TW201719686A - Method for fabricating high-conductivity thick aluminum paste - Google Patents
Method for fabricating high-conductivity thick aluminum paste Download PDFInfo
- Publication number
- TW201719686A TW201719686A TW104137774A TW104137774A TW201719686A TW 201719686 A TW201719686 A TW 201719686A TW 104137774 A TW104137774 A TW 104137774A TW 104137774 A TW104137774 A TW 104137774A TW 201719686 A TW201719686 A TW 201719686A
- Authority
- TW
- Taiwan
- Prior art keywords
- aluminum
- powder
- paste
- aluminum powder
- conductivity
- Prior art date
Links
Landscapes
- Photovoltaic Devices (AREA)
- Conductive Materials (AREA)
Abstract
Description
本發明係有關於一種高導電率厚膜鋁膏之製造方法,尤指涉及一種改善傳統鋁膏低導電率之問題,提供一低成本、高導電率,且可在空氣中燒結之厚膜導電鋁膏,特別係指可廣泛地取代現有高成本之導電銀膏與需在還原氣氛下燒結之導電銅膏之應用者。The invention relates to a method for manufacturing a high-conductivity thick-film aluminum paste, in particular to a problem of improving the low conductivity of a conventional aluminum paste, providing a low-cost, high-conductivity, and thick film conductive which can be sintered in air. Aluminum paste, in particular, refers to an application that can widely replace existing high cost conductive silver pastes with conductive copper pastes that need to be sintered in a reducing atmosphere.
厚膜電阻器之端電極可以分成三部份,正面端電極、側面端電極與背面端電極,其中側面端電極與背面端電極只是利用來供後製程電鍍鎳與錫晶種層使用,而正面端電極除了用來供後製程電鍍鎳與錫晶種層使用之外,同時也必需負責連接電阻層導通之路徑,因此正面端電極之導電率必須遠低於電阻層電阻率才可形成歐姆接觸。目前市面上端電極所用之導電漿料以銀膏為主,其亦為目前技術最成熟且應用最廣泛之厚膜導電漿料,具有高導電率,且可在空氣中燒結等優點,但成本過於昂貴,且隨著國際銀價持續上漲,銀粉價格仍高居不下,考量到成本問題,部分應用慢慢轉往以成本較低廉之銅做為金屬填充物,但因銅容易氧化,必須在還原氣氛下燒結,而還原氣氛燒結爐價格昂貴,故銅膏之應用還是有限。而鋁膏具有成本低且可在空氣中燒結之優勢,但目前市售鋁膏之電阻率往往偏高。造成傳統鋁膏呈現低導電率之主要原因為,金屬鋁在空氣中表面會自然生成一層薄薄之氧化鋁層阻止內部持續氧化,而這層氧化層阻擋了內部金屬鋁之接觸也抑制鋁在燒結過程中之收縮,造成燒結完後形成多孔洞與鋁空殼等缺陷結構,導致高電阻率,其微結構如第9圖所示。由此圖中可明顯看到傳統鋁膏多孔洞與鋁空殼之結構(或缺陷)。 再者,一般導電銀膏或銅膏在填充基板之孔洞與金屬化線路時都會面臨一個嚴重問題,一般導電銀膏或銅膏印刷後之尺寸會在燒結後因銀膏或銅膏之收縮而尺寸減少,這個問題對於填孔特別嚴重,因為會造成填孔導電膏無法填滿孔洞而留有空隙,可能影響導電或導熱行為,甚至在真空封裝時會有漏氣問題。 鑑於銀膏成本昂貴;銅膏雖然價格相對便宜但必須在還原氣氛下燒結 ,限制了銅膏之應用。而金屬鋁具有高導電率、低成本且可在空氣中燒結等優勢,但製作成鋁膏之後卻無法發揮其高導電率之特性。故,ㄧ般習用者係無法符合使用者於實際使用時之所需。The terminal electrode of the thick film resistor can be divided into three parts, a front end electrode, a side end electrode and a back end electrode, wherein the side end electrode and the back end electrode are only used for the post process electroplating nickel and tin seed layer, and the front side In addition to being used for the post-plating electroplating of nickel and tin seed layers, the terminal electrodes must also be responsible for connecting the path of the resistive layer conduction. Therefore, the conductivity of the front end electrode must be much lower than the resistivity of the resistive layer to form an ohmic contact. . At present, the conductive paste used in the terminal electrode on the market is mainly silver paste, which is also the most mature and widely used thick film conductive paste, which has the advantages of high electrical conductivity and sintering in air, but the cost is too high. Expensive, and as the international silver price continues to rise, the price of silver powder remains high, considering the cost issue, some applications are slowly transferred to low-cost copper as a metal filler, but because copper is easily oxidized, it must be in a reducing atmosphere. Under sintering, the reducing atmosphere sintering furnace is expensive, so the application of copper paste is limited. While aluminum paste has the advantage of low cost and can be sintered in air, the resistivity of commercially available aluminum pastes tends to be high. The main reason for the low electrical conductivity of the traditional aluminum paste is that the metal aluminum naturally forms a thin layer of aluminum oxide on the surface of the air to prevent continuous oxidation inside, and this layer of oxide blocks the contact of the internal metal aluminum and inhibits the aluminum. The shrinkage during the sintering process results in the formation of porous structures such as porous holes and aluminum voids after sintering, resulting in high electrical resistivity, and the microstructure thereof is as shown in Fig. 9. The structure (or defect) of the conventional aluminum paste porous hole and the aluminum empty shell can be clearly seen from the figure. In addition, generally conductive silver paste or copper paste will face a serious problem in filling the holes and metallization lines of the substrate. Generally, the size of the conductive silver paste or copper paste after printing will be caused by the shrinkage of silver paste or copper paste after sintering. The size is reduced. This problem is particularly serious for the hole filling, because the filling hole conductive paste cannot fill the hole and leave a void, which may affect the conductive or thermal conduction behavior, and may even have a gas leakage problem during vacuum packaging. In view of the high cost of silver paste; copper paste, although relatively inexpensive, must be sintered in a reducing atmosphere, limiting the application of copper paste. Metal aluminum has the advantages of high electrical conductivity, low cost, and sintering in air, but it cannot be utilized as an aluminum paste to exhibit its high electrical conductivity. Therefore, the user-like users cannot meet the needs of the user in actual use.
本發明之主要目的係在於,克服習知技藝所遭遇之上述問題並提供一種改善傳統鋁膏多孔洞與鋁空殼等缺陷造成低導電率之問題,能大幅提升導電率,實現一低成本、高導電率,且可在空氣中燒結之厚膜導電鋁膏,並可廣泛地取代現有高成本之導電銀膏與需在還原氣氛下燒結之導電銅膏之應用之高導電率厚膜鋁膏之製造方法。 本發明之次要目的係在於,提供一種可應用於厚膜電阻器端電極與LED陶瓷基板金屬化製程之高導電率厚膜鋁膏。 為達以上之目的,本發明係一種高導電率厚膜鋁膏之製造方法,其至少包含下列步驟:(A)提供一含不同粒徑之鋁粉,且該鋁粉之大小粒徑比例為4±50%:1±50%;(B)將該鋁粉與一玻璃粉混合,其中該玻璃粉之固體含量為7.5wt%±50%,且該鋁粉與該玻璃粉總固體含量比例為10:1;以及(C)將該鋁粉與該玻璃粉之混合物在至少500°C以上燒結溫度下進行液相燒結,此燒結溫度係可使該混合物中鋁粉利用表面氧化鋁破裂機制搭配液相玻璃粉包覆住所有鋁粉破裂的表面以抑制裸露之液態金屬鋁接觸空氣而氧化,並促使相鄰裸露之液態金屬鋁互相接觸而形成導電通路,得到一緻密且無收縮之厚膜導電漿料。 於本發明上述實施例中,該厚膜導電漿料之片電阻值小於5mΩ/sq。 於本發明上述實施例中,該鋁粉大粒徑控制在4~6μm,小粒徑控制在1~3μm。The main object of the present invention is to overcome the above problems encountered in the prior art and to provide a problem of improving the low electrical conductivity caused by defects such as the porous holes of the aluminum paste and the aluminum shell, which can greatly improve the electrical conductivity and achieve a low cost. High-conductivity, thick-film conductive aluminum paste that can be sintered in air, and can widely replace the high-conductivity silver paste with high-conductivity conductive silver paste and conductive copper paste that needs to be sintered in a reducing atmosphere. Manufacturing method. A secondary object of the present invention is to provide a high conductivity thick film aluminum paste which can be applied to a thick film resistor terminal electrode and an LED ceramic substrate metallization process. For the purpose of the above, the present invention is a method for producing a high-conductivity thick-film aluminum paste, which comprises at least the following steps: (A) providing an aluminum powder having different particle diameters, and the size ratio of the aluminum powder is 4±50%: 1±50%; (B) mixing the aluminum powder with a glass powder, wherein the glass powder has a solid content of 7.5 wt%±50%, and the ratio of the aluminum powder to the total solid content of the glass powder 10:1; and (C) the mixture of the aluminum powder and the glass powder is subjected to liquid phase sintering at a sintering temperature of at least 500 ° C. The sintering temperature is such that the aluminum powder in the mixture utilizes a surface alumina cracking mechanism. It is coated with liquid glass powder to cover the cracked surface of all aluminum powder to inhibit the exposure of exposed liquid metal aluminum to the air, and promote the contact of adjacent bare liquid metal aluminum to form a conductive path, which is uniform and non-shrinking. Membrane conductive paste. In the above embodiment of the invention, the thick film conductive paste has a sheet resistance of less than 5 mΩ/sq. In the above embodiment of the invention, the aluminum powder has a large particle size of 4 to 6 μm and a small particle size of 1 to 3 μm.
