TW201705549A - Light-emitting device - Google Patents
Light-emitting device Download PDFInfo
- Publication number
- TW201705549A TW201705549A TW104123801A TW104123801A TW201705549A TW 201705549 A TW201705549 A TW 201705549A TW 104123801 A TW104123801 A TW 104123801A TW 104123801 A TW104123801 A TW 104123801A TW 201705549 A TW201705549 A TW 201705549A
- Authority
- TW
- Taiwan
- Prior art keywords
- light
- brightness
- illuminating device
- carrier
- optical structure
- Prior art date
Links
Landscapes
- Led Device Packages (AREA)
Abstract
Description
本發明係揭露一種發光裝置,尤其是具有光學結構之發光裝置。The invention discloses a light-emitting device, in particular a light-emitting device having an optical structure.
用於固態照明裝置的發光二極體(Light-Emitting Diode;LED)具有耗能低、壽命長、體積小、反應速度快以及光學輸出穩定等特性,因此發光二極體慢慢地取代傳統之照明產品並被應用於一般的家用照明。Light-Emitting Diode (LED) for solid-state lighting devices has the characteristics of low energy consumption, long life, small size, fast response, and stable optical output. Therefore, the light-emitting diodes slowly replace the traditional ones. Lighting products are also used in general household lighting.
近年來,發光二極體製作而成之燈絲雖逐漸應用於發光二極體燈泡之中。然而,發光二極體燈絲的成本、效率仍有待改善。再者,使發光二極體燈絲發出全方向性之光場,並處理散熱問題,仍是發展的目標。In recent years, filaments made of light-emitting diodes have gradually been used in light-emitting diode bulbs. However, the cost and efficiency of the LED filament still need to be improved. Furthermore, it is still a development goal to cause the light-emitting diode filament to emit an omnidirectional light field and to deal with heat dissipation problems.
為讓本發明之上述和其他目的、特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式,說明如下。The above and other objects, features, and advantages of the present invention will become more apparent and understood.
一種發光裝置包含一載板,具有一第一表面及一相對於第一表面之第二表面、及一發光單元,設置在第一表面上,會發出光線朝向但不穿過第一表面。發光裝置於第一表面之上方可量得一第一亮度,於第二表面之下方可量得一第二亮度,第一亮度與該第二亮度之比值為2~9。A light-emitting device includes a carrier plate having a first surface and a second surface opposite to the first surface, and a light-emitting unit disposed on the first surface to emit light toward but not through the first surface. The illuminating device can measure a first brightness above the first surface, and a second brightness can be measured under the second surface, and the ratio of the first brightness to the second brightness is 2-9.
以下實施例將伴隨著圖式說明本發明之概念,在圖式或說明中,相似或相同之部分係使用相同之標號,並且在圖式中,元件之形狀或厚度可擴大或縮小。需特別注意的是,圖中未繪示或描述之元件,可以是熟習此技藝之人士所知之形式。The present invention will be described with reference to the drawings, in which the same or the same reference numerals are used in the drawings or the description, and in the drawings, the shape or thickness of the elements may be enlarged or reduced. It is to be noted that elements not shown or described in the figures may be in a form known to those skilled in the art.
第1A圖顯示本發明一實施例中一發光裝置100之立體示意圖。第1B圖僅顯示第1A圖中載板11之俯視示意圖。第1C圖僅顯示第1A圖中載板11之仰視示意圖。第1D圖顯示第1A圖且沿著第1B圖I-I線之剖面示意圖。第1E圖顯示第1A圖YZ方向的剖面示意圖。參照第1A~1E圖,發光裝置100包含一光學結構10、一載板11、及複數個發光單元12。載板11具有一上表面111及一下表面112。一電路結構13形成於上表面111上且具有一第一電極墊131、一第二電極墊132及一導電線路133。發光單元12係設置於上表面111之導電線路133上並藉由導電線路133而彼此串聯連接。在其他實施例,可藉由其他種導電線路133之設計使得發光單元12彼此並聯、串並連接、或以橋式結構連接。在此實施例中,載板11不會被發光單元12發出之光穿透(不透光),因此,即使發光單元12發出光線朝向上表面111,但並不穿過上表面111。載板11可為電路板。電路板的基板材料(core layer)包含金屬、熱塑性材料、熱固性材料、或陶瓷材料。金屬包含鋁、銅、金、銀等合金、疊層、或單層。熱固性材料包含酚醛樹脂(Phonetic)、環氧樹脂(Epoxy)、雙馬來醯亞胺三嗪樹脂(Bismaleimide Triazine)或其組合。熱塑性材料包含聚亞醯胺樹脂(Polyimide resin)、聚四氟乙烯(Polytetrafluorethylene)等。陶瓷材料包含氧化鋁、氮化鋁、碳化矽鋁等。FIG. 1A is a perspective view showing a light emitting device 100 according to an embodiment of the present invention. Fig. 1B only shows a schematic plan view of the carrier 11 in Fig. 1A. Fig. 1C only shows a bottom view of the carrier 11 in Fig. 1A. Fig. 1D is a cross-sectional view showing the 1A diagram and taken along line I-I of Fig. 1B. Fig. 1E is a schematic cross-sectional view showing the YZ direction of Fig. 1A. Referring to FIGS. 1A-1E, the light-emitting device 100 includes an optical structure 10, a carrier 11, and a plurality of light-emitting units 12. The carrier 11 has an upper surface 111 and a lower surface 112. A circuit structure 13 is formed on the upper surface 111 and has a first electrode pad 131, a second electrode pad 132 and a conductive line 133. The light emitting units 12 are disposed on the conductive lines 133 of the upper surface 111 and connected to each other in series by the conductive lines 133. In other embodiments, the light-emitting units 12 may be connected in parallel, in series, or in a bridge structure by other conductive lines 133. In this embodiment, the carrier 11 is not penetrated (opaque) by the light emitted from the light-emitting unit 12, and therefore, even if the light-emitting unit 12 emits light toward the upper surface 111, it does not pass through the upper surface 111. The carrier board 11 can be a circuit board. The core layer of the circuit board comprises a metal, a thermoplastic material, a thermosetting material, or a ceramic material. The metal comprises an alloy of aluminum, copper, gold, silver or the like, a laminate, or a single layer. The thermosetting material comprises a phenolic resin (Phonetic), an epoxy resin (Epoxy), a Bismaleimide Triazine resin, or a combination thereof. The thermoplastic material comprises a polyimide resin, a polytetrafluorethylene or the like. The ceramic material includes aluminum oxide, aluminum nitride, tantalum aluminum carbide, and the like.
如第1A、1B及1C圖所示,一反射層14形成於上表面111及電路結構13上,且僅露出欲與發光單元12電連接之導電線路1331、1332以及電極墊131、132。導電線路1331與導電線路1332彼此物理性分離。在此實施例中,導電線路1332A與電極墊131彼此物理性分離且導電線路1331B與電極墊132彼此物理性分離。每一發光單元12包含一第一連接墊120A及一第二連接墊120B分別與曝露出之導電線路1331、1332物理性及電性連接。在本實施例中,曝露出之導電線路1331,1332為長方形且其長邊與載板11之長邊平行。在另一實施例中,曝露出之導電線路1331,1332之長邊與載板11之短邊平行,或是與長邊夾一介於0~90∘的角度。或者,曝露出之導電線路1331,1332可為圓形、橢圓形、或多邊形。此外,反射層14的設置可幫助反射由發光單元12射向朝載板11的光以增加發光裝置100整體之發光效率。As shown in FIGS. 1A, 1B, and 1C, a reflective layer 14 is formed on the upper surface 111 and the circuit structure 13, and only the conductive traces 1331, 1332 and the electrode pads 131, 132 to be electrically connected to the light-emitting unit 12 are exposed. The conductive line 1331 and the conductive line 1332 are physically separated from each other. In this embodiment, the conductive line 1332A and the electrode pad 131 are physically separated from each other and the conductive line 1331B and the electrode pad 132 are physically separated from each other. Each of the light-emitting units 12 includes a first connection pad 120A and a second connection pad 120B that are physically and electrically connected to the exposed conductive lines 1331 and 1332, respectively. In the present embodiment, the exposed conductive lines 1331, 1332 are rectangular and have long sides parallel to the long sides of the carrier 11. In another embodiment, the long sides of the exposed conductive lines 1331, 1332 are parallel to the short sides of the carrier 11, or are at an angle of 0 to 90 与 with the long sides. Alternatively, the exposed conductive lines 1331, 1332 can be circular, elliptical, or polygonal. Further, the arrangement of the reflective layer 14 can help reflect the light emitted by the light emitting unit 12 toward the carrier 11 to increase the luminous efficiency of the entire light emitting device 100.
如第1C圖及第1D圖所示,發光單元12未設置於下表面112。電路結構13更包含一第三電極墊134與一第四電極墊135形成於載板11之下表面112。第三電極墊134與第四電極墊135分別相對應第一電極墊131與第二電極墊132的位置。一第一貫孔151貫穿載板11且具有一導電物質完全或部分形成於其中以電連接第一電極墊131及第三電極墊134。一第二貫孔152貫穿載板11且具有一導電物質完全或部分形成於其中以電連接第二電極墊132及第四電極墊135。於一實施利中,外部電源(power supply)係分別連接第一電極墊131及第二電極墊132以使複數個發光單元12發光。第三電極墊134及第四電極墊135可以不與外部電源直接物理性連接。當電極墊131、132與外部電源利用電焊(碰焊)方式形成電連接時,由於需要一金屬夾夾置載板11,電極墊134、135的設置可幫助製程過程中夾取發光裝置100的穩固性以及提供一導電路徑。在一實施例中,當利用焊線將電極墊131、132與外部電源形成電連接時,可不形成第三電極墊134及第四電極墊135。As shown in FIGS. 1C and 1D, the light-emitting unit 12 is not provided on the lower surface 112. The circuit structure 13 further includes a third electrode pad 134 and a fourth electrode pad 135 formed on the lower surface 112 of the carrier 11 . The third electrode pad 134 and the fourth electrode pad 135 respectively correspond to the positions of the first electrode pad 131 and the second electrode pad 132. A first through hole 151 penetrates the carrier 11 and has a conductive material completely or partially formed therein to electrically connect the first electrode pad 131 and the third electrode pad 134. A second through hole 152 extends through the carrier 11 and has a conductive material completely or partially formed therein to electrically connect the second electrode pad 132 and the fourth electrode pad 135. In an implementation, an external power supply is connected to the first electrode pad 131 and the second electrode pad 132 respectively to enable the plurality of light emitting units 12 to emit light. The third electrode pad 134 and the fourth electrode pad 135 may not be directly physically connected to an external power source. When the electrode pads 131, 132 are electrically connected to the external power source by means of electric welding, the electrode pads 134, 135 are arranged to facilitate the clamping of the light-emitting device 100 during the process. Robustness and providing a conductive path. In one embodiment, when the electrode pads 131, 132 are electrically connected to an external power source by a bonding wire, the third electrode pad 134 and the fourth electrode pad 135 may not be formed.
如第1A及1E圖所示,光學結構10係包覆載板11之上表面111、下表面112及載板11長邊兩側之側壁113,但曝露出電極墊131、132、134、135。光學結構10具有一似長方形之剖面。第1F圖為第1E圖之放大圖。光學結構10具有一弧形之頂表面101;兩實質上為直線形且相互平行之側表面102;兩側底表面103;及一實質上為平面之底表面104,連接兩側底表面103。頂表面101位於載板11之上表面111之上方,且底表面104位於載板11之下表面112之下方。側表面102係自頂表面101沿著Z方向往載板11之下表面112延伸。每一側底表面103包含一第一部份1031,自側表面102以一傾斜角度往底表面104延伸;以及一第二部分1302。圖中左右兩側之第二部分1302分別連接至第一部份1031並往底表面104呈弧形狀延伸。載板11之下表面112與光學結構10之底表面104相距一介於0.3 mm~0.7 mm的第一距離(D1);載板11之上表面111與光學結構10之頂表面101相距一介於0.8 mm~0.13 mm的第二距離(D2)。第二距離(D2)係大於第一距離(D1)。頂表面101之弧形具有一介於0.4 mm ~0.7 mm之曲率半徑,且具有一弧形角度θ1(弧形所對應的圓心角)介於40∘~60∘或是一弧度介於2π/9~π/3。側底表面103之第二部分之弧形具有一介於0.2~0.4 mm之曲率半徑,且具有一弧形角度θ2(弧形所對應的圓心角)介於5∘~20∘或一弧度介於π/36~π/9 。一擴散粉(例如:二氧化鈦、氧化鋯、氧化鋅或氧化鋁)可選擇性地填入光學結構10內以幫助擴散、散射發光單元12所發出的光。擴散粉於光學結構10中的重量百分濃度(w/w)介於0.1~0.5%且具有一10 nm~100 nm或10~50μm的顆粒尺寸。在一實施例中,擴散粉於膠體中的重量百粉濃度可藉由熱重分析儀(thermogravimetric analyzer 、TGA)量測。簡要之,在加熱過程中,膠體會由於溫度逐漸升高且在達到一特定溫度後而被移除(蒸發或熱裂解),殘留擴散粉,此時可得知重量的變化,因此可求得膠體與擴散粉各自的重量並推得擴散粉於膠體中之重量百分濃度。或者,可先量測膠體與擴散粉的總重量,再利用溶劑將膠體移除,最後量測擴散粉的重量,進而求得擴散粉於膠體中之重量百分濃度。在第1A圖中,雖可視得發光單元12。然,當擴散粉填入至光學結構10中且達到一定濃度時,會使得光學結構10呈現白色狀而無法視得內部之發光單元12。As shown in FIGS. 1A and 1E, the optical structure 10 covers the upper surface 111, the lower surface 112 of the carrier 11, and the side walls 113 on both sides of the long side of the carrier 11, but exposes the electrode pads 131, 132, 134, 135. . The optical structure 10 has a rectangular-like cross section. Fig. 1F is an enlarged view of Fig. 1E. The optical structure 10 has an arcuate top surface 101; two substantially linear and mutually parallel side surfaces 102; two side bottom surfaces 103; and a substantially planar bottom surface 104 connecting the two side bottom surfaces 103. The top surface 101 is located above the upper surface 111 of the carrier 11 and the bottom surface 104 is located below the lower surface 112 of the carrier 11. The side surface 102 extends from the top surface 101 along the Z direction toward the lower surface 112 of the carrier plate 11. Each of the bottom surfaces 103 includes a first portion 1031 extending from the side surface 102 toward the bottom surface 104 at an oblique angle; and a second portion 1302. The second portions 1302 on the left and right sides of the drawing are respectively connected to the first portion 1031 and extend in an arc shape toward the bottom surface 104. The lower surface 112 of the carrier 11 is spaced from the bottom surface 104 of the optical structure 10 by a first distance (D1) of 0.3 mm to 0.7 mm; the upper surface 111 of the carrier 11 is spaced from the top surface 101 of the optical structure 10 by 0.8. The second distance (D2) of mm~0.13 mm. The second distance (D2) is greater than the first distance (D1). The curved surface of the top surface 101 has a radius of curvature of 0.4 mm to 0.7 mm and has an arc angle θ1 (the center angle corresponding to the arc) is between 40 ∘ and 60 ∘ or an arc of 2 π / 9 ~π/3. The arc of the second portion of the side bottom surface 103 has a radius of curvature of 0.2 to 0.4 mm and has an arc angle θ2 (the center angle corresponding to the arc) between 5 ∘ 20 ∘ or one radians π/36~π/9. A diffusion powder (e.g., titanium dioxide, zirconium oxide, zinc oxide, or aluminum oxide) can be selectively filled into the optical structure 10 to help diffuse and scatter the light emitted by the light-emitting unit 12. The weight percent concentration (w/w) of the diffusion powder in the optical structure 10 is between 0.1 and 0.5% and has a particle size of 10 nm to 100 nm or 10 to 50 μm. In one embodiment, the weight percent of the diffusion powder in the colloid can be measured by a thermogravimetric analyzer (TGA). Briefly, during the heating process, the colloid will be removed due to the gradual increase in temperature and after reaching a certain temperature (evaporation or thermal cracking), and the diffusion powder will remain. At this time, the change in weight can be known, so that it can be obtained. The respective weights of the colloid and the diffusion powder are used to derive the weight percent concentration of the diffusion powder in the colloid. Alternatively, the total weight of the colloid and the diffusion powder can be measured first, and then the solvent is used to remove the colloid, and finally the weight of the diffusion powder is measured, thereby obtaining the weight concentration of the diffusion powder in the colloid. In Fig. 1A, the light-emitting unit 12 is visible. However, when the diffusion powder is filled into the optical structure 10 and reaches a certain concentration, the optical structure 10 is rendered white and the internal light-emitting unit 12 is not visible.
光學結構10對於陽光或發光單元12所發出的光為透明。光學結構10包含矽膠(Silicone)、環氧樹脂(Epoxy)、聚亞醯胺(PI)、苯并環丁烯(BCB)、過氟環丁烷(PFCB)、SU8、丙烯酸樹脂(Acrylic Resin)、聚甲基丙烯酸甲酯(PMMA)、聚對苯二甲酸乙二酯(PET)、聚碳酸酯(PC)、聚醚醯亞胺(Polyetherimide)、氟碳聚合物(Fluorocarbon Polymer)、氧化鋁(Al2 O3 )、SINR、或旋塗玻璃(SOG)。The optical structure 10 is transparent to sunlight or light emitted by the illumination unit 12. The optical structure 10 comprises Silicone, Epoxy, Polyimine (PI), benzocyclobutene (BCB), Perfluorocyclobutane (PFCB), SU8, Acrylic Resin , polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), polycarbonate (PC), polyetherimide (Polyetherimide), fluorocarbon polymer (Fluorocarbon Polymer), alumina (Al 2 O 3 ), SINR, or spin-on glass (SOG).
第2A圖顯示由發光單元12所發出的光線於光學結構10中行進路徑之示意圖。須注意者,圖式中之路徑僅為諸多可能路徑其中之一,非唯一之路徑,以下同。例如:自發光單元12的光線(L)射至弧形頂表面101,光線(L)會於頂表面101產生第一折射光線(L11)及第一反射光線(L12)。第一反射光線(L12)射至側表面102,會於側表面102產生第二折射光線(L21)及第二反射光(L22)。第二反射光線(L22)射至底表面104,會於底表面104產生第三折射光線(L31)及第三反射光線(L32)。或者,如第2B圖所示,例如:自發光單元12的光線(M)射至弧形頂表面101,光線(M)會於頂表面101產生第一折射光線(M11)及第一反射光線(M12)。第一反射光線(M12)射至側底表面103之第一部分1031,會於第一部分1031產生第二折射光線(M21)及第二反射光(M22)。第二反射光線(M22)射至底表面104,會於底表面104產生第三折射光線(M31)及第三反射光線(M32)。第2C及2D圖顯示光線於光學結構10中之其他可能行進路徑之示意圖。藉由本發明光學結構10的形狀設計以增加光線從載板10之下表面112方向射出的機率以及光線從底表面104射出的機率。發光裝置100於上表面111之上方(第一側)可量得一第一亮度,於下表面112之下方(第二側)可量得一第二亮度,第一亮度與第二亮度之比值介於2~9之間。第一亮度與第二亮度的定義可參考後續描述。須注意者,圖式中之路徑僅為諸多可能路徑其中之一,非唯一之路徑。此外,以上說明中,光線雖於表面上同時被折射及反射。然而,光線在表面上亦可能僅被折射或反射,視材料介面的折射率差異、入射角度、光線波長等而定。FIG. 2A shows a schematic diagram of the path of light emitted by the illumination unit 12 in the optical structure 10. It should be noted that the path in the schema is only one of many possible paths, non-unique path, the same below. For example, the light (L) from the light-emitting unit 12 is incident on the curved top surface 101, and the light (L) generates a first refracted ray (L11) and a first reflected ray (L12) on the top surface 101. The first reflected light (L12) is incident on the side surface 102, and the second refracted ray (L21) and the second reflected light (L22) are generated on the side surface 102. The second reflected light (L22) is incident on the bottom surface 104, and a third refracted ray (L31) and a third reflected ray (L32) are generated at the bottom surface 104. Alternatively, as shown in FIG. 2B, for example, the light (M) from the light-emitting unit 12 is incident on the curved top surface 101, and the light (M) generates the first refracted light (M11) and the first reflected light on the top surface 101. (M12). The first reflected light (M12) is incident on the first portion 1031 of the side bottom surface 103, and the second refracted ray (M21) and the second reflected light (M22) are generated in the first portion 1031. The second reflected light (M22) strikes the bottom surface 104, and a third refracted ray (M31) and a third reflected ray (M32) are generated at the bottom surface 104. The 2C and 2D diagrams show a schematic representation of other possible travel paths of light in the optical structure 10. The shape of the optical structure 10 of the present invention is designed to increase the probability of light exiting from the lower surface 112 of the carrier 10 and the probability of light exiting from the bottom surface 104. The illuminating device 100 can measure a first brightness above the upper surface 111 (the first side), and a second brightness (the second side) below the lower surface 112, the ratio of the first brightness to the second brightness Between 2 and 9. The definitions of the first brightness and the second brightness can be referred to the subsequent description. It should be noted that the path in the schema is only one of many possible paths, not a unique path. Further, in the above description, the light is simultaneously refracted and reflected on the surface. However, the light may also be only refracted or reflected on the surface, depending on the refractive index difference of the material interface, the angle of incidence, the wavelength of the light, and the like.
第2E圖顯示發光裝置100於電流10 mA操作下且呈一熱穩態時,所得之一配光曲線圖。詳言之,當發光裝置100發光時,可利用配光曲線儀量得一假想圓(如第1A圖中之P1圓)的發光亮度。進一步,將發光亮度與角度作圖即可得一配光曲線圖。於量測時,發光裝置100之幾何中心係大致上位於P1圓之圓心。於本實施例中,擴散粉於光學結構10中的重量百分濃度為0.3%。如圖所示,發光裝置100之最大亮度約為4.53燭光(cd),且從0度至180度之亮度大致上係呈一朗伯分佈 (lambertian distribution)。具體而言,-90度之亮度最小且約為0.5燭光(cd),-90度至-80度亮度大致相同,-80度至90度亮度漸增。-90~0~90度的曲線大致上與90~180~-90度的曲線類似,且光強度於-90~0~90度的分布與光強度於90~180~-90度的分布相對於90~-90度之直線軸對稱。此外,配光曲線圖中0~90~180度之總亮度定義為第一亮度,且0~-90~-180度之總亮度定義為第二亮度,第一亮度與第二兩度的比值約為4。由配光曲線圖中可算得發光裝置100之發光角度約為160度。FIG. 2E shows a light distribution graph obtained by the light-emitting device 100 under a current of 10 mA and in a thermal steady state. In detail, when the light-emitting device 100 emits light, the light-emitting luminance of an imaginary circle (such as the P1 circle in FIG. 1A) can be measured by using a light distribution curve meter. Further, a light distribution curve can be obtained by plotting the brightness of the light and the angle. At the time of measurement, the geometric center of the illuminating device 100 is substantially at the center of the P1 circle. In the present embodiment, the weight percent concentration of the diffusion powder in the optical structure 10 is 0.3%. As shown, the maximum brightness of the illumination device 100 is about 4.53 candelas (cd), and the brightness from 0 degrees to 180 degrees is roughly a lambertian distribution. Specifically, the brightness of -90 degrees is the smallest and is about 0.5 candle light (cd), the brightness of -90 degrees to -80 degrees is about the same, and the brightness of -80 degrees to 90 degrees is increasing. The curve of -90~0~90 degrees is roughly similar to the curve of 90~180~-90 degrees, and the distribution of light intensity at -90~0~90 degrees is relative to the distribution of light intensity at 90~180~-90 degrees. It is axisymmetric at a linear line of 90 to 90 degrees. In addition, the total brightness of 0~90~180 degrees in the light distribution graph is defined as the first brightness, and the total brightness of 0~-90~-180 degrees is defined as the second brightness, and the ratio of the first brightness to the second two degrees About 4. It can be calculated from the light distribution graph that the illumination angle of the light-emitting device 100 is about 160 degrees.
發光角度,其定義為當亮度為最大亮度之50%時,此時所包含的角度範圍即為發光角度。例如:先將第2E圖中於P1圓上所量測之配光曲線圖(極座標)轉化成直角座標圖可得一亮度曲線圖;其中,X軸為亮度,Y軸為角度(圖未示)。接著,於約2.265燭光(最大亮度之50%)處平行於X軸畫一條直線且與亮度曲線圖交於兩點;計算兩點間的角度範圍,即定義為發光角度。The illuminating angle is defined as the illuminating angle when the brightness is 50% of the maximum brightness. For example, first convert the light distribution curve (polar coordinates) measured on the P1 circle in the 2E image into a rectangular coordinate map to obtain a brightness curve; wherein the X axis is the brightness and the Y axis is the angle (the figure is not shown) ). Next, draw a line parallel to the X-axis at about 2.265 candlelight (50% of maximum brightness) and intersect the brightness curve at two points; calculate the angular range between the two points, which is defined as the illumination angle.
第3A圖顯示本發明一實施例中發光單元12A之一剖面示意圖。發光單元12A包含一發光主體121、一第一透明體122、一螢光粉層123、一第二透明體124及一第三透明體125。發光主體121包含一基板、一第一型半導體層、一活性層、第二型半導體層(以上未標示)及兩電極1211。當發光主體121為一異質結構時,第一型半導體層及第二型半導體層例如為包覆層(cladding layer)及/或限制層(confinement layer),可分別提供電子、電洞且具有一大於活性層之能隙,藉此提高電子、電洞於活性層中結合以發光的機率。第一型半導體層、活性層、及第二型半導體層可包含Ⅲ-Ⅴ族半導體材料,例如Alx Iny Ga(1-x-y) N或Alx Iny Ga(1-x-y) P,其中0≦x, y≦1;(x+y)≦1。依據活性層之材料,發光主體121可發出一峰值(peak wavelength)或主波長 (dominant wavelength)介於610 nm及650 nm之間的紅光,峰值或主波長介於530 nm及570 nm之間的綠光,或是峰值或主波長介於450 nm及490 nm之間的藍光。螢光粉結構123包含複數個螢光粉顆粒。螢光粉顆粒具有約5 um~100 um的顆粒尺寸(直徑)且可包含一種或兩種以上種類之螢光粉材料。螢光粉材料包含但不限於黃綠色螢光粉及紅色螢光粉。黃綠色螢光粉之成分係例如鋁氧化物(YAG或是TAG)、矽酸鹽、釩酸鹽、鹼土金屬硒化物、或金屬氮化物。紅色螢光粉之成分係例如氟化物(K2 TiF6 :Mn4+ 、K2 SiF6 :Mn4+ )、矽酸鹽、釩酸鹽、鹼土金屬硫化物、金屬氮氧化物、或鎢鉬酸鹽族混合物。螢光粉結構123可吸收發光主體121所發出的第一光並轉換成與第一光不同頻譜之第二光。第一光與第二光混和會產生一混合光,例如白光。在此實施例中,發光單元12於熱穩態下產生的光具有一白光色溫為2200K~6500K(例如:2200K、2400K、2700K、3000K、5700K、6500K),其色點值(CIE x, y)會落於七個麥克亞當橢圓(MacAdam ellipse)之範圍,並具有一大於80或大於90之演色性(CRI)。在另一實施例,第一光與第二光混合可產生紫光、黃光或其他非白光的色光。Fig. 3A is a cross-sectional view showing a light emitting unit 12A in an embodiment of the present invention. The light emitting unit 12A includes a light emitting body 121, a first transparent body 122, a phosphor powder layer 123, a second transparent body 124, and a third transparent body 125. The light emitting body 121 includes a substrate, a first type semiconductor layer, an active layer, a second type semiconductor layer (not shown above), and two electrodes 1211. When the illuminating body 121 is a heterostructure, the first type semiconductor layer and the second type semiconductor layer are, for example, a cladding layer and/or a confinement layer, respectively, and can respectively provide electrons, holes, and have a It is larger than the energy gap of the active layer, thereby increasing the probability that electrons and holes are combined in the active layer to emit light. The first type semiconductor layer, the active layer, and the second type semiconductor layer may comprise a III-V semiconductor material such as Al x In y Ga (1-xy) N or Al x In y Ga (1-xy) P, wherein 0≦x, y≦1; (x+y)≦1. According to the material of the active layer, the illuminating body 121 can emit a red peak with a peak wavelength or a dominant wavelength between 610 nm and 650 nm, and the peak or dominant wavelength is between 530 nm and 570 nm. Green light, or blue light with a peak or dominant wavelength between 450 nm and 490 nm. The phosphor structure 123 comprises a plurality of phosphor particles. The phosphor particles have a particle size (diameter) of about 5 um to 100 um and may contain one or more types of phosphor materials. Fluorescent powder materials include, but are not limited to, yellow-green phosphor powder and red phosphor powder. The components of the yellow-green phosphor are, for example, aluminum oxide (YAG or TAG), citrate, vanadate, alkaline earth metal selenide, or metal nitride. The components of the red phosphor are, for example, fluoride (K 2 TiF 6 : Mn 4+ , K 2 SiF 6 : Mn 4+ ), citrate, vanadate, alkaline earth metal sulfide, metal oxynitride, or tungsten. a mixture of molybdate groups. The phosphor structure 123 can absorb the first light emitted by the light-emitting body 121 and be converted into a second light of a different spectrum from the first light. Mixing the first light with the second light produces a mixed light, such as white light. In this embodiment, the light generated by the light-emitting unit 12 in the thermal steady state has a white light color temperature of 2200K~6500K (for example: 2200K, 2400K, 2700K, 3000K, 5700K, 6500K), and its color point value (CIE x, y) ) will fall within the range of seven MacAdam ellipse and have a color rendering (CRI) greater than 80 or greater than 90. In another embodiment, the first light is mixed with the second light to produce violet, yellow, or other non-white light.
發光單元12更包含一絕緣層126形成於第一透明體122、一螢光粉層123及第二透明體124下方且未覆蓋發光主體121之兩電極1211;及兩延伸電極127係分別形成於兩電極1211上並與兩電極1211電連接。兩延伸電極127分別做為前述之第一連接墊120A及一第二連接墊102B(如第1D圖所示)。絕緣層126為一包含基質及高反射率物質之混和物。基質可為或矽膠基質或環氧基質。高反射率物質可包含二氧化鈦、二氧化矽或氧化鋁。此外,絕緣層126可具有反射光或擴散光之作用。延伸電極127包含金屬,例如:銅、鈦、金、鎳、銀、其合金或其疊層。第一透明體122、第二透明體124及第三透明體125對於陽光或發光單元12所發出的光為透明。第一透明體122或第二透明體124可以包含矽膠(Silicone)、環氧樹脂(Epoxy)、聚亞醯胺(PI)、苯并環丁烯(BCB)、過氟環丁烷(PFCB)、SU8、丙烯酸樹脂(Acrylic Resin)、聚甲基丙烯酸甲酯(PMMA)、聚對苯二甲酸乙二酯(PET)、聚碳酸酯(PC)、聚醚醯亞胺(Polyetherimide)、氟碳聚合物(Fluorocarbon Polymer)、氧化鋁(Al2 O3 )、SINR、或旋塗玻璃(SOG)。第三透明體125可以包含藍寶石(Sapphire)、鑽石(Diamond)、玻璃(Glass)、環氧樹脂(Epoxy)、石英(quartz)、丙烯酸樹脂(Acrylic Resin)、氧化矽(SiOX )、 氧化鋁(Al2 O3 )、氧化鋅(ZnO)、或矽膠(Silicone)。The light emitting unit 12 further includes an insulating layer 126 formed on the first transparent body 122, a phosphor layer 123 and the second transparent body 124 and not covering the two electrodes 1211 of the light emitting body 121; and the two extending electrodes 127 are respectively formed on The two electrodes 1211 are electrically connected to the two electrodes 1211. The two extension electrodes 127 are respectively formed as the first connection pad 120A and the second connection pad 102B (as shown in FIG. 1D). The insulating layer 126 is a mixture comprising a matrix and a high reflectivity material. The matrix can be either a silicone matrix or an epoxy matrix. The high reflectivity material may comprise titanium dioxide, cerium oxide or aluminum oxide. Further, the insulating layer 126 may have a function of reflecting light or diffusing light. The extension electrode 127 contains a metal such as copper, titanium, gold, nickel, silver, an alloy thereof, or a laminate thereof. The first transparent body 122, the second transparent body 124, and the third transparent body 125 are transparent to sunlight or the light emitted by the light emitting unit 12. The first transparent body 122 or the second transparent body 124 may comprise Silicone, Epoxy, Polyimidine (PI), benzocyclobutene (BCB), Perfluorocyclobutane (PFCB) , SU8, Acrylic Resin, Polymethyl Methacrylate (PMMA), Polyethylene terephthalate (PET), Polycarbonate (PC), Polyetherimide, Fluorocarbon Fluorocarbon Polymer, alumina (Al 2 O 3 ), SINR, or spin-on glass (SOG). A third transparent body 125 may include sapphire (Sapphire), diamond (Diamond), glass (Glass), an epoxy resin (Epoxy), quartz (quartz), acrylic resin (Acrylic Resin), silicon oxide (SiO X), alumina (Al 2 O 3 ), zinc oxide (ZnO), or silicone (Silicone).
如第3A圖所示,第三透明體125具有一上寬下窄的形狀。詳言之,第三透明體125具有一第一部份1251、及一第二部分1252。第二部分1252較靠近第二透明體124且其寬度小於第一部份1251之寬度。第一部分1251的厚度約為第三透明體125整體厚度的1%~20%或是1%~10%。在本實施例中,第一部分1251與第二部分1252之相接處為一弧形。第一部分1251具有一側表面1251S,其係略微朝上傾斜(面朝上),並較第二透明體124之側表面1241遠離發光主體121,可將光線導引到發光單元12的兩側。As shown in Fig. 3A, the third transparent body 125 has a shape that is wide and narrow. In detail, the third transparent body 125 has a first portion 1251 and a second portion 1252. The second portion 1252 is closer to the second transparent body 124 and has a width smaller than the width of the first portion 1251. The thickness of the first portion 1251 is about 1% to 20% or 1% to 10% of the entire thickness of the third transparent body 125. In this embodiment, the junction of the first portion 1251 and the second portion 1252 is an arc. The first portion 1251 has a side surface 1251S which is slightly inclined upward (face up) and is away from the light emitting body 121 than the side surface 1241 of the second transparent body 124 to guide light to both sides of the light emitting unit 12.
在一實施例中,發光單元12A為一朝五個面(上左右前後)發光之發光結構且具有一約140度之發光角度(beam angle)。選擇性地,一擴散粉可添加於第一透明體122、或/且第二透明體124、或/且第三透明體125中。於另一實施例中,發光單元12A未包含第三透明體125。In one embodiment, the light-emitting unit 12A is a light-emitting structure that emits light toward five faces (up and down, left and right) and has a beam angle of about 140 degrees. Alternatively, a diffusion powder may be added to the first transparent body 122, or/and the second transparent body 124, or/and the third transparent body 125. In another embodiment, the light emitting unit 12A does not include the third transparent body 125.
第3B圖顯示本發明另一實施例中發光單元12B之一剖面示意圖。第3C圖為第3B圖之一上視圖。第3B圖之發光單元類似於第3A圖之發光裝置,相同的符號或是記號所對應的元件或裝置,具有類似或是相同的元件或裝置。如第3B圖所示,第三透明體125’具有一平截頭(frustum)形狀且具有一平面1253及斜面1254。斜面1254的設計可增加發光主體121的光萃取量且改變發光單元12的光場。平面1253與斜面1254可夾一介於120∘~150∘的角度(Ф)且斜面1254之深度(H1 )為第三透明體125’之整體厚度(H2 )的30%~70%或是40%~60%。如第3C圖所示,平面1253的面積(A1;三角形)可為第三透明體125’之總投影面積(A;斜線)的40%~95%或是40%~60%。Fig. 3B is a cross-sectional view showing a light emitting unit 12B in another embodiment of the present invention. Figure 3C is a top view of Figure 3B. The illuminating unit of Fig. 3B is similar to the illuminating device of Fig. 3A, and the same symbols or elements or devices corresponding to the symbols have similar or identical elements or devices. As shown in FIG. 3B, the third transparent body 125' has a frustum shape and has a flat surface 1253 and a slope 1254. The design of the slope 1254 can increase the amount of light extraction of the light-emitting body 121 and change the light field of the light-emitting unit 12. The plane 1253 and the inclined surface 1254 can be sandwiched at an angle of 120 ∘ to 150 Ф (Ф) and the depth (H 1 ) of the inclined surface 1254 is 30% to 70% of the overall thickness (H 2 ) of the third transparent body 125 ′ or 40%~60%. As shown in FIG. 3C, the area (A1; triangle) of the plane 1253 may be 40% to 95% or 40% to 60% of the total projected area (A; oblique line) of the third transparent body 125'.
第3D圖顯示本發明另一實施例中發光單元12D之一剖面示意圖。第3D圖之發光單元類似於第3A圖之發光裝置,相同的符號或是記號所對應的元件或裝置,具有類似或是相同的元件或裝置。發光單元12D更包含一反射結構129形成於第一透明體124及第二透明體125之間。反射結構129對入射到反射結構129的光線在波長範圍為450 nm~475 nm之間時,具有大於85%的反射率;或在所入射的光線的波長介於400 nm~600 nm的範圍間具有大於80%的反射率。未被反射結構129反射的光線可以進入第三透明體125,並由第三透明體125的上方或側面離開發光單元12D或第三透明體125。若反射結構129可反射多數光線,例如大於95%的反射率,則發光單元12D中的第三透明體125可以略而不用。反射結構129可以是一單層結構或是多層結構。單層結構例如為一金屬層,包含例如銀或鋁,或是一氧化物層,包含例如二氧化鈦。多層結構可以是金屬與金屬氧化物的疊層或是分散式布拉格反射鏡(Distributed Bragg reflector、DBR)以達到反射的效果。金屬與金屬氧化物的疊層例如鋁與氧化鋁的疊層。分散式布拉格反射鏡可為非半導體疊層或半導體疊層。非半導體疊層之材料可選自下列群組之一:氧化鋁(Al2 O3 )、氧化矽(SiO2 )、二氧化鈦(TiO2 )、五氧化二鈮(Nb2 O5 )、氮化矽(SiNx )。半導體疊層之材料可選自下列群組之一:氮化鎵(GaN)、氮化鋁鎵(AlGaN)、氮化铝铟镓(AlInGaN)、砷化鋁(AlAs)、砷化鋁鎵(AlGaAs)、砷化鎵(GaAs)。在本實施例中,不論是單層結構或者多層結構,都不會完全反射光線,因此至少有部分的光線會直接穿過反射結構129。Fig. 3D is a cross-sectional view showing a light emitting unit 12D in another embodiment of the present invention. The illumination unit of Fig. 3D is similar to the illumination device of Fig. 3A, and the same symbols or elements or devices corresponding to the symbols have similar or identical elements or devices. The light emitting unit 12D further includes a reflective structure 129 formed between the first transparent body 124 and the second transparent body 125. The reflective structure 129 has a reflectance greater than 85% for light incident on the reflective structure 129 between 450 nm and 475 nm, or between 400 nm and 600 nm for incident light. Has a reflectivity greater than 80%. Light that is not reflected by the reflective structure 129 can enter the third transparent body 125 and exit the light emitting unit 12D or the third transparent body 125 from above or from the side of the third transparent body 125. If the reflective structure 129 can reflect a plurality of rays, for example, a reflectance greater than 95%, the third transparent body 125 in the light emitting unit 12D can be omitted. The reflective structure 129 can be a single layer structure or a multilayer structure. The single layer structure is, for example, a metal layer comprising, for example, silver or aluminum, or an oxide layer comprising, for example, titanium dioxide. The multilayer structure may be a laminate of metal and metal oxide or a distributed Bragg reflector (DBR) to achieve reflection. A laminate of a metal and a metal oxide such as a laminate of aluminum and aluminum oxide. The decentralized Bragg mirrors can be non-semiconductor laminates or semiconductor stacks. The material of the non-semiconductor laminate may be selected from one of the group consisting of alumina (Al 2 O 3 ), cerium oxide (SiO 2 ), titanium dioxide (TiO 2 ), niobium pentoxide (Nb 2 O 5 ), nitriding.矽 (SiN x ). The material of the semiconductor stack can be selected from one of the following groups: gallium nitride (GaN), aluminum gallium nitride (AlGaN), aluminum indium gallium nitride (AlInGaN), aluminum arsenide (AlAs), aluminum gallium arsenide ( AlGaAs), gallium arsenide (GaAs). In this embodiment, the light is not completely reflected, whether it is a single layer structure or a multilayer structure, so that at least part of the light passes directly through the reflection structure 129.
在另一實施例中,第1A圖中之發光單元12可具有類似如第3A、3B、或3D圖中發光單元12A、12B、12D之結構,但此結構中未包含螢光粉層123。亦即發光單元12僅發出來自於發光主體121的原始光線,例如紅光、綠光、或是藍光。複數個螢光粉顆粒(波長轉換物質)可添加於光學結構10中,以吸收發光主體121所發出的第一光而轉換成與第一光不同頻譜之第二光,第一光與第二光混和會產生白光。因此,發光裝置100於熱穩態下可具有一白光色溫為2200K~6500K(例如:2200K、2400K、2700K、3000K、5700K、6500K),其色點值(CIE x, y)會落於七個麥克亞當橢圓(MacAdam ellipse)之範圍,並具有一大於80或大於90之演色性(CRI)。In another embodiment, the light-emitting unit 12 in FIG. 1A may have a structure similar to that of the light-emitting units 12A, 12B, and 12D in the 3A, 3B, or 3D drawings, but the phosphor layer 123 is not included in the structure. That is, the light emitting unit 12 emits only the original light from the light emitting body 121, such as red light, green light, or blue light. A plurality of phosphor particles (wavelength converting substances) may be added to the optical structure 10 to absorb the first light emitted by the light emitting body 121 and converted into a second light having a different spectrum from the first light, the first light and the second light. Light mixing produces white light. Therefore, the light-emitting device 100 can have a white color temperature of 2200K~6500K (for example, 2200K, 2400K, 2700K, 3000K, 5700K, 6500K) under thermal steady state, and its color point value (CIE x, y) will fall under seven. The range of MacAdam ellipse and has a color rendering (CRI) greater than 80 or greater than 90.
本實施例之發光單元係以一覆晶方式形成於載板上。在其他實施例中,可先將複數個水平式或垂直式發光單元(圖未示)利用銀膠或導電透明膠固定於載板上;接著,使用打線方式將發光單元彼此形成電連接;最後,提供光學結構包覆發光單元以形成發光裝置。The light-emitting unit of this embodiment is formed on the carrier plate in a flip chip manner. In other embodiments, a plurality of horizontal or vertical light-emitting units (not shown) may be fixed to the carrier by using silver glue or conductive transparent glue; then, the light-emitting units are electrically connected to each other by wire bonding; An optical structure is provided to encapsulate the light emitting unit to form a light emitting device.
第4圖顯示本發明一實施例中一燈泡30之立體圖。燈泡30包含一燈殼301、一電路板302、一支撐柱303、複數個發光裝置100、一散熱件304、及一電連接件305。複數個發光裝置100係固定並電連接至支撐柱303。詳言之,一電極件307形成於支撐柱303上且與電路板302電連接。每一發光裝置100之第三電極墊134透過一金屬線308與電路板302連接。由於第一電極墊131與第三電極墊134電連接,因此第一電極墊131亦與電路板302電連接。每一發光裝置100之第二電極墊132透過一金屬線309與電極件307連接。在本實施例中,藉由上述之電連接方式,使得發光裝置100彼此並聯連接。在其他實施例中,發光裝置100彼此可串聯連接或串並連接。Figure 4 is a perspective view of a bulb 30 in accordance with one embodiment of the present invention. The light bulb 30 includes a lamp housing 301, a circuit board 302, a support post 303, a plurality of light emitting devices 100, a heat sink 304, and an electrical connector 305. A plurality of light emitting devices 100 are fixed and electrically connected to the support post 303. In detail, an electrode member 307 is formed on the support post 303 and electrically connected to the circuit board 302. The third electrode pad 134 of each of the light emitting devices 100 is connected to the circuit board 302 through a metal wire 308. Since the first electrode pad 131 is electrically connected to the third electrode pad 134, the first electrode pad 131 is also electrically connected to the circuit board 302. The second electrode pad 132 of each of the light-emitting devices 100 is connected to the electrode member 307 through a metal wire 309. In the present embodiment, the light-emitting devices 100 are connected in parallel to each other by the above-described electrical connection. In other embodiments, the light emitting devices 100 can be connected to each other in series or in series and connected.
第5A圖顯示本發明發光裝置之製作流程圖。如第5A及5B圖所示,步驟501:提供一支架21。支架21具有兩框架211及複數個載板11連接於兩框架211間。載板11上具有電路結構13,電路結構13可以於支架21與載板11成形之前或之後形成。例如,若支架21與載板11係在單一板材上利用衝壓成形技術形成,電路結構13可以先預形成在此單一板材上、或於沖壓成形步驟後再形成於載板11上。如第5A及5C圖所示,步驟502:利用表面黏結技術(SMT)將發光單元12固定於載板11上,並藉由電路結構13,發光單元12彼此電連接。如第5A及5D圖所示,步驟503:利用一鑄模方式,例如:射出成型(injection molding)或移轉成型(transfer molding)形成一光學結構10,使其包覆發光單元12及載板11並僅露出電極墊131、132。如第5A及5E圖所示步驟504:進行一沖壓(punch)或雷射切割製程以分離載板11與兩框架211,藉此可同時或一次性形成複數個彼此獨立之發光裝置100。Fig. 5A is a flow chart showing the fabrication of the light-emitting device of the present invention. As shown in Figures 5A and 5B, step 501: providing a bracket 21. The bracket 21 has two frames 211 and a plurality of carrier plates 11 connected between the two frames 211. The carrier board 11 has a circuit structure 13 which can be formed before or after the carrier 21 and the carrier board 11 are formed. For example, if the bracket 21 and the carrier 11 are formed on a single plate by a press forming technique, the circuit structure 13 may be pre-formed on the single plate or formed on the carrier 11 after the press forming step. As shown in FIGS. 5A and 5C, step 502: the light-emitting unit 12 is fixed to the carrier 11 by surface bonding technology (SMT), and the light-emitting units 12 are electrically connected to each other by the circuit structure 13. As shown in FIGS. 5A and 5D, step 503: forming an optical structure 10 by a molding method, for example, injection molding or transfer molding, so as to cover the light-emitting unit 12 and the carrier. 11 and only the electrode pads 131, 132 are exposed. Step 504 as shown in Figures 5A and 5E: a punch or laser cutting process is performed to separate the carrier 11 from the two frames 211, whereby a plurality of mutually independent illumination devices 100 can be formed simultaneously or at one time.
需了解的是,本發明中上述之實施例在適當的情況下,是可互相組合或替換,而非僅限於所描述之特定實施例。本發明所列舉之各實施例僅用以說明本發明,並非用以限制本發明之範圍。任何人對本發明所作之任何顯而易見之修飾或變更接不脫離本發明之精神與範圍。It is to be understood that the above-described embodiments of the present invention may be combined or substituted with each other as appropriate, and are not limited to the specific embodiments described. The examples of the invention are intended to be illustrative only and not to limit the scope of the invention. Any obvious modifications or variations of the present invention are possible without departing from the spirit and scope of the invention.
100‧‧‧發光裝置
10‧‧‧光學結構
101‧‧‧頂表面
102‧‧‧側表面
103‧‧‧側底表面
1031‧‧‧第一部分
1032‧‧‧第二部分
104‧‧‧底表面
11‧‧‧載板
111‧‧‧上表面
112‧‧‧下表面
12、12A、12B、12D‧‧‧發光單元
120A‧‧‧第一連接墊
120B‧‧‧第二連接墊
121‧‧‧發光主體
1211‧‧‧電極
122‧‧‧第一透明體
123‧‧‧螢光粉層
124‧‧‧第二透明體
125、125’‧‧‧第三透明體
1251‧‧‧第一部分
1251S‧‧‧側表面
1252‧‧‧第二部分
1253‧‧‧平面
1254‧‧‧斜面
126‧‧‧絕緣層
127‧‧‧延伸電極
129‧‧‧反射結構
13‧‧‧電路結構
131‧‧‧第一電極墊
132‧‧‧第二電極墊
133、1331、1331A、1332、1332B‧‧‧導電線路
134‧‧‧第三電極墊
135‧‧‧第四電極墊
151‧‧‧第一貫孔
152‧‧‧第二貫孔
21‧‧‧支架
211‧‧‧框架
30‧‧‧燈泡
301‧‧‧燈殼
302‧‧‧電路板
303‧‧‧支撐柱
304‧‧‧散熱件
305‧‧‧電連接件
307‧‧‧電極件
308、309‧‧‧金屬線100‧‧‧Lighting device
10‧‧‧Optical structure
101‧‧‧ top surface
102‧‧‧ side surface
103‧‧‧ side bottom surface
1031‧‧‧Part 1
1032‧‧‧Part II
104‧‧‧ bottom surface
11‧‧‧ Carrier Board
111‧‧‧Upper surface
112‧‧‧ lower surface
12, 12A, 12B, 12D‧‧‧ lighting units
120A‧‧‧First connection pad
120B‧‧‧Second connection pad
121‧‧‧Lighting subject
1211‧‧‧electrode
122‧‧‧ first transparent body
123‧‧‧Fluorescent powder layer
124‧‧‧Second transparent body
125, 125'‧‧‧ third transparent body
1251‧‧‧Part 1
1251S‧‧‧ side surface
1252‧‧‧Part II
1253‧‧‧ plane
1254‧‧‧Bevel
126‧‧‧Insulation
127‧‧‧Extended electrode
129‧‧‧Reflective structure
13‧‧‧Circuit structure
131‧‧‧First electrode pad
132‧‧‧Second electrode pad
133, 1331, 1331A, 1332, 1332B‧‧‧ conductive lines
134‧‧‧ third electrode pad
135‧‧‧fourth electrode pad
151‧‧‧ first through hole
152‧‧‧second through hole
21‧‧‧ bracket
211‧‧‧Frame
30‧‧‧Light bulb
301‧‧‧ lamp shell
302‧‧‧ boards
303‧‧‧Support column
304‧‧‧ Heat sink
305‧‧‧Electrical connectors
307‧‧‧Electrode parts
308, 309‧‧‧ metal wire
第1A圖為本發明一實施例中一發光裝置之立體示意圖。FIG. 1A is a perspective view of a light emitting device according to an embodiment of the invention.
第1B圖顯示第1A圖中載板之俯視示意圖。Fig. 1B is a top plan view showing the carrier in Fig. 1A.
第1C圖顯示第1A圖中載板之仰視示意圖。Figure 1C shows a bottom view of the carrier in Figure 1A.
第1D圖顯示第1A圖且沿著第1B圖I-I線之剖面示意圖。Fig. 1D is a cross-sectional view showing the 1A diagram and taken along line I-I of Fig. 1B.
第1E圖顯示第1A圖之剖面示意圖。Fig. 1E is a schematic cross-sectional view showing Fig. 1A.
第1F圖為第1E圖之放大圖。Fig. 1F is an enlarged view of Fig. 1E.
第2A~2D圖分別顯示由發光單元所發出的光線於光學結構中之不同行進路徑之示意圖。Figures 2A-2D show schematic diagrams of different paths of travel of the light emitted by the illumination unit in the optical structure, respectively.
第2E圖顯示本發明一實施例中發光裝置之配光曲線圖。Fig. 2E is a view showing a light distribution curve of the light-emitting device in an embodiment of the present invention.
第3A圖顯示本發明一實施例中發光單元之一剖面示意圖。Fig. 3A is a cross-sectional view showing a light emitting unit in an embodiment of the present invention.
第3B圖顯示本發明另一實施例中發光單元之一剖面示意圖。Figure 3B is a cross-sectional view showing one of the light emitting units in another embodiment of the present invention.
第3C圖為第3B圖之一上視圖。Figure 3C is a top view of Figure 3B.
第3D圖顯示本發明另一實施例中發光單元之一剖面示意圖。Figure 3D is a cross-sectional view showing one of the light-emitting units in another embodiment of the present invention.
第4圖顯示本發明一實施例中一燈泡之立體示意圖。Fig. 4 is a perspective view showing a light bulb in an embodiment of the present invention.
第5A圖顯示本發明一實施例中發光裝置之製作流程圖。Fig. 5A is a flow chart showing the fabrication of a light-emitting device according to an embodiment of the present invention.
第5B~5E圖顯示本發明一實施例中發光裝置之製作流程立體示意圖。5B-5E are schematic perspective views showing a manufacturing process of a light-emitting device according to an embodiment of the present invention.
無no
無no
100‧‧‧發光裝置 100‧‧‧Lighting device
10‧‧‧光學結構 10‧‧‧Optical structure
11‧‧‧載板 11‧‧‧ Carrier Board
12‧‧‧發光單元 12‧‧‧Lighting unit
131‧‧‧第一電極墊 131‧‧‧First electrode pad
132‧‧‧第二電極墊 132‧‧‧Second electrode pad
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW104123801A TW201705549A (en) | 2015-07-23 | 2015-07-23 | Light-emitting device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW104123801A TW201705549A (en) | 2015-07-23 | 2015-07-23 | Light-emitting device |
Publications (1)
Publication Number | Publication Date |
---|---|
TW201705549A true TW201705549A (en) | 2017-02-01 |
Family
ID=58609023
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW104123801A TW201705549A (en) | 2015-07-23 | 2015-07-23 | Light-emitting device |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW201705549A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI704063B (en) * | 2018-10-17 | 2020-09-11 | 正美企業股份有限公司 | Decoration assembly |
-
2015
- 2015-07-23 TW TW104123801A patent/TW201705549A/en unknown
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI704063B (en) * | 2018-10-17 | 2020-09-11 | 正美企業股份有限公司 | Decoration assembly |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6286026B2 (en) | Light emitting diode components | |
US10879440B2 (en) | Light emitting device including light emitting unit arranged in a tube | |
TWI648869B (en) | Illuminating device | |
KR102424005B1 (en) | Light-emitting device | |
JP4116960B2 (en) | Semiconductor light emitting device, light emitting module, lighting device, and method for manufacturing semiconductor light emitting device | |
KR20110125070A (en) | Light-emitting element package | |
JP5853441B2 (en) | Light emitting device | |
TWI829671B (en) | Light-emitting device | |
TWM461749U (en) | Light source device | |
JP2020096151A (en) | Light-emitting module | |
CN107046091B (en) | Light-emitting device with light shape adjusting structure and manufacturing method thereof | |
TWI610470B (en) | Light emitting diode chip scale packaging structure, direct type backlight module, and method for manufacturing light emitting device | |
KR101666844B1 (en) | Optical device and light source module having the same | |
TWI688128B (en) | Light emitting diode chip scale packaging structure and direct type backlight module | |
JP2011114342A (en) | Light emitting element package | |
TW201705549A (en) | Light-emitting device | |
JP7285439B2 (en) | planar light source | |
TW201705539A (en) | Light-emitting package and manufacturing method thereof | |
CN110260182B (en) | Light emitting device | |
TWI666406B (en) | Light-emitting device | |
US20220173283A1 (en) | Light-emitting device and planar light source | |
TWI588406B (en) | Light-emitting apparatus | |
TWI635238B (en) | Light-emitting apparatus | |
TW201318220A (en) | LED package structure for adjusting spatial color uniformity by using a prefabricated phosphor cap and light distribution curve |