TW201718877A - 用於氧化還原分子的檢測之高選擇性包覆電焊條奈米間隙轉換器 - Google Patents

用於氧化還原分子的檢測之高選擇性包覆電焊條奈米間隙轉換器 Download PDF

Info

Publication number
TW201718877A
TW201718877A TW105135545A TW105135545A TW201718877A TW 201718877 A TW201718877 A TW 201718877A TW 105135545 A TW105135545 A TW 105135545A TW 105135545 A TW105135545 A TW 105135545A TW 201718877 A TW201718877 A TW 201718877A
Authority
TW
Taiwan
Prior art keywords
forming
electrode
layer
coating
redox
Prior art date
Application number
TW105135545A
Other languages
English (en)
Other versions
TWI705141B (zh
Inventor
努瑞丁 泰亞比
辛 蘇
李翰東
Original Assignee
英特爾股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 英特爾股份有限公司 filed Critical 英特爾股份有限公司
Publication of TW201718877A publication Critical patent/TW201718877A/zh
Application granted granted Critical
Publication of TWI705141B publication Critical patent/TWI705141B/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3278Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction involving nanosized elements, e.g. nanogaps or nanoparticles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electrochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Nanotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Laminated Bodies (AREA)

Abstract

本發明係說明用於氧化還原分子的檢測之高選擇性包覆電焊條奈米間隙轉換器。在一示例中,分析物檢測系統包括一或多個具有用於分析物檢測的表面之轉換器電焊條。該表面包括抑制分析物與一或多個轉換器電焊條之表面直接接觸之包覆塗層。

Description

用於氧化還原分子的檢測之高選擇性包覆電焊條奈米間隙轉換器
本發明的實施方式領域係在生物分子檢測的裝置和方法,如檢測物、與特別用於氧化還原分子的檢測之高選擇性包覆電焊條奈米間隙轉換器。
DNA定序處在龐大的技術轉變陣痛之中,處理量有戲劇性的顯著增加、原始序列各基本費用的驟降,以及伴隨著為了利用該技術而來的大型資本設備之實體投資。僅在數年前無法達成的昂貴調查(個別基因組定序、宏觀基因組研究、以及無數利益有機體的基因定序),就多數而言,正以快速的步伐轉為可行。
活機體內的遺傳訊息係包含在非常長的核酸分子型式之中,如去氧核糖核酸(DNA)和核糖核酸(RNA)。天然的DNA和RNA分子通常係由稱作核苷酸的化學結構單元組合而成、藉由磷酸鹽主鏈結合,其依次由醣類(分別為去 氧核醣或核糖)、以及4鹼基的腺嘌呤(A)、胞嘧啶(C)、鳥嘌呤(G)和胸嘧啶(T)或尿嘧啶(U)其中之一所組成。例如,人類基因組包含約30億個DNA定序的核苷酸以及約估20,000個基因。DNA定序資訊可用於判別個體的多種特徵,以及許多共通疾病的顯現或易感性,如癌症、囊腫纖維化、和鐮形血球性貧血。人類基因組全部的30億個核苷酸定序之判別提供了用在確認遺傳基礎之該些疾病的基礎。人類基因定序的判別需要數年來完成。基因的定序或個人基因的區塊提供醫療個人化的機會。核酸定序資訊的需求也存在於研究、環境保護、食品安全、生化防禦、和臨床應用上,舉例如病原體檢測,即存在的檢測或病原體存在或其基因的差異。
因此,由於DNA定序係為用於生化防禦應用之重要技術,舉例如有機體的基因訊息內容之分析,因此能使定序判別更快,且、或更可靠的工具係為珍貴。舉例,如以人口數為基礎的生物多樣性計畫、疾病偵測、個人化醫療、藥物效力之預測、以及採用單核苷酸多型性的基因定型分析等的應用,刺激簡易與完整的核酸短邊長度之定序方法的需求,舉例,如含有與特定引物作用的1-20種鹼基。能提供提高精確度和/或完整度、降低成本、減少投入樣本以及/或高通量的定序方法是十分重要的分析與生物醫學工具。
此外,具有較低的資金成本的分子檢測平台被微型化且大批量的生產,能提供許多人在不同情況下,適當且負 擔得起的疾病檢測途徑,這在以前是不可能的。可負擔之分子診斷裝置的可得性,降低了社會上醫療保健的成本並增進其品質。此外,攜帶式分子檢測裝置具有安全性和危險檢測以及矯正領域方面的應用,且針對所感測到的安全性、或意外的生化或化學危害物,提供恰當的即時反應能力。
然而,DNA定序與DNA定序檢測的領域仍需要許多的改善。
100‧‧‧二極體
200‧‧‧圖表
300‧‧‧圖表
302‧‧‧間隙
400‧‧‧基板
402‧‧‧底電極
406‧‧‧保護性薄膜
408‧‧‧犠牲層
410‧‧‧頂電極
412‧‧‧保護層
414‧‧‧鈍化層
500‧‧‧圖表
700‧‧‧圖表
802‧‧‧陽性衍生物
804‧‧‧中性衍生物
806‧‧‧陰性衍生物
808‧‧‧中介衍生物
900‧‧‧奈米間隙轉換器裝置
902‧‧‧有機體包覆奈米間隙電焊條
904‧‧‧有機體包覆奈米間隙電焊條
1002‧‧‧貴重金屬電焊條
1004‧‧‧以硫醇化合物為基礎的包覆表層
1006‧‧‧典型分子的分類
1100‧‧‧CV檢測
1200‧‧‧圖表
1300‧‧‧計算裝置
1302‧‧‧主機板
1304‧‧‧處理器
1306‧‧‧通信晶片
1400‧‧‧電腦系統
1402‧‧‧處理器
1404‧‧‧主記憶體
1406‧‧‧靜態記憶體
1408‧‧‧網路介面裝置
1410‧‧‧視訊顯示單元
1412‧‧‧字母數字輸入裝置
1414‧‧‧游標控制裝置
1416‧‧‧信號產生裝置
1418‧‧‧輔助記憶體
1420‧‧‧網絡
1422‧‧‧軟體/指令
1430‧‧‧匯流排
1431‧‧‧機器可存取的儲存媒體
圖1係依照本發明一實施方式顯示(a)於氧化還原分子表面處於平衡無偏壓之能帶圖,(b)當偏壓產生時,(c)於氧化包覆電焊條上無偏壓之可能結構,(d)當eV<EC-EF=E0,以及(e)當eV>EC-EF=E0之示例。
圖2係顯示潛在的保護性電介質薄膜之能帶水平,以及其決定能量障壁的鉑功函數相關位置之比較圖表。
圖3係為掃描奈米間隙裝置剖面的顯微圖片,顯示依照本發明一實施方式之鉑電焊條上3nm厚的TiO2包覆塗層。
圖4係為闡明操作方式之剖面圖,代表了依照本發明實施方式,製作具有保護包覆之奈米間隙轉換器裝置方法的多種操作。
圖5係為描繪數種依照本發明實施方式,使用約0.240V氧化還原電位的典型化合物(10uM的二茂鐵),具 有3nm TiO2包覆的Pt-Pt奈米間隙裝置之循環伏安法曲線。
圖6係闡明依照本發明一實施方式,適合用在電焊條包覆之有機分子的示例。
圖7係為示範依照本發明一實施方式,在包覆電焊條上的氧化還原活性分子氨基苯酚,與裸焊條相比的UV-Vis監測圖表。
圖8係闡明依照本發明實施方式,適合於有機包覆的阿崙膦酸衍生物。
圖9係為闡明依照本發明實施方式,具有保護包覆之奈米間隙轉換器裝置之示意圖。
圖10係為闡明依照本發明實施方式,具有適合分子包覆之有機包覆金屬電焊條表面。
圖11包括依照本發明實施方式,包覆奈米間隙裝置的多個CV檢測。
圖12係為示範依照本發明一實施方式,DTT4包覆對於Pt奈米間隙影響的圖表。
圖13係示範依照本發明一實施的計算裝置。
圖14係示範依照本發明依實施方式的示範計算裝置之方塊圖。
【發明內容及實施方式】
本發明係說明用於氧化還原分子的該檢測之高選擇性包覆電焊條奈米間隙轉換器。在之後的敘述,為了提供本 發明實施方式的徹底了解,提出許多如檢測方法的具體細節。對熟悉該領域的人員而言,顯然可在無本發明實施方式的明確細節之下執行。在其它例子裡,為了避免不必要地模糊本發明的實施方式,不詳細敘述眾所周知的特徵,如積體電路設計圖。再者,可以理解的是該些圖中所顯示之各實施例係為說明的圖象,不必然按比例繪製。
一或多種使用電子檢測技術的實施方式目標為DNA定序。實施方式可提出方法,提供以高度並行的形式、適用於執行高靈敏度之信號檢測的緊密DNA定序平台。再者,一或多種實施方式提供極大的成本效益與精確的定序系統,促進用於改善人類健康之基因資訊的廣泛應用。就資訊而言,傳統的DNA定序技術可用在超過30億對鹼基的個別基因DNA定序解碼上。然而,由於複雜的儀器和昂貴的耗材,至少部分的DNA定序之總成本依然過高。對於常規的生物醫學分析,DNA定序平台必需是緊密、靈敏、精確並展現出高處理量,使得總成本得以負擔。
在極低濃度下檢測生物分子的能力,具有在數個領域內帶來革命性突破的潛力,包括疾病檢測/治療和環境篩選/監控。根據本發明的一實施方式,製造具有高靈敏度以及有潛力大規模並行排列的電子生化感測器,將使得經濟實惠、客製化、以及包括DNA定序平台的該些應用之微型化系統等實現。
本文所描述的一或多種實施方式係針對高靈敏度感測器的設計與製造,其能使用以氧化還原循環為基礎之檢 測,偵測來自涉及單分子的生物化學反應之反應生成物(們)。該些實施例可施用在顯著改善細胞傳訊中,DNA定序平台轉換系統的訊號與雜訊比,涉及在奈米間隙轉換器中使用氧化還原循環的氧化還原活性分子之檢測。就此而論,可達成DNA檢測靈敏度的改善,向單分子檢測邁進。
就進一步資訊而言,應當理解的是許多問題可與現有的、利用鉑做為電焊桿材料的氧化還原循環轉換器做連結。第一,氧化還原標籤降解的催化效應結果可降低信號水平。第二,高背景電流可遮掩住所檢測的真實信號(即,提供高度噪音)。第三,電焊條上所吸附的檢測物質可導致總訊號水平的降低(即,導致低訊號)。第四,操作的可能性限制可取決於電焊條與背景相互作用的特性(如,有限的氧化還原物質可做為標籤,最小化該優化窗口並最終降低該光學信號水平)。因其化學穩定性的緣故,貴金屬(如,鉑、金、銀)通常被用來做為氧化還原測量的電焊條。然而,其化學催化性能也不利於測量的靈敏度與精確度,因為直接與金屬原子接觸的有機分析物與水分子更容易能進行分子轉變或電解。這樣的催化效應可能會導致高背景電流與分析物降解。本文描述的一或多種實施方式提供解決方案,減少以上所提及催化效應。
過去特別針對這個問題的解決方法為透過鑽石的使用,其具有較佳的電化學特性。然而,鑽石通常需高溫沉澱,而這與互補金氧半導體無法並存。在第一個方面,根 據本發明的一個實施方式,轉換器電焊條材料(如,鉑或其它電化學活性材料,例如鑽石、黃金、氧化銦錫、氧化銥等)用一層非常薄(如介於0到7奈米之間的厚度)的電介質薄膜(如Ta2O5,TiO2,SiO2,Y2O3,Al2O3,HfO2,ZrO2,ZrSiO4,BaTiO3,BaZrO3,Si3N4等)包覆,用來防止或減少轉換器材料與溶液添加劑的催化反應。此外,該包覆塗層可用來降低吸附作用,而不顯著地影響在降低過成和電極氧化還原中的電子傳遞。在一實施方式中,該電介質薄膜包覆層具有低能量障壁(見圖1與2),得以讓電子穿隧或跳經過、或越過該能量障壁,進而維持與裸電焊條相似的電子傳遞速率。在另一實施方式中,非催化焊非電化學/電化學活性的薄型傳導材料可當做電化學活性層或電化學活性層組合物之保護層來使用。
在一實施方式中,提供在與互補金氧半導體相容情況中,確實製造氧化還原循環感測器的方式,使密集集成得以在單一平台上進行。這樣的氧化還原感測器可以如2009年12月31日申請且題目為「奈米間隙化學與生化感測器」的美國專利號2011/0155586,本發明將此專利納入參考。在本文中所描述的實施方式可包括相似或相同,但在電焊條材料的底部與頂部兩邊,沉積非常薄的(如,介於約0到約7奈米之間的厚度)電介質薄膜之具有附加特徵的裝置。該類裝置可用來強化訊噪比至最大,以便進行任何可進行可逆(或準可逆,由於取決於檢測方法,短週期的反應也可被檢測到)氧化還原反應的分子檢測。在 一實施方式中,相同或相似的包覆方法也可用在具有一工作電焊條的轉換器上,藉此達成化學式而非電子式的循環,如同在奈米間隙轉換器方式的情況下。
提供進一步的參考,在DNA定序的實例中,生化檢定系統(反應)設計讓以核苷酸為基礎的特定氧化還原標籤,在被奈米間隙隔開的2個電焊條之間活化(如50奈米或更小的間隙)。第3參考電焊條可用來校正流體的偏差。藉由監測兩電焊條其中之一的電流,檢測活性氧化還原標籤的出現。具有2個位置相近的電焊條,偏向鄰近的氧化還原標籤之還原電位與氧化電位,使信號得以增強,因為相同的分子經由這些電焊條之間的間隙,多次地將電子從氧化電位帶到還原電位。將該類電焊條鄰近彼此放置會導致較強的信號,因為其減少了氧化還原標籤從一電極到另一個尖的擴散時間。顯示出的電流量係與間隙中的不吸附分子數量成比例關係。根據本發明的一實施方式,在這樣的奈米氧化還原循環結構中,於電焊條材料包覆一薄型電介質薄膜會提供較高的訊噪比。因為具有來自緩衝區最小背本底電流貢獻的氧化還原標籤,該實施方式能讓讀出電路區分該氧化還原電流。再者,材料結構可造成惰性表面、最小化的分子吸收,所以更多的分子可持續移動更多的電子,造成信號增強。因此,本發明所描述的實施方式的基礎係為,對電介質薄膜氧化還原分子介面的電子轉移、其背後之穿隧與跳躍原理的理解,且製造具有該包覆層的奈米間隙裝置之方法係以此概述。在本發明中所描述 的設計可用最少次數的備製操作、減少製造成本並增加產出。
作為比較,目前最先進的奈米間隙感測電焊條係備製為具有裸電化學活性電焊條(例如鉑、鑽石、金、氧化銦錫、氧化銥等傳導材料)。用該類電焊條,以上蓋述的問題已由以下一或多種方法解決:(1)在電極電位上操作裝置,其中本底為最小,(2)用電焊條表面修正來最小化表面吸附,(3)用優化電解液或緩衝情況來最小化表面吸附,(4)用分析物濃度的增加從裝置得到更多的信號,(5)或者,若分析物傾向在表面聚合,用分析物的還原濃縮來降低電焊條沉積率,或(6)選擇介於由所用電焊條材料潛在的掃描窗口所定義之裝置操作範圍的的氧化還原複合物。然而,該類程序的提供十分複雜、費時且不必然產生可重複結果,因此降低了可性度與可重覆性。
因此,如上所提到的第一個方面中,實施方式被用在包覆層、以及這樣的保護、轉換器電焊條材料(如,鉑或其它電化學活性材料,例如鑽石、黃金、氧化銦錫、氧化銥等)具有一層非常薄(如介於0到7奈米之間的厚度)的電介質薄膜(如Ta2O5,TiO2,SiO2,Y2O3,Al2O3,HfO2,ZrO2,ZrSiO4,BaTiO3,BaZrO3,Si3N4等)包覆,用來減少或完全防止轉換器材料與溶液添加劑的催化反應、並減少吸附類型的影響,且不顯著地影響在還原與氧化電位的電子傳遞。如上述實施方式,該電介質薄膜應該具有低能量障壁,得以讓電子穿隧或跳動經過、或跳過該能量障壁,進 而維持與裸電焊條相似的電子傳遞速率。薄型傳導材料(如Ru)為非催化與非電化學活性,也可用做為保護薄膜。藉由此做法,在一實施方式中,不需要實施述目前最新方法,因此降低複雜度、增加產出與生成可靠與可重覆的結果。況且,本發明所描述的實施方式能提供在範圍廣泛的電極電位下操作的選擇,增加氧化還原標籤的選擇。氧化還原標籤選擇的增加使標籤分子優化為最大信號。此外,該開發的程序係為可伸縮,因此半導體製程的伸縮性可用來縮小感測器的尺寸。最後,相同或相似的包覆方法也可用在具有一工作電焊條的轉換器上(不包括參考電焊條),藉此達成化學式而非電子式的循環,如同在奈米間隙轉換器方式的情況下。
因此,在本文中描述的實施方式可提供氧化還原感測器製造之製程上的伸縮與整合。況且,上述先前方法背後的發展理論提供了調整參數的機會,可以提供最佳的靈敏度。尤其是提供了優化電焊條包覆層的選擇。在本發明的一或多個實施方式中,如以下所描述,理論配合與新材料以及操作處理整合的最新科技裝置組何,使電焊條包覆材料的使用成為可能並得到好處。
圖1係依照本發明一實施方式顯示(a)於氧化還原分子表面處於平衡之能帶圖,(b)當偏壓產生時,(c)於氧化包覆電焊條上無偏壓之可能結構,(d)當eV<EC-EF=E0,以及(e)當eV>EC-EF=E0之示例。
參考圖1的(a)部分如示意圖所顯示,在平衡條件下 (即,無偏壓應用),提供了還原及氧化的離子種類狀態之有效電子密度,與該電焊條表面的接觸。在氧化還原過程中,該類有效電子密度的狀態理所當然被視為相對有可能添加釋放能量之電子至氧化物種類中,或從還原的物質中移除釋放能量之電子。接近費米能階時通常被認為是指數近似。電施加偏壓V(圖1的(b)部分)時會導致從還原物質到電焊條的淨電子電流(或從氧化物質到電焊條)。在一實施方式中,電子經由該類電焊條所包覆的薄層電介質薄膜隧穿或跳躍過有效能量障壁(圖1的(c)部分)。
在eV<EC-EF=E0的情況下(圖1的(d)部分),伴隨著經由穿隧的電子傳遞速率之電流可透過方程式得到(1):
在eV>EC-EF的情況下(圖1的(e)部分),電流由2部分組成:電子的能量小於或大於EV-E0。由電子能量小於EV-E0所產生的電流與方程式(1)相符合,反之由電子能量大於EV-E0所產生的電流可由方程式(2)得到。
理想上,應該在eV>EC-EF的情況下操作以達到電子傳遞速率的最大化,同時減少施加偏壓V。然而為了達到此一目的,在一實施例中使用了低能量障壁的電介質薄膜。也應沉積較薄的鍍層以減少穿隧距離,但需要取得膜層厚度與還原電焊條催化反應以及沉積之間的折衷。
圖2係顯示潛在的保護性電介質薄膜之能帶水平,以及其決定能量障壁的鉑功函數相關位置之比較圖表200。參閱圖2,顯示各種電介質薄膜與鉑電焊條的比較。可以被理解的是並不限定為圖表200中所列出的11種電介質薄膜薄膜,且可延伸到任何其它電介質薄膜材料。同樣也適用於電焊條材料,其可為任何電化學活性材料。再者,為非催化與非電化學活性薄型傳導材料,也可用做為保護薄膜。最後,可以理解的是在較高溫度下操作可擴散狀態的電子密度,且增加電子能量,其將逐漸增加電子穿隧和跳躍的可能性,因而增加電子傳遞速率。
根據本發明一實施方式,敘述與如上所述之保護性電介質薄膜薄膜(或非催化與非電化學活性的傳導性薄膜)結合之新備製方法,係由以原子層沉積(或任何其它沉積程 序,如濺鍍、蒸發塗層法等)所沉積的薄層(如介於約0-7奈米厚度之間)組成。所得的加工轉換器可用來進行DNA定序。所得到的轉換器也可用在酵素標籤試驗。更一般地說,本發明所描述的一或多個實施例提供特殊的結合,運用在具有奈米架構的電焊條上包覆保護層來進行分子的氧化還原循環偵測。
圖3係為掃描奈米間隙裝置剖面的顯微圖片300,顯示依照本發明一實施方式之鉑電焊條上3奈米厚的TiO2包覆塗層。參考圖3,如鉻、鎢等可選擇性被蝕刻的犠牲層,被蝕刻來提供電焊條之間約50奈米的間隙302。
圖4係為闡明多種操作方式之剖面圖,代表了依照本發明一實施方式,製作具有保護包覆之奈米間隙轉換器裝置的方法。
參考圖4的(a)部分,在基板400上或上方形成底電極402。在一實施方式中,底電極402係經由材料沉積、微影、硬遮沉積以及蝕刻加工流程備製而成。在一實施方式中,底電極402係以最小表面粗糙度與最小厚度組成,以便將頂部與底部電極後續減少的可能性降至最低。粗糙度可能導致犠牲適形塗層的開口,且具有高縱橫比的邊緣可能導致犠牲層的變薄/空隙。在一實施方式中,底電極402的組成係由不侷限於如鉑、金、鑽石、氧化銦錫或氧化銥的物質,由不侷限於如揮發、濺鍍、原子層沉積、化學蒸氣澱積或熱燈絲的技術沉積而成。在鑽石的例子裡,可能需要沉積厚包覆層,並形成在電焊條邊緣的高縱橫比 的結構。這樣的高縱橫比結構可導致電焊條邊緣的犠牲薄膜變薄,增加頂部電極與底部電極之間不足的可能性。為了減輕該類問題,在一個實施方式中,奈米間隙裝置的平坦化可透過沉積介電層(如氮化矽或二氧化矽)並用該電介質的化學機械拋光(CMP)來達到表面的平坦,隨後用於在後續包覆層上的強化保角塗層。在一些實施方式中,如鉻、鉭或各種其它的黏合層可用來改善電焊條與基板之間的結合。
參考圖4的(b)部分,保護性薄膜406接著在圖4(a)部分的結構上形成。在一實施方式中,藉由沉積與排列保護性薄膜406的材料層形成保護性薄膜406。在一實施方式中,在保護性薄膜材料的沉積後,底電極與保護性薄膜的組合可由掀離或蝕刻程序定義。在保護性薄膜為電介質的情況中,底電極可形成且接著電介質保護性薄膜可隨後沉積,不需進一步的圖形排列。
參考圖4的(c)部分,犠牲層408接著在圖4(b)部分的結構上形成。在一實施方式中,犠牲層408係由沉積與圖形方法形成。在一實施方式中,犠牲層408係由不侷限如Cr、W或Ti的材料所組成,且具有約或小於100奈米的厚度。在一實施方式中,犠牲層408係由不侷限於如濺鍍、蒸發或原子層沉積的沉積技術所形成,且由掀離或蝕刻(濕或乾)技術形成圖案結構。在一特定實施方式中,原子層沉積方法能高度實現具有高度厚度控制的保角塗層,實現非常薄的(如小於100埃)奈米間隙,可以進一步改善 裝置的靈敏度,並盡可能減低在高縱橫比電焊條結構上變薄/開口的可能,以提供較高可性度的裝置(製品產出)。
參考圖4的(d)部分,頂電極410與相對應的保護層412在圖4的(c)部分結構上形成。在一實施方式中,保護層412先以相似於保護層406形態的方式沉積。接著沉積頂電極410材料,頂電極與保護層組合之圖案結構可經由掀離或蝕刻(乾/濕)技術形成。雖然如圖4所顯示的圖案結構,在保護性薄膜為電介質的情況下,不需要形成保護性薄膜412的圖案。
參考圖4的(e)部分,鈍化層414接著在圖4(d)部分的結構上形成。在一實施方式中,在頂電極的沉積與結構形成後(如進行結構成形以留下進出犠牲層與間隙的開口),沉積鈍化層414來將量測過程中的本底電流減至最小。在典型的實施方式中,鈍化層414係為一層由化學揮發沉積物(PECVD)氮化物/氧化物/氮化物(2300A/3000A/2300A)所增強的電漿。其它介質層如碳化矽(O/N)或如聚亞醯胺的聚合物層可做為鈍化層,假定程序最優化確保鈍化層長期的可靠度/穩定性,以及緩衝液中最少的電流外泄。參考圖4中的(f)部分,接著用合適的選擇性濕式蝕刻去除犠牲層408。
可以理解的是也可進行其它的程序備製方法,如一次全部形成的疊層沉積(如底電極/保護性包覆層/犠牲層/保護性包覆層/頂電極)且由掀離或蝕刻(如乾/濕)形成圖案結構,跟著接著發生的頂電極接觸界定和鈍化。根據 一實施方式,儘管在本文中所代表的裝置係由純矽基板備製,該程序可在平坦化的互補金氧半導體晶圓上重現,用於電子產品轉換器的單石集成。
圖5係為依照本發明實施方式,使用約0.240V氧化還原電位的典型化合物(10uM的二茂鐵),具有3nm TiO2包覆的Pt-Pt奈米間隙裝置之循環伏安法曲線的圖表500。參考圖5,由鉑電焊條製成的奈米間隙裝置所得、和用TiO2薄膜保護以及使用原子層沉積法沉積的循環伏安法曲線,揭示了該類裝置因著降低積垢效應的優越化學性能。
在第二個方面來說,根據本發明的另外實施方式,描述適合做為以氧化還原為基礎之生化化學感測的變形有機表面,即包覆,電焊條奈米間隙轉換器。一或多個針對電焊條表面變形程序以及化學方法之實施方法,附加於(即,代替或組合)以上所描述用於氧化還原分子的檢測之保護性薄膜包覆電焊條奈米間隙轉換器。
就資訊而言,在生物分子以及化學品極低濃度時的檢測靈敏度與特異性,具有包括臨床診斷、疫病控制、環境監測與食品安全等數個領域的革命性潛力。製造具有可擴縮性與速度的電子生物分子與化學感測器,能實現該類應用包括最新的DNA定序平台的高度可負擔、可客制化、以及微型化。
一或多個的實施方法,係針對以具有界限分明或自組裝單分子膜、或數層極薄的親水性與生物相容性有機化合 物(如:聚乙二醇、苯胺、磷酸酯、硫醇、肽等)包覆轉換器電焊條材料(如鉑或其他電化學活性材料,如鑽石、金、氧化銦錫、氧化銥等),以減少或預防轉換器材料與溶劑或溶液添加劑的整體催化反應,以及減少氧化還原標籤的吸附,而不顯著地降低在氧化與還原電極上的電子傳遞。在這樣一個實施方式中,有機或生物分子包覆層具有低能量障壁,得以讓電子穿隧或跳經過、或越過該能量障壁,進而維持與裸電焊條相似的(如90到100%)電子傳遞速率。在一特殊的實施方式中,包覆層為非催化與非電化學活性(或具有降低的催化和電化學活動)且可做為保護性薄膜,減少分析中的積垢或變性。
就提供資訊而言,電焊條表面的微結構、潔淨度與化學成分某種程度上決定電子移轉反應如何進行。本發明中所描述的實施方式包括用包覆來保護電焊條表面免於污染的方法。水滴對表面的接觸角度係為表面清水性的測量。在潔淨鉑與金上進行的實驗皆顯現出清水性。然而,僅在暴露於周圍實驗室條件的數分鐘之內,兩表面皆變得越來越疏水。此變化是由於吸附或非特異性結合各種化學物質,表示表面受到污染。
一或多個實施方式針對確實製造氧化還原循環感測器的方法,在與互補金氧半導體相容情況下,使密集集成得以在單一平台上進行。在一個實施方式中,得到的裝置可能與現有的奈米間隙裝置相似,附加特徵為在底部與頂部電極兩邊有界限分明的或自組裝單分子膜、或數層極薄的 親水性與生物相容性有機化合物。包覆層可被用來盡可能地增大訊噪比,以及減少可通過可逆(或準可逆:取決於檢測方法也可被檢測到的短期生命週期反應)氧化還原反應的任何分子檢測中所發生的積垢。相同或相似的包覆方法也可用在具有工作電焊條的轉換器上(不包括參考電焊條),藉此達成化學式而非電子式的循環,如同在奈米間隙轉換器方式的情況下。
根據本發明的實施方式,在DNA定序的情況下的生物檢測系統(反應)已被設計成,可以為鹼基特異性,產生靠近或介於由奈米間隙(如100奈米或更小)分隔的兩個電焊條之間的氧化還原標籤。第3參考電焊條可用來校正流體的偏差。藉由監測兩電焊條其中之一的電流,檢測氧化還原標籤的出現。監測兩電焊條能在極少數的氧化還原標籤出現在奈米間隙時,使檢測隨著兩電焊條出現的反相關電流之檢測成為可能。具有2個位置相近的電焊條,偏向鄰近的氧化還原標籤之還原電位與氧化電位,使信號得以增強,因為相同的分子經由這些電焊條之間的間隙,多次地將電子從氧化電位帶到還原電位。將電焊條相鄰放置可得到較高的信號,因為距離的靠近能減少氧化還原標籤從一電焊條到另一個的擴散時間。顯示出的電流量係與間隙中的不吸附分子數量成比例關係。在實施方式中,以界限分明的或自組裝的單分子膜、或數層極薄的親水性與生物相容性有機化合物,在這樣的奈米間隙氧化還原循環結構中來包覆電焊條材料,能促使較高訊噪比的達成以及防止 積垢的發生。在特定實施方式中,因為具有來自緩衝區最小本底電流貢獻的氧化還原標籤,結果能讓對應的讀出電路區分該氧化還原電流。該結果也可出現在鈍化面上,盡可能減少分子的吸附,如此一來相同的分子可以承載更多電子,造成更多的信號。該設計用到的備製步驟數最少、減少製造成本並增加產出。
一或多個包含包覆層的實施方式,並以具有界限分明的或自組裝的單分子膜、或數層極薄的親水性有機聚合物或生物高聚物來保護轉換器電焊條材料(如鉑或其他電化學活性材料如鑽石、金、氧化銦錫、氧化銥等)。在一實施方式中,包覆層適合用來防止(或至少持續性的抑制)轉換器材料與溶液添加劑的催化反應,並減少吸附物質的影響,且不影響在氧化與還原電極間的電子傳遞。相較於裸電焊條,也可用特定的電荷密度來控制包覆層,促進電子傳遞速率。在一實施方式中,包覆層為非催化與非電化學活性(或具有降低的催化和電化活動性),且可做為保護性薄膜,減少積垢或變性。藉著改變包覆層的結構與充電特性,可增進電子傳遞來改善靈敏度。透過這麼做,可不需先前的溶劑、降低複雜度、增加產出以及得到可靠及可重覆性的結果。此外,本發明中所描述的實施方式可提供在範圍更廣的電極電位下操作之選項,增加氧化還原標籤考量到信號最大化的標籤分子最佳化之選擇。再來,該開發的程序係為可伸縮,因此半導體製程的伸縮性可用來縮小感測器的尺寸。
圖6係闡明依照本發明一實施方式,適合用在電焊條包覆之有機分子的示例。參考圖6的(a)部分,四-二硫蘇糖醇-磷酸鹽可做為表層包覆分子。參考圖6的(b)部分,四-二硫蘇糖醇-二茂鐵-磷酸鹽可做為表層包覆分子。這些示例可藉由合適的、如本發明所敘述的製造程序來實現保護性有機包覆層。應用包括在DNA定序或酵素性標籤檢驗上使用所產生的轉換器。
在實施方式中,做到在用於分子氧化還原循環檢測、具有奈米間隙結構的電焊條上,結合保護性的有機包覆層之特殊組合。備製程序流程可視為具有五個主要考慮的點(且因此的變化),如下所略述。
第一個考量,在實施方式中,底電極的成形需要形成具有最小表面粗糙度和最小厚度的底電極(如,做為沉積材料),好盡量缺少降低頂部與底部電極的可能性。粗糙度可能導致犠牲保角塗層上的開口,且具有高縱橫比的邊緣可能導致犠牲層變薄或空隙。在該一實施方式中,藉由合適的技術沉積(如蒸發、濺鍍、原子層沉積、化學蒸氣澱積、熱燈絲等)來沉積底電極(如鉑、金、鑽石、氧化銦錫、氧化銥等)。在要求沉積厚膜層(如鑽石)的案例中,創造了在電焊條邊緣的高縱橫比結構。該高縱橫比結構可引起電焊條邊緣的犠牲薄膜變薄,增加頂部電極與底部電極之間不足的可能性。為了減輕這個問題,在一個實施方式中,奈米間隙裝置的平坦化可透過沉積介電層(如氮化矽或二氧化矽)並用該電介質的化學機械拋光(CMP)來達到表 面的平坦,隨後用於在後續包覆層上的強化保角塗層。
在第二個與犠牲薄膜成形相關的考量點中,在實施方式中,沉積(透過濺鍍、蒸發、原子層沉積等)厚度約為或小於500埃的犠牲層(如鉻、鎢、鈦等),並透過掀離或蝕刻(濕或乾)方法來成形。原子層沉積能高度實現具有高度厚度控制的保角塗層,實現非常薄的(如小於100埃)奈米間隙,可以進一步改善裝置的靈敏度,並盡可能減低在高縱橫比電焊條結構上變薄/開口的可能,以提供較高可性度的裝置。
在第三個頂電極成形相關的考量點中,在實施方式中,沉積頂電極材料,且透過掀離或蝕刻(乾/濕)技術形成頂電極與保護層的組合。
在第四個與奈米間隙裝置鈍化相關的考量中,在實施方式中,於頂電極的沉積與結構形成後(如進行結構成形以留下進出犠牲層與間隙的開口),沉積鈍化介電來將量測過程中的本底電流減至最小。在典型的實施方式中,用一層由化學揮發沉積物(PECVD)氮化物/氧化物/氮化物(2300A/3000A/2300A)所增強的電漿做為鈍化層。其它介電層如碳化矽(O/N)或如聚亞醯胺的聚合物層可做為鈍化層,假定程序最優化確保鈍化層長期的可靠度/穩定性,以及緩衝液中最少的電流外泄。犠牲層可接著在合適的選擇性濕式浸泡中蝕刻,形成奈米間隙結構。
在第五個與表層包覆相關的考量中,在實施方式中,也可進行其它的程序備製方法,如一次全部形成的疊層沉 積(如底電極/保護性包覆層/犠牲層/保護性包覆層/頂電極)且由掀離或蝕刻(如乾/濕)形成圖案結構,跟著接著發生的頂電極接觸界定和鈍化。
在實施方式中,有機材料包覆層的施做係經由物理吸收、化學鍵結、以及/或電鍍進行。儘管本發明所呈現的裝置係計劃用純矽基板備製,該程序可在平坦化的互補金氧半導體晶圓上重現,用於電子產品轉換器的單石集成。
圖7係為示範依照本發明一實施方式,在包覆電焊條上的氧化還原活性分子氨基苯酚,與裸焊條相比的UV-Vis監測圖表700。參照圖表700,從238奈米到260奈米與從300奈米到370奈米的紅移代表氨基苯酚的催化性氧化作用。有機包覆層最小化電焊條鉑表面的催化活動。在特定實施方式的所有包覆層中(如苯胺、氮雜-腺嘌呤、多-腺甘酸(polyA)、巰基十一醇(Thiol-C11OH),以及聚乙二醇(PEG)),苯胺提供最有效的保護。
圖8係闡明依照本發明一實施方式,適合於有機包覆的阿崙膦酸衍生物。參照圖8,示範典型的陽性衍生物802、中性衍生物804、陰性衍生物806、以及中介衍生物808。
圖9係為闡明依照本發明一實施方式,具有保護包覆之奈米間隙轉換器裝置900之示意圖。參照圖9,固體電極係以有機體包覆奈米間隙電焊條902與904顯示。在一實施方式中,如所繪示的在電焊條備置後施做有機體包覆層。
圖10係為闡明依照本發明一實施方式,具有適合分子包覆之有機包覆金屬電焊條表面。參照圖10,貴重金屬電焊條1002上方有以硫醇化合物為基礎的包覆表層1004。典型分子的分類1006提供額外合適的表面包覆分子示例。
圖11包括依照本發明一實施方式,包覆奈米間隙裝置的多個CV檢測1100。參考圖11,係顯示包覆在鉑奈米間隙上TiO2之上的阿崙膦酸鈉與衍生物,其中1100來自四個裝置的各個曲線圖超過10微米pAP。此外,圖12係為顯示依照本發明一實施方式,DTT4包覆對於Pt奈米間隙影響的圖表1200。
在實施方式中,上述所有描述的考量面所得到的裝置,可運用在二氧化矽平台上製造超密陣列的化學修飾感測器,供整個基因組定序之用。在這樣的實施方式中,各感測器被用來檢測從特定區位測試/填載反應中產生(如,以氧化還原活性分子的形式)的化學信號,識別鹼基對。該類裝置在感應各區位產生的信號分子是非常關鍵的。然而以上所描述的用途不是如此的局限。例如,在其他實施方式中,具有如以上所述包覆層之電焊條,透過鹼基特定氧化還原標籤靈敏且穩健的檢測,為密集集成轉換器陣列提供賦能技術。改進轉換器的訊噪比能使得檢測具有較高的保握,而且也減輕生物化學相關的要求。一般說來,本發明中所描述的實施方式適用於實現各種涉及高靈敏度電子生物感測器陣列鹼基的應用。應用範圍可從具有 氧化還原活性物質做為溶劑內分析物、或使用氧化還原活性分子做為部分基本物質的檢測標籤,如同我們完成的實例。部分氧化還原活性物質在其中可發揮作用的應用示例可以是高產出的DNA定序、用於疾病監控的生物分子檢測、定點照護診斷。
提供其它的一般背景資訊,整體來說,一或多個實施方式係針對執行以電信號為基礎的氧化還原檢測,如DNA定序。電子集成電路可用來檢測這樣的信號。具有互補金氧半導體集成電路(ICs)與定序應用的化學方法組合,提供傳統檢測方式之前無法實現的優勢。此外,互補金氧半導體IC晶片可用在龐大人體基因定序資訊的產生上,影響先進的製成技術。
如本文中所使用的「感測器」或「轉換器」係指實體或裝置,能偵測或感應由電子移動所造成的電信號,包括但不侷限於電阻、電流、電壓與電容。即,該轉換器或感測器能檢測電流形式的信號、或檢測電壓、或檢測電荷、或阻抗或磁場、或它們的組合。轉換器陣列具有一或多個,上至數十億個轉換器。
「陣列」是一系列刻意製造的實體,如分子、孔道、微型螺絲圈、檢測器與/或感測器(或轉換器),附著或備製於如玻璃、塑膠、矽晶片、IC晶片或其他材質的基板或固體表面上並形成陣列。該類陣列(如感測器/轉換器陣列)可用來量測信號的位置及大數水平,如,同時數十、數千、數百萬、或數十億的反應或組合。陣列也可含 有少數的實體,如幾個或一打。陣列中的實體彼此可為相同或不同。該陣列可設定為各種不同形式,如可溶性分子化合物庫;鏈結樹脂珠、二氧化矽晶片的化合物或其他固態載體的化合物庫。陣列可為巨陣列或微陣列,取決於陣列的底座尺寸(特徵)。巨陣列一般含有約300微米或如1微米般小的、或甚至0.1微米尺寸的底座(特徵)。感測器陣列一般會含有尺寸小於300微米的底座。感測器/轉換器陣列的感測元件(如感測器陣列特徵或感測器底座)可用電子學方法個別地定址。
「分析物」一詞指的是被檢測與/或分析的關注分子,如核甘酸、寡核酸、多核苷酸、胜肽或蛋白質。分析物、標靶或標靶分子可以是小分子、生物分子、或奈米材料,如但不一定局限為生物活性小分子、核酸以及它們的定序、胜肽或多月胜肽,以及用生化分子或能與分子探針結核之小分子的化學修飾奈米結構材料,如化學修飾的奈米碳管、奈米碳管束、奈米線、奈米簇或奈米粒子。標把分子可以是螢光標記的抗原、抗體、去氧核糖核酸或核糖核酸。「生物分析物」指的是生物分子的分析物。具體地說,用於DNA定序的分析物可以是含有核酸分子的樣本,如基因體或合成、或生化增幅去氧核糖核酸或互補去氧核糖核酸。「分析物」分子可與「標靶」分子交替使用。
「標籤」一詞係用來指可由觀察者辨別,但不一定為系統用來辨識分析物或標靶的記號或指標。標籤也可藉由 經歷預先設計的檢測過程來實現其效果。標籤常被用在生物檢測,結合或附加在否則難以檢測的實體上。同時,標籤通常不改變或影響所強調的檢測程序。在生物檢測中使用的標籤包括,但不侷限於放射性材料、磁性材料、量子點、酵素、脂質體基礎標籤、發色團、螢光團、染料、奈米粒子、量子點或量子井、有機-無機-合成物奈米簇、膠態金屬粒子、或它們的組合。在實施方式中,標籤或標記最好是金屬-有機複合物,可根據光的照射誘導來產生電子電流。
圖13係示範依照本發明一實施的計算裝置1300。該計算裝置1300建有主機板1302。主機板1302可包括數個元件,包括但不侷限於處理器1304與至少一個通信晶片1306。處理器1304與主機板1302實體及電力地耦合。在部分的實現中,至少一個通信晶片1306也與主機板1302實體及電力地耦合。在進一步的實現中,通信晶片1306係為處理器1304的一部分。
取決於其應用,計算裝置1300可包括其它可或不可與主機板1302實體及電力耦合的元件。該些其它元件包括,但不侷限,揮發性記憶體(如,動態隨機存取記憶體DRAM)、非揮揮發性記憶體(如,唯獨記憶體ROM)、快閃記憶體、圖形處理器、數位信號處理器、加密處理器、晶片組、天線、顯示器、觸控螢幕顯示器、觸控螢幕控制器、電池、音訊編碼解碼器、視訊編解碼器、功率放大器、全球定位系統(GPS)裝置、羅盤、加速計、陀螺儀、 揚聲器、相機、以及大容量儲存裝置(如硬式磁碟機、光碟(CD)、數位通用磁碟(DVD)等等其它)。
通信晶片1306能使資料傳輸以無線通信方式從計算裝置1300進出。「無線」一詞與它的衍生詞可用來描述電路、裝置、系統、方法、技術、通信頻道等,經由透過實體介質來調節電磁輻射的方法傳遞資料。該名詞不意味相關的裝置不含任何的線路,儘管在部分實施方式中它們可能不含。通信晶片1306可履行任何的一些無線通訊標準或協定,包括但不侷限於Wi-Fi(IEEE 802.11家族)、WiMAX(IEEE 802.16家族)、IEEE 802.20、長期演進技術(LTE)、Ev-DO、HSPA+、HSDPA+、HSUPA+、EDGE、GSM、GPRS、CDMA、TDMA、DECT、藍芽、其衍生物,以及任何其被標為3G、4G、5G和更先進的它無線通訊協定。計算裝置1300可包括多個通訊晶片1306。例如,第一個通信晶片1306可專用在較短範圍的無線通信上,如Wi-Fi與藍芽,而第二個通信晶片1306可專用於範圍較廣的無線通信上,如GPS、EDGE、GPRS、CDMA、WiMAX、LTE、Ev-DO、以及其它。
計算裝置1300的處理器1304包含封裝於處理器1304內的集成電路晶粒。在本發明的某些實施中,根據本發明的實施方式,處理器的集成電路晶粒包括在或耦合至集成轉換器陣列之內。「處理器」一詞可以指任何裝置或裝置的部件,其處理從暫存器與/或記憶體的電子資料以轉換該電子資料為存儲在暫存器與/或記憶體中的其他 電子數據。
通信晶片1306還包括封裝在通信晶片1306上的集成電路晶粒。在本發明的其它實現中,根據本發明的實施方式,通信晶片的集成電路晶粒包括在或耦合至集成轉換器陣列之內。
在進一步的實現中,根據本發明的實施方式,計算裝置1300上封裝的其它部件可含有包含集成轉換器陣列、或與之耦合的集成電路晶粒。
在不同的實現中,計算裝置1300可以是膝上型電腦、小筆電、筆電、超薄筆電、智慧型手機、平板、個人數位助理(PDA)、超行動個人電腦、行動電話、桌上型電腦、伺服器、印表機、掃描器、監視器、機上盒、娛樂控制單元、數位相機、可攜式音樂播放器、數位攝影機。在進一步的實現中,計算裝置1300可以是任何其它處理資料的電子裝置。
本發明的實施方式可用電腦程式產品或軟體呈現,可包括具有指令儲存其中的機器可讀介體,可用在設計電腦系統(或其它電子裝置)來執行根據本發明的程序。機器可讀介體包括用來儲存或將資訊以機械可讀型式傳送的任何機構(如電腦)。例如,機械可讀(如電腦可讀)介體包含機械(如電腦)可讀儲存介體(如,唯獨記憶體(“ROM”)、隨機存取記憶體(“RAM”)、磁碟儲存器媒體、光學儲存器媒體、快閃記憶體等)、機械(如電腦)可讀傳輸介質(電的、光學的、聲學或其它傳播的信號(如,紅外線訊號、數位 信號等))等等。
圖14為闡明機器在電腦系統1400之示例型式的單線表示法,在其中的一組用來使機械完成任一或多個本發明討論之方法的指令可被實施。在替代性實施方式中,該機器可連接(如網絡)到區域網路(LAN)、內部網路、商際網路或網際網路上的其它機器。操作的機器可以是伺服器或在客戶伺服器網路環境中的客戶機器,或是對等(或分散式)網路環境中的同級機器。機器可以是個人電腦(PC)、平板PC、機上盒(STB)、個人數位助理(PDA)、蜂巢式電話、網路裝置、伺服器、網路選路器、開關或橋接器、或任何機器,其能夠執行一組指定機械採行作用的指令(循序或其它)。再者,雖然僅用單一機器圖示做說明,「機器」一詞也應包含任何機器(如電腦)的集合,其個別或共同地執行一組(或多組)指令,實現任何一或多個本發明討論的方法。
該示範性電腦系統1400包含處理器1402、主記憶體1404(如,唯獨記憶體(ROM)、快閃記憶體、如同步動態隨機存取記憶體(SDRAM)、RDRAM記憶體等的動態隨機存取記憶體(DRAM))、靜態記憶體1406(如快閃記憶體、靜態隨機存取記憶體(SRAM)等),以及輔助記憶體1418(如資料儲存裝置),透過匯流排1430與彼此溝通。
處理器1402代表一或多個通用的處理裝置,如微處理器、中央處理單位或類似裝置。更具體地說,處理器1402可以是複雜指令集電腦(CISC)微處理器、精簡指令集 電腦(RISC)微處理器、極長指令(VLIW)微處理器、執行其它指令集的處理器、或執行指令集組合的處理器。處理器1402也可是一或多個特殊目地的處理裝置,如特殊應用積體電路(ASIC)、現場可程式閘陣列(FPGA)、數位信號處理器(DSP)、網路處理器或類似裝置。處理器1402被設定來執行處理邏輯1426,以完成在本文中所討論的操作。
電腦系統1400可進一步包括網路介面裝置1408。電腦系統1400也包括視訊顯示單元1410(如液晶顯示器(LCD)或陰極射線管(CRT))、字母數字輸入裝置1412(如鍵盤)、游標控制裝置1414(如滑鼠)、信號產生裝置1416(如揚聲器)。
輔助記憶體1418也包括機器可存取的儲存媒體(或更具體的電腦可讀取的儲存媒體)1431,其中儲存了一或多組指令(如軟體1422),能體現本文中所描述的一或多種方法或功能。軟體1422在其由電腦系統1400執行期間,也可完全或至少部分存在主記憶體1404與/或處理器1402,主記憶體1404與處理器1402也構成機器可讀取儲存媒體。軟體1422可進一步透過網路介面裝置1408在網絡1420上傳送或接收。
當機器可存取的儲存媒體1431在示例實施方式中以單一媒體顯示時,「機器可讀取儲存媒體」一詞應被解釋為包括儲存一或多組指令的單一媒體或多媒體(如,集中式或分散式資料庫,與/或相關的快取記憶體與伺服器)。「機器可讀取儲存媒體」一詞也應被視為包括任何 能儲存或編譯一組機器用於執行的指令之媒體,其能使機器完成任一或多個本發明的方法。「機器可讀取儲存媒體」一詞應相對地被理解為包括,但不侷限於,固態記憶體、與光學以及磁性媒體。
因此,本發明的實施方式包括用於氧化還原分子的檢測之高選擇性包覆電焊條奈米間隙轉換器。
實施方式中,分析物檢測系統包括一或多個具有用於分析物檢測表面之轉換器電焊條。該表面包括抑制分析物與一或多個轉換器電焊條之表面直接接觸之包覆塗層。
一實施方式中,包覆層由電介質薄膜組成。
一實施方式中,電介質薄膜組成物質不侷限於,Ta2O5,TiO2,SiO2,Y2O3,Al2O3,HfO2,ZrO2,ZrSiO4,BaTiO3,BaZrO3或Si3N4
一實施方式中,電介質薄膜具有範圍約0-7奈米的厚度。
一實施方式中,其中該電介質薄膜具有啟動電子穿隧的低能量障壁,或躍經或躍過該能量障壁,以維持與裸銲條相近的電子傳遞率。
一實施方式中,包覆層由非催化與非電化學活性的薄型傳導材料組成。
一實施方式中,薄型傳導材料為釕(Ru)
一實施方式中,包覆層由有機薄膜組成。
一實施方式中,有機薄膜係由界限分明或自組性的單層、或非常薄的多層親水層與例如但不侷限於聚乙二醇、 苯胺、磷酸酯、硫醇或肽等的生物相容性有機複合物所組成。
一實施方式中,有機薄膜係由四-二硫蘇糖醇-磷酸鹽,或四-二硫蘇糖醇-二茂鐵-磷酸鹽組成。
一實施方式中,其中該有機薄膜具有啟動電子穿隧的低能量障壁,或躍經或躍過該能量障壁,以維持與裸銲條相近的電子傳遞率。
一實施方式中,一或多個轉換器電焊條的組成物質例如,但不侷限於,鉑、鑽石、金、氧化銦錫(ITO)或氧化銥。
一實施方式中,該包覆層減少或預防該一或多個帶有溶液添加劑的轉換器電焊條之催化反應,並減少吸附物種的該影響,且在還原電極和氧化電極時不影響電子傳遞。
一實施方式中,一或多個轉換器電焊條係包含在雙電極奈米間隙之化學和生化感測器之中,以使用氧化還原循環的氧化活性分子之偵測為基礎。
一實施方式中,僅包含一個轉換器電焊條的分析物檢測系統被含括在以單一電焊條為基礎的化學循環中。
實施方式中,備製雙電焊條奈米間隙化學與生物化學感測器的方法包含在基板上方形成底電極。該方法還包含在底電極上形成第一包覆塗層。該方法還包含在第一包覆塗層上形成犠牲層。該方法還包含在犠牲層上形成第二包覆塗層。該方法還包含在第二包覆塗層形成頂電極。該方法也包含在形成該第二包覆塗層和該頂電極之後,接著去 除該犠牲層且不去除該第一與第二包覆塗層。
一實施方式中,形成第一與第二包覆塗層包含形成電介質薄膜。
一實施方式中,電介質薄膜組成物質不侷限於,Ta2O5,TiO2,SiO2,Y2O3,Al2O3,HfO2,ZrO2,ZrSiO4,BaTiO3,BaZrO3或Si3N4
一實施方式中,形成第一與第二包覆塗層包含形成由非催化與非電化學活性的薄型傳導材料。
一實施方式中,形成薄型傳導材料包含形成釕(Ru)層。
實施方式中,備製分析物檢測系統的方法包含一或多個具有用於分析物檢測表面之轉換器電焊條。該方法還包含在表面形成有機薄膜,以抑制分析物與該一或多個轉換器電焊條表面的直接接觸。
一實施方式中,形成有機薄膜包含形成界限分明或自組性的單層、或非常薄的多層親水層,以及例如但不侷限於聚乙二醇、苯胺、磷酸酯、硫醇或肽等的生物相容性有機複合物。
一實施方式中,形成有機薄膜包含形成由四-二硫蘇糖醇-磷酸鹽、或四-二硫蘇糖醇-二茂鐵-磷酸鹽所組成的薄膜。
400‧‧‧基板
402‧‧‧底電極
406‧‧‧保護性薄膜
408‧‧‧犠牲層
410‧‧‧頂電極
412‧‧‧保護層
414‧‧‧鈍化層

Claims (8)

  1. 一種備製雙電極奈米間隙化學和生化感測器的方法,該方法包含:在基板上形成底電極;在該底電極上形成第一塗層;在該第一塗層上形成犠牲層;在該犠牲層上形成第二塗層;在該第二塗層上形成頂電極;以及接著在形成該第二塗層和該頂電極之後,去除該犠牲層且無去除該第一與第二塗層。
  2. 如申請專利範圍第1項所述之雙電極奈米間隙化學和生化感測器的方法,其中形成該第一與第二塗層包含形成電介質膜。
  3. 如申請專利範圍第2項所述之雙電極奈米間隙化學和生化感測器的方法,其中形成該電介質膜包含形成從由Ta2O5、TiO2、SiO2、Y2O3、Al2O3、HfO2、ZrO2、ZrSiO4、BaTiO3、BaZrO3以及Si3N4組成的族群中選出之材料。
  4. 如申請專利範圍第1項所述之雙電極奈米間隙化學和生化感測器的方法,其中形成該第一與第二塗層包含形成薄傳導材料,該薄傳導材料在用於目標分子的檢測之電壓範圍內為非催化及非電化學活性。
  5. 如申請專利範圍第4項所述之雙電極奈米間隙化學和生化感測器的方法,其中形成該薄傳導材料包含形成 釕(Ru)層。
  6. 一種備製分析物檢測系統的方法,該方法包含:形成一或多裸轉換器電極,其具有用於分析物檢測之表面;以及在該一或多個裸轉換器電極的該表面上形成有機膜,以抑制該一或多個轉換器電極的該表面與分析物之直接接觸。
  7. 如申請專利範圍第6項所述之備製分析物檢測系統的方法,其中形成該有機膜包含形成界限分明或自組性的單層或非常薄的多層之親水與生物相容有機化合物,其係從聚乙二醇、苯胺、磷酸酯、硫醇和肽所組成之族群中選出。
  8. 如申請專利範圍第6項所述之備製分析物檢測系統的方法,其中形成該有機膜包含形成四-二硫蘇糖醇-磷酸鹽或四-二硫蘇糖醇-二茂鐵-磷酸鹽的膜。
TW105135545A 2013-12-12 2014-10-29 用於氧化還原分子的檢測之高選擇性包覆電焊條奈米間隙轉換器 TWI705141B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/104,546 2013-12-12
US14/104,546 US9354195B2 (en) 2013-12-12 2013-12-12 Highly selective coated-electrode nanogap transducers for the detection of redox molecules

Publications (2)

Publication Number Publication Date
TW201718877A true TW201718877A (zh) 2017-06-01
TWI705141B TWI705141B (zh) 2020-09-21

Family

ID=53368091

Family Applications (2)

Application Number Title Priority Date Filing Date
TW105135545A TWI705141B (zh) 2013-12-12 2014-10-29 用於氧化還原分子的檢測之高選擇性包覆電焊條奈米間隙轉換器
TW103137440A TWI567203B (zh) 2013-12-12 2014-10-29 用於氧化還原分子的檢測之高選擇性包覆電焊條奈米間隙轉換器

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW103137440A TWI567203B (zh) 2013-12-12 2014-10-29 用於氧化還原分子的檢測之高選擇性包覆電焊條奈米間隙轉換器

Country Status (6)

Country Link
US (2) US9354195B2 (zh)
EP (1) EP3080596B1 (zh)
JP (1) JP6316958B2 (zh)
RU (1) RU2643218C2 (zh)
TW (2) TWI705141B (zh)
WO (1) WO2015088642A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7282379B2 (ja) * 2017-08-22 2023-05-29 国立大学法人東海国立大学機構 修飾ポリヌクレオチド
US11740226B2 (en) 2017-10-13 2023-08-29 Analog Devices International Unlimited Company Designs and fabrication of nanogap sensors
WO2021007228A1 (en) * 2019-07-08 2021-01-14 Analog Devices International Unlimited Company Integrated sensor array and circuitry
WO2022067046A1 (en) * 2020-09-24 2022-03-31 University Of Cincinnati Continuous optical aptamer sensors
AU2021349959A1 (en) * 2020-09-24 2023-05-04 University Of Cincinnati Small volume aptamer sensing without solution impedance or analyte depletion

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03246460A (ja) * 1990-02-26 1991-11-01 Nippon Telegr & Teleph Corp <Ntt> 電気化学検出器
JP3104672B2 (ja) * 1998-03-31 2000-10-30 日本電気株式会社 電流検出型センサ素子およびその製造方法
US7308418B2 (en) * 2004-05-24 2007-12-11 Affinova, Inc. Determining design preferences of a group
US20080149479A1 (en) * 2005-02-18 2008-06-26 Midorion Ab Sensor for Detection of Single Molecules
US20100248209A1 (en) * 2006-06-30 2010-09-30 Suman Datta Three-dimensional integrated circuit for analyte detection
AU2008222757B2 (en) * 2007-03-07 2011-06-09 Echo Therapeutics, Inc. Transdermal analyte monitoring systems and methods for analyte detection
US9074983B2 (en) * 2007-03-23 2015-07-07 Honeywell International Inc. Deposition of sensing layers for surface acoustic wave chemical sensors based on supra-molecular chemistry
CN101669025B (zh) * 2007-04-27 2013-09-25 Nxp股份有限公司 生物传感器芯片及其制造方法
EP2173467B1 (en) * 2007-07-13 2016-05-04 The Board Of Trustees Of The Leland Stanford Junior University Method and apparatus using electric field for improved biological assays
US8304273B2 (en) 2008-01-24 2012-11-06 Massachusetts Institute Of Technology Insulated nanogap devices and methods of use thereof
US8996126B2 (en) * 2009-02-04 2015-03-31 Greatbatch Ltd. Composite RF current attenuator for a medical lead
CN102414557A (zh) * 2009-03-11 2012-04-11 新加坡科技研究局 用于超灵敏的核酸检测的电传感器
US8500979B2 (en) 2009-12-31 2013-08-06 Intel Corporation Nanogap chemical and biochemical sensors
US20120193231A1 (en) 2011-01-28 2012-08-02 International Business Machines Corporation Dna sequencing using multiple metal layer structure with organic coatings forming transient bonding to dna bases
DE112012005831B3 (de) * 2011-07-22 2015-06-03 Semiconductor Energy Laboratory Co., Ltd. Dibenzo[c,g]Carbazol-Verbindung, lichtemittierendes Element, lichtemittierende Vorrichtung, Displayvorrichtung, Beleuchtungsvorrichtung und elektronische Vorrichtung
JP2013044587A (ja) * 2011-08-23 2013-03-04 Panasonic Corp センサーチップ、およびそれを用いて化学物質を定量する方法
GB2511230B (en) * 2011-12-15 2018-03-14 Intel Corp Diamond electrode nanogap transducers
CN103998931B (zh) 2011-12-28 2016-06-01 英特尔公司 具有选择性表面固定化部位的纳米间隙换能器
WO2013101672A2 (en) * 2011-12-28 2013-07-04 Agilent Technologies, Inc. Two dimensional nanofluidic ccd arrays for manipulation of charged molecules in solution
JP6025380B2 (ja) * 2012-04-24 2016-11-16 キヤノン株式会社 光学素子
JP5942901B2 (ja) * 2012-06-14 2016-06-29 ソニー株式会社 固体撮像素子および電子機器

Also Published As

Publication number Publication date
TWI567203B (zh) 2017-01-21
US20150168341A1 (en) 2015-06-18
US10175190B2 (en) 2019-01-08
TW201536923A (zh) 2015-10-01
JP2016538543A (ja) 2016-12-08
JP6316958B2 (ja) 2018-04-25
WO2015088642A1 (en) 2015-06-18
US20160245774A1 (en) 2016-08-25
US9354195B2 (en) 2016-05-31
EP3080596B1 (en) 2019-11-27
RU2643218C2 (ru) 2018-01-31
EP3080596A1 (en) 2016-10-19
RU2016118547A (ru) 2017-11-16
EP3080596A4 (en) 2017-08-02
TWI705141B (zh) 2020-09-21

Similar Documents

Publication Publication Date Title
Syu et al. Field-effect transistor biosensing: Devices and clinical applications
Malhotra et al. Nanomaterials in biosensors: Fundamentals and applications
Gao et al. Detection of sub-fM DNA with target recycling and self-assembly amplification on graphene field-effect biosensors
Sage et al. Ultrasensitive electrochemical biomolecular detection using nanostructured microelectrodes
Cagnin et al. Overview of electrochemical DNA biosensors: new approaches to detect the expression of life
TWI567203B (zh) 用於氧化還原分子的檢測之高選擇性包覆電焊條奈米間隙轉換器
Gao et al. Silicon nanowire arrays for label-free detection of DNA
Chen et al. Ultrasensitive in situ label-free DNA detection using a GaN nanowire-based extended-gate field-effect-transistor sensor
Solanki et al. Nanostructured metal oxide-based biosensors
Wei et al. Electrochemical biosensors at the nanoscale
Cheng et al. Aptamer-based biosensors for label-free voltammetric detection of lysozyme
Torul et al. based electrochemical biosensors for voltammetric detection of miRNA biomarkers using reduced graphene oxide or MoS2 nanosheets decorated with gold nanoparticle electrodes
Gupta et al. Nanohybrid-based immunosensor prepared for Helicobacter pylori BabA antigen detection through immobilized antibody assembly with@ Pdnano/rGO/PEDOT sensing platform
KR20140098790A (ko) 다이아몬드 전극 나노갭 트랜스듀서
Dziąbowska et al. Application of electrochemical methods in biosensing technologies
Kim et al. Wafer-scale high-resolution patterning of reduced graphene oxide films for detection of low concentration biomarkers in plasma
Surucu et al. Nucleic acid integrated technologies for electrochemical point‐of‐care diagnostics: A comprehensive review
Liu et al. Platinum porous nanoparticles for the detection of cancer biomarkers: what are the advantages over existing techniques?
Letchumanan et al. Gold-nanohybrid biosensors for analyzing blood circulating clinical biomacromolecules: Current trend toward future remote digital monitoring
Xu et al. Ion current rectification-nanopipette technique for single-cell analysis
Zhu et al. Double electrode systems with microelectrode arrays for electrochemical measurements
Barreiros Dos Santos et al. Fundamentals of biosensors and detection methods
Lanche et al. Graphite oxide electrical sensors are able to distinguish single nucleotide polymorphisms in physiological buffers
Devadhasan et al. Overview of CMOS image sensor use in molecular diagnostics
Kaushik et al. Multiple dimensions of functional relevance of genosensors

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees