TW201710289A - 用於骨髓瘤和其他癌症免疫治療的新型細胞表位和細胞表位組合物 - Google Patents
用於骨髓瘤和其他癌症免疫治療的新型細胞表位和細胞表位組合物 Download PDFInfo
- Publication number
- TW201710289A TW201710289A TW105118858A TW105118858A TW201710289A TW 201710289 A TW201710289 A TW 201710289A TW 105118858 A TW105118858 A TW 105118858A TW 105118858 A TW105118858 A TW 105118858A TW 201710289 A TW201710289 A TW 201710289A
- Authority
- TW
- Taiwan
- Prior art keywords
- peptide
- cell
- cells
- seq
- peptides
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
- C07K14/70503—Immunoglobulin superfamily
- C07K14/70539—MHC-molecules, e.g. HLA-molecules
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K7/00—Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
- C07K7/04—Linear peptides containing only normal peptide links
- C07K7/06—Linear peptides containing only normal peptide links having 5 to 11 amino acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
- A61K35/14—Blood; Artificial blood
- A61K35/17—Lymphocytes; B-cells; T-cells; Natural killer cells; Interferon-activated or cytokine-activated lymphocytes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/0005—Vertebrate antigens
- A61K39/0011—Cancer antigens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K40/00—Cellular immunotherapy
- A61K40/10—Cellular immunotherapy characterised by the cell type used
- A61K40/11—T-cells, e.g. tumour infiltrating lymphocytes [TIL] or regulatory T [Treg] cells; Lymphokine-activated killer [LAK] cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K40/00—Cellular immunotherapy
- A61K40/40—Cellular immunotherapy characterised by antigens that are targeted or presented by cells of the immune system
- A61K40/41—Vertebrate antigens
- A61K40/42—Cancer antigens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
- A61P35/02—Antineoplastic agents specific for leukemia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/04—Immunostimulants
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
- C07K14/70503—Immunoglobulin superfamily
- C07K14/7051—T-cell receptor (TcR)-CD3 complex
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2803—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
- C07K16/2833—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against MHC-molecules, e.g. HLA-molecules
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/30—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K7/00—Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
- C07K7/04—Linear peptides containing only normal peptide links
- C07K7/08—Linear peptides containing only normal peptide links having 12 to 20 amino acids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/115—Aptamers, i.e. nucleic acids binding a target molecule specifically and with high affinity without hybridising therewith ; Nucleic acids binding to non-nucleic acids, e.g. aptamers
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0634—Cells from the blood or the immune system
- C12N5/0636—T lymphocytes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/5308—Immunoassay; Biospecific binding assay; Materials therefor for analytes not provided for elsewhere, e.g. nucleic acids, uric acid, worms, mites
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/574—Immunoassay; Biospecific binding assay; Materials therefor for cancer
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/505—Medicinal preparations containing antigens or antibodies comprising antibodies
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/51—Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
- A61K2039/515—Animal cells
- A61K2039/5158—Antigen-pulsed cells, e.g. T-cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/16—Aptamers
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2800/00—Nucleic acids vectors
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- General Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Genetics & Genomics (AREA)
- Biochemistry (AREA)
- Cell Biology (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Hematology (AREA)
- Biotechnology (AREA)
- Zoology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biophysics (AREA)
- Epidemiology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Microbiology (AREA)
- Pharmacology & Pharmacy (AREA)
- Urology & Nephrology (AREA)
- Wood Science & Technology (AREA)
- Oncology (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Food Science & Technology (AREA)
- Analytical Chemistry (AREA)
- Pathology (AREA)
- Toxicology (AREA)
- Gastroenterology & Hepatology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mycology (AREA)
Abstract
本發明涉及用於免疫治療方法的肽、蛋白質、核酸和細胞。特別是,本發明涉及癌症的免疫療法,尤其是骨髓瘤。本發明還涉及單獨使用或與其他腫瘤相關肽(刺激抗腫瘤免疫反應或體外刺激 T 細胞和轉入患者的疫苗複合物的活性藥物成分)聯合使用的腫瘤相關 T 細胞 (CTL) 肽表位。與主要組織相容性複合體 (MHC) 分子結合的肽或與此同類的肽也可能是抗體、可溶性 T 細胞受體和其他結合分子的靶標。
Description
本發明涉及用於免疫治療方法的肽、蛋白質、核酸和細胞。特別是,本發明涉及癌症的免疫療法。本發明還涉及單獨使用或與其他腫瘤相關肽(刺激抗腫瘤免疫反應或體外刺激 T 細胞和轉入患者的疫苗複合物的活性藥物成分)聯合使用的腫瘤相關 T 細胞 (CTL) 肽表位。與主要組織相容性複合體 (MHC) 分子結合的肽或與此同類的肽也可能是抗體、可溶性 T 細胞受體和其他結合分子的靶標。
本發明涉及數種新型肽序列及其變體,它們源自人腫瘤細胞的 HLA I 和 II 類分子,可用于引發抗腫瘤免疫反應的疫苗組合物中或作為開發藥物/免疫活性化合物和細胞的目標。
多發性骨髓瘤 (MM) 是一種低度惡性 B 細胞淋巴瘤,其特徵為惡性漿細胞在骨髓中增殖 [14]。儘管在治療上取得最近進展,包括高劑量化療後自體造血幹細胞移植、新型免疫調節藥物和蛋白酶體抑制劑,但是在很大程度上 MM 仍然無法治癒 [15, 16]。這主要是由於微小殘留疾病 (MRD) 持續存在,導致高復發率 [17, 18]。
考慮到治療癌症相關的嚴重副作用和費用,通常有必要確定可用於治療癌症的因數,尤其是骨髓瘤。通常也有必要確定代表癌症生物標誌物的因數,尤其是骨髓瘤,從而更好地診斷癌症、評估預後和預測治療成功性。
抗原特異性免疫治療具有誘導臨床上有效的抗腫瘤 T 細胞反應的可能性,並可能被用於在未來的組合試驗中引導和提高癌症免疫治療的特異性 [3]。為此,準確瞭解腫瘤相關/特異性 T 細胞表位至關重要。在對過度表達腫瘤抗原進行幾十年研究後,最近的研究重點已經轉移到突變衍生新抗原的患者個體化識別 [4,5]。這些新研究 [6-8] 令人鼓舞的結果提出新表位,被視為抗癌免疫反應的主要靶標 [9-11]。
但是,本發明人在分析血液惡性腫瘤的互補基因組後,最近證實,非突變抗原是自發抗白血病 T 細胞反應的相關靶標 [12, 13]。這些研究中實施的策略透過質譜差異性地將血液學細胞的自然提呈 HLA 型配體組映射在健康和疾病中,並發現該策略可有效地識別腫瘤相關抗原。
到目前為止,MM 唯一確定的免疫治療方法是同種異體造血幹細胞移植,這與高發病率和死亡率相關,並且仍然僅是一部分患者的選項 [19-21]。 基於抗原特異性 T 細胞的免疫療法 [22, 23] - 尤其是以有利效應子與靶標比率為特點的一系列 MRD - 可能是一種有效低副作用的選項 [24]。
腫瘤相關抗原 (TAA) 的目前分類主要包括以下幾組: a) 癌-睾丸抗原:T 細胞能夠識別的最先確認的 TAA 屬於這一類抗原,由於其成員表達于組織學相異的人腫瘤中、正常組織中、僅在睾丸的精母細胞/精原細胞中、偶爾在胎盤中,因此,它最初被稱為癌-睾丸 (CT) 抗原。由於睾丸細胞不表達 HLA I 類和 II 類分子,所以,在正常組織中,這些抗原不能被 T 細胞識別,因此在免疫學上可考慮為具有腫瘤特異性。CT 抗原大家熟知的例子是 MAGE 家族成員和 NY-ESO-1。 b) 分化抗原:腫瘤和正常組織(腫瘤源自該組織)都含有 TAA。大多數已知的分化抗原發現於黑色素瘤和正常黑色素細胞中。許多此類黑色素細胞譜系相關蛋白參與黑色素的生物合成,因此這些蛋白不具有腫瘤特異性,但是仍然被廣泛用於癌症的免疫治療。例子包括,但不僅限於,黑色素瘤的酪氨酸酶和 Melan-A/MART-1 或攝護腺癌的 PSA。 c) 過量表達的 TAA:在組織學相異的腫瘤中以及許多正常組織中都檢測到了基因編碼被廣泛表達的 TAA,一般表達水準較低。有可能許多由正常組織加工和潛在提呈的表位低於 T 細胞識別的閾值水準,而它們在腫瘤細胞中的過量表達能夠通過打破先前確立的耐受性而引發抗癌反應。這類 TAA 的典型例子為 Her-2/neu、生存素、端粒酶或 WT1。 d) 腫瘤特異性抗原:這些獨特的 TAA 產生于正常基因(如 β-catenin、CDK4 等)的突變。這些分子變化中有一些與致瘤性轉化和/或進展相關。腫瘤特異性抗原一般可在不對正常組織帶來自體免疫反應風險的情況下誘導很強的免疫反應。另一方面,這些 TAA 在多數情況下只與其上確認了有 TAA 的確切腫瘤相關,並且通常在許多個體腫瘤之間並不都共用 TAA。在含有腫瘤特定(相關)同種型蛋白的情況下,如果肽源自腫瘤(相關)外顯子也可能出現肽腫瘤特異性(或相關性)。 e) 由異常翻譯後修飾產生的 TAA:此類 TAA 可能由腫瘤中既不具有特異性也不過量表達的蛋白產生,但其仍然具有腫瘤相關性(該相關性由主要對腫瘤具有活性的翻譯後加工所致)。此類 TAA 產生於變糖基化模式的改變,導致腫瘤產生針對 MUC1 的新型表位或在降解過程中導致諸如蛋白拼接的事件,這可能具有也可能不具有腫瘤特異性。 f) 腫瘤病毒蛋白:這些 TTA 是病毒蛋白,可在致癌過程中發揮關鍵作用,並且由於它們是外源蛋白(非人源蛋白),所以能夠激發 T 細胞反應。這類蛋白的例子有人乳頭狀瘤 16 型病毒蛋白、E6 和 E7,它們在宮頸癌中表達。
基於 T 細胞的免疫治療靶向作用于主要組織相容性複合體 (MHC) 分子提呈的來源於腫瘤相關蛋白或腫瘤特異性蛋白的肽表位。腫瘤特異性 T 淋巴細胞所識別的抗原,即其表位,可以是源自所有蛋白類型的分子,如酶、受體、轉錄因數等,它們在相應腫瘤的細胞中被表達,並且與同源未變的細胞相比,其表達通常上調。
MHC 分子有兩類:MHC I 類和 MHC II 類。MHC I 類分子由一條 α 重鏈和 β-2-微球蛋白,MHC II 類分子由一條 α 和一條 β 鏈組成。其三位構造形成一個結合槽,用於與肽進行非共價相互作用。
大部分有核細胞上都可發現 MHC-I 類分子。他們提呈主要為內源性的蛋白、缺陷核糖體產物 (DRIP) 和較大肽裂解生成的肽。然而,源自內體結構或外源性來源的肽也經常在 MHC-I 類分子上發現。這種 I-類分子非經典提呈方式在文獻中被稱為交叉提呈 (Brossart and Bevan, 1997; Rock et al., 1990)。MHC II 類分子主要發現于專業抗原提呈細胞 (APC) 上,並且主要提呈,例如,在內吞作用過程中由 APC 佔據並且隨後被加工的外源性或跨膜蛋白的肽。
肽和 MHC I 類的複合體由負載相應 T 細胞受體 (TCR) 的 CD8 陽性 T 細胞進行識別,而肽和 MHC II 類分子的複合體由負載相應 TCR 的 CD4 陽性輔助 T 細胞進行識別。因此,TCR、肽和 MHC 按照 1:1:1 的化學計量呈現,這一點已是共識。
CD4 陽性輔助 T 細胞在誘導和維持 CD8 陽性細胞毒性 T 細胞的有效反應中發揮重要作用。腫瘤相關抗原 (TAA) 衍生的 CD4 陽性 T 細胞表位的識別對開發能引發抗腫瘤免疫反應的藥物產品可能非常重要 (Gnjatic et al., 2003)。在腫瘤部位,T 輔助細胞維持著對細胞毒性 T 細胞 (CTL) 友好的細胞因數環境 (Mortara et al., 2006) 並吸引效應細胞,如 CTL、天然殺傷 (NK) 細胞、巨噬細胞和粒細胞 (Hwang et al., 2007)。
在沒有炎症的情況下,MHC II 類分子的表達主要局限於免疫系統細胞,尤其是專業抗原提呈細胞 (APC),例如,單核細胞、單核細胞源性細胞、巨噬細胞、樹突狀細胞。在癌症患者的腫瘤細胞中發現有 MHC II 類分子的表達 (Dengjel et al., 2006)。
本發明的拉長肽可作為 MHC-II 類活性表位。
MHC-II 類表位活化的輔助 T 細胞在編排抗腫瘤免疫的 CTL 效應子功能中發揮著重要作用。觸發 TH1
細胞反應的輔助 T 細胞表位支援 CD8 陽性殺傷 T 細胞的效應子功能,其中包括直接作用於腫瘤細胞的細胞毒性功能(該類腫瘤細胞表面顯示有腫瘤相關肽/MHC 複合體)。這樣,腫瘤相關 T 輔助細胞表位單獨使用或與其他腫瘤相關肽結合使用可作為刺激抗腫瘤免疫反應的疫苗化合物的活性藥物成分。
哺乳動物(如小鼠) 模型顯示,即使沒有 CD8 陽性 T 淋巴細胞,CD4 陽性 T 細胞也能通過分泌干擾素-γ (IFNγ) 抑制血管生成而足以抑制腫瘤的表現 (Beatty and Paterson, 2001; Mumberg et al., 1999)。沒有 CD4 T細胞作為直接抗腫瘤效應因數的證據 (Braumuller et al., 2013; Tran et al., 2014)。
由於 HLA II 類分子的組成性表達通常僅限於免疫細胞,因此,直接從原發腫瘤中分離 II 類肽之前被認為是不可能的事。然而,Dengjel 等人成功地在腫瘤中直接識別了多個 MHC II 類表位 (WO 2007/028574, EP 1 760 088 B1)。
由於 CD8 依賴型和 CD4 依賴型這兩種反應共同並協同地促進抗腫瘤作用,因此,確定和表徵由 CD8+ T 細胞(配體:MHC I 類分子 + 肽表位)或 CD4 陽性 T 輔助細胞(配體:MHC II 類分子)識別的腫瘤相關抗原對開發腫瘤疫苗非常重要。
對於MHC I 類肽觸發(引發)細胞免疫反應的肽,它也必須與 MHC 分子結合。這一過程依賴於 MHC 分子的等位基因以及肽氨基酸序列的特異性多態性。MHC-I 類-結合肽的長度通常為 8-12 個氨基酸殘基,並且在其與 MHC 分子相應結合溝槽相互作用的序列中通常包含兩個保守殘基(「錨」)。這樣,每個 MHC 的等位基因都有「結合基序」,從而確定哪些肽能與結合溝槽特異性結合 。
在 MHC-I 類依賴性免疫反應中,肽不僅能與腫瘤細胞表達的某些 MHC-I 類分子結合,而且它們之後還必須能被 T 細胞負載的特異性 T 細胞受體 (TCR) 識別。
對於被 T 淋巴細胞識別為腫瘤特異性抗原或相關性抗原以及用於治療的蛋白質,必須具備特殊的條件。該抗原應主要由腫瘤細胞表達,而不由正常健康組織表達,或表達數量相對較少。在一個優選的實施方案中,與正常健康組織相比,所述肽應在腫瘤細胞中過度提呈。更為適宜的情況是,該相應抗原不僅出現於一種腫瘤中,而且濃度(即每個細胞的相應肽拷貝數目)高。腫瘤特異性抗原和腫瘤相關抗原往往是源自直接參與因細胞週期控制或凋亡抑制中的其功能而發生的正常細胞向腫瘤細胞轉化的蛋白。另外,這些直接導致轉化事件的蛋白的下游靶標可能會被上調,因此可能與腫瘤間接相關。這些間接腫瘤相關抗原也可能是預防接種方法的靶標 (Singh-Jasuja et al., 2004)。至關重要的是,表位存在於抗原氨基酸序列中,以確保這種來自腫瘤相關抗原的肽(「免疫原性肽」)可導致體外或體內 T 細胞反應。
基本上,任何能與 MHC 分子結合的肽都可能充當一個 T 細胞表位。誘導體外或體內 T 細胞反應的前提是存在具有相應 TCR 的 T 細胞並且不存在對該特定表位的免疫耐受性。
因此,TAA 是基於 T 細胞療法(包括但不限於腫瘤疫苗)研發的起點。識別和表徵 TAA 的方法通常基於對患者或健康受試者 T 細胞的使用情況,或基於腫瘤與正常組織肽之間差別轉錄特性或差別表達模式的產生。然而,對腫瘤組織或人腫瘤細胞株中過量表達或選擇性表達的基因的識別並不提供在免疫療法中使用這些基因所轉錄抗原的準確資訊。這是因為,有著相應 TCR 的 T 細胞必須要存在而且對這個特定表位的免疫耐受性必須不存在或為最低水準,因此,這些抗原的表位只有一部分適合這種應用。因此,在本發明的一非常優選的實施例中,只選擇那些針對可發現功能性和/或增殖性 T 細胞情況的過量提呈或選擇性提呈肽,這一點非常重要。這種功能性 T 細胞被定義為在以特異性抗原刺激後能夠克隆地擴展並能夠執行效應子功能(「效應子 T 細胞」)的 T 細胞。
在通過根據本發明的特定 TCR(例如可溶性 TCR)和抗體或其他結合分子(支架)靶向作用於肽-MHC 的情況下,潛在肽的免疫原性是次要的。在這些情況下,提呈是決定因素。
骨髓瘤相關 T 細胞抗原的陣列在以往的研究中進行過描述 [25-35]。大多數這些抗原基於基因表達分析和反向免疫學進行識別。有些這些抗原(WT1 [36, 37]、RHAMM [38, 39]、hTERT [40] 和生存素 [40, 41])已經進入臨床試驗,顯示出在單個患者中誘導特異性 T 細胞反應以及臨床反應方面可喜的成果。但是,仍沒有實現廣泛的臨床效果。這些以前的研究僅限於很少的 HLA-同種異型和單個抗原/表位 [42],限於適合此治療方法的患者人群以及可誘導腫瘤特異性 T 細胞反應的範圍。值得注意的是,最近的研究表明,這些腫瘤抗原中的幾個抗原缺乏腫瘤相關性,無論在轉錄組水準 [43] 以及重要的在 HLA 限制提呈水準上[12, 13]。
Kowalewski 等人(在:Kowalewski et al.Carfilzomib alters the HLA-presented peptidome of myeloma cells and impairs presentation of peptides with aromatic C-termini.Blood Cancer J. 2016 Apr 8 中)披露,多發性骨髓瘤是一種免疫原性疾病,抗原特異性 T 細胞免疫治療可能會具有有效的靶向作用。4780 種不同 HLA 配體的相對提呈水準在採用卡菲佐米治療 MM.1S 和 U266 骨髓瘤細胞在體外模型中進行定量,揭示了對相當一部分的 HLA 提呈肽組顯著調製。這些發現表明,卡菲佐米對 HLA 配體加工和提呈介導直接的肽基序特異性抑制作用。作為重要事項,這可能對在接受卡菲佐米治療患者中實施抗原特異性治療方法具有廣泛的影響。
癌症免疫治療代表了癌症細胞特異性靶向作用的一個選項,同時最大限度地減少副作用。癌症免疫療法利用存在的腫瘤相關抗原。因此,本發明的一個目標是提出一種用於癌症,特別是骨髓瘤免疫治療的新型表位。
在本發明的第一方面,本發明涉及一種肽,包含選自包括 SEQ ID NO:1 至 SEQ ID NO:228 的組的一個氨基酸序列、或該序列的與 SEQ ID NO:1 至 SEQ ID NO:228 具有至少 77%,優選至少 88% 同源(優選至少 77% 或至少 88% 相同)的一種變體序列(其中所述變體與 MHC 結合和/或誘導 T 細胞與所述肽發生交叉反應),或其藥用鹽(其中所述肽不是潛在全長多肽)。
透過直接分析 HLA 配體水準上的 MM 抗原狀況,本發明人提出了適合抗原特異性免疫療法的一系列新的骨髓瘤相關表位。
本發明進一步涉及本發明的一種肽,包含選自包括 SEQ ID NO:1 至 SEQ ID NO:228 的組的一個序列、或與 SEQ ID NO:1 至 SEQ ID NO:228 具有至少 77%、優選至少 88% 同源性(優選為至少 77% 或至少 88% 相同)的一種變體,其中所述肽或其變體的總長度為 8 至 100 個、優選為 8 至 30 個、最優選為 8 至 14 個氨基酸。
下表顯示了根據本發明的肽、它們各自的 SEQ ID NO、HLA 結合肽以及這些肽的可能源(潛在)基因。表 1 : 本發明中的肽
縮寫詞如下:TXNDC11 = 含硫氧還蛋白結構域 11,MOGS = 甘露糖寡糖葡糖苷酶,FNDC3B = 含纖連蛋白 III 型結構域 3B,NUDT14 = nudix(核苷二磷酸聯部分X)型基序14,SLC1A5 =溶質載體家族 1(中性氨基酸轉運子),成員5,ARHGAP11A = Rho GTP酶啟動蛋白 11A,BHLHA15 = 鹼性螺旋-環-螺旋家族成員 a15,LRRC47 =富含亮氨酸重複 47,PPP2R3C = 蛋白磷酸酶 2,調節亞基 B'',γ,SLX1A = SLX1 結構特異性核酸內切酶亞基同源物 A(釀酒酵母),BAZ2B = 鄰近鋅指結構域含溴結構域,2B,NOC2L = 核仁複合體相關 2 同源物(釀酒酵母),BTN3A1 =嗜乳脂蛋白,亞族 3,成員 A1,TNFRSF13B =腫瘤壞死因數受體超家族,成員 13B,NPC1 =尼曼-皮克病,C1 型,MRPS12 =線粒體核糖體蛋白 S12,NUPL2 =核孔蛋白樣 2,CREB3 = cAMP反應元素結合蛋白 3,TBC1D4 = TBC1 結構域家族,成員 4,RAD1 = RAD1檢查點 DNA 外切核酸酶,NBN = nibrin 蛋白,WFS1 =Wolfram 綜合征 1,WHSC1 = Wolf-Hirschhorn綜合徵候選 1,ASS1 =精氨琥珀酸合成酶 1,CYC1 =細胞色素c-1,PDIA4 =蛋白質二硫鍵異構酶家族 A,成員4,LAP3 =亮氨酸氨基肽酶 3,KDELR2 = KDEL(賴氨酸-天冬氨酸-谷氨酸-亮氨酸)內質網蛋白質保留受體,SLC1A4 =溶質載體家族 1(谷氨酸/中性氨基酸轉運子),成員 4,P49770 = EIF2B2 =真核翻譯起始因數 2B,亞基2β,39kDa,SERPINH1 =絲氨酸蛋白酶抑制劑,分化體 H(熱激蛋白 47),成員 1,DAP3 =死亡相關蛋白 3,IRF9 =干擾素調節因數 9,NAE1 = NEDD8 啟動酶E1 亞基 1,Q53HL2 = CDCA8 =細胞分裂週期相關 8,KIAA1217,MED27 =介體複合體亞基 27,MRPL55 =線粒體核糖體蛋白 L55,TMEM126B =跨膜蛋白126B,CMTR1 =帽狀轉甲基酶 1,MB21D1 = 含Mab-21 結構域 1,CSNK2A1 =酪蛋白激酶 2,α1多肽,COG1 =低聚高爾基複合體 1 的組成部分,MZB1 =邊緣區 B 和 B1 細胞特異性蛋白,TP53INP1 =腫瘤 p53 誘導核蛋白 1,HSH2D =含造血 SH2 結構域,UBL7 =泛素蛋白樣 7,SPATC1L =精子發生和中心粒相關 1 樣,SEMA4A = sema 結構域,免疫球蛋白結構域 (Ig),跨膜結構域 (TM) 和短細胞質結構域,(腦信號蛋白)4A,LIME1 = Lck 相互作用跨膜連接蛋白 1,SETD8 = 含 SET 結構域(賴氨酸轉甲基酶)8,DYRK4 =雙特異性酪氨酸-(Y)-磷酸化調節激酶4,BFAR =雙功能細胞凋亡調節劑,NDUFAF4 = NADH 脫氫酶(泛醌)複合體 I,裝配因數4,ZBTB21 =含鋅指和 BTB 結構域 21,DOLK =萜醇激酶,SNX14 =分揀連接蛋白 14,NPC1 =尼曼-皮克病,C1型。
本發明還一般涉及本發明的肽用於治療增殖性疾病,例如,癌症,所述癌症選自肺癌、腦癌、肝癌、腎癌、結直腸癌、胰腺癌、攝護腺癌、白血病、乳腺癌、梅克爾細胞癌、黑色素瘤、卵巢癌、食管癌以及過度表達來自根據 SEQ ID No. 1 至 SEQ ID No. 228 肽的蛋白的其他腫瘤(尤其是骨髓瘤)所構成的一組疾病。
特別優選的是本發明的肽(單獨或組合),其選自包括 根據表 2 中 SEQ ID NO 組成的組,並且其用於免疫治療增殖性疾病,例如,癌症,所述癌症選自肺癌、腦癌、肝癌、腎癌、結直腸癌、胰腺癌、攝護腺癌、白血病、乳腺癌、梅克爾細胞癌、黑色素瘤、卵巢癌、食管癌以及過度表達來自根據 SEQ ID No. 1 至 SEQ ID No. 228 肽的蛋白的其他腫瘤(尤其是骨髓瘤)所構成的一組疾病。表 2 – 本發明的優選肽
其中本發明的許多肽也發現於其他腫瘤中,因此也可用於其他適應症的免疫治療。
因此,本發明的另一個方面涉及本發明中肽的用途 - 優選聯合用於治療選自一組癌症的增殖性疾病,其中所述癌症選自肺癌、腦癌、肝癌、腎癌、結直腸癌、胰腺癌、攝護腺癌、白血病、乳腺癌、梅克爾細胞癌、黑色素瘤、卵巢癌、食管癌以及過度表達來自根據 SEQ ID No. 1 至 SEQ ID No. 228 肽的蛋白的其他腫瘤(尤其是骨髓瘤)所構成的一組疾病。
本發明還涉及本發明的肽,其具有與主要組織相容性複合體 (MHC) I、II 或以拉長形式存在的例如長度變化的- MHC-II 類分子結合的能力。
本發明進一步涉及本發明中的肽,其中所述肽(每種肽)系由或基本系由根據 SEQ ID NO:1 至 SEQ ID NO:228 的一個氨基酸序列組成。
本發明進一步涉及本發明的肽,其中所述肽被修飾和/或包含非肽鍵。
本發明進一步涉及本發明的肽,其中所述肽為融合蛋白的一部分,特別是與 HLA-DR 抗原相關不變鏈 (Ii) 的 N-端氨基酸融合,或與抗體(例如,樹突狀細胞特定抗體)或抗體的序列融合。
本發明進一步涉及一種核酸,其編碼本發明的肽。本發明進一步涉及一種本發明的核酸,為 DNA、cDNA、PNA、RNA,也可能為其組合物。
本發明進一步涉及一種能表達和/或表達本發明核酸的表達載體。
本發明進一步涉及本發明的一種肽、本發明的一種核酸或本發明的一種治療疾病的藥用表達載體,特別是用於治療癌症。
本發明進一步涉及本發明中肽或本發明中所述肽複合體(含有 MHC)的特定抗體以及製造這些抗體的方法。
本發明進一步涉及本發明的 T 細胞受體 (TCR),特別是可溶性TCR (sTCRs) 和加工為自體或異體 T 細胞的克隆 TCR,以及製造這些 TCR 的方法和載有所述 TCR 或所述 TCR 交叉反應的 NK 細胞的製造方法。
抗體和 TCR 是根據本發明的肽現有免疫治療用途的另外實施方案。
本發明進一步涉及含本發明核酸或前述表達載體的一種宿主細胞。本發明進一步涉及本發明的宿主細胞,其為抗原提呈細胞,優選為樹突細胞。
本發明進一步涉及配製本發明一種肽的一種方法,所述方法包括培養本發明的宿主細胞和從所述宿主細胞或其培養基中分離肽。
本發明進一步涉及本發明中的所述方法,其中抗原通過與足夠量的含抗原提呈細胞的抗原結合被載入表達於合適抗原提呈細胞或人工抗原呈遞細胞表面的 I 或 II 類 MHC 分子。
本發明進一步涉及本發明的方法,其中抗原提呈細胞由能表達含 SEQ ID NO.1 至 SEQ ID NO.228、優選為含根據表 2 中至少一個 SEQ ID No 所述肽的一個表達載體、或一個變體氨基酸序列組成。
本發明進一步涉及以本發明方法製造的啟動 T 細胞,其中所述 T 細胞有選擇性地識別一種細胞,該細胞表達含一種本發明氨基酸序列的多肽。
本發明進一步涉及一種殺傷患者靶細胞的方法,其中患者的靶細胞異常表達含本發明任何氨基酸序列的多肽,該方法包括給予患者按本發明方法製造的有效量 T 細胞。
本發明進一步涉及任何所述肽、本發明的核酸、本發明的表達載體、本發明的細胞、本發明的作為藥劑或製造藥劑的啟動 T 淋巴細胞、T 細胞受體或抗體或其他肽-和/或肽-MHC 結合分子的用途。所述藥劑優選為具有抗癌活性。
優選情況為,所述藥劑為基於可溶性 TCR 或抗體的細胞治療藥物、疫苗或蛋白質。
本發明還一般涉及本發明的用途,其中所述癌細胞為肺癌、腦癌、肝癌、腎癌、結直腸癌、胰腺癌、攝護腺癌、白血病、乳腺癌、梅克爾細胞癌、黑色素瘤、卵巢癌、食管癌,優選為骨髓瘤細胞。
本發明進一步涉及一種基於本發明肽的生物標誌物,在此成為「靶標」,其可用於診斷癌症,優選為骨髓瘤。所述標誌物可以肽本身過度提呈或相應基因過度表達。標誌物也可以用於預測治療成功的可能性,優選為免疫療法,最優選為靶向作用於該生物標誌物識別的相同靶標的免疫療法。例如,抗體或可溶性 TCR 可用於染色腫瘤切片以檢測是否存在相關肽與 MHC 複合。
或者,抗體具有進一步的效應子功能,如免疫刺激域或毒素。
本發明還涉及這些癌症治療中新靶點的用途。
針對其他癌性疾病的治療和診斷用途在本發明肽的基礎表達產物(多肽)的以下更詳細描述中進行披露。
是否能刺激免疫反應取決於是否存在被宿主免疫系統視為異物的抗原。發現腫瘤相關抗原的存在增加了運用宿主免疫系統干預腫瘤生長的可能性。目前,針對癌症免疫治療,正在探索利用免疫系統的體液和細胞進行免疫的各種機制。
細胞免疫反應的特定元素能特異性地識別和破壞腫瘤細胞。從腫瘤浸潤細胞群或外周血中分離出的 T-細胞表明,這些細胞在癌症的天然免疫防禦中發揮了重要作用。特別是 CD8 陽性 T 細胞在這種反應中發揮重要作用,TCD8+
能識別通常8至10個源自蛋白或位於細胞質的缺損核糖體產物 (DRIP) 的氨基酸殘基的主要組織相容性複合體 (MHC) 所載的肽中所含的I類分子。人 MHC 分子也稱為人白細胞-抗原 (HLA)。
除非另有說明,否則本文使用的所有術語定義如下。
術語「T 細胞反應」是指由一種肽在體外或體內誘導的效應子功能的特異性擴散和啟動。對於 MHC I 類限制性細胞毒性 T 細胞,效應子功能可能為溶解肽脈衝的、肽前體脈衝的或天然肽提呈的靶細胞、分泌細胞因數,優選為肽誘導的干擾素-γ,TNF-α 或 IL-2,分泌效應分子,優選為肽誘導的顆粒酶或穿孔素,或脫顆粒。
本文所用「肽」這一術語,系指一系列氨基酸殘基,通常通過相鄰氨基酸的 α-氨基和羰基之間的肽鍵來連接。這些肽的長度優選為 9 個氨基酸,但至短可為 8 個氨基酸長度,至長可為 10、11、12 或甚至更長,如果為 MHC-II 類肽時(如,本發明肽的拉長變體),至長可為 15、16、17、18 、19 、20 或 23 個氨基酸長度或更長。
因此,「肽」這一術語應包括一系列氨基酸殘基的鹽,通常通過相鄰氨基酸的 α-氨基和羰基之間的肽鍵來連接。優選的情況是,鹽為肽的藥用鹽,例如:氯化物或乙酸(三氟乙酸)鹽。必須注意的是,本發明肽的鹽與其體內狀態的肽基本上不同,因為該不是體內的鹽。
術語「肽」應也包括「寡肽」。本文使用的術語「寡肽」是指一系列氨基酸殘基,通常通過相鄰氨基酸的 α-氨基和羰基之間的肽鍵來連接。寡肽的長度對於本發明來說並不十分關鍵,只要在寡肽中保持正確的表位即可。通常,寡肽長度約小於 30 個氨基酸殘基,約長於 15 個氨基酸。
「多肽」這一術語是指一系列氨基酸殘基,通常通過相鄰氨基酸的 α-氨基和羰基之間的肽鍵來連接。多肽的長度對於本發明來說並不十分關鍵,只要保持正確的表位即可。與術語肽或寡肽相對,「多肽」這一術語是指包含多於約 30 個氨基酸殘基的分子。
一種肽、寡肽、蛋白質或編碼該分子的核苷酸如果能誘導免疫反應,則具有「免疫原性」(因此是本發明中的一種「免疫原」)。在本發明的情況下,免疫原性的更具體定義是誘導 T 細胞反應的能力。因此,「免疫原」是一種能夠誘導免疫反應的分子,並且在本發明的情況下,是一種能誘導 T 細胞反應的分子。在另一方面,所述免疫原可以是肽,肽與 MHC 的複合體、和/或用於提高特異性抗體或 TCR 抗性的蛋白。
I 類 T 細胞「表位」要求的是一種結合至 MHC I 類受體上的短肽,從而形成一種三元複合體(MHC I 類 α鏈、β-2-微球蛋白和肽),其可以通過 T 細胞負載匹配 T 細胞受體與具有適當親和力的 MHC/肽複合物結合來識別。結合至 MHC I 類分子的肽的典型長度為 8-14 個氨基酸,最典型為 9 個氨基酸長度。
在人類中,有三種編碼 MHC I 類分子的不同基因位點(人 MHC分子也是指定的人白細胞抗原 (HLA)):HLA-A、HLA-B 和 HLA-C。HLA-A*01、HLA-A*02 和 HLA-B*07 是可從這些基因位點表達的不同 MHC I 類等位元基因的實例。
表 2:HLA-A*02 和 HLA-A*24 和最常見 HLA-DR 血清類型的表達頻率 F。頻率根據 Mori 等人 (Mori et al., 1997) 使用的 Hardy-Weinberg 公式 F = 1 – (1-Gf)² 改編,從美國人群範圍內的單體型頻率中推導出。由於連鎖不平衡,某些 HLA-DR 等位基因內的 A*02 或 A*24 組合與其預期單一頻率相比,可能是濃縮的或頻率較低。有關詳細資訊,請參閱 Chanock 等人的文獻 (Chanock et al., 2004)。
本發明的肽,優選當如本文描述納入本發明的疫苗時,優選為與 HLA-A*02 結合。疫苗還可能包括泛結合 MHC II 類肽。因此,本發明的疫苗可用於治療 A*02 陽性患者中的癌症,但不因為這些肽的廣泛結核性而必須選擇 II 類 MHC 同種異型。
如果本發明的 A*02 肽與結合至另一等位基因例如 A*24 的肽組合,與單獨的 MHC I 類等位基因相比,可治療更高比例的患者群體。雖然在大多數人群中,低於 50% 的患者可由單獨的等位基因來解決問題,但是本發明中一種含 HLA-A*24 和 HLA-A*02 表位的疫苗可以治療任何相關人群中至少 60% 的患者。具體來說,各區域中,以下比例的患者這些等位基因中的至少一個有肯定效果:美國 61%、西歐 62%、中國 75%、韓國 77%、日本 86%(根據 www.allelefrequencies.net 計算)。
在一項優選的實施方案中,術語「核苷酸序列」系指去氧核苷酸的雜聚物。
編碼特定肽、寡肽或多肽的核苷酸序列可為天然核苷酸序列,也可為合成核苷酸序列。一般來說,編碼肽、多肽以及本發明蛋白的 DNA 片段由 cDNA 片段和短寡核苷酸銜接物,或一系列寡核苷酸組成,以提供一種合成基因,該基因能夠在包含源自微生物或病毒操縱子的調節元素的重組轉錄單元中被表達。
如本文所用的術語「肽的核苷酸編碼」系指對肽進行核苷酸序列編碼,其中該肽包括與將由用於產生 TCR 的樹突細胞或另一細胞系統所表達該序列的生物系統相容的人工(人造)啟動和停止密碼子。
本文提到的核酸序列既包括單鏈核酸也包括雙鏈核酸。因此,除非本文另有所指,否則,例如對於 DNA,具體的序列是該序列的單鏈 DNA、該序列與其互補序列的雙工(雙鏈 DNA)以及該序列的互補序列。
「編碼區」這一術語是指在基因的天然基因組環境中天然或正常編碼該基因的表達產物的那部分基因,即,體內編碼該基因的天然表達產物的區域。
編碼區可來自非突變(「正常」)基因、突變基因或異常基因,甚至還可以來自 DNA 序列,完全可在實驗室中使用本領域熟知的 DNA 合成方法合成。
「表達產物」這一術語是指多肽或蛋白,它是基因和遺傳碼退化並因而編碼同樣的氨基酸所造成的任何核酸序列編碼同等物的翻譯產物。
「片斷」這一術語,當指的是一種編碼序列時,表示包含非完整編碼區的 DNA 的一部分,其表達產物與完整編碼區表達產物基本上具有相同的生物學功能或活性。
「DNA 片段」這一術語是指一種 DNA 聚合物,以單獨的片段形式或一種較大 DNA 結構的組分形式存在,它們從至少分離過一次的 DNA 中以基本純淨的形式獲得,即不含污染性內源性材料,並且獲得的數量或濃度能夠使用標準生化方法,例如使用克隆載體,進行識別、操縱和回收該片段及其組分核苷酸序列。此類片段以開放閱讀框架(未被內部未翻譯序列打斷)或內含子(通常提呈于真核基因中)的形式存在。未翻譯 DNA 序列可能存在於開放閱讀框架的下游,在那裏其不會干預編碼區的操縱或表達。
「引物」這一術語表示一種短核酸序列,其可與一個 DNA 鏈配對,並在 DNA 聚合酶開始合成去氧核糖核酸鏈之處提供一個游離的 3'-OH 末端。
「啟動子」這一術語表示參與 RNA 聚合酶的結合從而啟動轉錄的 DNA 區域。
術語「分離」表示一種物質從其原來的環境(例如,如果是天然發生的則是天然環境)中被移走。例如,活體動物中的天然核苷酸或多肽不是分離的,但是,從天然系統中一些或所有共存物質中分離出來的核苷酸或多肽是分離的。此類多核苷酸可能是載體的一部分和/或此類多核苷酸和多肽可能是一種組合物的一部分,並且由於該載體或組合物不是其天然環境的一部分,因此它仍然是分離的。
本發明中披露的多核苷酸和重組或免疫原性多肽也可能以「純化」的形式存在。術語「純化」並非要求絕對的純度;它只是一個相對的定義,可以包括高度純化或部分純化的製劑,相關領域技術人員能理解這些術語。例如,各個從已用傳統方法純化為具有電泳同質性的 cDNA 庫中分離出的各種克隆物。明確考慮到將起始材料或天然物質純化至少一個數量級,優選為兩或三個數量級,更優選為四或五個數量級。此外,明確涵蓋所述多肽的純度優選為 99.999%,或至少為 99.99% 或 99.9%;甚而適宜為以重量計 99% 或更高。
根據本發明公開的核酸和多肽表達產物,以及包含此類核酸和/或多肽的表達載體可能以「濃縮的形式」存在。本文使用的術語「濃縮」是指材料的濃度至少是其自然濃度的大約 2、5、10、100 或 1000 倍,有優勢的是,按重量計為 0.01%,優選為至少 0.1%。也明確考慮到,按重量計約為 0.5%、1%、5%、10% 和 20% 的濃縮製劑。序列、構型、載體、克隆物以及包含本發明的其他材料可有優勢地以濃縮或分離的形式存在。「活性片段」這一術語是指產生免疫反應的片段(即具有免疫原性活性),通常是一種肽、多肽或核酸序列的片段,不論是單獨或可選地與合適的佐劑一起或在載體中給予一種動物,比如哺乳動物,例如兔子或小鼠,也包括人;這種免疫反應採用的形式是在接受動物(如:人)體內刺激 T 細胞反應。或者,「活性片段」也可用於誘導體外 T 細胞反應。
本文使用的「部分」(portion)、「節段」(segment)、「片段」(fragment) 這幾個術語,當與多肽相關地使用時是指殘基的連續序列,比如氨基酸殘基,其序列形成一個較大序列的子集。例如,如果一個多肽以任一種肽鏈內切肽酶(如胰蛋白酶或糜蛋白酶)進行處理,則該處理獲得的寡肽會代表起始多肽的部分、節段或片段。當與多核苷酸相關地使用時,這些術語系指用任何核酸內切酶處理所述多核苷酸產生的產物。
根據本發明,術語「等同度百分比」或「等同百分比」,如果指的是序列,則表示在待對比序列(「被對比序列」)與所述序列或權利要求的序列(「參考序列」)對準之後將被對比序列與所述序列或權利要求的序列進行比較。然後根據下列公式計算等同度百分比: 等同度百分比= 100 [1 -(C/R)] 其中 C 是參考序列與被對比序列之間對準長度上參考序列與被對比序列之間的差異數量,其中 (i) 參考序列中每個堿基或氨基酸序列在被對比序列中沒有對應的對準堿基或氨基酸; (ii) 參考序列中每個空隙,以及 (iii) 參考序列中每個對準堿基或氨基酸與被比對比序列中對準堿基或氨基酸不同,即構成一個差異以及 (iiii) 必須在對準序列的第 1 位置開始對準; 並且 R 是參考序列與被對比序列對準長度上在參考序列中產生任何空隙也計算為一個堿基或氨基酸的參考序列中的堿基或氨基酸數目。
如果「被對比序列」和「參考序列」之間存在的一個對準按上述計算的等同度百分比大致等於或大於指定的最低等同度百分比,則被對比序列與參考序列具有指定的最低等同度百分比,雖然可能存在按本文上述計算的等同度百分比低於指定等同度百分比的對準。
因此,如上所述,本發明提出了一種肽,其包括選自 SEQ ID NO:1 至 SEQ ID NO:228 群組的一個序列、或與 SEQ ID NO:1 至 SEQ ID NO:228 具有 88% 同源性的其變體、或誘導與該肽發生T細胞交叉反應的一個變體。本發明所述的肽具有與主要組織相容性複合體 (MHC) I 或所述肽拉長版本的 II 類分子結合的能力。
在本發明中,「同源性」一詞系指兩個氨基酸序列之間的同一度(參見上文的等同度百分比,如肽或多肽序列。前文所述的「同源」是通過將理想條件下調整的兩個序列與待比較序列進行比對後確定的。此類序列同源性可通過使用 ClustalW 等演算法創建一個排列而進行計算。也可用使用一般序列分析軟體,更具體地說,是 Vector NTI、GENETYX 或由公共資料庫提供的其他工具。
本領域技術人員能評估特定肽變體誘導的 T 細胞是否可與該肽本身發生交叉反應 (Appay et al., 2006; Colombetti et al., 2006; Fong et al., 2001; Zaremba et al., 1997)。
發明人用給定氨基酸序列的「變體」表示,一個或兩個氨基酸殘基等的側鏈通過被另一個天然氨基酸殘基的側鏈或其他側鏈取代而發生改變,這樣,這種肽仍然能夠以含有給定氨基酸序列(由 SEQ ID NO:1 至 SEQ ID NO:228 組成)的肽大致同樣的方式與 HLA 分子結合。例如,一種肽可能被修飾以便至少維持(如沒有提高)其能與 HLA-A*02 或 -DR 等合適 MHC 分子的結合槽相互作用和結合,以及至少維持(如沒有提高)其與啟動 T 細胞的 TCR 結合的能力。
隨後,這些 T 細胞可與細胞和殺傷細胞發生交叉反應,這些細胞表達多肽(其中包含本發明中定義的同源肽的天然氨基酸序列)。正如科學文獻和資料庫 (Rammensee et al., 1999; Godkin et al., 1997) 中所述,HLA-A 結合肽的某些位點通常為錨定殘基,可形成一種與 HLA 結合槽的結合模序相稱的核心序列,其定義由構成結合槽的多肽鏈的極性、電物理、疏水性和空間特性確定。因此,本領域技術人員能夠通過保持已知的錨殘基來修飾 SEQ ID No: 1 至 SEQ ID NO:228 提出的氨基酸序列,並且能確定這些變體是否保持與 MHC I 或 II 類分子結合的能力。本發明的變體保持與啟動 T 細胞的 TCR 結合的能力,隨後,這些 T 細胞可與表達一種包含本發明定義的同源肽的天然氨基酸序列的多肽的細胞發生交叉反應並殺死該等細胞。
如果無另有說明,那麼本文公開的原始(未修飾)肽可以通過在肽鏈內的不同(可能為選擇性)位點上取代一個或多個殘基而被修飾。優選情況是,這些取代位於氨基酸鏈的末端。此取代可能是保守性的,例如,其中一個氨基酸被具有類似結構和特點的另一個氨基酸所取代,比如其中一個疏水性氨基酸被另一個疏水性氨基酸取代。更保守的取代是具有相同或類似的大小和化學性質的氨基酸間的取代,例如,亮氨酸被異亮氨酸取代。在天然同源蛋白質家族序列變異的研究中,某些氨基酸的取代往往比其他氨基酸更具有耐受性,這些氨基酸往往表現出與原氨基酸的大小、電荷、極性和疏水性之間的相似性相關,這是確定「保守取代」的基礎。
在本文中,保守取代定義為在以下五種基團之一的內部進行交換:基團 1 — 小脂肪族、非極性或略具極性的殘基 (Ala, Ser, Thr, Pro, Gly);基團 2 — 極性、帶負電荷的殘基及其醯胺 (Asp, Asn, Glu, Gln) ;基團 3 — 極性、帶正電荷的殘基 (His, Arg, Lys) ;基團 4 — 大脂肪族非極性殘基 (Met, Leu, Ile, Val, Cys) 以及基團 5 — 大芳香殘基 (Phe, Tyr, Trp)。
較不保守的取代可能涉及一個氨基酸被另一個具有類似特點但在大小上有所不同的氨基酸所取代,如:丙氨酸被異亮氨酸殘基取代。高度不保守的取代可能涉及一個酸性氨基酸被另一個具有極性或甚至具有鹼性性質的氨基酸所取代。然而,這種「激進」取代不能認為是無效的而不予考慮,因為化學作用是不完全可預測的,激進的取代可能會帶來其簡單化學原理中無法預見的偶然效果。
當然,這種取代可能涉及普通 L-氨基酸之外的其他結構。因此,D-氨基酸可能被本發明的抗原肽中常見的 L-氨基酸取代,也仍在本公開的範圍之內。此外,非標準氨基酸(即,除了常見的天然蛋白原氨基酸)也可以用於取代之目的,以生產根據本發明的免疫原和免疫原性多肽。
如果在一個以上位置上的取代發現導致肽的抗原活性基本上等於或大於以下定義值,則對這些取代的組合進行測試,以確定組合的取代是否產生對肽抗原性的疊加或協同效應。肽內被同時取代的位置最多不能超過 4 個。
基本上由本文所指氨基酸序列組成的一種肽可能有一個或兩個非錨定氨基酸(見下面錨基序相關內容)被交換,而不存在這種情況,即相比於未修飾的肽,與人類主要組織相容性複合體 (MHC) –I 或 II 類分子的能力基本上被改變或受到不利影響。在另一實施方案中,在基本上由本文所述氨基酸序列組成的肽中,一個或兩個氨基酸可與其保守交換夥伴交換(見下文),而不存在這種情況,即相比於未修飾的肽,與人類主要組織相容性複合體 (MHC) –I 或 II 類分子的能力基本上被改變或受到不利影響。
這些基本不與 T 細胞受體互動的氨基酸殘基可通過取代其他幾乎不影響 T 細胞反應並不妨礙與相關 MHC 結合的氨基酸而得到修飾。因此,除了特定限制性條件外,本發明的肽可能為任何包括給定氨基酸序列或部分或其變體的肽(發明人所用的這個術語包括寡肽或多肽)。
較長(拉長)的肽也可能適合。MHC I 類表位(通常長度為 8 至 11 個氨基酸)可能由肽從較長的肽或包含實際表位的蛋白中加工而產生。兩側有實際表位的殘基優選為在加工過程中幾乎不影響暴露實際表位所需蛋白裂解的殘基。
本發明的肽可被拉長多達四個氨基酸,即 1、2、3 或 4 個氨基酸,可按照 4:0 與 0:4之間的任何組合添加至任意一端。本發明的拉長組合可見表 4 。 表 4:本發明肽的拉長組合
拉伸/延長的氨基酸可以是所述蛋白或任何其他氨基酸的原序列肽。拉長可用于增強所述肽的穩定性或溶解性。
因此,本發明所述的表位可能與天然腫瘤相關表位或腫瘤特異性表位相同,也可能包括來自參考肽的不超過四個殘基的不同肽,只要它們有基本相同的抗原活性即可。
在一項替代實施方案中,肽的一邊或雙邊被拉長 4 個以上的氨基酸,優選最多 30 個氨基酸的總長度。這可形成 MHC-II 類結合肽。結合至 MHC II 類肽可通過本領域中已知的方法進行測試。
因此,本發明提出了 MHC I 類表位的肽和變體,其中所述肽或抗體的總長度為 8 至 100 個、優選為 8 至 30 個、最優選為 8 至 14 個氨基酸長度(即 10、11、12、13、14 個氨基酸,如果為拉長 II 類結合肽時,長度也可為 15、16、17、18 、19 、20、21 或 22 或 23 個氨基酸)。
當然,本發明的肽或變體能與人主要組織相容性複合體 (MHC) I 或 II 類分子結合。肽或變體與 MHC 複合物的結合可用本領域內的已知方法進行測試。
優選情況是,當本發明的肽特異性 T 細胞相比於取代肽受到檢測時,如果取代肽在相對於背景肽溶解度增加達到最大值的一半,則該肽濃度不超過約 1 mM,優選為不超過約 1 µM,更優選為不超過約 1 nM,再優選為不超過約 100 pM,最優選為不超過約 10 pM。也優選為,取代肽被 一個以上的 T 細胞識別,最少為 2 個,更優選為 3 個。
在本發明的一個特別優選實施方案中,肽系由或基本系由根據 SEQ ID NO: 1 至 SEQ ID NO: 228 所選的氨基酸序列組成。
基本由「...組成」系指本發明的肽,除了根據 SEQ ID NO: 1 至 SEQ ID NO: 228 中的任一序列或其變體組成外,還含有位於其他 N 和/或 C 端延伸處的氨基酸,而它們不一定能形成作為 MHC 分子表位的肽。
但這些延伸區域對有效將本發明中的肽引進細胞具有重要作用。在本發明的一實施例中,該肽為融合蛋白的一部分,含來自 NCBI、GenBank 登錄號 X00497 的 HLA-DR 抗原相關不變鏈(p33,以下稱為「Ii」)的 80 個 N-端氨基酸等。在其他的融合中,本發明的肽可以被融合到本文所述的抗體、或其功能性部分,特別是融合入抗體的序列,以便所述抗體進行特異性靶向作用,或者,例如進入本文所述的樹突狀細胞特異性抗體。
此外,該肽或變體可進一步修飾以提高穩定性和/或與 MHC 分子結合,從而引發更強的免疫反應。肽序列的該類優化方法是本領域內所熟知的,包括,例如,反式肽鍵和非肽鍵的引入。
在反式肽鍵氨基酸中,肽 (-CO-NH -) 並未連接其殘基,但是其肽鍵是反向的。這種逆向反向模擬肽 (retro-inverso peptidomimetics) 可通過本領域已知的方法製備,例如:Meziere 等人在 (Meziere et al., 1997) 中所述的方法,以引用的方式併入本文。這種方法涉及製備包含骨架(而並非側鏈)改變的模擬肽。Meziere 等人 (Meziere et al., 1997) 的研究顯示,這些類比肽有利於 MHC 的結合和輔助性 T 細胞的反應。以 NH-CO 鍵替代 CO-NH 肽鍵的逆向反向肽大大地提高了抗水解性能。
非肽鍵為-CH2
-NH、-CH2
S-、-CH2
CH2
-、-CH=CH-、-COCH2
-、-CH(OH)CH2
-和 -CH2
SO-等。美國 4897445 號專利提出了多肽鏈中非肽鍵 (-CH2
-NH) 的非固相合成法,該方法涉及按標準程序合成的多肽以及通過氨基醛和一種含 NaCNBH3
的氨基酸相互作用而合成的非肽鍵。
含上述序列的肽可與其氨基和/或羧基末端的其他化學基團進行合成,從而提高肽的穩定性、生物利用度、和/或親和力等。例如,苄氧羰基、丹醯基等疏水基團或叔丁氧羰基團可加入肽的氨基末端。同樣,乙醯基或 9-芴甲氧羰基可能位於肽的氨基末端。此外,疏水基團、叔丁氧羰基團或氨基團都可能被加入肽的羧基末端。
另外,本發明中的所有肽都可能經合成而改變其空間構型。例如,可能使用這些肽的一個或多個氨基酸殘基的右旋體,通常不是其左旋體。更進一步地,本發明中肽的至少一個氨基酸殘基可被熟知的一個非天然氨基酸殘基取代。諸如此類的改變可能有助於增加本發明肽的穩定性、生物利用度和/或結合作用。
同樣,本發明中的肽或變體可在合成肽之前或之後通過特異氨基酸的反應而進行化學修飾。此類修飾的實施例為本領域所熟知,例如,在 R. Lundblad 所著的《 Chemical Reagents for Protein Modification》 (3rd ed. CRC Press, 2004) (Lundblad, 2004) 中有概述,以參考文獻的方式併入本文。雖然氨基酸的化學修飾方法無限制,但其包括(但不限於)通過以下方法修飾:醯基化、脒基化、賴氨酸吡哆基化、還原烷基化、以 2,4,6-三硝基苯磺酸 (TNBS) 三硝基苯基化氨基團、通過將半胱氨酸過甲酸氧化為磺基丙氨酸而對羧基團和巰基進行氨基修飾、形成易變衍生物、與其他巰基化合物形成混合二硫化合物、與馬來醯亞胺反應,與碘乙酸或碘乙醯胺羧甲基化、在鹼性 pH 值下與氰酸鹽甲氨醯化。在這方面,技術人員參考了《Current Protocols In Protein Science》 (Eds. Coligan et al. (John Wiley and Sons NY 1995-2000) ) (Coligan et al., 1995) 中第 15 章所述的在蛋白質化學修飾相關的廣泛方法。
簡言之,修飾蛋白質的精氨醯殘基等往往基於於鄰二羰基化合物(如苯甲醯甲醛、2,3 –丁二酮以及 1,2-烯巳二酮)的反應而形成加合物。另一個實施例是丙酮醛與精氨酸殘基的反應。半胱氨酸可在賴氨酸和組氨酸等親核位點不作隨同修飾的情況下就得到修飾。因此,有大量試劑可進行半胱氨酸的修飾。Sigma-Aldrich (http://www.sigma-aldrich.com) 等公司的網站含有具體試劑的資訊。
蛋白質中二硫鍵的選擇性還原也很普遍。二硫鍵可在生物制藥熱處理中形成和氧化。伍德沃德氏試劑 K 可用於修飾特定的谷氨酸殘基。N-(3-二甲氨基丙基)-N´-乙基-碳二亞胺可用于形成賴氨酸殘基和谷氨酸殘基的分子內交聯。例如:焦碳酸二乙酯是修飾蛋白質組氨酸殘基的試劑。組氨酸也可使用 4-羥基-2-壬烯醛進行修飾。賴氨酸殘基與其他α-氨基團的反應,例如,有利於肽結合到蛋白/肽的表面或交聯處。賴氨酸聚是多(乙烯)乙二醇的附著點,也是蛋白質糖基化的主要修飾位點。蛋白質的蛋氨酸殘基可通過碘乙醯胺、溴乙胺、氯胺 T 等被修飾。
四硝基甲烷和 N-乙醯基咪唑可用於酪氨酸殘基的修飾。經二酪氨酸形成的交聯可通過過氧化氫/銅離子完成。
對色氨酸修飾的最近研究中使用了 N-溴代琥珀醯亞胺、2-羥基-5-硝基苄溴或 3-溴-3-甲基-2- (2 –硝苯巰基) -3H-吲哚 (BPNS-糞臭素)。
當蛋白與戊二醛、聚乙二醇二丙烯酸酯和甲醛的交聯用於配製水凝膠時,治療性蛋白和含聚乙二醇的肽的成功修飾往往可延長迴圈半衰期。針對免疫治療的變態反應原化學修飾往往通過氰酸鉀的氨基甲醯化實現。
一種肽或變體,其中肽被修飾或含非肽鍵,優選為本發明的實施例。一般來說,肽和變體(至少含氨基酸殘基之間的肽聯接)可使用 Lukas 等人 (Lukas et al., 1981) 以及此處引用的參考文獻所披露的固相肽合成 Fmoc-聚醯胺模式進行合成。芴甲氧羰基 (Fmoc) 團對 N-氨基提供臨時保護。使用 N, N-二甲基甲醯胺中的 20% 二甲基呱啶中對這種堿高度敏感的保護基團進行重複分裂。由於它們的丁基醚 (在絲氨酸蘇氨酸和酪氨酸的情況下)、丁基酯 (在谷氨酸和天門冬氨酸的情況下)、叔丁氧羰基衍生物 (在賴氨酸和組氨酸的情況下)、三苯甲基衍生物 (在半胱氨酸的情況下) 及 4-甲氧基-2,3,6-三甲基苯磺醯基衍生物 (在精氨酸的情況下),側鏈功能可能會受到保護。只要穀氨醯胺和天冬醯胺為 C-末端殘基,側鏈氨基功能保護所使用的是由 4,4'-二甲氧基二苯基團。固相支撐基於聚二甲基丙烯醯胺聚合物,其由三個單體二甲基丙烯醯胺(骨架單體)、雙丙烯醯乙烯二胺(交聯劑)和 N-丙烯醯肌胺酸甲酯(功能劑)構成。使用的肽-樹脂聯劑為酸敏感的 4 -羥甲基苯氧乙酸衍生物。所有的氨基酸衍生物均作為其預製對稱酸酐衍生物加入,但是天冬醯胺和穀氨醯胺除外,它們使用被逆轉的 N, N-二環己基碳二亞胺/1-羥基苯並三唑介導的耦合程序而加入。所有的耦合和脫保護反應用茚三酮、硝基苯磺酸或 isotin 測試程序監測。合成完成後,用濃度為 95% 含 50% 清道夫混合物的三氟醋酸,從伴隨去除側鏈保護基團的樹脂支承物中裂解肽。常用的清道夫混合物包括乙二硫醇、苯酚、苯甲醚和水,準確的選擇依據合成肽的氨基酸組成。此外,固相和液相方法結合使用對肽進行合成是可能的(例如,請參閱 (Bruckdorfer et al., 2004) 以及本文引用的參考文獻)
三氟乙酸用真空中蒸發、隨後用承載粗肽的二乙基乙醚滴定進行去除。用簡單萃取程序(水相凍乾後,該程序制得不含清道夫混合物的肽)清除任何存在的清道夫混合物。肽合成試劑一般可從 Calbiochem-Novabiochem(英國諾丁漢)獲得。
純化可通過以下技術的任何一種或組合方法進行,如:再結晶法、體積排阻色譜法、離子交換色譜法、疏水作用色譜法以及(通常)反相高效液相色譜法(如使用乙腈/水梯度分離)。
可以使用薄層色譜法、電泳特別是毛細管電泳、固相萃取(CSPE)、反相高效液相色譜法、酸解後的氨基酸分析、快原子轟擊(FAB)質譜分析以及MALDI和ESI-Q-TOF質譜分析進行肽分析。
為了選擇過度提呈的肽,計算了提呈圖,其顯示樣本中位元提呈量以及複製變化。該特點使相關腫瘤實體的樣本與正常組織樣本的基線值並列。可通過計算調節線性混合效應模型 (Pinheiro et al., 2015) 的 p 值將以上每個特點併入過度提呈分數中,從而通過假發現率 (Benjamini and Hochberg, 1995) 調整多項檢驗。
對於通過質譜法對 HLA 配體的識別和相對定量,對來自衝擊冷凍組織樣本的 HLA 分子進行純化並對 HLA 相關肽進行分離。分離的肽分開,並通過線上納米-電噴霧-電離 (nanoESI) 液相色譜- 譜 (LC-MS) 實驗進行鑒定。由此產生的肽序列的驗證方法是,將骨髓瘤樣本中記錄的天然 TUMAP 的片段模式與相同序列相應合成參考肽的片段模式進行比較。由於這些肽被直接鑒定為原發性腫瘤 HLA 分子的配體,因此這些結果為從骨髓瘤患者中獲得的原發癌症組織上確定肽的天然加工和提呈提供了直接證據。
發現管道 XPRESIDENT® v2.1(例如,參見 US 2013-0096016,並在此通過引用將其整體併入本文)考慮到識別和選擇相關過量提呈的候選肽疫苗,這基於與幾種不同的非癌組織和器官相比癌症或其他受感染組織的 HLA 限制肽水準直接相對定量結果。這通過以下方法實現:使用專有資料分析管道處理的 LC-MS 採集資料、結合序列識別演算法、譜聚類、計算離子、保留時間調整、充電狀態卷積以及正態化而開發無標記差異化定量方法。
為每種肽和樣本確立了提呈水準,包括誤差估計值。腫瘤組織大量提呈的肽以及腫瘤與非腫瘤組織和器官中過量提呈的肽已經得到確定。
對來自骨髓瘤樣本的 HLA 肽複合物進行純化,並且對 HLA 相關肽使用 LC-MS 進行分離和分析(見實施例)。本申請中包含的所有 TUMAP 使用原發骨髓瘤樣本的方法進行鑒定,確認其在骨髓瘤上的提呈。