請參閱『第1A圖~第8圖』所示,係分別為本發明之製造流程示意圖、本發明之氧化鋁破裂機制示意圖、本發明之使用態樣示意圖、本發明大小鋁粉顆粒之熱重分析示意圖、本發明大小鋁粉顆粒之表面微結構示意圖、本發明使用不同比例之大小粒徑鋁粉之微結構示意圖、本發明添加不同玻璃量之熱重分析示意圖、本發明添加不同比例玻璃之微結構示意圖、本發明鋁粉與玻璃粉匹配與不匹配情況之微結構示意圖、本發明新型鋁膏與傳統鋁膏之微結構示意圖、本發明高導電率厚膜鋁膏應用厚膜電阻器端電極之可靠度硫化測試結果示意圖、以及本發明應用於LED陶瓷基板填孔與金屬化製程之結構示意圖。如圖所示:本發明係一種高導電率厚膜鋁膏之製造方法,其至少包含下列步驟: (A)如第1A圖所示,提供一含不同粒徑之鋁粉1,且該鋁粉1之大小粒徑比例為4±50%:1±50%,其中大粒徑鋁粉1控制在4~6μm,小粒徑鋁粉1控制在1~3μm; (B)將該鋁粉1與一玻璃粉2混合,其中該玻璃粉2之固體含量為7.5wt%±50%,且該鋁粉1與該玻璃粉2總固體含量比例為10:1;以及 (C)將該鋁粉1與該玻璃粉2之混合物在至少500°C以上燒結溫度下進行液相燒結,此燒結溫度係可使該混合物中鋁粉1從固態金屬鋁11轉變為液態金屬鋁12,利用表面氧化鋁13破裂機制(如第1B圖所示)搭配液相玻璃粉2包覆住所有鋁粉1破裂的表面以抑制裸露之液態金屬鋁12接觸空氣而氧化,並促使相鄰裸露之液態金屬鋁12互相接觸而形成導電通路14,得到一緻密且無收縮之厚膜導電鋁膏。如是,藉由上述揭露之流程構成一全新之高導電率厚膜鋁膏之製造方法。 傳統鋁膏多孔洞與鋁空殼之缺陷結構(如第9圖所示),其中多孔洞可藉由不同粒徑堆疊與提高固體含量來改善,而造成鋁空殼主要原因為在燒結溫度超過鋁之熔點(660°C)使內部金屬鋁熔化而膨脹,因膨脹係數之差異造成表面氧化鋁破裂使內部液態金屬鋁流出之後隨即氧化形成鋁空殼。對此,本發明充分利用上述所提創新技術,當運用時,如第1C圖所示,係將上述鋁粉1與玻璃粉2之混合物,與一黏著劑3混成漿料,將其印刷於基板後進行燒結,使黏著劑3燒除且玻璃粉2軟化為液相玻璃粉2,藉由表面氧化鋁13破裂機制並搭配足夠之玻璃粉2抑制裸露之液態金屬鋁12接觸空氣而氧化,進一步促使相鄰裸露之液態金屬鋁12互相接觸,形成導電通路。因此,本發明利用提高固體含量,即可實現高導電率、低成本且可在空氣中燒結之厚膜導電鋁膏。 針對上述鋁粉顆粒大小效應,本發明首先利用熱重分析觀察大粒徑與小粒徑鋁粉之氧化程度並且與掃描式電子顯微鏡(Scanning Electron Microscopy, SEM)圖互相對照,如第2A、2B圖所示,可以看出大粒徑鋁粉在600~700°C與持溫階段各有較大量之氧化,而小粒徑鋁粉則在500~600°C氧化後則無大量氧化發生。對照第2B圖SEM可以看出大粒徑鋁粉表面有隆起物,此隆起物即為在燒結超過鋁熔點之後表面氧化鋁破裂,內部液態金屬鋁流出隨即氧化所造成之現象,而小顆粒徑則無明顯隆起物產生;此結果代表大粒徑鋁粉較小粒徑鋁粉容易破裂。據此,本發明希望表面氧化鋁破裂如此才有機會使內部金屬鋁互相連接。故選擇以大粒徑鋁粉為主,小粒徑鋁粉為輔來達到形成通路與緻密化之目的。第3圖為本發明提高鋁膜堆疊密度,使用大小粒徑鋁粉比例1:0、1:1、4:1、及0:1之剖面微結構,明顯可以看到小粒徑鋁粉在燒結過後因表面氧化鋁層沒有破裂,無法形成導電通路,造成高電阻率。而大粒徑鋁粉因氧化層破裂促使鄰近裸露出之液態金屬鋁接觸形成導電通路,獲得較低電阻率。因此,根據電性及堆疊緻密程度得到一大粒徑與小粒徑鋁粉最佳比例為4:1。 而在氧化鋁破裂之後,必須要有足夠之液相玻璃粉包覆住破裂之表面抑制其氧化,並透過液相燒結之方式增加液態金屬鋁接觸之機會。對此,本發明嘗試添加不同之玻璃量分別為0%、3%、7.5%、及10%,且使用熱重分析儀觀察其玻璃粉添加量與氧化之關係如第4A圖所示,並搭配第4B圖之剖面圖觀察玻璃粉添加量對微結構之影響。由熱重分析儀可以觀察到隨玻璃粉之添加量增加氧化之程度就越小,而添加至7.5%玻璃粉後則幾乎沒有明顯之氧化。搭配剖面微結構可發現玻璃粉添加量太少無法有效包覆住所有鋁粉而造成液態金屬鋁流出產生鋁空殼;添加過量之玻璃粉則會阻擋液態金屬鋁之接觸面積,因電阻與接觸面積成正比,故造成高電阻率;由此可知,適當之玻璃粉添加量不但可以抑制氧化亦可增加液態金屬鋁接觸之機會,進而大幅降低電阻率。因此,本發明採用最佳玻璃粉添加量為7.5%,其鋁粉與玻璃粉比例為10:1。 本發明利用上述結果提升固體含量。配合表一顯示各個鋁膏之配方、電性、及燒結溫度總表,結果如第5圖所示,圖(a)發現鋁粉與玻璃粉比例不匹配(25:1)之狀況下提升固體含量片電阻值從13.59mΩ/sq下降至9.51mΩ/sq,僅降低約30%;而圖(b)鋁粉與玻璃粉比例匹配(10:1)之狀況下提升固含量片電阻值從10.87mΩ/sq大幅降低至4.53mΩ/sq,有效再降低約60%之片電阻值,此結果也說明了鋁粉與玻璃粉比例之重要性,而從第5圖剖面微結構也可以看出匹配之鋁粉與玻璃粉之比例可以有效增加導電通路並達到緻密之結構,進而實現一高導電率、低成本且可在空氣中燒結之厚膜導電鋁膏。 表一
1‧‧‧鋁粉
11‧‧‧固態金屬鋁
12‧‧‧液態金屬鋁
13‧‧‧表面氧化鋁
14‧‧‧導電通路
2‧‧‧玻璃粉
3‧‧‧黏著劑
4‧‧‧鋁膏
5‧‧‧陶瓷基板1‧‧‧Aluminum powder 11‧‧‧Solid metal aluminum 12‧‧‧Liquid metal aluminum 13‧‧‧Surface alumina 14‧‧‧Electrical path 2‧‧‧Glass powder 3‧‧‧Adhesive 4‧‧‧Aluminum Paste 5‧‧‧ceramic substrate
第1A圖,係本發明之製造流程示意圖。 第1B圖,係本發明之氧化鋁破裂機制示意圖。 第1C圖,係本發明之使用態樣示意圖。 第2A圖,係本發明大小鋁粉顆粒之熱重分析示意圖。 第2B圖,係本發明大小鋁粉顆粒之表面微結構示意圖。 第3圖,係本發明使用不同比例之大小粒徑鋁粉之微結構示意圖。 第4A圖,係本發明添加不同玻璃量之熱重分析示意圖。 第4B圖,係本發明添加不同比例玻璃之微結構示意圖。 第5圖,係本發明鋁粉與玻璃粉匹配與不匹配情況之微結構示意圖 第6圖,係本發明新型鋁膏與傳統鋁膏之微結構示意圖。 第7圖,係本發明高導電率厚膜鋁膏應用厚膜電阻器端電極之可靠 度硫化測試結果示意圖。 第8圖,係本發明應用於LED陶瓷基板填孔與金屬化製程之結構示意圖。 第9圖,係傳統厚膜鋁膏燒結後微結構示意圖Fig. 