a block diagram illustrating an electronic system according to some embodiments.

現在將在下文中參考隨附圖式來更充分地描述本揭露內容,在圖式中展示本發明概念的實例實施例。然而,本發明概念可以不同形式予以體現,且不應被認作限於本文中所闡述的實施例。 The present disclosure will now be described more fully below with reference to the accompanying drawings, in which example embodiments of the inventive concept are shown. However, the concept of the present invention can be embodied in different forms and should not be regarded as limited to the embodiments set forth herein.

圖1為說明根據實例實施例的記憶體裝置的等效電路圖。 FIG. 1 is an equivalent circuit diagram illustrating a memory device according to an example embodiment.

如本文中所使用,半導體裝置可指代諸如圖1至圖3及圖7至圖15所展示的各種裝置中的任一者,且亦可指代(例如)諸如半導體晶片(semiconductor chip)(例如,形成於晶粒上的記憶體晶片(memory chip)及/或邏輯晶片(logic chip))、半導體晶片的堆疊、包含堆疊於封裝基板(package substrate)上的一或多個半導體晶片的半導體封裝(semiconductor package)或包含多個封裝的疊層封裝裝置(package-on-package device)的裝置。這些裝置可使用球狀柵格陣列(ball grid array)、線接合(wire bonding)、貫通基板導孔(through substrate via)或其他電連接元件(electrical connection element)而形成,且可包含諸如揮發性記憶體裝置或非揮發性記憶體裝置的記憶體裝置。 As used herein, a semiconductor device may refer to any of various devices such as those shown in FIGS. 1 to 3 and FIGS. 7 to 15, and may also refer to, for example, a semiconductor chip (semiconductor chip) ( For example, a memory chip and/or logic chip (logic chip) formed on a die, a stack of semiconductor chips, a semiconductor including one or more semiconductor chips stacked on a package substrate Package (semiconductor package) or a package-on-package device containing multiple packages. These devices can be formed using ball grid arrays, wire bonding, through substrate vias, or other electrical connection elements, and can include, for example, volatile Memory device or non-volatile memory device.

如本文中所使用,電子裝置可指代這些半導體裝置,但可另外包含具有這些裝置的產品,諸如記憶體模組(memory module)、記憶體卡(memory card)、包含額外組件的硬碟機(hard drive),或行動電話(mobile phone)、膝上型電腦(laptop)、平板電腦(tablet)、桌上型電腦(desktop)、攝影機(camera)或其他消費型電子裝置(consumer electronic device)等等。 As used herein, electronic devices may refer to these semiconductor devices, but may additionally include products with these devices, such as memory modules, memory cards, and hard drives containing additional components (hard drive), or mobile phone, laptop, tablet, desktop, camera or other consumer electronic device (consumer electronic device) and many more.

參看圖1,記憶體裝置100可包含下部字元線(lower word line)WL11及WL12、上部字元線(upper word line)WL21及WL22、共同位元線BL1、BL2、BL3及BL4、第一記憶體單元MC1以及第二記憶體單元MC2。下部字元線WL11及WL12可在X方向(例如,被稱作第一方向)上延伸且可在與第一方向交叉的Y方向(例如,被稱作第二方向)上彼此隔開。上部字元線WL21及WL22可在垂直於第一方向及第二方向的Z方向(例如,被稱作第三方向或垂直方向)上自下部字元線WL11及WL12隔開,可在第一方向上延伸且可在第二方向上彼此隔開。共同位元線BL1、BL2、BL3及BL4可安置於下部字元線WL11及WL12與上部字元線WL21及WL22之間,以在第三方向上自下部字元線WL11及WL12以及上部字元線WL21及WL22隔開。共同位元線BL1、BL2、BL3及BL4可在第二方向上延伸且可在第一方向上彼此隔開。 1, the memory device 100 may include lower word lines WL11 and WL12, upper word lines WL21 and WL22, common bit lines BL1, BL2, BL3 and BL4, and a first The memory cell MC1 and the second memory cell MC2. The lower word lines WL11 and WL12 may extend in the X direction (for example, referred to as the first direction) and may be spaced apart from each other in the Y direction (for example, referred to as the second direction) crossing the first direction. The upper character lines WL21 and WL22 can be separated from the lower character lines WL11 and WL12 in the Z direction (for example, referred to as the third direction or the vertical direction) perpendicular to the first direction and the second direction. Extend in the direction and may be spaced apart from each other in the second direction. The common bit lines BL1, BL2, BL3, and BL4 can be arranged between the lower word lines WL11 and WL12 and the upper word lines WL21 and WL22 to move from the lower word lines WL11 and WL12 and the upper word lines in the third direction WL21 and WL22 are separated. The common bit lines BL1, BL2, BL3, and BL4 may extend in the second direction and may be spaced apart from each other in the first direction.

第一記憶體單元MC1及第二記憶體單元MC2可分別安置於共同位元線BL1、BL2、BL3及BL4與下部字元線WL11及WL12之間以及共同位元線BL1、BL2、BL3及BL4與上部字元線WL21及WL22之間。更具體言之,第一記憶體單元MC1可安置於共同位元線BL1、BL2、BL3及BL4與下部字元線WL11及WL12 的各別相交點(或交叉點)處,且可各自包含用於儲存資訊的可變電阻層ME及用於選擇記憶體單元的選擇元件SW。第一記憶體單元MC1可在第一方向及第二方向上以兩個維度而配置以形成第一記憶體單元層。第二記憶體單元MC2可安置於共同位元線BL1、BL2、BL3及BL4與上部字元線WL21及WL22的各別相交點(或交叉點)處,且可各自包含用於儲存資訊的可變電阻層ME及用於選擇記憶體單元的選擇元件SW。第二記憶體單元MC2可在第一方向及第二方向上以兩個維度而配置以形成第二記憶體單元層。選擇元件SW可被稱作切換元件(switching element)或存取元件(access element)。 The first memory cell MC1 and the second memory cell MC2 can be arranged between the common bit lines BL1, BL2, BL3, and BL4 and the lower word lines WL11 and WL12, and the common bit lines BL1, BL2, BL3, and BL4, respectively Between the upper character lines WL21 and WL22. More specifically, the first memory cell MC1 can be placed on the common bit lines BL1, BL2, BL3, and BL4 and the lower word lines WL11 and WL12 The respective intersection points (or intersection points) of, and each may include a variable resistance layer ME for storing information and a selection element SW for selecting a memory cell. The first memory cell MC1 can be arranged in two dimensions in the first direction and the second direction to form the first memory cell layer. The second memory cell MC2 can be placed at the respective intersections (or intersections) of the common bit lines BL1, BL2, BL3, and BL4 and the upper word lines WL21 and WL22, and can each include a memory cell for storing information. The variable resistance layer ME and the selection element SW for selecting the memory cell. The second memory cell MC2 can be arranged in two dimensions in the first direction and the second direction to form a second memory cell layer. The selection element SW can be called a switching element or an access element.

第一記憶體單元MC1及第二記憶體單元MC2可經安置為在第三方向上具有相同結構。如圖1所展示,在第一記憶體單元MC1位於下部字元線WL11與共同位元線BL1之間的狀況下,可變電阻層ME可電連接至共同位元線BL1,選擇元件SW可電連接至下部字元線WL11,且可變電阻層ME可與選擇元件SW串聯地連接。此外,在第二記憶體單元MC2位於上部字元線WL21與共同位元線BL1之間的狀況下,可變電阻層ME可電連接至上部字元線WL21,選擇元件SW可電連接至共同位元線BL1,且可變電阻層ME可與選擇元件SW串聯地連接。然而,本發明概念的態樣並不限於此情形。在一些實施例中,在第一記憶體單元MC1及第二記憶體單元MC2中的每一者中,可不同於圖1所展示而翻轉可變電阻層ME及選擇元件SW的配置。舉例而言,第一記憶體單元MC1與第二記憶體單元MC2可相對於共同位元線BL1、BL2、BL3及BL4在第三方向上對稱地配置。舉例而言,在第一記 憶體單元MC1中,可變電阻層ME可連接至下部字元線WL11及WL12,且選擇元件SW可連接至共同位元線BL1、BL2、BL3及BL4,且在第二記憶體單元MC2中,可變電阻層ME可連接至上部字元線WL21及WL22,且選擇元件SW可連接至共同位元線BL1、BL2、BL3及BL4,使得第一記憶體單元MC1中的每一者與第二記憶體單元MC2中的每一者可相對於共同位元線BL1、BL2、BL3及BL4中的對應者對稱地配置。 The first memory cell MC1 and the second memory cell MC2 can be arranged to have the same structure in the third direction. As shown in FIG. 1, under the condition that the first memory cell MC1 is located between the lower word line WL11 and the common bit line BL1, the variable resistance layer ME can be electrically connected to the common bit line BL1, and the selection element SW can be It is electrically connected to the lower word line WL11, and the variable resistance layer ME may be connected in series with the selection element SW. In addition, under the condition that the second memory cell MC2 is located between the upper word line WL21 and the common bit line BL1, the variable resistance layer ME can be electrically connected to the upper word line WL21, and the selection element SW can be electrically connected to the common bit line. The bit line BL1 and the variable resistance layer ME may be connected in series with the selection element SW. However, the aspect of the concept of the present invention is not limited to this case. In some embodiments, in each of the first memory cell MC1 and the second memory cell MC2, the configuration of the variable resistance layer ME and the selection element SW may be reversed differently from that shown in FIG. 1. For example, the first memory cell MC1 and the second memory cell MC2 may be symmetrically arranged in the third direction with respect to the common bit lines BL1, BL2, BL3, and BL4. For example, in the first note In the memory cell MC1, the variable resistance layer ME can be connected to the lower word lines WL11 and WL12, and the selection element SW can be connected to the common bit lines BL1, BL2, BL3, and BL4, and in the second memory cell MC2 , The variable resistance layer ME can be connected to the upper word lines WL21 and WL22, and the selection element SW can be connected to the common bit lines BL1, BL2, BL3, and BL4, so that each of the first memory cells MC1 is Each of the two memory cells MC2 can be symmetrically arranged with respect to the corresponding ones of the common bit lines BL1, BL2, BL3, and BL4.

在下文中,將描述記憶體裝置100的操作方法。 Hereinafter, the operation method of the memory device 100 will be described.

舉例而言,可經由下部字元線WL11及WL12與上部字元線WL21及WL22以及共同位元線BL1、BL2、BL3及BL4將電壓施加至第一記憶體單元MC1中的任一者的可變電阻層ME或第二記憶體單元MC2中的任一者的可變電阻層ME,以允許電流在可變電阻層ME中流動。舉例而言,可變電阻層ME可包含能夠在第一狀態與不同於第一狀態的第二狀態之間可逆地改變的相變材料(phase change material),但並不限於此情形。在一些實施例中,可變電阻層ME可包含電阻值取決於外加電壓而變化的任何種類的可變電阻材料。舉例而言,根據施加至第一記憶體單元MC1及第二記憶體單元MC2中的選定者的可變電阻層ME的電壓,可變電阻層ME的電阻值可在第一狀態與第二狀態之間可逆地變化。 For example, a voltage can be applied to any one of the first memory cell MC1 through the lower word lines WL11 and WL12, the upper word lines WL21 and WL22, and the common bit lines BL1, BL2, BL3, and BL4. The variable resistance layer ME or the variable resistance layer ME of any one of the second memory cell MC2 is changed to allow current to flow in the variable resistance layer ME. For example, the variable resistance layer ME may include a phase change material that can be reversibly changed between a first state and a second state different from the first state, but is not limited to this case. In some embodiments, the variable resistance layer ME may include any kind of variable resistance material whose resistance value changes depending on the applied voltage. For example, according to the voltage applied to the variable resistance layer ME of the selected one of the first memory cell MC1 and the second memory cell MC2, the resistance value of the variable resistance layer ME can be in the first state and the second state Change reversibly between.

根據可變電阻層ME的電阻改變,諸如「0」或「1」的數位資料可儲存於第一記憶體單元MC1及第二記憶體單元MC2中且可自第一記憶體單元MC1及第二記憶體單元MC2抹除。舉例而言,在第一記憶體單元MC1及第二記憶體單元MC2中,可將 高電阻狀態寫入為資料「0」且可將低電阻狀態寫入為資料「1」。此處,自高電阻狀態(「0」資料狀態)至低電阻狀態(「1」資料狀態)的電阻改變操作可被稱作「設定(set)」操作,且自低電阻狀態(「1」資料狀態)至高電阻狀態(「0」資料狀態)的電阻改變操作可被稱作「重設(reset)」操作。然而,實例實施例並不限於高電阻狀態(「0」資料狀態)及低電阻狀態(「1」資料狀態)的數位資料。舉例而言,記憶體單元MC1及MC2可儲存各種電阻狀態。 According to the resistance change of the variable resistance layer ME, digital data such as "0" or "1" can be stored in the first memory cell MC1 and the second memory cell MC2 and can be transferred from the first memory cell MC1 and the second memory cell MC1 and the second memory cell MC1. The memory cell MC2 is erased. For example, in the first memory cell MC1 and the second memory cell MC2, the The high resistance state is written as data "0" and the low resistance state can be written as data "1". Here, the resistance change operation from the high resistance state ("0" data state) to the low resistance state ("1" data state) can be referred to as a "set" operation, and from the low resistance state ("1") The resistance change operation from the data state) to the high resistance state ("0" data state) can be referred to as a "reset" operation. However, the example embodiments are not limited to digital data in the high resistance state ("0" data state) and low resistance state ("1" data state). For example, the memory cells MC1 and MC2 can store various resistance states.

藉由選擇字元線WL11、WL12、WL21及WL22中的一者以及共同位元線BL1、BL2、BL3及BL4中的一者,可定址第一記憶體單元MC1及第二記憶體單元MC2當中的任意記憶體單元。藉由在字元線WL11、WL12、WL21及WL22中的對應者與共同位元線BL1、BL2、BL3及BL4中的對應者之間施加某一信號,可程式化第一記憶體單元MC1及第二記憶體單元MC2中的對應者,且藉由量測通過共同位元線BL1、BL2、BL3及BL4中的對應者的電流值,可讀取取決於第一記憶體單元MC1及第二記憶體單元MC2中的對應者的可變電阻層ME的電阻值的資訊。 By selecting one of the word lines WL11, WL12, WL21, and WL22 and one of the common bit lines BL1, BL2, BL3, and BL4, the first memory cell MC1 and the second memory cell MC2 can be addressed Of any memory unit. By applying a signal between the corresponding ones of the word lines WL11, WL12, WL21, and WL22 and the corresponding ones of the common bit lines BL1, BL2, BL3, and BL4, the first memory cell MC1 and The corresponding one of the second memory cell MC2, and by measuring the current value through the corresponding one of the common bit lines BL1, BL2, BL3, and BL4, the readability depends on the first memory cell MC1 and the second Information on the resistance value of the corresponding variable resistance layer ME in the memory cell MC2.

在實例實施例中,第一記憶體單元MC1的選擇元件SW的臨界電壓可與第二記憶體單元MC2的選擇元件SW的臨界電壓實質上相同。舉例而言,第一記憶體單元MC1的選擇元件SW的臨界電壓與第二記憶體單元MC2的選擇元件SW的臨界電壓之間的量值差可小於第一記憶體單元MC1的選擇元件SW的臨界電壓的10%。舉例而言,第一記憶體單元MC1的選擇元件SW的臨界電壓與第二記憶體單元MC2的選擇元件SW的臨界電壓之間的量值差可小於0.5V。因為第一記憶體單元MC1的選擇元件SW的 臨界電壓與第二記憶體單元MC2的選擇元件SW的臨界電壓之間的量值差可能小得多,所以可改良或增加讀取/寫入操作的感測裕度(sensing margin),藉此減少或防止讀取/寫入的失敗。結果,記憶體裝置100可具有改良的可靠性。 In an example embodiment, the threshold voltage of the selection element SW of the first memory cell MC1 may be substantially the same as the threshold voltage of the selection element SW of the second memory cell MC2. For example, the magnitude difference between the threshold voltage of the selection element SW of the first memory cell MC1 and the threshold voltage of the selection element SW of the second memory cell MC2 may be smaller than that of the selection element SW of the first memory cell MC1 10% of the critical voltage. For example, the magnitude difference between the threshold voltage of the selection element SW of the first memory cell MC1 and the threshold voltage of the selection element SW of the second memory cell MC2 may be less than 0.5V. Because the selection element SW of the first memory cell MC1 The magnitude difference between the threshold voltage and the threshold voltage of the selection element SW of the second memory cell MC2 may be much smaller, so the sensing margin of the read/write operation can be improved or increased, thereby Reduce or prevent read/write failures. As a result, the memory device 100 can have improved reliability.

圖2為說明根據實例實施例的記憶體裝置的透視橫截面圖,且圖3為說明根據實例實施例的沿著圖2的線A-A'及B-B'所採取的橫截面的橫截面圖。 FIG. 2 is a perspective cross-sectional view illustrating a memory device according to an example embodiment, and FIG. 3 is a cross-sectional view illustrating a cross section taken along the lines A-A' and B-B' of FIG. 2 according to an example embodiment Sectional view.

參看圖2及圖3,記憶體裝置100可在基板101上包含第一導電線層110L、第二導電線層120L、第三導電線層130L、第一記憶體單元層MCL1以及第二記憶體單元層MCL2。 2 and 3, the memory device 100 may include a first conductive line layer 110L, a second conductive line layer 120L, a third conductive line layer 130L, a first memory cell layer MCL1, and a second memory on the substrate 101 Unit layer MCL2.

記憶體裝置100可更包含安置於基板上的層間絕緣層(interlayer insulating layer)105。層間絕緣層105可包含諸如氧化矽的氧化物及諸如氮化矽的氮化物,且可將第一導電線層110L與基板101電分離。 The memory device 100 may further include an interlayer insulating layer 105 disposed on the substrate. The interlayer insulating layer 105 may include an oxide such as silicon oxide and a nitride such as silicon nitride, and may electrically separate the first conductive line layer 110L from the substrate 101.

第一導電線層110L可包含在第一方向(X方向)上延伸且在第二方向(Y方向)上彼此隔開的多個第一導電線110。第二導電線層120L可安置於第一導電線層110L上,且可包含在第二方向上延伸且在第一方向上彼此隔開的多個第二導電線120。第三導電線層130L可安置於第二導電線層120L上,且可包含在第一方向上延伸且在第二方向上彼此隔開的多個第三導電線130。所述多個第三導電線130及所述多個第一導電線110可在第三方向(Z方向)上定位於不同層級(level)處,但可具有實質上相同的配置。 The first conductive wire layer 110L may include a plurality of first conductive wires 110 extending in the first direction (X direction) and spaced apart from each other in the second direction (Y direction). The second conductive line layer 120L may be disposed on the first conductive line layer 110L, and may include a plurality of second conductive lines 120 extending in the second direction and spaced apart from each other in the first direction. The third conductive line layer 130L may be disposed on the second conductive line layer 120L, and may include a plurality of third conductive lines 130 extending in the first direction and spaced apart from each other in the second direction. The plurality of third conductive wires 130 and the plurality of first conductive wires 110 may be positioned at different levels in the third direction (Z direction), but may have substantially the same configuration.

就記憶體裝置的操作而言,所述多個第一導電線110及進述多個第三導電線130可對應於字元線(例如,圖1的字元線 WL11、WL12、WL21及WL22),且所述多個第二導電線120可對應於位元線(例如,圖1的共同位元線BL1、BL2、BL3及BL4)。在一些實施例中,所述多個第一導電線110及所述多個第三導電線130可對應於位元線(例如,圖1的共同位元線BL1、BL2、BL3及BL4),且所述多個第二導電線120可對應於字元線(例如,圖1的字元線WL11、WL12、WL21及WL22)。在所述多個第一導電線110及所述多個第三導電線130對應於字元線的狀況下,所述多個第一導電線110可對應於下部字元線(例如,圖1的下部字元線WL11及WL12),且所述多個第三導電線130可對應於上部字元線(例如,圖1的上部字元線WL21及WL22)。因為所述多個第二導電線120可由所述多個第一導電線110(亦即,下部字元線)及所述多個第三導電線130(亦即,上部字元線)共同地共用,所以所述多個第二導電線120可對應於共同位元線。 With regard to the operation of the memory device, the plurality of first conductive lines 110 and the plurality of third conductive lines 130 may correspond to word lines (for example, the word line of FIG. 1 WL11, WL12, WL21, and WL22), and the plurality of second conductive lines 120 may correspond to bit lines (for example, the common bit lines BL1, BL2, BL3, and BL4 of FIG. 1). In some embodiments, the plurality of first conductive lines 110 and the plurality of third conductive lines 130 may correspond to bit lines (for example, the common bit lines BL1, BL2, BL3, and BL4 of FIG. 1), And the plurality of second conductive lines 120 may correspond to word lines (for example, the word lines WL11, WL12, WL21, and WL22 of FIG. 1). In the case where the plurality of first conductive lines 110 and the plurality of third conductive lines 130 correspond to word lines, the plurality of first conductive lines 110 may correspond to lower word lines (for example, FIG. 1 The lower word lines WL11 and WL12), and the plurality of third conductive lines 130 may correspond to upper word lines (for example, the upper word lines WL21 and WL22 in FIG. 1). Because the plurality of second conductive lines 120 can be shared by the plurality of first conductive lines 110 (ie, lower character lines) and the plurality of third conductive lines 130 (ie, upper character lines) Shared, so the plurality of second conductive lines 120 may correspond to a common bit line.

所述多個第一導電線110、所述多個第二導電線120及所述多個第三導電線130中的各別導電線可包含金屬、導電金屬氮化物、導電金屬氧化物或其組合。在實例實施例中,所述多個第一導電線110、所述多個第二導電線120及所述多個第三導電線130中的各別導電線可包含W、WN、Au、Ag、Cu、Al、TiAlN、Ir、Pt、Pd、Ru、Zr、Rh、Ni、Co、Cr、Sn、Zn、ITO、其合金或其組合。在一個實施例中,所述多個第一導電線110、所述多個第二導電線120及所述多個第三導電線130中的各別導電線可包含金屬層(metal layer)以及用以覆蓋金屬層的至少一部分的導電障壁層(conductive barrier layer)。導電障壁層可包含(例如)Ti、TiN、Ta、TaN或其組合。 Each of the plurality of first conductive wires 110, the plurality of second conductive wires 120, and the plurality of third conductive wires 130 may include metal, conductive metal nitride, conductive metal oxide, or combination. In example embodiments, each of the plurality of first conductive wires 110, the plurality of second conductive wires 120, and the plurality of third conductive wires 130 may include W, WN, Au, Ag , Cu, Al, TiAlN, Ir, Pt, Pd, Ru, Zr, Rh, Ni, Co, Cr, Sn, Zn, ITO, alloys or combinations thereof. In one embodiment, each of the plurality of first conductive wires 110, the plurality of second conductive wires 120, and the plurality of third conductive wires 130 may include a metal layer and A conductive barrier layer for covering at least a part of the metal layer. The conductive barrier layer may include, for example, Ti, TiN, Ta, TaN, or a combination thereof.

第一記憶體單元層MCL1可包含在第一方向及第二方向上彼此隔開而以兩個維度而排列的多個第一記憶體單元140-1(例如,圖1的第一記憶體單元MC1)。第二記憶體單元層MCL2可包含在第一方向及第二方向上彼此隔開而以兩個維度而排列的多個第二記憶體單元140-2(例如,圖1的第二記憶體單元MC2)。 The first memory cell layer MCL1 may include a plurality of first memory cells 140-1 arranged in two dimensions separated from each other in the first direction and the second direction (for example, the first memory cell of FIG. 1 MC1). The second memory cell layer MCL2 may include a plurality of second memory cells 140-2 arranged in two dimensions separated from each other in the first direction and the second direction (for example, the second memory cell of FIG. 1 MC2).

如圖2所展示,所述多個第二導電線120可與所述多個第一導電線110交叉,且所述多個第三導電線130可與所述多個第二導電線120交叉。第一記憶體單元140-1可安置於第一導電線層110L與第二導電線層120L之間及所述多個第一導電線110與所述多個第二導電線120的各別相交點處。第二記憶體單元140-2可安置於第二導電線層120L與第三導電線層130L之間及所述多個第二導電線120與所述多個第三導電線130的各別相交點處。 As shown in FIG. 2, the plurality of second conductive lines 120 may cross the plurality of first conductive lines 110, and the plurality of third conductive lines 130 may cross the plurality of second conductive lines 120 . The first memory cell 140-1 may be disposed between the first conductive line layer 110L and the second conductive line layer 120L and the respective intersections of the plurality of first conductive lines 110 and the plurality of second conductive lines 120 Point at. The second memory cell 140-2 may be disposed between the second conductive line layer 120L and the third conductive line layer 130L and the plurality of second conductive lines 120 and the plurality of third conductive lines 130 respectively intersect Point at.

第一記憶體單元140-1及第二記憶體單元140-2可各自具有諸如正方形支柱的支柱狀結構,但並不限於此情形。舉例而言,第一記憶體單元140-1及第二記憶體單元140-2可各自具有諸如圓柱形支柱、橢圓形支柱或多邊形支柱的各種支柱形狀。根據第一記憶體單元140-1及第二記憶體單元140-2的形成方法,第一記憶體單元140-1及第二記憶體單元140-2中的每一者的下部部分可大於其上部部分(例如,下部部分的寬度大於上部部分的寬度),或第一記憶體單元140-1及第二記憶體單元140-2中的每一者的上部部分可大於其下部部分(例如,上部部分的寬度大於下部部分的寬度)。在一些實施例中,第一記憶體單元140-1及第二記憶體單元140-2可各自具有實質上垂直的側壁,因此在其下部部分及上部部分中幾乎不存在寬度差。儘管第一記憶體單元140-1及第 二記憶體單元140-2除了在圖2及圖3中以外亦在其他圖式中被展示為具有實質上垂直的側壁,但第一記憶體單元140-1及第二記憶體單元140-2中的每一者的下部部分可大於或小於其上部部分。 The first memory unit 140-1 and the second memory unit 140-2 may each have a pillar-like structure such as a square pillar, but it is not limited to this case. For example, the first memory unit 140-1 and the second memory unit 140-2 may each have various pillar shapes such as cylindrical pillars, elliptical pillars, or polygonal pillars. According to the method of forming the first memory unit 140-1 and the second memory unit 140-2, the lower portion of each of the first memory unit 140-1 and the second memory unit 140-2 may be larger than that The upper portion (for example, the width of the lower portion is greater than the width of the upper portion), or the upper portion of each of the first memory unit 140-1 and the second memory unit 140-2 may be larger than the lower portion thereof (for example, The width of the upper part is greater than the width of the lower part). In some embodiments, the first memory unit 140-1 and the second memory unit 140-2 may each have substantially vertical sidewalls, so there is almost no difference in width between the lower portion and the upper portion thereof. Although the first memory unit 140-1 and the first The second memory cell 140-2 is shown in other drawings as having substantially vertical sidewalls in addition to FIGS. 2 and 3, but the first memory cell 140-1 and the second memory cell 140-2 The lower part of each of them may be larger or smaller than the upper part thereof.

第一記憶體單元140-1可各自包含依序地安置(或堆疊)於基板101上的第一電極層(electrode layer)141-1、第一選擇元件層143-1、第二電極層145-1、第三電極層147-1、第一可變電阻層149-1以及第四電極層148-1。第二記憶體單元140-2可各自包含依序地安置(或堆疊)於第一記憶體單元層MCL1(或所述多個第二導電線120)上的第五電極層141-2、第二選擇元件層143-2、第六電極層145-2、第七電極層147-2、第二可變電阻層149-2以及第八電極層148-2。第一記憶體單元140-1與第二記憶體單元140-2可具有實質上相同的結構及實質上相同的材料。因此,出於簡潔起見,將在下文中主要描述第一記憶體單元140-1。 The first memory cells 140-1 may each include a first electrode layer 141-1, a first selection element layer 143-1, and a second electrode layer 145 that are sequentially disposed (or stacked) on the substrate 101 -1, the third electrode layer 147-1, the first variable resistance layer 149-1, and the fourth electrode layer 148-1. The second memory cells 140-2 may each include a fifth electrode layer 141-2 and a first memory cell layer MCL1 (or the plurality of second conductive lines 120) sequentially disposed (or stacked) on the first memory cell layer MCL1 The second selection element layer 143-2, the sixth electrode layer 145-2, the seventh electrode layer 147-2, the second variable resistance layer 149-2, and the eighth electrode layer 148-2. The first memory unit 140-1 and the second memory unit 140-2 may have substantially the same structure and substantially the same material. Therefore, for the sake of brevity, the first memory unit 140-1 will be mainly described below.

第一可變電阻層149-1(例如,圖1的可變電阻層ME)可包含能夠取決於加熱時間而在第一狀態與第二狀態之間可逆地改變的相變材料。舉例而言,可變電阻層149-1可包含某種材料,此材料的相可歸因於由施加至可變電阻層149-1的兩個端子的電壓產生的焦耳熱(joule heat)而可逆地改變,且此材料的電阻可因相變而改變。更具體言之,相變材料可在非晶相(amorphous phase)中展現高電阻狀態且可在晶相(crystalline phase)中展現低電阻狀態。高電阻狀態可被定義為「0」狀態且低電阻狀態可被定義為「1」狀態,且資料可儲存於第一可變電阻層149-1中。 The first variable resistance layer 149-1 (for example, the variable resistance layer ME of FIG. 1) may include a phase change material that can be reversibly changed between the first state and the second state depending on the heating time. For example, the variable resistance layer 149-1 may include a certain material whose phase is attributable to joule heat generated by the voltage applied to the two terminals of the variable resistance layer 149-1. Change reversibly, and the resistance of this material can be changed due to phase change. More specifically, the phase change material may exhibit a high resistance state in an amorphous phase and may exhibit a low resistance state in a crystalline phase. The high resistance state can be defined as a "0" state and the low resistance state can be defined as a "1" state, and the data can be stored in the first variable resistance layer 149-1.

在一些實施例中,第一可變電阻層149-1可包含來自週 期表的第VI族的一或多種元素(例如,一或多種硫族元素),且視情況包含來自第III族、第IV族及/或第V族的一或多種化學改質劑。第一可變電阻層149-1可包含Ge-Sb-Te。由本文中所使用的連字符(-)表示的化學組成物記法表示特定混合物或化合物中所含有的元素,且用來表示含有所表示的元素的所有化學結構。舉例而言,Ge-Sb-Te材料可包含Ge2Sb2Te5、Ge2Sb2Te7、Ge1Sb2Te4或Ge1Sb4Te7In some embodiments, the first variable resistance layer 149-1 may include one or more elements from group VI of the periodic table (for example, one or more chalcogen elements), and optionally include elements from group III, One or more chemical modifiers of group IV and/or group V. The first variable resistance layer 149-1 may include Ge-Sb-Te. The chemical composition notation represented by the hyphen (-) used herein represents the elements contained in a specific mixture or compound, and is used to represent all chemical structures containing the represented elements. For example, the Ge-Sb-Te material may include Ge 2 Sb 2 Te 5 , Ge 2 Sb 2 Te 7 , Ge 1 Sb 2 Te 4 or Ge 1 Sb 4 Te 7 .

第一可變電阻層149-1除了包含Ge-Sb-Te材料以外亦可包含多種相變材料。舉例而言,第一可變電阻層149-1可包含以下各者中的至少一者:Ge-Te、Sb-Te、In-Se、Ga-Sb、In-Sb、As-Te、Al-Te、Bi-Sb-Te(BST)、In-Sb-Te(IST)、Ge-Sb-Te、Te-Ge-As、Te-Sn-Se、Ge-Se-Ga、Bi-Se-Sb、Ga-Se-Te、Sn-Sb-Te、In-Sb-Ge、In-Ge-Te、Ge-Sn-Te、Ge-Bi-Te、Ge-Te-Se、As-Sb-Te、Sn-Sb-Bi、Ge-Te-O、Te-Ge-Sb-S、Te-Ge-Sn-O、Te-Ge-Sn-Au、Pd-Te-Ge-Sn、In-Se-Ti-Co、Ge-Sb-Te-Pd、Ge-Sb-Te-Co、Sb-Te-Bi-Se、Ag-In-Sb-Te、Ge-Sb-Se-Te、Ge-Sn-Sb-Te、Ge-Te-Sn-Ni、Ge-Te-Sn-Pd、Ge-Te-Sn-Pt、In-Sn-Sb-Te、As-Ge-Sb-Te以及其組合。 In addition to the Ge-Sb-Te material, the first variable resistance layer 149-1 may also include multiple phase change materials. For example, the first variable resistance layer 149-1 may include at least one of the following: Ge-Te, Sb-Te, In-Se, Ga-Sb, In-Sb, As-Te, Al- Te, Bi-Sb-Te(BST), In-Sb-Te(IST), Ge-Sb-Te, Te-Ge-As, Te-Sn-Se, Ge-Se-Ga, Bi-Se-Sb, Ga-Se-Te, Sn-Sb-Te, In-Sb-Ge, In-Ge-Te, Ge-Sn-Te, Ge-Bi-Te, Ge-Te-Se, As-Sb-Te, Sn- Sb-Bi, Ge-Te-O, Te-Ge-Sb-S, Te-Ge-Sn-O, Te-Ge-Sn-Au, Pd-Te-Ge-Sn, In-Se-Ti-Co, Ge-Sb-Te-Pd, Ge-Sb-Te-Co, Sb-Te-Bi-Se, Ag-In-Sb-Te, Ge-Sb-Se-Te, Ge-Sn-Sb-Te, Ge- Te-Sn-Ni, Ge-Te-Sn-Pd, Ge-Te-Sn-Pt, In-Sn-Sb-Te, As-Ge-Sb-Te, and combinations thereof.

構成第一可變電阻層149-1的元素可具有多種化學計算比率(stoichiometric ratio)。根據元素的化學計算比率,可控制第一可變電阻層149-1的結晶溫度(crystallization temperature)、熔化溫度(melting temperature)、取決於結晶能量的相變速率(phase change rate)以及資料保持特性(data retention characteristic)。 The elements constituting the first variable resistance layer 149-1 may have various stoichiometric ratios. According to the chemical calculation ratio of the elements, the crystallization temperature, melting temperature, phase change rate and data retention characteristics of the first variable resistance layer 149-1 can be controlled (data retention characteristic).

第一可變電阻層149-1可更包含至少一種雜質元素。雜質元素可包含(例如)碳(C)、氮(N)、矽(Si)、鉍(Bi)以及 錫(Sn)中的至少一者。記憶體裝置100的操作電流可由雜質元素改變。再者,第一可變電阻層149-1可更包含金屬。舉例而言,第一可變電阻層149-1可包含以下各者中的至少一者:鋁(Al)、鎵(Ga)、鋅(Zn)、鈦(Ti)、鉻(Cr)、錳(Mn)、鐵(Fe)、鈷(Co)、鎳(Ni)、鉬(Mo)、釕(Ru)、鈀(Pa)、鉿(Hf)、鉭(Ta)、銥(Ir)、鉑(Pt)、鋯(Zr)、鉈(Tl)、鉛(Pb)以及釙(Po)。金屬可增加第一可變電阻層149-1的電導率及熱導率以增加其結晶速率,藉此增加設定程式化速度。此外,金屬可改良第一可變電阻層149-1的資料保持特性。 The first variable resistance layer 149-1 may further include at least one impurity element. Impurity elements may include, for example, carbon (C), nitrogen (N), silicon (Si), bismuth (Bi), and At least one of tin (Sn). The operating current of the memory device 100 can be changed by impurity elements. Furthermore, the first variable resistance layer 149-1 may further include metal. For example, the first variable resistance layer 149-1 may include at least one of the following: aluminum (Al), gallium (Ga), zinc (Zn), titanium (Ti), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), molybdenum (Mo), ruthenium (Ru), palladium (Pa), hafnium (Hf), tantalum (Ta), iridium (Ir), platinum (Pt), zirconium (Zr), thallium (Tl), lead (Pb) and polonium (Po). The metal can increase the electrical conductivity and thermal conductivity of the first variable resistance layer 149-1 to increase its crystallization rate, thereby increasing the programming speed. In addition, the metal can improve the data retention characteristics of the first variable resistance layer 149-1.

第一可變電阻層149-1可包含多層結構(multi-layered structure),具有不同物理屬性的兩個或多於兩個層堆疊於此多層結構中。構成多層結構的所述多個層的數目或厚度可不受到限制。障壁層可進一步插入於構成多層結構的所述多個層之間。障壁層可用來防止所述多個層之間的材料的擴散。當形成所述多個層的後續層時,障壁層可縮減所述多個層的先前層中所含有的材料的擴散。 The first variable resistance layer 149-1 may include a multi-layered structure, and two or more layers having different physical properties are stacked in the multi-layered structure. The number or thickness of the plurality of layers constituting the multilayer structure may not be limited. The barrier layer may be further inserted between the plurality of layers constituting the multilayer structure. The barrier layer can be used to prevent the diffusion of materials between the multiple layers. When a subsequent layer of the plurality of layers is formed, the barrier layer can reduce the diffusion of the material contained in the previous layer of the plurality of layers.

第一可變電阻層149-1可包含由包含不同材料且交替地堆疊於彼此上的多個層建構的超晶格結構。舉例而言,第一可變電阻層149-1可包含堆疊結構,由Ge-Te形成的第一層與由Sb-Te形成的第二層交替地堆疊於此堆疊結構中。然而,第一層及第二層並不限於此情形,且可包含上文所描述的各種材料。 The first variable resistance layer 149-1 may include a superlattice structure constructed from a plurality of layers including different materials and alternately stacked on each other. For example, the first variable resistance layer 149-1 may include a stacked structure, and a first layer formed of Ge-Te and a second layer formed of Sb-Te are alternately stacked in the stacked structure. However, the first layer and the second layer are not limited to this case, and may include various materials described above.

上文可描述作為第一可變電阻層149-1的相變材料,但本發明概念的態樣並不限於此情形。記憶體裝置100的第一可變電阻層149-1可包含具有電阻改變屬性的各種材料。 The phase change material as the first variable resistance layer 149-1 can be described above, but the aspect of the concept of the present invention is not limited to this case. The first variable resistance layer 149-1 of the memory device 100 may include various materials having resistance changing properties.

在一些實施例中,在第一可變電阻層149-1包含過渡金屬氧化物的狀況下,記憶體裝置100可為電阻性隨機存取記憶體(resistive random access memory;ReRAM)裝置。在包含過渡金屬氧化物的第一可變電阻層149-1中,可藉由程式化操作來建立至少一個電路徑或使其消失。第一可變電阻層149-1可在電路徑建立時具有低電阻值且可在電路徑消失時具有高電阻值。藉由使用電阻值的差異,記憶體裝置100可儲存資料。 In some embodiments, the memory device 100 may be a resistive random access memory (ReRAM) device under the condition that the first variable resistance layer 149-1 includes a transition metal oxide. In the first variable resistance layer 149-1 containing the transition metal oxide, at least one electrical path can be established or disappeared by a programming operation. The first variable resistance layer 149-1 may have a low resistance value when the electric path is established and may have a high resistance value when the electric path disappears. By using the difference in resistance value, the memory device 100 can store data.

在第一可變電阻層149-1包含過渡金屬氧化物的狀況下,過渡金屬氧化物可包含Ta、Zr、Ti、Hf、Mn、Y、Ni、Co、Zn、Nb、Cu、Fe以及Cr中的至少一者。舉例而言,包含過渡金屬氧化物的第一可變電阻層149-1可包含單一層或多個層,由以下各者中的至少一者形成:Ta2O5-x、ZrO2-x、TiO2-x、HfO2-x、MnO2-x、Y2O3-x、NiO1-y、Nb2O5-x、CuO1-y以及Fe2O3-x。在以上材料中,可分別在0

Figure 105141660-A0305-02-0018-1
x
Figure 105141660-A0305-02-0018-2
1.5及0
Figure 105141660-A0305-02-0018-3
y
Figure 105141660-A0305-02-0018-4
0.5的範圍內選擇值x及值y,但並不限於此情形。 In the case where the first variable resistance layer 149-1 includes a transition metal oxide, the transition metal oxide may include Ta, Zr, Ti, Hf, Mn, Y, Ni, Co, Zn, Nb, Cu, Fe, and Cr At least one of them. For example, the first variable resistance layer 149-1 including a transition metal oxide may include a single layer or multiple layers, formed of at least one of the following: Ta 2 O 5-x , ZrO 2-x , TiO 2-x , HfO 2-x , MnO 2-x , Y 2 O 3-x , NiO 1-y , Nb 2 O 5-x , CuO 1-y and Fe 2 O 3-x . In the above materials, they can be set at 0
Figure 105141660-A0305-02-0018-1
x
Figure 105141660-A0305-02-0018-2
1.5 and 0
Figure 105141660-A0305-02-0018-3
y
Figure 105141660-A0305-02-0018-4
The value x and the value y are selected within the range of 0.5, but it is not limited to this case.

在其他實施例中,在第一可變電阻層149-1包含具有由磁性材料形成的兩個電極以及插入於兩個電極之間的介電層的磁性穿隧接面(magnetic tunnel junction;MTJ)結構的狀況下,記憶體裝置100可為磁性隨機存取記憶體(magnetic random access memory;MRAM)裝置。 In other embodiments, the first variable resistance layer 149-1 includes a magnetic tunnel junction (MTJ) with two electrodes formed of a magnetic material and a dielectric layer inserted between the two electrodes. In the case of a) structure, the memory device 100 may be a magnetic random access memory (MRAM) device.

兩個電極中的一者可為磁化釘紮層(magnetization pinned layer),且兩個電極中的另一者可為磁化自由層(magnetization free layer)。介電層可為穿隧障壁層(tunnel barrier layer)。磁化釘紮層可具有釘紮磁化方向,且磁化自由層可具有平行於或反平行於磁 化釘紮層的釘紮磁化方向的可變磁化方向。磁化釘紮層及磁化自由層的磁化方向可平行於穿隧障壁層的表面,但並不限於此情形。磁化釘紮層及磁化自由層的磁化方向可垂直於穿隧障壁層的表面。 One of the two electrodes may be a magnetization pinned layer, and the other of the two electrodes may be a magnetization free layer. The dielectric layer may be a tunnel barrier layer. The magnetized pinned layer may have a pinned magnetization direction, and the magnetized free layer may have a direction parallel to or anti-parallel to the magnetic The variable magnetization direction of the pinned magnetization direction of the pinned layer. The magnetization direction of the magnetization pinned layer and the magnetization free layer may be parallel to the surface of the tunnel barrier layer, but it is not limited to this case. The magnetization direction of the magnetization pinned layer and the magnetization free layer may be perpendicular to the surface of the tunnel barrier layer.

在磁化自由層的磁化方向平行於磁化釘紮層的磁化方向的狀況下,第一可變電阻層149-1可具有第一電阻值。替代地,在磁化自由層的磁化方向反平行於磁化釘紮層的磁化方向的狀況下,第一可變電阻層149-1可具有第二電阻值。藉由使用第一電阻值與第二電阻值之間的差異,記憶體裝置100可儲存資料。磁化自由層的磁化方向可由程式化電流中的電子的自旋力矩變化。 In the case where the magnetization direction of the magnetization free layer is parallel to the magnetization direction of the magnetization pinned layer, the first variable resistance layer 149-1 may have a first resistance value. Alternatively, in a situation where the magnetization direction of the magnetization free layer is antiparallel to the magnetization direction of the magnetization pinned layer, the first variable resistance layer 149-1 may have the second resistance value. By using the difference between the first resistance value and the second resistance value, the memory device 100 can store data. The magnetization direction of the magnetization free layer can be changed by the spin torque of electrons in the programming current.

磁化釘紮層及磁化自由層可包含磁性材料。磁化釘紮層可更包含在磁化釘紮層中固定鐵磁性材料的磁化方向的反鐵磁性材料。穿隧障壁層可包含具有Mg、Ti、Al、MgZn以及MgB中的至少一者的氧化物,但並不限於此情形。 The magnetization pinned layer and the magnetization free layer may include magnetic materials. The magnetized pinned layer may further include an antiferromagnetic material that fixes the magnetization direction of the ferromagnetic material in the magnetized pinned layer. The tunnel barrier layer may include an oxide having at least one of Mg, Ti, Al, MgZn, and MgB, but is not limited to this case.

第一選擇元件層143-1(例如,圖1的選擇元件SW)可充當用於控制電流流動的電流控制層(current control layer)。第一選擇元件層143-1可包含電阻可取決於施加至其兩個端子的電壓而變化的材料層。舉例而言,第一選擇元件層143-1可包含具有雙向臨界切換(OTS)屬性的材料層。在第一選擇元件層143-1包含具有雙向臨界切換屬性的材料層的狀況下,第一選擇元件層143-1可維持高電阻狀態,其中當小於第一選擇元件層143-1的臨界電壓的電壓施加至第一選擇元件層143-1時,電流幾乎不流動。當大於第一選擇元件層143-1的臨界電壓的電壓施加至第一選擇元件層143-1時,第一選擇元件層143-1可處於低電阻狀態,使得電流 開始流動。當流動通過第一選擇元件層143-1的電流小於保持電流(holding current)時,第一選擇元件層143-1可切換至高電阻狀態。稍後將參考圖4來詳細地描述第一選擇元件層143-1的雙向臨界切換屬性。 The first selection element layer 143-1 (for example, the selection element SW of FIG. 1) may serve as a current control layer for controlling the flow of current. The first selection element layer 143-1 may include a material layer whose resistance may vary depending on the voltage applied to its two terminals. For example, the first selection element layer 143-1 may include a material layer with two-way critical switching (OTS) properties. Under the condition that the first selection element layer 143-1 includes a material layer with bidirectional critical switching properties, the first selection element layer 143-1 can maintain a high resistance state, wherein the threshold voltage of the first selection element layer 143-1 When a voltage of φ is applied to the first selection element layer 143-1, current hardly flows. When a voltage greater than the threshold voltage of the first selection element layer 143-1 is applied to the first selection element layer 143-1, the first selection element layer 143-1 may be in a low resistance state, so that the current Start to flow. When the current flowing through the first selection element layer 143-1 is less than a holding current, the first selection element layer 143-1 may be switched to a high resistance state. The bidirectional critical switching property of the first selection element layer 143-1 will be described in detail later with reference to FIG. 4.

第一選擇元件層143-1可包含硫族化物材料(chalcogenide material)作為雙向臨界切換材料層。第一選擇元件層143-1可包含來自週期表的第VI族的一或多種元素(例如,硫族元素),且視情況包含來自第III族、第IV族及/或第V族的一或多種化學改質劑。第一選擇元件層143-1中所含有的硫族元素可包含硫(S)、硒(Se)及/或碲(Te)。硫族元素的特徵可為二價鍵結(divalent bonding)以及未共用電子對(lone pair electron)的存在。二價鍵結可導致在組合硫族元素以形成硫族化物材料後就形成鏈及環結構,且未共用電子對可提供用於形成導電長絲(conducting filament)的電子源。諸如鋁(Al)、鎵(Ga)、銦(In)、鍺(Ge)、錫(Sn)、矽(Si)、磷(P)、砷(As)以及銻(Sb)的三價改質劑及四價改質劑可進入硫族元素的鏈及環結構,且可影響硫族化物材料的結構剛度。根據經受結晶或其他結構重新配置的能力,硫族化物材料的結構剛度可導致將硫族化物材料分類成臨界切換材料及相變材料中的一者。 The first selection element layer 143-1 may include a chalcogenide material as a bidirectional critical switching material layer. The first selective element layer 143-1 may include one or more elements from group VI of the periodic table (for example, chalcogen elements), and optionally include one from group III, group IV, and/or group V. Or a variety of chemical modifiers. The chalcogen element contained in the first selective element layer 143-1 may include sulfur (S), selenium (Se), and/or tellurium (Te). The chalcogen elements can be characterized by divalent bonding and the existence of lone pair electrons. The divalent bonding can lead to the formation of chain and ring structures after combining chalcogen elements to form chalcogenide materials, and the absence of shared electron pairs can provide an electron source for forming conductive filaments. Trivalent modification such as aluminum (Al), gallium (Ga), indium (In), germanium (Ge), tin (Sn), silicon (Si), phosphorus (P), arsenic (As) and antimony (Sb) Agents and tetravalent modifiers can enter the chain and ring structure of chalcogen elements, and can affect the structural rigidity of chalcogenide materials. Depending on the ability to withstand crystallization or other structural reconfiguration, the structural stiffness of the chalcogenide material may result in classification of the chalcogenide material into one of a critical switching material and a phase change material.

在一些實施例中,第一選擇元件層143-1可包含矽(Si)、碲(Te)、砷(As)、鍺(Ge)、銦(In)或其組合。舉例而言,第一選擇元件層143-1可包含約14%的矽(Si)濃度、約39%的碲(Te)濃度、約37%的砷(As)濃度、約9%的鍺(Ge)濃度、約1%的銦(In)濃度。此處,百分比為原子百分比(atomic percentage), 其合計構成元素的原子的100%。 In some embodiments, the first selection element layer 143-1 may include silicon (Si), tellurium (Te), arsenic (As), germanium (Ge), indium (In), or a combination thereof. For example, the first selection element layer 143-1 may include about 14% silicon (Si) concentration, about 39% tellurium (Te) concentration, about 37% arsenic (As) concentration, and about 9% germanium ( Ge) concentration, about 1% indium (In) concentration. Here, the percentage is an atomic percentage, This totals 100% of the atoms constituting the element.

在一些實施例中,第一選擇元件層143-1可包含矽(Si)、碲(Te)、砷(As)、鍺(Ge)、硫(S)、硒(Se)或其組合。舉例而言,第一選擇元件層143-1可包含約5%的矽(Si)濃度、約34%的碲(Te)濃度、約28%的砷(As)濃度、約11%的鍺(Ge)濃度、約21%的硫(S)濃度以及約1%的硒(Se)濃度。 In some embodiments, the first selection element layer 143-1 may include silicon (Si), tellurium (Te), arsenic (As), germanium (Ge), sulfur (S), selenium (Se), or a combination thereof. For example, the first selection element layer 143-1 may include about 5% silicon (Si) concentration, about 34% tellurium (Te) concentration, about 28% arsenic (As) concentration, and about 11% germanium ( Ge) concentration, about 21% sulfur (S) concentration, and about 1% selenium (Se) concentration.

在一些實施例中,第一選擇元件層143-1可包含碲(Te)、砷(As)、鍺(Ge)、硫(S)、硒(Se)、銻(Sb)或其組合。舉例而言,第一選擇元件層143-1可包含約21%的碲(Te)濃度、約10%的砷(As)濃度、約15%的鍺(Ge)濃度、約2%的硫(S)濃度、約50%的硒(Se)濃度以及約2%的銻(Sb)濃度。 In some embodiments, the first selection element layer 143-1 may include tellurium (Te), arsenic (As), germanium (Ge), sulfur (S), selenium (Se), antimony (Sb), or a combination thereof. For example, the first selection element layer 143-1 may include about 21% tellurium (Te) concentration, about 10% arsenic (As) concentration, about 15% germanium (Ge) concentration, and about 2% sulfur ( S) concentration, about 50% selenium (Se) concentration, and about 2% antimony (Sb) concentration.

在根據實例實施例的記憶體裝置100中,第一選擇元件層143-1並不限於雙向臨界切換材料,而是包含能夠用來選擇裝置的各種材料。舉例而言,第一選擇元件層143-1可包含二極體、穿隧接面、雙極接面電晶體或混合式離子電子傳導開關(mixed ionic-electronic conduction switch;MIEC)。 In the memory device 100 according to example embodiments, the first selection element layer 143-1 is not limited to the bidirectional critical switching material, but includes various materials that can be used to select the device. For example, the first selection element layer 143-1 may include a diode, a tunnel junction, a bipolar junction transistor, or a mixed ionic-electronic conduction switch (MIEC).

第一電極層141-1、第二電極層145-1、第三電極層147-1及第四電極層148-1可充當電路徑且可由導電材料形成。第一電極層141-1、第二電極層145-1、第三電極層147-1及第四電極層148-1可包含金屬、導電金屬氮化物、導電金屬氧化物或其組合。舉例而言,第一電極層141-1、第二電極層145-1、第三電極層147-1及第四電極層148-1中的每一者可包含TiN層,但並不限於此情形。在一些實施例中,第一電極層141-1、第二電極層145-1、第三電極層147-1及第四電極層148-1中的每一者可包含由金屬或 導電金屬氮化物形成的導電層以及覆蓋導電層的至少一部分的至少一個導電障壁層。導電障壁層可包含金屬氧化物、金屬氮化物或其組合,但並不限於此情形。 The first electrode layer 141-1, the second electrode layer 145-1, the third electrode layer 147-1, and the fourth electrode layer 148-1 may serve as electrical paths and may be formed of conductive materials. The first electrode layer 141-1, the second electrode layer 145-1, the third electrode layer 147-1, and the fourth electrode layer 148-1 may include metal, conductive metal nitride, conductive metal oxide, or a combination thereof. For example, each of the first electrode layer 141-1, the second electrode layer 145-1, the third electrode layer 147-1, and the fourth electrode layer 148-1 may include a TiN layer, but is not limited thereto situation. In some embodiments, each of the first electrode layer 141-1, the second electrode layer 145-1, the third electrode layer 147-1, and the fourth electrode layer 148-1 may include metal or A conductive layer formed of a conductive metal nitride and at least one conductive barrier layer covering at least a part of the conductive layer. The conductive barrier layer may include metal oxide, metal nitride, or a combination thereof, but is not limited to this case.

在一些實施例中,接觸第一可變電阻層149-1的第三電極層147-1及/或第四電極層148-1可包含能夠產生足以改變第一可變電阻層149-1的相的熱的導電材料。舉例而言,第三電極層147-1或第四電極層148-1可包含耐火金屬、耐火金屬氮化物及/或碳基導電材料。第三電極層147-1或第四電極層148-1可包含(例如)TiN、TiSiN、TiAlN、TaSiN、TaAlN、TaN、WSi、WN、TiW、MoN、NbN、TiBN、ZrSiN、WSiN、WBN、ZrAlN、MoAlN、TiAl、TiON、TiAlON、WON、TaON、C、SiC、SiCN、CN、TiCN、TaCN或其組合。然而,第三電極層147-1或第四電極層148-1並不限於此情形。 In some embodiments, the third electrode layer 147-1 and/or the fourth electrode layer 148-1 in contact with the first variable resistance layer 149-1 may include a material capable of producing enough to change the first variable resistance layer 149-1 Phase of thermal conductive material. For example, the third electrode layer 147-1 or the fourth electrode layer 148-1 may include a refractory metal, a refractory metal nitride, and/or a carbon-based conductive material. The third electrode layer 147-1 or the fourth electrode layer 148-1 may include, for example, TiN, TiSiN, TiAlN, TaSiN, TaAlN, TaN, WSi, WN, TiW, MoN, NbN, TiBN, ZrSiN, WSiN, WBN, ZrAlN, MoAlN, TiAl, TiON, TiAlON, WON, TaON, C, SiC, SiCN, CN, TiCN, TaCN, or combinations thereof. However, the third electrode layer 147-1 or the fourth electrode layer 148-1 is not limited to this case.

在一些實施例中,加熱電極層(heating electrode layer)可進一步插入於第一可變電阻層149-1與第三電極層147-1之間或第一可變電阻層149-1與第四電極層148-1之間。加熱電極層可包含能夠產生足以改變可變電阻層149-1的相的熱的導電材料。舉例而言,加熱電極層可包含耐火金屬、耐火金屬氮化物或碳基導電材料。加熱電極層可包含(例如)TiN、TiSiN、TiAlN、TaSiN、TaAlN、TaN、WSi、WN、TiW、MoN、NbN、TiBN、ZrSiN、WSiN、WBN、ZrAlN、MoAlN、TiAl、TiON、TiAlON、WON、TaON、C、SiC、SiCN、CN、TiCN、TaCN或其組合,但並不限於此情形。 In some embodiments, a heating electrode layer may be further inserted between the first variable resistance layer 149-1 and the third electrode layer 147-1 or the first variable resistance layer 149-1 and the fourth electrode layer 147-1. Between the electrode layers 148-1. The heating electrode layer may include a conductive material capable of generating heat sufficient to change the phase of the variable resistance layer 149-1. For example, the heating electrode layer may include refractory metal, refractory metal nitride, or carbon-based conductive material. The heating electrode layer may include, for example, TiN, TiSiN, TiAlN, TaSiN, TaAlN, TaN, WSi, WN, TiW, MoN, NbN, TiBN, ZrSiN, WSiN, WBN, ZrAlN, MoAlN, TiAl, TiON, TiAlON, WON, TaON, C, SiC, SiCN, CN, TiCN, TaCN or a combination thereof, but not limited to this case.

儘管第一可變電阻層149-1在圖2及圖3中被展示為安置於第一選擇元件層143-1上,其中第二電極層145-1及第三電極 層147-1插入於第一可變電阻層149-1與第一選擇元件層143-1之間,但本發明概念的態樣並不限於此情形。不同於圖2及圖3所展示的情形,第一選擇元件層143-1安置於第一可變電阻層149-1上,其中第二電極層145-1及第三電極層147-1插入於第一選擇元件層143-1與第一可變電阻層149-1之間,且第一可變電阻層149-1可插入於第一電極層141-1與第二電極層145-1之間。舉例而言,接觸第一可變電阻層149-1的第一電極層141-1及/或第二電極層145-1可包含能夠產生足以改變第一可變電阻層149-1的相的熱的導電材料。再者,加熱電極層可進一步插入於第一可變電阻層149-1與第一電極層141-1之間以及第一可變電阻層149-1與第二電極層145-1之間。 Although the first variable resistance layer 149-1 is shown in FIGS. 2 and 3 as being disposed on the first selection element layer 143-1, the second electrode layer 145-1 and the third electrode The layer 147-1 is inserted between the first variable resistance layer 149-1 and the first selection element layer 143-1, but the aspect of the concept of the present invention is not limited to this case. Different from the situation shown in FIGS. 2 and 3, the first selection element layer 143-1 is disposed on the first variable resistance layer 149-1, in which the second electrode layer 145-1 and the third electrode layer 147-1 are inserted Between the first selection element layer 143-1 and the first variable resistance layer 149-1, and the first variable resistance layer 149-1 can be inserted between the first electrode layer 141-1 and the second electrode layer 145-1 between. For example, the first electrode layer 141-1 and/or the second electrode layer 145-1 contacting the first variable resistance layer 149-1 may include a phase capable of producing enough to change the first variable resistance layer 149-1. Thermal conductive material. Furthermore, the heating electrode layer may be further inserted between the first variable resistance layer 149-1 and the first electrode layer 141-1 and between the first variable resistance layer 149-1 and the second electrode layer 145-1.

可視情況形成第一電極層141-1及第四電極層148-1。舉例而言,可省略第一電極層141-1及第四電極層148-1。然而,第一電極層141-1及第四電極層148-1中的至少一者可分別安置於第一導電線110及第二導電線120中的一者與第一選擇元件層143-1之間及/或第一導電線110及第二導電線120中的一者與第一可變電阻層149-1之間,以便防止歸因於第一導電線110及第二導電線120中的一者與第一選擇元件層143-1之間及/或第一導電線110及第二導電線120中的一者與第一可變電阻層149-1之間的直接接觸而產生的污染或接觸失敗。 The first electrode layer 141-1 and the fourth electrode layer 148-1 may be formed as appropriate. For example, the first electrode layer 141-1 and the fourth electrode layer 148-1 can be omitted. However, at least one of the first electrode layer 141-1 and the fourth electrode layer 148-1 may be disposed on one of the first conductive line 110 and the second conductive line 120 and the first selection element layer 143-1, respectively And/or between one of the first conductive line 110 and the second conductive line 120 and the first variable resistance layer 149-1, so as to prevent attributable to the first conductive line 110 and the second conductive line 120 Is caused by direct contact between one of the first selection element layer 143-1 and/or between one of the first conductive line 110 and the second conductive line 120 and the first variable resistance layer 149-1 Contamination or contact failure.

第二電極層145-1及第三電極層147-1中的至少一者可必要地安置於第一選擇元件層143-1與第一可變電阻層149-1之間。當第一選擇元件層143-1是基於雙向臨界切換屬性時,第一選擇元件層143-1可包含處於非晶狀態的硫族化物材料。根據按比 例縮小記憶體裝置100的趨勢,在可變電阻層149-1、選擇元件層143-1、第二電極層145-1及第三電極層147-1中,可縮減其厚度、其寬度及其間的距離。因此,在記憶體裝置100的操作時,加熱電極層(或在另外加熱電極層未被形成時的第三電極層147-1)可經加熱以導致第一可變電阻層149-1的相變,使得相鄰的第一選擇元件層143-1可受到熱影響。舉例而言,第一選擇元件層143-1可部分地因來自相鄰的第一可變電阻層149-1的熱而結晶,藉此在第一選擇元件層143-1中造成降低品質或損壞。因此,第二電極層145-1及第三電極層147-1中的至少一者可必要地安置於第一選擇元件層143-1與第一可變電阻層149-1之間,以防止或減少第一選擇元件層143-1中的降低品質或損壞。 At least one of the second electrode layer 145-1 and the third electrode layer 147-1 may be disposed between the first selection element layer 143-1 and the first variable resistance layer 149-1 as necessary. When the first selection element layer 143-1 is based on the bidirectional critical switching property, the first selection element layer 143-1 may include a chalcogenide material in an amorphous state. According to the ratio For example, the trend of shrinking the memory device 100, in the variable resistance layer 149-1, the selection element layer 143-1, the second electrode layer 145-1, and the third electrode layer 147-1, the thickness, width and The distance in between. Therefore, during the operation of the memory device 100, the heating electrode layer (or the third electrode layer 147-1 when another heating electrode layer is not formed) may be heated to cause the phase of the first variable resistance layer 149-1 Change so that the adjacent first selection element layer 143-1 can be affected by heat. For example, the first selection element layer 143-1 may be partially crystallized by heat from the adjacent first variable resistance layer 149-1, thereby causing degradation or degradation in the first selection element layer 143-1. damage. Therefore, at least one of the second electrode layer 145-1 and the third electrode layer 147-1 may be disposed between the first selection element layer 143-1 and the first variable resistance layer 149-1 as necessary to prevent Or reduce the degradation or damage in the first selection element layer 143-1.

第一電極層141-1、第二電極層145-1、第三電極層147-1與第四電極層148-1可由各種材料形成。根據加熱電極層的配置,第一電極層141-1、第二電極層145-1、第三電極層147-1與第四電極層148-1可分別具有變化的厚度。舉例而言,在加熱電極層插入於第三電極層147-1與可變電阻層149-1之間的狀況下,第三電極層147-1及第二電極層145-1可被形成為足夠厚以防止加熱電極層的熱傳輸至第一選擇元件層143-1。當加熱電極未被形成且第三電極層147-1是由能夠產生足以改變第一可變電阻層149-1的相的熱的導電材料形成時,第二電極層145-1可被形成為足夠厚以防止第三電極層147-1的熱傳輸至第一選擇元件層143-1。舉例而言,第二電極層145-1及第三電極層147-1可具有10nm至100nm的厚度,但並不限於此情形。此外,第二電極層145-1及第三電極層147-1中的每一者可具有用來阻斷熱的至少一個熱障 壁層。在第二電極層145-1及第三電極層147-1中的每一者具有兩個或多於兩個熱障壁層的狀況下,第二電極層145-1及第三電極層147-1中的每一者可具有堆疊結構,熱障壁層與電極材料層交替地堆疊於此堆疊結構中。 The first electrode layer 141-1, the second electrode layer 145-1, the third electrode layer 147-1, and the fourth electrode layer 148-1 may be formed of various materials. According to the configuration of the heating electrode layer, the first electrode layer 141-1, the second electrode layer 145-1, the third electrode layer 147-1 and the fourth electrode layer 148-1 may have varying thicknesses, respectively. For example, under the condition that the heating electrode layer is inserted between the third electrode layer 147-1 and the variable resistance layer 149-1, the third electrode layer 147-1 and the second electrode layer 145-1 can be formed as It is thick enough to prevent the heat of the heating electrode layer from being transferred to the first selection element layer 143-1. When the heating electrode is not formed and the third electrode layer 147-1 is formed of a conductive material capable of generating heat sufficient to change the phase of the first variable resistance layer 149-1, the second electrode layer 145-1 may be formed as It is thick enough to prevent the heat of the third electrode layer 147-1 from being transferred to the first selection element layer 143-1. For example, the second electrode layer 145-1 and the third electrode layer 147-1 may have a thickness of 10 nm to 100 nm, but it is not limited to this case. In addition, each of the second electrode layer 145-1 and the third electrode layer 147-1 may have at least one thermal barrier for blocking heat Wall layer. In the case where each of the second electrode layer 145-1 and the third electrode layer 147-1 has two or more thermal barrier layers, the second electrode layer 145-1 and the third electrode layer 147- Each of 1 may have a stacked structure, and the thermal barrier layer and the electrode material layer are alternately stacked in the stacked structure.

第一絕緣層162-1可安置於多個第一導電線110之間。第一絕緣層162-1及第三絕緣層163可安置於第一記憶體單元層MCL1的第一記憶體單元140-1之間。舉例而言,第一絕緣層162-1可安置於在第二方向(Y方向)上配置的第一記憶體單元140-1之間,且第三絕緣層163可安置於在第一方向(X方向)上配置的第一記憶體單元140-1之間。第三絕緣層163可安置於在第一方向上配置的第二導電線120之間。第二絕緣層162-2可安置於在第二方向上配置的第二記憶體單元層MCL2的第二記憶體單元140-2之間,且可安置於在第二方向上配置的第三導電線130之間。第一絕緣層162-1、第二絕緣層162-2與第三絕緣層163可由相同絕緣材料形成,或第一絕緣層162-1、第二絕緣層162-2與第三絕緣層163中的至少一者可由不同於第一絕緣層162-1、第二絕緣層162-2與第三絕緣層163中的其他者的材料形成。第一絕緣層162-1、第二絕緣層162-2與第三絕緣層163中的每一者可由氧化物或氮化物形成,且可將每一記憶體單元層的記憶體單元(或元件)彼此電分離。在一些實施例中,第一絕緣層162-1、第二絕緣層162-2與第三絕緣層163中的至少一者可由空隙(air space)替換。舉例而言,可不形成第一絕緣層162-1、第二絕緣層162-2與第三絕緣層163中的至少一者,藉此在第一記憶體單元140-1之間及在第二記憶體單元140-2之間形成空隙。在形成空隙的狀況 下,具有某一厚度的絕緣襯層(insulating liner)可安置於空隙與第一記憶體單元140-1及第二記憶體單元140-2中的至少一者之間。 The first insulating layer 162-1 may be disposed between the plurality of first conductive lines 110. The first insulating layer 162-1 and the third insulating layer 163 may be disposed between the first memory cells 140-1 of the first memory cell layer MCL1. For example, the first insulating layer 162-1 may be disposed between the first memory cells 140-1 arranged in the second direction (Y direction), and the third insulating layer 163 may be disposed in the first direction ( X direction) between the first memory units 140-1. The third insulating layer 163 may be disposed between the second conductive lines 120 arranged in the first direction. The second insulating layer 162-2 may be arranged between the second memory cells 140-2 of the second memory cell layer MCL2 arranged in the second direction, and may be arranged on the third conductive layer arranged in the second direction. Between lines 130. The first insulating layer 162-1, the second insulating layer 162-2, and the third insulating layer 163 may be formed of the same insulating material, or in the first insulating layer 162-1, the second insulating layer 162-2, and the third insulating layer 163 At least one of may be formed of a material different from the other of the first insulating layer 162-1, the second insulating layer 162-2, and the third insulating layer 163. Each of the first insulating layer 162-1, the second insulating layer 162-2, and the third insulating layer 163 may be formed of oxide or nitride, and the memory cell (or device) of each memory cell layer ) Are electrically separated from each other. In some embodiments, at least one of the first insulating layer 162-1, the second insulating layer 162-2, and the third insulating layer 163 may be replaced by an air space. For example, at least one of the first insulating layer 162-1, the second insulating layer 162-2, and the third insulating layer 163 may not be formed, thereby between the first memory cells 140-1 and in the second A gap is formed between the memory cells 140-2. In the form of voids Next, an insulating liner with a certain thickness may be disposed between the gap and at least one of the first memory cell 140-1 and the second memory cell 140-2.

如圖3所說明,第一記憶體單元140-1的第一選擇元件層143-1可在第三方向(圖2的Z方向)上具有第一高度(或厚度)H1,且第二記憶體單元140-2的第二選擇元件層143-2可在第三方向上具有小於第一高度H1的第二高度(或厚度)H2。在一些實施例中,第一記憶體單元140-1的第一選擇元件層143-1的第一高度H1的範圍可為10nm至500nm,且第二記憶體單元140-2的第二選擇元件層143-2的第二高度H2的範圍可為5nm至450nm,但並不限於此情形。 As illustrated in FIG. 3, the first selection element layer 143-1 of the first memory unit 140-1 may have a first height (or thickness) H1 in the third direction (the Z direction in FIG. 2), and the second memory The second selection element layer 143-2 of the body unit 140-2 may have a second height (or thickness) H2 smaller than the first height H1 in the third direction. In some embodiments, the first height H1 of the first selection element layer 143-1 of the first memory cell 140-1 may range from 10 nm to 500 nm, and the second selection element of the second memory cell 140-2 The second height H2 of the layer 143-2 may range from 5 nm to 450 nm, but is not limited to this case.

在一些實施例中,第二選擇元件層143-2的第二高度H2的範圍可為(例如)第一選擇元件層143-1的第一高度H1的50%至90%,但並不限於此情形。 In some embodiments, the range of the second height H2 of the second selection element layer 143-2 may be, for example, 50% to 90% of the first height H1 of the first selection element layer 143-1, but is not limited to This situation.

可控制第一選擇元件層143-1的第一高度H1及第二選擇元件層143-2的第二高度H2,使得第一選擇元件層143-1的第一臨界電壓VT1的量值與第二選擇元件層143-2的第二臨界電壓VT2的量值實質上相同。 The first height H1 of the first selection element layer 143-1 and the second height H2 of the second selection element layer 143-2 can be controlled so that the magnitude of the first threshold voltage V T1 of the first selection element layer 143-1 is equal to The magnitude of the second threshold voltage V T2 of the second selection element layer 143-2 is substantially the same.

在一些實施例中,可控制第一選擇元件層143-1的第一高度H1及第二選擇元件層143-2的第二高度H2,使得第一選擇元件層143-1的第一臨界電壓VT1與第二選擇元件層143-2的第二臨界電壓VT2之間的量值差小於0.5V。舉例而言,第二選擇元件層143-2的第二臨界電壓VT2的量值可比第一選擇元件層143-1的第一臨界電壓VT1的量值小或大不到0.5V。 In some embodiments, the first height H1 of the first selection element layer 143-1 and the second height H2 of the second selection element layer 143-2 can be controlled so that the first threshold voltage of the first selection element layer 143-1 The magnitude difference between V T1 and the second threshold voltage V T2 of the second selection element layer 143-2 is less than 0.5V. For example, the magnitude of the second threshold voltage V T2 of the second selection element layer 143-2 may be smaller than or greater than 0.5V than the magnitude of the first threshold voltage V T1 of the first selection element layer 143-1.

在一些實施例中,可控制第一選擇元件層143-1的第一高度H1及第二選擇元件層143-2的第二高度H2,使得第二選擇元件層143-2的第二臨界電壓VT2的量值的範圍為(例如)第一選擇元件層143-1的第一臨界電壓VT1的量值的80%至120%。第二選擇元件層143-2的第二臨界電壓VT2的量值的範圍可為(例如)第一選擇元件層143-1的第一臨界電壓VT1的量值的90%至110%。 In some embodiments, the first height H1 of the first selection element layer 143-1 and the second height H2 of the second selection element layer 143-2 can be controlled so that the second threshold voltage of the second selection element layer 143-2 The range of the magnitude of V T2 is, for example, 80% to 120% of the magnitude of the first threshold voltage V T1 of the first selection element layer 143-1. The range of the magnitude of the second threshold voltage V T2 of the second selection element layer 143-2 may be, for example, 90% to 110% of the magnitude of the first threshold voltage V T1 of the first selection element layer 143-1.

在第二選擇元件層143-2的第二臨界電壓VT2的量值的範圍為(例如)第一選擇元件層143-1的第一臨界電壓VT1的量值的80%至120%的狀況下,可縮減第一記憶體單元MC1的電屬性與第二記憶體單元MC2的電屬性的差,藉此增加記憶體裝置100的讀取/寫入操作的感測裕度。 The range of the magnitude of the second threshold voltage V T2 of the second selection element layer 143-2 is, for example, 80% to 120% of the magnitude of the first threshold voltage V T1 of the first selection element layer 143-1 Under conditions, the difference between the electrical properties of the first memory cell MC1 and the electrical properties of the second memory cell MC2 can be reduced, thereby increasing the sensing margin of the read/write operation of the memory device 100.

在下文中,將參考圖4至圖6來詳細地描述具有雙向臨界切換(OTS)屬性的選擇元件層143-1及143-2的臨界電壓與電屬性之間的關係。 Hereinafter, the relationship between the threshold voltage and the electrical properties of the selection element layers 143-1 and 143-2 with bidirectional critical switching (OTS) properties will be described in detail with reference to FIGS. 4 to 6.

圖4為說明表示雙向臨界切換(OTS)屬性的雙向臨界切換元件的電壓-電流曲線40的示意性圖形。圖4示意性地說明回應於施加至雙向臨界切換元件的兩個端子的電壓而流動通過雙向臨界切換元件的電流。 FIG. 4 is a schematic diagram illustrating a voltage-current curve 40 of a two-way critical switching element representing the properties of a two-way critical switching (OTS). FIG. 4 schematically illustrates the current flowing through the bidirectional critical switching element in response to the voltage applied to the two terminals of the bidirectional critical switching element.

參看圖4,第一曲線41可表示在電流不會流動通過雙向臨界切換元件的狀態下的電壓-電流關係。此處,雙向臨界切換元件可用作具有處於第一電壓位準(voltage level)43的臨界電壓VT的切換元件。當電壓自電流及電壓處於零的狀態逐漸地增加時,電流可幾乎不流動通過雙向臨界切換元件,直至電壓達到臨界電壓VT(亦即,第一電壓位準43)為止。然而,一旦電壓超過臨界電 壓VT,流動通過雙向臨界切換元件的電流就可急劇地增加,且橫跨雙向臨界切換元件所施加的電壓可減小至第二電壓位準44(或飽和電壓Vs)。 Referring to FIG. 4, the first curve 41 may represent the voltage-current relationship in a state where current does not flow through the bidirectional critical switching element. Here, the bidirectional threshold switching element can be used as a switching element having a threshold voltage V T at the first voltage level 43. When the voltage gradually increases from the state where the current and the voltage are at zero, the current can hardly flow through the bidirectional critical switching element until the voltage reaches the critical voltage V T (ie, the first voltage level 43). However, once the voltage exceeds the threshold voltage V T , the current flowing through the bidirectional threshold switching element can increase sharply, and the voltage applied across the bidirectional threshold switching element can be reduced to the second voltage level 44 (or saturation voltage Vs ).

第二曲線42可表示在電流流動通過雙向臨界切換元件的狀態下的電壓-電流關係。隨著流動通過雙向臨界切換元件的電流增加得大於第一電流位準46,橫跨雙向臨界切換元件所施加的電壓可增加得略微大於第二電壓位準44。舉例而言,儘管流動通過雙向臨界切換元件的電流自第一電流位準46顯著地增加至第二電流位準47,但橫跨雙向臨界切換元件所施加的電壓可自第二電壓階位準44稍微增加。舉例而言,一旦電流流動通過雙向臨界切換元件,橫跨雙向臨界切換元件所施加的電壓就可幾乎維持於飽和電壓Vs(亦即,第二電壓位準44)。當電流減小至小於維持電流位準(亦即,小於第一電流位準46)時,雙向臨界切換元件可切換回至電阻狀態,藉此有效地阻斷電流,直至電壓增加至臨界電壓VT為止。 The second curve 42 may represent the voltage-current relationship in a state where current flows through the bidirectional critical switching element. As the current flowing through the bidirectional critical switching element increases above the first current level 46, the voltage applied across the bidirectional critical switching element may increase slightly greater than the second voltage level 44. For example, although the current flowing through the bidirectional critical switching element significantly increases from the first current level 46 to the second current level 47, the voltage applied across the bidirectional critical switching element can be from the second voltage level level 44 increased slightly. For example, once the current flows through the bidirectional critical switching element, the voltage applied across the bidirectional critical switching element can be almost maintained at the saturation voltage Vs (ie, the second voltage level 44). When the current decreases to less than the maintenance current level (ie, less than the first current level 46), the bidirectional critical switching element can switch back to the resistance state, thereby effectively blocking the current until the voltage increases to the critical voltage V Until T.

圖5A及圖5B為說明根據實例實施例的具有堆疊式交叉點結構的記憶體裝置的操作方法的示意圖。 5A and 5B are schematic diagrams illustrating an operation method of a memory device having a stacked cross-point structure according to example embodiments.

圖5A及圖5B說明具有堆疊式交叉點結構的記憶體裝置的讀取操作或寫入操作,在堆疊式交叉點結構中,第一下部記憶體單元MC11及第二下部記憶體單元MC12以及第一上部記憶體單元MC21及第二上部記憶體單元MC22可分別安置於共同位元線BL與共同位元線BL下方的第一下部字元線WL11及第二下部字元線WL12之間以及共同位元線BL與共同位元線BL上方的第一上部字元線WL21及第二上部字元線WL22之間。 5A and 5B illustrate the read operation or write operation of the memory device having a stacked cross-point structure. In the stacked cross-point structure, the first lower memory cell MC11 and the second lower memory cell MC12 and The first upper memory cell MC21 and the second upper memory cell MC22 can be respectively disposed between the common bit line BL and the first lower word line WL11 and the second lower word line WL12 below the common bit line BL And between the common bit line BL and the first upper word line WL21 and the second upper word line WL22 above the common bit line BL.

參看圖5A,可選擇第一下部字元線WL11與共同位元線BL的相交點處的第一下部記憶體單元MC11。為了選擇第一下部字元線WL11,可將較低電壓Vlow(例如,位元線選擇電壓或禁止電壓)施加至共同位元線BL且可將字元線選擇電壓VWL(Sel)施加至第一下部字元線WL11。 Referring to FIG. 5A, the first lower memory cell MC11 at the intersection of the first lower word line WL11 and the common bit line BL can be selected. In order to select the first lower word line WL11, a lower voltage Vlow (for example, a bit line selection voltage or an inhibit voltage) can be applied to the common bit line BL and the word line selection voltage V WL(Sel) can be applied To the first lower character line WL11.

舉例而言,可進行寫入操作以將資料儲存於第一下部記憶體單元MC11中(例如,可藉由重設操作及設定操作來進行寫入操作),且可進行讀取操作以讀取儲存於第一下部記憶體單元MC11中的資料。可將具有相對較高值的字元線選擇電壓VWL(Sel)施加至選定的第一下部字元線WL11,且可將具有相對較低值的較低電壓Vlow施加至共同位元線BL,因此可橫跨第一下部記憶體單元MC11施加具有差值(VWL(Sel)-Vlow)的第一切換電壓。第一切換電壓的量值可大於具有雙向臨界切換屬性的選擇元件SW的臨界電壓的量值。因此,可接通第一下部記憶體單元MC11的選擇元件SW,使得第一電流IMC11流動通過第一下部記憶體單元MC11的可變電阻層R。在一個實施例中,第一電流IMC11的量值可基於第一下部記憶體單元MC11的可變電阻層R的電阻狀態(例如,設定或重設)而變化。 For example, a write operation can be performed to store data in the first lower memory cell MC11 (for example, a write operation can be performed by a reset operation and a setting operation), and a read operation can be performed to read Get the data stored in the first lower memory unit MC11. A word line selection voltage V WL(Sel) having a relatively high value can be applied to the selected first lower word line WL11, and a lower voltage Vlow having a relatively low value can be applied to the common bit line BL, therefore, a first switching voltage having a difference (V WL(Sel) -Vlow) can be applied across the first lower memory cell MC11. The magnitude of the first switching voltage may be greater than the magnitude of the threshold voltage of the selection element SW having the bidirectional threshold switching property. Therefore, the selection element SW of the first lower memory cell MC11 can be turned on, so that the first current I MC11 flows through the variable resistance layer R of the first lower memory cell MC11. In one embodiment, the magnitude of the first current I MC11 may be changed based on the resistance state (for example, set or reset) of the variable resistance layer R of the first lower memory cell MC11.

同時,可將字元線未選擇電壓VWL(Unsel)施加至未選定的第二下部字元線WL12以及第一上部字元線WL21及第二上部字元線WL22。因此,可橫跨未選定記憶體單元MC12、MC21及MC22施加具有差值(VWL(Unsel)-Vlow)的關斷電壓(off voltage)。關斷電壓的量值可小於具有雙向臨界切換屬性的選擇元件SW的臨界電壓的量值,因此可不接通選擇元件SW。結果,電流可不流動通 過未選定記憶體單元MC12、MC21及MC22的可變電阻層R。 At the same time, the word line unselected voltage V WL(Unsel) can be applied to the unselected second lower word line WL12 and the first upper word line WL21 and the second upper word line WL22. Therefore, an off voltage having a difference (V WL(Unsel) -Vlow) can be applied across the unselected memory cells MC12, MC21, and MC22. The magnitude of the turn-off voltage may be smaller than the magnitude of the threshold voltage of the selection element SW having a bidirectional critical switching property, so the selection element SW may not be turned on. As a result, current may not flow through the variable resistance layer R of the unselected memory cells MC12, MC21, and MC22.

參看圖5B,可選擇第一上部字元線WL21與共同位元線BL的相交點處的第一上部記憶體單元MC21。為了選擇第一上部記憶體單元MC21,可將較低電壓Vlow施加至共同位元線BL且可將字元線選擇電壓VWL(Sel)施加至第一上部字元線WL21。因此,可橫跨第一上部記憶體單元MC21施加具有差電壓(VWL(Sel)-Vlow)的第二切換電壓。第二切換電壓的量值可大於具有雙向臨界切換屬性的選擇元件SW的臨界電壓。因此,可接通第一上部記憶體單元MC21的選擇元件SW,使得第二電流IMC21流動通過第一上部記憶體單元MC21的可變電阻層R。 Referring to FIG. 5B, the first upper memory cell MC21 at the intersection of the first upper word line WL21 and the common bit line BL can be selected. In order to select the first upper memory cell MC21, the lower voltage Vlow may be applied to the common bit line BL and the word line selection voltage V WL(Sel) may be applied to the first upper word line WL21. Therefore, a second switching voltage having a difference voltage (V WL(Sel) -Vlow) can be applied across the first upper memory cell MC21. The magnitude of the second switching voltage may be greater than the threshold voltage of the selection element SW having a bidirectional threshold switching property. Therefore, the selection element SW of the first upper memory cell MC21 can be turned on, so that the second current I MC21 flows through the variable resistance layer R of the first upper memory cell MC21.

相比於圖5A及圖5B,橫跨選定的第一下部記憶體單元MC11所施加的第一切換電壓的量值可等於橫跨選定的第一上部記憶體單元MC21所施加的第二切換電壓的量值。然而,流動通過第一下部記憶體單元MC11的第一電流IMC11的方向可不同於流動通過第一上部記憶體單元MC21的第二電流IMC21的方向。因此,流動通過第一下部記憶體單元MC11的第一電流IMC11的量可不同於流動通過第一上部記憶體單元MC21的第二電流IMC21的量。 Compared to FIGS. 5A and 5B, the magnitude of the first switching voltage applied across the selected first lower memory cell MC11 may be equal to the second switching voltage applied across the selected first upper memory cell MC21 The magnitude of the voltage. However, the direction of the first current I MC11 flowing through the first lower memory cell MC11 may be different from the direction of the second current I MC21 flowing through the first upper memory cell MC21. Therefore, the amount of the first current I MC11 flowing through the first lower memory cell MC11 may be different from the amount of the second current I MC21 flowing through the first upper memory cell MC21.

舉例而言,可相對於第一下部記憶體單元MC11的選擇元件SW將相對高電壓施加至第一下部字元線WL11,且可相對於第一上部記憶體單元MC21的選擇元件SW將相對高電壓施加至第一上部字元線WL21。因此,第一下部記憶體單元MC11的選擇元件SW及第一上部記憶體單元MC21的選擇元件SW可分別在不同方向上經受電場。將參考圖6來描述由不同方向上的電場引 起的影響或效應。 For example, a relatively high voltage can be applied to the first lower word line WL11 with respect to the selection element SW of the first lower memory cell MC11, and the selection element SW of the first upper memory cell MC21 can be A relatively high voltage is applied to the first upper word line WL21. Therefore, the selection element SW of the first lower memory cell MC11 and the selection element SW of the first upper memory cell MC21 can respectively experience electric fields in different directions. 6 will be described with reference to the electric field in different directions. Influence or effect.

圖6說明關於分別將正電壓及負電壓施加至雙向臨界切換元件的電壓-電流圖形60。 FIG. 6 illustrates a voltage-current graph 60 for applying a positive voltage and a negative voltage to the bidirectional critical switching element, respectively.

參看圖6,在具有不同尺寸的第一實驗實例62的雙向臨界切換元件及第二實驗實例64的雙向臨界切換元件中,已發現,當施加正電壓及負電壓時獲得不同的電壓-電流分佈(voltage-current profile)。更具體言之,第一實驗實例62的雙向臨界切換元件在正電壓的時段中具有第一臨界電壓56(V1)且在負電壓的時段中具有第二臨界電壓58(V2)。已明確地發現,第一臨界電壓56(V1)的量值大於第二臨界電壓58(V2)的量值。 Referring to FIG. 6, in the bidirectional critical switching element of the first experimental example 62 and the bidirectional critical switching element of the second experimental example 64 with different sizes, it has been found that different voltage-current distributions are obtained when positive and negative voltages are applied. (voltage-current profile). More specifically, the bidirectional critical switching element of the first experimental example 62 has a first critical voltage 56 (V 1 ) in a period of positive voltage and a second critical voltage 58 (V 2 ) in a period of negative voltage. It has been clearly discovered that the magnitude of the first threshold voltage 56 (V 1 ) is greater than the magnitude of the second threshold voltage 58 (V 2 ).

舉例而言,流動通過選擇元件SW的電流及選擇元件SW的臨界電壓可取決於作用於選擇元件SW的電場的方向而變化。在圖5A及圖5B中,即使將具有相同量值的選擇電壓VWL(Sel)施加至第一下部字元線WL11及第一上部字元線WL21,連接至第一下部字元線WL11的第一下部記憶體單元MC11與連接至第一上部字元線WL21的第一上部記憶體單元MC21亦可具有彼此不同的電流分佈及彼此不同的臨界電壓。 For example, the current flowing through the selection element SW and the threshold voltage of the selection element SW may vary depending on the direction of the electric field acting on the selection element SW. In FIGS. 5A and 5B, even if the selection voltage V WL(Sel) having the same magnitude is applied to the first lower word line WL11 and the first upper word line WL21, they are connected to the first lower word line The first lower memory cell MC11 of the WL11 and the first upper memory cell MC21 connected to the first upper word line WL21 may also have different current distributions and different threshold voltages.

此現象可被理解為由選擇元件SW中的不對稱缺陷密度及組成物分佈引起。舉例而言,具有雙向臨界切換屬性的選擇元件SW可包含硫族化物材料。在硫族化物材料的切換機制(switching mechanism)中,當將高電場施加至硫族化物材料時,已知的是,硫族化物材料中的電子阱位點(electron trap site)不均勻地分佈,使得電子沿著電子阱位點以相對高速度而移動。 This phenomenon can be understood as caused by the asymmetric defect density and composition distribution in the selection element SW. For example, the selection element SW with bidirectional critical switching properties may include chalcogenide materials. In the switching mechanism of the chalcogenide material, when a high electric field is applied to the chalcogenide material, it is known that the electron trap sites in the chalcogenide material are unevenly distributed , So that the electrons move along the electron trap site at a relatively high speed.

再者,在選擇元件SW中產生大量缺陷的狀況下,電子阱 位點的密度可增加。因此,在甚至小的電場中,電子仍可沿著電子阱位點而移動,使得選擇元件SW的臨界電壓變得縮減。 Furthermore, when a large number of defects are generated in the selection element SW, the electron trap The density of sites can be increased. Therefore, even in a small electric field, electrons can still move along the electron trap site, so that the threshold voltage of the selection element SW becomes reduced.

再次參看圖2及圖3,第一記憶體單元140-1的第一選擇元件層143-1的第一高度H1可大於第二記憶體單元140-2的第二選擇元件層143-2的第二高度H2。可作為如下結果而形成此類結構:考慮到第一選擇元件層143-1及第二選擇元件層143-2中的缺陷密度,控制第一高度H1及第二高度H2,使得第一選擇元件層143-1的臨界電壓的量值實質上等於第二選擇元件層143-2的臨界電壓的量值。 2 and 3 again, the first height H1 of the first selection element layer 143-1 of the first memory cell 140-1 may be greater than that of the second selection element layer 143-2 of the second memory cell 140-2 The second height H2. Such a structure can be formed as a result of: considering the defect density in the first selection element layer 143-1 and the second selection element layer 143-2, the first height H1 and the second height H2 are controlled so that the first selection element The magnitude of the threshold voltage of the layer 143-1 is substantially equal to the magnitude of the threshold voltage of the second selection element layer 143-2.

定位於基板101上方的第一層級處的第一選擇元件層143-1的缺陷密度可不同於定位於基板101上方的第二層級處的第二選擇元件層143-2的缺陷密度。此處,相比於第一層級,第二層級意謂在第三方向(Z方向)上較遠離於基板101的位置。舉例而言,意謂第一選擇元件層143-1相比於第二選擇元件層143-2較接近於基板101的頂部表面。 The defect density of the first selection element layer 143-1 positioned at the first level above the substrate 101 may be different from the defect density of the second selection element layer 143-2 positioned at the second level above the substrate 101. Here, compared to the first level, the second level means a position farther from the substrate 101 in the third direction (Z direction). For example, it means that the first selection element layer 143-1 is closer to the top surface of the substrate 101 than the second selection element layer 143-2.

相比於第二層級處的第二選擇元件層143-2,第一層級處的第一選擇元件層143-1可長時間地暴露於製程環境,諸如形成後繼層的沈積製程及/或蝕刻製程。在此類製程環境中,可自基板101下方的夾盤或自加熱器供應熱以維持範圍為數十攝氏度至數百攝氏度的處理溫度。因此,相比於第二層級處的第二選擇元件層143-2,第一層級處的第一選擇元件層143-1可長時間地在高溫氛圍下暴露於沈積環境及/或蝕刻環境。結果,相比於第二選擇元件層143-2,第一選擇元件層143-1可歸因於長時間地暴露於沈積環境及/或蝕刻環境而容易損壞,使得第一層級處的第一選擇元件層 143-1的缺陷密度會大於第二層級處的第二選擇元件層143-2的缺陷密度。 Compared with the second selection element layer 143-2 at the second level, the first selection element layer 143-1 at the first level can be exposed to the process environment for a long time, such as the deposition process and/or etching to form the subsequent layer Process. In such a process environment, heat can be supplied from a chuck under the substrate 101 or from a heater to maintain a processing temperature ranging from tens of degrees Celsius to hundreds of degrees Celsius. Therefore, compared to the second selection element layer 143-2 at the second level, the first selection element layer 143-1 at the first level can be exposed to the deposition environment and/or the etching environment under a high temperature atmosphere for a long time. As a result, compared to the second selection element layer 143-2, the first selection element layer 143-1 can be easily damaged due to prolonged exposure to the deposition environment and/or etching environment, so that the first selection element layer at the first level Select component layer The defect density of 143-1 may be greater than the defect density of the second selection element layer 143-2 at the second level.

如上文所描述,根據選擇元件層143-1及143-2的切換機制,在第一選擇元件層143-1的缺陷密度大於第二選擇元件層143-2的缺陷密度的狀況下,第一層級處的第一選擇元件層143-1的臨界電壓可在量值上小於第二層級處的第二選擇元件層143-2的臨界電壓。第一選擇元件層143-1的臨界電壓與第二選擇元件層143-2的臨界電壓之間的量值差可在寫入操作及/或讀取操作中造成較少感測裕度,藉此在記憶體裝置100的寫入操作及/或讀取操作中誘發失敗。 As described above, according to the switching mechanism of the selection element layers 143-1 and 143-2, under the condition that the defect density of the first selection element layer 143-1 is greater than the defect density of the second selection element layer 143-2, the first The threshold voltage of the first selection element layer 143-1 at the level may be smaller in magnitude than the threshold voltage of the second selection element layer 143-2 at the second level. The magnitude difference between the threshold voltage of the first selection element layer 143-1 and the threshold voltage of the second selection element layer 143-2 can cause less sensing margin in the write operation and/or read operation, by This induces failure in the write operation and/or read operation of the memory device 100.

根據如上文所描述的實例實施例,可控制第一記憶體單元140-1的第一選擇元件層143-1的第一高度H1及第二記憶體單元140-2的第二選擇元件層143-2的第二高度H2,使得第一選擇元件層143-1的臨界電壓的量值與第二選擇元件層143-2的臨界電壓的量值實質上相同。 According to the example embodiment as described above, the first height H1 of the first selection element layer 143-1 of the first memory cell 140-1 and the second selection element layer 143 of the second memory cell 140-2 can be controlled The second height H2 of -2 makes the magnitude of the threshold voltage of the first selection element layer 143-1 and the magnitude of the threshold voltage of the second selection element layer 143-2 substantially the same.

舉例而言,因為第一記憶體單元140-1的第一選擇元件層143-1的第一高度H1大於第二記憶體單元140-2的第二選擇元件層143-2的第二高度H2,所以即使施加至第一選擇元件層143-1的切換電壓與施加至第二選擇元件層143-2的切換電壓相同,作用於第一選擇元件層143-1的電場的量值會小於作用於第二選擇元件層143-2的電場的量值。因此,在第一選擇元件層143-1包含較大缺陷密度的狀況下,可防止第一選擇元件層143-1的臨界電壓歸因於缺陷的縮減,且可縮減第一選擇元件層143-1的臨界電壓與第二選擇元件層143-2的臨界電壓的差。 For example, because the first height H1 of the first selection element layer 143-1 of the first memory cell 140-1 is greater than the second height H2 of the second selection element layer 143-2 of the second memory cell 140-2 Therefore, even if the switching voltage applied to the first selection element layer 143-1 is the same as the switching voltage applied to the second selection element layer 143-2, the magnitude of the electric field applied to the first selection element layer 143-1 will be smaller than the applied switching voltage. The magnitude of the electric field on the second selection element layer 143-2. Therefore, under the condition that the first selection element layer 143-1 contains a large defect density, the threshold voltage of the first selection element layer 143-1 can be prevented from being reduced due to defects, and the first selection element layer 143- can be reduced. The difference between the threshold voltage of 1 and the threshold voltage of the second selection element layer 143-2.

再者,第一選擇元件層143-1的第一高度H1與第二選擇元件層143-2的第二高度H2的差的存在可為如下結果:考慮到施加至第一選擇元件層143-1及第二選擇元件層143-2的電場的方向而控制第一高度H1及第二高度H2,使得第一選擇元件層143-1的臨界電壓與第二選擇元件層143-2的臨界電壓實質上相同。 Furthermore, the existence of the difference between the first height H1 of the first selection element layer 143-1 and the second height H2 of the second selection element layer 143-2 may be the result of the following: Considering the application to the first selection element layer 143- 1 and the direction of the electric field of the second selection element layer 143-2 to control the first height H1 and the second height H2, so that the threshold voltage of the first selection element layer 143-1 and the threshold voltage of the second selection element layer 143-2 Essentially the same.

如參考圖5A、圖5B及圖6所描述,相比於當將正電壓施加至第一選擇元件層143-1及第二選擇元件層143-2時,當將負電壓施加至第一選擇元件層143-1及第二選擇元件層143-2時,已發現,第一選擇元件層143-1及第二選擇元件層143-2具有較低的臨界電壓。因此,在第一選擇元件層143-1與第二選擇元件層143-2具有相同高度的一般狀況下,當將負電壓施加至第一選擇元件層143-1且將正電壓施加至第二選擇元件層143-2時,第一選擇元件層143-1的臨界電壓(例如,圖6的58(V2))可在量值上小於第二選擇元件層143-2的臨界電壓(例如,圖6的56(V1))。舉例而言,當將相對較低電壓施加至第二導電線120(例如,共同位元線BL)且將相對較高電壓施加至第一導電線110(例如,第一下部字元線WL11)及第三導電線130(例如,第一上部字元線WL21)時(亦即,當將禁止電壓或位元線選擇電壓施加至第二導電線120且將大於禁止電壓或位元線選擇電壓的字元線選擇電壓施加至第一導電線110及第三導電線130時),第一選擇元件層143-1的臨界電壓(例如,圖6的58(V2))可在量值上小於第二選擇元件層143-2的臨界電壓(例如,圖6的56(V1))。 As described with reference to FIGS. 5A, 5B, and 6, compared to when a positive voltage is applied to the first selection element layer 143-1 and the second selection element layer 143-2, when a negative voltage is applied to the first selection element layer 143-2 When the element layer 143-1 and the second selection element layer 143-2 are used, it has been found that the first selection element layer 143-1 and the second selection element layer 143-2 have lower threshold voltages. Therefore, under the general condition that the first selection element layer 143-1 and the second selection element layer 143-2 have the same height, when a negative voltage is applied to the first selection element layer 143-1 and a positive voltage is applied to the second selection element layer 143-1 When the element layer 143-2 is selected, the threshold voltage of the first selection element layer 143-1 (for example, 58 (V 2 ) in FIG. 6) may be smaller in magnitude than the threshold voltage of the second selection element layer 143-2 (for example, , 56 (V 1 ) in Figure 6). For example, when a relatively low voltage is applied to the second conductive line 120 (for example, the common bit line BL) and a relatively high voltage is applied to the first conductive line 110 (for example, the first lower word line WL11) ) And the third conductive line 130 (for example, the first upper word line WL21) (that is, when the inhibit voltage or the bit line selection voltage is applied to the second conductive line 120 and will be greater than the inhibit voltage or bit line selection When the word line selection voltage of the voltage is applied to the first conductive line 110 and the third conductive line 130), the threshold voltage of the first selection element layer 143-1 (for example, 58 (V 2 ) in FIG. 6) may be in the magnitude Is smaller than the threshold voltage of the second selection element layer 143-2 (for example, 56 (V 1 ) in FIG. 6).

根據如上文所描述的實例實施例,因為第一選擇元件層143-1的第一高度H1大於第二選擇元件層143-2的第二高度H2, 所以當將負電壓施加至第一選擇元件層143-1且將正電壓施加至第二選擇元件層143-2時,作用於第一選擇元件層143-1的電場可在量值上小於作用於第二選擇元件層143-2的電場。因此,可縮減第一選擇元件層143-1的臨界電壓與第二選擇元件層143-2的臨界電壓的量值差,且可縮減第一記憶體單元140-1的電屬性與第二記憶體單元140-2的電屬性的差異。 According to the example embodiment as described above, because the first height H1 of the first selection element layer 143-1 is greater than the second height H2 of the second selection element layer 143-2, Therefore, when a negative voltage is applied to the first selection element layer 143-1 and a positive voltage is applied to the second selection element layer 143-2, the electric field acting on the first selection element layer 143-1 may be smaller in magnitude than the effect The electric field on the second selection element layer 143-2. Therefore, the magnitude difference between the threshold voltage of the first selection element layer 143-1 and the threshold voltage of the second selection element layer 143-2 can be reduced, and the electrical properties of the first memory cell 140-1 and the second memory can be reduced. The difference in electrical properties of the body unit 140-2.

結果,因為縮減了第一選擇元件層143-1的臨界電壓與第二選擇元件層143-2的臨界電壓的量值差,所以可增加記憶體裝置100的寫入操作及/或讀取操作中的感測裕度,且可防止或減少記憶體裝置100的寫入操作及/或讀取操作歸因於感測裕度縮減的失敗。因此,可改良記憶體裝置100的可靠性。 As a result, since the magnitude difference between the threshold voltage of the first selection element layer 143-1 and the threshold voltage of the second selection element layer 143-2 is reduced, the write operation and/or read operation of the memory device 100 can be increased It can prevent or reduce the failure of the write operation and/or read operation of the memory device 100 due to the reduction of the sensing margin. Therefore, the reliability of the memory device 100 can be improved.

圖7至圖13分別為說明根據實例實施例的記憶體裝置100A、100B、100C、100D、100E、100F及100G的橫截面圖,且說明沿著圖2的線A-A'及B-B'所採取的橫截面。在與圖7至圖13有關的實施例中,與圖1至圖6的實施例中所描述的元件相同的元件將由相同圖式元件符號或相同參考指定符號指示。 FIGS. 7-13 are respectively cross-sectional views illustrating memory devices 100A, 100B, 100C, 100D, 100E, 100F, and 100G according to example embodiments, and illustrate along the lines AA' and B-B of FIG. 2 'The cross section taken. In the embodiments related to FIGS. 7 to 13, the same elements as those described in the embodiments of FIGS. 1 to 6 will be indicated by the same drawing element symbols or the same reference designation symbols.

參看圖7,在根據實例實施例的記憶體裝置100A中,第一記憶體單元140-1的第一選擇元件層143-1的第一高度H1A小於第二記憶體單元140-2的第二選擇元件層143-2的第二高度H2A。可控制第一選擇元件層143-1的第一高度H1A及第二選擇元件層143-2的第二高度H2A,使得第一選擇元件層143-1的第一臨界電壓VT1的量值與第二選擇元件層143-2的第二臨界電壓VT2的量值實質上相同。舉例而言,第二選擇元件層143-2的第二臨界電壓VT2的量值的範圍可為(例如)第一選擇元件層143-1的 第一臨界電壓VT1的量值的80%至120%,較佳地為90%至110%。 Referring to FIG. 7, in the memory device 100A according to the example embodiment, the first height H1A of the first selection element layer 143-1 of the first memory cell 140-1 is smaller than the second height H1A of the second memory cell 140-2 The second height H2A of the element layer 143-2 is selected. The first height H1A of the first selection element layer 143-1 and the second height H2A of the second selection element layer 143-2 can be controlled so that the magnitude of the first threshold voltage V T1 of the first selection element layer 143-1 is equal to The magnitude of the second threshold voltage V T2 of the second selection element layer 143-2 is substantially the same. For example, the range of the magnitude of the second threshold voltage V T2 of the second selection element layer 143-2 may be, for example, 80% of the magnitude of the first threshold voltage V T1 of the first selection element layer 143-1 To 120%, preferably 90% to 110%.

在一些實施例中,可控制第一選擇元件層143-1的第一高度H1A及第二選擇元件層143-2的第二高度H2A,使得第一選擇元件層143-1的第一臨界電壓VT1與第二選擇元件層143-2的第二臨界電壓VT2之間的量值差在小於0.5V的範圍內。 In some embodiments, the first height H1A of the first selection element layer 143-1 and the second height H2A of the second selection element layer 143-2 can be controlled so that the first threshold voltage of the first selection element layer 143-1 is The magnitude difference between V T1 and the second threshold voltage V T2 of the second selection element layer 143-2 is within a range of less than 0.5V.

在一些實施例中,第一選擇元件層143-1的第一高度H1A的範圍可為(例如)5nm至450nm,且第二選擇元件層143-2的第二高度H2A可為(例如)10nm至500nm,但並不限於此情形。舉例而言,第一選擇元件層143-1的第一高度H1A的範圍可為第二選擇元件層143-2的第二高度H2A的50%至90%,但並不限於此情形。 In some embodiments, the first height H1A of the first selection element layer 143-1 may range from, for example, 5 nm to 450 nm, and the second height H2A of the second selection element layer 143-2 may be, for example, 10 nm. To 500nm, but not limited to this case. For example, the range of the first height H1A of the first selection element layer 143-1 may be 50% to 90% of the second height H2A of the second selection element layer 143-2, but is not limited to this case.

如參考圖5A、圖5B及圖6所描述,相比於當將正電壓施加至第一選擇元件層143-1及第二選擇元件層143-2時,當將負電壓施加至第一選擇元件層143-1及第二選擇元件層143-2時,已發現,第一選擇元件層143-1及第二選擇元件層143-2具有較低的臨界電壓。因此,在第一選擇元件層143-1與第二選擇元件層143-2具有相同高度的一般狀況下,當將正電壓施加至第一選擇元件層143-1且將負電壓施加至第二選擇元件層143-2時,考慮到電場的方向,第二選擇元件層143-2的臨界電壓可在量值上小於第一選擇元件層143-1的臨界電壓。舉例而言,當將相對較高電壓施加至第二導電線120(例如,共同位元線BL)且將相對較低電壓施加至第一導電線110(例如,第一下部字元線WL11)及第三導電線130(例如,第一上部字元線WL21)時(亦即,當將禁止電壓或位元線選擇電壓施加至第二導電線120且將小於禁止電壓或位元 線選擇電壓的字元線選擇電壓施加至第一導電線110及第三導電線130時),第二選擇元件層143-2的臨界電壓可在量值上小於第一選擇元件層143-1的臨界電壓。 As described with reference to FIGS. 5A, 5B, and 6, compared to when a positive voltage is applied to the first selection element layer 143-1 and the second selection element layer 143-2, when a negative voltage is applied to the first selection element layer 143-2 When the element layer 143-1 and the second selection element layer 143-2 are used, it has been found that the first selection element layer 143-1 and the second selection element layer 143-2 have lower threshold voltages. Therefore, under the general condition that the first selection element layer 143-1 and the second selection element layer 143-2 have the same height, when a positive voltage is applied to the first selection element layer 143-1 and a negative voltage is applied to the second selection element layer 143-1 When selecting the element layer 143-2, considering the direction of the electric field, the threshold voltage of the second selection element layer 143-2 may be smaller in magnitude than the threshold voltage of the first selection element layer 143-1. For example, when a relatively high voltage is applied to the second conductive line 120 (for example, the common bit line BL) and a relatively low voltage is applied to the first conductive line 110 (for example, the first lower word line WL11) ) And the third conductive line 130 (for example, the first upper word line WL21) (that is, when the inhibit voltage or the bit line selection voltage is applied to the second conductive line 120 and will be less than the inhibit voltage or bit line When the word line selection voltage of the line selection voltage is applied to the first conductive line 110 and the third conductive line 130), the threshold voltage of the second selection element layer 143-2 may be smaller in magnitude than the first selection element layer 143-1 The critical voltage.

根據實例實施例,因為第二選擇元件層143-2的第二高度H2A大於第一選擇元件層143-1的第一高度H1A,所以當將正電壓施加至第一選擇元件層143-1且將負電壓施加至第二選擇元件層143-2時,作用於第二選擇元件層143-2的電場可在量值上小於作用於第一選擇元件層143-1的電場。舉例而言,可縮減第一選擇元件層143-1的臨界電壓與第二選擇元件層143-2的臨界電壓的量值差,且可縮減第一記憶體單元140-1的電屬性與第二記憶體單元140-2的電屬性的差異。 According to example embodiments, because the second height H2A of the second selection element layer 143-2 is greater than the first height H1A of the first selection element layer 143-1, when a positive voltage is applied to the first selection element layer 143-1 and When a negative voltage is applied to the second selection element layer 143-2, the electric field applied to the second selection element layer 143-2 may be smaller in magnitude than the electric field applied to the first selection element layer 143-1. For example, the magnitude difference between the threshold voltage of the first selection element layer 143-1 and the threshold voltage of the second selection element layer 143-2 can be reduced, and the electrical properties and the first memory cell 140-1 can be reduced. The difference in electrical properties of the two memory unit 140-2.

結果,因為縮減了第一選擇元件層143-1的臨界電壓與第二選擇元件層143-2的臨界電壓的量值差,所以可增加記憶體裝置100A的寫入操作及/或讀取操作中的感測裕度,且可防止或少減記憶體裝置100A的寫入操作及/或讀取操作歸因於感測裕度縮減的失敗。因此,可改良記憶體裝置100A的可靠性。 As a result, since the magnitude difference between the threshold voltage of the first selection element layer 143-1 and the threshold voltage of the second selection element layer 143-2 is reduced, the write operation and/or read operation of the memory device 100A can be increased It can prevent or reduce the failure of the write operation and/or read operation of the memory device 100A due to the reduction of the sensing margin. Therefore, the reliability of the memory device 100A can be improved.

參看圖8,在根據實例實施例的記憶體裝置100B中,第一內部間隔件(inner spacer)152-1可形成於第一記憶體單元140-1的側壁上,且第二內部間隔件152-2可形成於第二記憶體單元140-2的側壁上。第一內部間隔件152-1可覆蓋第一記憶體單元140-1的第一電極層141-1及第一選擇元件層143-1的側壁,且第二內部間隔件152-2可覆蓋第二記憶體單元140-2的第五電極層141-2及第二選擇元件層143-2的側壁。第一內部間隔件152-1及第二內部間隔件152-2可圍封第一記憶體單元140-1及第二記憶 體單元140-2的側壁以分別保護第一記憶體單元140-1及第二記憶體單元140-2,較佳地為分別保護第一選擇元件層143-1及第二選擇元件層143-2。舉例而言,第一內部間隔件152-1及第二內部間隔件152-2中的每一者可包含絕緣材料。 Referring to FIG. 8, in the memory device 100B according to example embodiments, a first inner spacer 152-1 may be formed on the sidewall of the first memory cell 140-1, and a second inner spacer 152 -2 may be formed on the sidewall of the second memory unit 140-2. The first inner spacer 152-1 may cover the sidewalls of the first electrode layer 141-1 and the first selection element layer 143-1 of the first memory cell 140-1, and the second inner spacer 152-2 may cover the first The sidewalls of the fifth electrode layer 141-2 and the second selection element layer 143-2 of the second memory cell 140-2. The first inner spacer 152-1 and the second inner spacer 152-2 can enclose the first memory unit 140-1 and the second memory The sidewalls of the body unit 140-2 protect the first memory unit 140-1 and the second memory unit 140-2, and preferably protect the first selection element layer 143-1 and the second selection element layer 143- respectively. 2. For example, each of the first inner spacer 152-1 and the second inner spacer 152-2 may include an insulating material.

儘管第一選擇元件層143-1的第一高度H1大於第二選擇元件層143-2的第二高度H2,如圖8所說明,但本發明概念的態樣並不限於此情形。舉例而言,第一選擇元件層143-1的第一高度H1小於第二選擇元件層143-2的第二高度H2。 Although the first height H1 of the first selection element layer 143-1 is greater than the second height H2 of the second selection element layer 143-2, as illustrated in FIG. 8, the aspect of the concept of the present invention is not limited to this case. For example, the first height H1 of the first selection element layer 143-1 is smaller than the second height H2 of the second selection element layer 143-2.

儘管第一電極層141-1與第五電極層141-2具有相同厚度,如圖8所說明,但本發明概念的態樣並不限於此情形。舉例而言,第一電極層141-1的厚度大於或小於第五電極層141-2的厚度。 Although the first electrode layer 141-1 and the fifth electrode layer 141-2 have the same thickness, as illustrated in FIG. 8, the aspect of the concept of the present invention is not limited to this case. For example, the thickness of the first electrode layer 141-1 is greater than or less than the thickness of the fifth electrode layer 141-2.

在一些實施例中,可藉由鑲嵌製程(damascene process)來形成第一電極層141-1、第五電極層141-2以及第一選擇元件層143-1及第二選擇元件層143-2,可藉由蝕刻製程來形成第二電極層145-1、第三電極層147-1、第四電極層148-1、第六電極層145-2、第七電極層147-2、第八電極層148-2以及第一可變電阻層149-1及第二可變電阻層149-2。因此,第一電極層141-1、第五電極層141-2以及第一選擇元件層143-1及第二選擇元件層143-2可分別具有寬度(例如,在第一方向或第二方向上)向下較窄的結構。 In some embodiments, the first electrode layer 141-1, the fifth electrode layer 141-2, the first selection element layer 143-1 and the second selection element layer 143-2 may be formed by a damascene process. , The second electrode layer 145-1, the third electrode layer 147-1, the fourth electrode layer 148-1, the sixth electrode layer 145-2, the seventh electrode layer 147-2, and the eighth electrode layer 145-1 can be formed by an etching process. The electrode layer 148-2 and the first variable resistance layer 149-1 and the second variable resistance layer 149-2. Therefore, the first electrode layer 141-1, the fifth electrode layer 141-2, and the first selection element layer 143-1 and the second selection element layer 143-2 may each have a width (for example, in the first direction or the second direction). Top) Narrow structure down.

在一些實施例中,當藉由鑲嵌製程來形成第一電極層141-1及第一選擇元件層143-1時,可將第一內部間隔件152-1形成於溝槽(未圖示)的側壁上,且接著可將第一電極層141-1及第一選擇元件層143-1依序地形成於具有第一內部間隔件152-1的 溝槽中以填充溝槽。可將第二電極層145-1、第三電極層147-1、第四電極層148-1以及第一可變電阻層149-1形成於第一選擇元件層143-1上。可藉由與形成第一電極層141-1及第一選擇元件層143-1的製程相似的製程來形成第五電極層141-2及第二選擇元件層143-2。 In some embodiments, when the first electrode layer 141-1 and the first selection element layer 143-1 are formed by a damascene process, the first inner spacer 152-1 may be formed in the trench (not shown) And then the first electrode layer 141-1 and the first selection element layer 143-1 can be sequentially formed on the side wall with the first inner spacer 152-1 To fill the trench. The second electrode layer 145-1, the third electrode layer 147-1, the fourth electrode layer 148-1, and the first variable resistance layer 149-1 may be formed on the first selection element layer 143-1. The fifth electrode layer 141-2 and the second selection element layer 143-2 can be formed by a process similar to the process of forming the first electrode layer 141-1 and the first selection element layer 143-1.

參看圖9,在根據實例實施例的記憶體裝置100C中,第一上部間隔件(upper spacer)155-1可形成於第一記憶體單元140-1的側壁上,且第二上部間隔件155-2可形成於第二記憶體單元140-2的側壁上。上部間隔件155-1可覆蓋第一記憶體單元140-1的第一可變電阻層149-1的側壁,且第二上部間隔件155-2可覆蓋第二記憶體單元140-2的第二可變電阻層149-2的側壁。第一上部間隔件155-1及第二上部間隔件155-2可圍封第一記憶體單元140-1及第二記憶體單元140-2的側壁以分別保護第一記憶體單元140-1及第二記憶體單元140-2,較佳地為分別保護第一可變電阻層149-1及第二可變電阻層149-2。舉例而言,第一上部間隔件155-1及第二上部間隔件155-2中的每一者可包含絕緣材料。 Referring to FIG. 9, in the memory device 100C according to example embodiments, a first upper spacer 155-1 may be formed on the sidewall of the first memory cell 140-1, and a second upper spacer 155 -2 may be formed on the sidewall of the second memory unit 140-2. The upper spacer 155-1 may cover the sidewall of the first variable resistance layer 149-1 of the first memory cell 140-1, and the second upper spacer 155-2 may cover the second memory cell 140-2 Two sidewalls of the variable resistance layer 149-2. The first upper spacer 155-1 and the second upper spacer 155-2 can enclose the sidewalls of the first memory unit 140-1 and the second memory unit 140-2 to protect the first memory unit 140-1, respectively And the second memory unit 140-2, preferably protect the first variable resistance layer 149-1 and the second variable resistance layer 149-2, respectively. For example, each of the first upper spacer 155-1 and the second upper spacer 155-2 may include an insulating material.

儘管第一選擇元件層143-1的第一高度H1大於第二選擇元件層143-2的第二高度H2,如圖9所說明,但本發明概念的態樣並不限於此情形。舉例而言,第一選擇元件層143-1的第一高度H1小於第二選擇元件層143-2的第二高度H2。 Although the first height H1 of the first selection element layer 143-1 is greater than the second height H2 of the second selection element layer 143-2, as illustrated in FIG. 9, the aspect of the concept of the present invention is not limited to this case. For example, the first height H1 of the first selection element layer 143-1 is smaller than the second height H2 of the second selection element layer 143-2.

在一些實施例中,可藉由鑲嵌製程來形成第一可變電阻層149-1及第二可變電阻層149-2,可藉由蝕刻製程來形成第一電極層141-1、第二電極層145-1、第三電極層147-1、第四電極層148-1、第一選擇元件層143-1及第二選擇元件層143-2以及第五 電極層141-2、第六電極層145-2、第七電極層147-2、第八電極層148-2。因此,第一可變電阻層149-1及第二可變電阻層149-2可分別具有寬度(例如,在第一方向或第二方向上)向下較窄的結構。 In some embodiments, the first variable resistance layer 149-1 and the second variable resistance layer 149-2 can be formed by a damascene process, and the first electrode layer 141-1 and the second variable resistance layer 149-2 can be formed by an etching process. The electrode layer 145-1, the third electrode layer 147-1, the fourth electrode layer 148-1, the first selection element layer 143-1 and the second selection element layer 143-2, and the fifth The electrode layer 141-2, the sixth electrode layer 145-2, the seventh electrode layer 147-2, and the eighth electrode layer 148-2. Therefore, the first variable resistance layer 149-1 and the second variable resistance layer 149-2 may each have a structure with a narrower width (for example, in the first direction or the second direction) downward.

在一些實施例中,當藉由鑲嵌製程來形成第一可變電阻層149-1時,可將第一上部間隔件155-1形成於溝槽(未圖示)的側壁上,且接著可將第一可變電阻層149-1形成於具有第一上部間隔件155-1的溝槽中以填充溝槽。可藉由與形成第一可變電阻層149-1的製程相似的製程來形成第二可變電阻層149-2。 In some embodiments, when the first variable resistance layer 149-1 is formed by a damascene process, the first upper spacer 155-1 can be formed on the sidewall of the trench (not shown), and then The first variable resistance layer 149-1 is formed in the trench having the first upper spacer 155-1 to fill the trench. The second variable resistance layer 149-2 can be formed by a process similar to the process of forming the first variable resistance layer 149-1.

在實例實施例中,記憶體裝置(未圖示)可包含多個第一記憶體單元140-1及多個第二記憶體單元140-2。第一記憶體單元140-1中的每一者可包含形成於第一選擇元件層143-1的側壁上的第一內部間隔件152-1以及形成於第一可變電阻層149-1的側壁上的第一上部間隔件155-1。第二記憶體單元140-2中的每一者可包含形成於第二選擇元件層143-2的側壁上的第二內部間隔件152-2以及形成於第二可變電阻層149-2的側壁上的第二上部間隔件155-2。 In an example embodiment, the memory device (not shown) may include a plurality of first memory units 140-1 and a plurality of second memory units 140-2. Each of the first memory cells 140-1 may include first internal spacers 152-1 formed on the sidewalls of the first selection element layer 143-1 and formed on the first variable resistance layer 149-1 The first upper spacer 155-1 on the side wall. Each of the second memory cells 140-2 may include a second internal spacer 152-2 formed on the sidewall of the second selection element layer 143-2 and a second internal spacer 152-2 formed on the second variable resistance layer 149-2 The second upper spacer 155-2 on the side wall.

參看圖10,在根據實例實施例的記憶體裝置100D中,第一可變電阻層149-1及第二可變電阻層149-2可被形成為具有「L」截面形狀。具體言之,可藉由蝕刻製程來形成第一電極層141-1、第二電極層145-1、第三電極層147-1、第四電極層148-1、第一選擇元件層143-1及第二選擇元件層143-2以及第五電極層141-2、第六電極層145-2、第七電極層147-2、第八電極層148-2,且可藉由鑲嵌製程來形成第一可變電阻層149-1及第二可變電阻層 149-2。 10, in the memory device 100D according to example embodiments, the first variable resistance layer 149-1 and the second variable resistance layer 149-2 may be formed to have an "L" cross-sectional shape. Specifically, the first electrode layer 141-1, the second electrode layer 145-1, the third electrode layer 147-1, the fourth electrode layer 148-1, and the first selection element layer 143- can be formed by an etching process. 1 and the second selection element layer 143-2, the fifth electrode layer 141-2, the sixth electrode layer 145-2, the seventh electrode layer 147-2, and the eighth electrode layer 148-2, and can be made by a damascene process Form the first variable resistance layer 149-1 and the second variable resistance layer 149-2.

第一上部間隔件155-1及第二上部間隔件155-2可分別形成於第一可變電阻層149-1的側壁及第二可變電阻層149-2的側壁上。因為第一可變電阻層149-1及第二可變電阻層149-2具有「L」截面形狀,所以第一上部間隔件155-1及第二上部間隔件155-2可分別被形成為不對稱結構。 The first upper spacer 155-1 and the second upper spacer 155-2 may be formed on the sidewalls of the first variable resistance layer 149-1 and the second variable resistance layer 149-2, respectively. Because the first variable resistance layer 149-1 and the second variable resistance layer 149-2 have an "L" cross-sectional shape, the first upper spacer 155-1 and the second upper spacer 155-2 may be formed as Asymmetric structure.

根據用於形成第一可變電阻層149-1及第二可變電阻層149-2的實例製程,可在第三電極層147-1及第七電極層147-2中的每一者上形成絕緣層,且可在絕緣層中形成溝槽。溝槽可被形成為與鄰近的第一選擇元件層143-1及鄰近的第二選擇元件層143-2中的各別者重疊。可在溝槽中及在絕緣層上薄薄地形成用於形成可變電阻層的第一材料層,且接著可形成用於形成上部間隔件的第二材料層。可對第一材料層及第二材料層執行諸如化學機械拋光製程(chemical mechanical polishing process)的平坦化製程(planarization process),直至暴露絕緣層的頂部表面為止。在平坦化製程之後,可使用遮罩圖案(mask pattern)來蝕刻第一材料層及第二材料層以作為蝕刻遮罩(etch mask)而與第一記憶體單元140-1及第二記憶體單元140-2對準。因此,第一可變電阻層149-1及第二可變電阻層149-2可被形成為具有「L」截面形狀,且第一上部間隔件155-1及第二上部間隔件155-2分別形成於第一可變電阻層149-1的側壁及第二可變電阻層149-2的側壁上。 According to the example process for forming the first variable resistance layer 149-1 and the second variable resistance layer 149-2, it can be on each of the third electrode layer 147-1 and the seventh electrode layer 147-2 An insulating layer is formed, and trenches can be formed in the insulating layer. The trench may be formed to overlap with each of the adjacent first selection element layer 143-1 and the adjacent second selection element layer 143-2. The first material layer for forming the variable resistance layer may be thinly formed in the trench and on the insulating layer, and then the second material layer for forming the upper spacer may be formed. A planarization process such as a chemical mechanical polishing process may be performed on the first material layer and the second material layer until the top surface of the insulating layer is exposed. After the planarization process, a mask pattern can be used to etch the first material layer and the second material layer to serve as an etch mask to interact with the first memory cell 140-1 and the second memory cell. Unit 140-2 is aligned. Therefore, the first variable resistance layer 149-1 and the second variable resistance layer 149-2 may be formed to have an "L" cross-sectional shape, and the first upper spacer 155-1 and the second upper spacer 155-2 They are respectively formed on the sidewalls of the first variable resistance layer 149-1 and the second variable resistance layer 149-2.

參看圖11,在根據實例實施例的記憶體裝置100E中,第一可變電阻層149-1及第二可變電阻層149-2可被形成為具有「I」截面形狀。可藉由與形成具有圖10的「L」截面形狀的第一可變 電阻層149-1及第二可變電阻層149-2的製程相似的製程來形成具有「I」截面形狀的第一可變電阻層149-1及第二可變電阻層149-2。舉例而言,在溝槽中及在絕緣層上薄薄地形成用於形成可變電阻層的第一材料層之後,可對第一材料層執行非等向性蝕刻製程(anisotropic etching process),使得第一材料層僅留存於溝槽的側壁上。可形成包含絕緣材料的第二材料層以覆蓋第一材料層。可執行平坦化製程(例如,化學機械拋光製程)以暴露絕緣層的頂部表面。在平坦化製程之後,可使用遮罩圖案來蝕刻第二材料層以作為蝕刻遮罩而與第一記憶體單元140-1及第二記憶體單元140-2對準。因此,第一可變電阻層149-1及第二可變電阻層149-2可被形成為具有「I」截面形狀,且第一上部間隔件155-1及第二上部間隔件155-2分別形成於第一可變電阻層149-1的側壁及第二可變電阻層149-2的側壁上。 Referring to FIG. 11, in the memory device 100E according to example embodiments, the first variable resistance layer 149-1 and the second variable resistance layer 149-2 may be formed to have an "I" cross-sectional shape. The first variable with the "L" cross-sectional shape of Figure 10 can be formed by and The manufacturing process of the resistance layer 149-1 and the second variable resistance layer 149-2 is similar to forming the first variable resistance layer 149-1 and the second variable resistance layer 149-2 having an "I" cross-sectional shape. For example, after thinly forming the first material layer for forming the variable resistance layer in the trench and on the insulating layer, an anisotropic etching process can be performed on the first material layer, so that The first material layer only remains on the sidewall of the trench. A second material layer including an insulating material may be formed to cover the first material layer. A planarization process (for example, a chemical mechanical polishing process) may be performed to expose the top surface of the insulating layer. After the planarization process, the mask pattern may be used to etch the second material layer to serve as an etching mask to align with the first memory cell 140-1 and the second memory cell 140-2. Therefore, the first variable resistance layer 149-1 and the second variable resistance layer 149-2 may be formed to have an "I" cross-sectional shape, and the first upper spacer 155-1 and the second upper spacer 155-2 They are respectively formed on the sidewalls of the first variable resistance layer 149-1 and the second variable resistance layer 149-2.

參看圖12,在根據實例實施例的記憶體裝置100F中,第一加熱電極層146-1可進一步形成於第一可變電阻層149-1與第三電極層147-1之間,且第二加熱電極層146-2可進一步形成於第二可變電阻層149-2與第八電極層148-2之間。 12, in the memory device 100F according to example embodiments, the first heating electrode layer 146-1 may be further formed between the first variable resistance layer 149-1 and the third electrode layer 147-1, and Two heating electrode layers 146-2 may be further formed between the second variable resistance layer 149-2 and the eighth electrode layer 148-2.

如圖12所說明,可在自第二導電線120朝向第一導電線110的方向上按次序配置第一可變電阻層149-1及第一加熱電極層146-1,且可在自第二導電線120朝向第三導電線130的方向上按次序配置第二可變電阻層149-2及第二加熱電極層146-2。因此,相對於第二導電線120,第一記憶體單元140-1中的第一可變電阻層149-1及第一加熱電極層146-1的配置可與第二記憶體單元140-2中的第二可變電阻層149-2及第二加熱電極層146-2的配置對 稱。因此,可縮減第一可變電阻層149-1的電阻值與第二可變電阻層149-2的電阻值之間的差。舉例而言,當第一可變電阻層149-1及第二可變電阻層149-2中的每一者包含GeSbTe時,正離子(例如,Sb+)的擴散率(diffusion rate)與負離子(例如,Te-)的擴散率可在第一可變電阻層149-1及第二可變電阻層149-2中彼此不同。當將負電壓施加至第一可變電阻層149-1且將正電壓施加至第二可變電阻層149-2時,在第一可變電阻層149-1及第二可變電阻層149-2中,負離子的擴散率與正離子的擴散率之間的差異可誘發局域濃度改變(local concentration change)。因此,第一可變電阻層149-1的電阻值與第二可變電阻層149-2的電阻值可彼此不同。 As illustrated in FIG. 12, the first variable resistance layer 149-1 and the first heating electrode layer 146-1 can be arranged in order in the direction from the second conductive line 120 to the first conductive line 110, and the The second variable resistance layer 149-2 and the second heating electrode layer 146-2 are sequentially arranged in the direction of the two conductive wires 120 facing the third conductive wire 130. Therefore, with respect to the second conductive line 120, the configuration of the first variable resistance layer 149-1 and the first heating electrode layer 146-1 in the first memory cell 140-1 can be the same as that of the second memory cell 140-2. The arrangement of the second variable resistance layer 149-2 and the second heating electrode layer 146-2 in the figure is symmetrical. Therefore, the difference between the resistance value of the first variable resistance layer 149-1 and the resistance value of the second variable resistance layer 149-2 can be reduced. For example, when each of the first variable resistance layer 149-1 and the second variable resistance layer 149-2 includes GeSbTe, the diffusion rate of positive ions (for example, Sb + ) and negative ions The diffusivity of (for example, Te ) may be different from each other in the first variable resistance layer 149-1 and the second variable resistance layer 149-2. When a negative voltage is applied to the first variable resistance layer 149-1 and a positive voltage is applied to the second variable resistance layer 149-2, the first variable resistance layer 149-1 and the second variable resistance layer 149 In -2, the difference between the diffusivity of negative ions and the diffusivity of positive ions can induce a local concentration change. Therefore, the resistance value of the first variable resistance layer 149-1 and the resistance value of the second variable resistance layer 149-2 may be different from each other.

根據實例實施例,因為相對於第二導電線120,第一記憶體單元140-1中的第一可變電阻層149-1及第一加熱電極層146-1的堆疊式結構與第二記憶體單元140-2中的第二加熱電極層146-2及第二可變電阻層149-2的堆疊式結構對稱,所以可縮減第一可變電阻層149-1的電阻值與第二可變電阻層149-2的電阻值之間的差,使得第一記憶體單元140-1及第二記憶體單元140-2中的每一者可具有均一操作屬性。第一可變電阻層149-1及第二可變電阻層149-2中的每一者的電阻值被假定為處於相同狀態(例如,設定狀態或重設狀態)。 According to example embodiments, as compared to the second conductive line 120, the stacked structure of the first variable resistance layer 149-1 and the first heating electrode layer 146-1 in the first memory cell 140-1 and the second memory The stacked structure of the second heating electrode layer 146-2 and the second variable resistance layer 149-2 in the body unit 140-2 is symmetrical, so the resistance value of the first variable resistance layer 149-1 and the second resistance value can be reduced. The difference between the resistance values of the variable resistance layer 149-2 allows each of the first memory cell 140-1 and the second memory cell 140-2 to have uniform operating properties. The resistance value of each of the first variable resistance layer 149-1 and the second variable resistance layer 149-2 is assumed to be in the same state (for example, a set state or a reset state).

參看圖13,在根據實例實施例的記憶體裝置100G中,第一加熱電極層146-1可進一步形成於第一可變電阻層149-1與第四電極層148-1之間,且第二加熱電極層146-2可進一步形成於第二可變電阻層149-2與第七電極層147-2之間。 Referring to FIG. 13, in the memory device 100G according to example embodiments, the first heating electrode layer 146-1 may be further formed between the first variable resistance layer 149-1 and the fourth electrode layer 148-1, and Two heating electrode layers 146-2 may be further formed between the second variable resistance layer 149-2 and the seventh electrode layer 147-2.

如圖13所說明,相對於第二導電線120,第一記憶體單元140-1中的第一可變電阻層149-1及第一加熱電極層146-1的配置可與第二記憶體單元140-2中的第二可變電阻層149-2及第二加熱電極層146-2的配置對稱。如上文所描述,可縮減第一可變電阻層149-1的電阻值與第二可變電阻層149-2的電阻值之間的差,使得第一記憶體單元140-1及第二記憶體單元140-2中的每一者可具有統一操作屬性。 As illustrated in FIG. 13, with respect to the second conductive line 120, the configuration of the first variable resistance layer 149-1 and the first heating electrode layer 146-1 in the first memory cell 140-1 can be the same as that of the second memory cell. The second variable resistance layer 149-2 and the second heating electrode layer 146-2 in the unit 140-2 are arranged symmetrically. As described above, the difference between the resistance value of the first variable resistance layer 149-1 and the resistance value of the second variable resistance layer 149-2 can be reduced, so that the first memory cell 140-1 and the second memory Each of the body units 140-2 may have uniform operation attributes.

儘管第一選擇元件層143-1的第一高度H1大於第二選擇元件層143-2的第二高度H2,如圖10至圖13所說明,但本發明概念的態樣並不限於此情形。舉例而言,第一選擇元件層143-1的第一高度H1可被形成為小於第二選擇元件層143-2的第二高度H2。 Although the first height H1 of the first selection element layer 143-1 is greater than the second height H2 of the second selection element layer 143-2, as illustrated in FIGS. 10 to 13, the aspect of the concept of the present invention is not limited to this case . For example, the first height H1 of the first selection element layer 143-1 may be formed to be smaller than the second height H2 of the second selection element layer 143-2.

在參考圖1至13所描述的實例實施例中,描述第一記憶體單元140-1及第二記憶體單元140-2垂直地配置於第一導電線110、第二導電線120與第三導電線130之間的結構,但本發明概念的態樣並不限於此情形。在一些實施例中,絕緣層(未圖示)可形成於第三導電線130上,且具有如參考圖1至圖13所描述的交叉點陣列的至少一個堆疊結構可安置於絕緣層上。 In the example embodiments described with reference to FIGS. 1 to 13, it is described that the first memory cell 140-1 and the second memory cell 140-2 are vertically arranged on the first conductive line 110, the second conductive line 120, and the third conductive line. The structure between the conductive lines 130, but the aspect of the concept of the present invention is not limited to this case. In some embodiments, an insulating layer (not shown) may be formed on the third conductive line 130, and at least one stacked structure having a cross-point array as described with reference to FIGS. 1 to 13 may be disposed on the insulating layer.

圖14為說明根據實例實施例的記憶體裝置200的透視圖,且圖15為根據實例實施例的沿著圖14的線2A-2A'所採取的橫截面圖。 FIG. 14 is a perspective view illustrating a memory device 200 according to an example embodiment, and FIG. 15 is a cross-sectional view taken along the line 2A-2A′ of FIG. 14 according to an example embodiment.

參看圖14及圖15,記憶體裝置200可包含安置於基板102上的第一層級處的驅動電路區(drive circuit region)210,以及安置於驅動電路區210上的第二層級處的記憶體單元陣列區 (memory cell array region)MCA。 14 and 15, the memory device 200 may include a drive circuit region (drive circuit region) 210 disposed on the substrate 102 at a first level, and a memory disposed on the drive circuit region 210 at a second level Cell array area (memory cell array region)MCA.

此處,層級意謂在垂直方向(亦即,圖14及圖15的Z方向)上與基板102相隔的高度(或位置)。第一層級相比於第二層級較接近於基板102。驅動電路區210可為用於驅動記憶體單元區MCA中的記憶體單元的周邊電路(或驅動電路)被安置的區。舉例而言,驅動電路區210中的周邊電路可包含處理輸入至記憶體單元陣列區MCA中的記憶體單元或自記憶體單元陣列區MCA中的記憶體單元輸出的資料的電路。周邊電路可包含(例如)頁面緩衝器(page buffer)、閂鎖器電路(latch circuit)、快取記憶體電路(cache circuit)、行解碼器(column decoder)、感測放大器(sense amplifier)、資料輸入/輸出電路(data in/out circuit)或列解碼器(row decoder)。 Here, the level means the height (or position) spaced from the substrate 102 in the vertical direction (that is, the Z direction in FIGS. 14 and 15). The first level is closer to the substrate 102 than the second level. The driving circuit area 210 may be an area where peripheral circuits (or driving circuits) for driving memory cells in the memory cell area MCA are arranged. For example, the peripheral circuits in the driving circuit area 210 may include circuits that process data input to the memory cells in the memory cell array area MCA or data output from the memory cells in the memory cell array area MCA. Peripheral circuits may include, for example, page buffers, latch circuits, cache circuits, column decoders, sense amplifiers, Data in/out circuit or row decoder.

用於周邊電路(或驅動電路)的主動區(active region)AC可由基板102中的裝置隔離層(device isolation layer)104界定。構成驅動電路區210中的周邊電路的多個電晶體TR可形成於主動區AC上及主動區AC中。所述多個電晶體TR可各自包含閘極G、閘極絕緣層GD以及源極/汲極區SD。絕緣間隔件(insulating spacer)106可形成於閘極G的相對側壁上,且蝕刻終止層(etch stop layer)108可形成於閘極G及絕緣間隔件106上。蝕刻終止層108可包含絕緣材料,例如,氮化矽或氮氧化矽。 The active region AC used for the peripheral circuit (or driving circuit) can be defined by the device isolation layer 104 in the substrate 102. A plurality of transistors TR constituting the peripheral circuit in the driving circuit area 210 may be formed on and in the active area AC. The plurality of transistors TR may each include a gate G, a gate insulating layer GD, and source/drain regions SD. An insulating spacer 106 can be formed on the opposite sidewall of the gate G, and an etch stop layer 108 can be formed on the gate G and the insulating spacer 106. The etch stop layer 108 may include an insulating material, for example, silicon nitride or silicon oxynitride.

多個層間絕緣層212A、212B及212C可依序地堆疊於蝕刻終止層108上。所述多個層間絕緣層212A、212B及212C中的每一者可包含(例如)氧化矽、氮化矽及/或氮氧化矽。 A plurality of interlayer insulating layers 212A, 212B, and 212C may be sequentially stacked on the etch stop layer 108. Each of the plurality of interlayer insulating layers 212A, 212B, and 212C may include, for example, silicon oxide, silicon nitride, and/or silicon oxynitride.

驅動電路區210可包含電連接至所述多個電晶體TR的 多層級內連線結構(multilevel interconnection structure)214。多層級內連線結構214可由所述多個層間絕緣層212A、212B及212C覆蓋。多層級內連線結構214可包含依序地在基板102上以彼此電連接的第一接觸件(contact)216A、第一內連線層(interconnection layer)218A、第二接觸件216b以及第二內連線層218B。第一內連線層218A及第二內連線層218B可包含金屬、導電金屬氮化物、金屬矽化物或其組合。第一內連線層218A及第二內連線層218B可包含(例如)鎢、鉬、鈦、鈷、鉭、鎳、矽化鎢、矽化鈦、矽化鈷、矽化鉭或矽化鎳。 The driving circuit area 210 may include a circuit electrically connected to the plurality of transistors TR Multilevel interconnection structure 214. The multilayer interconnect structure 214 may be covered by the plurality of interlayer insulating layers 212A, 212B, and 212C. The multilayer interconnection structure 214 may include a first contact 216A, a first interconnection layer 218A, a second contact 216b, and a second contact 216A that are electrically connected to each other sequentially on the substrate 102. The interconnection layer 218B. The first interconnection layer 218A and the second interconnection layer 218B may include metal, conductive metal nitride, metal silicide, or a combination thereof. The first interconnection layer 218A and the second interconnection layer 218B may include, for example, tungsten, molybdenum, titanium, cobalt, tantalum, nickel, tungsten silicide, titanium silicide, cobalt silicide, tantalum silicide, or nickel silicide.

儘管多層級內連線結構214包含具有第一內連線層218A及第二內連線層218B的兩層級內連線結構,如圖15所說明,但本發明概念的態樣並不限於此情形。舉例而言,根據驅動電路區210的佈局及閘極G的配置或類型,多層級內連線結構214可包含三層級或多於三層級內連線結構。 Although the multi-level interconnect structure 214 includes a two-level interconnect structure with a first interconnect layer 218A and a second interconnect layer 218B, as illustrated in FIG. 15, the aspect of the concept of the present invention is not limited to this situation. For example, according to the layout of the driving circuit area 210 and the configuration or type of the gate G, the multi-level interconnect structure 214 may include a three-level or more than three-level interconnect structure.

上部層間絕緣層220可形成於層間絕緣層212C上。記憶體單元陣列區MCA可安置於上部層間絕緣層220上。在記憶體單元陣列區MCA中,可安置如參考圖1至圖13所描述的記憶體裝置100、100A、100B、100C、100D、100E、100F及100G中的至少一者或其組合。 The upper interlayer insulating layer 220 may be formed on the interlayer insulating layer 212C. The memory cell array area MCA may be disposed on the upper interlayer insulating layer 220. In the memory cell array area MCA, at least one or a combination of the memory devices 100, 100A, 100B, 100C, 100D, 100E, 100F, and 100G as described with reference to FIGS. 1 to 13 can be disposed.

可進一步安置穿透上部層間絕緣層220的內連線結構(未圖示),以將記憶體單元陣列區MCA中的記憶體單元電連接至驅動電路區210中的周邊電路。 An interconnection structure (not shown) penetrating the upper interlayer insulating layer 220 may be further arranged to electrically connect the memory cells in the memory cell array area MCA to the peripheral circuits in the driving circuit area 210.

在根據實例實施例的記憶體裝置200中,因為記憶體單元陣列區MCA安置於驅動電路區210上,所以可增加記憶體裝置 200的積集度。 In the memory device 200 according to the example embodiment, because the memory cell array area MCA is disposed on the driving circuit area 210, the memory device can be increased The integration degree of 200.

儘管第一選擇元件層143-1的第一高度H1大於第二選擇元件層143-2的第二高度H2,如圖15所說明,但本發明概念的態樣並不限於此情形。舉例而言,第一選擇元件層143-1的第一高度H1可被形成為小於第二選擇元件層143-2的第二高度H2。 Although the first height H1 of the first selection element layer 143-1 is greater than the second height H2 of the second selection element layer 143-2, as illustrated in FIG. 15, the aspect of the inventive concept is not limited to this case. For example, the first height H1 of the first selection element layer 143-1 may be formed to be smaller than the second height H2 of the second selection element layer 143-2.

圖16A至圖16I為說明根據實例實施例的製造記憶體裝置100的方法的階段的橫截面圖。 16A to 16I are cross-sectional views illustrating stages of a method of manufacturing a memory device 100 according to example embodiments.

參考圖16A至圖16I來描述如圖2及圖3所說明的製造記憶體裝置100的方法。圖16A至圖16I說明對應於根據製程階段沿著圖2的線A-A'及B-B'所採取的橫截面的橫截面架構。使用相同圖式元件符號以表示與圖1至圖15中的元件相同的元件,且出於簡潔起見而省略其重複描述。 The method of manufacturing the memory device 100 as illustrated in FIGS. 2 and 3 will be described with reference to FIGS. 16A to 16I. 16A to 16I illustrate the cross-sectional architecture corresponding to the cross-sections taken along the lines AA′ and B-B′ of FIG. 2 according to the process stages. The same drawing element symbols are used to denote the same elements as those in FIGS. 1 to 15, and repeated descriptions thereof are omitted for brevity.

參看圖16A,層間絕緣層105可形成於基板101上。層間絕緣層105可由氧化矽、氮化矽以及氮氧化矽中的至少一者形成。 Referring to FIG. 16A, an interlayer insulating layer 105 may be formed on the substrate 101. The interlayer insulating layer 105 may be formed of at least one of silicon oxide, silicon nitride, and silicon oxynitride.

第一導電層110P可形成於層間絕緣層105上,且可形成第一堆疊結構CPS1,其中初步第一電極層141-1P、初步第一選擇元件層143-1P、初步第二電極層145-1P、初步第三電極層147-1P、初步第一可變電阻層149-1P及初步第四電極層148-1P依序地形成於第一導電層110P上。第一堆疊結構CPS1可用來形成交叉點陣列。 The first conductive layer 110P can be formed on the interlayer insulating layer 105, and can form a first stacked structure CPS1, in which a preliminary first electrode layer 141-1P, a preliminary first selection element layer 143-1P, and a preliminary second electrode layer 145- 1P, the preliminary third electrode layer 147-1P, the preliminary first variable resistance layer 149-1P, and the preliminary fourth electrode layer 148-1P are sequentially formed on the first conductive layer 110P. The first stack structure CPS1 can be used to form a cross-point array.

第一導電層110P、初步第一電極層141-1P、初步第一選擇元件層143-1P、初步第二電極層145-1P、初步第三電極層147-1P、初步第一可變電阻層149-1P及初步第四電極層148-1P可由 與如參考圖2及圖3所描述的第一導電線110、第一電極層141-1、第一選擇元件層143-1、第二電極層145-1、第三電極層147-1、第一可變電阻層149-1及第四電極層148-1的材料相同的材料形成。 First conductive layer 110P, preliminary first electrode layer 141-1P, preliminary first selection element layer 143-1P, preliminary second electrode layer 145-1P, preliminary third electrode layer 147-1P, preliminary first variable resistance layer 149-1P and preliminary fourth electrode layer 148-1P can be As described with reference to FIGS. 2 and 3, the first conductive line 110, the first electrode layer 141-1, the first selection element layer 143-1, the second electrode layer 145-1, the third electrode layer 147-1, The first variable resistance layer 149-1 and the fourth electrode layer 148-1 are formed of the same material.

第一遮罩圖案410可形成於初步第四電極層148-1P上。 The first mask pattern 410 may be formed on the preliminary fourth electrode layer 148-1P.

第一遮罩圖案410可包含在第一方向(圖2的X方向)上延伸且在第二方向(圖2的Y方向)上彼此隔開的多個線圖案(line pattern)。第一遮罩圖案410可包含單一層或多層堆疊。第一遮罩圖案410可包含(例如)光阻圖案(photoresist pattern)、氧化矽圖案(silicon oxide pattern)、氮化矽圖案(silicon nitride pattern)、氮氧化矽圖案(silicon oxynitride pattern)、多晶矽圖案(poly-silicon pattern)或其組合,但並不限於此情形。第一遮罩圖案410可由各種材料形成。 The first mask pattern 410 may include a plurality of line patterns extending in the first direction (X direction in FIG. 2) and spaced apart from each other in the second direction (Y direction in FIG. 2). The first mask pattern 410 may include a single layer or a multilayer stack. The first mask pattern 410 may include, for example, a photoresist pattern, a silicon oxide pattern, a silicon nitride pattern, a silicon oxynitride pattern, and a polysilicon pattern. (poly-silicon pattern) or a combination thereof, but not limited to this case. The first mask pattern 410 may be formed of various materials.

參看圖16B,可使用第一遮罩圖案410作為蝕刻遮罩來依序非等向性地蝕刻第一堆疊結構CPS1及第一導電層110P,以將第一堆疊結構CPS1分離成多個第一堆疊線CPL1且將第一導電層110P分離成多個第一導電線110。 16B, the first mask pattern 410 can be used as an etching mask to sequentially and anisotropically etch the first stacked structure CPS1 and the first conductive layer 110P to separate the first stacked structure CPS1 into a plurality of first The lines CPL1 are stacked and the first conductive layer 110P is separated into a plurality of first conductive lines 110.

結果,多個第一導電線110及多個第一堆疊線CPL1可被形成為在第一方向上延伸。所述多個第一導電線110可在第二方向上彼此隔開,且所述多個第一堆疊線CPL1可在第二方向上彼此隔開。所述多個第一導電線110可形成第一導電線層110L。所述多個第一堆疊線CPL1可各自包含第一電極層線141-1L、第一選擇元件層線143-1L、第二電極層線145-1L、第三電極層線147-1L、第一可變電阻層線149-1L以及第四電極層線148-1L。 As a result, the plurality of first conductive lines 110 and the plurality of first stack lines CPL1 may be formed to extend in the first direction. The plurality of first conductive lines 110 may be spaced apart from each other in the second direction, and the plurality of first stack lines CPL1 may be spaced apart from each other in the second direction. The plurality of first conductive lines 110 may form a first conductive line layer 110L. The plurality of first stack lines CPL1 may each include a first electrode layer line 141-1L, a first selection element layer line 143-1L, a second electrode layer line 145-1L, a third electrode layer line 147-1L, and a A variable resistance layer line 149-1L and a fourth electrode layer line 148-1L.

再者,可藉由非等向性蝕刻製程在所述多個導電線110之間及在所述多個第一堆疊線CPL1之間形成多個第一間隙GX1。所述多個第一間隙GX1可在第一方向上延伸且可在第二方向上彼此隔開。基板101的頂部表面的一部分可由所述多個第一間隙GX1曝露。 Furthermore, a plurality of first gaps GX1 may be formed between the plurality of conductive lines 110 and between the plurality of first stacked lines CPL1 by an anisotropic etching process. The plurality of first gaps GX1 may extend in the first direction and may be spaced apart from each other in the second direction. A part of the top surface of the substrate 101 may be exposed by the plurality of first gaps GX1.

參看圖16C,可移除遮罩圖案410以暴露第四電極層線148-1L的頂部表面,且接著可形成第一絕緣層162-1以填充所述多個第一間隙GX1。 16C, the mask pattern 410 may be removed to expose the top surface of the fourth electrode layer line 148-1L, and then a first insulating layer 162-1 may be formed to fill the plurality of first gaps GX1.

在一些實施例中,第一絕緣層162-1的形成可包含在基板101上形成絕緣材料以填充所述多個第一間隙GX1以及平坦化絕緣材料的上部部分,直至暴露所述多個第一堆疊線CPL1的頂部表面為止。第一絕緣層162-1可包含(例如)氧化矽層、氮化矽層及/或氮氧化矽層。第一絕緣層162-1可由一種類型的絕緣層或多個絕緣層製成,但並不限於此情形。 In some embodiments, the formation of the first insulating layer 162-1 may include forming an insulating material on the substrate 101 to fill the plurality of first gaps GX1 and planarizing the upper portion of the insulating material until the plurality of first gaps GX1 are exposed. One stack line up to the top surface of CPL1. The first insulating layer 162-1 may include, for example, a silicon oxide layer, a silicon nitride layer, and/or a silicon oxynitride layer. The first insulating layer 162-1 may be made of one type of insulating layer or multiple insulating layers, but is not limited to this case.

參看圖16D,第二導電層120P可形成於第四電極層線148-1L的經暴露的頂部表面及第一絕緣層162-1的經暴露的頂部表面上。 Referring to FIG. 16D, the second conductive layer 120P may be formed on the exposed top surface of the fourth electrode layer line 148-1L and the exposed top surface of the first insulating layer 162-1.

第二堆疊結構CPS2可形成於第二導電層120P上。第二堆疊結構CPS2可包含依序地形成於第二導電層120P上的初步第五電極層141-2P、初步第二選擇元件層143-2P、初步第六電極層145-2P、初步第七電極層147-2P、初步第二可變電阻層149-2P以及初步第八電極層148-2P。 The second stack structure CPS2 may be formed on the second conductive layer 120P. The second stack structure CPS2 may include a preliminary fifth electrode layer 141-2P, a preliminary second selection element layer 143-2P, a preliminary sixth electrode layer 145-2P, and a preliminary seventh electrode layer 141-2P sequentially formed on the second conductive layer 120P. The electrode layer 147-2P, the preliminary second variable resistance layer 149-2P, and the preliminary eighth electrode layer 148-2P.

第二導電層120P、初步第五電極層141-2P、初步第二選擇元件層143-2P、初步第六電極層145-2P、初步第七電極層147- 2P、初步第二可變電阻層149-2P及初步第八電極層148-2P可由與如參考圖2及圖3所描述的第二導電線120、第五電極層141-2、第二選擇元件層143-2、第六電極層145-2、第七電極層147-2、第二可變電阻層149-2及第八電極層148-2的材料相同的材料形成。 The second conductive layer 120P, the preliminary fifth electrode layer 141-2P, the preliminary second selection element layer 143-2P, the preliminary sixth electrode layer 145-2P, and the preliminary seventh electrode layer 147- 2P, the preliminary second variable resistance layer 149-2P and the preliminary eighth electrode layer 148-2P can be combined with the second conductive line 120, the fifth electrode layer 141-2, and the second selection as described with reference to FIGS. 2 and 3 The element layer 143-2, the sixth electrode layer 145-2, the seventh electrode layer 147-2, the second variable resistance layer 149-2, and the eighth electrode layer 148-2 are formed of the same material.

遮罩圖案420可形成於初步第八電極層148-2P上。遮罩圖案420可包含在第二方向上延伸且在第一方向上彼此隔開的多個線圖案。 The mask pattern 420 may be formed on the preliminary eighth electrode layer 148-2P. The mask pattern 420 may include a plurality of line patterns extending in the second direction and spaced apart from each other in the first direction.

參看圖16E,可使用第二遮罩圖案420作為蝕刻遮罩圖案來依序非等向性地蝕刻第二堆疊結構CPS2、第二導電層120P及所述多個第一堆疊線CPL1,以將第二堆疊結構CPS2分離成多個第二堆疊線CPL2,將第二導電層120P分離成多個第二導電線120,且將所述多個第一堆疊線CPL1分離成多個第一堆疊圖案CPP1。 16E, the second mask pattern 420 may be used as an etching mask pattern to sequentially and anisotropically etch the second stacked structure CPS2, the second conductive layer 120P, and the plurality of first stacked lines CPL1, The second stack structure CPS2 is separated into a plurality of second stack lines CPL2, the second conductive layer 120P is separated into a plurality of second conductive lines 120, and the plurality of first stack lines CPL1 are separated into a plurality of first stack patterns CPP1.

結果,所述多個第二堆疊線CPL2可在第二方向上延伸且可在第一方向上彼此隔開,且所述多個第二導電線120可在第二方向上延伸且可在第一方向上彼此隔開。再者,所述多個第一堆疊圖案CPP1可在第一方向及第二方向上彼此隔開。所述多個第二導電線120可形成第二導電線層120L。所述多個第二堆疊線CPL2可各自包含第五電極層線141-2L、第二選擇元件層線143-2L、第六電極層線145-2L、第七電極層線147-2L、第二可變電阻層線149-2L以及第八電極層線148-2L。所述多個第一堆疊圖案CPP1可包含第一電極層141-1、第一選擇元件層143-1、第二電極層145-1、第三電極層147-1、第一可變電阻層149-1以及第四電極層148-1。 As a result, the plurality of second stack lines CPL2 may extend in the second direction and may be spaced apart from each other in the first direction, and the plurality of second conductive lines 120 may extend in the second direction and may be spaced from each other in the second direction. Spaced from each other in one direction. Furthermore, the plurality of first stack patterns CPP1 may be spaced apart from each other in the first direction and the second direction. The plurality of second conductive lines 120 may form a second conductive line layer 120L. The plurality of second stack lines CPL2 may each include a fifth electrode layer line 141-2L, a second selection element layer line 143-2L, a sixth electrode layer line 145-2L, a seventh electrode layer line 147-2L, and a Two variable resistance layer lines 149-2L and an eighth electrode layer line 148-2L. The plurality of first stack patterns CPP1 may include a first electrode layer 141-1, a first selection element layer 143-1, a second electrode layer 145-1, a third electrode layer 147-1, and a first variable resistance layer 149-1 and the fourth electrode layer 148-1.

再者,可藉由非等向性蝕刻製程在所述多個第二堆疊線CPL2之間、在所述多個第二線120之間及在所述多個第一堆疊圖案CPP1之間形成多個第二間隙GY1。所述多個第二間隙GY1可在第二方向上延伸且可在第一方向上彼此隔開。 Furthermore, an anisotropic etching process may be used to form between the plurality of second stack lines CPL2, between the plurality of second lines 120, and between the plurality of first stack patterns CPP1 Multiple second gaps GY1. The plurality of second gaps GY1 may extend in the second direction and may be spaced apart from each other in the first direction.

在一些實施例中,可執行非等向性蝕刻製程,直至暴露所述多個第一導電線110的頂部表面為止。儘管未繪示,但可藉由非等向性蝕刻製程在所述多個第一導電線110的上部部分中形成具有某一深度的凹槽。 In some embodiments, an anisotropic etching process may be performed until the top surfaces of the plurality of first conductive lines 110 are exposed. Although not shown, a groove with a certain depth can be formed in the upper portion of the plurality of first conductive lines 110 by an anisotropic etching process.

在一些實施例中,可執行非等向性蝕刻製程,直至暴露第一電極層線141-1L的頂部表面為止,且接著可在某一蝕刻條件下執行蝕刻製程,在此蝕刻條件下,第一電極層線141-1L相對於所述多個第一導電線110具有蝕刻選擇性(etching selectivity)以移除由所述多個第二間隙GY1暴露的第一電極層線141-1L中的每一者的一部分,以暴露所述多個第一導電線110的頂部表面。 In some embodiments, the anisotropic etching process may be performed until the top surface of the first electrode layer line 141-1L is exposed, and then the etching process may be performed under a certain etching condition. Under this etching condition, the first An electrode layer line 141-1L has etching selectivity with respect to the plurality of first conductive lines 110 to remove the first electrode layer line 141-1L exposed by the plurality of second gaps GY1 A part of each to expose the top surface of the plurality of first conductive lines 110.

參看圖16F,可移除第二遮罩圖案420以暴露所述多個第二堆疊線CPL2的頂部表面。可形成第三絕緣層163以填充所述多個第二間隙GY1。 Referring to FIG. 16F, the second mask pattern 420 may be removed to expose the top surface of the plurality of second stack lines CPL2. The third insulating layer 163 may be formed to fill the plurality of second gaps GY1.

在一些實施例中,第三絕緣層163的形成可包含在所述多個第一導電線110上、在所述多個第一堆疊圖案CPP1的側壁上及在所述多個第二堆疊線CPL2的側壁上形成絕緣材料以填充所述多個第二間隙GY1以及平坦化絕緣材料的上部部分,直至暴露所述多個第二堆疊線CPL2的頂部表面為止。 In some embodiments, the formation of the third insulating layer 163 may include on the plurality of first conductive lines 110, on the sidewalls of the plurality of first stack patterns CPP1, and on the plurality of second stack lines An insulating material is formed on the sidewall of the CPL2 to fill the plurality of second gaps GY1 and planarize the upper portion of the insulating material until the top surface of the plurality of second stack lines CPL2 is exposed.

參看圖16G,第三導電層130P可形成於所述多個第二堆疊線CPL2及第三絕緣層163上。 Referring to FIG. 16G, the third conductive layer 130P may be formed on the plurality of second stacked lines CPL2 and the third insulating layer 163.

第三遮罩圖案430可形成於第三導電層130P上。第三遮罩圖案430可包含在第一方向上延伸且在第二方向上彼此隔開的多個線圖案。 The third mask pattern 430 may be formed on the third conductive layer 130P. The third mask pattern 430 may include a plurality of line patterns extending in the first direction and spaced apart from each other in the second direction.

參看圖16H,可使用第三遮罩圖案430作為蝕刻遮罩來依序非等向性地蝕刻第三導電層130P及所述多個第二堆疊線CPL2,以將第三導電層130P分離成多個第三導電線130且將所述多個第二堆疊線CPL2分離成多個第二堆疊圖案CPP2。 16H, the third mask pattern 430 can be used as an etching mask to sequentially and anisotropically etch the third conductive layer 130P and the plurality of second stacked lines CPL2 to separate the third conductive layer 130P into The plurality of third conductive lines 130 separate the plurality of second stack lines CPL2 into a plurality of second stack patterns CPP2.

結果,所述多個第三導電線130可在第一方向上延伸且可在第二方向上彼此隔開,所述多個第二堆疊圖案CPP2可在第一方向及第二方向上彼此隔開。所述多個第三導電線130可形成第三導電線層130L。所述多個第二堆疊圖案CPP2可包含第五電極層141-2、第二選擇元件層143-2、第六電極層145-2、第七電極層147-2、第二可變電阻層149-2以及第八電極層148-2。 As a result, the plurality of third conductive lines 130 may extend in the first direction and may be spaced apart from each other in the second direction, and the plurality of second stack patterns CPP2 may be spaced apart from each other in the first direction and the second direction. open. The plurality of third conductive lines 130 may form a third conductive line layer 130L. The plurality of second stack patterns CPP2 may include a fifth electrode layer 141-2, a second selection element layer 143-2, a sixth electrode layer 145-2, a seventh electrode layer 147-2, and a second variable resistance layer 149-2 and the eighth electrode layer 148-2.

再者,可藉由非等向性蝕刻製程在所述多個第三導電線130之間及在所述多個第二堆疊圖案CPP2之間形成多個第三間隙GX2。所述多個第三間隙GX2可在第一方向上延伸且可在第二方向上彼此隔開。 Furthermore, a plurality of third gaps GX2 may be formed between the plurality of third conductive lines 130 and between the plurality of second stack patterns CPP2 by an anisotropic etching process. The plurality of third gaps GX2 may extend in the first direction and may be spaced apart from each other in the second direction.

在一些實施例中,可執行非等向性蝕刻製程,直至暴露所述多個第二導電線120的頂部表面為止。儘管未繪示,但可藉由非等向性蝕刻製程在所述多個第二導電線120的上部部分中形成具有某一深度的凹槽。 In some embodiments, an anisotropic etching process may be performed until the top surfaces of the second conductive lines 120 are exposed. Although not shown, a groove with a certain depth can be formed in the upper portion of the plurality of second conductive lines 120 by an anisotropic etching process.

在一些實施例中,可執行非等向性蝕刻製程,直至暴露第五電極層線141-2L的頂部表面為止,且接著可在某一蝕刻條件下執行蝕刻製程,在此蝕刻條件下,第五電極層線141-2L相對於所 述多個第二導電線120具有蝕刻選擇性以移除由所述多個第三間隙GX2暴露的第五電極層線141-2L中的每一者的一部分,以暴露多個第二導電線120的頂部表面。 In some embodiments, the anisotropic etching process may be performed until the top surface of the fifth electrode layer line 141-2L is exposed, and then the etching process may be performed under a certain etching condition. Under this etching condition, the first The five-electrode layer line 141-2L is relative to the The plurality of second conductive lines 120 have etching selectivity to remove a part of each of the fifth electrode layer lines 141-2L exposed by the plurality of third gaps GX2 to expose the plurality of second conductive lines Top surface of 120.

參看圖16I,可移除第三遮罩圖案430以暴露所述多個第二堆疊圖案CPP2的頂部表面。可形成第二絕緣層162-2以填充所述多個第三間隙GX2。 Referring to FIG. 16I, the third mask pattern 430 may be removed to expose the top surface of the plurality of second stack patterns CPP2. The second insulating layer 162-2 may be formed to fill the plurality of third gaps GX2.

在一些實施例中,第二絕緣層162-2的形成可包含在所述多個第三導電線130上及在所述多個第二堆疊圖案CPP2的側壁上形成絕緣材料以填充所述多個第三間隙GX2以及平坦化絕緣材料的上部部分,以暴露所述多個第三導電線130的頂部表面。 In some embodiments, the formation of the second insulating layer 162-2 may include forming an insulating material on the plurality of third conductive lines 130 and on the sidewalls of the plurality of second stack patterns CPP2 to fill the plurality of A third gap GX2 and an upper portion of the insulating material are planarized to expose the top surface of the plurality of third conductive lines 130.

結果,可藉由執行上文所描述的製程來實現記憶體裝置100。 As a result, the memory device 100 can be realized by executing the process described above.

所述多個第一堆疊圖案CPP1可為多個第一記憶體單元140-1,且所述多個第二堆疊圖案CPP2可為多個第二記憶體單元140-2。此外,所述多個第一記憶體單元140-1可形成第一記憶體單元層MCL1,且所述多個第二記憶體單元140-2可形成第二記憶體單元層MCL2。 The plurality of first stack patterns CPP1 may be a plurality of first memory cells 140-1, and the plurality of second stack patterns CPP2 may be a plurality of second memory cells 140-2. In addition, the plurality of first memory cells 140-1 may form a first memory cell layer MCL1, and the plurality of second memory cells 140-2 may form a second memory cell layer MCL2.

根據製造記憶體裝置100的方法,可依序地執行使用在第一方向上延伸的第一遮罩圖案410的第一圖案化製程(patterning process)、使用在第二方向上延伸的第二遮罩圖案420的第二圖案化製程以及使用在第一方向上延伸的第三遮罩圖案430的第三圖案化製程。結果,可形成在第一方向上延伸的所述多個第一導電線110、在第二方向上延伸的所述多個第二導電線120、在第一方向上延伸的所述多個第三導電線130、在所述多個第一導 電線110與所述多個第二導電線120的各別相交點處的所述多個第一記憶體單元140-1以及在所述多個第二導電線120與所述多個第三導電線130的各別相交點處的所述多個第二記憶體單元140-2。 According to the method of manufacturing the memory device 100, the first patterning process (patterning process) using the first mask pattern 410 extending in the first direction, and the second patterning process using the second mask extending in the second direction can be performed sequentially. The second patterning process of the mask pattern 420 and the third patterning process of using the third mask pattern 430 extending in the first direction. As a result, the plurality of first conductive wires 110 extending in the first direction, the plurality of second conductive wires 120 extending in the second direction, and the plurality of second conductive wires extending in the first direction can be formed. Three conductive wires 130, in the plurality of first conductive wires The plurality of first memory cells 140-1 at the respective intersection points of the electric wire 110 and the plurality of second conductive lines 120 and the plurality of second conductive lines 120 and the plurality of third conductive lines 120 The plurality of second memory cells 140-2 at the respective intersection points of the line 130.

因此,因為僅使用三個圖案化製程來形成所述多個第一記憶體單元140-1及所述多個第二記憶體單元140-2,所以可防止第一可變電阻層149-1及第二可變電阻層149-2及/或第一選擇元件層143-1及第二選擇元件層143-2在圖案化製程期間歸因於暴露於蝕刻氛圍的降低品質或損壞。此外,可減少記憶體裝置100的製造成本。 Therefore, because only three patterning processes are used to form the plurality of first memory cells 140-1 and the plurality of second memory cells 140-2, the first variable resistance layer 149-1 can be prevented And the second variable resistance layer 149-2 and/or the first selection element layer 143-1 and the second selection element layer 143-2 are attributable to the degradation or damage due to exposure to the etching atmosphere during the patterning process. In addition, the manufacturing cost of the memory device 100 can be reduced.

圖17為說明根據某些實施例的記憶體裝置的方塊圖。 Figure 17 is a block diagram illustrating a memory device according to certain embodiments.

參看圖17,記憶體裝置800可包含記憶體單元陣列810、解碼器820、讀取/寫入電路830、輸入/輸出緩衝器840以及控制器850。記憶體單元陣列810可包含參考圖1至圖15所描述的記憶體裝置100、100A、100B、100C、100D、100E、100F、100G及200中的至少一者。 Referring to FIG. 17, the memory device 800 may include a memory cell array 810, a decoder 820, a read/write circuit 830, an input/output buffer 840, and a controller 850. The memory cell array 810 may include at least one of the memory devices 100, 100A, 100B, 100C, 100D, 100E, 100F, 100G, and 200 described with reference to FIGS. 1-15.

記憶體單元陣列810中的多個記憶體單元可經由多個字元線WL而連接至解碼器820,且可經由多個位元線BL而連接至讀取/寫入電路830。解碼器820可自記憶體裝置800的外部接收位址ADD,且可藉由回應於控制信號CTRL而操作的控制器850的控制來解碼列位址及行位址以在記憶體單元陣列810中存取。 A plurality of memory cells in the memory cell array 810 can be connected to the decoder 820 via a plurality of word lines WL, and can be connected to the read/write circuit 830 via a plurality of bit lines BL. The decoder 820 can receive the address ADD from the outside of the memory device 800, and can decode the column address and the row address under the control of the controller 850 which operates in response to the control signal CTRL to be in the memory cell array 810 access.

讀取/寫入電路830可自輸入/輸出緩衝器840及多個資料線DL接收資料,且可藉由控制器850的控制而將經接收的資料寫入於記憶體單元陣列810的選定記憶體單元中。讀取/寫入電路 830可藉由控制器850的控制而自記憶體單元陣列810的選定記憶體單元讀取資料,且可將經讀取的資料傳送至輸入/輸出緩衝器840。 The read/write circuit 830 can receive data from the input/output buffer 840 and multiple data lines DL, and can write the received data into the selected memory of the memory cell array 810 under the control of the controller 850 In the body unit. Read/write circuit 830 can read data from the selected memory cell of the memory cell array 810 under the control of the controller 850, and can send the read data to the input/output buffer 840.

圖18為說明根據某些實施例的電子系統的方塊圖。 Figure 18 is a block diagram illustrating an electronic system according to some embodiments.

參看圖18,電子系統1100可包含記憶體系統(memory system)1110、處理器(processor)1120、隨機存取記憶體(random access memory;RAM)1130、輸入/輸出(input/output;I/O)單元1140、電力供應單元(power supply unit)1150。記憶體系統1110可包含記憶體裝置1112以及記憶體控制器1114。儘管未圖示,但電子系統1100可更包含與視訊卡、音效卡、記憶體卡、USB裝置或其他電子裝置通信的埠。電子系統1100可為個人電腦或行動電子裝置,諸如筆記型電腦、行動電話、個人數位助理(personal digital assistant;PDA)或攝影機。 18, the electronic system 1100 may include a memory system (memory system) 1110, a processor (processor) 1120, a random access memory (random access memory; RAM) 1130, input/output (input/output; I/O ) Unit 1140, power supply unit 1150. The memory system 1110 may include a memory device 1112 and a memory controller 1114. Although not shown, the electronic system 1100 may further include a port for communicating with a video card, a sound card, a memory card, a USB device, or other electronic devices. The electronic system 1100 can be a personal computer or a mobile electronic device, such as a notebook computer, a mobile phone, a personal digital assistant (PDA) or a camera.

處理器1120可執行特定計算或任務。處理器1120可為微處理器(microprocessor)或中央處理單元(central processing unit;CPU)。處理器1120可經由匯流排1160(諸如位址匯流排、控制匯流排或資料匯流排)而與隨機存取記憶體1130、輸入/輸出單元1140及記憶體系統1110通信。此處,記憶體系統1110或隨機存取記憶體1130可包含參考圖1至圖15所描述的記憶體裝置100、100A、100B、100C、100D、100E、100F、100G及200中的至少一者。 The processor 1120 may perform specific calculations or tasks. The processor 1120 may be a microprocessor or a central processing unit (CPU). The processor 1120 can communicate with the random access memory 1130, the input/output unit 1140, and the memory system 1110 via a bus 1160 (such as an address bus, a control bus, or a data bus). Here, the memory system 1110 or the random access memory 1130 may include at least one of the memory devices 100, 100A, 100B, 100C, 100D, 100E, 100F, 100G, and 200 described with reference to FIGS. 1 to 15 .

在一些實施例中,處理器1120可連接至擴充匯流排(expansion bus),諸如周邊組件互連(peripheral component interconnection;PCI)匯流排。 In some embodiments, the processor 1120 may be connected to an expansion bus, such as a peripheral component interconnection (PCI) bus.

隨機存取記憶體1130可儲存對於操作電子系統1100所必要的資料。隨機存取記憶體1130可包含DRAM、行動DRAM、SRAM、ReRAM、FRAM、MRAM或PRAM。 The random access memory 1130 can store data necessary for operating the electronic system 1100. The random access memory 1130 may include DRAM, mobile DRAM, SRAM, ReRAM, FRAM, MRAM, or PRAM.

輸入/輸出單元1140可包含諸如小鍵盤(keypad)、鍵盤(keyboard)或滑鼠的輸入單元以及諸如顯示器或印表機的輸出單元。電力供應單元1150可供應對於操作電子系統1100所必要的工作電壓。 The input/output unit 1140 may include an input unit such as a keypad, keyboard, or mouse, and an output unit such as a display or a printer. The power supply unit 1150 can supply the operating voltage necessary for operating the electronic system 1100.

上文所揭露的主題應被視為說明性的而非限定性的,且所附申請專利範圍意欲涵蓋屬於本發明概念的真實精神及範疇內的所有此類修改、增強及其他實施例。因此,在法律所允許的最大程度上,範疇應是藉由以下申請專利範圍及其等效者的最廣泛的准許解釋予以判定,且不應受到前述詳細描述限定或限制。 The subject matter disclosed above should be regarded as illustrative rather than restrictive, and the appended patent scope is intended to cover all such modifications, enhancements and other embodiments within the true spirit and scope of the concept of the present invention. Therefore, to the greatest extent permitted by law, the scope should be determined by the broadest permitted interpretation of the scope of the following patents and their equivalents, and should not be limited or restricted by the foregoing detailed description.

100‧‧‧記憶體裝置 100‧‧‧Memory device

BL1、BL2、BL3、BL4‧‧‧共同位元線 BL1, BL2, BL3, BL4‧‧‧Common bit lines

MC1‧‧‧第一記憶體單元 MC1‧‧‧First memory unit

MC2‧‧‧第二記憶體單元 MC2‧‧‧Second memory unit

ME‧‧‧可變電阻層 ME‧‧‧Variable resistance layer

SW‧‧‧選擇元件 SW‧‧‧Select component

WL11、WL12‧‧‧下部字元線 WL11, WL12‧‧‧Lower character line

WL21、WL22‧‧‧上部字元線 WL21, WL22‧‧‧Upper character line

X、Y、Z‧‧‧方向 X, Y, Z‧‧‧direction

Claims (20)

一種記憶體裝置,包括:基板;多個第一導電線,在所述基板上,所述多個第一導電線在平行於所述基板的頂部表面的第一方向上延伸且在與所述第一方向交叉的第二方向上彼此隔開;多個第二導電線,在所述多個第一導電線上方,所述多個第二導電線在所述第二方向上延伸且在所述第一方向上彼此隔開;多個第三導電線,在所述多個第二導電線上方,所述多個第三導電線在所述第一方向上延伸且在所述第二方向上彼此隔開;多個第一記憶體單元,在所述多個第一導電線與所述多個第二導電線的各別相交點處,所述多個第一記憶體單元中的每一者包含第一選擇元件層及第一可變電阻層;以及多個第二記憶體單元,在所述多個第二導電線與所述多個第三導電線的各別相交點處,所述多個第二記憶體單元中的每一者包含第二選擇元件層及第二可變電阻層,其中所述第一選擇元件層在垂直於所述第一方向及所述第二方向的第三方向上的第一高度不同於所述第二選擇元件層在所述第三方向上的第二高度,且其中所述第一可變電阻層與所述第二可變電阻層是由相同材料製成,且所述第一選擇元件層與所述第二選擇元件層是由相同材料製成。 A memory device includes: a substrate; a plurality of first conductive lines, on the substrate, the plurality of first conductive lines extend in a first direction parallel to the top surface of the substrate and are in contact with the The first direction is spaced apart from each other in a second direction crossing; a plurality of second conductive lines above the plurality of first conductive lines, the plurality of second conductive lines extending in the second direction and in the Spaced apart from each other in the first direction; a plurality of third conductive lines above the plurality of second conductive lines, the plurality of third conductive lines extending in the first direction and in the second direction Are spaced apart from each other; a plurality of first memory cells, at respective intersections of the plurality of first conductive lines and the plurality of second conductive lines, each of the plurality of first memory cells One includes a first selection element layer and a first variable resistance layer; and a plurality of second memory cells, at respective intersections of the plurality of second conductive lines and the plurality of third conductive lines, Each of the plurality of second memory cells includes a second selection element layer and a second variable resistance layer, wherein the first selection element layer is perpendicular to the first direction and the second direction The first height in the third direction is different from the second height of the second selection element layer in the third direction, and wherein the first variable resistance layer and the second variable resistance layer are made of the same And the first selection element layer and the second selection element layer are made of the same material. 如申請專利範圍第1項所述的記憶體裝置,其中所述第 一選擇元件層的臨界電壓與所述第二選擇元件層的臨界電壓之間的量值差小於所述第一選擇元件層的臨界電壓的10%。 The memory device described in item 1 of the scope of patent application, wherein the first The magnitude difference between the threshold voltage of a selection element layer and the threshold voltage of the second selection element layer is less than 10% of the threshold voltage of the first selection element layer. 如申請專利範圍第1項所述的記憶體裝置,其中所述第一選擇元件層的臨界電壓的量值的範圍為所述第二選擇元件層的臨界電壓的量值的90%至110%。 The memory device according to claim 1, wherein the magnitude of the threshold voltage of the first selection element layer ranges from 90% to 110% of the magnitude of the threshold voltage of the second selection element layer . 如申請專利範圍第1項所述的記憶體裝置,其中所述第一選擇元件層的所述第一高度大於所述第二選擇元件層的所述第二高度。 The memory device according to claim 1, wherein the first height of the first selection element layer is greater than the second height of the second selection element layer. 如申請專利範圍第4項所述的記憶體裝置,其中所述記憶體裝置經設置以將字元線選擇電壓施加至所述多個第一導電線中的一者或施加至所述多個第三導電線中的一者,且將小於所述字元線選擇電壓的位元線選擇電壓施加至所述多個第二導電線中的一者。 The memory device according to claim 4, wherein the memory device is configured to apply a word line selection voltage to one of the plurality of first conductive lines or to the plurality of One of the third conductive lines, and a bit line selection voltage smaller than the word line selection voltage is applied to one of the plurality of second conductive lines. 如申請專利範圍第4項所述的記憶體裝置,其中所述第二選擇元件層的所述第二高度的範圍為所述第一選擇元件層的所述第一高度的50%至90%。 The memory device according to claim 4, wherein the range of the second height of the second selection element layer is 50% to 90% of the first height of the first selection element layer . 如申請專利範圍第1項所述的記憶體裝置,其中所述第一選擇元件層的所述第一高度小於所述第二選擇元件層的所述第二高度。 The memory device according to claim 1, wherein the first height of the first selection element layer is smaller than the second height of the second selection element layer. 如申請專利範圍第7項所述的記憶體裝置,其中所述第一選擇元件層的所述第一高度的範圍為所述第二選擇元件層的所述第二高度的50%至90%。 The memory device according to claim 7, wherein the range of the first height of the first selection element layer is 50% to 90% of the second height of the second selection element layer . 如申請專利範圍第7項所述的記憶體裝置,其中所述記憶體裝置經設置以將字元線選擇電壓施加至所述多個第一導電線 中的一者或施加至所述多個第三導電線中的一者,且將大於所述字元線選擇電壓的位元線選擇電壓施加至所述多個第二導電線中的一者。 The memory device according to claim 7, wherein the memory device is configured to apply a character line selection voltage to the plurality of first conductive lines One of or applied to one of the plurality of third conductive lines, and a bit line selection voltage greater than the word line selection voltage is applied to one of the plurality of second conductive lines . 如申請專利範圍第1項所述的記憶體裝置,其中所述第一選擇元件層及所述第二選擇元件層中的每一者具有雙向臨界切換屬性。 The memory device according to claim 1, wherein each of the first selection element layer and the second selection element layer has a bidirectional critical switching property. 如申請專利範圍第1項所述的記憶體裝置,其中所述多個第一記憶體單元中的每一者更包含在所述第一可變電阻層與所述多個第一導電線中的對應者之間的第一加熱電極層,且所述多個第二記憶體單元中的每一者更包含在所述第二可變電阻層與所述多個第三導電線中的對應者之間的第二加熱電極層。 The memory device according to claim 1, wherein each of the plurality of first memory cells is further included in the first variable resistance layer and the plurality of first conductive lines The first heating electrode layer between the corresponding ones, and each of the plurality of second memory cells is further included in the corresponding second variable resistance layer and the plurality of third conductive lines Between the second heating electrode layer. 如申請專利範圍第1項所述的記憶體裝置,其中所述多個第一記憶體單元中的每一者更包含在所述第一可變電阻層與所述多個第二導電線中的對應者之間的第一加熱電極層,且所述多個第二記憶體單元中的每一者更包含在所述第二可變電阻層與所述多個第二導電線中的對應者之間的第二加熱電極層。 The memory device according to claim 1, wherein each of the plurality of first memory cells is further included in the first variable resistance layer and the plurality of second conductive lines The first heating electrode layer between the corresponding ones, and each of the plurality of second memory cells is further included in the corresponding second variable resistance layer and the plurality of second conductive lines Between the second heating electrode layer. 一種記憶體裝置,包括:基板;多個第一導電線,在所述基板上,所述多個第一導電線在平行於所述基板的頂部表面的第一方向上延伸且在與所述第一方向交叉的第二方向上彼此隔開;多個第二導電線,在所述多個第一導電線上方,所述多個第二導電線在所述第二方向上延伸且在所述第一方向上彼此隔開;多個第三導電線,在所述多個第二導電線上方,所述多個第 三導電線在所述第一方向上延伸且在所述第二方向上彼此隔開;多個第一記憶體單元,在所述多個第一導電線與所述多個第二導電線的各別相交點處,所述多個第一記憶體單元中的每一者包含在垂直於所述第一方向及所述第二方向的第三方向上依序地堆疊的第一選擇元件層及第一可變電阻層;以及多個第二記憶體單元,在所述多個第二導電線與所述多個第三導電線的各別相交點處,所述多個第二記憶體單元中的每一者包含在所述第三方向上依序地堆疊的第二選擇元件層及第二可變電阻層,其中所述第一選擇元件層在所述第三方向上的厚度大於所述第二選擇元件層在所述第三方向上的厚度,且其中所述第一可變電阻層與所述第二可變電阻層是由相同材料製成,且所述第一選擇元件層與所述第二選擇元件層是由相同材料製成。 A memory device includes: a substrate; a plurality of first conductive lines, on the substrate, the plurality of first conductive lines extend in a first direction parallel to the top surface of the substrate and are in contact with the The first direction is spaced apart from each other in a second direction crossing; a plurality of second conductive lines above the plurality of first conductive lines, the plurality of second conductive lines extending in the second direction and in the Spaced apart from each other in the first direction; a plurality of third conductive lines, above the plurality of second conductive lines, the plurality of first Three conductive wires extend in the first direction and are spaced apart from each other in the second direction; a plurality of first memory cells are located between the plurality of first conductive wires and the plurality of second conductive wires At respective intersections, each of the plurality of first memory cells includes first selection element layers sequentially stacked in a third direction perpendicular to the first direction and the second direction, and A first variable resistance layer; and a plurality of second memory cells, at respective intersections of the plurality of second conductive lines and the plurality of third conductive lines, the plurality of second memory cells Each of them includes a second selection element layer and a second variable resistance layer that are sequentially stacked in the third direction, wherein the thickness of the first selection element layer in the third direction is greater than that of the third direction. The thickness of the second selection element layer in the third direction, and wherein the first variable resistance layer and the second variable resistance layer are made of the same material, and the first selection element layer and the The second optional element layer is made of the same material. 如申請專利範圍第13項所述的記憶體裝置,其中所述第一選擇元件層及所述第二選擇元件層以及所述第一可變電阻層與所述第二可變電阻層中的每一者具有硫族元素中的至少一者。 The memory device according to claim 13, wherein the first selection element layer and the second selection element layer, and the first variable resistance layer and the second variable resistance layer Each has at least one of the chalcogen elements. 如申請專利範圍第13項所述的記憶體裝置,其中所述第二選擇元件層在所述第三方向上的厚度的範圍為所述第一選擇元件層在所述第三方向上的厚度的50%至90%。 The memory device according to claim 13, wherein the thickness of the second selection element layer in the third direction ranges from 50% of the thickness of the first selection element layer in the third direction. % To 90%. 一種記憶體裝置,包括:基板;第一字元線層,安置於所述基板上;共同位元線層,安置於所述第一字元線層上; 第二字元線層,安置於所述共同位元線上,使得所述共同位元線層垂直地位於所述第一字元線層與所述第二字元線層之間;第一記憶體單元層,包含垂直地堆疊的第一可變電阻層及第一雙向臨界切換層,所述第一記憶體單元層在垂直方向上安置於所述第一字元線層與所述共同位元線層之間;以及第二記憶體單元層,包含垂直地堆疊的第二可變電阻層及第二雙向臨界切換層,所述第二記憶體單元層在垂直方向上安置於所述第二字元線層與所述共同位元線層之間,其中所述第一可變電阻層與所述第二可變電阻層是由相同材料製成,且所述第一雙向臨界切換層與所述第二雙向臨界切換層是由相同材料製成,且其中所述第一雙向臨界切換層在垂直方向上的第一厚度不同於所述第二雙向臨界切換層在垂直方向上的第二厚度。 A memory device comprising: a substrate; a first character line layer arranged on the substrate; a common bit line layer arranged on the first character line layer; The second word line layer is arranged on the common bit line such that the common bit line layer is vertically located between the first word line layer and the second word line layer; first memory The bulk cell layer includes a vertically stacked first variable resistance layer and a first bidirectional critical switching layer. The first memory cell layer is vertically arranged on the first word line layer and the common location Between the element line layers; and the second memory cell layer, including a second variable resistance layer and a second bidirectional critical switching layer stacked vertically, the second memory cell layer is arranged in the vertical direction on the first Between the two-character line layer and the common bit line layer, wherein the first variable resistance layer and the second variable resistance layer are made of the same material, and the first bidirectional critical switching layer It is made of the same material as the second bidirectional critical switching layer, and the first thickness of the first bidirectional critical switching layer in the vertical direction is different from the second bidirectional critical switching layer in the vertical direction. Two thickness. 如申請專利範圍第16項所述的記憶體裝置,其中所述第一雙向臨界切換層的所述第一厚度的範圍為所述第二雙向臨界切換層的所述第二厚度的50%至90%,或其中所述第二雙向臨界切換層的所述第二厚度的範圍為所述第一雙向臨界切換層的所述第一厚度的50%至90%。 The memory device according to claim 16, wherein the first thickness of the first bidirectional critical switching layer ranges from 50% to the second thickness of the second bidirectional critical switching layer 90%, or wherein the range of the second thickness of the second bidirectional critical switching layer is 50% to 90% of the first thickness of the first bidirectional critical switching layer. 如申請專利範圍第16項所述的記憶體裝置,其中所述第一可變電阻層及所述第二可變電阻層以及所述第一雙向臨界切換層與所述第二雙向臨界切換層中的每一者包含硫族元素中的至少一者。 The memory device according to claim 16, wherein the first variable resistance layer and the second variable resistance layer, the first bidirectional critical switching layer and the second bidirectional critical switching layer Each of them contains at least one of the chalcogen elements. 如申請專利範圍第16項所述的記憶體裝置,更包括覆蓋所述第一雙向臨界切換層及所述第二雙向臨界切換層的側壁及/ 或所述第一可變電阻層及所述第二可變電阻層的側壁的間隔件。 The memory device described in claim 16 further includes sidewalls covering the first bidirectional critical switching layer and the second bidirectional critical switching layer and/ Or spacers on the sidewalls of the first variable resistance layer and the second variable resistance layer. 如申請專利範圍第19項所述的記憶體裝置,其中所述第一可變電阻層及所述第二可變電阻層中的每一者具有L形狀或I形狀。 The memory device according to claim 19, wherein each of the first variable resistance layer and the second variable resistance layer has an L shape or an I shape.
TW105141660A 2016-02-22 2016-12-16 Memory device including ovonic threshold switch adjusing threshold voltage thereof TWI703578B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2016-0020680 2016-02-22
KR20160020680 2016-02-22
KR10-2016-0050113 2016-04-25
KR1020160050113A KR102507303B1 (en) 2016-02-22 2016-04-25 Memory device

Publications (2)

Publication Number Publication Date
TW201730880A TW201730880A (en) 2017-09-01
TWI703578B true TWI703578B (en) 2020-09-01

Family

ID=59760705

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105141660A TWI703578B (en) 2016-02-22 2016-12-16 Memory device including ovonic threshold switch adjusing threshold voltage thereof

Country Status (2)

Country Link
KR (1) KR102507303B1 (en)
TW (1) TWI703578B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101997987B1 (en) * 2017-11-07 2019-07-08 포항공과대학교 산학협력단 Capacitance based multi-level synapse device and fabrication method thereof
KR102471157B1 (en) * 2017-11-09 2022-11-25 삼성전자주식회사 Memory devices
CN113613861B (en) 2019-01-31 2024-06-14 日精Asb机械株式会社 Device and method for producing resin containers
KR20230159643A (en) 2019-01-31 2023-11-21 닛세이 에이. 에스. 비 기카이 가부시키가이샤 Resin container manufacturing apparatus, temperature adjusting device, resin container manufacturing method, and temperature adjusting method
JP6802948B1 (en) 2019-01-31 2020-12-23 日精エー・エス・ビー機械株式会社 Preform temperature control device and temperature control method, and resin molding container manufacturing device and manufacturing method
WO2020158917A1 (en) 2019-01-31 2020-08-06 日精エー・エス・ビー機械株式会社 Production device and production method for resin containers
KR20200134818A (en) * 2019-05-23 2020-12-02 에스케이하이닉스 주식회사 non-volatile memory device and method of fabricating the same
JP2023044267A (en) 2021-09-17 2023-03-30 キオクシア株式会社 memory system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7459716B2 (en) * 2007-06-11 2008-12-02 Kabushiki Kaisha Toshiba Resistance change memory device
US20130250650A1 (en) * 2012-03-23 2013-09-26 Takahiko Sasaki Semiconductor device and method for controlling the same
US8654560B2 (en) * 2009-10-28 2014-02-18 Intermolecular, Inc. Variable resistance memory with a select device
TW201442311A (en) * 2013-04-25 2014-11-01 Sk Hynix Inc 3D variable resistance memory device and method of manufacturing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6795338B2 (en) * 2002-12-13 2004-09-21 Intel Corporation Memory having access devices using phase change material such as chalcogenide
KR20100039193A (en) * 2008-10-06 2010-04-15 삼성전자주식회사 Cross point array memory device and manufacturing method for the same
KR20110035783A (en) * 2009-09-30 2011-04-06 주식회사 하이닉스반도체 Fabrication method of phase change random access memory device
KR20150041705A (en) * 2013-10-08 2015-04-17 삼성전자주식회사 Semiconductor device having selector and resistive change device and method of forming the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7459716B2 (en) * 2007-06-11 2008-12-02 Kabushiki Kaisha Toshiba Resistance change memory device
US8654560B2 (en) * 2009-10-28 2014-02-18 Intermolecular, Inc. Variable resistance memory with a select device
US20130250650A1 (en) * 2012-03-23 2013-09-26 Takahiko Sasaki Semiconductor device and method for controlling the same
TW201442311A (en) * 2013-04-25 2014-11-01 Sk Hynix Inc 3D variable resistance memory device and method of manufacturing the same

Also Published As

Publication number Publication date
KR20170098673A (en) 2017-08-30
KR102507303B1 (en) 2023-03-08
TW201730880A (en) 2017-09-01

Similar Documents

Publication Publication Date Title
CN107104123B (en) Memory device
US11183538B2 (en) Memory device and method of manufacturing the same
TWI703578B (en) Memory device including ovonic threshold switch adjusing threshold voltage thereof
US11183223B2 (en) Memory devices
KR102582666B1 (en) memory device and method of manufacturing the same
KR102465966B1 (en) Memory device and electronic apparatus comprising the same memory device
US10546894B2 (en) Memory device
US20170244026A1 (en) Variable resistance memory device and method of manufacturing the same
US11031435B2 (en) Memory device containing ovonic threshold switch material thermal isolation and method of making the same
KR102602498B1 (en) Memory cell device with thin-film transistor selector and methods for forming the same