在多個骨髓瘤和正常組織上確定的 TUMAP 用無標記 LC-MS 資料的離子計數方法進行量化。該方法假定肽的 LC-MS 信號區域與樣本中其豐度相關。各種 LC-MS 實驗中肽的所有量化信號在集中趨勢基礎上進行正常化,根據每個樣品進行平均,併合併入柱狀圖(被稱為提呈圖)。提呈圖整合了不同分析方法,如:蛋白資料庫檢索、譜聚類、充電狀態卷積(除電)和保留時間校準和正態化。
本發明提出了有利於治療癌腫/腫瘤,優選為治療過量提呈或只提呈本發明肽的骨髓瘤。這些肽由質譜分析法直接顯示出,而由 HLA 分子自然提呈于人骨髓瘤樣本中。
與正常組織相比,癌症中高度過量表達肽來源的許多源基因/蛋白質(也指定為「全長蛋白」或「潛在蛋白」)- 本發明相關的「正常組織」是來自大腸(結腸或直腸)健康漿細胞或其他正常組織細胞,這表明腫瘤與這些源基因的高度關聯性。此外,這些肽本身也在腫瘤組織中過度提呈(本發明相關的「腫瘤組織」是指來自骨髓瘤患者的樣本),但不在正常組織中過度提呈。
HLA 結合肽能夠被免疫系統識別,特別是 T 淋巴細胞。T 細胞可破壞提呈被識別 HLA/肽複合體的細胞(如:提呈衍生肽的骨髓瘤細胞)。
本發明的所有肽已被證明具有刺激 T 細胞反應的能力,並過量提呈,因而可用于製備本發明的抗體和/或 TCR,例如可溶性 TCR。此外,肽與相應的 MHC 組合時,也可用于製備本發明的抗體和/或 TCR,特別是 sTCR。各個方法均為技術人員所熟知,並在各個文獻中可找到。因此,本發明的肽可用于在患者中產生免疫反應,從而能夠毀滅腫瘤細胞。患者的免疫反應能夠通過直接給予患者所述肽或前體物質(如,加長肽、蛋白或編碼這些肽的核酸),較理想是與加強免疫原性的製劑相結合,而進行誘導。源自該治療性疫苗的免疫反應預期能夠高度特異性地對抗腫瘤細胞,因為本發明的目標肽在正常組織上提呈的複製數目較少,防止患者發生對抗正常細胞的不良自體免疫反應的風險。
本說明書還涉及包含一個 α 鏈和一個 β 鏈 (「α/β TCR」) 的 T 細胞受體 (TCR)。還提供了由 MHC 分子提呈時可與 TCR 和抗體結合的 HAVCR1-001 肽。本說明書還涉及核酸、載體和用於表達 TCR 的宿主細胞和本說明書的肽;以及使用它們的方法。
術語 「T細胞受體」 (縮寫 TCR) 是指一種異二聚體分子,其包含一個 α 多肽鏈(α 鏈)和一個 β 多肽鏈(β鏈),其中所述異二聚體受體能夠結合由 HLA 分子提呈的肽抗原。該術語還包括所謂的 γ/δ TCR。
在一個實施方案中,本說明書提供了如本文中所描述的產生 TCR 的方法,該方法包括在適於促進 TCR 表達的條件下培養能夠表達 TCR 的宿主細胞。
另一個方面,本說明書涉及一種根據本說明書的方法,其中所述抗原透過與足夠量的含抗原提呈細胞的抗原結合被載入表達於合適抗原提呈細胞或人工抗原呈遞細胞表面的 I 或 II 類 MHC 分子,或該抗原透過四聚化被載入 I 或 II 類 MHC 四聚體/ I 或 II 類 MHC 複合單體。
α/β TCR 的 α 和 β 鏈和 γ/δ TCR 的 γ 和 δ 鏈通常被視為各自有兩個「結構域」,即可變和恒定結構域。可變結構域由可變區 (V) 和連接區 (J) 的組合。可變結構域還可能包括一個前導區 (L)。β 和δ鏈還可能包括一個多樣區 (D)。α 和 β 恒定結構域還可能包括錨定 α 和 β 鏈至細胞膜的 C 末端跨膜 (TM) 結構域。
相對於γ/δ的TCR,如本文所用的術語 「TCR γ可變域」是指無前導區 (L) 的 TCR γ V (TRGV) 區與 TCR γ (TRGJ) 區的組合,術語 TCR γ恒定結構域是指細胞外TRGC區域,或 C-末端截短 TRGC 序列。同樣地,「TCR δ可變域」是指無前導區 (L) 的 TCR δ V (TRDV) 區與 TCR δ D/J (TRDD/TRDJ) 區的組合,術語 「TCR δ恒定結構域」是指細胞外TRDC區域,或 C-末端截短 TRDC 序列。
本說明書的 TCR 優選結合至 HAVCR1-001 肽 HLA分子複合體,其具有約 100 µM或更小、約 50 µM或更小、約 25 µM或更小或約 10 µM或更小的結合親和力 (KD)。更為優選的情況是具有約 1 µM或更小、約 100 nM或更小、約 50 nM 或更小或約 25 nM或更小結合親和力的高親和力 TCR。本發明 TCR 優選結合親和力範圍的非限制性示例包括約 1 nM 至約 10 nM;約 10 nM 至約 20 nM;約 20 nM 至約 30 nM;約 30 nM 至約 40 nM;約 40 nM 至約 50 nM;約 50 nM 至約 60 nM;約 60 nM 至約 70 nM;約 70 nM 至約 80 nM;約 80 nM 至約 90 nM;以及約 90 nM 至約 100 nM。
與本說明書 TCR 相關,本文使用的「特異性結合」及其語法變體用於表示對 100μM 或更小的 HAVCR1-001 肽-HLA 分子複合體有結合親和力 (KD) 的 TCR。
本說明書的 α/β 異二聚體 TCR可能具有其恒定結構域之間的引入二硫鍵。這種類型的優選 TCR 包括那些具有一個 TRAC 恒定域序列和 TRBC1 或 TRBC2 恒定域序列的 TCR,除非 TRAC 的蘇氨酸 48 和 TRBC1 或 TRBC2 的絲氨酸 57被半胱氨酸殘基取代,所述半胱氨酸形成 TRAC 恒定域序列和 TCR 的 TRBC1 或 TRBC2 恒定區序列之間的二硫鍵。
不論具有或不具有上述的引入鏈間鍵,本說明書的α/β 雜二聚體TCR 可能具有一個 TRAC 恒定域序列和一個 TRBC1 或 TRBC2 恒定結構域序列,並且 TRAC 恒定結構域序列和 TCR 的 TRBC1 或 TRBC2 恒定結構域序列可能透過 TRAC 外顯子 2 的 Cys4 和 TRBC1或TRBC2外顯子2 的 Cys4 之間的天然二硫鍵相連。
本說明書的 TCR 可能包括選自由放射性核素、螢光團和生物素組成組中的可檢測標記。本說明書的 TCR可能共軛至治療活性劑,如放射性核素、化學治療劑或毒素。
在一個實施方案中,具有在 α 鏈中至少一個突變和/或具有在 β 鏈中至少一個突變的 TCR 與未突變的 TCR 相比,已經修改了糖基化。
在一個實施方案中,在TCR α 鏈和/或TCR β 鏈中包括至少一個突變的 TCR 對 HAVCR1-001 肽 HLA 分子複合體有結合親和力和/或結合半衰期,其是包含未突變 TCR α鏈和/或未突變 TCR β 鏈的TCR 的結合親和力的至少兩倍。腫瘤特異性 TCR 親和力增強及其開發依賴於存在最佳 TCR 親和力的窗口。這樣窗口的存在是根據觀察結果:HLA-A2 限制性病原體特異性 TCR 與 HLA-A2 限制性腫瘤相關自身抗原特異性 TCR 相比, KD 值通常大約低 10 倍。現已知,儘管腫瘤抗原可能具有免疫原性,但是因為腫瘤來自個體自身的細胞,因此僅突變蛋白質或翻譯加工改變的蛋白將被免疫系統視為外來物質。上調或過度表達(所謂的自體抗原)的抗原不一定誘導針對腫瘤的功能免疫應答:表達對這些抗原具有高度反應性的 TCR 的 T 細胞會在一種稱為中樞耐受的程序中在胸腺內被不利選擇,也就是說只有對自身抗原具有低親和力 TCR 的細胞才仍然存在。因此,本說明書的 TCR 或變體對 HAVCR1-001 的親和力可透過本領域熟知的方法來增強。
本說明書還涉及一種識別和分離本發明 TCR 的一種方法,所述方法包括:用 A2/HAVCR1-001 肽單體從 HLA-A*02 陰性健康供體孵育 PBMC,用四聚體-藻紅蛋白 (PE) 孵育 PBMC 並透過螢光啟動細胞分選 (FACS) – Calibur方法分析分離高親和力 T 細胞。
本說明書還涉及一種識別和分離本發明 TCR 的一種方法,所述方法包括:獲得含整個人體 TCRαβ 基因位點 (1.1 and 0.7 Mb) 的轉基因小鼠(其 T 細胞表達多樣化人類 TCR,用於補償小鼠 TCR 缺乏),用 HAVCR1-001 對小鼠進行免疫處理,用四聚體 - 藻紅蛋白 (PE) 孵育從轉基因小鼠中獲得的PBMC,並透過螢光啟動細胞分選 (FACS) – Calibur方法分析分離高親和力 T 細胞。
一方面,為了獲得表達本說明書 TCR 的 T 細胞,編碼本說明書 TCR-α和/或TCR-β 鏈的核酸被克隆入表達載體,諸如 γ 反轉錄病毒或慢病毒。重組病毒產生,然後測試功能,如抗原專一性和功能性親合力。然後,最終產品的等分試樣被用於轉導靶 T 細胞群體(一般純化自患者的 PBMC),在輸入患者前展開。另一方面,為了獲得表達本說明書 TCR 的T細胞,TCR RNA 透過本領域中已知的技術(例如,體外轉錄系統)合成。然後,體外合成的TCR RNA透過電穿孔來重新表達腫瘤特異性 TCR-α 和/或 TCR-β 鏈被引入獲得自健康供體的初級CD8+ T 細胞。
為了增加表達,編碼本說明書 TCR 的核酸在操作上可連接到強啟動子,例如逆轉錄病毒長末端重複序列 (LTR)、巨細胞病毒 (CMV)、鼠幹細胞病毒 (MSCV) U3、磷酸甘油酸激酶 (PGK)、β 肌動蛋白、泛素蛋白和猿猴病毒 40 (SV40)/CD43複合啟動子、延伸因數 (EF) -1a和脾臟病灶形成病毒 (SFFV) 啟動子。在一優選實施方案中,啟動子與被表達的核酸異源。除了強啟動子外,本說明書的 TCR 表達盒可能含有附加的元素,可提高轉基因表達,包括中樞多聚嘌呤區 (CPPT), 其促進了慢病毒構建體的核易位 (Follenzi et al., 2000), 和土撥鼠肝炎病毒轉錄後調控元素 (WPRE), 其透過提高 RNA 穩定性增加轉基因表達水準 (Zufferey et al., 1999)。
本發明 TCR 的 α 和 β 鏈可由位於分開的載體核酸進行編碼,或者可透過位於同一載體的多核苷酸編碼。
實現高水準的 TCR 表面表達需要引入 TCR 的 TCR-α 和 TCR-β 鏈高水準轉錄。為了實現它,本說明書的 TCR-α 和 TCR-β 鏈可在單一的載體中被克隆入雙順反子構建體,其已被證明能夠克服這一障礙。使用 TCR-α 和 TCR-β 鏈在之間的病毒核糖體間進入位元點 (IRES) 導致兩鏈的協同表達,因為 TCR-α 和 TCR-β 鏈均由在翻譯過程中分成兩個蛋白質的單一轉錄物產生,從而確保了產生 TCR-α 和 TCR-β 鏈的相等摩爾比。(Schmitt et al. 2009)。
編碼本說明書 TCR 的核酸可以是被優化以從宿主細胞增加表達的密碼子。遺傳密碼冗餘讓一些氨基酸被一個以上的密碼子編碼,但某些密碼子沒有其他密碼子「優化」,因為匹配 tRNA 以及其他因數的相對可用性 (Gustafsson et al., 2004)。修改 TCR-α 和 TCR-β 基因序列使得每個氨基酸被用於哺乳動物基因表達的最佳密碼子編碼,以及消除 mRNA 不穩定性基序或隱蔽剪接位元點,已顯示可顯著提高 TCR-α 和 TCR-β 基因表達 (Scholten et al., 2006)。
此外,引入的和內源性 TCR 鏈之間的錯配可能會導致獲得特異性,其構成自身免疫的顯著風險。例如,混合 TCR 二聚體的形成可能會減少可用以形成正確配對 TCR 複合體的 CD3 分子數目,因此,可以顯著降低表達所引入 TCR的細胞的功能性親合力 (Kuball et al., 2007)。
為了減少錯配,本說明書引入的 TCR 鏈的 C-末端結構域可以進行修改以促進鏈間親和力,同時降低引入鏈與內源 TCR 配對的能力。這些策略可能包括用鼠配對物取代人類 TCR-α 和 TCR-β C端結構域(鼠化 C 端結構域);透過引入第二個半胱氨酸殘基到引入 TCR 的 TCR-α 和 TCR-β 鏈產生 C 末端結構域的第二個鏈間二硫鍵(半胱氨酸修飾);交換 TCR-α 和 TCR-β 鏈 C 端結構域的相互作用殘基(「杵臼結構」);直接融合 TCR-α和 TCR-β 鏈可變結構域至 CD3ζ(CD3ζ 融合)(Schmitt et al. 2009)。
在一實施方案中,宿主細胞被改變結構以表達本說明書的 TCR。在一優選實施方案中,宿主細胞為人 T 細胞或 T 細胞祖細胞。在一些實施方案中,T 細胞或 T 細胞祖細胞從癌症患者中獲得。在另一些實施方案中,T 細胞或 T 細胞祖細胞從健康供體中獲得。本說明書的宿主細胞相對於待治療的患者可以為同種異體或自體的。在一實施方案中,宿主是被轉化以表達 α/β TCR 的 γ/δ T 細胞。
「藥物組合物」是指適合在醫療機構用於人體的組合物。優選地,藥物組合物為無菌狀態,並根據 GMP 指南生產。
藥物組合物包括游離形式或以一種藥用鹽形式存在的肽(也參見上文)。此處使用的「藥用鹽」系指所公開的肽的一種衍生物,其中該肽由制酸或藥劑的堿鹽進行改性。例如,用與適合的酸反應的游離堿(通常其中的中性藥物有一個中性–NH2
基團)製備酸式鹽。適合製備酸鹽的酸包括有機酸,如:乙酸、丙酸、羥基酸、丙酮酸、草酸、蘋果酸、丙二酸、丁二酸、馬來酸、富馬酸、酒石酸、檸檬酸、苯甲酸酸、肉桂酸、扁桃酸、甲磺酸、甲磺酸、苯磺酸、水楊酸等等、以及無機酸,如:鹽酸、氫溴酸、硫酸、硝酸和磷酸等。相反,可在一種肽上提呈的酸性基團的堿鹽製劑使用藥用堿基進行製備,如氫氧化鈉、氫氧化鉀、氫氧化銨、氫氧化鈣、三甲胺等等。
在特別優選的實施方案中,藥物組合物包括乙酸(醋酸鹽),三氟乙酸鹽或鹽酸(氯化物)形式的肽。
本發明中所述的藥劑優選為一種免疫治療藥劑,例如,一種疫苗。該疫苗可直接給到患者的受影響器官,也可i.d.、i.m.、s.c.、i.p. 和 i.v. 注射方式全身給藥,或體外應用到來自患者或其細胞株的細胞(隨後再將這些細胞注入到患者中),或體外用於從來自患者的免疫細胞的一個細胞亞群(然後再將細胞重新給予患者)。如果核酸體外注入細胞,可能有益於細胞轉染,以共同表達免疫刺激細胞因數(如白細胞介素-2)。肽可完全單獨給藥,也可與免疫刺激佐劑相結合(見下文)、或與免疫刺激細胞因數聯合使用、或以適當的輸送系統給藥(例如脂質體)。該肽也可共軛形成一種合適的載體(如鑰孔蟲戚血藍蛋白 (KLH) 或甘露)到合適的載體 (參閱WO 95/18145 及 (Longenecker et al., 1993))。肽也可能被標記,可能是融合蛋白,或可能是雜交分子。在本發明中給出序列的肽預計能刺激 CD4 或 CD8 T 細胞。然而,在有 CD4 T-輔助細胞的幫助時,CD8 T 細胞刺激更加有效。因此,對於刺激 CD8 T 細胞的 MHC-I 類表位,一種雜合分子的融合夥伴或片段提供了刺激 CD4 陽性 T 細胞的適當表位。CD4- 和 CD8 刺激表位為本領域所熟知、並包括本發明中確定的表位。
一方面,疫苗包括至少含有 SEQ ID NO:1 至 SEQ ID NO:228 中提出的一種肽以及至少另外一種肽,優選為 2 至 50 個、更優選為 2 至 25 個、再優選為 2 至 20 個、最優選為 2、3、4、5、6、7、8、9、10、11、12 、13、14、15、16、17 或 18 個肽。肽可能從一個或多個特定 TAA 中衍生,並且可能與 MHC I 類分子結合。
另一方面,本發明提出了一種編碼本發明中肽或肽變體的核酸(如多聚核苷酸)。多聚核苷酸可能為,例如,DNA、cDNA、PNA、RNA 或其組合物,它們可為單鏈和/或雙鏈、或多聚核苷酸的原生或穩定形式(如:具有硫代磷酸骨架的多聚核苷酸),並且只要它編碼肽,就可能包含也可能不包含內含子。當然,多聚核苷酸只能編碼加入天然肽鍵並含有天然氨基酸殘基的肽。另一個方面,本發明提出了一種可根據本發明表達多肽的表達載體。
對於連接多核苷酸,已經開發出多種方法,尤其是針對 DNA,可通過向載體補充可連接性末端等方法進行連接。例如,可向 DNA 片段加入補充性均聚物軌道,之後 DNA 片段被插入到載體 DNA。然後,通過補充性均聚物尾巴的氫鍵結合,將載體和 DNA 片段結合,從而形成重組 DNA 分子。
含有一個或多個酶切位點的合成接頭為 DNA 片段與載體連接提供了另一種方法。含各種限制性核酸內切酶的合成接頭可通過多種管道購得,其中包括從國際生物技術公司(International Biotechnologies Inc, New Haven, CN, 美國)購得。
編碼本發明多肽的 DNA 理想修飾方法是使用 Saiki 等人 (Saiki et al., 1988) 所採用的聚合酶鏈反應方法。此方法可用於將 DNA 引入合適的載體(例如,通過設計合適的酶切位點),也可用於本領域已知的其他有用方法修飾 DNA。如果使用病毒載體,痘病毒載體或腺病毒載體為優選。
之後,DNA (或在逆轉錄病毒載體情況下,RNA)可能表達於合適的宿主,從而製成含本發明肽或變體的多肽。因此,可根據已知技術使用編碼本發明肽或變體的 DNA,用本文所述方法適當修飾後,構建表達載體,然後表達載體用於轉化合適宿主細胞,從而表達和產生本發明中的多肽。此類技術包括那些公開於,例如,美國專利 4,440,859、4,530,901、4,582,800、4,677,063、4,678,751、4,704,362、4,710,463、4,757,006、4,766,075 和 4,810,648。
編碼含本發明化合物多肽的 DNA (或在逆轉錄病毒載體情況下,RNA)可能被加入到其他多種 DNA 序列,從而引入到合適的宿主中。同伴 DNA 將取決於宿主的性質、DNA 引入宿主的方式、以及是否需要保持為游離體還是要相互結合。
一般來說,DNA 可以適當的方向和正確的表達閱讀框架附著到一種表達載體(如質粒)中。如有必要,該 DNA 可能與所需宿主所識別的相應轉錄和翻譯調節控制核苷酸序列連接,儘管表達載體中一般存在此類控制功能。然後,該載體通過標準方法被引入宿主。一般來說,並不是所有的宿主都會被載體轉化。因此,有必要選擇轉化過的宿主細胞。選擇方法包括用任何必要的控制元素向表達載體插入一個 DNA 序列,該序列對轉化細胞中的可選擇性屬性(如抗生素耐藥性)進行編碼。
另外,有這種選擇屬性的基因可在另外一個載體上,該載體用來協同轉化所需的宿主細胞。
然後,本發明中的重組 DNA 所轉化的宿主細胞在本文中所述本領域技術人員熟悉的合適條件下培養足夠長的時間,從而表達之後可回收的肽。
有許多已知的表達系統,包括細菌(如大腸桿菌和枯草芽孢桿菌)、酵母(如酵母菌)、絲狀真菌(如曲黴菌)、植物細胞、動物細胞及昆蟲細胞。該系統可優選為哺乳動物細胞,如來自 ATCC 細胞生物學庫 (Cell Biology Collection) 中的 CHO 細胞。
典型的哺乳動物細胞組成型表達載體質粒包括 CMV 或含一個合適的多聚 A 尾巴的 SV40 啟動子以及抗性標誌物(如新黴素)。一個實例為從 Pharmacia 公司(Piscataway,新澤西,美國)獲得的 pSVL。一種可誘導型哺乳動物表達載體的例子是 pMSG,也可以從 Pharmacia 公司獲得。有用的酵母質粒載體是 pRS403-406 和 pRS413-416,一般可從 Stratagene Cloning Systems 公司(La Jolla, CA 92037,美國)獲得。質粒 pRS403、pRS404、pRS405 和 pRS406 是酵母整合型質粒 (YIp),並插入了酵母可選擇性標記物 HIS3、TRP1、LEU2 和 URA3。pRS413-416 質粒為酵母著絲粒質粒 (Ycp)。基於 CMV 啟動子的載體(如,來自於 Sigma-Aldrich 公司)提供了暫態或穩定的表達、胞漿表達或分泌,以及 FLAG、3xFLAG、c-myc 或 MATN 不同組合物中的 N-端或 C-端標記。這些融合蛋白可用於檢測、純化及分析重組蛋白。雙標融合為檢測提供了靈活性。
強勁的人巨細胞病毒 (CMV) 啟動子調控區使得 COS 細胞中的組成蛋白表達水準高達 1 mg/L。對於較弱的細胞株,蛋白水準一般低於 0.1 mg/L。SV40 複製原點的出現將導致 DNA 在 SV40 複製容納性 COS 細胞中高水準複製。例如,CMV 載體可包含細菌細胞中的 pMB1(pBR322 的衍生物)複製原點、細菌中進行氨苄青黴素抗性選育的 鈣-內醯胺酶基因、hGH polyA 和 f1 的原點。含前胰島素原引導 (PPT) 序列的載體可使用抗 FLAG 抗體、樹脂和板引導 FLAG 融合蛋白分泌到進行純化的培養基中。其他與各種宿主細胞一起應用的載體和表達系統是本領域熟知眾所周知的。
在另一個實施方案中,對本發明的兩個或更多的肽或肽變體進行編碼,因此,以一個連續順序(類似於「一串珠子」的構建體)表達。在達到目標,所述肽或肽變體可能通過連接子氨基酸的延伸處(例如LLLLLL)連接或融合一起,也可能他們之間沒有任何附加的肽而被連接。這些構建體也可用於癌症治療,可誘導涉及 MHC I 和 MHC II 類分子的免疫應答。
本發明還涉及一種宿主細胞,其以本發明的多核苷酸載體構建轉化而來。宿主細胞可為原核細胞,也可為真核細胞。在有些情況下,細菌細胞為優選原核宿主細胞,典型為大腸桿菌株,例如,大腸桿菌菌株 DH5(從 Bethesda Research Laboratories 公司(Bethesda, MD, 美國)獲得)和 RR1(從美國菌種保藏中心(ATCC, Rockville, MD, 美國),ATCC 編號31343 獲得)。首選的真核宿主細胞包括酵母、昆蟲和哺乳動物細胞,優選為脊椎動物細胞,如:小鼠、大鼠、猴子或人成纖維細胞和結腸癌細胞株中的細胞。酵母宿主細胞包括 YPH499、YPH500 和 YPH501,一般可從 Stratagene Cloning Systems 公司(La Jolla, CA 92037, 美國)獲得。首選哺乳動物宿主細胞包括中國倉鼠卵巢 (CHO) 細胞為 ATCC 中的 CCL61 細胞、NIH 瑞士小鼠胚胎細胞 NIH/3T3 為 ATCC 中的 CRL 1658 細胞、猴腎源性 COS-1 細胞為 ATCC 中的 CRL 1650 細胞以及人胚胎腎細胞的 293 號細胞。首選昆蟲細胞為 Sf9 細胞,可用杆狀病毒表達載體轉染。有關針對表達選擇合適宿主細胞的概要,可從教科書 (Paulina Balbás and Argelia Lorence 《Methods in Molecular Biology Recombinant Gene Expression, Reviews and Protocols》Part One, Second Edition, ISBN 978-1-58829-262-9) 和技術人員知道的其他文獻中查到。
含本發明 DNA 結構的適當宿主細胞的轉化可使用大家熟知的方法完成,通常取決於使用載體的類型。關於原核宿主細胞的轉化,請參見,例如,Cohen 等人的文獻 (Cohen et al., 1972) 和 (Green and Sambrook, 2012)。酵母細胞的轉化在 Sherman 等人的文章 (Sherman et al., 1986) 中進行了描述。Beggs (Beggs, 1978) 中所述的方法也很有用。對於脊椎動物細胞,轉染這些細胞的試劑等,例如,磷酸鈣和 DEAE-葡聚糖或脂質體配方,可從 Stratagene Cloning Systems 公司或 Life Technologies 公司(Gaithersburg, MD 20877,美國)獲得。電穿孔也可用於轉化和/或轉染細胞,是本領域用於轉化酵母細胞、細菌細胞、昆蟲細胞和脊椎動物細胞大家熟知的方法。
被成功轉化的細胞(即含本發明 DNA 結構的細胞)可用大家熟知的方法(如 PCR)進行識別。另外,上清液存在的蛋白可使用抗體進行檢測。
應瞭解,本發明中的某些宿主細胞用於製備本發明中的肽,例如細菌細胞、酵母細胞和昆蟲細胞。但是,其他宿主細胞可能對某些治療方法有用。例如,抗原提呈細胞(如樹突狀細胞)可用于表達本發明中的肽,使他們可以加載入相應的 MHC 分子中。因此,本發明提出了含本發明中核酸或表達載體的一種宿主細胞。
在一個優選實施方案中,宿主細胞為抗原提呈細胞,尤其是樹突狀細胞或抗原提呈細胞。2010 年 4 月 29 日,美國食品和藥物管理局 (FDA) 批准載有含攝護腺酸性磷酸酶 (PAP) 的重組融合蛋白可用於治療無症狀或症狀輕微的轉移性 HRPC (Rini et al., 2006; Small et al., 2006)。
另一方面,本發明提出了一種配製一種肽及其變體的方法,該方法包括培養宿主細胞和從宿主細胞或其培養基中分離肽。
在另一個實施方案中,本發明中的肽、核酸或表達載體用於藥物中。例如,肽或其變體可製備為靜脈 (i.v.) 注射劑、皮下 (s.c.) 注射劑、皮內 (i.d.) 注射劑、腹膜內 (i.p.) 注射劑、肌肉 (i.m.) 注射劑。肽注射的優選方法包括 s.c.、i.d.、i.p.、i.m. 和 i.v. 注射。DNA 注射的優選方法為 i.d.、i.m.、s.c.、i.p. 和 i.v. 注射。例如,給予 50 µg 至 1.5 mg,優選為 125 µg 至 500 µg 的肽或 DNA,這取決於具體的肽或 DNA。上述劑量範圍在以前的試驗中成功使用 (Walter et al., 2012)。
用於主動免疫接種的多聚核苷酸可為基本純化形式,也可包被於載體或輸送系統。核酸可能為 DNA、cDNA、PNA、RNA,也可能為其組合物。這種核酸的設計和引入方法為本領域所熟知。例如,文獻中有其概述 (Teufel et al., 2005)。多核苷酸疫苗很容易製備,但這些載體誘導免疫反應的作用模式尚未完全瞭解。合適的載體和輸送系統包括病毒 DNA 和/或 RNA,如基於腺病毒、牛痘病毒、逆轉錄病毒、皰疹病毒、腺相關病毒或含一種以上病毒元素的混合病毒的系統。非病毒輸送系統包括陽離子脂質體和陽離子聚合物,是 DNA 輸送所屬領域內熟知的系統。也可使用物理輸送系統,如通過「基因槍」。肽或核酸編碼的肽可以是一種融合蛋白,例如,含刺激 T 細胞進行上述 CDR 的表位。
本發明的藥劑也可能包括一種或多種佐劑。佐劑是那些非特異性地增強或加強免疫反應的物質(例如,通過 CD8-陽性 T 細胞和輔助 T(TH
) 細胞介導的對一種抗原的免疫應答,因此被視為對本發明的藥劑有用。適合的佐劑包括(但不僅限於)1018ISS、鋁鹽、AMPLIVAX®
、AS15、BCG、CP-870,893、CpG7909、CyaA、dSLIM、鞭毛蛋白或鞭毛蛋白衍生的 TLR5 配體、FLT3 配體、GM-CSF、IC30、IC31、咪喹莫特 (ALDARA®
)、resiquimod、ImuFact IMP321、白細胞介素 IL-2、IL-13、IL-21、干擾素 α 或 β,或其聚乙二醇衍生物、IS Patch、ISS、ISCOMATRIX、ISCOMs、JuvImmune®
、LipoVac、MALP2、MF59、單磷醯脂A、Montanide IMS 1312、Montanide ISA 206、Montanide ISA 50V、Montanide ISA-51、水包油和油包水乳狀液、OK-432、OM-174、OM-197-MP-EC、ONTAK、OspA、PepTel® 載體系統、基於聚丙交酯複合乙交酯 [PLG] 和右旋糖苷微粒、重組人乳鐵傳遞蛋白 SRL172、病毒顆粒和其他病毒樣顆粒、YF-17D、VEGF trap、R848、β-葡聚糖、Pam3Cys、源自皂角苷、分支桿菌提取物和細菌細胞壁合成模擬物的 Aquila 公司的 QS21 刺激子,以及其他專有佐劑,如:Ribi's Detox、Quil 或 Superfos。優選佐劑如:弗氏佐劑或 GM-CSF。前人對一些樹突狀細胞特異性免疫佐劑(如 MF59)及其製備方法進行了描述 (Allison and Krummel, 1995)。也可能使用細胞因數。一些細胞因數直接影響樹突狀細胞向淋巴組織遷移(如,TNF-),加速樹突狀細胞成熟為 T 淋巴細胞的有效抗原提呈細胞(如,GM-CSF、IL-1 和 IL-4)(美國 5849589號專利,特別以其完整引用形式併入本文),並充當免疫佐劑(如 IL-12、IL-15、IL-23、IL-7、IFN-α、IFN-β) (Gabrilovich et al., 1996)。
據報告,CpG 免疫刺激寡核苷酸可提高佐劑在疫苗中的作用。如果沒有理論的約束, CpG 寡核苷酸可通過 Toll 樣受體 (TLR) (主要為 TLR9)啟動先天(非適應性)免疫系統從而起作用。CpG 引發的 TLR9 活化作用提高了對各種抗原的抗原特異性體液和細胞反應,這些抗原包括肽或蛋白抗原、活病毒或被殺死的病毒、樹突狀細胞疫苗、自體細胞疫苗以及預防性和治療性疫苗中的多糖結合物。更重要的是,它會增強樹突狀細胞的成熟和分化,導致 TH1
細胞的活化增強以及細胞毒性 T 淋巴細胞 (CTL) 生成加強,甚至 CD4 T 細胞説明的缺失。甚至有疫苗佐劑的存在也能維持 TLR9 活化作用誘發的 TH1
偏移,這些佐劑如:正常促進 TH2
偏移的明礬或弗氏不完全佐劑 (IFA)。CpG 寡核苷酸與以下其他佐劑或配方一起製備或聯合給藥時,表現出更強的佐劑活性,如微粒、納米粒子、脂肪乳或類似製劑,當抗原相對較弱時,這些對誘發強反應尤為必要。他們還能加速免疫反應,使抗原劑量減少約兩個數量級,在有些實驗中,對不含CpG 的全劑量疫苗也能產生類似的抗體反應 (Krieg, 2006)。美國 6406705 B1 號專利對 CpG 寡核苷酸、非核酸佐劑和抗原結合使用促使抗原特異性免疫反應進行了描述。一種 CpG TLR9 拮抗劑為 Mologen 公司(德國柏林)的 dSLIM(雙幹環免疫調節劑),這是本發明藥物組合物的優選成分。也可使用其他如 TLR 結合分子,如:RNA 結合 TLR7、TLR8 和/或 TLR9。
其他有用的佐劑例子包括(但不限於)化學修飾性 CpG (如 CpR、Idera)、dsRNA 模擬物,如,Poly(I:C) 及其衍生物(如:AmpliGen、Hiltonol、多聚-(ICLC)、多聚 (IC-R)、多聚 (I:C12U))、非 CpG 細菌性 DNA 或 RNA 以及免疫活性小分子和抗體,如:環磷醯胺、舒尼替單抗、貝伐單抗®、西樂葆、NCX-4016、西地那非、他達拉非、伐地那非、索拉非尼、替莫唑胺、temsirolimus、XL-999、CP-547632、帕唑帕尼、VEGF Trap、ZD2171、AZD2171、抗-CTLA4、免疫系統的其他抗體靶向性主要結構(如:抗-CD40、抗-TGFβ、抗-TNFα受體) 和 SC58175,這些藥物都可能有治療作用和/或充當佐劑。技術人員無需過度進行不當實驗就很容易確定本發明中有用的佐劑和添加劑的數量和濃度。
首選佐劑是抗-CD40、咪喹莫特、瑞喹莫德、GM-CSF、環磷醯胺、舒尼替尼、貝伐單抗、干擾素α、CpG 寡核苷酸及衍生物、多聚(I:C)及衍生物、RNA、西地那非和PLG或病毒顆粒的微粒製劑。
本發明藥物組合物的一個優選實施方案中,佐劑從含集落刺激因數製劑中選擇,如粒細胞巨噬細胞集落刺激因數(GM-CSF,沙格司亭)、環磷醯胺、咪喹莫特、resiquimod 和干擾素-α。
本發明藥物組合物的一個優選實施方案中,佐劑從含集落刺激因數製劑中選擇,如粒細胞巨噬細胞集落刺激因數(GM-CSF,沙格司亭)、環磷醯胺、咪喹莫特和 resimiquimod。在本發明藥物組合物的一個優選實施方案中,佐劑為環磷醯胺、咪喹莫特或 resiquimod。更優選的佐劑是 Montanide IMS 1312、Montanide ISA 206、Montanide ISA 50V、Montanide ISA-51、聚-ICLC (Hiltonol®) 和抗CD40 mAB或其組合物。
此組合藥物為非腸道注射使用,如皮下、皮內、肌肉注射,也可口服。為此,肽和其他選擇性分子在藥用載體中分解或懸浮,優選為水載體。此外,組合物可包含輔料,如:緩衝劑、結合劑、衝擊劑、稀釋劑、香料、潤滑劑等。這些肽也可與免疫刺激物質合用,如:細胞因數。可用於此類組合物的更多輔料可在從 A. Kibbe 所著的 Handbook of Pharmaceutical Excipients (Kibbe, 2000) 等書中獲知。此組合藥物可用於阻止、預防和/或治療腺瘤或癌性疾病。例如,EP2112253 中有示例製劑。
重要的是要認識到,通過本發明的疫苗引發的免疫應答在不同的細胞階段和開發的不同階段攻擊癌症。而且不同的癌症相關信號通路被攻擊。這相對於其他疫苗的優勢,這些疫苗只針對一個或幾個靶標,這可能會導致腫瘤很容易適應於攻擊(腫瘤逃逸)。此外,並非所有的個體腫瘤都表達相同模式的抗原。因此,幾個腫瘤相關肽的組合確保了每個腫瘤都承擔至少一些靶標。該組合物以這樣的方式設計,預期每個腫瘤可表達幾種抗原並覆蓋腫瘤生長和維持所需要的幾種獨立的途徑。因此,疫苗可易於「現成的」用於較大患者群體。這意味著,預選擇接受疫苗治療的患者可限制為 HLA 分型,無需抗原表達的任何額外的生物標誌物評估,但仍然確保多個靶標同時被誘導的免疫應答攻擊,這對於療效很重要 (Banchereau et al., 2001; Walter et al., 2012)。
本文所用的「支架」一詞是指與(如抗原)決定因數特異性結合的分子。在一項實施方案中,支架是能夠引導其所連接的實體(例如,(第二)抗原結合部分) 至目標靶點,例如,至特定類型的腫瘤細胞或承載抗原決定簇的腫瘤基質(如根據目前申請中肽和 MHC 的複合體)。在另一項實施例中,支架能夠通過其靶抗原(例如 T 細胞受體複合體抗原)啟動信號通路。支架包括但不限於抗體及其片段,抗體的抗原結合區,其包含抗體重鏈可變區和抗體輕鏈可變區,結合的蛋白包括至少一個錨蛋白重複序列基元和單域抗原結合 (SDAB) 分子、適體、(可溶)TCR 和(經修飾的)細胞,例如同種異體或自體 T 細胞。為了評估某個分子是否是結合至靶點的支架,可進行結合測定。
「特定」結合系指,與其他天然肽-MHC 複合體相比,該支架與感興趣的肽-MHC複合體更好地結合,結合程度為,擁有能夠殺死承載特定靶點細胞的活性分子的支架不能夠殺死無特定靶點但提呈一個或多個其他肽-MHC複合體的另一細胞。如果交叉反應性肽-MHC 的肽並不是天然的,即,並非來自人 HLA-多肽組,則結合至其他肽-MHC 複合體是無關緊要的。評估靶細胞殺傷的測試在本領域中是公知的。它們應該含有未改變的肽-MHC 提呈的靶細胞(原發細胞或細胞系)或載有肽的細胞進行,以便達到天然肽-MHC 的水準。
各支架可包括一個標記,其通過確定是否存在或不存在標籤所提供的信號可檢測到結合支架。例如,該支架可用螢光染料或任何其他適用的細胞標記分子進行標記。此類標記分子是本領域中公知的。例如,通過螢光染料進行的螢光標記可通過螢光或鐳射掃描顯微術或流式細胞術提供結合適體的視覺化。
各支架可與第二個活性分子(例如 IL-21、抗 CD3、抗 CD28)共軛。
關於多肽支架的進一步資訊,可參閱,例如,在 WO 2014/071978A1 背景技術部分,並作為參考文獻引用。
本發明還涉及適體。適體(例如,參見 WO 2014/191359 及其中引用的文獻)是短的單鏈核酸分子,其可以折疊為所定義的三維結構並識別特定的靶標結構。它們似乎是開發靶向治療的合適替代方法。適體已顯示可選擇性與具有高親和力和特異性的複合體靶標相結合。
識別細胞表面分子的適體在過去十年內已經確定,並為開發診斷和治療方法提供了手段。由於適體已顯示幾乎無毒性和免疫原性,因此,它們是生物醫學應用中有前景的候選物質。事實上適體,例如攝護腺特異性膜抗原識別適體,已被成功地用於靶向治療並在體內模型的異種移植物中顯示出功能。此外,認識到特定腫瘤細胞系的適體也已確定。
可選擇 DNA 適體來揭示各種癌細胞的廣譜識別屬性,特別是那些來自於實體瘤的細胞,而非致瘤和主要健康細胞不被識別。如果所識別的適體不僅識別腫瘤特異性子類型,而且與一系列腫瘤相互作用,這使適體適用于作為所謂的廣譜診斷和治療手段。
此外,用流式細胞儀對細胞結合行為的研究顯示,適體在納摩爾範圍內顯示出很好的親和力。
適體用於診斷和治療目的。此外,也可能顯示,一些適體被腫瘤細胞吸取,因而可作為抗癌劑靶向遞送的分子賦形劑,例如 siRNA 進入腫瘤細胞。
可選擇適體針對複合體的靶標,如細胞和組織以及包含、優選包括根據任何 SEQ ID NO 1 至 SEQ ID NO 228 的一個序列、根據當前發明的肽複合體與 MHC 分子,使用細胞 SELEX(通過指數富集的配體系統進化)技術。
本發明中的肽可用于生成和開發出針對 MHC/肽複合物的特定抗體。這些抗體可用於治療,將毒素或放射性物質靶向病變組織。這些抗體的另一用途是為了成像之目的(如 PET)將放射性核素靶向病變組織。這可有助於檢測小轉移灶或確定病變組織的大小和準確位置。
因此,本發明的另一方面是提出產生特異性結合至與 HLA 限制性抗原絡合的 I 或 II 類人主要組織相容性複合體 (MHC) 的一種重組抗體的方法,該方法包括:用可溶形式的與 HLA 限制性抗原絡合的 (MHC) I 或 II 類分子對包含表達所述主要組織相容性說複合體 (MHC) I 或 II 類的基因工程非人哺乳動物進行免疫;將 mRNA 分子與產生所述非人哺乳動物細胞的抗體分離;產生一個噬菌體顯示庫,顯示由所述 mRNA 分子編碼的蛋白分子;以及將至少一個噬菌體與所述噬菌體顯示庫分離,所述的至少一個噬菌體顯示所述抗體特異性地結合至與 HLA 限制性抗原絡合的所述人主要組織相容性說複合體 (MHC) I 或 II 類。
本發明的另一方面提出一種抗體,其特異性結合至與一種 HLA 限制性抗原絡合的 I 或 II 類人主要組織相容性說複合體 (MHC),其中該抗體優選為多克隆抗體、單克隆抗體、雙特異性抗體和/或嵌合抗體。
產生這種抗體和單鏈 I 類主要組織相容性複合物的相應方法,以及產生這些抗體的其他工具在 WO 03/068201、WO 2004/084798、WO 01/72768、WO 03/070752 以及出版物 (Cohen et al., 2003a; Cohen et al., 2003b; Denkberg et al., 2003) 中進行了披露,為了本發明之目的,所有參考文獻通過引用被完整地併入本文。
優選地,該抗體與複合體的結合親和力低於 20 納摩爾,優選為低於 10 納摩爾,這在本發明情況下也被視為具有「特異性」。
本發明涉及一種肽,包含選自 SEQ ID NO:1 至 SEQ ID NO:228組成的組的一個序列或該序列的與 SEQ ID NO:1 至 SEQ ID NO:228 具有 88% 同源性(優選為相同)的一種變體,或誘導與所述變異肽發生 T 細胞交叉反應的一種變體,其中,所述肽不是基本的全長多肽。
本發明進一步涉及一種肽,包含選自 SEQ ID NO:1 至 SEQ ID NO:228 組成的組的一個序列、或與 SEQ ID NO:1 至 SEQ ID NO:228 具有至少 88% 同源性(優選為相同)的一種變體,其中所述肽或變體的總長度為 8 至 100 個、優選為 8 至 30 個、最優選為 8 至 14 個氨基酸。
本發明進一步涉及本發明的肽,其具有與主要組織相容性複合體 (MHC) I 或 II 類分子結合的能力。
本發明進一步涉及本發明中的肽,其中肽系由或基本系由根據 SEQ ID NO:1 至 SEQ ID NO:228 的一個氨基酸序列組成。
本發明進一步涉及本發明的肽,其中該肽(在化學上)被修飾和/或包含非肽鍵。
本發明進一步涉及本發明的肽,其中該肽為融合蛋白的一部分,特別包括 HLA-DR 抗原相關不變鏈 (Ii ) 的 N-端氨基酸,或其中該肽與一種抗體(例如,樹突狀細胞特定抗體)融合。
本發明進一步涉及一種核酸,其編碼本發明所述肽,前提是該肽並非完整(完全)的人蛋白。
本發明進一步涉及一種本發明的核酸,為 DNA、cDNA、PNA、RNA,也可能為其組合物。
本發明進一步涉及一種能表達本發明核酸的表達載體。
本發明進一步涉及本發明的一種肽、本發明的一種核酸或本發明的一種藥用表達載體,特別是用於治療骨髓瘤。
本發明進一步涉及含本發明核酸或本發明表達載體的一種宿主細胞。
本發明進一步涉及本發明的宿主細胞,其為抗原提呈細胞,優選為樹突細胞。
本發明進一步涉及配製本發明一種肽的一種方法,所述方法包括培養本發明的宿主細胞和從所述宿主細胞或其培養基中分離肽。
本發明進一步涉及本發明中的方法,其中抗原通過與足夠量的含抗原提呈細胞的抗原結合被載入表達於合適抗原提呈細胞表面的 I 或 II 類 MHC 分子。
本發明進一步涉及本發明的方法,其中該抗原提呈細胞包括一個表達載體,該載體有能力表達含 SEQ ID NO:1 至 SEQ ID NO:228 的肽或所述變體氨基酸序列。
本發明進一步涉及以本發明方法製造的啟動 T 細胞,其中所述 T 細胞有選擇性地識別一種細胞,該細胞異常表達含一種本發明氨基酸序列的多肽。
本發明進一步涉及一種殺傷患者靶細胞的方法,其中患者的靶細胞異常表達含本發明任何氨基酸序列的多肽,該方法包括給予患者本發明的有效量 T 細胞。
本發明進一步涉及任何所述肽、本發明的一種核酸、本發明的一種表達載體、本發明的一種細胞、本發明一種作為藥劑或製造藥劑的啟動細胞毒性 T 淋巴細胞的用途。本發明進一步涉及一種本發明的用途,其中藥劑可有效抗癌。
本發明進一步涉及一種本發明的用途,其中該藥劑為一種疫苗。本發明進一步涉及一種本發明的用途,其中藥劑可有效抗癌。
本發明還一般涉及本發明的用途,其中所述癌細胞為骨髓瘤細胞或其他實體或血液腫瘤細胞。
本發明進一步涉及一種基於本發明肽的特定標誌物蛋白和生物標誌物,在此成為「靶標」,其可用於診斷和/或判斷骨髓瘤的預後。本發明還涉及這些供癌症治療使用的新靶點。
本文中術語「抗體」為廣義上的定義,既包括多克隆也包括單克隆抗體。除了完整或「全部」的免疫球蛋白分子,「抗體」這一術語還包括這些免疫球蛋白分子和人源化免疫球蛋白分子的片段(如,CDR、Fv、Fab 和 Fc 片段)或聚合物,只要它們表現出本發明的任何期望屬性(例如,骨髓瘤標誌物(多)肽的特異性結合、將毒素傳遞給癌症標誌物基因表達水準增加時的骨髓瘤細胞和/或抑制骨髓瘤標誌物多肽的活性)。
只要有可能,本發明的抗體可從商業來源購買。本發明的抗體也可能使用已知的方法制得。技術人員會瞭解全長骨髓瘤標誌物多肽或其片段可用于製備本發明的抗體。用於產生本發明抗體的多肽可部分或全部地由天然源經純化而得,也可利用重組 DNA 技術生產。
例如,本發明的編碼肽的 cDNA,例如,該肽為根據 SEQ ID NO:1 至 SEQ ID NO:228 多肽的肽,或其中一個變體或片段,可在原核細胞中(如:細菌)或真核細胞(如:酵母、昆蟲或哺乳動物細胞)中表達,之後,可純化重組蛋白,並用於產生一種特異性結合用於產生本發明抗體的骨髓瘤標誌物多肽的單克隆或多克隆抗體製劑。
本領域的技術人員會認識到,兩種或兩種以上不同集合的單克隆抗體或多克隆抗體能最大限度地增加獲得一種含預期用途所需的特異性和親和力(例如,ELISA 法、免疫組織化學、體內成像、免疫毒素療法)的抗體的可能性。根據抗體的用途,用已知的方法對其期望活性進行測試(例如,ELISA 法、免疫組織化學、免疫治療等;要獲取產生和測試抗體的進一步指導,請參閱,例如,Greenfield, 2014 (Greenfield, 2014))。例如,該抗體可用 ELISA 法或免疫印跡法、免疫組織化學染色福馬林固定的肺癌組織或冰凍的組織切片進行檢測。在初次體外表徵後,用於治療或體內診斷用途的抗體根據已知的臨床測試方法進行檢測。
此處使用的術語「單克隆抗體」系指從大量同質抗體中獲得的一種抗體,即,由相同的抗體組成的抗體群,但可能少量提呈的自然突變除外。此處所述的單克隆抗體具體包括「嵌合」抗體,其中一部分重鏈和/或輕鏈與從特定物種中獲得的抗體或屬於特定抗體類型和分類型抗體的相應序列相同(同質),同時,剩餘鏈與從其他物種中獲得的抗體或屬於特定抗體類型和子類型抗體的相應序列以及這些抗體的片段相同(同質),只要他們表現出預期的拮抗活性(美國 4816567 號專利,其在此以其整體併入)。
本發明的單克隆抗體可能使用雜交瘤方法制得。在雜交瘤方法中,老鼠或其他適當的宿主動物,通常用免疫製劑以引發產生或能產生將特異性結合至免疫製劑的抗體。或者,淋巴細胞可在體外進行免疫。
單克隆抗體也可由 DNA 重組方法制得,如:美國 4816567 號專利所述。編碼本發明單克隆抗體的 DNA 可很容易地使用傳統程序進行分離和測序(例如:通過使用能與編碼鼠抗體重鏈和輕鏈的基因特異性結合的寡核苷酸探針)。
體外方法也適用於製備單價抗體。抗體消化以產生抗體的片段,尤其是 Fab 片段,可以通過使用本領域已知的常規技術完成。例如,可以通過使用木瓜蛋白酶完成消化。木瓜蛋白酶消化的實施例在 WO 94/29348和美國 4342566 號專利中有描述。抗體的木瓜蛋白酶消化通常產生兩種相同的抗原結合性片段,稱為 Fab 片段(每個片段都有一個抗原結合點)和殘餘 Fc 片段。胃蛋白酶處理產生一個 F(ab')2
片段和一個 pFc' 片段。
抗體片段,不論其是否附著於其他序列,均可包括特定區域或特定氨基酸殘基的插入、刪除、替換、或其他選擇性修飾,但前提是,片段的活性與非修飾的抗體或抗體片段相比沒有顯著的改變或損害。這些修飾可提供一些額外的屬性,如:刪除/添加可與二硫鍵結合的氨基酸,以增加其生物壽命、改變其分泌特性等。在任何情況下,抗體片段必須擁有生物活性的特性,如:結合活性、調節結合域的結合力等。抗體的功能性或活性區域可通過蛋白特定區域的基因突變、隨後表達和測試所表達的多肽進行確定。這些方法為本行業技術人員所熟知,可包括編碼抗體片段的核酸的特定位點基因突變。
本發明的抗體可進一步包括人源化抗體或人抗體。非人(如:鼠)抗體的人源化形式為嵌合抗體免疫球蛋白、免疫球蛋白鏈或其片段(如:Fv、Fab、Fab' 或抗體的其他抗原結合序列),其中包含從非人免疫球蛋白中獲得的最小序列。人源化抗體包括人免疫球蛋白(受體抗體),其中來自受體互補決定區 (CDR) 的殘基被來自非人物種(供體抗體)(如具有與其特異性、親和力和能力的小鼠、大鼠或兔子)CDR 的殘基取代。在某些情況下,人類免疫球蛋白的 Fv 框架 (FR) 殘基被相應的非人殘基取代。人源化抗體可能還包括既非受體抗體、也非輸入 CDR 或框架序列中發現的殘基。一般來說,人源化抗體將包括幾乎所有的至少一個、通常為二個可變域,其中,全部或幾乎全部的 CDR 區域均對應於非人免疫球蛋白的區域並且全部或幾乎全部的 FR區域均為人免疫球蛋白相同序列的區域。理想情況是,人源化抗體還將包括至少免疫球蛋白恒定區 (Fc) 的一部分,通常是人免疫球蛋白的恒定區的一部分。
人源化非人抗體的方法為本行業所熟知。一般來說,人源化抗體具有一個或多個從非人源頭引入的氨基酸殘基。這些非人氨基酸殘基往往被稱為「輸入」殘基,通常從「輸入」可變域中獲得。人源化基本上可以通過將齧齒動物 CDR 或 CDR 序列取代為相應的人抗體序列而完成。因此,這種「人源化」抗體為嵌合抗體(美國 4816567 號專利),其中大大少於完整的人可變域被來自於非人物種的相應序列取代。在實踐中,人源化抗體通常為人抗體,其中有些 CDR 殘基以及可能的一些 FR 殘基被來自齧齒動物抗體中的類似位點的殘基取代。
可使用免疫後在內源性免疫球蛋白產生缺失時能產生完整人抗體的轉基因動物(如:小鼠)。例如,它被描述為,嵌合和種系突變小鼠中的抗體重鏈連接區域基因的純合性缺失導致內源性抗體生成的完全抑制。在此種系變種小鼠中人種系免疫球蛋白基因陣列的轉移在抗原挑戰後將導致人抗體的生成。人抗體也可在噬菌體展示庫中產生。
本發明的抗體優選為通過藥用載體的形式給予受試者。通常,在製劑中使用適量的藥用鹽,以使製劑等滲。藥用載體的例子包括生理鹽水、林格氏液和葡萄糖溶液。溶液的 pH 值優選為約 5 至8,更優選為約 7 至7.5。此外,載體還包括緩釋製劑,如:含有抗體的固體疏水性聚合物半透性基質,其中基質為有形物品形式,如:薄膜、脂質體或微粒。本行業的技術人員熟知,某些載體可能為更優選,取決於例如,抗體的給藥途徑和濃度。
該抗體可通過注射(如:靜脈內、腹腔內、皮下、肌肉內)或通過輸注等其他方法給予受試者、患者或細胞,確保其以有效的形式傳輸到血液中。這些抗體也可以通過瘤內或瘤周途徑給予,從而發揮局部和全身的治療作用。局部或靜脈注射為優選。
抗體給藥的有效劑量和時間表可根據經驗確定,並且作出此類決定屬本行業的技術範圍內。本行業的技術人員會明白,必須給予的抗體劑量根據以下因素會有所不同,例如:接受抗體的受試者、給藥途徑、使用的抗體以及其他正在使用的藥物的特定類型。單獨使用的抗體的通常日劑量可能為約 1 µg/kg 至最多 100 mg/kg 體重或更多,這取決於上述因素。給予抗體,優選為治療骨髓瘤後,治療抗體的療效可通過技術人員熟知的不同方法評估。例如:接受治療的受試者肺癌的大小、數量和/或分佈可使用標準腫瘤成像技術進行監測。因治療而給予的抗體與不給予抗體時的病程相比,可阻止腫瘤生長、導致腫瘤縮小、和/或阻止新腫瘤的發展,這樣的抗體是一種有效治療肺癌的抗體。
本發明的另一方面提出了製備識別特異性肽-MHC複合物的可溶性 T 細胞受體 (sTCR) 的一種方法。這種可溶性 T 細胞受體可從特異性 T 細胞克隆中產生,並且它們的親和力可以通過互補決定區靶向誘變而增加。為了 T 細胞受體選擇之目的,可以使用噬菌體展示(美國2010/0113300, (Liddy et al., 2012))。為了在噬菌體展示期間以及實際使用為藥物時穩定 T 細胞受體之目的,可通過非天然二硫鍵、其他共價鍵(單鏈 T 細胞受體)或通過二聚化結構域連接 α 和 β 鏈 (Boulter et al., 2003; Card et al., 2004; Willcox et al., 1999)。T 細胞受體可以連接到毒素、藥物、細胞因數(參見US 2013/0115191)、域招募效應細胞,如抗 CD3 域等,以便對靶細胞執行特定的功能。此外,它可能表達於用於過繼轉移的 T 細胞。進一步的資訊可在 WO 2004/033685A1 和 WO 2004/074322A1 中找到。 sTCR 的組合在 WO 2012/056407A1 中進行了描述。WO 2013/057586A1 中公開了製備的進一步的方法。
此外,可用本發明的肽和/或 TCR 或抗體或其他結合分子在活檢樣本的基礎上驗證病理師對癌症的診斷。
該抗體或 TCR 也可用於體內診斷實驗。一般來說,抗體用放射性核素標記(如:111
In、99
Tc、14
C、131
I、3
H、32
P 或35
S),從而可免疫閃爍掃描法使腫瘤局限化。在一實施方案中,其中的抗體或片段與兩個或兩個以上選自包括上述蛋白的組的蛋白質靶標的細胞外域結合,並且親和力值 (Kd) 低於 1 x 10µM。
診斷用抗體可通過各種影像學方法使用適合檢測的探針進行標記。探針檢測方法包括但不限於,螢光、光、共聚焦和電鏡方法;磁共振成像和光譜學技術;透視、電腦斷層掃描和正電子發射斷層掃描。合適的探針包括但不限於,螢光素、羅丹明、曙紅及其它螢光團、放射性同位素、黃金、釓和其他稀土、順磁鐵、氟-18 和其他正電子發射放射性核素。此外,探針可能是雙功能或多功能的,並且用一種以上的上述方法可進行檢測。這些抗體可用所述的探針直接或間接進行標記。抗體探針的連接,包括探針的共價連接、將探針融合入抗體、以及螯合化合物的共價連接從而結合探針、以及其他本行業熟知的方法。對於免疫組織化學方法,疾病組織樣本可能是新鮮或冷凍或可能包埋於石蠟中以及用福馬林等防腐劑固定。固定或包埋的切片包括與標記一抗和二抗接觸的樣本,其中該抗體用於檢測原位 蛋白的表達。
本發明的另一方面包括一種體外製備啟動的 T 細胞的方法,該方法包括將 T 細胞與載有抗原的人 MHC 分子進行體外連接,這些分子在合適的抗原提呈細胞表面表達足夠的一段時間從而以抗原特異性方式啟動 T 細胞,其中所述抗原為根據本發明所述的一種肽。優選情況是足夠量的抗原與抗原提呈細胞一同使用。
優選情況是,哺乳動物細胞的TAP 肽轉運載體缺乏或水準下降或功能降低。缺乏 TAP 肽轉運載體的適合細胞包括 T2、RMA-S 和果蠅細胞。TAP 是與抗原加工相關的轉運載體。
人體肽載入的缺陷細胞株 T2 從屬美國菌種保藏中心(ATCC, 12301 Parklawn Drive, Rockville, Maryland 20852,美國)目錄號 CRL1992;果蠅細胞株 Schneider 2 號株從屬 ATCC 目錄 CRL 19863;小鼠 RMA-S 細胞株 Ljunggren 等人描述過 (Ljunggren and Karre, 1985)。
優選情況是,宿主細胞在轉染前基本上不表達 MHC I 類分子。刺激因數細胞還優選為表達對 T 細胞共刺激信號起到重要作用的分子,如,B7.1、B7.2、ICAM-1 和 LFA 3 中的任一種分子。大量 MHC I 類分子和共刺激分子的核酸序列可從 GenBank 和 EMBL 資料庫中公開獲得。
當 MHC I 類表位用作一種抗原時,T 細胞為 CD8 陽性 T 細胞。
如果抗原提呈細胞受到轉染而表達這種表位,則優選的細胞包括一個表達載體,該載體有能力表達含 SEQ ID NO:1 至 SEQ ID NO:228 的肽或變體氨基酸序列。
可使用其他一些方法來體外生成 T 細胞。例如,自體腫瘤浸潤性淋巴細胞可用于生成 CTL。Plebanski 等人在 (Plebanski et al., 1995) 使用自體外周血淋巴細胞 (PLB) 制得 T 細胞。另外,也可能用肽或多肽脈衝處理樹突狀細胞或通過與重組病毒感染而製成自體 T 細胞。此外,B 細胞可用於製備自體 T 細胞。此外,用肽或多肽脈衝處理或用重組病毒感染的巨噬細胞可用於配製自體 T 細胞。S. Walter 等人在 (Walter et al., 2003) 中描述了通過使用人工抗原提呈細胞 (aAPC) 體外啟動 T 細胞,這也是生成作用於所選肽的T 細胞的一種合適方法。在本發明中,根據生物素:鏈黴素生物化學方法通過將預製的MHC:肽複合物耦合到聚苯乙烯顆粒(微球)而生成 aAPC。該系統實現了對 aAPC 上的 MHC 密度進行精確調節,這使得可以在血液樣本中選擇地引發高或低親合力的高效抗原特異性 T 細胞反應。除了 MHC:肽複合物外,aAPC 還應攜運含共刺激活性的其他蛋白,如耦合至表面的抗-CD28 抗體。此外,此類基於 aAPC 的系統往往需要加入適當的可溶性因數,例如,諸如白細胞介素 12 的細胞因數。
也可用同種異體細胞制得 T 細胞,在 WO 97/26328 中詳細描述了一種方法,以參考文獻方式併入本文。例如,除了果蠅細胞和 T2 細胞,也可用其他細胞來提呈肽,如 CHO 細胞、杆狀病毒感染的昆蟲細胞、細菌、酵母、牛痘感染的靶細胞。此外,也可使用植物病毒,例如,參閱 Porta 等人 (Porta et al., 1994) 描述了將豇豆花葉病毒開發為一種提呈外來肽的高產系統。
被啟動的 T 細胞直接針對本發明中的肽,有助於治療。因此,本發明的另一方面提出了用本發明前述方法制得的啟動 T 細胞。
按上述方法製成的啟動 T 細胞將會有選擇性地識別異常表達含 SEQ ID NO:1 至 SEQ ID NO 228 氨基酸序列的多肽。
優選情況是,T 細胞通過與其含 HLA/肽複合物的 TCR 相互作用(如,結合)而識別該細胞。T 細胞是殺傷患者靶細胞方法中有用的細胞,其靶細胞異常表達含本發明中氨基酸序列的多肽。此類患者給予有效量的啟動 T 細胞。給予患者的 T 細胞可能源自該患者,並按上述方法啟動(即,它們為自體 T 細胞)。或者,T 細胞不是源自該患者,而是來自另一個人。當然,優選情況是該供體為健康人。發明人使用「健康個人」系指一個人一般狀況良好,優選為免疫系統合格,更優選為無任何可很容易測試或檢測到的疾病。
根據本發明,CD8-陽性 T 細胞的體內靶細胞可為腫瘤細胞(有時表達 MHC-II 類抗原)和/或腫瘤周圍的基質細胞(腫瘤細胞)(有時也表達 MHC-II 類抗原; (Dengjel et al., 2006))。
本發明所述的 T 細胞可用作治療性組合物中的活性成分。因此,本發明也提出了一種殺傷患者靶細胞的方法,其中患者的靶細胞異常表達含本發明中氨基酸序列的多肽,該方法包括給予患者上述有效量的 T 細胞。
發明人所用的「異常表達」的意思還包括,與正常表達水準相比,多肽過量表達,或該基因在源自腫瘤的組織中未表達,但是在該腫瘤中卻表達。「過量表達」系指多肽水準至少為正常組織中的 1.2 倍;優選為至少為正常組織中的 2 倍,更優選為至少 5 或 10 倍。
T 細胞可用本領域已知的方法制得(如,上述方法)。
T 細胞繼轉移方案為本領域所熟知的方案。綜述可發現於:Gattioni et al. 和 Morgan et al. (Gattinoni et al., 2006; Morgan et al., 2006)。
本發明的另一個方面包括使用與 MHC 複合的肽,以生成 T 細胞受體,其核酸被克隆並被引入至宿主細胞,優選為 T 細胞。然後,該通過基因工程改變的 T 細胞可轉給患者用於癌症治療。
本發明的任一分子(即肽、核酸、抗體、表達載體、細胞,啟動 T 細胞、T 細胞受體或編碼核酸)都有益於治療疾病,其特點在於細胞逃避免疫反應的打擊。因此,本發明的任一分子都可用作藥劑或用於製造藥劑。這種分子可單獨使用也可與本發明中的其他分子或已知分子聯合使用。
本發明還涉及一種套件,其包括: (a) 一個容器,包含上述溶液或凍乾粉形式的藥物組合物; (b) 可選的第二個容器,其含有凍乾粉劑型的稀釋劑或重組溶液;和 (c) 可選的(i)溶液使用或(ii)重組和/或凍乾製劑使用的說明。
該套件還步包括一個或多個 (iii) 緩衝劑,(iv) 稀釋劑,(v) 過濾液,(vi) 針,或 (v) 注射器。容器最好是瓶子、小瓶、注射器或試管,可以為多用途容器。藥物組合物最好是凍乾的。
本發明中的套件優選包含一種置於合適容器中的凍乾製劑以及重組和/或使用說明。適當的容器包括,例如瓶子、西林瓶 (如雙室瓶)、注射器 (如雙室注射器) 和試管。該容器可能由多種材料製成,如玻璃或塑膠。試劑盒和/或容器最好有容器或關於容器的說明書,指明重組和/或使用的方向。例如,標籤可能表明凍乾劑型將重組為上述肽濃度。該標籤可進一步表明製劑用於皮下注射。
存放製劑的容器可使用多用途西林瓶,使得可重複給予(例如,2-6 次)重組劑型。該套件可進一步包括裝有合適稀釋劑(如碳酸氫鈉溶液)的第二個容器。
稀釋液和凍乾製劑混合後,重組製劑中的肽終濃度優選為至少 0.15 mg/mL/肽 (=75µg),不超過 3 mg/mL/肽 (=1500µg)。該套件還可包括商業和用戶角度來說可取的其他材料,包括其他緩衝劑、稀釋劑,過濾液、針頭、注射器和帶有使用說明書的包裝插頁。
本發明中的套件可能有一個單獨的容器,其中包含本發明所述的藥物組合物製劑,該製劑可有其他成分(例如,其他化合物或及其藥物組合物),也可無其他成分,或者每種成分都有其不同容器。
優選情況是,本發明的套件包括與本發明的一種製劑,包裝後與第二種化合物(如佐劑(例如 GM-CSF)、化療藥物、天然產品、激素或拮抗劑、抗血管生成劑或抑制劑、凋亡誘導劑或螯合劑)或其藥物組合物聯合使用。該套件的成分可進行預絡合或每種成分在給予患者之前可放置於單獨的不同容器。該套件的成分可以是一種或多種溶液,優選為水溶液,更優選為無菌水溶液。該套件的成分也可為固體形式,加入合適的溶劑後轉換為液體,最好放置於另一個不同的容器中。
治療套件的容器可能為西林瓶、試管、燒瓶、瓶子、注射器、或任何其他盛裝固體或液體的工具。通常,當成分不只一種時,套件將包含第二個西林瓶或其他容器,使之可以單獨定量。該套件還可能包含另一個裝載藥用液體的容器。優選情況是,治療套件將包含一個設備(如,一個或多個針頭、注射器、滴眼器、吸液管等),使得可注射本發明的藥物(本套件的組合物)。
本發明的藥物配方適合以任何可接受的途徑進行肽給藥,如口服(腸道)、鼻內、眼內、皮下、皮內、肌內,靜脈或經皮給藥。優選為皮下給藥,最優選為皮內給藥,也可通過輸液泵給藥。
由於本發明的肽從骨髓瘤中分離而得,因此,本發明的藥劑優選用於治療骨髓瘤。
本發明進一步涉及為個體患者製備個體化藥物的一種方法,其中包括:製造含選自預篩選 TUMAP 存儲庫至少一種肽的藥物組合物,其中藥物組合物中所用的至少一種肽選擇為適合於個體患者。在一項實施方案中,藥物組合物為一種疫苗。該方法也可以改動以產生下游應用的 T 細胞克隆物,如:TCR 隔離物或可溶性抗體和其他治療選擇。
「個體化藥物」系指專門針對個體患者的治療,將僅用於該等個體患者,包括個體化活性癌症疫苗以及使用自體組織的過繼細胞療法。
如本文所述,「存儲庫」應指已經接受免疫原性預篩查和/或在特定腫瘤類型中過量提呈的一組或一系列肽。「存儲庫」一詞並不暗示,疫苗中包括的特定肽已預先製造並儲存於物理設備中,雖然預期有這種可能性。明確預期所述肽可以用於新製造每種個體化疫苗,也可能被預先製造和儲存。存儲庫(例如,資料庫形式)由腫瘤相關肽組成,其在各種 HLA-A HLA-B 和 HLA-C 等位元基因患者的骨髓瘤細胞中高度過度表達。其可能含有包括 MHC I 類和 MHC II 類肽或拉長的 MHC I 類肽。除了從幾種骨髓瘤中採集的腫瘤相關肽外,存儲庫還可能包含 HLA-A*02 和 HLA-A*24 標記肽。這些肽可對 TUMAP 誘導的 T 細胞免疫進行量化比較,從而可得出疫苗抗腫瘤反應能力的重要結論。其次,在沒有觀察到來自患者「自身」抗原 TUMAP 的任何疫苗誘導的 T 細胞反應時,它們可作為來自「非自身」抗原的重要陽性對照肽。第三,它還可對患者的免疫功能狀態得出結論。
存儲庫的 TUMAP 通過使用一種功能基因組學方法進行鑒定,該方法結合了基因表達分析、質譜法和 T 細胞免疫學 (XPresident ®)。該方法確保了只選擇真實存在于高百分比腫瘤但在正常組織中不表達或僅很少量表達的 TUMAP 用於進一步分析。對於初始肽的選擇,來自患者的骨髓瘤樣本和健康供體的血液以循序漸進的方法進行分析: 1. 惡性材料的 HLA 配體用質譜法確定 2. 使用全基因組信使核糖核酸 (mRNA) 表達分析法用於確定骨髓瘤與一系列正常器官和組織相比過度表達的基因。 3. 確定的 HLA 配體與基因表達資料進行比較。腫瘤組織上過度提呈或選擇性提呈的肽,優選為第 2 步中檢測到的選擇性表達或過量表達基因所編碼的考慮為多肽疫苗的合適候選 TUMAP。 4. 文獻檢索以確定更多證據以支持確認為 TUMP 的肽的相關性 5. 過度表達在 mRNA 水準的相關性由腫瘤組織第 3 步選定的 TUMAP 重新檢測而確定,並且在健康組織上缺乏(或不經常)檢測。 6. 為了評估通過選定的肽誘導體內 T 細胞反應是否可行,使用健康供體以及骨髓瘤患者的人 T 細胞進行體外免疫原性測定。
一方面,在將所述肽加入存儲庫之前,對其進行篩查以瞭解免疫原性。舉例來說(但不限於此),納入存儲庫的肽的免疫原性的確定方法包括體外 T 細胞啟動,具體為:用裝載肽/MHC 複合物和抗 CD28 抗體的人工抗原提呈細胞反復刺激來自健康供體的 CD8+ T 細胞。
這種方法優選用於罕見癌症以及有罕見表達譜的患者。與含目前開發為固定組分的多肽雞尾酒相反的是,存儲庫可將腫瘤中抗原的實際表達於疫苗進行更高程度的匹配。在多目標方法中,每名患者將使用幾種「現成」肽的選定單一肽或組合。理論上來說,基於從 50 抗原肽庫中選擇例如 5 種不同抗原肽的一種方法可提供大約 170萬 種可能的藥物產品 (DP) 組分。
在一方面,選擇所述肽用於疫苗,其基於個體患者的適合性,並使用本發明此處或後文所述的方法。
HLA 表型、轉錄和肽組學資料從患者的腫瘤材料和血液樣本中收集,以確定最合適每名患者且含有「存儲庫」和患者獨特(即突變)TUMAP 的肽。將選擇的那些肽選擇性地或過度表達于患者腫瘤中,並且可能的情況下,如果用患者個體 PBMC 進行檢測,則表現出很強的體外免疫原性。
優選的情況是,疫苗所包括的肽的一種確定方法包括:(a) 識別由來自個體患者腫瘤樣本提呈的腫瘤相關肽 (TUMAP);(b) 將 (a) 中鑒定的肽與上述肽的存儲庫(資料庫)進行比對;且 (c) 從與患者中確定的腫瘤相關肽相關的存儲庫(資料庫)中選擇至少一種肽。例如,腫瘤樣本提呈的 TUMAP 的鑒定方法有:(a1) 將來自腫瘤樣本的表達資料與所述腫瘤樣本組織類型相對應的正常組織樣本的表達資料相比對,以識別腫瘤組織中過量表達或異常表達的蛋白;以及 (a2) 將表達資料與結合到腫瘤樣本中 I 類 MHC 和/或 II 類分子的 MHC 配體序列想關聯,以確定來源於腫瘤過量表達或異常表達的蛋白質的 MHC 配體。優選情況是,MHC 配體的序列的確定方法是:洗脫來自腫瘤樣本分離的 MHC 分子結合肽,並測序洗脫配體。優選情況是,腫瘤樣本和正常組織從同一患者獲得。
除了使用存儲庫(資料庫)模型選擇肽以外,或作為一種替代方法,TUMAP 可能在新患者中進行鑒定,然後列入疫苗中。作為一種實施例,患者中的候選 TUMAP 可通過以下方法進行鑒定:(a1) 將來自腫瘤樣本的表達資料與所述腫瘤樣本組織類型相對應的正常組織樣本的表達資料相比對,以識別腫瘤組織中過量表達或異常表達的蛋白;以及 (a2) 將表達資料與結合到腫瘤樣本中 I 類 MHC 和/或 II 類分子的 MHC 配體序列想關聯,以確定來源於腫瘤過量表達或異常表達的蛋白質的 MHC 配體。作為另一實施例,蛋白的鑒定方法為可包含突變,其對於腫瘤樣本相對于個體患者的相應正常組織是獨特的,並且 TUMAP 可通過特異性靶向作用於變異來鑒定。例如,腫瘤以及相應正常組織的基因組可通過全基因組測序方法進行測序:為了發現基因蛋白質編碼區域的非同義突變,從腫瘤組織中萃取基因組 DNA 和 RNA,從外周血單核細胞 (PBMC) 中提取正常非突變基因組種系 DNA。運用的 NGS 方法只限于蛋白編碼區的重測序(外顯子組重測序)。為了這一目的,使用供應商提供的靶序列富集試劑盒來捕獲來自人樣本的外顯子 DNA,隨後使用 HiSeq2000(Illumina公司)進行測序。此外,對腫瘤的 mRNA 進行測序,以直接定量基因表達,並確認突變基因在患者腫瘤中表達。得到的數以百萬計的序列讀數通過軟體演算法處理。輸出列表中包含突變和基因表達。腫瘤特異性體突變通過與 PBMC 衍生的種系變化比較來確定,並進行優化。然後,為了存儲庫可能測試新確定的肽瞭解如上所述的免疫原性,並且選擇具有合適免疫原性的候選 TUMAP 用於疫苗。
在一個示範實施方案中,疫苗中所含肽通過以下方法確定:(a) 用上述方法識別由來自個體患者腫瘤樣本提呈的腫瘤相關肽 (TUMAP);(b) 將 (a) 中鑒定的肽與進行腫瘤(與相應的正常組織相比)免疫原性和過量提呈預篩查肽的存儲庫進行比對;(c) 從與患者中確定的腫瘤相關肽相關的存儲庫中選擇至少一種肽;及 (d) 可選地在 (a) 中選擇至少一種新確定的肽,確認其免疫原性。
在一個示範實施方案中,疫苗中所含肽通過以下方法確定:(a) 識別由來自個體患者腫瘤樣本提呈的腫瘤相關肽 (TUMAP);以及 (b) 在 (a) 中選擇至少一種新確定的肽,並確認其免疫原性。
一旦選定了用於個體化肽疫苗的肽時,則產生疫苗。該疫苗優選為一種液體製劑,包括溶解於 20-40% DMSO 之間,優選為約 30-35% DMSO,例如,約 33% DMSO 中的個體肽。
列入產品的每種肽都溶於 DMSO 中。單個肽溶液濃度的選擇取決於要列入產品中的肽的數量。單肽-DMSO 溶液均等混合,以實現一種溶液中包含所有的肽,且濃度為每肽~2.5 mg/ml。然後該混合溶液按照1:3比例用注射用水進行稀釋,以達到在 33% DMSO 中每肽 0.826 mg/ml 的濃度。稀釋的溶液通過 0.22 μm 無菌篩檢程序進行過濾。從而獲得最終本體溶液。
最終本體溶液填充到小瓶中,在使用前儲存於-20℃下。一個小瓶包含 700 μL 溶液,其中每種肽含有 0.578 mg。其中的 500 μL(每種肽約 400 μg)將用於皮內注射。
本發明的肽除了用於治療癌症,也可用於診斷。由於肽由骨髓瘤細胞產生,並且已確定這些肽在正常組織中不存在或水準較低,因此這些肽可用於診斷癌症是否存在。
血液樣本中組織活檢物含權利要求的肽,可有助於病理師診斷癌症。用抗體、質譜或其他本領域內已知的方法檢測某些肽可使病理師判斷該組織樣本為惡性的還是炎症或一般病變,也可用作骨髓瘤的生物標誌物。肽基團的提呈使得能對病變組織進行分類或進一步分成子類。
對病變標本中肽的檢測使得能對免疫系統治療方法的利益進行判斷,特別是如果 T- 淋巴細胞已知或預計與作用機制有關。MHC 表達的缺失是一種機制,充分說明了哪些受感染的惡性細胞逃避了免疫監視。因此,肽的提呈表明,分析過的細胞並沒有利用這種機制。
本發明的肽可用於分析淋巴細胞對肽的反應(如 T 細胞反應),或抗體對肽或 MHC 分子絡合的肽發生的反應。這些淋巴細胞反應可以作為預後指標,決定是否採取進一步的治療。這些反應也可以用作免疫療法中的替代反應指標,旨在以不同方式誘導淋巴細胞反應,如接種蛋白疫苗、核酸、自體材料、淋巴細胞過繼轉移。基因治療中,淋巴細胞對肽發生的反應可以在副作用的評估中考慮。淋巴細胞反應監測也可能成為移植療法隨訪檢查中的一種有價值的工具,如,用於檢測移植物抗宿主和宿主抗移植物疾病。
由於靶細胞上 HLA 表達喪失或下調可能嚴重影響基於 T 細胞免疫療法的有效性,因此,發明人量化了原發性骨髓瘤細胞上相較於 HV 骨髓衍生的自體造血細胞和漿細胞的 HLA I 類和 II 類表面分子計數。在 MM 患者 (n = 20) 中,發現 HLA I 類分子的表達與 CD38+ CD138+ 骨髓瘤細胞平均表達水準 416,000±54,500 相同,與自體正常 CD19+
CD20+
B 細胞 (198,5000 ± 20,500, P = 0.001)、CD3+
T 細胞 (167,500 ± 15,500, P = 0.0002) 和 CD34+
CD38-
HPC (204,000 ± 32,500, P = 0.002, 圖 1A) 相比顯著較高。另外,原發性 MM 細胞上的 HLA I 類分子表達也被發現顯著高於 HV 的 CD38+
CD138+
漿細胞上的表達(n = 15, 291,500 ± 25,500, P < 0.05;圖 1C)。MM 患者的正常 B 細胞、T 細胞和 HPC 與 HV 相應細胞群相比時,HLA I 類分子表達未見顯著差異(補充圖 1B)。骨髓瘤細胞上的 HLA-DR 表達水準通常發現比 HLA I 類水準低得多。骨髓瘤細胞上的平均 HLA-DR 表面分子計數 (27,000 ± 7,000) 顯示,相比於自體 HPC (35,000±5,000) 和 T 細胞 (18,000±13,000) 或 HV 漿細胞 (39,500±5,000)(圖1 B 和 D)無顯著差異。MM 患者 CD19+
CD20+
B 細胞的 HLA-DR 表達 (104,000 ± 7,000) 相比於骨髓瘤細胞顯著較高 (P < 0.0001)。骨髓瘤細胞上的 HLA 表面表達與患者特徵,例如性別、年齡、疾病階段、風險分級或之前的治療沒有相關性。
發明人對 10 名骨髓瘤患者和 5 例 MCL 的 HLA I 類配體組基因圖譜進行了確定,從而識別代表 7,574 個源蛋白的共 17,583 個不同肽,達到 > 80% 的最大可達到覆蓋範圍(圖 2A)。原發性骨髓瘤樣本的獨特肽身份的平均數為 1,059 ID,MCL 為 2,243 ID。總體而言,本研究中確定了受限於 20 個不同 HLA-A 和-B 等位基因的肽,覆蓋了 99.3% 的白人人群(根據 [52] 計算)。
作為對照,發明人分析了 45 例 HV 衍生的 HLA I 類配體組樣本,其來源於代表 7,729 個源蛋白的共 20,171 個不同肽的樣本(30 個 PBMC、10 個 BMNC 和 5 個粒細胞樣本)。HV 組中的 HLA 等位基因的分佈涵蓋了 MM 樣本組中 >80% HLA‑A 和 –B 等位基因 [53]。對 7 名 MM 患者和 5 例 MCL 進行了 HLA II 類配體組分析。識別了代表 1,743 源蛋白的共 6,076 個獨特肽。HLA II 類 HV 組(13 個 PBMC、5 個 BMNC、5 個粒細胞樣本)產生了 2,899 個不同的肽,代表 889 個源蛋白。
為了確定骨髓瘤相關抗原,發明人在源蛋白水準上比較分析了 MM 樣本和 HV 組的 HLA 配體組。HLA 配體源蛋白的重疊分析確定,2,412 個蛋白(對應於 31.8% 的映射 MM HLA 源蛋白質組)專門在 MM 樣本的 HLA 配體組中提呈。在這些 MM 獨特來源的蛋白質中,68.3% 為在 MCL 樣本上唯一確定的,而 13.2% 的蛋白質被發現在 MCL 和原發性 MM 樣本上均提呈。18.5% 的骨髓瘤獨特來源蛋白被發現僅限於原發性 MM 樣本中(圖 2B)。為了確定廣泛提呈的腫瘤相關抗原,骨髓瘤獨特來源蛋白根據它們在 MM 樣本佇列中的出現頻率進行排序(圖 2C)。為了從統計學評估和優化抗原識別的嚴格性,發明人模擬矽片隨機虛擬配體組,並以出現不同頻率計算假陽性 TAA 的生成數(圖2D)。發明人設定 HLA I 類腫瘤相關抗原 (“TAA”) 定義的頻率閾值為骨髓瘤獨特抗原提呈 > 25% ,產生 58 個 TAA,估算假發現率 (FDR) 為 4.1%。這種一系列新穎的頻繁提呈骨髓瘤相關抗原由197 個獨特 HLA I 類配體表示,並且構成所述映射骨髓瘤 HLA 配體源蛋白質組的 0.8%。這些抗原生物功能相關的 KEGG 途徑分析 [54] 和功能性注釋聚類分析(GO 術語 BP FAT,[55])沒有發現任何統計學顯著的過度提呈途徑或功能群。值得注意的是,原癌基因 MMSET 被確定為在 33% MM 患者配體組中出現的 TAA,並發現由 3 種不同的 HLA 配體(ASNPSNPRPSK (HLA-A*30:01) (SEQ ID NO. 17), KAMEAASSL (A*02:01) (SEQ ID NO. 82), SLLEQGLVEA (A*02:01) (SEQ ID NO. 177))表示。此外,MMSET 在有致癌易位 t 的兩個MM 患者中均檢測到 (4;14),但僅在 1/6 (17% ) 的無這種偏差的患者中檢測到。
HLA-I 類配體組中確定的骨髓瘤相關抗原的表示:
根據發明人廣泛的 HLA 配體組資料集,發明人研究了不同樣本組群內確定的骨髓瘤相關抗原的提呈。發明人確定了代表 22/25 (88%) 前述骨髓瘤抗原的 73 種不同的 HLA 配體 [42]。發明人發現 22 種可檢測的抗原中有 9 種 (41%) 獨特提呈於 MM 樣本上、10/22 (45.5%) 的抗原均出現於 MM 和 HV 樣本中,3/22 (13.6%) 獨特提呈於 HV 衍生樣本(圖 3A)。值得注意的是,7/9 (77.8%) 的 MM 獨特抗原只 MCL 上檢測到。只有 2/9 (22.2%) 的這些 MM 獨特抗原,HLA 配體在原發性 MM 患者樣本上檢測到(圖 3B)。作為參考,只有 7/58 (12.1%) 的新定義骨髓瘤抗原顯示僅在 MCL 上提呈,而大部分51/58 (87.9%) 抗原也在原發性 MM 患者樣本上提呈,這突顯了其作為臨床靶抗原的可能性(圖 3C)。
此外,HLA 配體組中源蛋白提呈的無監督聚集性顯示了 MCL 簇與原發性 MM 樣本高度不同(補充圖 2)。
HLA II 類配體組分析確定了潛在的協同候選疫苗:
由於確定 CD4+
T 細胞直接參與腫瘤控制[56],發明人進一步的目的是確定 HLA II 類抗原。HLA II 類配體源蛋白的重疊分析確定了 1135 種骨髓瘤獨特抗原(圖 4A)。HLA II 類配體組的比較分析確定了 67 種 HLA II 類表示的單個抗原 (TFRC),表明在 FDR <5% 時的 MM 獨特提呈(圖4B,C)。透過 IFNγ 酶聯免疫斑點法分析的最豐富 TFRC 肽 (NSVIIVDKNGRLV) (序列 ID 號237) 的功能特性顯示,在 2/5 的 MM 患者中有記憶 T 細胞應答。
由於 CD4+
T 細胞在誘導和維持抗原特異性 CD8+
T 細胞應答中發揮關鍵作用 [57-59],發明人實施了第二方法來識別從 HLA I 類 TAA 衍生的潛在協同 HLA II 類限制肽。有 1135 種 HLA II 提呈的 MM 專屬蛋白的 58 種HLA I 類抗原的重疊分析確定,存在 31 種肽表示的 6 種跨類抗原(圖 4D,E;補充表 5)。協同 HLA II 類配位元體的功能性特徵分析顯示,在骨髓瘤患者中,3/5 所測試的肽有肽特異性 T 細胞應答(圖 4E)。
MM 樣本的 HLA I 類和 II 類配體組的總體比較發現,80% (1622) 的 HLA II 類提呈蛋白質也提呈於 HLA-I 類上(圖 4F)。在每種 HLA 類中 500 種最常提呈的蛋白質中進行了功能性注釋集群分析(使用DAVID 進行的 GO 期限 CC 集群分析 [55]),以確定從這些蛋白質中衍生的細胞室。I 類上提呈的抗原顯示了高度富集的核蛋白以及核糖體、細胞骨架和囊泡衍生蛋白簇。值得注意的是,這種模式在兩類 HLA 上提呈的蛋白簇分析中進行了概括,雖然排名較高且富集了幾乎 3 倍以上的囊泡衍生蛋白。 HLA II 類提呈抗原顯示對質膜、囊泡衍生和溶酶體蛋白的中等富集(補充表 6)。
在骨髓瘤患者中透過自發性 T 細胞應答靶向作用於 HLA I 類 TAA :
在 11 種 HLA-A*02 和 2 種 HLA-B*07 限制肽(包括 2 種從 MMSET 衍生的 HLA-A 配體)中進行了新型骨髓瘤抗原的功能特性分析(圖 5A)。骨髓瘤相關肽使用獲得自 MM 患者和 HV 的 PBMC,應用 12 日回憶 IFNγ ELISPOT 分析進行了評價。如圖 5C 中所示示例,發明人觀察到骨髓瘤患者中5/11 的 A*02 配體和 1/2 的 B*07 配體有 IFNγ 分泌。MMSET 衍生的兩種肽(P1
和 P2
)分別顯示 2/16 (13%) 和 1/8 (13%) 的 MM 患者中有特定的 T 細胞識別。重要的是,在 10 種 HLA 匹配的健康對照人群中未察到骨髓瘤肽特異性 IFNγ 分泌(圖 5B)。值得注意的是,T 細胞應答僅在原發性骨髓瘤樣本上發現的骨髓瘤相關肽 (10/13) 中觀察到,在僅僅 MCL 上識別的 3/13 肽中從未觀察到。透過 ELISPOT 在 MM 患者中檢測到的肽特異性 T 細胞應答的頻率與 MM 患者同種異型匹配型配體組中的各種肽的提呈頻率範圍大體相同(圖 5A)。由於可用於分析的細胞數量限制,不能使用表達相應抗原的靶細胞進行進一步的控制。因此,發明人不能排除 T 細胞反應性是針對包含在合成肽批次的雜質。事實上,眾所周知,合成肽含有雜質,例如,保護基修飾的肽,這些雜質具有免疫原性。但是,源自當前研究所有 ELISPOT 中使用的良性組織(HV 獨特 HLA 配體)的 HLA-A*02 和 -B*07 限制控制肽從不導致明顯的 IFNγ 釋放(圖 5C)。
抗原特異性 T 細胞可在體外從 MM 患者或 HV 的幼稚 T 細胞誘導:
為了評估骨髓瘤抗原特異性 T 細胞應答是否可以在體外從幼稚 T 細胞誘導,發明人從一名健康個體和一名 MM 患者中分離了 CD8+
T 細胞。發明人使用了 MMSET 衍生肽 SLLEQGLVEA (SEQ ID NO. 177) (P2
) 進行了 aAPC 啟動。在體外啟動後,使用 HV 衍生 CD8+
T 細胞檢測到了 0.403% 的 P2
-四聚體陽性 CD8+
T 細胞群。體外未檢測到四聚體陽性 T 細胞群 > 0.1%。在啟動無之前 P2
的 T 細胞反應性 (由 12 天回憶 IFNγ-ELISPOT 和體外四聚體染色檢測)的 MM 患者的 T 細胞之後,發明人檢測到了少量 0.236% P2
-四聚體陽性 CD8+
T 細胞群(圖 5E)。重要的是,在與相關染色使用相同的孔衍生的細胞上使用包含非相關 A*02 對照肽的A*02 四聚體進行了對照染色,沒有產生任何特定的四聚體陽性 T 細胞群(圖 5D)。
骨髓瘤患者和健康志願者骨髓中不同細胞群上的 HLA 表面表達定量分析表明,惡性漿細胞上的 HLA-損失或下調無關緊要,即便是先前接受治療的患者。這些細胞群 HLA 配體組的比較分析顯示了不同抗原特徵,並確定了一系列骨髓瘤相關抗原。
重要的是,大部分已知多發性骨髓瘤抗原被發現僅偶爾提呈于原發性骨髓瘤上或並顯示出次優程度的骨髓瘤特異性。值得注意的是,大多數這些抗原在骨髓瘤細胞系中被選擇性檢測到,但在原發性樣本中檢測不到,表明病理生理學相關抗原的選擇應基於原發腫瘤樣本的分析。
一個值得注意的例外情況是確定的骨髓瘤相關蛋白 MMSET,目前作為預後不良 t(4;14) 骨髓瘤患者治療的靶標進行研究 [73-76]。雖然 MMSET 衍生肽經常在 t(4;14) 骨髓瘤樣本上發現到,發明人也在一例 t(4;14) 陰性患者的HLA 配體組和一例 t(4;14) 陰性 MCL (U266) 的中檢測到了 MMSET 肽。引人注目的是,透過 ELISPOT 進行的功能性特徵分析顯示,在骨髓瘤患者中存在專門靶向作用於這些 MMSET 衍生表位的記憶 T 細胞應答,而在 HV 中不存在。這表明 MM 患者的體內抗 MMSET T 細胞應答呈骨髓瘤依賴性啟動,這強調該抗原的病理生理相關性。與 HLA 配體組學資料一致,發明人發現這些 T 細胞應答不限於 t(4;14) 骨髓瘤患者。體外啟動結果表明,MMSET 特異性 CD8+
T 細胞應答可從幼稚 T 細胞誘導(不但在健康個體中,重要的是,也在骨髓瘤患者中),雖然數量有限。鑑於當前策略專注於使用小分子或 siRNA 抑制 MMSET 的[77,78],發明人對骨髓瘤獨特性 MMSET 衍生 T 細胞表位的鑒定為透過基於 T 細胞免疫治療靶向作用 MMSET 提供了新的選擇。值得注意的是,這種治療策略不一定限於 t(4;14) 骨髓瘤,因為發明人觀察到了 MMSET 提呈以及與突變狀態無關的免疫識別。這可由基因表達和 HLA 限制抗原提呈相關性失真以及骨髓瘤細胞中 t(4;14) 的亞克隆分佈和病程中發生的基因組可塑性進行解釋 [72,79]。
發明人的發現綜合說明 HLA 配體組學引導的抗原識別如何可查明新穎 MM 相關 T 細胞表位,並可直接評估患者群的抗原分佈模式。與發明人的 MMSET 發現一起,本發明人的研究提供了以前與骨髓瘤或癌症不相關的廣泛新抗原。類似於 MMSET,發明人檢測到針對骨髓瘤患者大部分這些靶標的預先存在的 T 細胞應答,提示有關 MM 相關抗原具有高度富集性。總之,發明人以配體組為中心的研究可能指引多發性骨髓瘤未來抗原特異性 T 細胞免疫治療的設計。
下列描述優選方案的實施例將對本發明進行說明,並參照隨附圖表(但是不僅限於此)。考慮到本發明的目的,文中引用的所有參考文獻通過引用的方式併入在本文中。
實施例:材料與方法
患者的血液和骨髓樣本:
診斷時或復發治療前來自于 MM 患者的骨髓單核細胞 (BMNC) 和外周血單核細胞 (PBMC) 以及健康志願者 (HV) 的PBMC、BMNC 和粒細胞,通過密度梯度離心法 (Biocoll, Biochrom GmbH) 和紅細胞裂解法(EL 緩衝液,Qiagen)進行分離。根據赫爾辛基協定獲得了知情同意。 研究根據本地倫理委員會指導原則實施 (142/2013BO2)。患者特徵見表 1。HLA 分型由德國蒂賓根大學血液學和腫瘤學系進行。
骨髓瘤細胞系 (MCL) :
為了進行 HLA配體組分析,骨髓瘤細胞系 (MCL: U266, RPMI8226, JJN3, LP-1, MM.1S) 在推薦的細胞培養基 (RPMI1640, Gibco / IMDM, Lonza) 中進行培養,在 37℃和5% CO2
下補充 10%/20% 胎牛血清、100 IU/L青黴素、100mg/L 鏈黴素和 2 mmol/L穀氨醯胺。MCL RPMI8226、JJN3、MM.1S 和 LP-1 獲得自蒂賓根大學血液學和腫瘤學系。
HLA 表面表達的量化:
根據前述的製造商說明,使用基於 QIFIKIT 微珠的定量流式細胞測定法 (Dako) 對 MM 患者和 HV 骨髓細胞上的 HLA 表面表達進行了分析,包括 CD38+
CD138+
骨髓細胞/漿細胞、CD19+
CD20+
B 細胞、CD3+
T 細胞和 CD34+
CD38-
造血祖細胞 (HPC) [12]。簡言之,樣本分別用泛 HLA I 類特異性單克隆抗體 (mAb) W6/32、HLA-DR 特異性 mAb L243(由內部製備)或 IgG 同種型對照物 (BioLegend) 進行染色。表面標記物用直接標記的 CD138、抗κ、抗λ、CD19、CD20 (Biolegend) 和CD38、CD3和CD34 (BD) 抗體進行染色。7-AAD (BioLegend) 添加為活力標誌物,之後緊接著在 LSR Fortessa (BD) 上進行流式細胞儀分析。
來自原發樣本和 MCL 的 HLA 配體分離:
HLA I 和 II 類分子採用所述的標準免疫親和純化方法分離[44] 應用泛HLA I 類特異性 mAb W6/32、泛HLA II 類特異性 mAb Tü39 和HLA-DR特異性 mAB L243(內部製造)進行分析。
透過 LC-MS/MS 分析 HLA 配體:
如前所述,HLA 配體提取物在5 次技術複製中進行了分析[13]。簡言之,肽樣本採用納流 HPLC (RSLCnano, ThermoFisher) 透過使用50μm×25cm PepMap RSLC 柱 (Thermo Fisher) 和梯度為2.4至32.0% 乙腈在 90 分鐘內進行分離。洗脫肽採用線上耦合 LTQ Orbitrap XL 質譜儀 (Thermo Fisher) 使用前 5 種 CID(碰撞誘導解離)斷裂方法進行了分析。
資料庫搜索和光譜注釋:
資料處理如前所述[13]。簡言之,使用 Mascot 搜索引擎 (Mascot 2.2.04; Matrix Science, London, UK) 在 Swiss-Prot 資料庫中搜素人類蛋白質組 (2013年9月,包含20,279 個已審查的蛋白質序列),無酶限制。潛在突變 HLA配體搜索在含有與 COSMIC 資料庫 (http://cancer.sanger.ac.uk/cosmic/) 列出的含有單一氨基酸變體 (SAV) 的蛋白連接在一起的人類蛋白質組資料庫進行。其中包括僅來源於血液的 2 或更多樣本中所述的重複出現的SAV。氧化蛋氨酸允許做動態修改。假發現率使用過濾演算法 [45] 進行估算,並設定為 5%。對於 HLA I類,肽長度被限制在 8-12 個氨基酸,對於 HLA II 類限制在 12-25 個氨基酸。蛋白質推斷被禁用,允許肽的多種蛋白注解。使用 SYFPEITHI [46] 或擴展的內部資料庫進行 HLA 注釋。肽鑒定和 HLA 注解的實驗驗證透過對子集的肽中合成肽的質譜和功能特性分析進行。
肽和 HLA 肽單體合成:
使用 9-芴甲基氧基羰基/叔丁基 (Fmoc/tBu) 策略利用自動肽合成器 EPS221 (Abimed) 來合成肽 [47]。合成肽用於驗證 LC-MS/MS鑒定以及功能實驗。如前所述 [48] 產生生物素化重組 HLA 分子和螢光 MHC-肽-四聚體。
肽特異性 T 細胞的擴增:
來自 MM 患者和 HV 的 PBMC 如前所述進行培養 [12, 13]。簡言之,對於 CD8+
T 細胞刺激,將 PBMC 在第 0 和 1 天加入 IL-4 和 IL-7,在第 3、5、7 和 9 天加入 IL-2 以每肽 1μg/ml 進行脈衝處理並培養 12 天。來自良性組織(HV 獨特 HLA 配體)的 HLA-A*02 (KLFEKVKEV) (SEQ ID NO. 231) 和 B*07 (KPSEKIQVL) (SEQ ID NO. 232) HLA-A * 02 (KLFEKVKEV) 限制性對照肽作為陰性對照物。肽刺激的 PBMC 在第 12 天使用 ELISPOT 測定法進行分析。對於 CD4+
T 細胞刺激,對 CD8+
T 細胞按所述方法進行培養,除了以下 2 次修飾:使用 10μg/ml II 類 HLA 肽進行衝擊,不要加入 IL-4 或 IL-7。
IFN-γ ELISPOT 測定:
IFN-γ ELISPOT 測定按照前述方法進行 [49]。簡言之,96 孔硝基纖維素板 (Millipore) 塗覆有 1mg/ml IFN-γ mAb (Mabtech),並在 4℃ 下溫育過夜。培養板在 37℃ 下用 10% 人血清封閉 2 小時。 2.5 x 105
個細胞/孔的預刺激 PBMC 用 1 µg/ml(HLA I 類)或 2.5 µg/ml(HLA II 類)肽進行衝擊,並溫育 24-26 小時。根據製造商的說明進行讀數。PHA作為陽性對照。良性組織(HV 獨特 HLA 配體)來源的 HLA-A*02 (KLFEKVKEV) (SEQ ID NO. 231) 和 B*07 (KPSEKIQVL) (SEQ ID NO. 232) 限制性對照肽作為陰性對照。斑點用免疫斑點 S5 分析儀 (CTL) 進行計數。當計數為 10 個斑點/孔並且每孔的平均斑點數至少 3 倍高於陰性對照孔的平均斑點數時,則視為 T 細胞反應為陽性(根據癌症免疫指導計畫 (CIP ) 的指導方針)[50]。
肽特異性 T 細胞的 aAPC 啟動:
為了生成人工抗原呈遞細胞 (aAPC),每毫升 4 × 106
鏈黴塗覆聚苯乙烯顆粒 (Bangs Laboratories) 重新懸浮於含有 200 pM 生物素化 MHC-肽單體和 20nM 抗人生物素化 CD28 抗體的 PBE (PBS/BSA/ETDA, Gibco/Sigma Aldrich/Lonza),並在室溫下孵育30分鐘。洗滌後,aAPC 使用前貯存在4℃ 下 [51]。來自 MM 患者和 HV 的CD8+
T 細胞透過使用磁性細胞分選法的陽性篩選而富集(Miltenyi Biotec)。在 200 µl T 細胞培養基中 1x106
T 細胞加 2x105
aAPC 補充以 5 ng/ml 人IL-12 (PromoKine),在 96 孔板中啟動刺激。65 U/μl IL-2 (R&D Systems) 在第 5 日加入。aAPC 刺激在第 10 天重複,總共 3 個週期。
四聚體染色:
肽特異性 CD8+
T 細胞的頻率透過抗-CD8 (Biolegend) 和前述的 HLA:肽-四聚體-PE 染色在 FACS Canto II 細胞儀 (BD Bioscience) 上確定[51]。用含有 p65 A*02 肽 NLVPMVATV (SEQ ID No. 236) 的四聚體染色作為陽性對照,含不相關非引發 A*02 限制性對照肽四聚體作為陰性對照。如果肽特異性 CD8+
T 細胞的頻率 > 0.1% 活細胞的並至少高於陰性對照中肽特異性 CD8+
T 細胞的頻率 3 倍,則視為成功啟動。
軟體和統計分析:
使用 FlowJo 7.2 (Treestar) 進行流式細胞儀資料分析。在 TAA 錯誤發現率分析和 TAA-高原回歸分析中,使用內部的 R 和 Python 腳本來生成虛擬配體組和定義虛擬 TAA(腫瘤相關抗原)。使用標準的R heatmap.2 腳本進行 HLA 配體源蛋白的無監督聚類分析。使用 GraphPad Prism 6.0 (GraphPad Software) 進行統計學分析。HLA 表面表達的統計分析基於非配對 t 檢驗。
蛋白酶體抑制劑治療期間的 HLA I 類配體提呈:
發明人定量評估了蛋白酶體抑制劑治療期間的 HLA I 類配體提呈。觀察到的是:卡菲佐米治療後 HLA I 類配體組具有很大的可塑性,17.9±1.1% 的 MM.1S 配體和 1.2±0.7% 的 U266 配體(指三次生物學重複均值±SD)顯示與類比治療的對照組相比在 t24h 時具有明顯的調製作用(倍數變化⩾ 4,Benjamini–Hochberg 矯正後 Po0.01)。簡言之,培養的 MCL (MM.1S 和 U266) 和原發性骨髓瘤樣本用卡菲佐米(100 nM, Kyprolis®,例如來自Onyx Pharmaceuticals, Inc.)培育作為蛋白酶體抑制劑的一個實例,培育 1 小時,隨後在 PBS (Gibco) 中洗滌三次,再培養額外 24 或 48 小時。對照物用載體對照物(5% 葡萄糖)培育1小時,然後進行相同的洗滌和培育 24 或 48 小時。如有提示,實驗進行三次生物學重複。結果示於下表。表 5A : MM.1S 細胞上檢測到的骨髓瘤相關肽及其在卡菲佐米治療後的調製作用 圖注:
24#1 - 卡菲佐米治療後/生物學重複後的時間 -1 顯著下調 0 不顯著/未檢測到 1 顯著上調表 5B : U266 細胞上檢測到的骨髓瘤相關肽及其在卡菲佐米治療後的調製作用 圖注:
24#1 - 卡菲佐米治療後/生物學重複後的時間 -1 顯著下調 0 不顯著/未檢測到 1 顯著上調
然後使用 MM.1S 模型縱向跟蹤 14/31 骨髓瘤肽的豐度,其中定量資訊在所有時間點和條件下均可用。對於大多數這些靶標 (10/14, 71.4%), 我們在 t24h 時觀察到了一個調製峰值,隨後在 t48h 時逐漸下降至基線水準。只有 4/14 的肽 (28.6%) 表現為持續性調節,即使在 t48h 時,其中三種肽在治療後顯示出逐步下調。
其他,SEQ ID NO:42:顯示在 2/3 的生物學重複中在卡菲佐米治療後 24 小時 MM.1s 細胞上顯著上調。相反,對於 SEQ ID NO:107 和 SEQ ID NO:228 的 MM.1S 上卡菲佐米治療後未發現顯著的調製。
引用文獻:
1. Small, E.J., et al.,Placebo-controlled phase III trial of immunologic therapy with sipuleucel-T (APC8015) in patients with metastatic, asymptomatic hormone refractory prostate cancer.
J Clin Oncol, 2006.24
(19): p. 3089-94. 2. Walter, S., et al.,Multipeptide immune response to cancer vaccine IMA901 after single-dose cyclophosphamide associates with longer patient survival.
Nat Med, 2012. 3. Perez-Gracia, J.L., et al.,Orchestrating immune check-point blockade for cancer immunotherapy in combinations.
Curr Opin Immunol, 2014.27
: p. 89-97. 4. van Rooij, N., et al.,Tumor exome analysis reveals neoantigen-specific T-cell reactivity in an ipilimumab-responsive melanoma.
J Clin Oncol, 2013.31
(32): p. e439-42. 5. Robbins, P.F., et al.,Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells.
Nat Med, 2013.19
(6): p. 747-52. 6. Tran, E., et al.,Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer.
Science, 2014.344
(6184): p. 641-5. 7. Schumacher, T., et al.,A vaccine targeting mutant IDH1 induces antitumour immunity.
Nature, 2014.512
(7514): p. 324-7. 8. Snyder, A., et al.,Genetic basis for clinical response to CTLA-4 blockade in melanoma.
N Engl J Med, 2014.371
(23): p. 2189-99. 9. Snyder, A. and T.A. Chan,Immunogenic peptide discovery in cancer genomes.
Curr Opin Genet Dev, 2015.30C
: p. 7-16. 10. Rizvi, N.A., et al.,Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer.
Science, 2015. 11. Linnemann, C., et al.,High-throughput epitope discovery reveals frequent recognition of neo-antigens by CD4+ T cells in human melanoma.
Nat Med, 2015.21
(1): p. 81-5. 12. Berlin, C., et al.,Mapping the HLA ligandome landscape of acute myeloid leukemia: a targeted approach toward peptide-based immunotherapy.
Leukemia, 2014. 13. Kowalewski, D.J., et al.,HLA ligandome analysis identifies the underlying specificities of spontaneous antileukemia immune responses in chronic lymphocytic leukemia (CLL).
Proc Natl Acad Sci U S A, 2014. 14. Kuehl, W.M. and P.L. Bergsagel,Multiple myeloma: evolving genetic events and host interactions.
Nat Rev Cancer, 2002.2
(3): p. 175-87. 15. Rollig, C., S. Knop, and M. Bornhauser,Multiple myeloma.
Lancet, 2014. 16. Barlogie, B., et al.,Long-term outcome results of the first tandem autotransplant trial for multiple myeloma.
Br J Haematol, 2006.135
(2): p. 158-64. 17. Ferrero, S., et al.,Long-term results of the GIMEMA VEL-03-096 trial in MM patients receiving VTD consolidation after ASCT: MRD kinetics' impact on survival.
Leukemia, 2014. 18. Martinez-Lopez, J., et al.,Prognostic value of deep sequencing method for minimal residual disease detection in multiple myeloma.
Blood, 2014.123
(20): p. 3073-9. 19. Bjorkstrand, B., et al.,Tandem autologous/reduced-intensity conditioning allogeneic stem-cell transplantation versus autologous transplantation in myeloma: long-term follow-up.
J Clin Oncol, 2011.29
(22): p. 3016-22. 20. El-Cheikh, J., et al.,Long-term outcome after allogeneic stem-cell transplantation with reduced-intensity conditioning in patients with multiple myeloma.
Am J Hematol, 2013.88
(5): p. 370-4. 21. Koehne, G. and S. Giralt,Allogeneic hematopoietic stem cell transplantation for multiple myeloma: curative but not the standard of care.
Curr Opin Oncol, 2012.24
(6): p. 720-6. 22. Riley, J.L.,Combination checkpoint blockade--taking melanoma immunotherapy to the next level.
N Engl J Med, 2013.369
(2): p. 187-9. 23. Perez, S.A., et al.,A new era in anticancer peptide vaccines.
Cancer, 2010.116
(9): p. 2071-80. 24. Rosenblatt, J., et al.,Immunotherapy for multiple myeloma.
Expert Rev Hematol, 2014.7
(1): p. 91-6. 25. Brossart, P., et al.,The epithelial tumor antigen MUC1 is expressed in hematological malignancies and is recognized by MUC1-specific cytotoxic T-lymphocytes.
Cancer Res, 2001.61
(18): p. 6846-50. 26. Zhou, F.L., et al.,Peptide-based immunotherapy for multiple myeloma: current approaches.
Vaccine, 2010.28
(37): p. 5939-46. 27. Hundemer, M., et al.,Identification of a new HLA-A2-restricted T-cell epitope within HM1.24 as immunotherapy target for multiple myeloma.
Exp Hematol, 2006.34
(4): p. 486-96. 28. Jalili, A., et al.,Induction of HM1.24 peptide-specific cytotoxic T lymphocytes by using peripheral-blood stem-cell harvests in patients with multiple myeloma.
Blood, 2005.106
(10): p. 3538-45. 29. Chiriva-Internati, M., et al.,Testing recombinant adeno-associated virus-gene loading of dendritic cells for generating potent cytotoxic T lymphocytes against a prototype self-antigen, multiple myeloma HM1.24.
Blood, 2003.102
(9): p. 3100-7. 30. Rew, S.B., et al.,Generation of potent antitumor CTL from patients with multiple myeloma directed against HM1.24.
Clin Cancer Res, 2005.11
(9): p. 3377-84. 31. van Rhee, F., et al.,NY-ESO-1 is highly expressed in poor-prognosis multiple myeloma and induces spontaneous humoral and cellular immune responses.
Blood, 2005.105
(10): p. 3939-44. 32. Schuberth, P.C., et al.,Effector memory and central memory NY-ESO-1-specific re-directed T cells for treatment of multiple myeloma.
Gene Ther, 2013.20
(4): p. 386-95. 33. Bae, J., et al.,Novel epitope evoking CD138 antigen-specific cytotoxic T lymphocytes targeting multiple myeloma and other plasma cell disorders.
Br J Haematol, 2011.155
(3): p. 349-61. 34. Bae, J., et al.,Identification of novel myeloma-specific XBP1 peptides able to generate cytotoxic T lymphocytes: a potential therapeutic application in multiple myeloma.
Leukemia, 2011.25
(10): p. 1610-9. 35. Bae, J., et al.,Myeloma-specific multiple peptides able to generate cytotoxic T lymphocytes: a potential therapeutic application in multiple myeloma and other plasma cell disorders.
Clin Cancer Res, 2012.18
(17): p. 4850-60. 36. Oka, Y., et al.,WT1 peptide vaccine as a paradigm for "cancer antigen-derived peptide"-based immunotherapy for malignancies: successful induction of anti-cancer effect by vaccination with a single kind of WT1 peptide.
Anticancer Agents Med Chem, 2009.9
(7): p. 787-97. 37. Kuball, J., et al.,Pitfalls of vaccinations with WT1-, Proteinase3- and MUC1-derived peptides in combination with MontanideISA51 and CpG7909.
Cancer Immunol Immunother, 2011.60
(2): p. 161-71. 38. Greiner, J., et al.,High-dose RHAMM-R3 peptide vaccination for patients with acute myeloid leukemia, myelodysplastic syndrome and multiple myeloma.
Haematologica, 2010.95
(7): p. 1191-7. 39. Schmitt, M., et al.,RHAMM-R3 peptide vaccination in patients with acute myeloid leukemia, myelodysplastic syndrome, and multiple myeloma elicits immunologic and clinical responses.
Blood, 2008.111
(3): p. 1357-65. 40. Rapoport, A.P., et al.,Combination immunotherapy using adoptive T-cell transfer and tumor antigen vaccination on the basis of hTERT and survivin after ASCT for myeloma.
Blood, 2011.117
(3): p. 788-97. 41. Hobo, W., et al.,Immunogenicity of dendritic cells pulsed with MAGE3, Survivin and B-cell maturation antigen mRNA for vaccination of multiple myeloma patients.
Cancer Immunol Immunother, 2013.62
(8): p. 1381-92. 42. Wang, L., et al.,T cell-based targeted immunotherapies for patients with multiple myeloma.
Int J Cancer, 2014. 43. Goswami, M., et al.,Expression of putative targets of immunotherapy in acute myeloid leukemia and healthy tissues.
Leukemia, 2014.28
(5): p. 1167-70. 44. Kowalewski, D.J. and S. Stevanovic,Biochemical large-scale identification of MHC class I ligands.
Methods Mol Biol, 2013.960
: p. 145-57. 45. Kall, L., et al.,Semi-supervised learning for peptide identification from shotgun proteomics datasets.
Nat Methods, 2007.4
(11): p. 923-5. 46. Schuler, M.M., M.D. Nastke, and S. Stevanovikc,SYFPEITHI: database for searching and T-cell epitope prediction.
Methods Mol Biol, 2007.409
: p. 75-93. 47. Sturm, T., et al.,Mouse urinary peptides provide a molecular basis for genotype discrimination by nasal sensory neurons.
Nat Commun, 2013.4
: p. 1616. 48. Garboczi, D.N., D.T. Hung, and D.C. Wiley,HLA-A2-peptide complexes: refolding and crystallization of molecules expressed in Escherichia coli and complexed with single antigenic peptides.
Proc Natl Acad Sci U S A, 1992.89
(8): p. 3429-33. 49. Widenmeyer, M., et al.,Promiscuous survivin peptide induces robust CD4+ T-cell responses in the majority of vaccinated cancer patients.
Int J Cancer, 2012.131
(1): p. 140-9. 50. Britten, C.M., et al.,The CIMT-monitoring panel: a two-step approach to harmonize the enumeration of antigen-specific CD8+ T lymphocytes by structural and functional assays.
Cancer Immunol Immunother, 2008.57
(3): p. 289-302. 51. Rudolf, D., et al.,Potent costimulation of human CD8 T cells by anti-4-1BB and anti-CD28 on synthetic artificial antigen presenting cells.
Cancer Immunol Immunother, 2008.57
(2): p. 175-83. 52. Bui, H.H., et al.,Predicting population coverage of T-cell epitope-based diagnostics and vaccines.
BMC Bioinformatics, 2006.7
: p. 153. 53. Schipper, R.F., et al.,Minimal phenotype panels. A method for achieving maximum population coverage with a minimum of HLA antigens.
Hum Immunol, 1996.51
(2): p. 95-8. 54. Kanehisa, M. and S. Goto,KEGG: kyoto encyclopedia of genes and genomes.
Nucleic Acids Res, 2000.28
(1): p. 27-30. 55. Huang da, W., B.T. Sherman, and R.A. Lempicki,Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources.
Nat Protoc, 2009.4
(1): p. 44-57. 56. Braumuller, H., et al.,T-helper-1-cell cytokines drive cancer into senescence.
Nature, 2013.494
(7437): p. 361-5. 57. Schoenberger, S.P., et al.,T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions.
Nature, 1998.393
(6684): p. 480-3. 58. Janssen, E.M., et al.,CD4+ T cells are required for secondary expansion and memory in CD8+ T lymphocytes.
Nature, 2003.421
(6925): p. 852-6. 59. Greiner, J., et al.,Mutated regions of nucleophosmin 1 elicit both CD4(+) and CD8(+) T-cell responses in patients with acute myeloid leukemia.
Blood, 2012.120
(6): p. 1282-9. 60. Wolchok, J.D., et al.,Nivolumab plus ipilimumab in advanced melanoma.
N Engl J Med, 2013.369
(2): p. 122-33. 61. Topalian, S.L., et al.,Safety, activity, and immune correlates of anti-PD-1 antibody in cancer.
N Engl J Med, 2012.366
(26): p. 2443-54. 62. Hodi, F.S., et al.,Improved survival with ipilimumab in patients with metastatic melanoma.
N Engl J Med, 2010.363
(8): p. 711-23. 63. Robert, C., et al.,Anti-programmed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: a randomised dose-comparison cohort of a phase 1 trial.
Lancet, 2014.384
(9948): p. 1109-17. 64. Brahmer, J.R., et al.,Safety and activity of anti-PD-L1 antibody in patients with advanced cancer.
N Engl J Med, 2012.366
(26): p. 2455-65. 65. Hamid, O., et al.,Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma.
N Engl J Med, 2013.369
(2): p. 134-44. 66. Motzer, R.J., et al.,Nivolumab for Metastatic Renal Cell Carcinoma: Results of a Randomized Phase II Trial.
J Clin Oncol, 2014. 67. Lynch, T.J., et al.,Ipilimumab in combination with paclitaxel and carboplatin as first-line treatment in stage IIIB/IV non-small-cell lung cancer: results from a randomized, double-blind, multicenter phase II study.
J Clin Oncol, 2012.30
(17): p. 2046-54. 68. Ansell, S.M., et al.,Phase I study of ipilimumab, an anti-CTLA-4 monoclonal antibody, in patients with relapsed and refractory B-cell non-Hodgkin lymphoma.
Clin Cancer Res, 2009.15
(20): p. 6446-53. 69. Ansell, S.M., et al.,PD-1 blockade with nivolumab in relapsed or refractory Hodgkin's lymphoma.
N Engl J Med, 2015.372
(4): p. 311-9. 70. Bassani-Sternberg, M., et al.,Mass spectrometry of human leukocyte antigen class I peptidomes reveals strong effects of protein abundance and turnover on antigen presentation.
Mol Cell Proteomics, 2015.14
(3): p. 658-73. 71. Stickel, J.S., et al.,HLA ligand profiles of primary renal cell carcinoma maintained in metastases.
Cancer Immunol Immunother, 2009.58
(9): p. 1407-17. 72. Weinzierl, A.O., et al.,Distorted relation between mRNA copy number and corresponding major histocompatibility complex ligand density on the cell surface.
Mol Cell Proteomics, 2007.6
(1): p. 102-13. 73. Min, D.J., et al.,MMSET stimulates myeloma cell growth through microRNA-mediated modulation of c-MYC.
Leukemia, 2013.27
(3): p. 686-94. 74. Martinez-Garcia, E., et al.,The MMSET histone methyl transferase switches global histone methylation and alters gene expression in t(4;14) multiple myeloma cells.
Blood, 2011.117
(1): p. 211-20. 75. Keats, J.J., et al.,Overexpression of transcripts originating from the MMSET locus characterizes all t(4;14)(p16;q32)-positive multiple myeloma patients.
Blood, 2005.105
(10): p. 4060-9. 76. Brito, J.L., et al.,MMSET deregulation affects cell cycle progression and adhesion regulons in t(4;14) myeloma plasma cells.
Haematologica, 2009.94
(1): p. 78-86. 77. Smith, E.M., K. Boyd, and F.E. Davies,The potential role of epigenetic therapy in multiple myeloma.
Br J Haematol, 2010.148
(5): p. 702-13. 78. Xie, Z., et al.,Plasma membrane proteomics identifies biomarkers associated with MMSET overexpression in T(4;14) multiple myeloma.
Oncotarget, 2013.4
(7): p. 1008-18. 79. Hebraud, B., et al.,The translocation t(4;14) can be present only in minor subclones in multiple myeloma.
Clin Cancer Res, 2013.19
(17): p. 4634-7.
無
圖1的A 至 D 顯示了骨髓瘤患者和 HV 骨髓細胞上的 HLA-I 類和 II 類表面表達。使用基於微球流式細胞儀檢測進行了 HLA 表面表達定量。CD38+ CD138+ 原發性骨髓瘤細胞上的 (A) HLA I 類 和 (B) HLA-DR 表達相比較於自體 CD34+
CD38-
造血祖細胞、CD19+
CD20+
B 細胞和CD3+ T 細胞。原發性 MM 細胞上的 (C) HLA I 類和 (D) HLA-DR 表達相比較於 HV 的骨髓來源的漿細胞。縮寫詞:MM,多發性骨髓瘤;HV,健康志願者;n.s.,,不顯著;*P<0.05;**P<0.01; ***P<0.001
圖2的A 至 D 顯示了骨髓瘤相關抗原的比較性 HLA 配體組分析和鑒定。(A) MM 患者 HLA I 類配體源蛋白識別的飽和分析。獨特 HLA 配體源蛋白識別次數作為 10 名 MM 患者 HLA 配體源蛋白識別累計次數的函數。不同源蛋白識別最多次數魯棒計算 (R2
=0.99) 的指數回歸(虛線)。虛線描繪了發明人 MM 患者組實現的源蛋白質組覆蓋。(B) 原發性 MM 樣本 (n=10)、MCL (n=5) 和 HV 樣本(總共 n=45:PBMC (n=30), BMNC (n=10), 粒細胞 (n=5))的 HLA I 類配體源蛋白的重疊分析。(C) 基於 MM 和 HV 配體組的 HLA 限制表示的頻率,比較分析 HLA 配體源蛋白。各源蛋白(x 軸)HLA 限制提呈陽性的 MM/HV 的頻率在 y 軸上表示。左側方框示突出顯示了骨髓瘤相關抗原的子集,顯示在 > 25% 骨髓瘤樣本中 MM 獨特性提呈。(D) 在不同閾值時假陽性骨髓瘤抗原標識的統計學評估。基於 MM 和 HV 組分析確定的原始 TAA 數目與隨機虛擬 TAA 進行比較。基於兩個原始組中的全部蛋白鑒定次數的隨機加權抽樣,在矽片中產生虛擬 MM 和 HV 樣本。所定義大小的這些隨機虛擬配體組(n = 957 個蛋白,這是所有分析樣本中蛋白質鑒定的平均數) 被用於定義基於 15 個 MM 對比 45 個 HV 樣本的類比組的 TAA。蛋白隨機化、組裝配和 TAA 識別過程重複 1000 次,計算所得的虛擬 TAA 的平均值,並對不同的閾值進行繪圖。對於任何選定的 TAA 閾值的相應錯誤發現率列在 x 軸下方。縮寫詞:ID,識別;MM,多發性骨髓瘤;MCL,骨髓瘤細胞系;HV,健康志願者;PBMC,外周血單核血細胞;BMNC,骨髓單核細胞;TAA,腫瘤相關抗原;sum,總數;FDR,錯誤發現率。
圖3的A 至 C 顯示了 MM 和 HV 的HLA 配體組中確定的骨髓瘤相關抗原。(A) HLA-I 類配體組中之前描述的 MM 相關抗原的表示。縱軸表示 原發性 MM 樣本、MCL 和 HV 樣本上的 HLA I 類配體對各抗原的相對表示 [%]。根據抗原的 MM 關聯度,用虛線將其分為 4 組(MM 和 MCL 獨特,MCL-獨特,混合提呈,HV-獨特)。(B,C) MCL(白色)和 MM+MCL(陰影)上 (B) 之前所述的抗原和 (C) 配體組定義的腫瘤相關抗原的骨髓瘤獨特性抗原提呈分佈。縮寫詞:MM,多發性骨髓瘤;MCL,骨髓瘤細胞系;HV,健康志願者。
圖4的A 至 F 顯示了協同 HLA II 類限制性骨髓瘤相關抗原的鑒定。原發性 MM 樣本 (n=7)、MCL (n=5) 和 HV 樣本(總共 n=23:PBMC (n=13), BMNC (n=5), 粒細胞 (n=5))的 HLA II 類配體源蛋白的重疊分析。(B) 在不同閾值時假陽性骨髓瘤抗原識別的統計學評估,如圖 2 所述。隨機虛擬配體組尺寸被設定為 226 個蛋白質,TAA 根據 12 個 MM 對比 23 個 HV 樣本的類比組進行定義。(C) 基於 MM 和 HV 配體組的 HLA 限制表示的頻率,比較分析 HLA II 類配體源蛋白。各源蛋白(x 軸)HLA 限制提呈陽性的 MM/HV 的頻率在 y 軸上表示。(D) HLA I 類 TAA (n=58) 和 HLA II 類 MM 獨特性抗原 (n=1135) 的重疊分析。(E) HLA I 類 TAA,也可能產生協同 HLA II 類配體。(F) 包括 MM 樣本整個 HLA I 類和 HLA II 類配體源蛋白組的重疊分析。縮寫詞:MM,多發性骨髓瘤;MCL,骨髓瘤細胞系;HV,健康志願者;PBMC,外周血單核血細胞;BMNC,骨髓單核細胞;TAA,腫瘤相關抗原;sum,總數;FDR,錯誤發現率。
圖5的A 至 E 顯示了骨髓瘤相關抗原的功能特徵分析。(A) IFNγ-ELISPOT 檢測中骨髓瘤相關 T 細胞表位及其相應的 HLA 限制以及透過骨髓瘤患者衍生 T 細胞的免疫識別頻率。(B) 使用 HV PBMC 以 IFNγ-ELISPOT 評估的骨髓瘤相關 T 細胞表位元實例。包含被經常識別的肽BRLF109–117 YVLDHLIVV (A*02) (SEQ ID NO. 229) 和EBNA3247–255 RPPIFIRRL (SEQ ID NO. 230) (B*07) 的 EBV 表位元組合作為陽性對照。良性組織來源的肽 KLFEKVKEV (SEQ ID NO. 231) (HLA-A*02) 和 KPSEKIQVL (B*07) (SEQ ID NO. 232) 作為陰性對照。(C) 使用 MM 患者 PBMC (n=3) 以 IFNγ-ELISPOT 評估的骨髓瘤相關 T 細胞表位元實例。結果只顯示免疫反應肽。包含五種被經常識別的肽[BRLF109–117 YVLDHLIVV (A*02) (SEQ ID NO. 229), EBNA3471–479 RLRAEAQVK (A*03) (SEQ ID NO. 233), EBNA3247–255 RPPIFIRRL (B*07) (SEQ ID NO. 230), BZLF1190–197 RAKFKQLL (B*08) (SEQ ID NO. 234), EBNA6162–171 AEGGVGWRHW (B*44) (SEQ ID NO. 235)] 的 EBV 表位元組合作為陽性對照。良性組織來源的肽 KLFEKVKEV (SEQ ID NO. 231) (HLA-A*02) 和 KPSEKIQVL (B*07) (SEQ ID NO. 232) 作為陰性對照。(D,E) 使用來源於 (D) 健康個體和 (E) 骨髓瘤患者的 T 細胞進行 3 個週期基於 aAPC 體外啟動後的 CD8+
T 細胞四聚體染色:第 1 列柱:用 P2
-aAPCs (SLLEQGLVEA, A*02 (SEQ ID NO. 177)) 對啟動的 CD8+
T 細胞進行 P2
-四聚體染色;第 2 柱列:CD8+
T 細胞體外 P2
–四聚體染色;第 3 柱列:使用包含第 1 柱列所述相同的 T 細胞群衍生的 CD8+
T 細胞上的不相關 A*02 限制性對照肽 (KAMEAASSL, A*02 (SEQ ID NO. 82)) 的 A*02 四聚體進行對照染色。第 4 柱列:陽性對照:用 CMV-aAPCs (NLVPMVATV, A*02 (SEQ ID NO. 236)) 對啟動的 CD8+
T 細胞進行 P2
-四聚體染色。縮寫詞:MM,多發性骨髓瘤;UPN,統一患者號;neg.,陰性;pos.,陽性。
圖 6A 和 6 B 顯示了除骨髓瘤之外組織上的肽 SEQ ID NO:107 和 177 的提呈。A) 肽檢測為陰性的正常組織有:6脂肪組織,8腎上腺,24血細胞樣本,15血管,10骨髓,13大腦,7乳房,9食管,2眼,3膽囊,16心臟,17腎臟,25大腸,24肝,49肺,7淋巴結,12神經,3卵巢,13胰腺,6甲狀旁腺,1腹膜,6腦垂體,7胎盤,1胸膜,4攝護腺,7唾液腺,9骨骼肌,11皮膚,9小腸,11脾,8胃,5睾丸,3 胸腺,5甲狀腺,16氣管,7輸尿管,8膀胱,6子宮。除了 MM 外,肽還提呈於:1細胞系(黑色素瘤),1正常組織(脾),5個癌症樣本(AML,2膽囊癌,1肝細胞癌,1黑色素瘤)。B) 肽檢測為陰性的正常組織有:6脂肪組織,8腎上腺,24血細胞樣本,15血管,10骨髓,9大腦,7乳房,9食管,2眼,3膽囊,16心臟,17腎臟,23大腸,24肝,49肺,7淋巴結,10神經,3卵巢,13胰腺,6甲狀旁腺,1腹膜,6腦垂體,7胎盤,1胸膜,3攝護腺,7唾液腺,9骨骼肌,11皮膚,8小腸,11脾,8胃,5睾丸,3 胸腺,5甲狀腺,15氣管,7輸尿管,8膀胱,6子宮。除了 MM 外,肽還提呈於:6細胞系(5白血病,1腎癌),4腦,1中樞神經,2結腸,1周圍神經,1攝護腺,1小腸,1脾臟,1氣管,1膽管癌,12腦癌,2乳腺癌,3結腸癌,4食管癌,3膽囊癌,4頭頸癌,2腎癌,2肝癌,19肺癌,2 NHL,1 AML,8卵巢癌,2攝護腺癌,1直腸癌,4皮膚癌,2膀胱癌,6子宮癌。
國內寄存資訊 (請依寄存機構、日期、號碼順序註記) 無
國外寄存資訊 (請依寄存國家、機構、日期、號碼順序註記) 無
(請換頁單獨記載) <110> 德商.英麥提克生物技術股份有限公司 <120> 用於骨髓瘤和其他癌症免疫治療的新型細胞表位和細胞表位組合物 <130> I32848WO <150> GB1511191.1 <151> 2015-06-25 <150> US62/184,500 <151> 2015-06-25 <160> 237 <170> PatentIn 版本 3.5 <210> 1 <211> 9 <212> PRT <213> 智人 <400> 1 Ala Ala Ser Pro Val Val Ala Glu Tyr 1 5 <210> 2 <211> 10 <212> PRT <213> 智人 <400> 2 Ala Glu Asn Ala Pro Ser Lys Glu Val Leu 1 5 10 <210> 3 <211> 10 <212> PRT <213> 智人 <400> 3 Ala Glu Gln Glu Ile Ala Arg Leu Val Leu 1 5 10 <210> 4 <211> 11 <212> PRT <213> 智人 <400> 4 Ala Phe Ile Gln Ala Gly Ile Phe Gln Glu Phe 1 5 10 <210> 5 <211> 9 <212> PRT <213> 智人 <400> 5 Ala His Ser Glu Gln Leu Gln Ala Leu 1 5 <210> 6 <211> 13 <212> PRT <213> 智人 <400> 6 Ala Ile Ile Leu Glu Ala Val Asn Leu Pro Val Asp His 1 5 10 <210> 7 <211> 9 <212> PRT <213> 智人 <400> 7 Ala Lys Arg Phe Asp Val Ser Gly Tyr 1 5 <210> 8 <211> 11 <212> PRT <213> 智人 <400> 8 Ala Leu Asp Pro Leu Ala Asp Lys Ile Leu Ile 1 5 10 <210> 9 <211> 9 <212> PRT <213> 智人 <400> 9 Ala Leu Lys Lys Pro Ile Lys Gly Lys 1 5 <210> 10 <211> 9 <212> PRT <213> 智人 <400> 10 Ala Leu Trp Gly Arg Thr Thr Leu Lys 1 5 <210> 11 <211> 10 <212> PRT <213> 智人 <400> 11 Ala Pro Phe Gln Gly Asp Gln Arg Ser Leu 1 5 10 <210> 12 <211> 10 <212> PRT <213> 智人 <400> 12 Ala Pro Lys Tyr Gly Ser Tyr Asn Val Phe 1 5 10 <210> 13 <211> 10 <212> PRT <213> 智人 <400> 13 Ala Pro Arg His Pro Ser Thr Asn Ser Leu 1 5 10 <210> 14 <211> 11 <212> PRT <213> 智人 <400> 14 Ala Pro Arg His Pro Ser Thr Asn Ser Leu Leu 1 5 10 <210> 15 <211> 14 <212> PRT <213> 智人 <400> 15 Ala Pro Val Gly Ile Met Phe Leu Val Ala Gly Lys Ile Val 1 5 10 <210> 16 <211> 15 <212> PRT <213> 智人 <400> 16 Ala Pro Val Gly Ile Met Phe Leu Val Ala Gly Lys Ile Val Glu 1 5 10 15 <210> 17 <211> 11 <212> PRT <213> 智人 <400> 17 Ala Ser Asn Pro Ser Asn Pro Arg Pro Ser Lys 1 5 10 <210> 18 <211> 14 <212> PRT <213> 智人 <400> 18 Ala Val Phe Ile Ala Gln Leu Ser Gln Gln Ser Leu Asp Phe 1 5 10 <210> 19 <211> 11 <212> PRT <213> 智人 <400> 19 Asp Ala Leu Gly Ala Gly Ile Leu His His Leu 1 5 10 <210> 20 <211> 8 <212> PRT <213> 智人 <400> 20 Asp Glu Val Leu Leu Gln Lys Leu 1 5 <210> 21 <211> 19 <212> PRT <213> 智人 <400> 21 Asp Gly Asp Asp Val Ile Ile Ile Gly Val Phe Lys Gly Glu Ser Asp 1 5 10 15 Pro Ala Tyr <210> 22 <211> 11 <212> PRT <213> 智人 <400> 22 Asp Ile Lys Asp Thr Asp Val Ile Met Lys Arg 1 5 10 <210> 23 <211> 9 <212> PRT <213> 智人 <400> 23 Asp Ile Gln Asp Pro Gly Val Pro Arg 1 5 <210> 24 <211> 11 <212> PRT <213> 智人 <400> 24 Asp Leu Phe Arg Tyr Asn Pro Tyr Leu Lys Arg 1 5 10 <210> 25 <211> 9 <212> PRT <213> 智人 <400> 25 Asp Leu Leu Asp Gly Phe Ile Ala Arg 1 5 <210> 26 <211> 9 <212> PRT <213> 智人 <400> 26 Asp Leu Asn Phe Pro Glu Ile Lys Arg 1 5 <210> 27 <211> 11 <212> PRT <213> 智人 <400> 27 Asp Leu Arg Pro Ala Thr Asp Tyr His Val Arg 1 5 10 <210> 28 <211> 9 <212> PRT <213> 智人 <400> 28 Asp Arg Tyr Leu Leu Gly Thr Ser Leu 1 5 <210> 29 <211> 9 <212> PRT <213> 智人 <400> 29 Asp Ser Phe Glu Arg Ser Asn Ser Leu 1 5 <210> 30 <211> 12 <212> PRT <213> 智人 <400> 30 Asp Thr Gln Ser Gly Ser Leu Leu Phe Ile Gly Arg 1 5 10 <210> 31 <211> 9 <212> PRT <213> 智人 <400> 31 Asp Val Ala Glu Pro Tyr Lys Val Tyr 1 5 <210> 32 <211> 9 <212> PRT <213> 智人 <400> 32 Asp Val Asn Asn Ile Gly Lys Tyr Arg 1 5 <210> 33 <211> 9 <212> PRT <213> 智人 <400> 33 Asp Val Pro Asp His Ile Ile Ala Tyr 1 5 <210> 34 <211> 16 <212> PRT <213> 智人 <400> 34 Glu Gly Asn Pro Leu Leu Lys His Tyr Arg Gly Pro Ala Gly Asp Ala 1 5 10 15 <210> 35 <211> 17 <212> PRT <213> 智人 <400> 35 Glu Gly Asn Pro Leu Leu Lys His Tyr Arg Gly Pro Ala Gly Asp Ala 1 5 10 15 Thr <210> 36 <211> 9 <212> PRT <213> 智人 <400> 36 Glu Ile Ile Glu Lys Asn Phe Asp Tyr 1 5 <210> 37 <211> 11 <212> PRT <213> 智人 <400> 37 Glu Ile Ile Glu Lys Asn Phe Asp Tyr Leu Arg 1 5 10 <210> 38 <211> 9 <212> PRT <213> 智人 <400> 38 Glu Ile Thr Glu Val Ala Leu Glu Tyr 1 5 <210> 39 <211> 16 <212> PRT <213> 智人 <400> 39 Glu Asn Gly Val Leu Val Leu Asn Asp Ala Asn Phe Asp Asn Phe Val 1 5 10 15 <210> 40 <211> 10 <212> PRT <213> 智人 <400> 40 Glu Gln Leu Tyr Asp Leu Thr Leu Glu Tyr 1 5 10 <210> 41 <211> 9 <212> PRT <213> 智人 <400> 41 Glu Arg Phe Glu Lys Thr Phe Gln Leu 1 5 <210> 42 <211> 8 <212> PRT <213> 智人 <400> 42 Glu Tyr Gly His Ile Pro Ser Phe 1 5 <210> 43 <211> 10 <212> PRT <213> 智人 <400> 43 Phe Ala Gln Ile Ile Ser Val Ala Leu Ile 1 5 10 <210> 44 <211> 9 <212> PRT <213> 智人 <400> 44 Phe Ala Tyr Pro Ala Ile Arg Tyr Leu 1 5 <210> 45 <211> 10 <212> PRT <213> 智人 <400> 45 Phe Phe Lys Pro His Trp Asp Glu Lys Phe 1 5 10 <210> 46 <211> 9 <212> PRT <213> 智人 <400> 46 Phe Ile Ser Gly His Thr Ser Glu Leu 1 5 <210> 47 <211> 9 <212> PRT <213> 智人 <400> 47 Phe Lys Ser Pro Ala Ala Ser Ser Phe 1 5 <210> 48 <211> 9 <212> PRT <213> 智人 <400> 48 Phe Leu Phe Gln Leu Leu Gln Leu Leu 1 5 <210> 49 <211> 10 <212> PRT <213> 智人 <400> 49 Phe Leu Trp Asp Glu Gly Phe His Gln Leu 1 5 10 <210> 50 <211> 9 <212> PRT <213> 智人 <400> 50 Phe Asn Phe Leu Arg Asn Val Ser Leu 1 5 <210> 51 <211> 9 <212> PRT <213> 智人 <400> 51 Phe Val Phe Pro Gly Glu Leu Leu Leu 1 5 <210> 52 <211> 9 <212> PRT <213> 智人 <400> 52 Gly Ala Lys Ala Ser Thr Thr Ser Leu 1 5 <210> 53 <211> 9 <212> PRT <213> 智人 <400> 53 Gly Glu Leu Ile Glu Val Val His Leu 1 5 <210> 54 <211> 9 <212> PRT <213> 智人 <400> 54 Gly Glu Thr Ala Phe Ala Phe His Leu 1 5 <210> 55 <211> 9 <212> PRT <213> 智人 <400> 55 Gly Glu Val Ala Pro Ser Met Phe Leu 1 5 <210> 56 <211> 10 <212> PRT <213> 智人 <400> 56 Gly Glu Val Gln Asp Leu Leu Val Arg Leu 1 5 10 <210> 57 <211> 9 <212> PRT <213> 智人 <400> 57 Gly Lys Val Gln Glu Asn Ser Ala Tyr 1 5 <210> 58 <211> 9 <212> PRT <213> 智人 <400> 58 Gly Lys Tyr Ile Phe Ala Ser Ile Leu 1 5 <210> 59 <211> 15 <212> PRT <213> 智人 <400> 59 Gly Asn Pro Leu Leu Lys His Tyr Arg Gly Pro Ala Gly Asp Ala 1 5 10 15 <210> 60 <211> 9 <212> PRT <213> 智人 <400> 60 Gly Pro Phe Ser Gln Phe Ile Lys Ala 1 5 <210> 61 <211> 10 <212> PRT <213> 智人 <400> 61 Gly Pro Arg Pro Ile Thr Gln Ser Glu Leu 1 5 10 <210> 62 <211> 9 <212> PRT <213> 智人 <400> 62 Gly Arg Tyr Pro Gly Val Ser Asn Tyr 1 5 <210> 63 <211> 17 <212> PRT <213> 智人 <400> 63 Gly Tyr Pro Thr Ile Lys Ile Leu Lys Lys Gly Gln Ala Val Asp Tyr 1 5 10 15 Glu <210> 64 <211> 18 <212> PRT <213> 智人 <400> 64 Gly Tyr Pro Thr Ile Lys Ile Leu Lys Lys Gly Gln Ala Val Asp Tyr 1 5 10 15 Glu Gly <210> 65 <211> 9 <212> PRT <213> 智人 <400> 65 His Pro Lys Gln Pro Glu Pro Ser Ala 1 5 <210> 66 <211> 10 <212> PRT <213> 智人 <400> 66 His Pro Lys Gln Pro Glu Pro Ser Ala Thr 1 5 10 <210> 67 <211> 9 <212> PRT <213> 智人 <400> 67 His Ser Met Asp Phe Val Ala Tyr Arg 1 5 <210> 68 <211> 9 <212> PRT <213> 智人 <400> 68 Ile Ala Asp Pro Phe Phe Arg Ser Ala 1 5 <210> 69 <211> 9 <212> PRT <213> 智人 <400> 69 Ile Glu His Pro Ser Met Ser Val Tyr 1 5 <210> 70 <211> 9 <212> PRT <213> 智人 <400> 70 Ile Glu Ser His Pro Asp Asn Ala Leu 1 5 <210> 71 <211> 8 <212> PRT <213> 智人 <400> 71 Ile Glu Val Glu Ala Val Arg Phe 1 5 <210> 72 <211> 9 <212> PRT <213> 智人 <400> 72 Ile His Ile Leu Asp Val Leu Val Leu 1 5 <210> 73 <211> 9 <212> PRT <213> 智人 <400> 73 Ile Ile Phe Asp Arg Pro Leu Leu Tyr 1 5 <210> 74 <211> 10 <212> PRT <213> 智人 <400> 74 Ile Leu Arg Asp Gly Ile Thr Ala Gly Lys 1 5 10 <210> 75 <211> 9 <212> PRT <213> 智人 <400> 75 Ile Leu Trp Glu Thr Val Pro Ser Met 1 5 <210> 76 <211> 9 <212> PRT <213> 智人 <400> 76 Ile Pro Ala Lys Pro Pro Val Ser Phe 1 5 <210> 77 <211> 10 <212> PRT <213> 智人 <400> 77 Ile Pro Ala Lys Pro Pro Val Ser Phe Phe 1 5 10 <210> 78 <211> 9 <212> PRT <213> 智人 <400> 78 Ile Gln Ala Gly Ile Phe Gln Glu Phe 1 5 <210> 79 <211> 8 <212> PRT <213> 智人 <400> 79 Ile Gln Ile Leu His Gln Val Leu 1 5 <210> 80 <211> 13 <212> PRT <213> 智人 <400> 80 Ile Val Asp Arg Thr Thr Thr Val Val Asn Val Glu Gly 1 5 10 <210> 81 <211> 15 <212> PRT <213> 智人 <400> 81 Ile Val Asp Arg Thr Thr Thr Val Val Asn Val Glu Gly Asp Ala 1 5 10 15 <210> 82 <211> 9 <212> PRT <213> 智人 <400> 82 Lys Ala Met Glu Ala Ala Ser Ser Leu 1 5 <210> 83 <211> 9 <212> PRT <213> 智人 <400> 83 Lys Ala Val Asn Pro Gly Arg Ser Leu 1 5 <210> 84 <211> 10 <212> PRT <213> 智人 <400> 84 Lys Asp Ala Arg Lys Gly Pro Leu Val Pro 1 5 10 <210> 85 <211> 9 <212> PRT <213> 智人 <400> 85 Lys Glu Glu Asn Gly Val Leu Val Leu 1 5 <210> 86 <211> 9 <212> PRT <213> 智人 <400> 86 Lys Glu Phe Ala Ala Ile Val Asp Val 1 5 <210> 87 <211> 10 <212> PRT <213> 智人 <400> 87 Lys Glu Gly Leu Ile Leu Pro Glu Thr Leu 1 5 10 <210> 88 <211> 9 <212> PRT <213> 智人 <400> 88 Lys Ile Leu Lys Pro Val Lys Lys Lys 1 5 <210> 89 <211> 10 <212> PRT <213> 智人 <400> 89 Lys Leu Gly Trp Leu Ser Ser Met Thr Lys 1 5 10 <210> 90 <211> 10 <212> PRT <213> 智人 <400> 90 Lys Leu Pro Leu Pro Leu Pro Pro Arg Leu 1 5 10 <210> 91 <211> 9 <212> PRT <213> 智人 <400> 91 Lys Leu Arg Glu Leu Thr Gln Arg Tyr 1 5 <210> 92 <211> 9 <212> PRT <213> 智人 <400> 92 Lys Leu Ser Ser Leu Ile Ile Leu Met 1 5 <210> 93 <211> 10 <212> PRT <213> 智人 <400> 93 Lys Pro Lys Asp Pro Leu Lys Ile Ser Leu 1 5 10 <210> 94 <211> 9 <212> PRT <213> 智人 <400> 94 Lys Pro Gln Pro Arg Pro Gln Thr Leu 1 5 <210> 95 <211> 8 <212> PRT <213> 智人 <400> 95 Lys Pro Arg Pro Pro Gln Gly Leu 1 5 <210> 96 <211> 10 <212> PRT <213> 智人 <400> 96 Lys Pro Arg Pro Pro Gln Gly Leu Val Arg 1 5 10 <210> 97 <211> 9 <212> PRT <213> 智人 <400> 97 Lys Pro Ser Thr Lys Ala Leu Val Leu 1 5 <210> 98 <211> 11 <212> PRT <213> 智人 <400> 98 Lys Pro Tyr Pro Asn Ser Glu Ala Ala Arg Ala 1 5 10 <210> 99 <211> 9 <212> PRT <213> 智人 <400> 99 Lys Gln His Gly Ile Pro Ile Pro Val 1 5 <210> 100 <211> 9 <212> PRT <213> 智人 <400> 100 Lys Thr Glu Val His Ile Arg Pro Lys 1 5 <210> 101 <211> 9 <212> PRT <213> 智人 <400> 101 Lys Thr Gln Leu Leu Pro Thr Ser Lys 1 5 <210> 102 <211> 10 <212> PRT <213> 智人 <400> 102 Lys Val Met Leu Ser Ala Leu Gly Met Leu 1 5 10 <210> 103 <211> 9 <212> PRT <213> 智人 <400> 103 Lys Tyr Glu Ser Ile Arg Leu Leu Phe 1 5 <210> 104 <211> 10 <212> PRT <213> 智人 <400> 104 Lys Tyr Pro Asp Ser His Leu Pro Thr Leu 1 5 10 <210> 105 <211> 9 <212> PRT <213> 智人 <400> 105 Leu Ala Ala Leu Pro Gly Val Ser Leu 1 5 <210> 106 <211> 9 <212> PRT <213> 智人 <400> 106 Leu Ala Asp His Thr Val His Val Leu 1 5 <210> 107 <211> 9 <212> PRT <213> 智人 <400> 107 Leu Ala Phe Pro Gly Glu Met Leu Leu 1 5 <210> 108 <211> 8 <212> PRT <213> 智人 <400> 108 Leu Ala His Val Gly Pro Arg Leu 1 5 <210> 109 <211> 8 <212> PRT <213> 智人 <400> 109 Leu Glu Lys Glu Gly Leu Ile Leu 1 5 <210> 110 <211> 9 <212> PRT <213> 智人 <400> 110 Leu Lys Ile Pro Ile Ser Ile Glu Phe 1 5 <210> 111 <211> 10 <212> PRT <213> 智人 <400> 111 Leu Leu Phe Pro Tyr Ile Leu Pro Pro Lys 1 5 10 <210> 112 <211> 9 <212> PRT <213> 智人 <400> 112 Leu Leu Arg Phe Ser Gln Asp Asn Ala 1 5 <210> 113 <211> 8 <212> PRT <213> 智人 <400> 113 Leu Pro Ala Glu His Gly Val Leu 1 5 <210> 114 <211> 10 <212> PRT <213> 智人 <400> 114 Leu Pro Lys Asp Val Ser Pro Thr Gln Ala 1 5 10 <210> 115 <211> 9 <212> PRT <213> 智人 <400> 115 Leu Pro Pro Pro Pro His Val Pro Leu 1 5 <210> 116 <211> 9 <212> PRT <213> 智人 <400> 116 Leu Pro Gln Leu His Ser Leu Val Leu 1 5 <210> 117 <211> 14 <212> PRT <213> 智人 <400> 117 Leu Pro Val Leu Leu Ser Tyr Ile Gly Pro Ser Val Asn Lys 1 5 10 <210> 118 <211> 8 <212> PRT <213> 智人 <400> 118 Leu Arg Phe Ser Gln Asp Asn Ala 1 5 <210> 119 <211> 10 <212> PRT <213> 智人 <400> 119 Leu Tyr Asp Val Ala Gly Gln Gly Tyr Leu 1 5 10 <210> 120 <211> 11 <212> PRT <213> 智人 <400> 120 Met Asp Leu Gln Pro Gly Asn Ala Leu Lys Arg 1 5 10 <210> 121 <211> 9 <212> PRT <213> 智人 <400> 121 Met His Gly Gln Pro Ser Pro Ser Leu 1 5 <210> 122 <211> 12 <212> PRT <213> 智人 <400> 122 Met Asn Ile Phe Arg Leu Thr Gly Asp Leu Ser His 1 5 10 <210> 123 <211> 16 <212> PRT <213> 智人 <400> 123 Met Pro Asp Asp Ser Tyr Met Val Asp Tyr Phe Lys Ser Ile Ser Gln 1 5 10 15 <210> 124 <211> 17 <212> PRT <213> 智人 <400> 124 Met Pro Asp Asp Ser Tyr Met Val Asp Tyr Phe Lys Ser Ile Ser Gln 1 5 10 15 Tyr <210> 125 <211> 9 <212> PRT <213> 智人 <400> 125 Met Arg Leu Ser Leu Pro Leu Leu Leu 1 5 <210> 126 <211> 10 <212> PRT <213> 智人 <400> 126 Met Arg Leu Ser Leu Pro Leu Leu Leu Leu 1 5 10 <210> 127 <211> 8 <212> PRT <213> 智人 <400> 127 Asn Glu Asp Phe Ser Phe His Tyr 1 5 <210> 128 <211> 9 <212> PRT <213> 智人 <400> 128 Asn Glu Phe Pro Val Phe Asp Glu Phe 1 5 <210> 129 <211> 9 <212> PRT <213> 智人 <400> 129 Asn Glu Val Ile Met Thr Ile Gly Phe 1 5 <210> 130 <211> 15 <212> PRT <213> 智人 <400> 130 Asn Gly Val Leu Val Leu Asn Asp Ala Asn Phe Asp Asn Phe Val 1 5 10 15 <210> 131 <211> 11 <212> PRT <213> 智人 <400> 131 Asn Ile Gly Gln Lys Glu Asp Phe Glu Glu Ala 1 5 10 <210> 132 <211> 9 <212> PRT <213> 智人 <400> 132 Asn Met Asp Leu Met Arg Ala Asp Met 1 5 <210> 133 <211> 14 <212> PRT <213> 智人 <400> 133 Asn Pro Leu Leu Lys His Tyr Arg Gly Pro Ala Gly Asp Ala 1 5 10 <210> 134 <211> 15 <212> PRT <213> 智人 <400> 134 Asn Pro Leu Leu Lys His Tyr Arg Gly Pro Ala Gly Asp Ala Thr 1 5 10 15 <210> 135 <211> 9 <212> PRT <213> 智人 <400> 135 Pro Glu Leu Gly Pro Leu Pro Ala Leu 1 5 <210> 136 <211> 10 <212> PRT <213> 智人 <400> 136 Pro Thr Glu Asn Phe Ser Leu Pro Val Leu 1 5 10 <210> 137 <211> 13 <212> PRT <213> 智人 <400> 137 Pro Val Leu Leu Ser Tyr Ile Gly Pro Ser Val Asn Lys 1 5 10 <210> 138 <211> 9 <212> PRT <213> 智人 <400> 138 Gln His Tyr Gln Gln Gln Gln Gln Val 1 5 <210> 139 <211> 10 <212> PRT <213> 智人 <400> 139 Arg Ala Lys Asp Val Ile Ile Pro Ala Lys 1 5 10 <210> 140 <211> 10 <212> PRT <213> 智人 <400> 140 Arg Ala Leu Asp Val Asp Ser Gly Pro Leu 1 5 10 <210> 141 <211> 9 <212> PRT <213> 智人 <400> 141 Arg Glu Glu Gly Thr Pro Leu Thr Leu 1 5 <210> 142 <211> 9 <212> PRT <213> 智人 <400> 142 Arg Lys Asp Glu Asp Arg Lys Gln Phe 1 5 <210> 143 <211> 9 <212> PRT <213> 智人 <400> 143 Arg Lys Leu Ala Tyr Arg Pro Pro Lys 1 5 <210> 144 <211> 10 <212> PRT <213> 智人 <400> 144 Arg Leu Gly Pro Pro Lys Arg Pro Pro Arg 1 5 10 <210> 145 <211> 10 <212> PRT <213> 智人 <400> 145 Arg Leu Lys Pro Phe Tyr Leu Val Pro Lys 1 5 10 <210> 146 <211> 9 <212> PRT <213> 智人 <400> 146 Arg Leu Gln Ser Lys Val Thr Ala Lys 1 5 <210> 147 <211> 9 <212> PRT <213> 智人 <400> 147 Arg Pro Phe His Gly Trp Thr Ser Leu 1 5 <210> 148 <211> 9 <212> PRT <213> 智人 <400> 148 Arg Pro Gly Pro Pro Thr Arg Pro Leu 1 5 <210> 149 <211> 8 <212> PRT <213> 智人 <400> 149 Arg Pro His Gly Gly Lys Ser Leu 1 5 <210> 150 <211> 9 <212> PRT <213> 智人 <400> 150 Arg Pro Lys Ala Gln Pro Thr Thr Leu 1 5 <210> 151 <211> 9 <212> PRT <213> 智人 <400> 151 Arg Pro Gln Leu Lys Gly Val Val Leu 1 5 <210> 152 <211> 8 <212> PRT <213> 智人 <400> 152 Arg Pro Arg Ala Pro Gly Pro Gln 1 5 <210> 153 <211> 10 <212> PRT <213> 智人 <400> 153 Arg Pro Arg Lys Ala Phe Leu Leu Leu Leu 1 5 10 <210> 154 <211> 9 <212> PRT <213> 智人 <400> 154 Arg Pro Arg Pro Pro Val Leu Ser Val 1 5 <210> 155 <211> 9 <212> PRT <213> 智人 <400> 155 Arg Gln Phe Trp Thr Arg Thr Lys Lys 1 5 <210> 156 <211> 9 <212> PRT <213> 智人 <400> 156 Arg Gln Tyr Pro Glu Val Ile Lys Tyr 1 5 <210> 157 <211> 9 <212> PRT <213> 智人 <400> 157 Arg Val Ala Lys Thr Asn Ser Leu Arg 1 5 <210> 158 <211> 9 <212> PRT <213> 智人 <400> 158 Arg Val Phe Pro Tyr Ser Val Phe Tyr 1 5 <210> 159 <211> 10 <212> PRT <213> 智人 <400> 159 Arg Val Asn Lys Val Ile Ile Gly Thr Lys 1 5 10 <210> 160 <211> 9 <212> PRT <213> 智人 <400> 160 Arg Tyr Phe Lys Gly Pro Glu Leu Leu 1 5 <210> 161 <211> 9 <212> PRT <213> 智人 <400> 161 Arg Tyr Leu Asp Leu Phe Thr Ser Phe 1 5 <210> 162 <211> 8 <212> PRT <213> 智人 <400> 162 Arg Tyr Asn Pro Tyr Leu Lys Arg 1 5 <210> 163 <211> 9 <212> PRT <213> 智人 <400> 163 Arg Tyr Ser Pro Val Leu Ser Arg Phe 1 5 <210> 164 <211> 9 <212> PRT <213> 智人 <400> 164 Arg Tyr Ser Thr Gln Ile His Ser Phe 1 5 <210> 165 <211> 9 <212> PRT <213> 智人 <400> 165 Ser Glu Phe Asp Phe Phe Glu Arg Leu 1 5 <210> 166 <211> 9 <212> PRT <213> 智人 <400> 166 Ser Glu Leu Val Tyr Thr Asp Val Leu 1 5 <210> 167 <211> 9 <212> PRT <213> 智人 <400> 167 Ser Glu Ser Leu Pro Val Arg Thr Leu 1 5 <210> 168 <211> 10 <212> PRT <213> 智人 <400> 168 Ser Phe Asp Asp Ala Phe Lys Ala Asp Ser 1 5 10 <210> 169 <211> 10 <212> PRT <213> 智人 <400> 169 Ser Phe Leu Asp Leu Ala Arg Asn Ile Phe 1 5 10 <210> 170 <211> 9 <212> PRT <213> 智人 <400> 170 Ser His Ile Thr Arg Ala Phe Thr Val 1 5 <210> 171 <211> 9 <212> PRT <213> 智人 <400> 171 Ser His Ser His Val Gly Tyr Thr Leu 1 5 <210> 172 <211> 9 <212> PRT <213> 智人 <400> 172 Ser His Thr Pro Trp Ile Val Ile Ile 1 5 <210> 173 <211> 10 <212> PRT <213> 智人 <400> 173 Ser Ile Arg Arg Gly Phe Gln Val Tyr Lys 1 5 10 <210> 174 <211> 11 <212> PRT <213> 智人 <400> 174 Ser Ile Tyr Arg Gly Pro Ser His Thr Tyr Lys 1 5 10 <210> 175 <211> 9 <212> PRT <213> 智人 <400> 175 Ser Lys Asp Glu Ala Arg Ser Ser Phe 1 5 <210> 176 <211> 15 <212> PRT <213> 智人 <400> 176 Ser Leu Gly Gly Lys Ala Thr Thr Ala Ser Gln Ala Lys Ala Val 1 5 10 15 <210> 177 <211> 10 <212> PRT <213> 智人 <400> 177 Ser Leu Leu Glu Gln Gly Leu Val Glu Ala 1 5 10 <210> 178 <211> 11 <212> PRT <213> 智人 <400> 178 Ser Met Asn Val Gln Gly Asp Tyr Glu Pro Thr 1 5 10 <210> 179 <211> 9 <212> PRT <213> 智人 <400> 179 Ser Pro Ala His Pro Lys Gln Thr Leu 1 5 <210> 180 <211> 9 <212> PRT <213> 智人 <400> 180 Ser Pro Ala Leu Lys Arg Leu Asp Leu 1 5 <210> 181 <211> 9 <212> PRT <213> 智人 <400> 181 Ser Pro Ala Leu Pro Gly Leu Lys Leu 1 5 <210> 182 <211> 9 <212> PRT <213> 智人 <400> 182 Ser Pro Lys Ser Asn Asp Ser Asp Leu 1 5 <210> 183 <211> 10 <212> PRT <213> 智人 <400> 183 Ser Pro Met Pro Gly Thr Leu Thr Ala Leu 1 5 10 <210> 184 <211> 9 <212> PRT <213> 智人 <400> 184 Ser Pro Pro Pro Pro Pro Pro Pro Pro 1 5 <210> 185 <211> 9 <212> PRT <213> 智人 <400> 185 Ser Pro Gln Ala Glu Thr Arg Glu Ala 1 5 <210> 186 <211> 9 <212> PRT <213> 智人 <400> 186 Ser Pro Arg Leu Ser Leu Leu Tyr Leu 1 5 <210> 187 <211> 9 <212> PRT <213> 智人 <400> 187 Ser Pro Arg Gln Ala Leu Thr Asp Phe 1 5 <210> 188 <211> 8 <212> PRT <213> 智人 <400> 188 Ser Pro Thr Lys Leu Pro Ser Ile 1 5 <210> 189 <211> 9 <212> PRT <213> 智人 <400> 189 Ser Pro Tyr Leu Arg Pro Leu Thr Leu 1 5 <210> 190 <211> 9 <212> PRT <213> 智人 <400> 190 Ser Arg Gly Asp Phe Val Val Glu Tyr 1 5 <210> 191 <211> 9 <212> PRT <213> 智人 <400> 191 Ser Val Tyr Ser Pro Val Lys Lys Lys 1 5 <210> 192 <211> 9 <212> PRT <213> 智人 <400> 192 Ser Tyr Leu Asn Ser Val Gln Arg Leu 1 5 <210> 193 <211> 9 <212> PRT <213> 智人 <400> 193 Thr Ala Ser Pro Leu Val Lys Ser Val 1 5 <210> 194 <211> 9 <212> PRT <213> 智人 <400> 194 Thr Glu Ala Gln Pro Gln Gly His Leu 1 5 <210> 195 <211> 9 <212> PRT <213> 智人 <400> 195 Thr Glu Val Ile Phe Lys Val Ala Leu 1 5 <210> 196 <211> 9 <212> PRT <213> 智人 <400> 196 Thr Phe Leu Pro Phe Ile His Thr Ile 1 5 <210> 197 <211> 11 <212> PRT <213> 智人 <400> 197 Thr His Ala Ala Glu Asp Ile Val Tyr Thr Leu 1 5 10 <210> 198 <211> 9 <212> PRT <213> 智人 <400> 198 Thr Lys Phe Gly Gly Ile Val Val Leu 1 5 <210> 199 <211> 10 <212> PRT <213> 智人 <400> 199 Thr Leu Lys Ser Gly Asp Gly Ile Thr Phe 1 5 10 <210> 200 <211> 9 <212> PRT <213> 智人 <400> 200 Thr Pro Ala Val Gly Arg Leu Glu Val 1 5 <210> 201 <211> 9 <212> PRT <213> 智人 <400> 201 Thr Pro Glu Gln Gln Ala Ala Ile Leu 1 5 <210> 202 <211> 9 <212> PRT <213> 智人 <400> 202 Thr Pro Ser Ser Arg Pro Ala Ser Leu 1 5 <210> 203 <211> 9 <212> PRT <213> 智人 <400> 203 Thr Arg Ile Gly Leu Ala Pro Val Leu 1 5 <210> 204 <211> 9 <212> PRT <213> 智人 <400> 204 Thr Val Lys Ala Thr Gly Pro Ala Leu 1 5 <210> 205 <211> 10 <212> PRT <213> 智人 <400> 205 Val Ala Ala Leu Ala Ala His Thr Thr Phe 1 5 10 <210> 206 <211> 9 <212> PRT <213> 智人 <400> 206 Val Asp Asn Ile Phe Ile Leu Val Gln 1 5 <210> 207 <211> 10 <212> PRT <213> 智人 <400> 207 Val Phe Asp Val Leu Asp Gly Glu Glu Met 1 5 10 <210> 208 <211> 13 <212> PRT <213> 智人 <400> 208 Val Gly Gly Leu Ser Phe Leu Val Asn His Asp Phe Ser 1 5 10 <210> 209 <211> 9 <212> PRT <213> 智人 <400> 209 Val Pro Ala Glu Gly Val Arg Thr Ala 1 5 <210> 210 <211> 10 <212> PRT <213> 智人 <400> 210 Val Pro Leu Pro Pro Lys Gly Arg Val Leu 1 5 10 <210> 211 <211> 11 <212> PRT <213> 智人 <400> 211 Val Pro Leu Thr Arg Val Ser Gly Gly Ala Ala 1 5 10 <210> 212 <211> 14 <212> PRT <213> 智人 <400> 212 Val Pro Val Gly Gly Leu Ser Phe Leu Val Asn His Asp Phe 1 5 10 <210> 213 <211> 15 <212> PRT <213> 智人 <400> 213 Val Pro Val Gly Gly Leu Ser Phe Leu Val Asn His Asp Phe Ser 1 5 10 15 <210> 214 <211> 16 <212> PRT <213> 智人 <400> 214 Val Pro Val Gly Gly Leu Ser Phe Leu Val Asn His Asp Phe Ser Pro 1 5 10 15 <210> 215 <211> 17 <212> PRT <213> 智人 <400> 215 Val Pro Val Gly Gly Leu Ser Phe Leu Val Asn His Asp Phe Ser Pro 1 5 10 15 Leu <210> 216 <211> 18 <212> PRT <213> 智人 <400> 216 Val Pro Val Gly Gly Leu Ser Phe Leu Val Asn His Asp Phe Ser Pro 1 5 10 15 Leu Glu <210> 217 <211> 9 <212> PRT <213> 智人 <400> 217 Val Thr Asp Gly Lys Glu Val Leu Leu 1 5 <210> 218 <211> 11 <212> PRT <213> 智人 <400> 218 Tyr His Ala Pro Pro Leu Ser Ala Ile Thr Phe 1 5 10 <210> 219 <211> 9 <212> PRT <213> 智人 <400> 219 Tyr Ile Leu Asp Pro Lys Gln Ala Leu 1 5 <210> 220 <211> 9 <212> PRT <213> 智人 <400> 220 Tyr Leu Phe Ala Val Asn Ile Lys Leu 1 5 <210> 221 <211> 9 <212> PRT <213> 智人 <400> 221 Tyr Leu Tyr Ile Thr Lys Val Leu Lys 1 5 <210> 222 <211> 9 <212> PRT <213> 智人 <400> 222 Tyr Pro Asp Ser Lys Asp Leu Thr Met 1 5 <210> 223 <211> 14 <212> PRT <213> 智人 <400> 223 Tyr Pro Thr Ile Lys Ile Leu Lys Lys Gly Gln Ala Val Asp 1 5 10 <210> 224 <211> 15 <212> PRT <213> 智人 <400> 224 Tyr Pro Thr Ile Lys Ile Leu Lys Lys Gly Gln Ala Val Asp Tyr 1 5 10 15 <210> 225 <211> 16 <212> PRT <213> 智人 <400> 225 Tyr Pro Thr Ile Lys Ile Leu Lys Lys Gly Gln Ala Val Asp Tyr Glu 1 5 10 15 <210> 226 <211> 9 <212> PRT <213> 智人 <400> 226 Tyr Pro Val Phe Arg Ile Leu Thr Leu 1 5 <210> 227 <211> 9 <212> PRT <213> 智人 <400> 227 Tyr Val Phe Pro Gly Val Thr Arg Leu 1 5 <210> 228 <211> 9 <212> PRT <213> 智人 <400> 228 Tyr Tyr Leu Asn Glu Ile Gln Ser Phe 1 5 <210> 229 <211> 9 <212> PRT <213> 智人 <400> 229 Tyr Val Leu Asp His Leu Ile Val Val 1 5 <210> 230 <211> 9 <212> PRT <213> 智人 <400> 230 Arg Pro Pro Ile Phe Ile Arg Arg Leu 1 5 <210> 231 <211> 9 <212> PRT <213> 智人 <400> 231 Lys Leu Phe Glu Lys Val Lys Glu Val 1 5 <210> 232 <211> 9 <212> PRT <213> 智人 <400> 232 Lys Pro Ser Glu Lys Ile Gln Val Leu 1 5 <210> 233 <211> 9 <212> PRT <213> 智人 <400> 233 Arg Leu Arg Ala Glu Ala Gln Val Lys 1 5 <210> 234 <211> 8 <212> PRT <213> 智人 <400> 234 Arg Ala Lys Phe Lys Gln Leu Leu 1 5 <210> 235 <211> 10 <212> PRT <213> 智人 <400> 235 Ala Glu Gly Gly Val Gly Trp Arg His Trp 1 5 10 <210> 236 <211> 9 <212> PRT <213> 智人 <400> 236 Asn Leu Val Pro Met Val Ala Thr Val 1 5 <210> 237 <211> 13 <212> PRT <213> 智人 <400> 237 Asn Ser Val Ile Ile Val Asp Lys Asn Gly Arg Leu Val 1 5 10
Claims (39)
- 一種肽,其包括選自 SEQ ID No. 1 至 SEQ ID No. 228 組成群組的一個氨基酸序列、以及與 SEQ ID No. 1 至 SEQ ID No. 228 具有至少 88% 同源性的其變體序列、其中所述變體與主要組織相容性複合體 (MHC) 結合和/或誘導與該變體肽發生 T 細胞交叉反應,及其一種藥用鹽,其中所述肽不是一種全長多肽。
- 如請求項 1 所述的肽或其變體,其中所述肽有能力與 MHC-I 或-II 類分子結合,其中所述肽與 MHC 結合時能夠被 CD4 和/或 CD8 T 細胞識別。
- 如請求項 1 或 2 所述的肽或其變體,其中氨基酸序列包括根據任意 SEQ ID No. 1 至 SEQ ID No. 228 的一個連續的氨基酸延伸區。
- 如請求項 1或 2所述的肽或其變體,其中所述肽或其變體的總長度為 8 至 100 個氨基酸、優選為 8 至 30 個氨基酸、更優選為 8 至 16 個氨基酸、最優選為該肽系由或基本系由根據任意 SEQ ID No. 1 至 SEQ ID No. 228 的氨基酸序列組成。
- 如請求項 1或 2所述的肽或其變體,其中所述肽被修飾和/或包含非肽鍵。
- 如請求項 1 至或 2所述的肽或其變體,其中所述肽為融合蛋白的一部分,尤其包含 HLA-DR 抗原相關不變鏈 (Ii ) 的 N-端氨基酸。
- 如請求項 1 至 6 中任一項所述的一種編碼肽或其變體的核酸,任選連接到一個異源啟動子序列。
- 如請求項 7 所述的一種能夠表達核酸的表達載體。
- 一種重組宿主細胞,其包括如請求項 1 至 6 所述的肽、如請求項 7所述的核酸、如請求項 8所述的表達載體,其中所述宿主細胞優選為抗原提呈細胞,例如樹突狀細胞。
- 如請求項 1 至 6 中任一項所述的肽或其變體、如請求項 7 所述的核酸、如請求項 8 所述或如請求項 9 所述的藥用表達載體。
- 一種製備如請求項 1 至 6 中任一項所述的肽或其變體的方法,該方法包括培養如請求項 9 所述的宿主細胞、其提呈如請求項 1 至 6 所述的肽或表達如請求項 7 所述的核酸或載有如請求項 8 所述的表達載體,以及從該宿主細胞或其培養基中分離出肽或其變體。
- 一種體外製備啟動的 T 淋巴細胞的方法,該方法包括將 T 細胞與載有抗原的人 I 或 II 類 MHC 分子進行體外連接,這些分子在合適的抗原提呈細胞表面或人工類比的抗原提呈細胞結構表面上表達足夠的一段時間從而以抗原特異性方式啟動 T 細胞,其中所述抗原為請求項 1 至 4 中任一項所述的肽。
- 如請求項 12 所述的方法製成的啟動 T 淋巴細胞,其有選擇性地識別一種細胞,該細胞提呈含請求項 1 至 4中任一項給定氨基酸序列的多肽。
- 如請求項13之有效量啟動 T 淋巴細胞在製備殺滅患者體內靶向細胞的藥劑中的用途,其中靶向細胞提呈一種多肽,該多肽含請求項1 至 4 中任一項給定的氨基酸序列。
- 一種抗體,特別是可溶性或膜結合性抗體,其特異性地識別如請求項 1 至 5 的肽或其變體,與 MHC 分子結合時優選為如請求項 1 至 5 中任一項所述的肽或變體,其中該抗體可選地具有進一步的效應子功能,如免疫刺激結構域或毒素。
- 如請求項 1 至 6 中任一項所述的一種肽、如請求項 7 所述的核酸、如請求項 8 所述的一種表達載體、如請求項 9 所述的細胞或如請求項 13 所述的啟動毒性 T 淋巴細胞或如請求項 15 所述的抗體在製造抗癌藥劑中的用途。
- 如請求項 16 所述的用途,其中所述癌症為選自肺癌、腦癌、肝癌、腎癌、結直腸癌、胰腺癌、攝護腺癌、白血病、乳腺癌、梅克爾細胞癌、黑色素瘤、卵巢癌、食管癌以及過度表達來自根據 SEQ ID No. 1 至 SEQ ID No. 228 肽的蛋白的其他腫瘤所構成的一組疾病。
- 一種藥盒套件,包括: (a) 一個容器包含一種藥物組合物,其含有如請求項 1 至 6 中任一項所述的肽或變體、如請求項 7 所述的核酸、如請求項 8 所述的表達載體、如請求項 10 所述的細胞、如請求項 13 所述的啟動 T 淋巴細胞或如請求項 15 所述的溶液或凍乾形式的抗體; (b) 可選地,第二個容器,其含有凍乾粉劑型的稀釋劑或重組溶液; (c) 可選地,至少一種以上肽,選自由 SEQ ID No. 1 至 SEQ ID No. 228組成的組,以及 (d) 可選地,(i) 使用溶液或 (ii) 重組和/或使用凍乾粉劑型的說明書。
- 如請求項 18 所述的藥盒套件,進一步包括一個或多個 (iii) 緩衝劑,(iv) 稀釋劑,(v) 過濾液,(vi) 針,或 (v) 注射器。
- 如請求項 18 或 19 所述的藥盒套件,其中所述肽系選自 SEQ ID No. 1 至 SEQ ID No. 228 組成的組。
- 一種用於生產個性化抗癌疫苗的方法,所述方法包括: a) 識別所述個體患者腫瘤樣本提呈的腫瘤相關肽 (TUMAP); b) 將 a) 中確定的肽與已經接受過免疫原性預篩查和/或與正常組織相比在腫瘤中過度提呈的存儲庫的肽進行比較。 c) 選擇與患者中識別的 TUMAP 匹配的存儲庫中的至少一種肽;和 d) 構想基於步驟 c) 的個性化疫苗。
- 如請求項 21 所述的方法,其中所述 TUMAP 通過以下方法識別: a1) 將腫瘤樣本的表達資料與腫瘤樣本組織類型相應的正常組織樣本的表達資料進行比較,以識別在腫瘤樣本中過度表達或異常表達的蛋白;和 a2) 將表達資料與腫瘤樣本中 MHC I 類和/或 II 類分子結合的 MHC 配體序列相關聯,以識別腫瘤過度表達或異常的蛋白質衍生的 MHC 配體。
- 如請求項 21 或 22 所述的方法,其中 MHC 配體的序列的確定方法是:洗脫來自腫瘤樣本分離的 MHC 分子結合肽,並測序洗脫配體。
- 如請求項 21或 22所述的方法,其中該類型腫瘤樣本相應的正常組織樣本獲得自同一患者。
- 如請求項 21或 22所述的方法,其中存儲庫包含的肽用基於以下步驟進行識別: aa.通過高度並行的方法,例如微陣列或基於測序的表達譜,進行全基因組信使核糖核酸 (mRNA) 表達分析,其包括識別相較于正常組織在惡性組織中過度表達的基因; ab.選擇步驟 aa 檢測到的特異性表達或過量表達的基因所編碼的肽,以及 ac.通過選定的肽確定誘導體內 T 細胞反應,包括使用健康供體或所述患者的人類 T 細胞的體外免疫原性測定;或 ba.用質譜法識別來自所述腫瘤樣本的 HLA 配體; bb.通過高度並行的方法,例如微陣列或基於測序的表達譜,進行全基因組信使核糖核酸 (mRNA) 表達分析,其包括識別相較于正常組織在惡性組織中過度表達的基因; bc.比較識別的 HLA 配體與所述基因表達資料; bd. 選擇步驟 bc 檢測到的特異性表達或過量表達的基因所編碼的肽; be. 重新檢測腫瘤組織上來自步驟 bd 的選定 TUMAP、其在健康組織上缺乏或不經常檢測到,並確定在 mRNA 水準上過度表達的相關性;以及 bf.通過選定的肽確定誘導體內 T 細胞反應,包括使用健康供體或所述患者的人類 T 細胞的體外免疫原性測定。
- 如請求項 21或 22所述的方法,其中存儲庫是否包括肽免疫原性由含有體外免疫原性實驗、個體 HLA 結合性患者免疫監測、MHC 多聚體染色、ELISPOT 分析和/或細胞內細胞因數染色的一種方法確定。
- 如請求項 21或 22所述的方法,其中所述存儲庫包括選自 SEQ ID No. 1 至 SEQ ID No. 228 組成的組的多個肽。
- 如請求項 21或 22所述的方法,其進一步包括以下步驟:識別與該個體患者相應正常組織相比對所述腫瘤樣本具有唯一性的至少一種突變,以及選擇與突變相關並包含於疫苗或用於產生細胞療法的一種肽。
- 如請求項 28所述的方法,其中所述至少一種突變通過全基因組測序鑒定。
- 一種 T 細胞受體,優選為與 HLA 配體反應的可溶性或膜結合 T 細胞受體,其中所述配體由與選自 SEQ ID No. 1 至 SEQ ID No. 228 組成的組的氨基酸序列至少 75% 同源性。
- 如請求項 30 所述的 T 細胞受體,其中所述氨基酸序列與 SEQ ID No. 1 至 SEQ ID No. 228 至少 88% 同源。
- 如請求項 30 或 31 所述的 T 細胞受體,其中所述氨基酸序列包含 SEQ ID No. 1 至 SEQ ID No. 228 中的任何一個。
- 如請求項 30 或 31所述的 T 細胞受體,其中所述 T 細胞受體作為可溶性分子提供並任選具有進一步的效應子功能,如免疫刺激結構域或毒素。
- 如請求項 30 至 33 中任一項所述的一種編碼 TCR 的核酸,任選連接到一個異源啟動子序列。
- 如請求項 34 中所述的一種可表達核酸的表達載體。
- 一種宿主細胞,其包括如請求項 34 所述的核酸或編碼如請求項 15 所述的一種抗體或如請求項 35 所述的表達載體,其中所述宿主細胞優選為 T 細胞或 NK 細胞。
- 如請求項 30 至 33 中任一項所述的一種製備 T 細胞受體的方法,所述方法包括如請求項 36 所述的培養宿主細胞,以及從宿主細胞和/或其培養基中分離出所述 T 細胞受體。
- 一種藥物組合物,其包括至少一種活性成分,該成分選自以下項組成的組 a) 選自由 SEQ ID No. 1 至 SEQ ID No. 228 組成的組的一種肽或其藥用鹽; b) 與根據 a) 中的肽和/或肽 MHC 複合體產生反應的一種 T 細胞受體; c) 由根據 a) 中所述的肽以及 HLA-DR 抗原相關不變鏈 (Ii) 的 第 1 至 80 N-端氨基酸組成的融合蛋白; d) 編碼 a) 至 c) 任一項的一種核酸或一種包含所述核酸的表達載體。 e) 包括 d 中表達載體的宿主細胞, f) 一種啟動的 T 淋巴細胞,通過一種方法獲得,該方法包括將 T 細胞與 a) 中所述肽進行體外連接,該肽在合適的抗原提呈細胞表面表達足夠的一段時間從而以抗原特異性方式啟動所述 T 細胞;以及將這些活化的 T 細胞轉入自體或其他患者的方法; g) 與 a) 中一種肽和/或肽-MHC 複合體反應的一種抗體或可溶性 T 細胞受體和/或提供根據 a) 所述的並有可能通過與免疫啟動結構域或毒素融合而修飾的一種肽, h) 一種適體,其識別選自包含 SEQ ID No. 1 至 SEQ ID No. 228 組成的組的一種肽和/或選自包含 SEQ ID No. 1 至 SEQ ID No. 228 組成的組的一種肽與 MHC 分子的一種複合體, i) 根據 a) 至 h) 任一項的一種共軛或標記肽或支架以及藥用載體,或藥用賦形劑和/或穩定劑。
- 一種適體,其特異性地識別如請求項 1 至 5 的肽或其變體,優選為如請求項 1 至 5 中任一項所述的、與 MHC 分子結合的肽或變體。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201562184500P | 2015-06-25 | 2015-06-25 | |
GBGB1511191.7A GB201511191D0 (en) | 2015-06-25 | 2015-06-25 | T-cell epitopes for the immunotherapy of myeloma |
Publications (1)
Publication Number | Publication Date |
---|---|
TW201710289A true TW201710289A (zh) | 2017-03-16 |
Family
ID=53872214
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW105118858A TW201710289A (zh) | 2015-06-25 | 2016-06-16 | 用於骨髓瘤和其他癌症免疫治療的新型細胞表位和細胞表位組合物 |
Country Status (18)
Country | Link |
---|---|
US (2) | US10196422B2 (zh) |
EP (1) | EP3313860A2 (zh) |
JP (1) | JP2018520653A (zh) |
KR (1) | KR20180012865A (zh) |
CN (1) | CN107889489A (zh) |
AU (1) | AU2016284857A1 (zh) |
BR (1) | BR112017027639A2 (zh) |
CA (1) | CA2990507A1 (zh) |
CR (1) | CR20180051A (zh) |
EA (1) | EA201792484A1 (zh) |
GB (1) | GB201511191D0 (zh) |
IL (1) | IL255932A (zh) |
MA (5) | MA46508A1 (zh) |
MX (1) | MX2017016207A (zh) |
PE (1) | PE20180174A1 (zh) |
SG (1) | SG10202001488VA (zh) |
TW (1) | TW201710289A (zh) |
WO (1) | WO2016207164A2 (zh) |
Families Citing this family (59)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10801070B2 (en) | 2013-11-25 | 2020-10-13 | The Broad Institute, Inc. | Compositions and methods for diagnosing, evaluating and treating cancer |
US11725237B2 (en) | 2013-12-05 | 2023-08-15 | The Broad Institute Inc. | Polymorphic gene typing and somatic change detection using sequencing data |
NZ721908A (en) | 2013-12-20 | 2022-12-23 | Massachusetts Gen Hospital | Combination therapy with neoantigen vaccine |
WO2016100975A1 (en) | 2014-12-19 | 2016-06-23 | Massachsetts Institute Ot Technology | Molecular biomarkers for cancer immunotherapy |
CA3003304A1 (en) * | 2015-10-12 | 2017-04-20 | Nantomics, Llc | Viral neoepitopes and uses thereof |
IL294014B2 (en) | 2015-10-23 | 2024-07-01 | Harvard College | Nucleobase editors and uses thereof |
WO2017106638A1 (en) | 2015-12-16 | 2017-06-22 | Gritstone Oncology, Inc. | Neoantigen identification, manufacture, and use |
IL261089B2 (en) | 2016-02-19 | 2023-04-01 | Nant Holdings Ip Llc | Methods of immunogenic regulation |
JP7075125B2 (ja) | 2016-05-25 | 2022-05-25 | イマティクス バイオテクノロジーズ ゲーエムベーハー | 標的としてのおよび胆嚢がんおよび胆管がんおよびその他のがんに対する免疫療法で使用するための新規ペプチド、ペプチド組み合わせ |
GB201609193D0 (en) | 2016-05-25 | 2016-07-06 | Immatics Biotechnologies Gmbh | Novel peptides, combination of peptides as targets for use in immunotherapy against gallbladder cancer and cholangiocarcinoma and other cancers |
CA3032688A1 (en) * | 2016-08-02 | 2018-02-08 | Nantcell, Inc. | Transfection of dendritic cells and methods therefor |
US11542509B2 (en) | 2016-08-24 | 2023-01-03 | President And Fellows Of Harvard College | Incorporation of unnatural amino acids into proteins using base editing |
DE102016123893A1 (de) | 2016-12-08 | 2018-06-14 | Immatics Biotechnologies Gmbh | T-Zellrezeptoren mit verbesserter Bindung |
KR102379955B1 (ko) | 2016-12-08 | 2022-03-29 | 이매틱스 바이오테크놀로지스 게엠베하 | 짝짓기가 향상된 t 세포 수용체 |
JP2020510038A (ja) * | 2017-03-09 | 2020-04-02 | プレジデント アンド フェローズ オブ ハーバード カレッジ | がんワクチン |
SG10202100326SA (en) | 2017-04-10 | 2021-02-25 | Immatics Biotechnologies Gmbh | Peptides and combination of peptides for use in immunotherapy against leukemias and other cancers |
WO2018189152A2 (en) | 2017-04-10 | 2018-10-18 | Immatics Biotechnologies Gmbh | Peptides and combination of peptides for use in immunotherapy against leukemias and other cancers |
WO2018224166A1 (en) * | 2017-06-09 | 2018-12-13 | Biontech Rna Pharmaceuticals Gmbh | Methods for predicting the usefulness of disease specific amino acid modifications for immunotherapy |
SI3652215T1 (sl) | 2017-07-14 | 2021-08-31 | Immatics Biotechnologies Gmbh | Izboljšana polipeptidna molekula z dvojno specifičnostjo |
DE102017115966A1 (de) | 2017-07-14 | 2019-01-17 | Immatics Biotechnologies Gmbh | Polypeptidmolekül mit verbesserter zweifacher Spezifität |
ES3029080T3 (en) | 2017-10-10 | 2025-06-23 | Seattle Project Corp | Neoantigen identification using hotspots |
CN111630602A (zh) | 2017-11-22 | 2020-09-04 | 磨石肿瘤生物技术公司 | 减少新抗原的接合表位呈递 |
DE102017127984B4 (de) | 2017-11-27 | 2019-12-05 | Immatics US, Inc. | Verfahren für die Vermehrung und Aktivierung von γδ-T-Zellen |
CN107937515B (zh) * | 2017-12-06 | 2018-11-09 | 北京泱深生物信息技术有限公司 | 一种阿尔茨海默的诊疗基因靶点及其应用 |
US11464800B2 (en) | 2018-02-09 | 2022-10-11 | Immatics US, Inc. | Methods for manufacturing T cells |
DE102018108612A1 (de) | 2018-03-21 | 2019-09-26 | Immatics US, Inc. | Verfahren zur erhöhung der persistenz von adoptiv infundierten t-zellen |
TW202016131A (zh) * | 2018-05-16 | 2020-05-01 | 德商英麥提克生物技術股份有限公司 | 用於抗癌免疫治療的肽 |
WO2019226953A1 (en) | 2018-05-23 | 2019-11-28 | The Broad Institute, Inc. | Base editors and uses thereof |
TW202019955A (zh) | 2018-07-31 | 2020-06-01 | 德商英麥提克生物技術股份有限公司 | B*07 限制肽和肽組合的抗癌免疫治療和相關方法 |
US20210189376A1 (en) * | 2018-08-29 | 2021-06-24 | Amyris, Inc. | Cells and methods for selection based assay |
KR20210049150A (ko) * | 2018-08-30 | 2021-05-04 | 유니버시떼 드 몬트리얼 | 종양 특이적 항원을 확인하기 위한 프로테오게노믹 기반의 방법 |
US12281338B2 (en) | 2018-10-29 | 2025-04-22 | The Broad Institute, Inc. | Nucleobase editors comprising GeoCas9 and uses thereof |
US20200297768A1 (en) | 2019-03-19 | 2020-09-24 | Immatics US, Inc. | Cd28 t cell cultures, compositions, and methods of using thereof |
GB2601617B (en) | 2019-03-19 | 2024-02-21 | Broad Inst Inc | Methods and compositions for editing nucleotide sequences |
EA202193139A1 (ru) | 2019-05-27 | 2022-03-01 | Имматикс Юс, Инк. | Вирусные векторы и их применение в адоптивной клеточной терапии |
US20200384028A1 (en) | 2019-06-06 | 2020-12-10 | Immatics Biotechnologies Gmbh | Sorting with counter selection using sequence similar peptides |
BR112021025943A2 (pt) * | 2019-06-25 | 2022-02-08 | Univ Montreal | Antígenos específicos de tumor inovadores para câncer de ovário e usos dos mesmos |
US20210032370A1 (en) | 2019-08-02 | 2021-02-04 | Immatics Biotechnologies Gmbh | Recruiting agent further binding an mhc molecule |
US20210154280A1 (en) * | 2019-11-18 | 2021-05-27 | Epivax Oncology, Inc. | Neo-epitope vaccines and methods of treating cancer |
TW202144389A (zh) * | 2020-02-14 | 2021-12-01 | 美商健生生物科技公司 | 在多發性骨髓瘤中表現之新抗原及其用途 |
AU2021225817A1 (en) | 2020-02-24 | 2022-10-20 | Immatics US, Inc. | Methods for expanding T cells for the treatment of cancer and related malignancies |
DE102020106710A1 (de) | 2020-03-11 | 2021-09-16 | Immatics US, Inc. | Wpre-mutantenkonstrukte, zusammensetzungen und zugehörige verfahren |
DE102020111571A1 (de) | 2020-03-11 | 2021-09-16 | Immatics US, Inc. | Wpre-mutantenkonstrukte, zusammensetzungen und zugehörige verfahren |
CA3175860A1 (en) * | 2020-03-27 | 2021-09-30 | The Trustees Of Indiana University | Immunotherapeutic targets in multiple myeloma and methods for their identification |
IL297761A (en) | 2020-05-08 | 2022-12-01 | Broad Inst Inc | Methods and compositions for simultaneously editing two helices of a designated double-helix nucleotide sequence |
KR102361479B1 (ko) * | 2020-06-18 | 2022-02-11 | 고려대학교 산학협력단 | siRNA의 생성 및 기능 증진 활성을 갖는 CMTR1의 신규용도 |
US12295997B2 (en) | 2020-07-06 | 2025-05-13 | Janssen Biotech, Inc. | Prostate neoantigens and their uses |
WO2022040631A1 (en) | 2020-08-21 | 2022-02-24 | Immatics US, Inc. | Methods for isolating cd8+ selected t cells |
JP2024502034A (ja) | 2020-12-31 | 2024-01-17 | イマティクス ユーエス,アイエヌシー. | Cd8ポリペプチド、組成物、及びそれらの使用方法 |
US12162940B2 (en) | 2021-05-05 | 2024-12-10 | Immatics Biotechnologies Gmbh | BMA031 antigen binding polypeptides |
CN113476619B (zh) * | 2021-07-08 | 2022-11-29 | 上海交通大学医学院附属仁济医院 | 一种18f标记纳米抗体探针及其制备方法和应用 |
WO2023025851A1 (en) | 2021-08-24 | 2023-03-02 | Immatics US, Inc. | Selection of immune cells using peptide mhc complexes generated by conditional ligand exchange |
US20230089392A1 (en) | 2021-09-20 | 2023-03-23 | Immatics US, Inc. | Monocyte depletion of t cells populations for t-cell therapy |
US20230192886A1 (en) | 2021-11-08 | 2023-06-22 | Immatics Biotechnologies Gmbh | Adoptive cell therapy combination treatment and compositions thereof |
WO2023212655A1 (en) | 2022-04-28 | 2023-11-02 | Immatics US, Inc. | Il-12 polypeptides, il-15 polypeptides, il-18 polypeptides, cd8 polypeptides, compositions, and methods of using thereof |
WO2023212691A1 (en) | 2022-04-28 | 2023-11-02 | Immatics US, Inc. | DOMINANT NEGATIVE TGFβ RECEPTOR POLYPEPTIDES, CD8 POLYPEPTIDES, CELLS, COMPOSITIONS, AND METHODS OF USING THEREOF |
AU2023262596A1 (en) | 2022-04-28 | 2024-12-05 | Immatics US, Inc. | Membrane-bound il-15, cd8 polypeptides, cells, compositions, and methods of using thereof |
US20230355678A1 (en) | 2022-05-05 | 2023-11-09 | Immatics US, Inc. | Methods for improving t cell efficacy |
US20250134931A1 (en) | 2023-11-01 | 2025-05-01 | Immatics US, Inc. | Membrane-bound il-15, cd8 polypeptides, cells, compositions, and methods of using thereof |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7368531B2 (en) * | 1997-03-07 | 2008-05-06 | Human Genome Sciences, Inc. | Human secreted proteins |
WO2003064599A2 (en) * | 2002-01-25 | 2003-08-07 | Origene Technologies, Inc | Cancer genes |
DK1483294T3 (da) * | 2002-03-01 | 2010-11-08 | Immunomedics Inc | Internaliserende anti-CD74-antistoffer og fremgangsmåder til deres anvendelse |
DE10360456A1 (de) * | 2003-12-22 | 2005-07-28 | Vaecgene Biotech Gmbh | Tumorantigene und deren Verwendung |
US7998695B2 (en) * | 2005-02-10 | 2011-08-16 | Oncotherapy Science, Inc. | Method of diagnosing bladder cancer |
PL1760089T3 (pl) | 2005-09-05 | 2010-03-31 | Immatics Biotechnologies Gmbh | Peptydy towarzyszące nowotworom, wiążące się z cząsteczkami klasy I i II antygenów ludzkich leukocytów (HLA) i związana z nimi szczepionka przeciwnowotworowa |
US20100009463A1 (en) * | 2006-07-13 | 2010-01-14 | Peter Hornbeck | Reagents for the detection of protein phosphorylation in signaling pathways |
ES2555282T3 (es) * | 2007-07-27 | 2015-12-30 | Immatics Biotechnologies Gmbh | Nuevos epítopos inmunogénicos para inmunoterapia |
DK2567707T3 (en) * | 2007-07-27 | 2017-07-31 | Immatics Biotechnologies Gmbh | Composition of tumour-associated peptides and related anti-cancer vaccine |
US20100209427A1 (en) * | 2008-09-24 | 2010-08-19 | Yu Li | Lysine acetylation sites |
US10706955B2 (en) * | 2010-03-23 | 2020-07-07 | Iogenetics, Llc | Bioinformatic processes for determination of peptide binding |
GB201006360D0 (en) | 2010-04-16 | 2010-06-02 | Immatics Biotechnologies Gmbh | Method for differentially quantifying naturally processed HLA-restricted peptides for cancer, autoimmune and infectious diseases immunotherapy development |
GB201009222D0 (en) | 2010-06-02 | 2010-07-21 | Immatics Biotechnologies Gmbh | Improved cancer therapy based on tumour associated antigens derived from cyclin D1 |
US10155031B2 (en) * | 2012-11-28 | 2018-12-18 | Biontech Rna Pharmaceuticals Gmbh | Individualized vaccines for cancer |
HK1214652A1 (zh) * | 2013-03-13 | 2016-07-29 | 克里蒂科斯有限责任公司 | 用於檢測胰腺癌的方法和組合物 |
US20160132631A1 (en) * | 2013-06-10 | 2016-05-12 | Iogenetics, Llc | Bioinformatic processes for determination of peptide binding |
-
2015
- 2015-06-25 GB GBGB1511191.7A patent/GB201511191D0/en not_active Ceased
-
2016
- 2016-06-16 TW TW105118858A patent/TW201710289A/zh unknown
- 2016-06-21 CN CN201680037125.9A patent/CN107889489A/zh active Pending
- 2016-06-21 MA MA46508A patent/MA46508A1/fr unknown
- 2016-06-21 JP JP2017560907A patent/JP2018520653A/ja active Pending
- 2016-06-21 CR CR20180051A patent/CR20180051A/es unknown
- 2016-06-21 AU AU2016284857A patent/AU2016284857A1/en not_active Abandoned
- 2016-06-21 KR KR1020187001628A patent/KR20180012865A/ko not_active Withdrawn
- 2016-06-21 CA CA2990507A patent/CA2990507A1/en not_active Abandoned
- 2016-06-21 BR BR112017027639A patent/BR112017027639A2/pt not_active Application Discontinuation
- 2016-06-21 MA MA46507A patent/MA46507A1/fr unknown
- 2016-06-21 MA MA41521A patent/MA41521A1/fr unknown
- 2016-06-21 EP EP16732263.5A patent/EP3313860A2/en not_active Withdrawn
- 2016-06-21 MX MX2017016207A patent/MX2017016207A/es unknown
- 2016-06-21 MA MA46504A patent/MA46504A1/fr unknown
- 2016-06-21 SG SG10202001488VA patent/SG10202001488VA/en unknown
- 2016-06-21 MA MA46506A patent/MA46506A1/fr unknown
- 2016-06-21 WO PCT/EP2016/064317 patent/WO2016207164A2/en active Application Filing
- 2016-06-21 PE PE2017002495A patent/PE20180174A1/es unknown
- 2016-06-21 EA EA201792484A patent/EA201792484A1/ru unknown
- 2016-06-24 US US15/191,895 patent/US10196422B2/en active Active
-
2017
- 2017-11-26 IL IL255932A patent/IL255932A/en unknown
-
2018
- 2018-11-20 US US16/196,812 patent/US10377797B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
MA41521A1 (fr) | 2018-06-29 |
MA46504A1 (fr) | 2021-03-31 |
MA46506A1 (fr) | 2021-03-31 |
JP2018520653A (ja) | 2018-08-02 |
SG10202001488VA (en) | 2020-04-29 |
CN107889489A (zh) | 2018-04-06 |
MA46507A1 (fr) | 2021-03-31 |
MX2017016207A (es) | 2018-07-06 |
EP3313860A2 (en) | 2018-05-02 |
WO2016207164A3 (en) | 2017-02-02 |
AU2016284857A1 (en) | 2017-12-07 |
US10196422B2 (en) | 2019-02-05 |
MA46508A1 (fr) | 2021-09-30 |
WO2016207164A2 (en) | 2016-12-29 |
US20170022251A1 (en) | 2017-01-26 |
CA2990507A1 (en) | 2016-12-29 |
US10377797B2 (en) | 2019-08-13 |
CR20180051A (es) | 2018-05-25 |
PE20180174A1 (es) | 2018-01-22 |
GB201511191D0 (en) | 2015-08-12 |
KR20180012865A (ko) | 2018-02-06 |
IL255932A (en) | 2018-01-31 |
EA201792484A1 (ru) | 2018-05-31 |
US20190077832A1 (en) | 2019-03-14 |
BR112017027639A2 (pt) | 2018-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10377797B2 (en) | Cell epitopes and combination of cell epitopes for use in the immunotherapy of myeloma and other cancers | |
TWI658050B (zh) | 用於抗cll及其他癌症之免疫治療的新穎胜肽及胜肽組合物 | |
TWI771694B (zh) | 子宮癌治療 | |
TW201841937A (zh) | 用於白血病和其他癌症免疫治療的新穎肽和肽組合物 | |
TW201734036A (zh) | 用於nhl和其他癌症免疫治療的新型肽和肽組合物 | |
TW201734039A (zh) | 用於膀胱癌和其它癌症免疫治療的肽、肽組合物和基於細胞的藥物 | |
TW201713682A (zh) | 用於攝護腺癌和其他癌症免疫治療的新型肽和肽組合物 | |
CN107922469A (zh) | 用于上皮性卵巢癌和其他癌症免疫治疗的新型肽和肽组合物 | |
CN114040921A (zh) | 用于不同类型癌症免疫治疗的非经典来源的肽和肽组合 | |
TW201706298A (zh) | 用於抗結腸直腸癌及其他癌症的新穎胜肽及胜肽的組合及其支架 | |
TW201841934A (zh) | 用於治療癌症免疫治療的新穎肽及其肽組合物 | |
US10899794B2 (en) | Cell epitopes and combination of cell epitopes for use in the immunotherapy of myeloma and other cancers | |
JP7026970B2 (ja) | 白血病およびその他のがんに対する免疫療法において使用するためのペプチドおよびペプチドの組み合わせ | |
TW201738266A (zh) | 用於aml和其他癌症免疫治療的新型肽和肽組合物 | |
TW201800417A (zh) | 新型肽、肽組合物作為靶標以及用於膽囊癌、膽管癌和其他癌症免疫治療 | |
IL260877B1 (en) | New peptides and a combination of peptides for use in immunotherapy against different types of tumors | |
TW202126676A (zh) | 用於抗cll及其他癌症之免疫治療的新穎胜肽及胜肽組合物 | |
CN114028549A (zh) | 用于nhl和其他癌症免疫治疗的新型肽和肽组合物 |