TW201718860A - 用於作物產量之增強的基因改質植物 - Google Patents

用於作物產量之增強的基因改質植物 Download PDF

Info

Publication number
TW201718860A
TW201718860A TW105132080A TW105132080A TW201718860A TW 201718860 A TW201718860 A TW 201718860A TW 105132080 A TW105132080 A TW 105132080A TW 105132080 A TW105132080 A TW 105132080A TW 201718860 A TW201718860 A TW 201718860A
Authority
TW
Taiwan
Prior art keywords
plant
nucleic acid
gene
sequence
transformed
Prior art date
Application number
TW105132080A
Other languages
English (en)
Inventor
納拉辛哈C 森保洙
衛汀 倪
約翰P 戴維斯
Original Assignee
陶氏農業科學公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 陶氏農業科學公司 filed Critical 陶氏農業科學公司
Publication of TW201718860A publication Critical patent/TW201718860A/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8205Agrobacterium mediated transformation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Botany (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

這個發明是有關於用於生產一種如相較於一對應的野生型植物具有改良的/增強的作物產量的植物之方法,此方法包含有過度表現一qPE9-1基因和/或一直立密穗1(Dense and Erect Pamicle 1,DEP1)基因。提供的是編碼用於qPE9-1和/或DEP1的核酸,以及衍生自此等植物或部分的細胞、子代、種子和花粉,以及製造的方法和使用此等植物細胞(們)或植物(們)、子代、種子(們)或花粉的方法。這個發明一般而言有關於一種如相較於一對應的非轉形的野生型植物細胞較佳地在短暫和重複逆境的條件下具有增加產量的作物植物。這個發明亦有關於生產和篩選以及育種此等作物植物或植物細胞的方法。

Description

用於作物產量之增強的基因改質植物
發明領域
這個發明一般而言有關於農業的領域,以及更特別地具有用於作物產量增強的融合蛋白質的基因轉殖植物的領域。
發明背景
入口增加和氣候變化近年來已使全球食物、飼料和燃料短缺的可能性成為尖銳的焦點。在田間條件下,植物性能(例如就生長、發育、生物量累積和種子發芽而言)視一植物對許多環境條件、變化和逆境(stress)的耐受性和適應能力而定。自農業和園藝開始以來,有一用於在作物栽培中改良植物性狀的需要。育種策略促進作物性質以承受生物和非生物的逆境、改良養分使用效率和改變其他內在的作物特定產量參數(亦即,藉由應用技術進步增加產量)。
一數量性狀表現型被認為是由許多基因的同時分離所引起,它們各個貢獻一小的累加效用在表現型以及基因型與環境的交互作用。數量性狀基因座(Quantitative trait loci,QTL)可被鑑定為連結至數量性狀 的DNA節段(例如,標記)。一旦數個QTL被鑑定用於一性狀,它可以更容易模製性狀的表現有如一單一數學函數,而不是明確地認定各個個別的基因座。此外,被鑑定用於一特定性狀的QTL通常對被使用在定位雜交的親代基因型是特異性的。例如,一基因對於一在一基因型是重要的數量性狀的貢獻可能不是如此的在另一個,其中該基因的貢獻在缺乏一在2個基因型中被差別地表現的第二基因下不是可觀察的。
在玉米的穀粒產量(grain yield)是一由基因、環境和管理因素所影響的複雜的數量性狀。相似於其他作物,在玉米的穀粒產量可被解析成許多關鍵的產量組分(包括每植物粒數和每粒重量)。雖然這些組分的任一者的遺傳-和農藝-為基礎的改良可導致增強的穀粒生產,粒數目要比粒重量藉由更大的資源可用性和/或改良的遺傳學而更被影響,並且因此可能提供一用於穀粒產量改良的更健全的途徑。
因此,仍然有一需要以增強各種不同的作物(包括玉米)的穀粒產量。
發明概要
這個發明是有關於用於生產一種如相較於一對應的野生型植物具有改良的/增強的作物產量植物的方法,此方法包含有過度表現一qPE9-1基因和/或一直立密穗1(Dense and Erect Panicle 1,DEP1)基因。提供的是編碼 用於qPE9-1和/或DEP1的核酸,以及衍生自此等植物或部分的細胞、子代、種子和花粉,以及製造的方法和使用此等植物細胞(們)或植物(們)、子代、種子(們)或花粉的方法。這個發明一般而言有關於一種如相較於一對應的非轉形的野生型植物細胞較佳地在短暫和重複逆境的條件下具有增加產量的作物植物。這個發明亦有關於生產和篩選以及育種此等作物植物或植物細胞的方法。
在一方面,提供的是一種包含有一編碼一與序列辨識編號:2或4具有至少80%、85%、88%、90%、92%、95%、98%、99%,或100%序列相同性的多肽的核酸的植物轉形載體。在一具體例中,該核酸被可操作地連結至一組成型啟動子(constitutive promoter)。在另一個具體例中,該核酸與序列辨識編號:1或3具有至少80%、85%、88%、90%、92%、95%、98%、99%或100%序列相同性。
在另一個方面,提供的是一種用於基因轉殖植物的核酸建構物。該核酸建構物包含有(a)一編碼一與序列辨識編號:2或4具有至少80%序列相同性的多肽的聚核苷酸序列;以及(b)一或多個用於驅動該聚核苷酸序列在該等基因轉殖植物表現的控制序列。在一些具體例中,該聚核苷酸序列被密碼子最佳化用於在該等基因轉殖植物表現。
在一具體例中,該等植物是單子葉植物。在另一個具體例中,該等植物是雙子葉植物。在另一個具體例中,該等植物不是單子葉植物。在另一個具體例中,該 等植物不是雙子葉植物。在一具體例中,該核酸建構物被安定地轉形至該等基因轉殖植物內。在另一個具體例中,該核酸建構物包含有一用於農桿菌媒介轉形(Agrobacterium-mediated transformation)的二元載體。在一具體例中,該核的建構物包含有一可選擇標記。在一進一步具體例中,該可選擇標記是一芳氧基烷酸酯二氧酶(aryloxyalkanoate dioxygenase)。在一進一步具體例中,該芳氧基烷酸酯二氧酶是AAD-1或AAD-12。
在一具體例中,該聚核苷酸序列與序列辨識編號:1或3具有至少80%、85%、88%、90%、92%、95%、98%、99%或100%相同性。在另一個具體例中,該一或多個控制序列包含有一病毒序列。在另一個具體例中,該一或多個控制序列包含有一植物啟動子。在另一個具體例中,該一或多個控制序列不包含有一病毒序列。在另一個具體例中,該一或多個控制序列不包含有一植物啟動子。
在另一個方面,提供的是一種用於生產一基因轉殖植物的方法。該方法包含有導入一與序列辨識編號:1或3具有至少80%、85%、88%、90%、92%、95%、98%、99%或100%序列相同性的編碼一多肽的異源核酸至該植物內。在一具體例中,該異源核酸藉由農桿菌媒介轉形而被導入至該植物內。
在另一個方面,提供的是一種用於增強作物產量的方法。該方法包含有:(a)以在此所提供的該植物轉形載體或核酸建構物轉 形一植物細胞;(b)令該被轉形的植物細胞再生成為一基因轉殖植物;以及(c)在一作物田種植該基因轉殖植物。
在該被提供的方法的一具體例中,如相較於負對照植物有至少一選自於由下列所構成的群組的參數的統計學上顯著的改良:每公頃穀粒產量(GYH)、每植物穀粒產量(GPP)、平均穀粒大小(AGS)、每植物粒數目(KPP)以及平均粒重(AKW)。在另一個具體例中,有至少2個選自於由下列所構成的群組的參數的統計學上顯著的改良:每公頃穀粒產量(GYH)、每植物穀粒產量(GPP)、平均穀粒大小(AGS)、每植物粒數目(KPP)以及平均粒重(AKW)。在另一個具體例中,有至少3個選自於由下列所構成的群組的參數的統計學上顯著的改良:每公頃穀粒產量(GYH)、每植物穀粒產量(GPP)、平均穀粒大小(AGS)、每植物粒數目(KPP)以及平均粒重(AKW)。在另一個具體例中,有4個選自於由下列所構成的群組的參數的統計學上顯著的改良:每公頃穀粒產量(GYH)、每植物穀粒產量(GPP)、平均穀粒大小(AGS)、每植物粒數目(KPP)以及平均粒重(AKW)。在另一個具體例中,該增強的作物產量是至少5%、8%、10%、12%、15%、20%、25%、30%、50%或100%。
在另一個方面,提供的是一種自在此所提供的方法所產生的基因轉殖植物。在一具體例中,該植物是 玉蜀黍(Zea mays)或大豆(Glycine max)。在另一個方面,提供的是一種包含有一編碼一與一選自於由序列辨識編號:2或4所構成的群組的多肽具有至少80%、85%、88%、90%、92%、95%、98%、99%或100%序列相同性的多肽的異源核酸的植物。在一具體例中,如相較於負對照植物有至少一選自於由下列所構成的群組的參數的統計學上顯著的改良:每公頃穀粒產量(GYH)、每植物穀粒產量(GPP)、平均粒徑(AGS)、每植物粒數目(KPP)以及平均粒重(AKW)。在另一個具體例中,有至少2個選自於由下列所構成的群組的參數的統計學上顯著的改良:每公頃穀粒產量(GYH)、每植物穀粒產量(GPP)、平均穀粒大小(AGS)、每植物粒數目(KPP)以及平均粒重(AKW)。在另一個具體例中,有至少3個選自於由下列所構成的群組的參數的統計學上顯著的改良:每公頃穀粒產量(GYH)、每植物穀粒產量(GPP)、平均穀粒大小(AGS)、每植物粒數目(KPP)以及平均粒重(AKW)。在另一個具體例中,有4個選自於由下列所構成的群組的參數的統計學上顯著的改良:每公頃穀粒產量(GYH)、每植物穀粒產量(GPP)、平均顆粒大小(AGS)、每植物粒數目(KPP)以及平均粒重(AKW)。在另一個具體例中,該增強的作物產量是至少5%、8%、10%、12%、15%、20%、25%、30%、50%或100%。
在另一個方面,提供的是一種用於生產一植物、植物種子或它們的子代的方法。該方法包含有: (a)以在此所提供的該植物轉形載體或該核酸建構物轉形一植物細胞;(b)自該被轉形的植物細胞生長一植物直到該植物生產種子;以及(c)自該植物收穫該種子。
在另一個方面,提供的是一種自該由在此所提供的方法所生產的植物而被收穫的種子。在另一個方面,提供的是一種基因轉形的植物或種子,其特徵在於:它的基因組已被轉形以含有在此所提供的該植物轉形載體或該核酸建構物。
在一具體例中,如相較於它的非-基因轉殖親代植物或種子有至少一選自於由下列所構成的群組的參數的統計學上顯著的改良:每公頃穀粒產量(GYH)、每植物穀粒產量(GPP)、平均穀粒大小(AGS)、每植物粒數目(KPP)以及平均粒重(AKW)。在另一個具體例中,有至少2個選自於由下列所構成的群組的參數的統計學上顯著的改良:每公頃穀粒產量(GYH)、每植物穀粒產量(GPP)、平均穀粒大小(AGS)、每植物粒數目(KPP)以及平均粒重(AKW)。在另一個具體例中,有至少3個選自於由下列所構成的群組的參數的統計學上顯著的改良:每公頃穀粒產量(GYH)、每植物穀粒產量(GPP)、平均穀粒大小(AGS)、每植物粒數目(KPP)以及平均粒重(AKW)。在另一個具體例中,有4個選自於由下列所構成的群組的參數的統計學上顯著的改良:每公頃穀粒產量(GYH)、每植物穀粒產量 (GPP)、平均穀粒大小(AGS)、每植物粒數目(KPP)以及平均粒重(AKW)。在另一個具體例中,該增強的作物產量是至少5%、8%、10%、12%、15%、20%、25%、30%、50%或100%。
圖1A顯示在所試驗的位置1和位置2的所有建構物(和它們的個別品系)所平均的氮(N)處理位準和穀粒產量反應。
圖1B顯示在所試驗的位置1和位置2的穀粒產量變異係數(CV)值和氮(N)處理位準。紅色虛線指示10%穀粒產量CV閾值,超過它時CV值非所欲地高的。
圖2A顯示在用於pDAB111974建構物的選擇品系之間的穀粒產量差異。在各個直條上面的數字指示來自它們個別的負對照的穀粒產量差異值(%)。所顯示的結果是根據一標準的t-檢定比較。*統計學上顯著的在p=0.10。**統計學上顯著的在p=0.05。***統計學上顯著的在p=0.01。NS,非統計學上顯著的在p=0.10。
圖2B顯示在用於pDAB111975建構物的選擇品系之間的穀粒產量差異。在各個直條上面的數字指示來自它們個別的負對照的穀粒產量差異值(%)。所顯示的結果是根據一標準的t-檢定比較。*統計學上顯著的在p=0.10。**統計學上顯著的在p=0.05。***統計學上顯著的在p=0.01。NS,非統計學上顯著的在p=0.10。
圖3A顯示質體pDAB111974的一代表性圖 譜。圖3B顯示質體pDAB111975的一代表性圖譜。這兩個質體包含有qPE9-1序列。
圖4A顯示質體pDAB110459的一代表性圖譜。圖4B顯示質體pDAB109263的一代表性圖譜。這兩個質體包含有SbDEP1序列。
圖5顯示用於所試驗的位置1和位置2的的日降水量、日蒸散量和累積的生長度日(growing degree day,GDD)資訊。
較佳實施例之詳細說明
在水稻(rice)(稻(Oryza sativa L.))中的直立密穗1(DENSE AND ERECT PANICLE1,DEP1)基因座是多效性地負責高穗密度、每穗改良的穀粒數目以及增強的穗直立。由於它在這些性狀上的影響,它經常增強水稻穀粒產量。在水稻中一與顯性DEP1對偶基因功能地等效的對偶基因存在於各種不同的小穀粒穀類。如此處所提供的,經由基因轉殖方法在玉米(玉蜀黍(Zea mays L.))和其他作物的產量增強可藉由DEP1和/或qPE9-1和/或DEP1的額外顯性負變異體的導入而被達到。亦被提供的是含有一竹(龜甲竹(Phyllostachys heterocycla))DEP1異種同源物(ortholog)BpqPE9的植物轉形載體/核酸建構物(ZmUbi1::BpqPE9和ZmGZein27::BpqPE9)。
對於該第一建構物,該BpqPE9基因藉由ZmUbi1啟動子而被驅動,企圖模擬顯性水稻DEP1對偶基 因在植物構型、N反應和穀粒產量上的影響。對於該第二建構物,該BpqPE9基因藉由ZmGZein27啟動子而被驅動以測驗這個異種同源物單獨在穀粒產量上的效用。效用經由B104 x LLH37玉米植物的穀粒產量反應而被評估在遺傳產量潛力、N反應性和N逆境耐受性的影響。該等ZmUbi1::BpqPE9和ZmGZein27::BpqPE9建構物的選擇品系顯示在穀產量上的顯著地正增強,其中此等增強一般而言在自4至10%的範圍,但是一些品系-位準影響是顯著地更高的。
除非另有指示,在此所使用的所有技術和科學術語具有與它們對一熟習本發明的技藝者相同的意義。專業人員特別針對Sambrook et al.Molecular Cloning:A Laboratory Manual(Second Edition),Cold Spring Harbor Press,Plainview,N.Y.,1989和Ausubel FM et al.Current Protocols in Molecular Biology,John Wiley & Sons,New York,N.Y.,1993用於本技藝的定義和術語。被瞭解的是:這個發明不限於所描述的特定方法學、規範和試劑,因為這些可變化。
在一些具體例中,編碼此一多肽的基因可被利用以過度表現或降低該多肽在一植物中的表現,其中該多肽可被正常地發現。例如,該基因或它的一等效物可被導入至該植物的一細胞內在一基因座中,其中該基因沒有被正常地發現,或該基因的一天然複本可被放置在導致該天然基因的增加表現的調節控制元件中。在其他實例中, 該基因可被使用以設計一抑制該基因的表現的聚核苷酸,以及該聚核苷酸可被導入至該植物的一細胞內。
縮寫
CAI 密碼子適應指數
dsRNA 雙股核糖核酸
hpRNA 髮夾核糖核酸
iRNA 抑制性核糖核酸
MILC 長度和組成物的獨立測量
miRNA 微抑制性核糖核酸
ORF 開放閱讀框架
PCR 聚合酶鏈反應
QTL 數量性狀基因座
RBS 核醣體結合位址
RISC RNA-誘導的默化複合體
RNAi 核糖核酸干擾
RSCU 相關的同義密碼子使用
RT-PCR 即時PCR
siRNA 小抑制性核糖核酸
TRP 蒸散降低點
除非上下文另有明確地規定,單數形式“一(a)”、“一(an)”和“該(the)”的使用包括複數參考。例如,提及“一聚核苷酸”包括複數個聚核苷酸,提及“一基質”包括複數個此等基質,提及“一變異體”包複數個此等變異體等等。
在一範圍的數值被引述下,在那個範圍的所述上和下限之間的各個中間整數值和它們的各個分數連同在此等數值之間的各個子範圍亦被特別地揭示。任何範圍的上和下限可獨立地被包括在該範圍或自該範圍被排除,以及各個範圍(任一個、無一個或這兩個限制被包括)亦被包含。在一被討論的數值具有固有的限制(例如,在一組分可存在於一自0至100%的濃度,或在一水性溶液的pH值可在自1至14的範圍)下,那些固有的限制被特別地揭示。
在一數值被明確地引述下,與該被引述的數值大約相同的量或數量的數值亦在該數值的範圍內。在一組合被揭示下,那個組合的元件的各個次組合亦被特別地包括。相反地,在不同的元件或元件的群組被個別地揭示下,它們的組合亦被揭示。在一具體例的任何元件或方面被揭示為具有複數個選擇下,各個選擇被單獨排除或與其他選擇任何組合的那個元件或方面的實例亦藉此被揭示。
除非另有提供,在此所使用的所有技術和科學術語與一熟習遺傳學、生物資訊學和基因設計的技藝者所通常瞭解的具有相同意義。含有在這個揭示所使用的許多術語的一般字典是:Singleton et al.(1994)Dictionary of Microbiology and Molecular Biology,2nd Ed.,John Wiley and Sons,New York;以及Haleand Marham(1991)The Harper Collins Dictionary of Biology,Harper Perennial,New York。雖然某些方法和材料藉由在此明確地引述的那些而被例示,與在此所描述的那些相似或等效 的任何方法和材料可被使用在具體例的實施或試驗。
如此處所用的,片語“載體”意指一段DNA(典型地雙股),它可已插入一段外來的DNA。該載體可以是例如質體或病毒來源,它典型地編碼一可選擇的或可篩選的標記(selectable or screenable marker)或轉基因(transgenes)。該載體被使用以運送該外來的或異源DNA至一適合的宿主細胞內。一旦在該宿主細胞,該載體可獨立地或與該宿主染色體DNA同時複製。另擇地,該載體可標靶外來的或異源DNA至一宿主染色體內的插入。
如此處所用的,片語“轉基因載體”意指一含有一插入的DNA節段的載體,“轉基因”在一宿主細胞內被轉錄成mRNA或被複製為一RNA。片語“轉基因”不僅意指被轉化成RNA的插入DNA的部分,而且轉錄或複製RNA所必須的載體的那些部分。一轉基因典型地包含有一感興趣的基因但不必然需要包含有一含有一能夠生產一蛋白質的開放閱讀框架的聚核苷酸序列。
如此處所用的,片語“轉形的(transformed)”或“轉形(transformation)”意指導入DNA至一細胞內。片語“轉形體(transformant)”或“基因轉殖”意指已被轉形或已經歷一轉形操作程序的植物細胞、植物和類似之物。該被導入的DNA通常呈一含有一段被插入的DNA的載體的形式。
如此處所用的,片語“基因轉殖植物”意指一種基因組已藉由重組DNA的安定整合而被改變的植物。一 基因轉殖植物包括一種自一被原始地轉形的植物細胞所再生的植物和自一轉形的植物的更晚世代或雜交的子代基因轉殖植物。
如此處所用的,片語“重組DNA”意指已在一細胞外被基因工程化和建構的DNA,包括含有自然發生的DNA或cDNA或合成DNA的DNA。
如此處所用的,術語“基因表現”意指一核酸轉錄單位(例如,一ORF)的編碼訊息被轉化成一細胞的一可操作的、非可操作的或結構性部分的過程,例如經由一編碼蛋白質的合成。基因表現可在RNA位準或者用於轉譯的表現產物的蛋白質位準藉由方法(包括,例如和不限制北方墨點法、RT-PCR、西方墨點法或者活體外、原位或活體內蛋白質活性分析(們))而被測量。
如此處所用的關於一特定的核酸,術語“編碼”或“編碼的”意指用於轉譯一聚核苷酸成為一細胞的特定結構部分(例如,蛋白質)的過程。一編碼一蛋白質的聚核苷酸可包含有在該核酸的轉譯區域內的介入序列(例如,內含子),或者可缺乏此等介入的非-轉譯序列(例如,cDNA)。一蛋白質被編碼的資訊是藉由密碼子的使用而被指定。典型地,胺基酸序列藉由核酸使用“通用的”遺傳密碼而被編碼。然而,當該聚核苷酸在此被表現時,通用密碼的變異體(諸如存在於一些植物、動物和真菌的粒線體、細菌山羊黴漿菌(Mycoplasma capricolumn)或纖毛蟲大核(ciliate Macronucleus))可被使用。
當一聚核苷酸被合成地製備或改變時,可利用該聚核苷酸要被表現的所欲宿主的已知密碼子偏好。例如,雖然聚核苷酸可被表現在單子葉和雙子葉植物物種這兩者的一些具體例中,一聚核苷酸序列可被修飾(例如,被最佳化)以說明單子葉植物或雙子葉植物的特定密碼子偏好和GC含量偏好。參見,例如,Murray et al.(1989)Nucl.Acids Res.17:477-98(用於28個來自玉米植物的基因的玉米密碼子使用)。
如此處所用的,術語“全長”序列意指一生物地-活性形式的一特定蛋白質的全部胺基酸序列,或一編碼此一蛋白質的聚核苷酸的全部編碼核苷酸序列。測定一序列是否是全長的方法包括,例如和沒有限制北方或西方墨點法、引子延伸、S1保護和核糖核酸酶保護。參見,例如,Plant Molecular Biology:A Laboratory Manual,Clark,Ed.,Springer-Verlag,Berlin(1997)。與已知的全長同源的(homologous)、異種同源的(orthologous)和/或同種同源的序列(paralogous sequence)比較亦可被使用以鑑定一全長序列。此外,典型地存在於mRNA的5'和3'非轉譯區域的共有序列可有助於一聚核苷酸有如全長的鑑定。
如此處所用的,術語“密碼子使用偏性(codon usage bias)”或簡單地“密碼子使用”意指一種編碼用於一在一生物內的胺基酸的特定密碼子的高頻率偏好使用(與其他同義密碼子對比)。一密碼子使用偏性可被表示有如一特定密碼子被使用在一特定生物的基因組的比率的定量測 量,例如,當與編碼相同胺基酸的其他密碼子比較。
各種不同的方法是那些熟習此技藝者所知曉用於測定密碼子使用偏性。在一些具體例中,密碼子使用偏性可藉由CAI方法被測定,CAI方法實質上是一基因的密碼子使用到一預定義的高度表現的基因的密碼子使用的距離的測量。Sharp and Li(1987)Nucleic Acids Res.15:1281-95。用於測定一密碼子使用偏性的另擇方法包括MILC(Supek and Vlahovicek(2005)BMC Bioinformatics 6:182)和RSCU,RSCU是一特定密碼子的觀察頻率除以從用於那個胺基酸的所有同義密碼子的相等使用所預期的頻率(Sharp et al.(1986)Nucleic Acids Res.14:5125-43)。RSCU數值接近1.0指示一用於特定密碼子的偏性的缺乏,而偏離1.0反映密碼子使用偏性。
因此,密碼子使用偏性包括編碼相同胺基酸(“同義密碼子”)的密碼子的使用的相對頻率。一偏性可以是自然發生的;例如,在一生物的基因組的密碼子偏性反映在那個生物的所有基因內的同義密碼子的相對總使用。一偏性亦可被使用在一計算演算法中,其中例如,它可被使用以測定不同的同義密碼子被選擇供使用在設計一聚核苷酸序列的相對頻率。相似地,在一核苷酸序列內被使用以編碼一多肽的任何序列元件的“相對”頻率是那個序列元件被使用以編碼該多肽的一特徵(例如,胺基酸、胺基酸對等等)的頻率除以在一可藉由那個序列元件被編碼的特徵的給定閱讀框架的多肽內發生的數目。
密碼子使用偏性亦可自一用於一特定表現宿主生物的密碼子使用表而被推斷。密碼子使用表是容易獲得的用於許多表現宿主生物。參見,例如,Nakamura et al.(2000)Nucleic Acids Res.28:292(密碼子使用資料庫-更新版本可獲得的在kazusa.or.jp/codon)。當一密碼子使用表不是可獲得的,它可自公共生物基因資料庫(諸如由NCBI所維持的那些(可獲得的在ncbi.nlm.nih.gov/sites/genome))而被組合。在一些具體例中,一密碼子使用表可自一組自特定的表現宿主生物所獲得的編碼區域而被組合。在一些實例中,一組編碼區域包含有至少100、至少200、至少300、至少400、至少500、至少550、至少600或更多的自該特定的表現宿主生物所獲得的編碼區域。
術語“密碼子使用表”或“密碼子偏性表”或“密碼子頻率表”被可互換地使用以描述一與可被使用以編碼一特定胺基酸的各個密碼子和頻率有關的表,其中各個密碼子被使用以在一特定生物中、在那個生物的一特定種類的基因內或在一或多個合成的聚核苷酸內編碼那個胺基酸。
如此處所用的,術語“絕對密碼子頻率”意指一密碼子相對於在一給定的閱讀框架(例如,一被使用以編碼一感興趣的多肽的閱讀框架)的一聚核苷酸或聚核苷酸組內的密碼子(例如,同義和非同義密碼子這兩者)的總數目出現的頻率。相似地,被使用以編碼一在一聚核苷酸內 的多肽的任何序列元件的“絕對”頻率是那個序列元件被使用以編碼該多肽的一特徵的頻率除以在如同可藉由那個序列元件而被編碼的那些具有相同大小的特徵的多肽內發生的數目。
如此處所用的,術語“密碼子空間”意指藉由改變被使用以編碼在多肽內的胺基酸的密碼子的所有可被使用以編碼一特定多肽的可能的聚核苷酸序列。
密碼子取代:如此處所用的,術語“密碼子取代”意指藉由改變一或多個編碼一被編碼的多肽的一或多個胺基酸的密碼子而沒有改變該被編碼的多肽的胺基酸序列來改變一核苷酸編碼序列。
密碼子最佳化:如此處所用的,術語“密碼子最佳化”意指被採用以修飾一現存的編碼序列或設計一在第一情況下的編碼序列的過程,例如,俾以改良一自該編碼序列所轉錄的轉錄本RNA分子在一表現宿主細胞或生物的轉譯,或者改良一編碼序列的轉錄。密碼子最佳化包括,但不限於,包括選擇用於該編碼序列的密碼子以適合一表現宿主生物的密碼子偏好的過程。密碼子最佳化亦包括,例如,有時被意指為“密碼子協調”的過程,其中一在來源生物中被認定為低使用密碼子的密碼子序列的密碼子被改變成在新的表現宿主中被認定為低使用的密碼子。這個過程可藉由在轉譯/延伸的期間導入天然和適當的暫停而幫助被表現的多肽正常地折疊。Birkholtz et al.(2008)Malaria J.7:197-217。
如此處所用的描述一在一編碼聚核苷酸(例如,一基因)上的效用,術語“抑制”意指一在自該編碼的聚核苷酸所轉錄的mRNA的細胞位準和/或在該編碼的聚核苷酸的一胜肽、多肽或蛋白質產物的細胞位準的可測量的降低。在一些實例中,一編碼序列的表現可被抑制,藉此表現實質上被消除。“特異性抑制”意指一標靶編碼聚核苷酸的抑制而沒有因此影響其他編碼聚核苷酸在一細胞(其中特異性抑制被完成)的表現。
一“分離的”生物組分(諸如一核酸或蛋白質)與在該組分天然發生(亦即,其他染色體的和染色體外的DNA和RNA以及蛋白質)的生物的細胞中的其他生物組分已經實質上被分開、生產或純化,同時在該組分造成一化學或功能性變化(例如,一核酸可藉由破壞連接該核酸至在染色體的剩餘DNA的化學鍵而自一染色體被分離)。已被“分離的”核酸分子和蛋白質包括藉由標準純化方法所純化的核酸分子和蛋白質。術語亦包含藉由在一宿主細胞中重組表現所製備的核酸和蛋白質,以及化學地合成的核酸分子、蛋白質和胜肽。
如此處所用的,術語“核酸分子”可意指一聚合形式的核苷酸,其可包括RNA、cDNA、基因組DNA的同義和反義股這兩者以及上面的合成形式和混合的聚合物。一核苷酸可意指一核糖核苷酸、去氧核糖核苷酸或任一類型的核苷酸的一經修飾的形式。如此處所用的一“核酸分子”是與“核酸”和“聚核苷酸”同義。除非另有指明,一核 酸分子在長度上通常是至少10個鹼基。該術語包括單-和雙-股形式的DNA。一核酸分子可包括藉由自然發生的和/或非-自然發生的核苷酸鍵結而被連結在一起的自然發生的和經修飾的核苷酸的任一者或這兩者。
核酸分子可被化學地或生物化學地修飾,或者可含有非-自然的或衍生的核苷酸鹼基,如由那些熟習此技藝者所容易瞭解的。此等修飾包括,例如,標記、甲基化、以一類似物取代一或多個該等自然發生的核苷酸、核苷酸間修飾(例如,不帶電的連結:例如,甲基膦酸酯(methyl phosphouates)、磷酸三酯、胺機磷酸酯(phosphoramidates)、胺甲酸酯(carbamates)等等;帶電的連結:例如,硫代磷酸酯(phosphorothioates)、二硫代磷酸酯(phosphorodithioates)等等;側基部分:例如,胜肽;嵌入劑(intercalators):例如,吖啶(acridine)、補骨脂素(psoralen)等等;螯合劑(chelators);烷基化劑(alkylators);以及經修飾的連結:例如,α變旋異構核酸等等)。術語“核酸分子”亦包括任何拓撲構形,包括單股、雙股、部分地雙體的、三體的、髮夾狀、環狀以及掛鎖構形。
術語“外源的”如被應用至在此的核酸(例如,聚核苷酸、DNA、RNA和基因)意指一或多個正常地不存在於它們的特定環境或背景的核酸(們)。例如,若一宿主細胞被轉形以一在自然界中不發生在未被轉形的宿主細胞的核酸,那麼那個核酸對該宿主細胞是外源的。如此 處所用的術語外源的亦意指一或多個在序列上與一已存在於一宿主細胞中的核酸相同,但是與該已存在於該宿主細胞中具有相同序列的核酸位於一不同的細胞或基因組背景的核酸(們)。例如,一與一被正常地整合在該宿主細胞的基因組中具有相同序列的核酸在一不同的位置被併入在該宿主細胞的基因組中的核酸對該宿主細胞是外源的。再者,當一具有相同序列的核酸僅正常地存在於該宿主細胞的基因組時,一在該宿主細胞中存在於一質體或載體的核酸(例如,一DNA分子)對該宿主細胞是外源的。
術語“異源”如被應用至在此的核酸(例如,聚核苷酸、DNA、RNA和基因)意指不同的來源。例如,若一宿主細胞被轉形以一在自然界中不發生在未被轉形的宿主細胞的核酸,那麼那個核酸對該宿主細胞是異源的(和外源的)。再者,一轉形核酸的不同元件(例如,啟動子、增強子、編碼序列、終止子等等)對彼此和/或對該被轉形的宿主可以是異源的。如此處所用的,術語異源的不包括在序列上與一已經存在於一宿主細胞的核酸相同但是現在被連結至不同的額外序列和/或存在於一在該基因組的不同位置的核酸。
標記-輔助的育種:如此處所用的,術語“標記-輔助的育種”可意指一種直接地育種一或多個性狀(們)(例如,一多基因性狀)和/或QTL的方法。標記-輔助的育種提供一種用於改良植物品種的有時間和成本效率的方法。在現今的實施中,植物育種者企圖鑑定與一農藝學上 所欲的性狀連結的容易偵測的性狀(諸如花色、種皮外觀或同功酶變異體)。植物育種者接著藉由追蹤容易地可偵測的性狀的分離而追蹤在分離的育種群體中的農藝性狀。然而,有非常少的這些連結關係在感興趣的性狀與可獲得供使用在植物育種的容易地偵測的性狀之間。在本發明的一些具體例中,標記-輔助的育種包含有鑑定一或多個與一感興趣的性狀或QTL連結的遺傳標記,以及藉由追蹤該一或多個遺傳標記的分離而追蹤在一分離的育種群體中感興趣的性狀或QTL。在一些實例中,該一或多個遺傳標記的分離可利用一用於該一或多個遺傳標記的探針藉由分析一來自一子代植物的遺傳樣品中該一或多個遺傳標記的存在而被測定。
如此處所用的,術語“保守取代”意指一胺基酸殘基取代在一相同的胺基酸結構種類的另一個胺基酸的一取代。一非-保守性胺基酸取代是該等殘基不屬於相同的結構種類的一者(例如,一鹼性胺基酸取代一中性或非-極性胺基酸)。可被定義用於執行一保守取代的目的的胺基酸的種類是脂族胺基酸(例如,疏水性脂族胺基酸);芳族胺基酸(例如,不帶電的芳族胺基酸);疏水性胺基酸(例如,非-芳族疏水性胺基酸);極性胺基酸(例如,帶正電的極性胺基酸、帶負電的極性胺基酸和不帶電的極性胺基酸);電中性胺基酸;以及非-極性胺基酸。
在一些具體例中,一保守取代包括一第二不同的脂族胺基酸取代一第一脂族胺基酸。例如,若一第一 胺基酸是Gly;Ala;Pro;Ile;Leu;Val;和Met的一者,該第一胺基酸可被一選自於Gly;Ala;Pro;Ile;Leu;Val;和Met的第二不同的胺基酸代替。在特別的實例中,若一第一胺基酸是Gly;Ala;Pro;Ile;Leu;和Val的一者,該第一胺基酸可被一選自於Gly;Ala;Pro;Ile;Leu;和Val的第二不同的胺基酸代替。在涉及疏水性脂族胺基酸的取代的特別實例中,若一第一胺基酸是Ala;Pro;Ile;Leu;和Val的一者,該第一胺基酸可被一選自於Ala;Pro;Ile;Leu;和Val的第二不同的胺基酸代替。
在一些具體例中,一保守取代包括一第二不同的芳族胺基酸取代一第一芳族胺基酸。例如,若一第一胺基酸是His;Phe;Trp;和Tyr的一者,該第一胺基酸可被一選自於His;Phe;Trp;和Tyr的第二不同的胺基酸代替。在涉及不帶電的芳族胺基酸的取代的特別實例中,若一第一胺基酸是Phe;Trp;和Tyr的一者,該第一胺基酸可被一選自於Phe;Trp;和Tyr的第二不同的胺基酸代替。
在一些具體例中,一保守取代包括一第二不同的疏水性胺基酸取代一第一疏水性胺基酸。例如,若一第一胺基酸是Ala;Val;Ile;Leu;Met;Phe;Tyr;和Trp的一者,該第一胺基酸可被一選自於Ala;Val;Ile;Leu;Met;Phe;Tyr;和Trp的第二不同的胺基酸代替。在涉及非-芳族疏水性胺基酸的取代的特別實例中,若一第一胺基酸是Ala;Val;Ile;Leu;和Met的一者,該第一胺基酸可被一選自於Ala;Val;Ile;Leu;和Met的第二 不同的胺基酸代替。
在一些具體例中,一保守取代包括一第二不同的極性胺基酸取代一第一極性胺基酸。例如,若一第一胺基酸是Ser;Thr;Asn;Gln;Cys;Gly;Pro;Arg;His;Lys;Asp;和Glu的一者,該第一胺基酸可被一選自於Ser;Thr;Asn;Gln;Cys;Gly;Pro;Arg;His;Lys;Asp;和Glu的第二不同的胺基酸代替。在涉及不帶電的極性胺基酸的取代的特別實例中,若一第一胺基酸是Ser;Thr;Asn;Gln;Cys;Gly;和Pro的一者,該第一胺基酸可被一選自於Ser;Thr;Asn;Gln;Cys;Gly;和Pro的第二不同的胺基酸代替。在涉及帶電極性胺基酸的取代的特別實例中,若一第一胺基酸是His;Arg;Lys;Asp;和Glu的一者,該第一胺基酸可被一選自於His;Arg;Lys;Asp;和Glu的第二不同的胺基酸代替。在涉及帶電極性胺基酸的取代的進一步實例中,若一第一胺基酸是Arg;Lys;Asp;和Glu的一者,該第一胺基酸可被一選自於Arg;Lys;Asp;和Glu的第二不同的胺基酸代替。在涉及帶正電(鹼性)極性胺基酸的取代的特別實例中,若一第一胺基酸是His;Arg;和Lys的一者,該第一胺基酸可被一選自於His;Arg;和Lys的第二不同的胺基酸代替。在涉及帶正電極性胺基酸的取代的進一步實例中,若一第一胺基酸是Arg或Lys,該第一胺基酸可被Arg和Lys的另一個胺基酸代替。在涉及帶負電(酸性)極性胺基酸的取代的特別實例中,若一第一胺基酸是Asp或Glu,該第一胺基酸可 被Asp和Glu的另一個胺基酸代替。
在一些具體例中,一保守取代包括一第二不同的電中性胺基酸取代一第一電中性胺基酸。例如,若一第一胺基酸是Gly;Ser;Thr;Cys;Asn;Gln;和Tyr的一者,該第一胺基酸可被一選自於Gly;Ser;Thr;Cys;Asn;Gln;和Tyr的第二不同的胺基酸代替。
在一些具體例中,一保守取代包括一第二不同的非-極性胺基酸取代一第一非-極性胺基酸。例如,若一第一胺基酸是Ala;Val;Leu;Ile;Phe;Trp;Pro;和Met的一者,該第一胺基酸可被一選自於Ala;Val;Leu;Ile;Phe;Trp;Pro;和Met的第二不同的胺基酸代替。
在許多實例中,為了最大化該等第一和第二胺基酸這兩者者屬於的前述種類的數目,一要被使用在一保守取代以代替一第一胺基酸的特定第二胺基酸的選擇可被做出。因此,若該第一胺基酸是Ser(一極性、非-芳族和電中性胺基酸),該第二胺基酸可以是另一個極性胺基酸(亦即,Thr;Asn;Gln;Cys;Gly;Pro;Arg;His;Lys;Asp;或Glu);另一個非-芳族胺基酸(亦即,Thr;Asn;Gln;Cys;Gly;Pro;Arg;His;Lys;Asp;Glu;Ala;Ile;Leu;Val;或Met);或另一個電中性胺基酸(亦即,Gly;Thr;Cys;Asn;Gln;或Tyr)。然而,較佳的是:在這個例子中該第二胺基酸是Thr;Asn;Gln;Cys;和Gly的一者,因為這些胺基酸共享依據極性、非-芳族性和電中性的所有分類。可選擇性地被使用以選擇一要被使用 在一保守取代的特定第二胺基酸的額外準則是本技藝所知曉。例如,當Thr;Asn;Gln;Cys;和Gly是可獲得的以被使用在一用於Ser的保守取代,為了避免非所欲的交聯和/或雙硫鍵的形成,Cys可自選擇中被消除。同樣地,Gly可自選擇中被消除,因為它缺乏一烷基側鏈。在這個例子中,Thr可被選擇,例如,為了維持一側鏈羥基基團的官能性。
如此處所用的,片語“可選擇標記”或“可選擇標記基因”意指一選擇性地被使用在植物轉形以例如保護植物細胞免於一選擇劑或提供對一選擇劑的抗性/耐受性的基因。只有那些接受一功能性可選擇標記的細胞或植物能夠在具有一選擇劑的條件下分裂或生長。選擇劑的實例可包括,例如,包括觀黴素(spectinomycin)、新黴素(neomycin)、康黴素(kanamycin)、巴龍黴素(paromomycin)、正大黴素(gentamicin)和濕黴素(hygromycin)的抗生素。這些可選擇標記包括表現一賦予對抗生素康黴素抗性的酵素的用於新黴素磷酸轉移酶(neomycin phosphotransferase,npt II)的基因,以及用於相關抗生素新黴素、巴龍黴素、正大霉素和G418的基因,或者表現一賦予對濕黴素抗性的酵素的用於濕黴素磷酸轉移酶(hygromycin phosphotransferase,hpt)的基因。其它可選擇標記基因可包括編碼除草劑抗性(包括Bar(對抗BASTA®(固殺草(glufosinate ammonium))或草丁膦(phosphinothricin,PPT)的抗性)、乙醯乳酸合成酶 (ALS,對抗預防在合成支鏈胺基酸的第一步驟的抑制劑(諸如磺醯脲(sulfonylureas,SU)、咪唑啉酮(imidazolinones,IMI)、三唑并嘧啶(triazolopyrimidines,TP)、嘧啶基氧基苯甲酸酯(pyrimidinyl oxybenzoates,POBs)和磺醯基氨基羰基三唑啉酮(sulfonylamino carbonyl triazolinones))的抗性)、嘉磷塞(glyphosate)、2,4-D)和金屬抗性或敏感性的基因。片語“標記-陽性”意指已被轉形以包括該可選擇標記基因的植物。
各種不同的可選擇的或可偵測的標記可被併入至該被選擇的表現載體內以容許轉形的植物或轉形體的鑑定和選擇。許多方法是可獲得的以確認選擇標記在轉形的植物的表現,包括例如DNA定序和PCR(聚合酶鏈反應)、南方墨點法,RNA墨點法、用於偵測一自該載體而被表現的蛋白質(例如調節草丁膦抗性的沉澱蛋白質或其它蛋白質(諸如報導基因β-葡萄醣醛酸酶(β-glucuronidase,GUS)、螢光素酶(luciferase)、綠螢光蛋白(green fluorescent protein,GFP)、DsRed、β-半乳糖苷酶(β-galactosidase)、氯黴素乙醯基轉移酶(chloramphenicol acetyltransferase,CAT)、鹼性磷酸酶(alkaline phosphatase)和類似之物)的免疫學方法(參見Sambrook,et al.,Molecular Cloning:A Laboratory Manual,Third Edition,Cold Spring Harbor Press,N.Y.,2001,它的內容在此以它的整體被併入本案以做為參考資 料)。
可選擇標記基因被利用於選擇轉形的細胞或組織。可選擇標記基因包括編碼抗生素抗性的基因(諸如編碼新黴素磷酸轉移酶II(NEO)和濕黴素磷酸轉移酶(HPT)的那些)以及賦予對除草化合物抗性的基因。除草劑抗性基因一般而言編碼一對除草劑不敏感的經修飾的標靶蛋白質或一在它可作用之前降解或解毒在該植物的除草劑的酵素。例如,對嘉磷塞或的抗性已藉由使用編碼用於突變標靶酵素5-烯醇丙酮莽草酸-3-磷酸合成酶(5-enolpyruvylshikimate-3-phosphate synthase(EPSPS))的基因而被獲得。用於EPSPS的基因和突變體已被揭示在美國專利第4,940,835號、第5,188,642號、第5,310,667號、第5,633,435號、第5,633,448號和第6,566,587號,其內容以它們的整體被併入本案以做為參考資料。對固殺草、溴苯腈(bromoxynil)和2,4-二氯苯氧基乙酸酯(2,4-dichlorophenoxyacetate,2,4-D)的抗性已藉由使用編碼解毒該等個別的除草劑的草丁膦乙醯基轉移酶、一腈酶(nitrilase)或一2,4-二氯苯氧基乙酸酯單氧化酶(2,4-dichlorophenoxyacetate monooxygenase)的細菌基因而被獲得。用於草銨膦(glufosinate)抗性/耐受性的酵素/基因已被揭示在美國專利第5,273,894號、第5,276,268號、第5,550,318號和第5,561,236號,其內容以它們的整體被併入本案以做為參考資料。用於2,4-D抗性的酵素/基因先前已被揭示在美國專利第6,100,446號和第 6,153,401號以及專利申請案US 2009/0093366(AAD-1)和WO 2007/053482(AAD-12),其內容藉此以它們的整體被併入本案以做為參考資料。用於腈酶的酵素/基因先前已被揭示在美國專利第4,810,648號,其內容以它的整體被併入本案以做為參考資料。
其他除草劑可抑制生長點或分生組織,包括咪唑啉酮或磺醯脲,以及用於這些除草劑的乙醯羥酸合成酶(acetohydroxyacid synthase,AHAS)和乙醯乳酸合成酶(ALS)的抗性/耐受性的基因已被描述。用於AHAS和突變體的基因和突變體已被揭示在美國專利第4,761,373號、第5,304,732號、第5,331,107號、第5,853,973號和第5,928,937號,其內容以它們的整體被併入本案以做為參考資料。用於ALS的基因和突變體已被揭示在美國專利第5,013,659號和第5,141,870號,其內容以它們的整體被併入本案以做為參考資料。
嘉磷塞抗性基因包括分別地突變的5-烯醇丙酮莽草酸-3-磷酸合成酶(EPSPs)基因(經由重組核酸的導入和/或天然的EPSPs基因的各種不同形式的活體內突變誘發)、aroA基因和嘉磷塞乙醯基轉移酶(GAT)基因)。用於其他膦醯基化合物(phosphono compounds)的抗性基因包括草銨膦[來自鏈黴菌屬物種(Streptomyces species)(包括吸水鏈黴菌(Streptomyces hygroscopicus)和綠色產色鏈黴菌(Streptomyces viridichromogenes))的草丁膦乙醯基轉移酶(PAT)基因],以及吡啶氧基或苯氧 基丙酸(pyridinoxy or phenoxy proprionic acids)和環己酮(cyclohexones)(ACCase抑制劑-編碼基因)。乙醯輔酶A羧化酶(acetyl coemzyme A carboxylase,ACCase)的除草劑抗性/耐受性基因已被描述在美國專利第5,162,602號和第5,498,544號,其內容以它們的整體被併入本案以做為參考資料。
一編碼一突變的aroA基因的DNA分子可根據ATCC登錄編號39256而被獲得,以及該突變基因的核苷酸序列被揭示在Comai的美國專利第4,769,061號、Kumada等人的歐洲專利申請案第0 333 033號以及Goodman等人的美國專利第4,975,374號,它們揭示賦予對除草劑(諸如L-草丁膦)抗性的麩醯胺合成酶基因的核苷酸序列。一PAT基因的核苷酸序列被提供在Leemans等人的歐洲申請案第0 242 246號。又DeGreef et al.,Bio/Technology 7:61(1989)描述表現編碼用於PAT活性的嵌合bar基因的基因轉殖植物的生產。賦予對苯氧基丙酸和環己酮(包括西殺草(sethoxydim)和合氯氟(haloxyfop))抗性的基因的示範是由Marshall et al.,Theon.Appl.Genet.83:435(1992)所描述的Acc1-S1、Acc1-S2和Acc1-S3基因。能夠賦予嘉磷塞抗性的GAT基因被描述在Castle等人的WO 2005012515。賦予對2,4-D、fop和吡啶氧基生長素(pyridyloxy auxin)除草劑抗性的基因被描述在WO 2005107437和美國專利申請案序號11/587,893。
其他除草劑可抑制光合作用,包括三(triazine)(psbA和1s+基因)或苯甲腈(benzonitrile)(腈酶基因)。Przibila et al.,Plant Cell 3:169(1991)描述以編碼突變的psbA基因的質體轉形單胞藻屬(Chlamydomonas)。用於腈酶基因的核苷酸序列被揭示在Stalker的美國專利第4,810,648號,以及含有這些基因的DNA分子是可獲得的根據ATCC登錄編號53435、67441和67442。編碼用於一麩胺基硫S-轉移酶(glutathione S-transferase)的DNA的克隆和表現藉由Hayes et al.,Biochem.J.285:173(1992)而被描述。
為了本發明的目的,可選擇標記基因包括,但不限於編碼下列的基因:新黴素磷酸轉移酶II(neomycin phosphotransferase II)(Fraley et al.(1986)CRC Critical Reviews in Plant Science,4:1-25);氰胺水合酶(cyanamide hydratase)(Maier-Greiner et al.(1991)Proc.Natl.Acad.Sci.USA,88:4250-4264);天冬胺酸激酶(aspartate kinase);二氫吡啶二羧酸合成酶(dihydrodipicolinate synthase)(Perl et al.(1993)Bio/Technology,11:715-718);色胺酸去羧酶(tryptophan decarboxylase)(Goddijn et al.(1993)Plant Mol.Bio.,22:907-912);二氫吡啶二羧酸合成酶(dihydrodipicolinate synthase)和去敏天冬胺酸激酶(desensitized aspartade kinase)(Perl et al.(1993)Bio/Technology,11:715-718);bar基因(Toki et al. (1992)Plant Physiol.,100:1503-1507和Meagher et al.(1996)and Crop Sci.,36:1367);色胺酸去羧酶(tryptophan decarboxylase)(Goddijn et al.(1993)Plant Mol.Biol.,22:907-912);新黴素磷酸轉移酶(neomycin phosphotransferase,NEO)(Southern et al.(1982)J.Mol.Appl.Gen.,1:327;濕黴素磷酸轉移酶(HPT或HYG)(Shimizu et al.(1986)Mol.Cell Biol.,6:1074);二氫葉酸還原酶(dihydrofolate reductase,DHFR)(Kwok et al.(1986)PNAS USA 4552);草丁膦乙醯基轉移酶(DeBlock et al.(1987)EMBO J.,6:2513);2,2-二氯丙酸去鹵酶(2,2-dichloropropionic acid dehalogenase)(Buchanan-Wollatron et al.(1989)J.Cell.Biochem.13D:330);乙醯羥酸合成酶(acetohydroxyacid synthase)(Anderson等人的美國專利第4,761,373號;Haughn et al.(1988)Mol.Gen.Genet.221:266);5-烯醇丙酮莽草酸-3-磷酸合成酶(aroA)(Comai et al.(1985)Nature 317:741);鹵芳基腈酶(haloarylnitrilase)(Stalker等人公開的PCT申請案WO87/04181);乙醯輔酶A羧化酶(Parker et al.(1990)Plant Physiol.92:1220);二氫喋呤合成酶(dihydropteroate synthase)(sul I)(Guerineau et al.(1990)Plant Mol.Biol.15:127);以及32kD光合系統II多肽(psbA)(Hirschberg et al.(1983)Science,222:1346)。
亦被包括的是編碼對下列的抗性的基因:氯黴素(Herrera-Estrella et al.(1983)EMBO J.,2:987-992);胺甲喋呤(methotrexate)(Herrera-Estrella et al.(1983)Nature,303:209-213;Meijer et al.(1991)Plant Mol Bio.,16:807-820(1991);潮黴素(Waldron et al.(1985)Plant Mol.Biol.,5:103-108;Zhijian et al.(1995)Plant Science,108:219-227和Meijer et al.(1991)Plant Mol.Bio.16:807-820);鏈黴素(Jones et al.(1987)Mol.Gen.Genet.,210:86-91);觀黴素(Bretagne-Sagnard et al.(1996)Transgenic Res.,5:131-137);博萊黴素(bleomycin)(Hille et al.(1986)Plant Mol.Biol.,7:171-176);磺醯胺(sulfonamide)(Guerineau et al.(1990)Plant Mol.Bio.,15:127-136);溴苯腈(Stalker et al.(1988)Science,242:419-423);2,4-D(Streber et al.(1989)Bio/Technology,7:811-816);嘉磷塞(Shaw et al.(1986)Science,233:478-481);以及草丁膦(DeBlock et al.(1987)EMBO J.,6:2513-2518)。除非另有陳述,在本揭示所引述的所有參考文獻藉此以它們的整體被併入本案以作為參考資料。
可選擇標記和報導基因的上面列舉不被意指為限制。任何報導子(reporter)或可選擇標記基因由本發明所包含。若需要的話,此等基因可藉由本技藝所知曉的方法而被定序。
該等報導子和可選擇標記基因被合成用於在植物中最佳的表現。那就是該基因的編碼序列已被修飾以增強在植物的表現。該合成的標記基因被設計要在一更高位準而被表現在植物,導致更高的轉形效率。用於基因的合成最佳化的方法是在本技藝可獲得的。事實上,數種基因已被最佳化以增加在植物中的基因產物的表現。
該標記基因序列可被最佳化用於在一特定的植物物種表現或另擇地可被修飾用於在植物家族中最佳的表現。該等植物偏好的密碼子可自在感興趣的特定植物物種中呈最大數量被表現的蛋白質的最高頻率的密碼子而被決定。參見,例如,EPA 0359472;EPA 0385962;WO 91/16432;Perlak et al.(1991)Proc.Natl.Acad.Sci.USA,88:3324-3328;和Murray et al.(1989)Nucleic Acids Research,17:477-498;美國專利第5,380,831號;和美國專利第5,436,391號,在此被併入本案以做為參考資料。在這個方式中,該等核苷酸序列可被最佳化用於在任何植物中表現。被確認的是:該基因序列的全部或任何部分可被最佳化或合成的。那就是,完全地最佳化或部分地最佳化的序列亦可被使用。
此外,數種利用農桿菌媒介轉形系統的轉形策略已被發展。例如,二元載體策略是根據一個二-質體系統,其中T-DNA是在一與該Ti質體的剩餘部分不同的質體。在一共整合策略中,一小部份的該T-DNA被放在相同的載體作為外來基因,該載體隨後與該Ti質體重組。
如此處所用的,片語“植物”包括雙子葉植物和單子葉植物。雙子葉植物的實例包括煙草、擬南芥(Arabidopsis)、大豆、番茄、木瓜、菜籽(canola)、向日葵、棉花、苜蓿、馬鈴薯、葡萄樹(grapevine)、樹豆(pigeon pea)、豌豆(pea)、蕓苔屬(Brassica)、雞豆(chickpea)、甜菜(sugar beet)、油菜籽(rapeseed)、西瓜(watermelon)、甜瓜(melon)、胡椒(pepper)、花生(peanut)、南瓜(pumpkin)、蘿蔔(radish)、菠菜(spinach)、西葫蘆(squash)、青花菜(broccoli)、甘藍(cabbage)、胡蘿蔔(carrot)、花椰菜(cauliflowe)、芹菜(celery)、大白菜(Chinese cabbage)、黃瓜(cucumber)、茄子(eggplant)和萵苣(lettuce)。單子葉植物的實例包括玉米、水稻、小麥、甘蔗、大麥、黑麥(rye)、高粱(sorghum)、蘭花(orchids)、竹、香蕉(banana)、香蒲(cattails)、百合(lilies)、燕麥(oat)、洋蔥(onion)、栗(millet)和黑小麥(triticale)。
如此處所用的,片語“所描述的植物細胞”或“轉形的植物細胞”意指一被轉形以安定地整合的非天然的重組DNA(例如藉由農桿菌媒介轉形或藉由使用以重組DNA塗佈的微粒的轟擊或其它方式)的植物細胞。這個發明的一植物細胞可以是一種存在有如一微生物或有如一子代植物細胞的最初被轉形的植物細胞,它再生成分化的組織,例如成為一具有安定地整合的非天然的重組DNA的基因轉殖植物,或衍生自一子代基因轉殖植物的種子或花粉。
如此處所用的,片語“共有序列”意指一在同源蛋白質的胺基酸序列的一比對的一保守區域的胺基酸的人工序列,例如如藉由(功能性)同源蛋白質的胺基酸序列的一CLUSTALW比對而被測定。
如此處所用的,片語“產量”或“植物產量”意指增加的植物生長、增加的作物生長、增加的生物量和/或增加的植物產物生產(包括穀粒),並且在一些程度上視溫度、植物大小、器官大小、種植密度、光、水和養分有效性(nutrient availability)、以及植物如何應對各種不同的逆境(包括經由溫度適應和水或養分使用效率)而定。
本發明的一基因轉殖植物的增加產量可以許多方式而被測量,包括植物體積、植物生物量、試驗重量、每株植物種子數目、種子重量、每單位面積種子數目(亦即,每英畝種子或種子重量)、每英畝蒲式耳(bu/a)、每英畝公噸數、每英畝噸數和/或每公頃公斤。對於樹木,產量可被測量有如在循環週期上每年的平均木材生產。例如,鮮重產量可被測量用於在乾燥之前在一作物的營養期結束時的植物或植物部分。乾重產量可在一水移除的期間之後被相似地測量。新鮮和乾重產量可以一天平而被測定。
如此處所用的,片語“同源物(homolog)”意指在一群執行相同生物功能的蛋白質中的一核酸或一蛋白質,例如屬於相同的蛋白質家族的蛋白質或者提供一在這個發明的基因轉殖植物中的共同增強性狀的相似核酸。同源物藉由同源基因而被表現。關於同源基因,同源物包括 異種同源物(亦即藉由物種形成自共同的祖先基因進化的在不同物種中被表現並且編碼保留相同功能的蛋白質的基因),但不包括同種同源物(paralogs)(亦即藉由複製而相關但是已進化以編碼具有不同功能的蛋白質的基因)。同源基因包括自然發生的對偶基因和人工地產生的變異體。遺傳密碼的簡併性提供以一不同的鹼基取代一基因的蛋白質編碼序列的至少一鹼基而沒有引起自該基因所產生的多肽的胺基酸序列被改變的可能性。當被最佳地比對時,同源物基因在被鑑定為當被表現在植物細胞時與給予一增強的性狀有關的基因的全長上具有至少50%、60%、70%、80%、85%、90%、95%、96%、97%、98%或99%或更多的序列相同性。在本發明的一方面,同源物基因具有一與在此所揭示的蛋白質、核苷酸和同源物的一共有序列具有至少85%、90%、95%、96%、97%、98%或99%相同性的核酸或胺基酸序列相似性。
同源物可藉由比較胺基酸序列而被鑑定,例如手動地或藉由使用一計算機為基礎的工具使用已知的同源性為基礎的搜索演算法(諸如通常被知曉並被意指為BLAST、FASTAA和Smith-Waterman的那些)。一局部序列比對程式(例如,基本局部比對搜索工具(Basic Local Alignment Search Tool,BLAST))可被使用以搜索一序列的資料庫以找到相似的序列,以及概要期望值(E-值)被使用以測量序列鹼基相似性。因為一對一特定生物具有最佳E值的蛋白質命中可能不必然是一異種同源物(亦即,具 有相同的功能或是唯一的異種同源物),一反查詢(reciprocal query)被使用以過濾具有顯著E-值的命中序列用於異種同源物鑑定。反查詢必須搜索對於與查詢的蛋白質的序列相似的來自基礎生物的胺基酸序列的資料庫的顯著命中。當該反查詢的最佳命中是查詢的蛋白質本身或一藉由在物種形成之後一複製基因所編碼的蛋白質時,一命中可被鑑定為一異種同源物。由在本發明的基因轉殖植物中有用的DNA所編碼的同源物的一進一步方面是那些由於在一天然序列中一或多個胺基酸的刪除或插入而與一被揭示的蛋白質不同的蛋白質。
如此處所用的,片語“百分比相同性”或“%相同性”意指DNA或蛋白質節段的序列遍及序列(例如核苷酸序列或胺基酸序列)的比對的窗口是不變的程度。一用於一與一參考序列比對的序列的“相同性分數”是由該等序列共享的相同組分的數目除以比對的長度(不包括由比對演算法所導入的間隙)。“百分比相同性”是相同性分數乘以100。百分比相同性較佳地使用一局部比對演算法(例如BLASTp)在比對長度上被計算。
如此處所用的術語“序列相同性”或“相同性”在2個核酸或多肽序列的上下文中可意指當在一特定的比較窗上比對最大對應時在2個序列的殘基是相同的。
如此處所用的,術語“序列相同性的百分比”可意指藉由在一比較窗上比較2個被最佳地比對的序列(例如,核酸序列和胺基酸序列)而被測定的數值,其中在該比 較窗的該序列的部分如相較於參考序列(不包含有添加或刪除)可包含有添加或刪除(亦即,間隙)。百分比藉由測定相同的核苷酸或胺基酸殘基發生在這兩個序列的位置的數目以產生相配位置的數目,相配位置的數目除以在該比較窗的位置的總數目,以及結果乘以100以產生序列相同性的百分比而被計算。
如此處所用的,術語“實質上相同的”可意指超過85%相同性的核苷酸序列。例如,一實質上相同的核苷酸序列可以是與一參考序列至少85.5%;至少86%;至少87%;至少88%;至少89%;至少90%;至少91%;至少92%;至少93%;至少94%;至少95%;至少96%;至少97%;至少98%;至少99%;或至少99.5%相同的。
可特異性雜合/特異性互補:一第一核酸分子(例如,一“探針”)可與一第二核酸(“DNA標靶”)“可特異性雜合”或“特異性互補”。“可特異性雜合”或“特異性互補”是指示一足夠程度的互補性藉此安定和特異性結合發生在該第一核酸分子與該DNA標靶之間的術語。一核酸分子不需要與它可特異性雜合的標靶序列100%互補。當有一足夠程度的互補性以避免在特異性結合是所欲的條件下(例如,在嚴格雜合條件下)該核酸與非-標靶序列的非特異性結合時,一核酸分子是可特異性雜合的。
導致特定程度的嚴格度的雜合條件將視選擇的雜交方法的性質和該等雜合的核酸序列的組成物和長度而變化。一般而言,雜合的溫度和雜合緩衝液的離子強 度(特別地Na+和/或Mg++濃度)將決定雜合的嚴格度,儘管清洗時間亦影響嚴格度。關於達到特定程度的嚴格度所需的雜合條件的計算是那些熟習此技藝者所知曉,並且被討論,例如,在Sambrook et al.(ed.)Molecular Cloning:A Laboratory Manual,2nd ed.,vol.1-3,Cold Spring Harbor Laboratory Press,Cold Spring Harbor,NY,1989,chapters 9 and 11;以及Hamesand Higgins(eds.)Nucleic Acid Hybridization,IRL Press,Oxford,1985。關於核酸雜合的進一步詳細指示和指導可被發現,例如在Tijssen,“Overview of principles of hybridization and the strategy of nucleic acid probe assays,”in Laboratory Techniques in Biochemistry and Molecular Biology-Hybridization with Nucleic Acid Probes,Part I,Chapter 2,Elsevier,NY,1993;以及Ausubel et al.,Eds.,Current Protocols in Molecular Biology,Chapter 2,Greene Publishing and Wiley-Interscience,NY,1995。
如此處所用的,“嚴格條件”包含在只有小於25%錯配在雜合分子與DNA靶標之間雜合才會發生的條件。“嚴格條件”包括進一步特定位準的嚴格度。因此,如此處所用的,“溫和嚴格度(moderate stringency)”條件是具有超過25%序列錯配的分子將不雜合的那些;“中等嚴格度(medium stringency)”的條件是具有超過15%錯配的分子將不雜合的那些;以及“高嚴格度”的條件是具有超過 10%錯配的序列將不雜合的那些。“非常高嚴格度”的條件是具有超過6%錯配的序列將不雜合的條件。
在特別的具體例中,嚴格條件是在65℃在6x鹽水-檸檬酸鈉(SSC)緩衝液、5x丹哈德溶液(Denhardt's solution)、0.5% SDS和100贡g剪切的鮭魚睾丸DNA中雜合,繼而在65℃在2x SSC緩衝液和0.5% SDS、隨後1x SSC緩衝液和0.5% SDS以及最後0.2x SSC緩衝液和0.5% SDS的15-30分鐘連續清洗。
如此處所用的,當一在3'至5'方向被讀取的一序列的每個核苷酸與當在3'至5'方向被讀取的另一個序列的每個核苷酸互補時,2個核酸序列分子被說明展現出“完全互補性”。一與一參考核苷酸序列互補的核苷酸序列將展現出一與該參考核苷酸序列的反向互補序列相同的序列。這些術語和描述被明確定義在本技藝並且由那些熟習此技藝者所容易瞭解的。
如此處所用的,片語“功能活性(functional activity)”或“功能地活性的(functionally active)”意指依據本發明供使用的蛋白質/酵素具有提供對逆境耐受性的能力,這可導致一增加的產量。轉移該功能活性至植物或細菌系統可涉及一編碼用於本發明的蛋白質的胺基酸序列的核酸序列,它被整合至一適合於載體將存在的宿主的蛋白質表現載體內。一種獲得一編碼一具有功能活性的蛋白質的核酸序列的方式是使用從如在此所揭示的蛋白質的胺基酸序列所推論的資訊而自產生感興趣的蛋白質的細菌物 種分離天然的遺傳物質。該等天然的序列可被最佳化用於在植物中表現。最佳化的聚核苷酸亦可根據該蛋白質序列而被設計。
如此處所用的,片語“基因融合建構物”意指一包含有衍生自至少2個不同的親代核酸或一嵌合DNA的連接序列的重組核酸序列。一“修飾的基因融合建構物”包含有一子集的基因融合建構物,其中如相較於該建構物的那個部份被衍生的一親代或野生型序列,在該建構物的至少一核苷酸(選擇性地,在一編碼區域或連接區域)被修飾或改變。
如此處所用的,片語“控制序列”和“調節序列”是可互換的並且意指用於在植物中轉錄/基因表現有用的核酸序列。“控制序列”或“調節序列”可包括,但不限於,啟動子、操縱子、增強子、複製起點、核醣體結合位址、終止和多腺苷酸化信號。
如此處所用的,片語“啟動子”意指用於起始轉錄的調節DNA。一“植物啟動子”是一能夠在植物細胞中起始轉錄的啟動子,無論它的來源是不是一植物細胞,例如,熟知的是農桿菌T-DNA啟動子在植物細胞中是有功能的。因此,植物啟動子包括自植物、植物病毒和細菌(諸如農桿菌屬(Agrobacterium)和慢生根瘤菌屬(Bradyrhizobium)細菌)所獲得的啟動子DNA。在發育控制下的啟動子的實例包括在某些組織(包括葉、根或種子)優先地起始轉錄的啟動子。此等啟動子被意指為“組織偏 好的”。僅在某些組織中起始轉錄的啟動子被意指為“組織特異性”。一“細胞類型”特異性啟動子主要驅動在一或多個器官的某些細胞類型(例如,在根或葉中的維管束細胞)的表現。一“可誘導的(inducible)”或“可抑制的(repressible)”啟動子是一在環境或化學控制下的啟動子。可藉由可誘導的啟動子影響轉錄的環境條件的實例包括厭氧條件或某些化學品或光的存在。組織特異性、組織偏好的、細胞類型特異性的和可誘導的啟動子屬於“非組成型(non-constitutive)”啟動子的種類。一“組成型(constitutive)”啟動子意指一在大多數條件和在大多數組織中是活性的啟動子。
在植物細胞中有活性的許多啟動子先前已被描述。這些包括存在於植物基因組的啟動子以及來自其他來源的啟動子,包括在農桿菌(Agrobacterium tumefaciens)的腫瘤誘導質體上所攜帶的胭脂鹼合成酶(nopaline synthase,NOS)啟動子和章魚鹼合成酶(octopine synthase,OCS)啟動子以及如被揭示在美國專利第5,164,316號和第5,322,938號的來自花椰菜嵌紋病毒(cauliflower mosaic virus)的CaMV35S啟動子。衍生自植物基因的有用啟動子被發現在美國專利第5,641,876號揭示一水稻肌動蛋白啟動子;美國專利第7,151,204號揭示一玉米葉綠體醛醇酶啟動子(maize chloroplast aldolase promoter)和一玉米醛醇酶(FDA)啟動子;以及美國專利申請公開案2003/0131377揭示一玉米煙胺合成 酶啟動子(maize nicotianamine synthase promoter)。在植物細胞作用的這些和許多其他的啟動子是那些熟習此技藝者所知曉並且可獲得的供使用於在此所描述的重組聚核苷酸以提供在基因轉殖植物細胞中所欲基因的表現。
再者,該等啟動子可被改變以含有複數個“增強子序列”以幫助提高基因表現。此等增強子是本技藝所知曉。藉由包括一增強子序列與此等建構物,該被選擇的蛋白質的表現可被增加。這些增強子經常被發現在一於真核細胞作用的啟動子的轉錄起始的5’,但是可經常被上游(5’)或下游(3’)插入至該編碼序列。在一些例子中,這些5’增強元件是內含子。特別有用的作為增強子是水稻肌動蛋白1的5’內含子(參見例如美國專利第5,641,876號)和水稻肌動蛋白2基因、玉米醇去氫酶基因內含子(們)、玉米熱休克蛋白70基因內含子(參見例如美國專利第5,593,874號)和玉米shrunken 1基因內含子。亦參見美國專利申請公開案2002/0192813A1,揭示在設計有效的植物表現載體有用的5’、3’和內含子元件。
在一些具體例中,在植物種子組織中充分表現是所欲的以影響在種子組成的改良。供使用於種子組成修飾的示範性啟動子包括來自種子基因的啟動子,諸如如在美國專利第5,420,034號所揭示的napin、如在美國專利第6,433,252號)所揭示的玉米L3油體膜蛋白(L3 oleosin)、如由Russell et al.(1997)Transgenic Res.6(2):157-166)所揭示的玉米蛋白Z27(zein Z27)、如由 Belanger et al(1991)Genetics 129:863-872)所揭示的球蛋白1(globulin 1)、如由Russell(1997,如上述)所揭示的穀蛋白1(glutelin 1),以及如由Stacy et al.(1996)Plant Mol Biol.31(6):1205-1216所揭示的過氧化物還原酶抗氧化劑(peroxiredoxin antioxidant)(Perl)。
如此處所用的,片語“可操作地連結”意指在一重組DNA建構物的二或更多DNA片段的結合,藉此一例如蛋白質-編碼DNA藉由另一個(例如,一啟動子)而被控制。一第一核苷酸序列被“可操作地連結”以一第二核苷酸序列當該第一核苷酸序列與該第二核苷酸序列是在一功能性關係。例如,一啟動子被可操作地連結至一編碼序列,若該啟動子影響該編碼序列的轉錄或表現。當被重組地生產時,可操作地連結的核苷酸序列一般而言是連續的,並且在必要時在相同的閱讀框架中連接2個蛋白質-編碼區域。然而,核苷酸序列不需要是連續的以被可操作地連結。
重組DNA建構物使用熟習此技藝者所熟知的方法被組合並且典型地包含有一被可操作地連結至DNA的啟動子,它的表現提供增強的農藝性狀。其他建構物組分可包括額外的調節元件,包括用於增強轉錄的5’前導子(5’ leaders)和內含子、3’非轉譯區域(例如,多腺苷酸化信號和位址)以及用於轉運或信號胜肽的DNA。
在此所描述的重組DNA建構物一般而言亦包括一典型地含有一多腺苷酸化信號和位址的3’元件。熟知的3’元件包括來自農桿菌基因的那些,諸如例如被揭示 在美國專利第6,090,627號的nos 3’、tml 3’、tmr 3’、tms 3’、ocs 3’、tr73’;來自植物基因的3’元件,諸如小麥(wheat)(小麥(Triticum aesevitum))熱休克蛋白17(Hspl 73)、一小麥泛素基因、一小麥果糖-1,6-二磷酸酶基因、一水稻穀蛋白基因、一水稻乳酸去氫酶基因以及一水稻β-微管蛋白基因(rice beta-tubulin gene),它們全部被揭示在美國專利申請公開案2002/0192813;以及碗豆(pea)(碗豆(Pisum sativum))核酮糖二磷酸羧化酶基因(ribulose biphosphate carboxylase gene)(rbs 3’),以及來自在該宿主植物中的基因的3’元件。
建構物和載體亦可包括一用於標靶一基因至一植物胞器(plant organelle)(特別地一葉綠體、白色體(leucoplast)或其他色素體胞器(plastid organelle))的轉運胜肽(transit peptide)。對於葉綠體轉運胜肽的使用的描述參見例如美國專利第5,188,642號和美國專利第5,728,925號。
如此處所用的,片語“表現(expressed)”意指當它的同源DNA被轉錄成要被轉譯成蛋白質的mRNA時,一在一植物細胞中被表現或生產的蛋白質。如此處所用的,片語“抑制(suppressed)”意指一蛋白質降低的表現或活性。當有一在該植物細胞中的蛋白質的數量和/或活性的降低時,典型地一蛋白質在一植物細胞中被抑制。該蛋白質的存在或活性可藉由上達並包括蛋白質表現和/或活性的總損失的任何數量而被降低。
用於基因抑制的重組DNA建構物可被設計用於任何用於抑制一基因的轉錄、對應於那個基因的mRNA的積累或預防轉錄本轉譯成蛋白質的許多熟知的方法。轉錄後的基因抑制可實際上藉由RNA的轉錄(形成與自一被標靶用於抑制的基因所產生的mRNA具有同源性的雙股RNA(dsRNA))而被實現。
基因抑制亦可藉由由預防基因功能的轉位元件所產生的插入突變而被達到。例如,在許多雙子葉植物中,以農桿菌的T-DNA的轉形可被容易地達到並且大量的轉形體可被快速地獲得。又,一些物種具有可有效地被使用於產生大量插入突變的活性轉位元件的系(lines),而一些其他物種缺乏此等選擇。由農桿菌或轉位子突變誘發(transposon mutagenesis)所產生並且具有一感興趣的多肽的改變表現的突變植物可使用本發明的聚核苷酸而被鑑定。例如,一大族群的突變植物可以編碼該感興趣的多肽的聚核苷酸而被篩選以偵測具有一插入在該編碼該感興趣的多肽的基因的突變植物。
如此處所用的,片語“對照植物”意指一不含有給予一增強的性狀的重組DNA的植物。一對照植物被使用以鑑定和選擇一具有一增強的性狀的基因轉殖植物。一適合的對照植物可以是被使用以產生一基因轉殖植物的親代系的一非-基因轉殖植物(亦即缺乏重組DNA)。一適合的對照植物在一些例子中可以是一不含有該重組DNA的半合子基因轉殖植物系的一子代。
如此處所用的,片語“增強的性狀”意指一基因轉殖植物的一特徵,包括但不限於一特徵在於增強的植物形態、生理、生長和發育、產量、營養增強、疾病或害蟲抗性、或環境或化學耐受性的增強的農藝性狀。在一些具體例中,增強的性狀是選自於由增強的水使用效率、增強的冷耐受性、增加的產量、增強的氮使用效率、增強的種子蛋白質和增強的種子油所構成的增強的性狀的群組。在一些具體例中,該增強的性狀是增強產量,包括在非逆境條件下增加的產量以及在環境逆境條件下增加的產量。逆境條件可包括例如乾旱、陰暗、真菌疾病、病毒疾病、細菌疾病、昆蟲感染、線蟲感染、冷溫暴露、熱暴露、滲透逆境、降低的氮養分可用性、降低的磷養分可用性以及高植物密度的至少一者。
“產量”可藉由許多性質而被影響,包括沒有限制植物高度、莢數目、在植物上的莢位置、節間的數目、莢破碎的發生率、穀粒大小、每莢或穗的穀粒數目或小穗(spikelet)/植物、結瘤和固氮的效率、營養同化的效率、對生物和非生物逆境的抗性、碳同化、植物架構、對倒伏(lodging)的抗性、種子發芽百分比、苗活力和幼體性狀。產量亦可藉由發芽的效率(包括在逆境條件下發芽)、生長速率(包括在逆境條件下的生長速率)、穗數目、每穗的種子數目、種子大小、種子的組成(澱粉、油、蛋白質)和種子填充的特徵。
一在此所描述的基因轉殖植物的增加產量 可以許多方式而被測量,包括試驗重量、每株植物種子數目、種子重量、每單位面積種子數目(亦即,每英畝種子或種子重量)、每英畝蒲式耳、每英畝噸數或每公頃公斤。例如,玉米產量可被測量有如每單位生產面積的脫殼玉米粒生產(例如呈每英畝蒲式耳或每公頃公噸),經常在一水分調節的基礎上被報導。增加的產量可起因於關鍵生物化學化合物(包括氮、磷和碳水化合物)的改良利用或對環境逆境(包括冷、熱、乾旱、鹽和藉由害蟲或病原體的攻擊)的改良反應。由於植物生長調節子的修飾表現或者細胞週期或光合作用途徑的修飾,在此所描述的重組DNA亦可被使用以提供具有改良的生長和發育以及最終地增加產量的植物。亦提供的是證明關於一可能或不可能對應於一在總植物產量的增加的種子組分的增強產量的基因轉殖植物的產生。此等性質包括在種子油、種子分子(諸如蛋白質和澱粉)、油組分的增強,這可藉由一在種子組分的比率的改變而被證實。
基因轉殖植物可包含有一堆導致生產或抑制複數個多肽序列的在此所揭示的一或多個聚核苷酸。包含有許多聚核苷酸序列的基因轉殖植物可藉由傳統的育種方法或經由遺傳工程方法的任一者或這兩者而被獲得。這些方法包括,但不限於,育種各個包含有一感興趣的聚核苷酸的個別系,以一隨後的基因轉形一包含有一在此所揭示的基因的基因轉殖植物,以及共-轉形基因至一單一植物細胞內。基因的共-轉形可使用包含有複數個基因的單一轉 形載體或被分別地攜帶在複數個載體上的基因而被進行。
包含有或衍生自被轉形以重組DNA的這個發明的植物細胞的基因轉殖植物可進一步被增強以堆疊的性狀,例如,一種具有一起因於在此所揭示的DNA的表現的增強的性狀組合以除草劑和/或害蟲抗性性狀的作物植物。例如,本發明的基因可被堆疊以農藝學感興趣的其他性狀(包括一提供除草劑抗性或昆蟲抗性的性狀),諸如使用一來自蘇力菌(Bacillus thuringiensis)的基因以提供對抗鱗翅目(lepidopteran)、鞘翅目(coleopteran)、同翅目(homopteran)、半翅目(hemipteran)和其他昆蟲的抗性。
植物細胞轉形方法:用於以重組DNA轉形在一植物細胞核的染色體的許多方法是本技藝所知曉並且被使用在製備一基因轉殖植物細胞核和植物的方法。2種用於此轉形的有效方法是農桿菌媒介轉形和微發射體轟擊(microprojectile bombardment)。微發射體轟擊方法被描述在美國專利第5,015,580號(大豆);第5,550,318號(玉米);第5,538,880號(玉米);第5,914,451號(大豆);第6,160,208號(玉米);第6,399,861號(玉米);第6,153,812號(小麥)和第6,365,807號(水稻)。農桿菌媒介轉形已被描述在美國專利第5,159,135號(棉花);第5,824,877號(大豆);第5,463,174號(菜籽);第5,591,616號(玉米);第5,846,797號(棉花);第6,384,301號(大豆)、第7,026,528號(小麥)和第6,329,571號(水稻)、美國專利申請公開案2004/0087030(棉花)以及美國專利申請公開案 2001/0042257(甜菜),它們全部在此被併入本案以作為參考資料用於能夠生產基因轉殖植物。
植物材料的轉形典型地被實施在一營養培養基(亦即,一將容許細胞活體外生長的營養混合物)上的組織培養。受體細胞標靶包括,但不限於,分生組織細胞、下胚軸(hypocotyls)、癒傷組織(calli)、未成熟胚(immature embryos)和配子細胞(gametic cells)(諸如小孢子、花粉、精子和卵細胞)。癒傷組織可被起始自組織來源,包括但不限於,未成熟胚、下胚軸、苗頂端分生組織、小孢子以及類似之物。含有一基因轉殖細胞核的細胞生長成基因轉殖植物。
除了以一重組DNA直接轉形一植物材料,一基因轉殖植物細胞核可藉由雜交一具有一有重組DNA的基因轉殖細胞核的細胞的第一植物與一缺乏該基因轉殖細胞核的第二植物而被製備。一提供一增強的性狀(例如,增強的產量)的具有重組DNA的基因轉殖植物可與一具有賦予另一個性狀(例如除草劑抗性或害蟲抗性)的其他重組DNA的基因轉殖植物系雜交以產生具有賦予這兩個性狀的重組DNA的子代植物。典型地,在用於組合性狀的此育種中,該提供額外性狀的基因轉殖植物是一雄系,以及該攜帶基礎性狀的基因轉殖植物是雌系。這個雜交的子代將分離,藉此該等植物的一些將攜帶用於這兩個親代性狀的DNA,以及一些將攜帶用於一親代性狀的DNA;此等植物可藉由與親代重組DNA相關的標記而被鑑定,例如藉由 分析重組DNA的的標記鑑定。在一可選擇標記被連接至該重組DNA的例子中,亦可藉由應用該選擇劑(例如一用於與一除草劑耐受性標記使用的除草劑)或藉由選擇增強的性狀而被鑑定。攜帶用於這兩個親代性狀的DNA的子代植物可被多次(例如通常6至8代)雜交回雌性親代系,以產生一具有與一原始的基因轉殖親代系實質上相同的基因型但是用於另一個基因轉殖親代系的重組DNA的子代植物。
在轉形的實施中,DNA典型地在任一轉形實驗中被導入至僅一小百分比的標靶植物細胞內。標記基因被使用以提供一用於鑑定那些藉由接收和插入一重組DNA分子至它們的基因組內而被安定地轉形的細胞的有效系統。較佳的標記基因提供賦予對一選擇劑(諸如如上面所描述的一抗生素或一除草劑)抗性的選擇標記。
暴露於該選擇劑而存活的植物細胞或者已在一篩選分析中被評分為陽性的植物細胞可被培養在再生培養基中並且容許成熟成植物。自轉形的植物細胞再生的發育的小植株可被轉移至植物生長混合物中,並且在轉移至一溫室或生長室用於成熟之前經耐寒鍛鍊(hardened off)(例如在一在約85%相對濕度、600ppm CO2和25-250微愛因斯坦(microEinsteins)m'2 s'1的光的環境控制室中)。植物自在一轉形體被鑑定之後約6週至10個月被再生,視初始組織和植物物種而定。植物可使用那些熟習此技藝者所知曉的慣常植物育種方法而被授粉以及種子生產,例如自花授粉通常被使用於基因轉殖玉米。該被再生 的轉形植物或它的子代種子或植物可被試驗該重組DNA的表現和選擇增強的農藝性狀的存在。
基因轉殖植物和種子:衍生自具有一在此所提供的基因轉殖細胞核的基因轉殖植物細胞的基因轉殖植物被生長以產生如相較於一對照植物具有一增強的性狀的基因轉殖植物以及生產這個發明的基因轉殖種子和單倍體花粉。此等具有增強的性狀的植物可藉由選擇用於該增強的性狀的轉形植物或子代種子而被鑑定。一選擇方法被設計用於評估複數個包含有該重組DNA的基因轉殖植物/品系(例如,各個自2至20個基因轉殖品系的5-10個植物)的效率。自在此所提供的基因轉殖種子生長的基因轉殖植物證明有助於增加產量的改良農藝性狀或提供增加的植物價值(包括例如改良的種子品質)的其他性狀。在此所提供的改良性狀包括增強的水使用效率、增強的冷耐受性、增加的產量、增加的氮使用效率、增強的種子蛋白質和增強的種子油。
經由各種不同的性狀控制複數個害蟲問題的能力是一有價值的商業產品概念,並且若昆蟲控制性狀和/或雜草控制性狀和/或農藝性狀被組合在相同的植物中,這個產品概念的便利性被增強。進一步,改良的價值可經由藉由一蘇力菌(B.t.)殺蟲蛋白質所賦予的昆蟲抗性(IR)性狀與一或多個額外的除草劑耐受性(HT)性狀(諸如上面所提到的那些),加上一或多個額外的輸入性狀(例如由B.t.-衍生的或其他殺蟲蛋白質所賦予的其他昆蟲抗 性、由諸如RNAi和類似之物的機制所賦予的昆蟲抗性、疾病抗性、逆境耐受性、改良的氮利用以及類似之物)或輸出性狀(例如,高油含量、健康油組成、營養改良以及類似之物)的單一植物組合而被獲得。此等組合可經由慣常的育種(例如,育種堆疊)或聯合地作為一涉及複數個基因的同時導入(例如分子堆疊)的新穎轉形品系而被獲得。此堆疊可使用RNAi技術或經由使用EXZACT®而被執行。基因的共-轉形可使用包含有複數個基因的單一轉形載體或被分別地攜帶在複數個載體上的基因而被進行。益處包括在一作物植物中管理昆蟲害蟲和改良雜草控制的能力,這對生產者和/或消費者提供次要利益。因此,本發明可被使用以提供具有性狀的組合(包含有改良的作物品質與靈活地和成本有效地控制任何數目的農藝問題的能力的一完整農藝包裝)的轉形植物。
賦予對一除草劑抗性的基因
A.乙醯羥酸合成酶(AHAS)和乙醯乳酸合成酶(ALS)對抗除草劑咪唑啉酮或磺醯脲的抗性/耐受性。用於AHAS和突變體的基因和突變體已被揭示在美國專利第4,761,373號、第5,304,732號、第5,331,107號、第5,853,973號和第5,928,937號。用於ALS的基因和突變體已被揭示在美國專利第5,013,659號和第5,141,870號。
B.乙醯輔酶A羧化酶(ACCase)對抗除草劑環己二酮和/或芳氧基苯氧基丙酸(包括合氯氟、禾草靈(Diclofop)、芬殺草(Fenoxyprop)、伏寄普(Fluazifop)、 快伏草(Quizalofop))的抗性/耐受性基因已被描述在美國專利5,162,602和5,498,544。
C.用於嘉磷塞抗性/耐受性基因的基因。5-烯醇丙酮基-3-磷酸莽草酸合成酶(5-enolpyruvyl-3-phosphoshikimate synthase)(ES3P合成酶)的基因已被描述在美國專利第4,769,601號。5-烯醇丙酮莽草酸-3-磷酸合成酶(EPSPS)的基因和突變體已被描述在美國專利第4,940,835號、第5,188,642號、第5,310,667號、第5,633,435號、第5,633,448號和第6,566,587號。
D.用於草銨膦(畢拉草(bialaphos)、草丁膦(PPT))抗性/耐受性的基因。用於草丁膦乙醯基轉移酶(Pat)的基因已被描述在美國專利第5,273,894號、第5,276,268號和第5,550,318號;以及用於畢拉草抗性基因(Bar)的基因已被描述在美國專利第5,561,236號和第5,646,024號、第5,648,477號和第7,112,665號。用於麩醯胺合成酶(GS)的基因已被描述在美國專利第4,975,372號和歐洲專利申請案EP 0333033 A1。
E.羥基苯基丙酮酸二氧酶(hydroxy phenyl pyruvate dioxygenase,HPPD)對抗除草劑異噁唑(isoxazole)、二酮腈(diketonitriles)和/或三酮(包括磺草酮(sulcotrione)和甲基磺草酮(mesotrione))的抗性/耐受性基因已被描述在美國專利第6,268,549號和第6,069,115號。
F.用於2,4-D抗性/耐受性的基因。2,4-D-單氧化酶的基因已被描述在美國專利第6,100,446號和第6,153,401號。用於2,4-D抗性/耐受性的額外基因被揭示在US 2009/0093366(AAD-1)和WO 2007/053482(AAD-12),其內容以它們的整體被併入本案以做為參考資料。
G.咪唑甘油磷酸脫水酶(imidazoleglycerol phosphate dehydratase,IGPD)對抗除草劑咪唑(imidazole)和/或三唑的基因已被描述在美國專利第5,541,310號。汰克草降解酵素(Dicamba degrading enzymes)(加氧酶、鐵氧化還原蛋白(ferredoxin)和還原酶)對抗除草劑汰克草的基因已被揭示在美國專利第7,022,896號和第7,105,724號。
H.用於抑制光合作用的除草劑的基因,包括三(psbA和1s+基因)或一芣腈(腈酶基因)。參見例如,Przibila et al.,Plant Cell 3:169(1991)揭示以編碼突變的psbA基因的質體轉形單胞藻屬(Chlamydomonas)。用於腈酶基因的核苷酸序列被揭示在美國專利第4,810,648號以及含有這些基因的DNA分子是可獲得的根據ATCC登陸編號53435、67441和67442。編碼用於一麩胺基硫S-轉移酶的DNA的克隆和表現藉由Hayes et al.,Biochem.J.285:173(1992)被描述。
編碼本發明的蛋白質的分離核酸的表現可藉由可操作地連結例如該DNA或cDNA至一啟動子(它是 組成型或可調節的),繼而併入至一表現載體內而被達到。該等載體可適合用於在原核生物或真核生物中複製和整合。典型的表現載體含有轉錄和轉譯終止子、起始序列以及用於調節編碼本發明的蛋白質的DNA的表現的啟動子。為了獲得一克隆的基因的高位準表現,所欲的是建構最少含有一指導轉錄的啟動子、用於轉譯起始的核醣體結合位址和一轉錄/轉譯終止子的表現載體。一熟習此技藝者將認可:修飾可被做出用於本發明的蛋白質而沒有減少它的生物活性。一些修飾可被做出以促進克隆、表現或併入該標靶分子至一融合蛋白質內。此等修飾是那些熟習此技藝者所熟知,並且包括,例如,一甲硫胺酸添加在胺基端以提供起始位址,或者額外的胺基酸(例如,聚His)被放在任一端以產生方便地定位的純化序列。限制位址或終止密碼子亦可被導入。
原核細胞可被使用作為用於表現的宿主。最常見的原核生物是由大腸桿菌(E.coli)的各種不同的菌株所代表;然而,其他微生物菌株亦可被使用。在此所定義包括用於轉錄起始的啟動子(選擇性地具有一操縱子)連同核醣體結合位址序列的常被使用的原核控制序列包括此等常被使用的啟動子諸如β內醯胺酶(beta lactamase)(青黴素酶(penicillinase))和乳糖(lac)啟動子系統的(Chang et al.,Nature 198:1056(1977))、色胺酸(tryptophan)(trp)啟動子系統(Goeddel et al.,Nucleic Acids Res.8:4057(1980))以及λ衍生的P L啟動子和N-基因核醣體結合位址 (Shimatake et al.,Nature 292:128(1981))。包含選擇標記在大腸桿菌中轉染的DNA載體亦是有用的。此等標記的實例包括具體說明對安比西林(ampicillin),四環黴素(tetracycline)或氯黴素抗性的基因。
該載體被選擇以容許導入至該適合的宿主細胞內。細菌載體典型地是質體或噬菌體來源。適當的細菌細胞被感染以噬菌體載體顆粒或被轉染以裸噬菌體載體DNA。若一質體載體被使用,該等細菌細胞被轉染以該質體載體DNA。用於表現本發明的蛋白質的表現系統是可獲得的使用桿菌屬物種(Bacillus sp.)和沙門桿菌屬(Salmonella)。參見例如,Palva et al.,Gene 22:229-235(1983);以及Mosbach et al.,Nature 302:543-545(1983)。
這個發明的蛋白質(重組或合成的)可藉由本技藝所熟知的標準技術(包括清潔劑溶解、以諸如硫酸銨的物質的選擇性沉澱、管柱層析法、免疫純化方法和其他的)被純化至實質純度。參見例如,R.Scopes,Protein Purification:Principles and Practice,Springer-Verlag:New York(1982);以及Deutscher,Guide to Protein Purification,Academic Press(1990)。例如,抗體可被引發至如在此所描述的蛋白質。來自大腸桿菌的純化可遵循在美國專利第4,511,503號所描述的操作程序而被達到。該蛋白質可接著自表現該蛋白質的細胞被分離並且藉由如在此所描述的標準蛋白質化學技術而被進一步純化。
本發明提供經由使用基因融合建構物或嵌合DNA表現複數個酵素活性的方法,以及用於生產修飾的基因建構物的方法。此外,本發明提供該等供使用在這些方法的基因融合建構物和藉由這些方法所製備的修飾的基因融合建構物。呈它們最簡單形式的基因融合建構物是編碼酵素域的核酸序列的組合。該等建構物可進一步包括參與該被編碼的雜合蛋白質的表現的核酸序列,諸如轉錄元件、啟動子、終止序列、內含子以及類似之物。此外,該等建構物可包括核苷酸連接子序列(諸如下面所描述的那些)。
該等被連接以形成本發明的基因融合建構物和修飾的基因融合建構物的核酸序列可以是各種不同形式的去氧核糖核酸(例如,基因組DNA、cDNA、同義股序列、反義股序列、重組DNA、改組的DNA(shuffled DNA)、修飾的DNA或DNA類似物)。另擇地,該等核酸序列可以是核糖核酸(包括,但不限於,基因組DNA、傳訊RNA(messenger RNA)、催化的RNA、同義股序列、反義股序列、重組DNA、改組DNA、修飾的RNA、或RNA類似物)。該等被併入至本發明的融合建構物的核酸序列亦可被衍生自一或多個核酸序列庫。
本發明的基因融合建構物和修飾的基因融合建構物可藉由許多本技藝所知曉的技術(諸如分子選殖技術)而被製備。適合用於建構重組核酸(諸如表現載體)的廣泛的各種不同的克隆和活體外擴增方法是此技藝者所 熟知。描述在此有用的分子生物學技術(包括突變誘發)的一般教科書包括Berger and Kimmel,Guide to Molecular Cloning Techniques,Methods in Enzymology,volume 152 Academic Press,Inc.,San Diego,Calif.(“Berger”);Sambrook,et al.,Molecular Cloning--A Laboratory Manual(2nd Ed.),volumes1-3,Cold Spring Harbor Laboratory,Cold Spring Harbor,N.Y.,1989(“Sambrook”);以及Current Protocols in Molecular Biology,FM.Ausubel,et al.,eds.,Current Protocols,a joint venture between Greene Publishing Associates,Inc.and John Wiley & Sons,Inc.,(經由西元2000年補充)(“Ausubel”))。
經由活體外擴增方法(包括聚合酶鏈反應(PCR)、連接酶鏈反應(LCR)、Qβ-複製酶擴增和其它RNA聚合酶調節的技術(例如NASBA))足以引導此技藝者的技術的實例被發現在Berger、Sambrook和Ausubel以及Mullis,et al.,(1987)美國專利第4,683,202號;PCR Protocols A Guide to Methods and Applications(Innis,et al.,eds.)Academic Press Inc.San Diego,Calif.(1990);Arnheim & Levinson(Oct.1,1990)Chemical and Engineering News 36-47;The Journal Of NIH Research(1991)3:81-94;Kwoh,et al.,(1989)Proc Natl Acad.Sci.USA 86:1173;Guatelli,et al.,(1990)Proc Natl Acad Sci USA 87:1874;Lomell,et al.,(1989)J Clin Chem 35:1826;Landegren,et al.,(1988)Science 241:1077-1080;Van Brunt(1990)Biotechnology 8:291-294;Wu and Wallace,(1989)Gene 4:560;arringer,et al.,(1990)Gene 89:117,以及Sooknanan and Malek(1995)Biotechnology 13:563-564。活體外克隆擴增的核酸的改良方法被描述在美國專利第5,426,039號。藉由PCR擴增大核酸的改良方法被概述在Cheng,et al.,(1994)Nature 369:684-685和在此的參考文獻,其中上達40kb的PCR擴增子被產生。一熟習此技藝者將瞭解:實質上任何RNA可被轉化成一適合用於使用逆轉錄酶和一聚合酶的限制切割(restriction digestion)、PCR擴增和定序的雙股DNA。
在所有活體內系統中該被表現的蛋白質的偵測可藉由在本技藝所知曉的方法(包括,例如,放射免疫分析、西方墨點技術和免疫沉澱)而被達到。
如此處所用的,片語“性狀”意指一植物或特定的植物材料或細胞的一生理、形態、生物化學或物理特徵。在一些例子中,這個特徵對於人眼是可見的(包括種子或植物大小),或可藉由生物化學技術而被測量(包括偵測種子或葉的蛋白質、澱粉或油含量),或藉由觀察一代謝或生理過程(例如,藉由測量二氧化碳的攝取),或藉由觀察一基因或基因們的表現位準(例如,藉由採用一北方分析、RT-PCR、微陣列基因表現分析),或報導基因表達系統,或者藉由農業觀察(包括逆境耐受性、產量或病原體耐受 性)。
如此處所用的,片語“過度表現”意指在用於該基因的任何發展或時相階段,相較於在一野生型植物、細胞或組織的表現,在一植物、植物細胞或植物組織中一基因的一更大表現位準。當例如該等基因在一強的表現信號(包括該等在此所描述的啟動子的一者或本技藝所知曉的花椰菜嵌紋病毒35S轉錄起始區域)的控制下,過度表現可發生。過度表現可發生遍及一植物或在該植物的特定組織,視該被使用的啟動子而定。
特別感興趣的增強的性狀包括對種子(諸如胚或胚乳)、果實、根、花、葉、莖、芽、苗或類似之物的那些,包括:對環境條件(包括冷凍、寒冷、熱、乾旱、水飽和度、輻射和臭氧)的增強耐受性;對微生物、真菌或病毒疾病的改良耐受性;對害蟲感染(包括昆蟲、線蟲、蠕蟲、寄生的高等植物與類似之物)的改良耐受性;降低除草劑敏感性;重金屬的改良耐受性或吸收重金屬的增強能力;在貧乏的光條件(例如,低光和/或短日照長度)下改良的生長,或者在感興趣的基因的表現位準的變化。
其他可被修飾的表現型與植物代謝物的生產有關,諸如在紫杉醇(taxol)、生育酚(tocopherol)、生育三烯酚(tocotrienol)、固醇(sterols)、植物固醇(phytosterols)、維生素、蠟單體(wax monomers)、抗氧化劑、胺基酸、木質素(lignins)、纖維素、單寧(tannins)、異戊烯醇脂(prenyllipids)(包括葉綠素和類胡蘿蔔素)、硫 代葡萄糖苷(glucosinolates)和萜類的變化,增強的或組成上改變的蛋白質或油生產(特別地在種子),或經修飾的糖(不溶性或可溶性)和/或澱粉組合物。可被修飾的物理性植物特徵包括細胞發育(包括毛狀體的數目)、果實與種子大小和數量、植物部分(如莖、葉、花序和根)的產量、在儲存期間種子的安定性、種子莢的特徵(例如,對破碎的易感性)、根毛長度和數量、節間距離或種皮的品質。可被修飾的植物生長特徵包括生長速率、種子的發芽率、植物和苗的活力、葉和花老化、雄性不育、不受精生殖(apomixes)、開花時間、落花、氮攝取的速率、對可溶性糖濃度的滲透敏感性、生物量或蒸散特徵以及植物結構特徵(例如頂端優勢、分枝模式、器官的數目、器官相同性、器官形狀或大小)。
寒冷耐受性:藉由容許在一生長季節的更早種植或更晚收穫,植物可被增強以延長寒冷敏感性作物物種的有效生長範圍圍。寒冷耐受性可作為一種瞭解植物如何適應缺水的模型。寒冷和水逆境這兩者共享相似的信號傳遞途徑和耐受性/適應機制。例如,對寒冷溫度的適應可藉由水逆境或以離層酸(abscisic acid)處理而被誘導。由低溫所誘導的基因包括脫水蛋白(dehydrins)(或LEA蛋白質)。脫水蛋白亦藉由鹽度、離層酸、水逆境以及在胚胎發生(embryogenesis)的後期階段而被誘導。
冷發芽:植物可被增強以賦予在冷的條件下更好的發芽和生長。容許在冷中發芽和苗活力的基因將具 有高度顯著的利用性在容許種子在具有一高存活率的季節中被更早種植。賦予在更冷的氣候中更佳的存活的基因容許一種植者在春天向前挪動種植時間,並且延長生長季節進一步至秋天用於更高的作物產量。在顯著地低於種子的發芽和非轉形植物的存活所需的平均溫度所具者的溫度下,種子的發芽和存活將增加一作物植物進入它將不會茁壯成長的區域的潛在範圍。
滲透逆境、冷凍耐受性和乾旱耐受性:植物可被增強以賦予對鹽逆境、一般滲透逆境、乾旱逆境和冷凍逆境更好的耐受性,具有影響整個植物和細胞水可利用性的能力。暴露於脫水可在植物中引起如同冷凍逆境的相似生存策略,以及乾旱逆境可誘導冷凍耐受性。除了誘導冷-適應蛋白質之外,容許植物在低水條件下存活的策略可包括,例如,減少的表面積或表面油或蠟產生。滲透逆境可藉由特定的分子控制機制而被調節,包括控制水和離子移動、功能性和結構性逆境-誘導的蛋白質、信號感知和傳導、和自由基清除以及許多其他的基因。滲透逆境的煽動者可包括冷凍、乾旱和高鹽度。
在許多方面,冷凍、高鹽和乾旱在植物上具有相似的效用,它們沒有誘導對這些不同的逆境反應的常見多肽。例如,冷凍與缺水相似在於冷凍降低可用於一植物的水的數量。暴露於冷凍溫度可導致細胞脫水,因為水離開細胞並且在細胞間隙中形成冰晶。因為具有高鹽濃度和冷凍,藉由低的水可用性所引起的關於植物的問題包括 藉由細胞的水的取出所引起的機械逆境。因此,併入修飾一植物對滲透逆境的反應的轉基因至例如一作物或觀賞植物內可以是有用的在降低傷害或損失。
熱逆境耐受性:許多作物的發芽亦對高溫敏感的。可提供增加的熱耐受性的基因一般而言在生產在熱條件下發芽和生長的植物是有用的,可發現特別使用於在季節晚期被種植的作物,或者藉由容許在相對熱的氣候中生長而擴大一植物的範圍。這些基因可容許更快的世代時間。在許多物種(例如,青花菜(broccoli)、花椰菜)中,當該等植物的繁殖部分構成作物以及營養組織被丟棄時,它將是優點以加速開花的時間。加速開花可縮短作物和樹木育種程序。此外,在一些例子中,一更快的世代時間將容許在一給定的生長季節內一要被做出的作物的額外收穫。
開花時間:藉由使用可誘導的啟動子調節潛在開花的表現,開花可藉由應用一誘導物化學品而被觸發。這個將容許開花在一作物上同步並且促進更有效的收穫。此等可誘導的系統亦可被使用以調整作物品種的開花至不同的緯度。目前,諸如大豆和棉花的物種是可獲得的作為一系列的適合根據它們的開花時間(藉由日長度而被管理)用於不同緯度的成熟族群。一開花可被化學控制的系統將容許一單一高-生產的北方成熟組在任何緯度下生長。在南方區域,此等植物可在開花被誘導之前被生長歷時更長的期間,藉此增加產量。在更北方的地區,誘導將被使用以 確保該作物在第一次冬霜之前開花。此外,花結構可在生育力上具有有利或有害的效用,並且可被使用,例如,藉由繁殖組分的缺乏、減少或篩選以降低生育力。
根發育和形態:藉由修飾一或多個目前所揭示的基因的表現位準來修飾根的結構或發育,植物可被生產具有在其它非生產土壤中茁壯生長的能力。例如,進一步延伸至岩石土壤內的葡萄根將提供更大的錨定,具有增加的分支的更大覆蓋,或者將在浸水的土壤中保持活力,因此增加該作物的有效種植範圍和/或增加產量和存活。當該植物將在其中生長的土壤偶爾被淹沒時,或當病原真菌或致病性線蟲流行時,操作一植物以產生短根可以是有利的。
種子發育和發芽率:植物可被增強用於種子發育和發芽率,包括當種子在正常地不利於發芽(例如冷、熱或鹽逆境)的條件時,並且可連同功能等效物因此被使用以修飾和改良在不利條件下的發芽率。
快速生長和/或植物大小:植物可被增強以加速苗生長,並且因此容許一作物變成更快被建立。這個將在當植物最敏感的生長的早期階段最小化對逆境條件的暴露。此外,它可容許一作物生長要比競爭雜草物種更快。更大的植物產生更多的生物質。對於一些觀賞植物,提供具有這些基因或它們的等效物的更大品種的能力可以是高度所欲的。更顯著地,過度表現這些來自不同物種的基因的作物物種亦將在更大的栽培品種上產生更高的產量,特 別是該植物的營養部分是可食用的那些。
這些基因的過度表現可賦予增加的逆境耐受性以及增加的生物量,並且增加的生物量似乎與由這些基因所展現的逆境耐受性的特定機制有關。一側向器官相對於進入晚期發育相(生長停止和老化)繼續生長和擴張的決定是被基因和激素控制,包括在一器官大小檢查點的調節。參見例如,Mizukami and Fisher(2000)Proc.Natl.Acad.Sci.97:942-47;以及Hu et al.Plant Cell 15:1591。器官大小藉由器官細胞的分生能力而被控制,具有增加的分生能力導致增加的器官大小(葉和莖這兩者)。植物激素可影響植物器官大小,以乙烯途徑過度表現導致減少的器官大小。
大苗:植物可被增強以產生可被使用以產生變得更快建立的作物的大苗。大苗一般而言更堅硬,更不容易受到壓迫,並且能夠更好地競爭超過雜草物種。表現一些目前所揭示的基因的大苗可導致要比對照植物更大的子葉和/或發育上更超前的苗。藉由操作這些基因或它們等效物的表現可能做出的快速苗發育可能降低起因於在苗階段特別流行的疾病(例如猝倒病(damping off))的損失,並且因此對於在田間或在控制的環境中發芽的植物的存活力是重要的。
葉形態和/或葉發育:植物可被增強用於葉形態,包括葉顏色、葉大小、光滑葉和/或葉厚度。增強的葉綠素和類胡蘿蔔素位準亦可改良在作物植物的產量。葉黃 素(lutein)(像其他葉黃素(xanthophylls)(諸如玉米黃素(zeaxanthin)和菫菜黃質(violaxanthin))是一種在保護植物免於過量光的損害效用的必要組分。特別地,葉黃素直接地或間接地有助於在被暴露至高光的植物中的非-光化學淬滅的快速上升。被工程化以含有更高位準的葉黃素的作物植物可因此具有改良的光保護,導致更少的氧化損害和更好的生長在高光(例如,在長夏日的期間,或在要比一非-轉形植物將茁壯成長的那些更高海拔或更低緯度)下。此外,提高的葉綠素位準增加光合能力。
光反應和/或避蔭(shade avoidance):植物可被增強用於對光反應,如有用的用於修飾植物生長或發育,例如,在貧乏的光中的光形態形成或加速開花時間反應一非-轉形的植物將沒有相似地反應的各種不同的光強度、品質或持續時間。此等已被證明的反應的實例包括葉數目和葉序以及早期花芽出現。遮蔽反應的消除可導致增加的種植密度與後續的產量增強。
養分攝取和利用:目前所揭示的被導入至植物內的基因提供一方式以改良必要養分(包括氮化合物、磷酸鹽,鉀和微量礦物質)的攝取。年輕植物具有一快速攝取的磷酸鹽,並且足夠的磷酸鹽對於塊根作物(如胡蘿蔔、馬鈴薯和防風草)的產量是重要的。目前所揭示的賦予對低養分條件的耐受性的基因的利用性亦包括藉由降低所需肥料的數量、降低肥料徑流至流域內的環境益處而為種植者節省成本;以及改良產量和逆境耐受性。此外,藉由提供改 良的氮攝取能力,這些基因可被使用以在可影響產量和各種不同的食品的營養價值和生產的此一方式改變種子蛋白質數量和/或組成。
氧化逆境耐受性:植物可被增強對氧化逆境耐受性(包括氧自由基,例如超氧化物和過氧化物自由基)。一般而言,具有最高位準的防衛機制(例如膜脂質的多不飽和部分)的植物最可能在導入氧化逆境(例如,高光、臭氧、缺水,特別是組合)的條件下茁壯生長。一特定的氧化劑臭氧已被顯示引起顯著的葉損傷,這影響作物和觀賞植物的產量和外觀。
重金屬耐受性:重金屬(諸如鉛、汞、砷、鉻和其它)可在植物呼吸上具有一顯著的不利影響。植物可被增強以賦予對重金屬的改良抗性,經由例如金屬的螯合或降低攝取將在具有相對高濃度的這些元素的土壤中顯示改良的活力和產量。另擇地,植物可被增強一在重金屬攝取的增加,這可有益於清理被污染的土壤的努力。
種子形態和數量:當產物是種子本身或當植物的營養部分的生物量藉由降低種子生產而被增加時,植物可被增強以改變可具有一在產量上的顯著影響的種子大小或數目。在果實產物的例子中,通常有利的是修飾一植物以相對於未轉形的植物具有降低的種子大小或數目,俾以提供無子或具有降低數目或更小種子的品種。除了種皮完整性、厚度和滲透性,種子大小、種子水含量和藉由許多其他組分(包括抗氧化劑和寡醣)可影響在儲存的種子壽命。當一植物的種子是收穫的作物(如同,例如豌豆、豆類、 堅果等等)時,這將是一重要的利用性。植物亦可被增強以修飾種子顏色,這可對一種子產物提供附加的吸引力。
在此的組成物和方法可被使用於任何植物物種的轉形,包括但不限於,單子葉植物和雙子葉植物。在一些實例中,該轉形的植物物種是一種子作物植物、一穀粒植物、一油-種子植物和/或一豆科植物。
在特別的實例中被轉形的植物物種包括,例如並且沒有限制,作物植物;玉米(corn)(玉米(maize);玉蜀黍(Zea mays));蕓苔屬物種(Brassica sp.)(例如,西洋油菜(B.napus)、蕪菁(B.rapa)和芥菜(B.juncea));苜蓿(alfalfa)(紫苜蓿(Medicago sativa));水稻(稻(Oryza sativa));黑麥(rye)(黑麥(Secale cereale));高粱(sorghum)((蜀黍(Sorghum bicolor)、高梁(Sorghum vulgare));栗(millet)(例如,珍珠栗(pearl millet)(唐人稗(Pennisetum glaucum))、黍(proso millet)(豬栗(Panicum miliaceum))、梁栗(foxtail millet)(梁(Setaria italica))、龍爪稷(finger millet)(穇子(Eleusine coracana));向日葵(sunflower)(向日葵(Helianthus annuus));紅花(safflower)(紅花草(Carthamus tinctorius));小麥(wheat)(小麥(Triticum aestivum));大豆(soybean)(大豆(Glycine max));菸草(tobacco)(菸草(Nicotiana tabacum));馬鈴薯(potato)(馬鈴薯(Solanum tuberosum));花生(peanut)(落花生(Arachis hypogaea));棉花(cotton)(海島棉(Gossypium barbadense)、陸地棉(G.hirsutum)等等);番薯(sweet potato)(甘藷(Ipomoea batatus));木薯(cassava)(樹薯 (Manihot esculenta));咖啡(coffee)(咖啡樹屬物種(Coffea spp.));椰子(coconut)(可可椰子(Cocos nucifera));鳳梨(pineapple)(鳳梨(Ananas comosus));柑橘樹(citrus trees)(柑橘屬物種(Citrus spp.));可可(cocoa)(可可樹(Theobroma cacao));茶(tea)(茶樹(Camellia sinensis));香蕉(banana)(芭蕉屬物種(Musa spp.));鱷梨(avocado)(酪梨(Persea americana));無花果(fig)(無花果(Ficus casica));番石榴(guava)(番石榴(Psidium guajava));芒果(mango)(檬果(Mangifera indica));橄欖(olive)(油橄欖(Olea europaea));木瓜(papaya)(番木瓜(Carica papaya));腰果樹(cashew)(腰果樹(Anacardium occidentale));澳洲胡桃(macadamia)(澳洲胡桃(Macadamia integrifolia));杏仁(almond)(扁桃(Prunus amygdalus));甜菜(sugar beet)(甜菜(Beta vulgaris));甘蔗(sugarcane)(甘蔗屬物種(Saccharum spp.));燕麥(oats)(燕麥(Avena sativa));大麥(barley)(大麥(Hordeum vulgare));蔬菜;觀賞植物(ornamentals);和針葉樹(conifers)。
在特別的實例中被轉形的蔬菜植物物種包括,例如和沒有限制,番茄(tomatoes)(番茄(Lycopersicon esculentum));萵苣(例如,萵苣(Lactuca sativa));綠色豆(green beans)(菜豆(Phaseolus vulgaris));萊豆(lima beans)(拉馬豆(Phaseolus limensis));碗豆(香豌豆屬物種(Lathyrus spp.));以及甜瓜屬(genus Cucumis)的成員,諸如黃瓜(cucumber)(黃瓜(C.sativus))、網紋甜瓜(cantaloupe)(硬皮甜瓜(C.cantalupensis))以及麝香甜瓜 (musk melon)(甜瓜(C.melo))。
在特別的實例中被轉形的觀賞植物物種包括,例如和沒有限制,杜鵑花(azalea)(羊蹄屬物種(Rhododendron spp.));繡球屬(hydrangea)(繡球花(Macrophylla hydrangea));木槿屬(hibiscus)(朱槿(Hibiscus rosasanensis));玫瑰(roses)(薔薇屬物種(Rosa spp.));鬱金香(tulips)(鬱金香屬物種(Tulipa spp.));水仙(daffodils)(水仙屬物種(Narcissus spp.));矮牽牛屬(petunias)(矮牽牛(Petunia hybrida));康乃馨(carnation)(香石竹(Dianthus caryophyllus));猩猩木(poinsettia)(聖誕紅(Euphorbia pulcherrima));以及菊花屬(chrysanthemum)。
在特別的實例中被轉形的針葉樹植物物種包括,例如和沒有限制,松(pines),諸如火炬松(loblolly pine)(火炬松(Pinus taeda))、溼地松(slash pine)(溼地松(Pinus eiiiotii))、西黃松(ponderosa pine)(美國西部黃松(Pinus ponderosa))、小幹松(lodgepole pine)(山地松(Pinus contorta))和輻射松(Monterey pine)(加利福尼亞松(Pinus radiata));洋松(Douglas-fir)(花旗松(Pseudotsuga menziesii));加州鐵杉(Western hemlock)(加拿大鐵杉(Tsuga canadensis));美國西川雲杉(Sitka spruce)(銀白雲杉(Picea glauca));紅木(redwood)(紅杉(Sequoia sempervirens));道地杉(true firs),諸如銀冷杉(silver fir)(太平洋冷杉(Abies amabilis))和拔爾薩姆冷杉(balsam fir)(拔爾薩姆冷杉(Abies balsamea));以及雪松(cedars),諸如美國西部側 柏(Western red cedar)(美國西部側柏(Thuja plicata))和阿拉斯加黃柏(Alaska yellow-cedar)(阿拉斯加扁柏(Chamaecyparis nootkatensis))。
雖然本發明已參考特定方法和具體例而被描述,將被瞭解的是:各種不同的修飾和變化可被做出而沒有背離本發明。在此所引述的所有刊物在此被明確地併入本案以作為參考資料用於描述和揭示與本發明有關可被使用的組成物和方法學的目的。在參考網站和公共資料庫中所有被引述的專利、專利申請案和序列資訊亦被併入本案以作為參考資料。
實施例 實施例1 田間篩選試驗
位置1和位置2被選擇用於田間篩選試驗,因為它們的低季節內降雨機率、均勻的土壤性質、高品質的水可用性和足夠的基礎設施。圖4顯示用於所試驗的位置1和位置2的日降水量、日蒸散量和累積的生長度日(GDD)資訊。在各個位置,在種植之前種子床的土壤含水量極低。使用一地上灑水系統,灌溉水被施加至土壤表面用於被規定由田間篩選試驗小區所佔據的所有區域(亦即,預灌溉)。在預灌溉在一位址被完成之後大約5至7天,在那個位址的研究小區使用一為6-行研究種植機而被種植在該等床上。所有小區的播種率是84,000株植物/ha。所有小區在生長季節的期間經由一具有被放置在各個種植行附近的帶子的滴灌帶系統(drip-tape system)而被灌溉。為了確保沒有限水條件遍及生長季節,灌溉在一每週的基礎上被實 行。
pDAB111974(亦即,ZmUbi1::BpqPE9;圖3A)和pDAB111975(亦即,ZmGZein27::BpqPE9;圖3B)建構物這兩者(和它們的個別品系)在一B104 x LLH37玉米雜交背景下被試驗。為了檢查這些建構物和品系在關鍵植物度量的影響,複數個負對照(亦即,沒有ZmUbi1::BpqPE9和ZmGZein27::BpqPE9建構物插入的B104 x LLH37雜交種)亦被種植在各個位置。
含有和不含有屬於pDAB111974和pDAB111975建構物的品系的B104雌性近交系(female inbreds)的種子生產被使用以評估近交系種子產量潛力。用於田間篩選試驗的種子生產涉及使用分離的雜交區組(isolated crossing blocks,ICB)。B104雌性近交系與雄性近交系試驗者呈一為1:1的雌性:雄性行模式而被混合。複數個種植延遲分別地被使用以確保在B104和LLH37近交系的絲擠出和花粉脫落之間同步。雌性行在雄穗出現時去雄以避免自花授粉。授粉穗被定期監測昆蟲和疾病症狀。一旦種子的含水量是在或低於35%,在雌性行的穗藉由手而被收穫,予以乾燥至適當的含水量並去殼。各個玉米穗的本體被保持遍及過程。
在種子生產之前,品系特徵活性被執行遍及複數個種子生產世代(亦即,T0、T1、T1S1和T1S2)。此等活性包括葉取樣、DNA分離、定量即時聚合酶鏈反應(qPCR)分析、可選擇標記篩選、RNA為基礎的感興趣的基因(GOI)表現分析以及GOI接合性分析(zygosity analysis)。
表1顯示藉由用於(i)pDAB111974和pDAB111975建構物和它們個別的品系、(ii)負對照小區和(iii)全部12個試驗建構物(和它們的相關品系)和負對照小區的位置和N處理位準的用於穀粒產量的觀察數目。
圖1A顯示當在建構物和它們個別的品系這兩者平均時,藉由位置和N處理位準的穀粒產量反應。鑒於這個實驗用於高N區塊的11至12Mg/ha的穀物產量目標,具有一高N區塊的這兩個位置一般而言達到它們的高N穀物產量目標,並且因此作為用於遺傳產量潛力的良好篩選。圖1B顯示藉由在所試驗的位置1和位置2的位置和N處理位準的穀物產量CV值。超過10%的數值被認為非所欲地高的。
在5個用於pDAB111974的選擇品系之間的穀粒產量差異被顯示在圖2A。相似地,在5個用於pDAB111975的選擇品系之間的穀粒產量差異被顯示在圖2B。因此,我們推斷該等建構物pDAB111974和/或pDAB111975在高N或低N條件下可顯著地增加穀粒產量。
附錄 序列表
序列辨識編號:1
序列辨識編號:2>Os09g26999
序列辨識編號:3>SbDEP1
序列辨識編號:4>SbDEP1
<110> 陶氏農業科學公司
<120> 用於作物產量之增強的基因改質植物
<130> 72531
<160> 4
<170> PatentIn版本3.5
<210> 1
<211> 1320
<212> DNA
<213> 蜀黍(Sorghum bicolor)
<400> 1
<210> 2
<211> 426
<212> PRT
<213> 蜀黍(Sorghum bicolor)
<400> 2
<210> 3
<211> 639
<212> DNA
<213> 蜀黍(Sorghum bicolor)
<400> 3
<210> 4
<211> 212
<212> PRT
<213> 蜀黍(Sorghum bicolor)
<400> 4

Claims (24)

  1. 一種植物轉形載體,其包含有一編碼一與序列辨識編號:2或4具有至少80%序列相同性的多肽的核酸。
  2. 如請求項1的植物轉形載體,其中該核酸係可操作地連結至一組成型啟動子(constitutive promoter)。
  3. 如請求項1的植物轉形載體,其中該核酸與序列辨識編號:1或3具有至少80%序列相同性。
  4. 一種用於基因轉殖植物的核酸建構物,其包含有,(a)一編碼一與序列辨識編號:2或4具有至少80%序列相同性的多肽的聚核苷酸序列;以及(b)一或多個用於驅動該聚核苷酸序列在該基因轉殖植物表現的控制序列;其中該聚核苷酸序列係經密碼子最佳化以供在該基因轉殖植物表現。
  5. 如請求項4的核酸建構物,其中該植物是單子葉植物。
  6. 如請求項4的核酸建構物,其中該植物是雙子葉植物。
  7. 如請求項4的核酸建構物,其中該核酸建構物被安定地轉形至該基因轉殖植物內。
  8. 如請求項4的核酸建構物,其中該核酸建構物包含有一用於農桿菌(Agrobacterium)媒介轉形的二元 載體。
  9. 如請求項4的核酸建構物,其中該核酸建構物包含有一可選擇標記。
  10. 如請求項4的核酸建構物,其中該聚核苷酸序列與序列辨識編號:1或3具有至少80%相同性。
  11. 如請求項4的核酸建構物,其中該一或多個控制序列包含有一病毒序列。
  12. 如請求項4的核酸建構物,其中該一或多個控制序列包含有一植物啟動子。
  13. 一種用於生產一基因轉殖植物的方法,該方法包含有:導入一與序列辨識編號:1或3具有至少80%序列相同性的編碼一多肽的異源核酸至該植物內。
  14. 如請求項13的方法,其中該異源核酸藉由農桿菌媒介轉形被導入至該植物內。
  15. 一種用於增強作物產量的方法,其包含有:(a)以如請求項1的植物轉形載體或如請求項4的核酸建構物轉形一植物細胞;(b)令該被轉形的植物細胞再生成為一基因轉殖植物;以及(c)在一作物田種植該基因轉殖植物。
  16. 如請求項15的方法,其中相較於負對照植物有至少一選自於由下列所構成的群組的參數的統計學上顯著的改良:每公頃穀粒產量(GYH)、每植物穀粒產量 (GPP)、平均穀粒大小(AGS)、每植物粒數目(KPP)以及平均粒重(AKW)。
  17. 一種自如請求項13或15的方法所產生的基因轉殖植物。
  18. 如請求項17的基因轉殖植物,其中該植物是玉蜀黍(Zea mays)或大豆(Glycine max)。
  19. 一種植物,其包含有一編碼一多肽的異源核酸,該多肽係與一選自於由序列辨識編號:2或4所構成的群組的多肽具有至少80%序列相同性。
  20. 如請求項19的植物,其中相較於負對照植物有至少一選自於由下列所構成的群組的參數的統計學上顯著的改良:每公頃穀粒產量(GYH)、每植物穀粒產量(GPP)、平均穀粒大小(AGS)、每植物粒數目(KPP)以及平均粒重(AKW)。
  21. 一種用於生產一植物、植物種子或其子代的方法,其包含有:(a)以如請求項1的植物轉形載體或如請求項4的核酸建構物轉形一植物細胞;(b)自該被轉形的植物細胞生長一植物直到該植物生產種子;以及(c)自該植物收穫該種子。
  22. 一種自藉由如請求項21的方法所生產的植物而被收穫的種子。
  23. 一種基因轉形的植物或種子,其特徵在於: 其基因組已被轉形以含有如請求項1的植物轉形載體或如請求項4的核酸建構物。
  24. 如請求項23的基因轉形的植物或種子,其特徵在於:相較於其非-基因轉殖親代植物或種子有至少一選自於由下列所構成的群組的參數的統計學上顯著的改良:每公頃穀粒產量(GYH)、每植物穀粒產量(GPP)、平均穀粒大小(AGS)、每植物粒數目(KPP)以及平均粒重(AKW)。
TW105132080A 2015-10-05 2016-10-04 用於作物產量之增強的基因改質植物 TW201718860A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201562237151P 2015-10-05 2015-10-05

Publications (1)

Publication Number Publication Date
TW201718860A true TW201718860A (zh) 2017-06-01

Family

ID=58446642

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105132080A TW201718860A (zh) 2015-10-05 2016-10-04 用於作物產量之增強的基因改質植物

Country Status (6)

Country Link
US (1) US20170096677A1 (zh)
AR (1) AR106255A1 (zh)
BR (1) BR102016021980A2 (zh)
TW (1) TW201718860A (zh)
UY (1) UY36928A (zh)
WO (1) WO2017062276A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112105732A (zh) * 2018-05-10 2020-12-18 先正达参股股份有限公司 用于多核苷酸的靶向编辑的方法和组合物
CN114457089B (zh) * 2021-04-19 2023-06-23 山东农业大学 增加番茄根毛长度的基因及应用
CN113832179B (zh) * 2021-07-02 2023-04-25 中国农业科学院生物技术研究所 ZmELF3.1蛋白及其功能缺失突变体在调控作物雄穗分支数中的应用
CN113853964B (zh) * 2021-10-08 2023-02-28 广西壮族自治区亚热带作物研究所(广西亚热带农产品加工研究所) 一种嫁接和诱变相结合的澳洲坚果育种方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005185101A (ja) * 2002-05-30 2005-07-14 National Institute Of Agrobiological Sciences 植物の全長cDNAおよびその利用
JP4752053B2 (ja) * 2005-08-19 2011-08-17 独立行政法人農業生物資源研究所 植物の着粒数を増加させ、且つ植物を矮性化させる遺伝子。
CN102174527B (zh) * 2011-01-27 2013-10-30 中国科学院遗传与发育生物学研究所 直立密穗基因提高氮肥利用效率的新应用

Also Published As

Publication number Publication date
WO2017062276A1 (en) 2017-04-13
UY36928A (es) 2017-05-31
US20170096677A1 (en) 2017-04-06
BR102016021980A2 (pt) 2017-05-30
AR106255A1 (es) 2017-12-27

Similar Documents

Publication Publication Date Title
US8410336B2 (en) Transgenic plants with enhanced agronomic traits
US20170268018A1 (en) Isolated Novel Nucleic Acid and Protein Molecules from Foxtail Millet and Methods of Using Those Molecules to Generate Transgenic Plants with Enhanced Agronomic Traits
US20060179511A1 (en) Transgenic plants with enhanced agronomic traits
EP1621632A1 (en) Genes and uses for plant improvement
WO2009097133A2 (en) Transgenic plants with enhanced agronomic traits
US20130145493A1 (en) Transgenic Plants with Enhanced Agronomic Traits
US20200056197A1 (en) Root-preferential and stress inducible promoter and uses thereof
CN115927380A (zh) 具有增强性状的转基因植物
TW201718860A (zh) 用於作物產量之增強的基因改質植物
US20220380793A1 (en) Transgenic plants with enhanced traits
US20140090101A1 (en) Transgenic plants with enhanced agronomic traits
WO2010042575A1 (en) Transgenic plants with enhanced agronomic traits
CN108291236B (zh) 植物epsp合酶和使用方法
US20240002872A1 (en) Transgenic plants with enhanced traits
WO2014150879A1 (en) Compositions and methods for increasing plant seed number and/or yield
US10889828B2 (en) Transgenic plants with enhanced traits
US9434773B2 (en) Plants having stress related traits and methods for making the same
US20190023753A9 (en) Transgenic Plants with Enhanced Traits
US10487338B2 (en) Transgenic plants with enhanced traits