TW201728233A - 經由雷射能量調變來穩定液滴電漿互動之系統及方法 - Google Patents

經由雷射能量調變來穩定液滴電漿互動之系統及方法 Download PDF

Info

Publication number
TW201728233A
TW201728233A TW105125027A TW105125027A TW201728233A TW 201728233 A TW201728233 A TW 201728233A TW 105125027 A TW105125027 A TW 105125027A TW 105125027 A TW105125027 A TW 105125027A TW 201728233 A TW201728233 A TW 201728233A
Authority
TW
Taiwan
Prior art keywords
euv
energy
laser pulse
plasma
laser
Prior art date
Application number
TW105125027A
Other languages
English (en)
Other versions
TWI702886B (zh
Inventor
丹尼爾 傑森 萊格斯
羅伯特 傑 拉法斯
Original Assignee
Asml荷蘭公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asml荷蘭公司 filed Critical Asml荷蘭公司
Publication of TW201728233A publication Critical patent/TW201728233A/zh
Application granted granted Critical
Publication of TWI702886B publication Critical patent/TWI702886B/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001X-ray radiation generated from plasma
    • H05G2/008X-ray radiation generated from plasma involving a beam of energy, e.g. laser or electron beam in the process of exciting the plasma
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/429Photometry, e.g. photographic exposure meter using electric radiation detectors applied to measurement of ultraviolet light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001X-ray radiation generated from plasma
    • H05G2/003X-ray radiation generated from plasma being produced from a liquid or gas
    • H05G2/005X-ray radiation generated from plasma being produced from a liquid or gas containing a metal as principal radiation generating component

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • X-Ray Techniques (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

在一雷射產生電漿(LPP)極紫外線(EUV)系統中,由一雷射脈衝輻照一液滴以在一腔室中產生一電漿。此產生力,該等力使該電漿去穩定且使後續液滴在其接近該電漿時使其行程軌跡及速度變更。可自所產生之EUV能量之量的振盪偵測到此去穩定。為了藉由使該電漿及該等液滴之行進穩定而縮減該等振盪,使用一比例積分(PI)控制器演算法以基於產生於該腔室中之該EUV能量而修改後續雷射脈衝之一能量。藉由修改後續雷射脈衝之該能量,該電漿穩定,此情形縮減對液滴行程之影響且使所產生之EUV能量之該量穩定,以允許該電漿腔室操作達更長時間間隔且降低由一雷射源維持之儲備功率之量。

Description

經由雷射能量調變來穩定液滴電漿互動之系統及方法 相關申請案之交叉參考
本申請案主張2015年8月12日申請且全文以引用方式併入本文中之美國申請案第14/824,280號之益處。
本非臨時美國專利申請案大體而言係關於雷射產生電漿(LPP)極紫外線(EUV)系統,且更具體而言係關於用於穩定此等LPP EUV系統之系統及方法。
半導體行業持續開發能夠印刷愈來愈小的積體電路尺寸之微影技術。極紫外線(「EUV」)光(有時亦被稱作軟x射線)通常被定義為具有介於10奈米(nm)與120奈米(nm)之間的波長之電磁輻射,其中較短波長被預期為在未來予以使用。EUV微影當前通常被視為包括處於在10奈米至14奈米之範圍內之波長的EUV光,且用以在諸如矽晶圓之基板中產生極小特徵,例如亞32奈米特徵。為了在商業上有用,需要此等系統高度可靠,且提供有成本效益的產出率且提供合理程序寬容度。
用以產生EUV光之方法包括(但未必限於):運用在EUV範圍內之一或多個發射譜線而將具有一或多個元素(例如氙、鋰、錫、銦、銻、碲、鋁等等)之材料轉換成電漿狀態。在一種此類方法(常常被稱 為雷射產生電漿「LPP」)中,可藉由在輻照位點處運用雷射光束來輻照燃料(諸如,具有所要譜線發射元素之材料液滴、串流或叢集)而產生所需電漿。譜線發射元素可呈純形式或合金形式,例如,在所要溫度下為液體、或可與諸如液體之另一材料混合或分散之合金。
在一些先前技術LPP系統中,由分離雷射脈衝輻照液滴串流中之液滴,以由每一液滴形成電漿。替代地,已揭示由多於一個光脈衝順序地照明每一液滴之一些先前技術系統。在一些狀況下,可將每一液滴曝光至所謂的「預脈衝」以加熱、膨脹、氣化、汽化、及/或離子化目標材料及/或產生弱電漿,接著曝光至所謂的「主脈衝」以產生強電漿,且將受預脈衝影響之材料中的大多數或全部轉換成電漿,且藉此產生EUV光發射。應瞭解,可使用多於一個預脈衝且可使用多於一個主脈衝,且可在一定程度上將預脈衝之功能與主脈衝之功能重疊。
因為LPP系統中之EUV輸出功率通常隨著輻照目標材料之驅動雷射功率按比例縮放,所以在一些狀況下,亦可認為需要使用包括相對低功率振盪器或「種子雷射」及用以自種子雷射放大雷射脈衝之一或多個放大器之配置。使用大放大器允許使用低功率、穩定種子雷射,同時仍提供用於LPP程序中之相對高功率脈衝。
當前已知且用於此項技術中之系統通常設定用於主脈衝之固定脈寬,該主脈衝被預期為在理想條件下產生最大量EUV能量。接著經由射頻(RF)產生器而調整應用於放大器之驅動RF泵浦功率,該RF產生器使用脈寬調變(PWM)以調整作用區間循環(使產生RF功率之操作時間之分數)以獲得最大或所要量的EUV能量。然而,此途徑相比於系統之操作相對慢。雷射功率自一脈衝至下一脈衝可僅少量地改變,且因此當作用區間循環改變時,系統通常採取數個脈衝以改變輸出。
根據各種實施例,一種方法包含:使用一極紫外線(EUV)能量偵測器來量測由衝擊一雷射產生電漿(LPP)EUV系統之一電漿腔室中之一第一液滴之一第一雷射脈衝產生的EUV能量之一量;使用一EUV控制器基於由衝擊該電漿腔室中之該第一液滴之該第一雷射脈衝產生的EUV能量之該經量測量而計算一第一經修改雷射脈衝能量;由該EUV控制器指示該雷射源遞送具有該所計算第一經修改能量的一第二雷射脈衝,藉此變更該電漿腔室中之一第二液滴之行程;使用該EUV能量偵測器來量測由衝擊該電漿腔室中之該第二液滴之該第二雷射脈衝產生的EUV能量之一量;使用該EUV控制器基於由衝擊該電漿腔室中之該第二液滴之該第二雷射脈衝產生的EUV能量之該經量測量而計算一第二經修改雷射脈衝能量;及,由該EUV控制器指示該雷射源遞送具有該所計算第二經修改能量的一第三雷射脈衝,藉此變更該電漿腔室中之一第三液滴之行程。
根據各種實施例,一種系統包含:一極紫外線(EUV)能量偵測器,其經組態以量測由衝擊一雷射產生電漿(LPP)EUV系統之一電漿腔室中之一第一液滴之一第一雷射脈衝產生的EUV能量之一第一量;及,一EUV控制器,其經組態以:基於由衝擊該電漿腔室中之該第一液滴之該第一雷射脈衝產生的EUV能量之該經量測量而計算一第一經修改雷射脈衝能量,及指示該雷射源遞送具有該所計算第一經修改能量的一第二雷射脈衝,藉此變更該電漿腔室中之一第二液滴之行程;且其中:該EUV能量偵測器經進一步組態以量測由衝擊該雷射產生電漿(LPP)EUV系統之該電漿腔室中之一第二液滴之一第二雷射脈衝產生的EUV能量之一第二量;且,該EUV控制器經進一步組態以:基於由衝擊該電漿腔室中之該第二液滴之該第二雷射脈衝產生的EUV能量之該經量測量而計算一第二經修改雷射脈衝能量;及,指示該雷射源遞送具有該所計算第二經修改能量的一第三雷射脈衝,藉此變更該電 漿腔室中之一第三液滴之行程。
根據各種實施例,一種非暫時性電腦可讀媒體,其上體現有指令,該等指令可由一個或多個處理器執行以執行包含如下各項之操作:使用一極紫外線(EUV)能量偵測器來量測由衝擊一雷射產生電漿(LPP)EUV系統之一電漿腔室中之一第一液滴之一第一雷射脈衝產生的EUV能量之一量;使用一EUV控制器基於由衝擊該電漿腔室中之該第一液滴之該第一雷射脈衝產生的EUV能量之該經量測量而計算一第一經修改雷射脈衝能量;由該EUV控制器指示該雷射源遞送具有該所計算第一經修改能量的一第二雷射脈衝,藉此變更該電漿腔室中之一第二液滴之行程;使用該EUV能量偵測器來量測由衝擊該電漿腔室中之該第二液滴之該第二雷射脈衝產生的EUV能量之一量;使用該EUV控制器基於由衝擊該電漿腔室中之該第二液滴之該第二雷射脈衝產生的EUV能量之該經量測量而計算一第二經修改雷射脈衝能量;及,由該EUV控制器指示該雷射源遞送具有該所計算第二經修改能量的一第三雷射脈衝,藉此變更該電漿腔室中之一第三液滴之行程。
10‧‧‧雷射產生電漿(LPP)極紫外線(EUV)系統
12‧‧‧雷射源
14‧‧‧電漿腔室
16‧‧‧輻照位點
18‧‧‧光學元件
20‧‧‧中間區
22‧‧‧聚焦單元
24‧‧‧光束調節單元
26‧‧‧目標材料遞送系統
28‧‧‧極紫外線(EUV)能量偵測器
29‧‧‧極紫外線(EUV)控制器
200‧‧‧方法
202‧‧‧操作
204‧‧‧操作
206‧‧‧操作
208‧‧‧操作
301‧‧‧曲線
圖1為LPP EUV系統之一項實施例之一些組件的簡化示意圖。
圖2為根據一些實施例的用於控制雷射脈衝之能量之實例方法的流程圖。
圖3為在來自CO2驅動雷射之典型主雷射脈衝傳遞通過放大器之後的該主雷射脈衝之曲線圖。
在LPP EUV系統中,當液滴受到電漿腔室中之雷射脈衝衝擊時產生電漿。在LPP EUV系統之理想化模型中,所產生電漿不影響後續引入的液滴,或不將任何力施加於後續引入的液滴上。然而,實務上,電漿及液滴對電漿之衝擊確實將力施加於電漿腔室中之後續引入的液 滴上。該等力可為音波震波、壓力波、音訊波或其他類型之力。此等力使後續液滴藉由在其接近所產生之電漿時改變速度及/或變得偏轉而變更其行程。雷射光束接著較不理想地接觸後續液滴,此情形進一步變化所得所產生電漿及自該電漿產生之力。在先前途徑中為了抵消此等效應,雷射源消耗儲備功率之增加之量以靶向目標液滴很可能位於之不斷加寬區。增加之功率又使電漿變得更不穩定,因此進一步影響LPP EUV系統之輸出。去穩定電漿之效應表示所產生之EUV能量之量的增加之振盪,此對晶圓劑量控制有不利影響。
電漿穩定之一個挑戰為:並不可直接量測此等力。取而代之,該等力表示歸因於相對於雷射光束靶向之變化之液滴位置的所產生之EUV能量之量的振盪。在LPP EUV系統操作時,力及(因此)振盪隨著時間而增加,且皆不可快速地調整液滴定位或雷射光束靶向以進行補償。在觀測到振盪時之先前解決方案為簡單地重新啟動系統。然而,重複地接通及關斷系統係效率低的且可導致另外問題。
為了至少處理此等挑戰且為了使所產生之EUV能量之量穩定,在運用本途徑的情況下,基於由LPP EUV系統產生之EUV能量之偵測到的改變而修改雷射脈衝之能量。一般而言,代替使用儲備功率來持續增加雷射脈衝之能量以抵消去穩定力,將雷射脈衝之能量稍微向上或向下地調整。在一些實施例中,藉由使用比例積分(PI)控制器演算法以判定下一雷射脈衝將具有多少能量而判定此調整。藉由使用PI控制器演算法修改雷射脈衝之能量,使所產生電漿穩定,藉此縮減對後續液滴行進之衝擊。另外,此情形減低所產生之EUV能量之改變,藉此改良劑量控制,且因此允許電漿腔室操作達較長時間間隔且降低需要由雷射源維持之儲備功率之量。
圖1為根據本途徑的LPP EUV系統10之一項實施例之一些組件的簡化示意圖。如所展示,EUV系統10包括雷射源12,該雷射源用於產 生雷射脈衝光束且將該光束自雷射源12沿著一或多個光束路徑遞送且遞送至電漿腔室14中以在輻照位點16處照明諸如液滴之各別目標。
亦如圖1中所展示,EUV系統10亦可包括目標材料遞送系統26,該目標材料遞送系統(例如)將目標材料液滴遞送至電漿腔室14之內部中而到達輻照位點16,其中該等液滴將與一或多個雷射脈衝互動以最終產生電漿且產生EUV發射。各種目標材料遞送系統已呈現於先前技術中,且其相對優點對於熟習此項技術者而言將顯而易見。
如上所述,目標材料為EUV發射元素,其可包括但未必限於包括錫、鋰、氙或其組合之材料。目標材料可呈液滴之形式,或替代地可為液滴內所含有之固體粒子。舉例而言,元素錫可作為純錫、作為錫化合物(諸如SnBr4、SnBr2、SnH4)、作為錫合金(例如錫-鎵合金、錫-銦合金或錫-銦-鎵合金)或其組合呈現為目標材料。取決於所使用之材料,可在包括室溫或近室溫之各種溫度下將目標材料呈現給輻照位點16(例如,錫合金或SnBr4)、在高於室溫之溫度下將目標材料呈現給輻照位點16(例如,純錫),或在低於室溫之溫度下將目標材料呈現給輻照位點16(例如,SnH4)。在一些狀況下,此等化合物可相對具揮發性,諸如SnBr4。除了錫之外的EUV發射元素之相似合金及化合物以及此等材料及上文所描述之材料之相對優點對於熟習此項技術者而言將顯而易見。
返回至圖1,EUV系統10亦可包括光學元件18,諸如具有呈長橢球體(亦即,圍繞其長軸旋轉之橢圓)之形式之反射表面的近正入射收集器鏡面,使得該光學元件18在輻照位點16內或附近具有第一焦點且在所謂中間區20處具有第二焦點,其中可自該EUV系統10輸出EUV光且將EUV光輸入至利用EUV光之器件,諸如積體電路微影工具(圖中未繪示)。如圖1中所展示,光學元件18經形成而具有孔隙以允許由雷射源12產生之雷射光脈衝傳遞通過及到達輻照位點16。
光學元件18應具有適當表面以用於收集EUV光且將EUV光導向至中間區20以後續遞送至利用EUV光之器件。舉例而言,光學元件18可能具有具鉬及矽之交替層,且在一些狀況下,具一或多個高溫擴散障壁層、平滑化層、罩蓋層及/或蝕刻終止層之分級多層塗層。
熟習此項技術者應瞭解,除了長橢球體鏡面之外的光學元件可用作光學元件18。舉例而言,光學元件18可替代地為圍繞其長軸而旋轉之抛物面反射器,或可經組態以將具有環形橫截面之光束遞送至中間部位。在其他實施例中,光學元件18可利用除本文所描述之塗層及層之外或除了本文所描述之塗層及層以外的塗層及層。熟習此項技術者在特定情形下將能夠選擇用於光學元件18之適當形狀及組合物。
如圖1中所展示,EUV系統10可包括聚焦單元22,該聚焦單元包括用於將雷射光束聚焦至輻照位點16處之聚焦光點之一或多個光學元件。EUV系統10亦可包括光束調節單元24,該光束調節單元在雷射源12與聚焦單元22之間具有一或多個光學元件,以用於擴展、操縱及/或塑形雷射光束及/或塑形雷射脈衝。各種聚焦單元及光束調節單元在此項技術中已知,且可由熟習此項技術者適當地選擇。
如上文所提及,在一些狀況下,雷射源12包含種子雷射及一或多個放大器。種子雷射產生雷射脈衝,雷射脈衝接著經放大以變成雷射光束,雷射光束在輻照位點16處輻照目標材料以形成產生EUV發射之電漿。
熟習此項技術者應瞭解,數個類型之種子雷射可用以產生預脈衝及主脈衝。舉例而言,可使用呈傳統地已被稱為「主控振盪器-功率放大器」(MOPA)之組態的習知雙腔室橫向流雷射源。替代地,可使用被稱為快速軸流雷射的較新類型之雷射。單一雷射源可產生預脈衝及主脈衝兩者。替代地,分離種子雷射可用以產生預脈衝及主脈衝,其通常被稱為MOPA+PP雷射。
通常用於EUV系統之一些實施例中的一種類型之種子雷射為CO2雷射,而其他實施例可使用釔-鋁-石榴石(YAG)雷射。在存在兩個種子雷射時,其可屬於不同類型;然而,例如YAG雷射相比於CO2雷射將需要分離的放大器或放大器鏈。熟習此項技術者將認識到,存在除CO2及YAG雷射以外的其他類型之雷射,且存在除MOPA及MOPA+PP雷射以外的其他組態,且將能夠判定雷射之哪些類型及組態將適合於所要應用。
返回至圖1,EUV能量偵測器28偵測及/或計算產生於電漿腔室14中之EUV功率之量。EUV能量偵測器28為電漿腔室14內之感測器,例如經定位成相對於雷射光束成90°之EUV側感測器;或傳遞通過中間焦點20之掃描器量測能量內之感測器。EUV能量偵測器包含光電二極體且通常為熟習此項技術者所知。如為熟習此項技術者所熟悉,藉由遍及液滴經輻照之時間跨度來積分EUV能量偵測器28之EUV功率信號,計算自液滴及雷射脈衝之衝擊而產生之EUV能量。
EUV控制器29經組態以基於由一或多個先前雷射脈衝產生的EUV能量之量而判定下一雷射脈衝之能量。EUV控制器經由EUV能量偵測器28獲得自先前脈衝產生的EUV能量之量之量測。EUV控制器29使用諸如PI控制器演算法之演算法來判定後續雷射脈衝之目標能量。目標能量係基於產生於電漿腔室14中之電漿之經判定穩定性。電漿愈穩定,後續雷射脈衝之能量可愈高,同時仍維持電漿之穩定性。若電漿較不穩定或不穩定,則EUV控制器29可縮減後續雷射脈衝之能量。
可自所產生之EUV能量之量偵測到電漿之穩定。在使用PI控制器演算法以控制衝擊電漿之雷射脈衝之能量(其又影響液滴行程)來使電漿穩定時,所產生之EUV能量之量的振盪得以降低或抑制。更簡明言之,PI控制器演算法藉由基於由LPP EUV系統10產生之EUV能量之量變化雷射脈衝之能量而縮減所產生的該EUV能量之量的振盪。藉由基 於產生於電漿腔室中之EUV能量之量變化雷射能量,使所產生電漿穩定,藉此縮減雷射至液滴靶向變化,此情形導致產生較一致或較穩定EUV能量。
可以為熟習此項技術者所知之多種方式來實施EUV控制器29,包括(但不限於)將其作為具有存取記憶體之處理器之計算器件,記憶體能夠儲存用於執行所描述模組之功能之可執行指令。計算器件可包括一或多個輸入及輸出組件,其包括用於經由網路(例如,網際網路)與其他計算器件通信或用於其他形式之通信的組件。EUV控制器29包含以計算邏輯或可執行碼體現之一或多個模組,諸如軟體。
脈衝致動器(圖中未繪示)致動雷射源12以根據自EUV控制器29接收之指令在輻照位點16處激發雷射脈衝。致動器可為電組件、機械組件及/或光學組件,且通常為熟習此項技術者所知。在一項實施例中,脈衝致動器包括用以調整雷射脈衝之時間寬度之電光調變器(EOM),及/或用以調整雷射脈衝之高度或強度之聲光調變器(AOM)。如由熟習此項技術者鑒於本文中之教示將理解,調整雷射脈衝之時間寬度或強度中之任一者或兩者可用以根據本途徑變化或調整雷射脈衝之能量。
圖2為根據一些實施例的用於控制雷射脈衝之能量之實例方法200的流程圖。可由圖1之EUV能量偵測器28及EUV控制器29來執行該方法200。
在操作202中,在液滴目標位置處激發雷射脈衝。在一實施例中,由雷射源12執行操作202。
在操作204中,當受激發雷射脈衝衝擊液滴目標位置處之液滴時產生電漿。此電漿產生EUV能量。在一實施例中,操作204發生於電漿腔室14中。
在操作206中,量測所產生之EUV能量之量。EUV能量之經量測 量指示電漿之去穩定且與電漿之去穩定成比例,電漿之去穩定在於輻照位點16處激發下一雷射脈衝時又使後續液滴相對於輻照位點16之位置進一步去穩定。後續液滴在並未由後續雷射脈衝完全輻照時或在由後續雷射脈衝不均勻地輻照時使持續性電漿進一步去穩定。在無干預的情況下,去穩定將繼續,以造成所產生之EUV能量之量的改變不斷增加。由(例如)EUV能量偵測器28量測所產生之EUV能量之量。
在操作208中,指示雷射源基於所產生之EUV能量之經量測量而修改後續雷射脈衝之能量。在一些實施例中,使用諸如如下之PI控制器演算法來計算後續雷射脈衝之經修改能量:
其中u(t)為PI控制器演算法輸出,K p 為用於比例增益之調諧參數且可使用熟習此項技術者所知之技術來設定其,e(t)為誤差(例如,所要輸出與實際輸出之間的差),K i 為用於積分增益之調諧參數且可使用熟習此項技術者所知之技術來設定其,e(t)為誤差(例如,所要輸出與實際輸出之間的差),t為當前時間,且τ為具有自時間零至當前時間t之值之積分變數。比例項(K p e(t))產生與當前誤差值成比例之輸出值。積分項(K i e(τ))提供與誤差之量值及誤差之持續時間兩者成比例之貢獻。可由(例如)EUV控制器29執行操作208。
方法接著返回至操作202,其中現在使用經修改雷射脈衝能量激發雷射。接著,在操作204中,起因於衝擊另一液滴之雷射脈衝之經修改能量的所產生電漿變更作用於接近該電漿及液滴目標位置之後續液滴之力。換言之,調整雷射脈衝之能量會變更所產生力,其將另外造成後續液滴改變速度或經偏轉遠離液滴目標位置。此調整可被視為操縱後續液滴朝至液滴目標位置,而不管後續液滴已經離開液滴產生器且因此不再可機械地操縱。
如對於熟習此項技術者基於本文中之揭示內容將顯而易見,方法200為反覆程序,藉以使用PI控制器演算法以判定下一雷射脈衝之能量以便接近電漿之穩定。如對於熟習此項技術者而言將另外顯而易見,當使電漿穩定時,LPP EUV系統可受益超出較多可預測EUV能量輸出。舉例而言,因為使電漿穩定,所以亦使雷射脈衝之能量隨著時間而穩定。因而,雷射源(例如,圖1之雷射源12)需要較少儲備功率。測試結果已展示所需儲備功率自近似35%縮減至近似6%。
圖3為在來自CO2驅動雷射之典型主雷射脈衝傳遞通過放大器之後的該主雷射脈衝之曲線圖,其中曲線301展示雷射脈衝隨著時間(x軸)之強度(y軸)。可看到,強度在初始峰值之後急劇下降;此代表雷射脈衝傳遞通過放大器,此係因為雷射脈衝之前邊緣充滿放大器且在其傳遞時使用大多數增益。如所說明之脈寬自前邊緣(在x軸上處於約80毫微秒(ns)處)至後邊緣(在x軸上處於約330毫微秒處)為近似250毫微秒。此代表呈傳統MOPA組態之主脈衝,其通常已在100毫微秒至300毫微秒之範圍內,且長於呈MOPA+PP組態之典型主脈衝,其中現在使用接近100毫微秒之主脈衝。預脈衝通常已在50毫微秒至150毫微秒之範圍內,且現在可為30毫微秒至70毫微秒。主脈衝及預脈衝兩者被預期為在未來持續縮短,可能甚至縮短至以皮秒為單位而量測之範圍內。
如上所述,在先前技術中,通常預先選擇短於來自種子雷射之Q切換式脈衝之脈寬。此選擇可(例如)藉由將雷射脈衝傳遞通過諸如電光調變器(EOM)之光學開關來實現,該光學開關可位於圖1之雷射源12中且充當用以縮短雷射脈衝之遮光片,其敞開以允許雷射脈衝之前邊緣傳遞且接著封閉以在所要點處截止雷射脈衝之尾端。
為了使電漿穩定且因此使由LPP EUV系統10輸出之EUV能量之量穩定,PI控制器演算法可調整雷射脈衝之脈寬。為了增加雷射脈衝之 能量,使脈寬增加。為了減低雷射脈衝之能量,使脈寬減低。可使用為熟習此項技術者所知之技術來調整脈寬。同樣地,如上文所陳述,亦可藉由變更雷射脈衝之高度或強度來調整雷射脈衝之能量。
亦應理解,控制器演算法不限於必須為PI控制器。可同樣地使用考量對液滴行程之腔室力之差相對於所產生之EUV能量之差之任何控制器。
上文已參看若干實施例解釋所揭示方法及裝置。其他實施例對於熟習此項技術者鑒於本發明將顯而易見。所描述方法及裝置之某些態樣可易於使用除了描述於以上實施例中之組態之外的組態或結合除了上文所描述之元件之外的元件來實施。舉例而言,可使用不同演算法及/或邏輯電路(可能比本文所描述之演算法及/或邏輯電路更複雜),且可能使用不同類型之驅動雷射及/或聚焦透鏡。
應注意,如本文所使用,術語「光學組件」及其衍生物包括(但未必限於)反射及/或透射及/或操作入射光之一或多個組件,且包括(但不限於)一或多個透鏡、窗口、濾光器、楔狀物、稜鏡、稜鏡光柵、分級件、透射光纖、標準具、漫射體、均質機、偵測器及其他器具組件、孔隙、旋轉三稜鏡及鏡面(包括多層鏡面、近正入射鏡面、掠入射鏡面)、鏡面反射器、漫射反射器,及其組合。此外,除非另有指定,否則如本文所使用之術語「光學件」、「光學組件」或其衍生物皆不意謂限於僅僅或有利地在一或多個特定波長範圍內(諸如,在EUV輸出光波長、輻照雷射波長、適合於度量衡之波長或某其他波長下)進行操作之組件。
如本文中所提及,各種變化係可能的。可在一些狀況下使用單一種子雷射而非兩個種子雷射。一共同開關可保護兩個種子雷射,或種子雷射中之任一者或兩者可具有其自有開關以進行保護。可在一些情況下使用單一布拉格AOM,或可視需要使用多於兩個布拉格AOM 以保護單一種子雷射。
亦應瞭解,所描述方法及裝置可以眾多方式來實施,包括作為程序、裝置或系統來實施。本文所描述之方法可由程式指令實施,該等程式指令用於指示處理器執行此等方法,且此等指令被記錄於非暫時性電腦可讀儲存媒體上,非暫時性電腦可讀儲存媒體諸如,硬碟機、軟碟、光碟(諸如緊密光碟(CD)或數位多功能光碟(DVD))、快閃記憶體等等。可經由包含光學或電子通訊鏈路之電腦網路來傳達該等程式指令。此等程式指令可借助於處理器或控制器而執行,或可併入至固定邏輯元件中。應注意,可變更本文所描述之方法之步驟次序且其仍在本發明之範疇內。
依據實施例之此等及其他變化意欲由僅受到所附申請專利範圍限制之本發明涵蓋。
200‧‧‧方法
202‧‧‧操作
204‧‧‧操作
206‧‧‧操作
208‧‧‧操作

Claims (9)

  1. 一種方法,其包含:使用一極紫外線(EUV)能量偵測器來量測由衝擊一雷射產生電漿(LPP)EUV系統之一電漿腔室中之一第一液滴之一第一雷射脈衝產生的EUV能量之一量;使用一EUV控制器基於由衝擊該電漿腔室中之該第一液滴之該第一雷射脈衝產生的EUV能量之該經量測量而計算一第一經修改雷射脈衝能量;由該EUV控制器指示該雷射源遞送具有該所計算第一經修改能量的一第二雷射脈衝,藉此變更該電漿腔室中之一第二液滴之行程;使用該EUV能量偵測器來量測由衝擊該電漿腔室中之該第二液滴之該第二雷射脈衝產生的EUV能量之一量;使用該EUV控制器基於由衝擊該電漿腔室中之該第二液滴之該第二雷射脈衝產生的EUV能量之該經量測量而計算一第二經修改雷射脈衝能量;及,由該EUV控制器指示該雷射源遞送具有該所計算第二經修改能量的一第三雷射脈衝,藉此變更該電漿腔室中之一第三液滴之行程。
  2. 如請求項1之方法,其中計算該第一經修改雷射脈衝能量及計算該第二經修改雷射脈衝能量包含:使用一比例積分(PI)控制器演算法。
  3. 如請求項2之方法,其中該PI控制器演算法之一比例項介於0.0與0.5之間,且該PI控制器演算法之一積分項介於0.0與1.0之間。
  4. 一種系統,其包含:一極紫外線(EUV)能量偵測器,其經組態以量測由衝擊一雷射產生電漿(LPP)EUV系統之一電漿腔室中之一第一液滴之一第一雷射脈衝產生的EUV能量之一第一量;及,一EUV控制器,其經組態以:基於由衝擊該電漿腔室中之該第一液滴之該第一雷射脈衝產生的EUV能量之該經量測量而計算一第一經修改雷射脈衝能量,及指示該雷射源遞送具有該所計算第一經修改能量的一第二雷射脈衝,藉此變更該電漿腔室中之一第二液滴之行程;且其中:該EUV能量偵測器經進一步組態以量測由衝擊該雷射產生電漿(LPP)EUV系統之該電漿腔室中之一第二液滴之一第二雷射脈衝產生的EUV能量之一第二量;且;該EUV控制器經進一步組態以:基於由衝擊該電漿腔室中之該第二液滴之該第二雷射脈衝產生的EUV能量之該經量測量而計算一第二經修改雷射脈衝能量;及,指示該雷射源遞送具有該所計算第二經修改能量的一第三雷射脈衝,藉此變更該電漿腔室中之一第三液滴之行程。
  5. 如請求項4之系統,其中該EUV控制器經組態以使用一比例積分(PI)控制器演算法來判定該第一經修改雷射脈衝能量及該第二經修改雷射脈衝能量。
  6. 如請求項5之系統,其中該PI控制器演算法之一比例項介於0.0與0.5之間,且該PI控制器演算法之一積分項介於0.0與1.0之間。
  7. 一種非暫時性電腦可讀媒體,其上體現有指令,該等指令可由一個或多個處理器執行以執行包含如下各項之操作:使用一極紫外線(EUV)能量偵測器來量測由衝擊一雷射產生電漿(LPP)EUV系統之一電漿腔室中之一第一液滴之一第一雷射脈衝產生的EUV能量之一量;使用一EUV控制器基於由衝擊該電漿腔室中之該第一液滴之該第一雷射脈衝產生的EUV能量之該經量測量而計算一第一經修改雷射脈衝能量;由該EUV控制器指示該雷射源遞送具有該所計算第一經修改能量的一第二雷射脈衝,藉此變更該電漿腔室中之一第二液滴之行程;使用該EUV能量偵測器來量測由衝擊該電漿腔室中之該第二液滴之該第二雷射脈衝產生的EUV能量之一量;使用該EUV控制器基於由衝擊該電漿腔室中之該第二液滴之該第二雷射脈衝產生的EUV能量之該經量測量而計算一第二經修改雷射脈衝能量;及,由該EUV控制器指示該雷射源遞送具有該所計算第二經修改能量的一第三雷射脈衝,藉此變更該電漿腔室中之一第三液滴之行程。
  8. 如請求項7之非暫時性電腦可讀媒體,其中計算該第一經修改雷射脈衝能量及計算該第二經修改雷射脈衝能量包含:使用一比例積分(PI)控制器演算法。
  9. 如請求項8之非暫時性電腦可讀媒體,其中該PI控制器演算法之 一比例項介於0.0與0.5之間,且該PI控制器演算法之一積分項介於0.0與1.0之間。
TW105125027A 2015-08-12 2016-08-05 經由雷射能量調變來穩定液滴電漿互動之系統及方法 TWI702886B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/824,280 2015-08-12
US14/824,280 US9832854B2 (en) 2015-08-12 2015-08-12 Systems and methods for stabilization of droplet-plasma interaction via laser energy modulation

Publications (2)

Publication Number Publication Date
TW201728233A true TW201728233A (zh) 2017-08-01
TWI702886B TWI702886B (zh) 2020-08-21

Family

ID=57984138

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105125027A TWI702886B (zh) 2015-08-12 2016-08-05 經由雷射能量調變來穩定液滴電漿互動之系統及方法

Country Status (6)

Country Link
US (1) US9832854B2 (zh)
JP (1) JP6768783B2 (zh)
KR (1) KR20180038468A (zh)
CN (1) CN108029186B (zh)
TW (1) TWI702886B (zh)
WO (1) WO2017027636A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6021454B2 (ja) * 2011-10-05 2016-11-09 ギガフォトン株式会社 極端紫外光生成装置および極端紫外光生成方法
US9832852B1 (en) * 2016-11-04 2017-11-28 Asml Netherlands B.V. EUV LPP source with dose control and laser stabilization using variable width laser pulses
US9755396B1 (en) * 2016-11-29 2017-09-05 Asml Netherlands B.V. EUV LPP source with improved dose control by combining pulse modulation and pulse control mode
CN111566563A (zh) 2017-10-26 2020-08-21 Asml荷兰有限公司 用于监测等离子体的系统
US11226564B2 (en) * 2018-06-29 2022-01-18 Taiwan Semiconductor Manufacturing Co., Ltd. EUV light source and apparatus for lithography
DE102021106289A1 (de) * 2020-05-07 2021-11-11 Taiwan Semiconductor Manufacturing Co., Ltd. System und verfahren zum ausführen von extrem-ultraviolett-photolithografieprozessen

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000091195A (ja) * 1998-09-10 2000-03-31 Hitachi Ltd 露光方法及び露光装置
US7928416B2 (en) * 2006-12-22 2011-04-19 Cymer, Inc. Laser produced plasma EUV light source
DE10219805B4 (de) * 2002-04-30 2013-03-14 Xtreme Technologies Gmbh Verfahren zur Stabilisierung der Strahlungsleistung einer gepuist betriebenen, auf gasentladungserzeugtem Plasma basierenden Strahlungsquelle
TWI299505B (en) * 2003-04-08 2008-08-01 Cymer Inc Systems and methods for removal of debris on a reflecting surface of an euv collector in an euv light source
DE102004005242B4 (de) * 2004-01-30 2006-04-20 Xtreme Technologies Gmbh Verfahren und Vorrichtung zur plasmabasierten Erzeugung intensiver kurzwelliger Strahlung
JP4578883B2 (ja) * 2004-08-02 2010-11-10 株式会社小松製作所 極端紫外光源装置
JP2006128157A (ja) * 2004-10-26 2006-05-18 Komatsu Ltd 極端紫外光源装置用ドライバレーザシステム
JP5156192B2 (ja) * 2006-01-24 2013-03-06 ギガフォトン株式会社 極端紫外光源装置
NL1036614A1 (nl) * 2008-03-21 2009-09-22 Asml Netherlands Bv A target material, a source, an EUV lithographic apparatus and a device manufacturing method using the same.
JP2009231041A (ja) * 2008-03-24 2009-10-08 Tokyo Institute Of Technology 極端紫外光光源装置
WO2011082891A1 (en) * 2010-01-07 2011-07-14 Asml Netherlands B.V. Euv radiation source comprising a droplet accelerator and lithographic apparatus
JP5864949B2 (ja) * 2010-11-29 2016-02-17 ギガフォトン株式会社 極端紫外光生成システム
US8368041B2 (en) * 2011-03-31 2013-02-05 Cymer, Inc. System and method for compensating for thermal effects in an EUV light source
JP6116128B2 (ja) * 2011-04-11 2017-04-19 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置および方法
NL2009372A (en) * 2011-09-28 2013-04-02 Asml Netherlands Bv Methods to control euv exposure dose and euv lithographic methods and apparatus using such methods.
CN104488362B (zh) * 2012-05-21 2017-05-10 Asml荷兰有限公司 辐射源
US8872122B2 (en) * 2013-01-10 2014-10-28 Asml Netherlands B.V. Method of timing laser beam pulses to regulate extreme ultraviolet light dosing
TWI618453B (zh) * 2013-01-10 2018-03-11 Asml荷蘭公司 用以調整雷射光束脈衝時序以調節極端紫外光劑量之方法及系統
US9000403B2 (en) * 2013-02-15 2015-04-07 Asml Netherlands B.V. System and method for adjusting seed laser pulse width to control EUV output energy
KR102219069B1 (ko) 2013-06-18 2021-02-23 에이에스엠엘 네델란즈 비.브이. 리소그래피 방법 및 시스템

Also Published As

Publication number Publication date
US9832854B2 (en) 2017-11-28
WO2017027636A1 (en) 2017-02-16
KR20180038468A (ko) 2018-04-16
CN108029186A (zh) 2018-05-11
TWI702886B (zh) 2020-08-21
JP2018529990A (ja) 2018-10-11
US20170048959A1 (en) 2017-02-16
JP6768783B2 (ja) 2020-10-14
CN108029186B (zh) 2021-12-24

Similar Documents

Publication Publication Date Title
TWI702886B (zh) 經由雷射能量調變來穩定液滴電漿互動之系統及方法
JP6970155B2 (ja) 極端紫外光源
JP6559685B2 (ja) 極紫外光源
US9000403B2 (en) System and method for adjusting seed laser pulse width to control EUV output energy
TWI643209B (zh) 用於形成極紫外光源的經定形標靶之方法、形成發射極紫外光的電漿之方法及極紫外光源
US20130077073A1 (en) Methods to control euv exposure dose and euv lithographic methods and apparatus using such methods
JP6744397B2 (ja) 極端紫外光源におけるターゲット膨張率制御
US9426872B1 (en) System and method for controlling source laser firing in an LPP EUV light source
JP7225224B2 (ja) プラズマをモニタするためのシステム
US9980359B2 (en) Systems and methods for controlling EUV energy generation using pulse intensity
JP7240313B2 (ja) 可変幅レーザパルスを使用したドーズ量制御及びレーザ安定化を伴うeuv lpp源
US9363877B2 (en) System and method to reduce oscillations in extreme ultraviolet light generation
TW201923470A (zh) 在微影曝光製程中產生光的方法及光源
TWI821437B (zh) 用於監控光發射之系統、euv光源、及控制euv光源之方法
JP2019502146A (ja) 放射源プラズマチャンバにおける不安定状態を回避するためのシステム及び方法