1A is a schematic view showing the manufacturing process of the present invention. Figure 1B is a schematic view of the alumina rupture mechanism of the present invention. Fig. 1C is a schematic view showing the use of the present invention. Fig. 2A is a schematic diagram showing the thermogravimetric analysis of the sized aluminum powder particles of the present invention. Fig. 2B is a schematic view showing the surface microstructure of the sized aluminum powder particles of the present invention. Fig. 3 is a schematic view showing the microstructure of aluminum powder of different sizes and sizes in the present invention. Figure 4A is a schematic diagram of thermogravimetric analysis of the present invention with different amounts of glass added. Figure 4B is a schematic view showing the microstructure of the present invention in which different proportions of glass are added. Fig. 5 is a schematic view showing the microstructure of the aluminum powder and the glass powder of the present invention. Fig. 6 is a schematic view showing the microstructure of the novel aluminum paste and the conventional aluminum paste of the present invention. Fig. 7 is a schematic view showing the results of reliability vulcanization test of a thick film resistor terminal electrode of a high conductivity thick film aluminum paste of the present invention. Figure 8 is a schematic view showing the structure of the present invention applied to the hole filling and metallization process of the LED ceramic substrate. Figure 9, is a schematic diagram of the microstructure of a conventional thick film aluminum paste after sintering
1‧‧‧鋁粉 1‧‧‧Aluminum powder
11‧‧‧固態金屬鋁 11‧‧‧Solid metal aluminum
12‧‧‧液態金屬鋁 12‧‧‧Liquid metal aluminum
13‧‧‧表面氧化鋁 13‧‧‧ surface alumina
14‧‧‧導電通路 14‧‧‧Electrical path
2‧‧‧玻璃粉 2‧‧‧Glass powder
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW104137774A TWI591653B (en) | 2015-11-16 | 2015-11-16 | Method for manufacturing high conductivity thick film aluminum paste |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW104137774A TWI591653B (en) | 2015-11-16 | 2015-11-16 | Method for manufacturing high conductivity thick film aluminum paste |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201719686A true TW201719686A (en) | 2017-06-01 |
TWI591653B TWI591653B (en) | 2017-07-11 |
Family
ID=59687254
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW104137774A TWI591653B (en) | 2015-11-16 | 2015-11-16 | Method for manufacturing high conductivity thick film aluminum paste |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI591653B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI823518B (en) * | 2022-06-14 | 2023-11-21 | 國立成功大學 | Method for sintering base metal electrodes or alloys at high temperature in air |
-
2015
- 2015-11-16 TW TW104137774A patent/TWI591653B/en not_active IP Right Cessation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI823518B (en) * | 2022-06-14 | 2023-11-21 | 國立成功大學 | Method for sintering base metal electrodes or alloys at high temperature in air |
Also Published As
Publication number | Publication date |
---|---|
TWI591653B (en) | 2017-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5845426B2 (en) | Ceramic laminated parts | |
JPWO2007063692A1 (en) | Ceramic substrate, electronic device, and method for manufacturing ceramic substrate | |
TWI377651B (en) | A suspension for filling via holes in silicon and method for making the same | |
WO2006003755A1 (en) | Electroconductive paste and ceramic electronic parts using the same | |
JP2012033291A (en) | Paste for electrode formation, terminal electrode and ceramic electronic part | |
US20170218512A1 (en) | Method of Fabricating High-Conductivity Thick-film Copper Paste Coated with Nano-Silver for Being Sintered in the Air | |
TWI609381B (en) | Method of fabricating high-conductivity thick-film copper paste coated with nano-silver for being sintered in the air | |
TWI591653B (en) | Method for manufacturing high conductivity thick film aluminum paste | |
CN106876067B (en) | The manufacturing method of high conductivity thick film aluminium cream | |
JPH11102614A (en) | Conductive paste for via hole and laminated ceramic substrate using it | |
JP2000049034A (en) | Ceramic electronic component and manufacture of the same | |
JP2018055819A (en) | Thick film conductive paste and manufacturing method of ceramic multilayer laminate electronic component | |
Wang et al. | Effect of mixing glass frits on electrical property and microstructure of sintered Cu conductive thick film | |
JP4973546B2 (en) | Conductive paste, multilayer ceramic electronic component and multilayer ceramic substrate | |
JP2021002517A (en) | Thick-film aluminum electrode paste composition, and chip resistor fabricated by pretreatment with metal plating thereof | |
JP2012004189A (en) | Multilayer ceramic capacitor | |
JP2003257243A (en) | Conductive paste | |
JP6709677B2 (en) | Method for preparing high-conductivity thick-film aluminum paste | |
US10174210B2 (en) | Method of fabricating high-conductivity thick-film aluminum paste | |
CN113178327A (en) | MLCC copper-clad nickel alloy inner electrode slurry and application thereof | |
JP7132591B2 (en) | Conductive paste and sintered body | |
JP5998785B2 (en) | Laminated electronic components | |
JP5265256B2 (en) | Ceramic wiring board | |
JP6683262B2 (en) | Ceramic electronic component and method for manufacturing ceramic electronic component | |
JP2002134351A (en) | Conductive paste and laminated ceramic capacitor using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |