TWI666406B - Light-emitting device - Google Patents
Light-emitting device Download PDFInfo
- Publication number
- TWI666406B TWI666406B TW108101288A TW108101288A TWI666406B TW I666406 B TWI666406 B TW I666406B TW 108101288 A TW108101288 A TW 108101288A TW 108101288 A TW108101288 A TW 108101288A TW I666406 B TWI666406 B TW I666406B
- Authority
- TW
- Taiwan
- Prior art keywords
- light
- emitting device
- brightness
- electrode pad
- item
- Prior art date
Links
Landscapes
- Led Device Packages (AREA)
Abstract
一種發光裝置,包含一載板,具有一第一表面及一相對於第一表面之第二表面、及一發光單元,設置在第一表面上,會發出光線朝向但不穿過第一表面。發光裝置於第一表面之上方可量得一第一亮度,於第二表面之下方可量得一第二亮度,第一亮度與該第二亮度之比值為2~9。A light-emitting device includes a carrier board having a first surface, a second surface opposite to the first surface, and a light-emitting unit, which is disposed on the first surface and emits light toward but does not pass through the first surface. The light emitting device can measure a first brightness above the first surface, and can measure a second brightness below the second surface. The ratio of the first brightness to the second brightness is 2-9.
Description
本發明係揭露一種發光裝置,尤其是具有光學結構之發光裝置。 The invention discloses a light-emitting device, especially a light-emitting device having an optical structure.
用於固態照明裝置的發光二極體(Light-Emitting Diode;LED)具有耗能低、壽命長、體積小、反應速度快以及光學輸出穩定等特性,因此發光二極體慢慢地取代傳統之照明產品並被應用於一般的家用照明。 Light-Emitting Diodes (LEDs) used in solid-state lighting devices have the characteristics of low energy consumption, long life, small size, fast response speed, and stable optical output, so light-emitting diodes are slowly replacing traditional ones. Lighting products are also used in general domestic lighting.
近年來,發光二極體製作而成之燈絲雖逐漸應用於發光二極體燈泡之中。然而,發光二極體燈絲的成本、效率仍有待改善。再者,使發光二極體燈絲發出全方向性之光場,並處理散熱問題,仍是發展的目標。 In recent years, filaments made of light-emitting diodes have gradually been used in light-emitting diode bulbs. However, the cost and efficiency of light-emitting diode filaments still need to be improved. Furthermore, it is still the development goal to make the light emitting diode filament emit an omnidirectional light field and deal with the heat dissipation problem.
為讓本發明之上述和其他目的、特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式,說明如下。 In order to make the above and other objects, features, and advantages of the present invention more comprehensible, embodiments are described below with reference to the accompanying drawings, as follows.
一種發光裝置包含一載板,具有一第一表面及一相對於第一表面之第二表面、及一發光單元,設置在第一表面上,會發出光線朝向但不穿過第一表面。發光裝置於第一表面之上方可量得一第一亮度,於第二表面之下方可量得一第二亮度,第一亮度與該第二亮度之比值為2~9。 A light emitting device includes a carrier board having a first surface, a second surface opposite to the first surface, and a light emitting unit, which is disposed on the first surface and emits light toward but does not pass through the first surface. The light emitting device can measure a first brightness above the first surface, and can measure a second brightness below the second surface. The ratio of the first brightness to the second brightness is 2-9.
100‧‧‧發光裝置 100‧‧‧light-emitting device
10‧‧‧光學結構 10‧‧‧ Optical Structure
101‧‧‧頂表面 101‧‧‧ top surface
102‧‧‧側表面 102‧‧‧side surface
103‧‧‧側底表面 103‧‧‧side bottom surface
1031‧‧‧第一部分 1031‧‧‧Part I
1032‧‧‧第二部分 1032‧‧‧ Part Two
104‧‧‧底表面 104‧‧‧ bottom surface
11‧‧‧載板 11‧‧‧ Carrier Board
111‧‧‧上表面 111‧‧‧ top surface
112‧‧‧下表面 112‧‧‧ lower surface
12、12A、12B、12D‧‧‧發光單元 12, 12A, 12B, 12D‧‧‧ Light-emitting units
120A‧‧‧第一連接墊 120A‧‧‧First connection pad
120B‧‧‧第二連接墊 120B‧‧‧Second connection pad
121‧‧‧發光主體 121‧‧‧lighting subject
1211‧‧‧電極 1211‧‧‧electrode
122‧‧‧第一透明體 122‧‧‧The first transparent body
123‧‧‧螢光粉層 123‧‧‧Fluorescent powder layer
124‧‧‧第二透明體 124‧‧‧Second transparent body
125、125’‧‧‧第三透明體 125, 125 ’‧‧‧ third transparent body
1251‧‧‧第一部分 1251‧‧‧ Part I
1251S‧‧‧側表面 1251S‧‧‧Side surface
1252‧‧‧第二部分 1252‧‧‧ Part Two
1253‧‧‧平面 1253‧‧‧plane
1254‧‧‧斜面 1254‧‧‧ bevel
126‧‧‧絕緣層 126‧‧‧ Insulation
127‧‧‧延伸電極 127‧‧‧Extended electrode
129‧‧‧反射結構 129‧‧‧Reflective structure
13‧‧‧電路結構 13‧‧‧Circuit Structure
131‧‧‧第一電極墊 131‧‧‧First electrode pad
132‧‧‧第二電極墊 132‧‧‧Second electrode pad
133、1331、1331A、1332、1332B‧‧‧導電線路 133, 1331, 1331A, 1332, 1332B ‧‧‧ conductive line
134‧‧‧第三電極墊 134‧‧‧Third electrode pad
135‧‧‧第四電極墊 135‧‧‧Fourth electrode pad
151‧‧‧第一貫孔 151‧‧‧The first through hole
152‧‧‧第二貫孔 152‧‧‧Second through hole
21‧‧‧支架 21‧‧‧ bracket
211‧‧‧框架 211‧‧‧Frame
30‧‧‧燈泡 30‧‧‧ bulb
301‧‧‧燈殼 301‧‧‧light housing
302‧‧‧電路板 302‧‧‧Circuit Board
303‧‧‧支撐柱 303‧‧‧support column
304‧‧‧散熱件 304‧‧‧ heat sink
305‧‧‧電連接件 305‧‧‧Electrical connection
307‧‧‧電極件 307‧‧‧electrode parts
308、309‧‧‧金屬線 308, 309‧‧‧ metal wire
第1A圖為本發明一實施例中一發光裝置之立體示意圖。 FIG. 1A is a schematic perspective view of a light-emitting device according to an embodiment of the present invention.
第1B圖顯示第1A圖中載板之俯視示意圖。 FIG. 1B shows a schematic top view of the carrier board in FIG. 1A.
第1C圖顯示第1A圖中載板之仰視示意圖。 Figure 1C shows a schematic bottom view of the carrier board in Figure 1A.
第1D圖顯示第1A圖且沿著第1B圖I-I線之剖面示意圖。 Figure 1D shows a schematic cross-sectional view of Figure 1A and along the line I-I of Figure 1B.
第1E圖顯示第1A圖之剖面示意圖。 Figure 1E shows a schematic cross-section of Figure 1A.
第1F圖為第1E圖之放大圖。 Figure 1F is an enlarged view of Figure 1E.
第2A~2D圖分別顯示由發光單元所發出的光線於光學結構中之不同行進路徑之示意圖。 Figures 2A to 2D are schematic diagrams showing different travel paths of light emitted by the light emitting unit in the optical structure.
第2E圖顯示本發明一實施例中發光裝置之配光曲線圖。 FIG. 2E shows a light distribution curve diagram of the light emitting device according to an embodiment of the present invention.
第3A圖顯示本發明一實施例中發光單元之一剖面示意圖。 FIG. 3A is a schematic cross-sectional view of a light-emitting unit according to an embodiment of the present invention.
第3B圖顯示本發明另一實施例中發光單元之一剖面示意圖。 FIG. 3B is a schematic cross-sectional view of a light emitting unit in another embodiment of the present invention.
第3C圖為第3B圖之一上視圖。 Figure 3C is a top view of Figure 3B.
第3D圖顯示本發明另一實施例中發光單元之一剖面示意圖。 FIG. 3D is a schematic cross-sectional view of a light-emitting unit in another embodiment of the present invention.
第4圖顯示本發明一實施例中一燈泡之立體示意圖。 FIG. 4 is a schematic perspective view of a light bulb according to an embodiment of the present invention.
第5A圖顯示本發明一實施例中發光裝置之製作流程圖。 FIG. 5A shows a manufacturing flow chart of a light emitting device according to an embodiment of the present invention.
第5B~5E圖顯示本發明一實施例中發光裝置之製作流程立體示意圖。 Figures 5B-5E show three-dimensional schematic diagrams of the manufacturing process of the light-emitting device according to an embodiment of the present invention.
以下實施例將伴隨著圖式說明本發明之概念,在圖式或說明中,相似或相同之部分係使用相同之標號,並且在圖式中,元件之形狀或厚度可擴大或縮小。需特別注意的是,圖中未繪示或描述之元件,可以是熟習此技藝之人士所知之形式。 The following embodiments will illustrate the concept of the present invention along with drawings. In the drawings or description, similar or identical parts are denoted by the same reference numerals, and in the drawings, the shape or thickness of elements can be enlarged or reduced. It is important to note that components not shown or described in the figures may be in a form known to those skilled in the art.
第1A圖顯示本發明一實施例中一發光裝置100之立體示意圖。第1B圖僅顯示第1A圖中載板11之俯視示意圖。第1C圖僅顯示第1A圖中載板11之仰視示意圖。第1D圖顯示第1A圖且沿著第1B圖I-I線之剖面示意圖。第1E圖顯示第1A圖YZ方向的剖面示意圖。參照第1A~1E圖,發光裝置100包含一光學結構10、一載板11、及複數個發光單元12。載板11具有一上表面111及一下表面112。一電路結構13形成於上表面111上且具有一第一電極墊131、一第二電極墊132及一導電線路133。發光單元12係設置於上表面111之導電線路133上並藉由導電線路133而彼此串聯連接。在其他實施例,可藉由其他種導電線路133之設計使得發光單元12彼此並聯、串並連接、或以橋式結構連接。在此實施例中,載板11不會被發光單元12發出之光穿透(不透光),因此,即使發光單元12發出光線朝向上表面111,但並不穿過上表面111。載板11可為電路板。電路板的基板材料(core layer)包含金屬、熱塑性材料、熱固性材料、或陶瓷材料。金屬包含鋁、銅、金、銀等合金、疊層、或單層。熱固性材料包含酚醛樹脂(Phonetic)、環氧樹脂(Epoxy)、雙馬來醯亞胺三嗪樹脂(Bismaleimide Triazine)或其組合。熱塑性材料包含聚亞醯胺樹脂(Polyimide resin)、聚四氟乙烯(Polytetrafluorethylene)等。陶瓷材料包含氧化鋁、氮化鋁、碳化矽鋁等。 FIG. 1A is a schematic perspective view of a light emitting device 100 according to an embodiment of the present invention. FIG. 1B only shows a schematic top view of the carrier plate 11 in FIG. 1A. FIG. 1C only shows a schematic bottom view of the carrier plate 11 in FIG. 1A. Figure 1D shows a schematic cross-sectional view of Figure 1A and along the line I-I of Figure 1B. FIG. 1E is a schematic cross-sectional view in the YZ direction in FIG. 1A. Referring to FIGS. 1A to 1E, the light emitting device 100 includes an optical structure 10, a carrier plate 11, and a plurality of light emitting units 12. The carrier board 11 has an upper surface 111 and a lower surface 112. A circuit structure 13 is formed on the upper surface 111 and has a first electrode pad 131, a second electrode pad 132 and a conductive line 133. The light emitting units 12 are disposed on the conductive lines 133 on the upper surface 111 and are connected in series with each other through the conductive lines 133. In other embodiments, the light-emitting units 12 may be connected to each other in parallel, series-parallel, or in a bridge-type structure by designing other conductive lines 133. In this embodiment, the carrier board 11 is not penetrated (opaque) by the light emitted from the light emitting unit 12, so even if the light emitted from the light emitting unit 12 is directed toward the upper surface 111, it does not pass through the upper surface 111. The carrier board 11 may be a circuit board. The core layer of the circuit board includes a metal, a thermoplastic material, a thermosetting material, or a ceramic material. The metal includes an alloy such as aluminum, copper, gold, and silver, a laminate, or a single layer. The thermosetting material includes a phenolic resin (Phonetic), an epoxy resin (Epoxy), a bismaleimide triazine resin (Bismaleimide Triazine), or a combination thereof. The thermoplastic material includes polyimide resin, polytetrafluorethylene, and the like. Ceramic materials include alumina, aluminum nitride, silicon aluminum carbide, and the like.
如第1A、1B及1C圖所示,一反射層14形成於上表面111及電路結構13上,且僅露出欲與發光單元12電連接之導電線路1331、1332以及電極墊131、132。導電線路1331與導電線路1332彼此物理性分離。在此實施例中,導電線路1332A與電極墊131彼此物理性分離且導電線路1331B與電極墊132彼此物理性分離。每一發光單元12包含一第一連接墊120A及一第二連接墊120B分別與曝露出之導電線路1331、1332物理性及電性連接。在本實施例中,曝露出之導電線路 1331,1332為長方形且其長邊與載板11之長邊平行。在另一實施例中,曝露出之導電線路1331,1332之長邊與載板11之短邊平行,或是與長邊夾一介於0~90°的角度。或者,曝露出之導電線路1331,1332可為圓形、橢圓形、或多邊形。此外,反射層14的設置可幫助反射由發光單元12射向朝載板11的光以增加發光裝置100整體之發光效率。 As shown in FIGS. 1A, 1B, and 1C, a reflective layer 14 is formed on the upper surface 111 and the circuit structure 13, and only the conductive lines 1331 and 1332 and the electrode pads 131 and 132 to be electrically connected to the light-emitting unit 12 are exposed. The conductive lines 1331 and 1332 are physically separated from each other. In this embodiment, the conductive wiring 1332A and the electrode pad 131 are physically separated from each other and the conductive wiring 1331B and the electrode pad 132 are physically separated from each other. Each light-emitting unit 12 includes a first connection pad 120A and a second connection pad 120B that are physically and electrically connected to the exposed conductive lines 1331 and 1332, respectively. In this embodiment, the exposed conductive lines 1331 and 1332 are rectangular and the long sides thereof are parallel to the long sides of the carrier plate 11. In another embodiment, the long sides of the exposed conductive lines 1331 and 1332 are parallel to the short sides of the carrier board 11, or an angle between 0 and 90 ° is formed with the long sides. Alternatively, the exposed conductive lines 1331 and 1332 may be circular, oval, or polygonal. In addition, the arrangement of the reflective layer 14 can help reflect the light emitted from the light emitting unit 12 toward the carrier plate 11 to increase the luminous efficiency of the entire light emitting device 100.
如第1C圖及第1D圖所示,發光單元12未設置於下表面112。電路結構13更包含一第三電極墊134與一第四電極墊135形成於載板11之下表面112。第三電極墊134與第四電極墊135分別相對應第一電極墊131與第二電極墊132的位置。一第一貫孔151貫穿載板11且具有一導電物質完全或部分形成於其中以電連接第一電極墊131及第三電極墊134。一第二貫孔152貫穿載板11且具有一導電物質完全或部分形成於其中以電連接第二電極墊132及第四電極墊135。於一實施利中,外部電源(power supply)係分別連接第一電極墊131及第二電極墊132以使複數個發光單元12發光。第三電極墊134及第四電極墊135可以不與外部電源直接物理性連接。當電極墊131、132與外部電源利用電焊(碰焊)方式形成電連接時,由於需要一金屬夾夾置載板11,電極墊134、135的設置可幫助製程過程中夾取發光裝置100的穩固性以及提供一導電路徑。在一實施例中,當利用焊線將電極墊131、132與外部電源形成電連接時,可不形成第三電極墊134及第四電極墊135。 As shown in FIGS. 1C and 1D, the light emitting unit 12 is not provided on the lower surface 112. The circuit structure 13 further includes a third electrode pad 134 and a fourth electrode pad 135 formed on the lower surface 112 of the carrier board 11. The third electrode pad 134 and the fourth electrode pad 135 correspond to positions of the first electrode pad 131 and the second electrode pad 132, respectively. A first through hole 151 penetrates the carrier board 11 and has a conductive substance formed completely or partially therein to electrically connect the first electrode pad 131 and the third electrode pad 134. A second through hole 152 penetrates the carrier plate 11 and has a conductive substance formed completely or partially therein to electrically connect the second electrode pad 132 and the fourth electrode pad 135. In one implementation, an external power supply is connected to the first electrode pad 131 and the second electrode pad 132 respectively to make the plurality of light emitting units 12 emit light. The third electrode pad 134 and the fourth electrode pad 135 may not be directly physically connected to an external power source. When the electrode pads 131, 132 and the external power source are electrically connected by an electric welding (bump welding) method, since a metal clip is required to sandwich the carrier plate 11, the arrangement of the electrode pads 134, 135 can help to clamp the light emitting device 100 during the manufacturing process Robustness and provide a conductive path. In one embodiment, when the electrode pads 131 and 132 are electrically connected to an external power source using a bonding wire, the third electrode pad 134 and the fourth electrode pad 135 may not be formed.
如第1A及1E圖所示,光學結構10係包覆載板11之上表面111、下表面112及載板11長邊兩側之側壁113,但曝露出電極墊131、132、134、135。光學結構10具有一似長方形之剖面。第1F圖為第1E圖之放大圖。光學結構10具有一弧形之頂表面101;兩實質上為直線形且相互平行之側表面102;兩側底表面103; 及一實質上為平面之底表面104,連接兩側底表面103。頂表面101位於載板11之上表面111之上方,且底表面104位於載板11之下表面112之下方。側表面102係自頂表面101沿著Z方向往載板11之下表面112延伸。每一側底表面103包含一第一部份1031,自側表面102以一傾斜角度往底表面104延伸;以及一第二部分1032。圖中左右兩側之第二部分1032分別連接至第一部份1031並往底表面104呈弧形狀延伸。載板11之下表面112與光學結構10之底表面104相距一介於0.3mm~0.7mm的第一距離(D1);載板11之上表面111與光學結構10之頂表面101相距一介於0.8mm~0.13mm的第二距離(D2)。第二距離(D2)係大於第一距離(D1)。頂表面101之弧形具有一介於0.4mm~0.7mm之曲率半徑,且具有一弧形角度θ 1(弧形所對應的圓心角)介於40°~60°或是一弧度介於2 π/9~π/3。側底表面103之第二部分之弧形具有一介於0.2~0.4mm之曲率半徑,且具有一弧形角度θ 2(弧形所對應的圓心角)介於5°~20°或一弧度介於π/36~π/9。一擴散粉(例如:二氧化鈦、氧化鋯、氧化鋅或氧化鋁)可選擇性地填入光學結構10內以幫助擴散、散射發光單元12所發出的光。擴散粉於光學結構10中的重量百分濃度(w/w)介於0.1~0.5%且具有一10nm~100nm或10~50μm的顆粒尺寸。在一實施例中,擴散粉於膠體中的重量百粉濃度可藉由熱重分析儀(thermogravimetric analyzer、TGA)量測。簡要之,在加熱過程中,膠體會由於溫度逐漸升高且在達到一特定溫度後而被移除(蒸發或熱裂解),殘留擴散粉,此時可得知重量的變化,因此可求得膠體與擴散粉各自的重量並推得擴散粉於膠體中之重量百分濃度。或者,可先量測膠體與擴散粉的總重量,再利用溶劑將膠體移除,最後量測擴散粉的重量,進而求得擴散粉於膠體中之重量百分濃度。在第1A圖中,雖可視 得發光單元12。然,當擴散粉填入至光學結構10中且達到一定濃度時,會使得光學結構10呈現白色狀而無法視得內部之發光單元12。 As shown in FIGS. 1A and 1E, the optical structure 10 covers the upper surface 111, the lower surface 112 of the carrier plate 11, and the side walls 113 on both sides of the long side of the carrier plate 11, but the electrode pads 131, 132, 134, and 135 are exposed. . The optical structure 10 has a rectangular cross-section. Figure 1F is an enlarged view of Figure 1E. The optical structure 10 has a curved top surface 101; two side surfaces 102 that are substantially linear and parallel to each other; and bottom surfaces 103 on both sides; And a substantially planar bottom surface 104 connecting the bottom surfaces 103 on both sides. The top surface 101 is located above the upper surface 111 of the carrier board 11, and the bottom surface 104 is located below the lower surface 112 of the carrier board 11. The side surface 102 extends from the top surface 101 to the lower surface 112 of the carrier plate 11 in the Z direction. Each bottom surface 103 includes a first portion 1031 extending from the side surface 102 toward the bottom surface 104 at an inclined angle; and a second portion 1032. The left and right second portions 1032 in the figure are respectively connected to the first portion 1031 and extend in an arc shape toward the bottom surface 104. The lower surface 112 of the carrier plate 11 is at a first distance (D1) between the bottom surface 104 of the optical structure 10 and 0.3 mm to 0.7 mm; the upper surface 111 of the carrier plate 11 is at a distance of 0.8 between the top surface 101 of the optical structure 10 mm ~ 0.13mm second distance (D2). The second distance (D2) is greater than the first distance (D1). The arc of the top surface 101 has a radius of curvature between 0.4mm and 0.7mm, and has an arc angle θ 1 (the central angle corresponding to the arc) of 40 ° ~ 60 ° or an arc of 2 π / 9 ~ π / 3. The arc of the second part of the side bottom surface 103 has a curvature radius between 0.2 and 0.4 mm, and has an arc angle θ 2 (the center angle corresponding to the arc) is between 5 ° to 20 ° or one arc. At π / 36 ~ π / 9. A diffusing powder (such as titanium dioxide, zirconia, zinc oxide, or aluminum oxide) can be selectively filled into the optical structure 10 to help diffuse and scatter the light emitted by the light emitting unit 12. The weight percentage concentration (w / w) of the diffusing powder in the optical structure 10 is between 0.1 and 0.5% and has a particle size of 10 nm to 100 nm or 10 to 50 μm. In one embodiment, the weight-per-powder concentration of the diffusing powder in the colloid can be measured by a thermogravimetric analyzer (TGA). In brief, during the heating process, the colloid will be removed (evaporation or thermal cracking) because the temperature gradually increases and reaches a specific temperature, and the diffusing powder remains. At this time, the change in weight can be known, so it can be obtained The weight of the colloid and the diffusing powder and the weight percentage concentration of the diffusing powder in the colloid are calculated. Alternatively, the total weight of the colloid and the diffusing powder may be measured first, the colloid may be removed by using a solvent, and then the weight of the diffusing powder may be measured to obtain the weight percentage concentration of the diffusing powder in the colloid. In Figure 1A, although visible 得 luminescent unit 12. However, when the diffusing powder is filled into the optical structure 10 and reaches a certain concentration, the optical structure 10 will appear white and the internal light emitting unit 12 cannot be seen.
光學結構10對於陽光或發光單元12所發出的光為透明。光學結構10包含矽膠(Silicone)、環氧樹脂(Epoxy)、聚亞醯胺(PI)、苯并環丁烯(BCB)、過氟環丁烷(PFCB)、SU8、丙烯酸樹脂(Acrylic Resin)、聚甲基丙烯酸甲酯(PMMA)、聚對苯二甲酸乙二酯(PET)、聚碳酸酯(PC)、聚醚醯亞胺(Polyetherimide)、氟碳聚合物(Fluorocarbon Polymer)、氧化鋁(Al2O3)、SINR、或旋塗玻璃(SOG)。 The optical structure 10 is transparent to the light emitted by the sunlight or the light emitting unit 12. Optical structure 10 includes Silicone, Epoxy, Polyimide (PI), Benzocyclobutene (BCB), Perfluorocyclobutane (PFCB), SU8, Acrylic Resin , Polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), polycarbonate (PC), polyetherimide, fluorocarbon polymer, alumina (Al 2 O 3 ), SINR, or spin-on-glass (SOG).
第2A圖顯示由發光單元12所發出的光線於光學結構10中行進路徑之示意圖。須注意者,圖式中之路徑僅為諸多可能路徑其中之一,非唯一之路徑,以下同。例如:自發光單元12的光線(L)射至弧形頂表面101,光線(L)會於頂表面101產生第一折射光線(L11)及第一反射光線(L12)。第一反射光線(L12)射至側表面102,會於側表面102產生第二折射光線(L21)及第二反射光(L22)。第二反射光線(L22)射至底表面104,會於底表面104產生第三折射光線(L31)及第三反射光線(L32)。或者,如第2B圖所示,例如:自發光單元12的光線(M)射至弧形頂表面101,光線(M)會於頂表面101產生第一折射光線(M11)及第一反射光線(M12)。第一反射光線(M12)射至側底表面103之第一部分1031,會於第一部分1031產生第二折射光線(M21)及第二反射光(M22)。第二反射光線(M22)射至底表面104,會於底表面104產生第三折射光線(M31)及第三反射光線(M32)。第2C及2D圖顯示光線於光學結構10中之其他可能行進路徑之示意圖。藉由本發明光學結構10的形狀設計以增加光線從載板10之下表面112方向射出的機率以及光線從底表面104射出的機率。發光裝置 100於上表面111之上方(第一側)可量得一第一亮度,於下表面112之下方(第二側)可量得一第二亮度,第一亮度與第二亮度之比值介於2~9之間。第一亮度與第二亮度的定義可參考後續描述。須注意者,圖式中之路徑僅為諸多可能路徑其中之一,非唯一之路徑。此外,以上說明中,光線雖於表面上同時被折射及反射。然而,光線在表面上亦可能僅被折射或反射,視材料介面的折射率差異、入射角度、光線波長等而定。 FIG. 2A is a schematic diagram illustrating a travel path of light emitted by the light emitting unit 12 in the optical structure 10. It should be noted that the path in the diagram is only one of many possible paths. It is not the only path, the same below. For example, the light (L) from the light emitting unit 12 strikes the curved top surface 101, and the light (L) generates a first refracted light (L11) and a first reflected light (L12) on the top surface 101. The first reflected light (L12) is incident on the side surface 102, and a second refracted light (L21) and a second reflected light (L22) are generated on the side surface 102. The second reflected light (L22) strikes the bottom surface 104, and a third refracted light (L31) and a third reflected light (L32) are generated on the bottom surface 104. Alternatively, as shown in FIG. 2B, for example, the light (M) from the light emitting unit 12 strikes the curved top surface 101, and the light (M) generates a first refracted light (M11) and a first reflected light on the top surface 101. (M12). The first reflected light (M12) is incident on the first portion 1031 of the side bottom surface 103, and a second refracted light (M21) and a second reflected light (M22) are generated in the first portion 1031. The second reflected light (M22) strikes the bottom surface 104, and a third refracted light (M31) and a third reflected light (M32) are generated on the bottom surface 104. Figures 2C and 2D show schematic diagrams of other possible travel paths of light in the optical structure 10. By designing the shape of the optical structure 10 of the present invention, the probability that light is emitted from the lower surface 112 of the carrier plate 10 and the probability that light is emitted from the bottom surface 104 are increased. Light emitting device 100 can measure a first brightness above the upper surface 111 (first side), and can measure a second brightness below the lower surface 112 (second side). The ratio of the first brightness to the second brightness is between Between 2 and 9. For the definition of the first brightness and the second brightness, refer to the subsequent description. It should be noted that the path in the diagram is only one of many possible paths, not the only one. In the above description, light is refracted and reflected on the surface at the same time. However, light may only be refracted or reflected on the surface, depending on the refractive index difference, incident angle, light wavelength, etc. of the material interface.
第2E圖顯示發光裝置100於電流10mA操作下且呈一熱穩態時,所得之一配光曲線圖。詳言之,當發光裝置100發光時,可利用配光曲線儀量得一假想圓(如第1A圖中之P1圓)的發光亮度。進一步,將發光亮度與角度作圖即可得一配光曲線圖。於量測時,發光裝置100之幾何中心係大致上位於P1圓之圓心。於本實施例中,擴散粉於光學結構10中的重量百分濃度為0.3%。如圖所示,發光裝置100之最大亮度約為4.53燭光(cd),且從0度至180度之亮度大致上係呈一朗伯分佈(lambertian distribution)。具體而言,-90度之亮度最小且約為0.5燭光(cd),-90度至-80度亮度大致相同,-80度至90度亮度漸增。-90~0~90度的曲線大致上與90~180~-90度的曲線類似,且光強度於-90~0~90度的分布與光強度於90~180~-90度的分布相對於90~-90度之直線軸對稱。此外,配光曲線圖中0~90~180度之總亮度定義為第一亮度,且0~-90~-180度之總亮度定義為第二亮度,第一亮度與第二兩度的比值約為4。由配光曲線圖中可算得發光裝置100之發光角度約為160度。 FIG. 2E shows a light distribution curve obtained when the light emitting device 100 is in a thermally stable state under the operation of a current of 10 mA. In detail, when the light-emitting device 100 emits light, the light-emission brightness of an imaginary circle (such as the circle P1 in FIG. 1A) can be measured by using a light distribution curve meter. Further, a light distribution curve graph can be obtained by plotting the light emission brightness and angle. During the measurement, the geometric center of the light-emitting device 100 is located approximately at the center of the circle of P1. In this embodiment, the weight percentage concentration of the diffusing powder in the optical structure 10 is 0.3%. As shown in the figure, the maximum brightness of the light emitting device 100 is about 4.53 candela (cd), and the brightness from 0 degrees to 180 degrees is roughly in a Lambertian distribution. Specifically, the brightness of -90 degrees is the smallest and is about 0.5 candle (cd), the brightness of -90 degrees to -80 degrees is about the same, and the brightness of -80 degrees to 90 degrees is gradually increasing. The curve of -90 ~ 0 ~ 90 degrees is roughly similar to the curve of 90 ~ 180 ~ -90 degrees, and the distribution of light intensity at -90 ~ 0 ~ 90 degrees is opposite to the distribution of light intensity at 90 ~ 180 ~ -90 degrees Straight axis symmetry at 90 ~ -90 degrees. In addition, the total brightness of 0 to 90 to 180 degrees in the light distribution curve chart is defined as the first brightness, and the total brightness of 0 to -90 to -180 degrees is defined as the second brightness, and the ratio of the first brightness to the second two degrees About 4. It can be calculated from the light distribution graph that the light emitting angle of the light emitting device 100 is about 160 degrees.
發光角度,其定義為當亮度為最大亮度之50%時,此時所包含的角度範圍即為發光角度。例如:先將第2E圖中於P1圓上所量測之配光曲線圖(極座標)轉化成直角座標圖可得一亮度曲線圖;其中,X軸為亮度,Y軸為角度(圖 未示)。接著,於約2.265燭光(最大亮度之50%)處平行於X軸畫一條直線且與亮度曲線圖交於兩點;計算兩點間的角度範圍,即定義為發光角度。 The light emitting angle is defined as when the brightness is 50% of the maximum brightness, and the angle range included at this time is the light emitting angle. For example: first convert the light distribution curve (polar coordinates) measured on the circle P1 in Figure 2E into a right-angled coordinate chart to obtain a brightness curve; where the X-axis is the brightness and the Y-axis is the angle (Figure Not shown). Next, draw a line parallel to the X axis at about 2.265 candlelights (50% of the maximum brightness) and intersect the brightness curve at two points; calculate the angle range between the two points, which is defined as the light emission angle.
第3A圖顯示本發明一實施例中發光單元12A之一剖面示意圖。發光單元12A包含一發光主體121、一第一透明體122、一螢光粉層123、一第二透明體124及一第三透明體125。發光主體121包含一基板、一第一型半導體層、一活性層、第二型半導體層(以上未標示)及兩電極1211。當發光主體121為一異質結構時,第一型半導體層及第二型半導體層例如為包覆層(cladding layer)及/或限制層(confinement layer),可分別提供電子、電洞且具有一大於活性層之能隙,藉此提高電子、電洞於活性層中結合以發光的機率。第一型半導體層、活性層、及第二型半導體層可包含Ⅲ-V族半導體材料,例如AlxInyGa(1-x-y)N或AlxInyGa(1-x-y)P,其中0≦x,y≦1;(x+y)≦1。依據活性層之材料,發光主體121可發出一峰值(peak wavelength)或主波長(dominant wavelength)介於610nm及650nm之間的紅光,峰值或主波長介於530nm及570nm之間的綠光,或是峰值或主波長介於450nm及490nm之間的藍光。螢光粉結構123包含複數個螢光粉顆粒。螢光粉顆粒具有約5um~100um的顆粒尺寸(直徑)且可包含一種或兩種以上種類之螢光粉材料。螢光粉材料包含但不限於黃綠色螢光粉及紅色螢光粉。黃綠色螢光粉之成分係例如鋁氧化物(YAG或是TAG)、矽酸鹽、釩酸鹽、鹼土金屬硒化物、或金屬氮化物。紅色螢光粉之成分係例如氟化物(K2TiF6:Mn4+、K2SiF6Mn4+)、矽酸鹽、釩酸鹽、鹼土金屬硫化物、金屬氮氧化物、或鎢鉬酸鹽族混合物。螢光粉結構123可吸收發光主體121所發出的第一光並轉換成與第一光不同頻譜之第二光。第一光與第二光混和會產生一混合光,例如白光。在此實施例中,發光單元12於熱穩態下產生的光具有一白光色 溫為2200K~6500K(例如:2200K、2400K、2700K、3000K、5700K、6500K),其色點值(CIE x,y)會落於七個麥克亞當橢圓(MacAdam ellipse)之範圍,並具有一大於80或大於90之演色性(CRI)。在另一實施例,第一光與第二光混合可產生紫光、黃光或其他非白光的色光。 FIG. 3A is a schematic cross-sectional view of a light-emitting unit 12A according to an embodiment of the present invention. The light-emitting unit 12A includes a light-emitting body 121, a first transparent body 122, a phosphor layer 123, a second transparent body 124, and a third transparent body 125. The light-emitting body 121 includes a substrate, a first-type semiconductor layer, an active layer, a second-type semiconductor layer (not labeled above), and two electrodes 1211. When the light-emitting body 121 has a heterostructure, the first-type semiconductor layer and the second-type semiconductor layer are, for example, a cladding layer and / or a confinement layer, which can respectively provide electrons and holes and have a It is larger than the energy gap of the active layer, thereby increasing the probability that electrons and holes are combined in the active layer to emit light. The first type semiconductor layer, the active layer, and the second type semiconductor layer may include a III-V semiconductor material, such as Al x In y Ga (1-xy) N or Al x In y Ga (1-xy) P, where 0 ≦ x, y ≦ 1; (x + y) ≦ 1. Depending on the material of the active layer, the light emitting body 121 can emit a red light with a peak wavelength or dominant wavelength between 610nm and 650nm, and a green light with a peak or dominant wavelength between 530nm and 570nm. Or blue light with a peak or dominant wavelength between 450nm and 490nm. The phosphor structure 123 includes a plurality of phosphor particles. The phosphor particles have a particle size (diameter) of about 5um to 100um and may include one or two or more kinds of phosphor materials. The phosphor material includes, but is not limited to, yellow-green phosphor and red phosphor. The composition of the yellow-green phosphor is, for example, aluminum oxide (YAG or TAG), silicate, vanadate, alkaline earth metal selenide, or metal nitride. The composition of the red phosphor is, for example, fluoride (K 2 TiF 6 : Mn 4+ , K 2 SiF 6 Mn 4+ ), silicate, vanadate, alkaline earth metal sulfide, metal nitrogen oxide, or tungsten molybdenum. Acid salt mixture. The phosphor structure 123 can absorb the first light emitted by the light emitting body 121 and convert it into a second light with a different frequency spectrum from the first light. Mixing the first light with the second light produces a mixed light, such as white light. In this embodiment, the light generated by the light emitting unit 12 under the thermal steady state has a white light color temperature of 2200K ~ 6500K (for example: 2200K, 2400K, 2700K, 3000K, 5700K, 6500K), and its color point value (CIE x, y ) Will fall within the range of seven MacAdam ellipse and have a color rendering (CRI) greater than 80 or greater than 90. In another embodiment, the first light and the second light are mixed to generate purple, yellow, or other non-white light.
發光單元12更包含一絕緣層126形成於第一透明體122、一螢光粉層123及第二透明體124下方且未覆蓋發光主體121之兩電極1211;及兩延伸電極127係分別形成於兩電極1211上並與兩電極1211電連接。兩延伸電極127分別做為前述之第一連接墊120A及一第二連接墊102B(如第1D圖所示)。絕緣層126為一包含基質及高反射率物質之混和物。基質可為或矽膠基質或環氧基質。高反射率物質可包含二氧化鈦、二氧化矽或氧化鋁。此外,絕緣層126可具有反射光或擴散光之作用。延伸電極127包含金屬,例如:銅、鈦、金、鎳、銀、其合金或其疊層。第一透明體122、第二透明體124及第三透明體125對於陽光或發光單元12所發出的光為透明。第一透明體122或第二透明體124可以包含矽膠(Silicone)、環氧樹脂(Epoxy)、聚亞醯胺(PI)、苯并環丁烯(BCB)、過氟環丁烷(PFCB)、SU8、丙烯酸樹脂(Acrylic Resin)、聚甲基丙烯酸甲酯(PMMA)、聚對苯二甲酸乙二酯(PET)、聚碳酸酯(PC)、聚醚醯亞胺(Polyetherimide)、氟碳聚合物(Fluorocarbon Polymer)、氧化鋁(Al2O3)、SINR、或旋塗玻璃(SOG)。第三透明體125可以包含藍寶石(Sapphire)、鑽石(Diamond)、玻璃(Glass)、環氧樹脂(Epoxy)、石英(quartz)、丙烯酸樹脂(Acrylic Resin)、氧化矽(SiOx)、氧化鋁(Al2O3)、氧化鋅(ZnO)、或矽膠(Silicone)。 The light-emitting unit 12 further includes two electrodes 1211 formed under the first transparent body 122, a phosphor layer 123, and the second transparent body 124 without covering the light-emitting body 121; and two extension electrodes 127 are formed on The two electrodes 1211 are electrically connected to the two electrodes 1211. The two extension electrodes 127 are respectively used as the first connection pad 120A and the second connection pad 102B (as shown in FIG. 1D). The insulating layer 126 is a mixture including a matrix and a highly reflective material. The matrix may be either a silicone matrix or an epoxy matrix. The highly reflective material may include titanium dioxide, silicon dioxide, or aluminum oxide. In addition, the insulating layer 126 may have a function of reflecting light or diffusing light. The extension electrode 127 includes a metal such as copper, titanium, gold, nickel, silver, an alloy thereof, or a stack thereof. The first transparent body 122, the second transparent body 124, and the third transparent body 125 are transparent to the light emitted by the sunlight or the light emitting unit 12. The first transparent body 122 or the second transparent body 124 may include Silicone, Epoxy, Polyimide (PI), Benzocyclobutene (BCB), Perfluorocyclobutane (PFCB) , SU8, Acrylic Resin, Polymethyl Methacrylate (PMMA), Polyethylene Terephthalate (PET), Polycarbonate (PC), Polyetherimide, Fluorocarbon Polymer (Fluorocarbon Polymer), alumina (Al 2 O 3 ), SINR, or spin-on-glass (SOG). The third transparent body 125 may include Sapphire, Diamond, Glass, Epoxy, quartz, Acrylic Resin, SiOx, and alumina ( Al 2 O 3 ), zinc oxide (ZnO), or silicone.
如第3A圖所示,第三透明體125具有一上寬下窄的形狀。詳言之,第三透明體125具有一第一部份1251、及一第二部分1252。第二部分1252較靠近 第二透明體124且其寬度小於第一部份1251之寬度。第一部分1251的厚度約為第三透明體125整體厚度的1%~20%或是1%~10%。在本實施例中,第一部分1251與第二部分1252之相接處為一弧形。第一部分1251具有一側表面1251S,其係略微朝上傾斜(面朝上),並較第二透明體124之側表面1241遠離發光主體121,可將光線導引到發光單元12的兩側。 As shown in FIG. 3A, the third transparent body 125 has a shape that is wide at the top and narrow at the bottom. In detail, the third transparent body 125 has a first portion 1251 and a second portion 1252. The second part 1252 is closer The second transparent body 124 has a width smaller than that of the first portion 1251. The thickness of the first part 1251 is about 1% to 20% or 1% to 10% of the entire thickness of the third transparent body 125. In this embodiment, a junction between the first portion 1251 and the second portion 1252 is an arc. The first part 1251 has a side surface 1251S, which is slightly inclined upward (face-up), and is farther from the light emitting body 121 than the side surface 1241 of the second transparent body 124, and can guide light to both sides of the light emitting unit 12.
在一實施例中,發光單元12A為一朝五個面(上左右前後)發光之發光結構且具有一約140度之發光角度(beam angle)。選擇性地,一擴散粉可添加於第一透明體122、或/且第二透明體124、或/且第三透明體125中。於另一實施例中,發光單元12A未包含第三透明體125。 In one embodiment, the light-emitting unit 12A is a light-emitting structure that emits light to five faces (upper, left-right, front-back, front-back) and has a beam angle of about 140 degrees. Alternatively, a diffusing powder may be added to the first transparent body 122, or / and the second transparent body 124, or / and the third transparent body 125. In another embodiment, the light emitting unit 12A does not include the third transparent body 125.
第3B圖顯示本發明另一實施例中發光單元12B之一剖面示意圖。第3C圖為第3B圖之一上視圖。第3B圖之發光單元類似於第3A圖之發光裝置,相同的符號或是記號所對應的元件或裝置,具有類似或是相同的元件或裝置。如第3B圖所示,第三透明體125’具有一平截頭(frustum)形狀且具有一平面1253及斜面1254。斜面1254的設計可增加發光主體121的光萃取量且改變發光單元12的光場。平面1253與斜面1254可夾一介於120°~150°的角度(Φ)且斜面1254之深度(H1)為第三透明體125’之整體厚度(H2)的30%~70%或是40%~60%。如第3C圖所示,平面1253的面積(Al;三角形)可為第三透明體125’之總投影面積(A;斜線)的40%~95%或是40%~60%。 FIG. 3B is a schematic cross-sectional view of a light-emitting unit 12B according to another embodiment of the present invention. Figure 3C is a top view of Figure 3B. The light-emitting unit in FIG. 3B is similar to the light-emitting device in FIG. 3A. The same symbols or symbols correspond to the elements or devices, and they have similar or identical elements or devices. As shown in FIG. 3B, the third transparent body 125 ′ has a frustum shape and has a flat surface 1253 and an inclined surface 1254. The design of the inclined surface 1254 can increase the light extraction amount of the light emitting body 121 and change the light field of the light emitting unit 12. The plane 1253 and the inclined surface 1254 can be at an angle (Φ) between 120 ° and 150 °, and the depth (H 1 ) of the inclined surface 1254 is 30% to 70% of the overall thickness (H 2 ) of the third transparent body 125 'or 40% ~ 60%. As shown in FIG. 3C, the area (Al; triangle) of the plane 1253 may be 40% to 95% or 40% to 60% of the total projected area (A; diagonal line) of the third transparent body 125 ′.
第3D圖顯示本發明另一實施例中發光單元12D之一剖面示意圖。第3D圖之發光單元類似於第3A圖之發光裝置,相同的符號或是記號所對應的元件或裝置,具有類似或是相同的元件或裝置。發光單元12D更包含一反射結構129形成於第一透明體124及第二透明體125之間。反射結構129對入射到反射結構129 的光線在波長範圍為450nm~475nm之間時,具有大於85%的反射率;或在所入射的光線的波長介於400nm~600nm的範圍間具有大於80%的反射率。未被反射結構129反射的光線可以進入第三透明體125,並由第三透明體125的上方或側面離開發光單元12D或第三透明體125。若反射結構129可反射多數光線,例如大於95%的反射率,則發光單元12D中的第三透明體125可以略而不用。反射結構129可以是一單層結構或是多層結構。單層結構例如為一金屬層,包含例如銀或鋁,或是一氧化物層,包含例如二氧化鈦。多層結構可以是金屬與金屬氧化物的疊層或是分散式布拉格反射鏡(Distributed Bragg reflector、DBR)以達到反射的效果。金屬與金屬氧化物的疊層例如鋁與氧化鋁的疊層。分散式布拉格反射鏡可為非半導體疊層或半導體疊層。非半導體疊層之材料可選自下列群組之一:氧化鋁(Al2O3)、氧化矽(SiO2)、二氧化鈦(TiO2)、五氧化二鈮(Nb2O5)、氮化矽(SiNx)。半導體疊層之材料可選自下列群組之一:氮化鎵(GaN)、氮化鋁鎵(AlGaN)、氮化铝铟镓(AlInGaN)、砷化鋁(AlAs)、砷化鋁鎵(AlGaAs)、砷化鎵(GaAs)。在本實施例中,不論是單層結構或者多層結構,都不會完全反射光線,因此至少有部分的光線會直接穿過反射結構129。 FIG. 3D is a schematic cross-sectional view of a light-emitting unit 12D according to another embodiment of the present invention. The light-emitting unit in FIG. 3D is similar to the light-emitting device in FIG. 3A. The same symbols or symbols correspond to the elements or devices, and they have similar or identical elements or devices. The light emitting unit 12D further includes a reflective structure 129 formed between the first transparent body 124 and the second transparent body 125. The reflective structure 129 has a reflectance of greater than 85% when the light incident on the reflective structure 129 has a wavelength range between 450nm and 475nm; or it has a reflectance greater than 80% when the wavelength of the incident light is between 400nm and 600nm. Reflectivity. The light that is not reflected by the reflective structure 129 can enter the third transparent body 125 and leave the light emitting unit 12D or the third transparent body 125 from above or from the side of the third transparent body 125. If the reflective structure 129 can reflect most light, such as a reflectance greater than 95%, the third transparent body 125 in the light emitting unit 12D may be omitted. The reflective structure 129 may be a single-layer structure or a multi-layer structure. The single-layer structure is, for example, a metal layer containing, for example, silver or aluminum, or an oxide layer containing, for example, titanium dioxide. The multilayer structure can be a stack of metal and metal oxide or a distributed Bragg reflector (DBR) to achieve the reflection effect. A stack of a metal and a metal oxide is, for example, a stack of aluminum and alumina. The decentralized Bragg mirror can be a non-semiconductor stack or a semiconductor stack. The material of the non-semiconductor stack can be selected from one of the following groups: aluminum oxide (Al 2 O 3 ), silicon oxide (SiO 2 ), titanium dioxide (TiO 2 ), niobium pentoxide (Nb 2 O 5 ), nitride Silicon (SiN x ). The material of the semiconductor stack can be selected from one of the following groups: gallium nitride (GaN), aluminum gallium nitride (AlGaN), aluminum indium gallium nitride (AlInGaN), aluminum arsenide (AlAs), aluminum gallium arsenide ( AlGaAs), gallium arsenide (GaAs). In this embodiment, no matter whether it is a single-layer structure or a multi-layer structure, light will not be completely reflected, so at least part of the light will directly pass through the reflective structure 129.
在另一實施例中,第1A圖中之發光單元12可具有類似如第3A、3B、或3D圖中發光單元12A、12B、12D之結構,但此結構中未包含螢光粉層123。亦即發光單元12僅發出來自於發光主體121的原始光線,例如紅光、綠光、或是藍光。複數個螢光粉顆粒(波長轉換物質)可添加於光學結構10中,以吸收發光主體121所發出的第一光而轉換成與第一光不同頻譜之第二光,第一光與第二光混和會產生白光。因此,發光裝置100於熱穩態下可具有一白光色溫為2200K~6500K(例如:2200K、2400K、2700K、3000K、5700K、6500K),其色 點值(CIE x,y)會落於七個麥克亞當橢圓(MacAdam ellipse)之範圍,並具有一大於80或大於90之演色性(CRI)。 In another embodiment, the light emitting unit 12 in FIG. 1A may have a structure similar to the light emitting units 12A, 12B, and 12D in FIG. 3A, 3B, or 3D, but the structure does not include the phosphor layer 123. That is, the light emitting unit 12 emits only the original light from the light emitting body 121, such as red light, green light, or blue light. A plurality of phosphor particles (wavelength conversion substances) may be added to the optical structure 10 to absorb the first light emitted by the light emitting body 121 and convert it into a second light having a different frequency spectrum from the first light, the first light and the second light Light mixing produces white light. Therefore, the light-emitting device 100 may have a white light color temperature of 2200K ~ 6500K (for example, 2200K, 2400K, 2700K, 3000K, 5700K, 6500K) in a thermally stable state. The point value (CIE x, y) will fall within the range of seven MacAdam ellipse and have a color rendering (CRI) greater than 80 or greater than 90.
本實施例之發光單元係以一覆晶方式形成於載板上。在其他實施例中,可先將複數個水平式或垂直式發光單元(圖未示)利用銀膠或導電透明膠固定於載板上;接著,使用打線方式將發光單元彼此形成電連接;最後,提供光學結構包覆發光單元以形成發光裝置。 The light-emitting unit of this embodiment is formed on a carrier board in a flip-chip manner. In other embodiments, a plurality of horizontal or vertical light emitting units (not shown) may be fixed on the carrier board with silver glue or conductive transparent glue first; then, the light emitting units are electrically connected to each other by wire bonding; finally An optical structure is provided to cover the light emitting unit to form a light emitting device.
第4圖顯示本發明一實施例中一燈泡30之立體圖。燈泡30包含一燈殼301、一電路板302、一支撐柱303、複數個發光裝置100、一散熱件304、及一電連接件305。複數個發光裝置100係固定並電連接至支撐柱303。詳言之,一電極件307形成於支撐柱303上且與電路板302電連接。每一發光裝置100之第三電極墊134透過一金屬線308與電路板302連接。由於第一電極墊131與第三電極墊134電連接,因此第一電極墊131亦與電路板302電連接。每一發光裝置100之第二電極墊132透過一金屬線309與電極件307連接。在本實施例中,藉由上述之電連接方式,使得發光裝置100彼此並聯連接。在其他實施例中,發光裝置100彼此可串聯連接或串並連接。 FIG. 4 is a perspective view of a light bulb 30 according to an embodiment of the present invention. The light bulb 30 includes a lamp housing 301, a circuit board 302, a support post 303, a plurality of light emitting devices 100, a heat sink 304, and an electrical connector 305. The plurality of light emitting devices 100 are fixed and electrically connected to the support post 303. In detail, an electrode member 307 is formed on the support post 303 and is electrically connected to the circuit board 302. The third electrode pad 134 of each light-emitting device 100 is connected to the circuit board 302 through a metal wire 308. Since the first electrode pad 131 is electrically connected to the third electrode pad 134, the first electrode pad 131 is also electrically connected to the circuit board 302. The second electrode pad 132 of each light-emitting device 100 is connected to the electrode member 307 through a metal wire 309. In this embodiment, the light-emitting devices 100 are connected in parallel with each other by the above-mentioned electrical connection method. In other embodiments, the light emitting devices 100 may be connected in series or in series.
第5A圖顯示本發明發光裝置之製作流程圖。如第5A及5B圖所示,步驟501:提供一支架21。支架21具有兩框架211及複數個載板11連接於兩框架211間。載板11上具有電路結構13,電路結構13可以於支架21與載板11成形之前或之後形成。例如,若支架21與載板11係在單一板材上利用衝壓成形技術形成,電路結構13可以先預形成在此單一板材上、或於沖壓成形步驟後再形成於載板11上。如第5A及5C圖所示,步驟502:利用表面黏結技術(SMT)將發光單元12固定於載板11上,並藉由電路結構13,發光單元12彼此電連接。如第5A及5D圖所示, 步驟503:利用一鑄模方式,例如:射出成型(injection molding)或移轉成型(transfer molding)形成一光學結構10,使其包覆發光單元12及載板11並僅露出電極墊131、132。如第5A及5E圖所示步驟504:進行一沖壓(punch)或雷射切割製程以分離載板11與兩框架211,藉此可同時或一次性形成複數個彼此獨立之發光裝置100。 FIG. 5A shows a manufacturing flow chart of the light-emitting device of the present invention. As shown in FIGS. 5A and 5B, step 501: provide a bracket 21. The bracket 21 includes two frames 211 and a plurality of carrier boards 11 connected between the two frames 211. The carrier board 11 has a circuit structure 13. The circuit structure 13 may be formed before or after the bracket 21 and the carrier board 11 are formed. For example, if the bracket 21 and the carrier plate 11 are formed on a single plate using a stamping technique, the circuit structure 13 may be pre-formed on the single plate or formed on the carrier plate 11 after the stamping step. As shown in FIGS. 5A and 5C, step 502: Fix the light-emitting units 12 on the carrier board 11 by using surface bonding technology (SMT), and the light-emitting units 12 are electrically connected to each other through the circuit structure 13. As shown in Figures 5A and 5D, Step 503: Use a casting method, such as injection molding or transfer molding, to form an optical structure 10 that covers the light-emitting unit 12 and the carrier plate 11 and exposes only the electrode pads 131 and 132. . As shown in FIGS. 5A and 5E, step 504: a punch or laser cutting process is performed to separate the carrier plate 11 and the two frames 211, so that a plurality of independent light-emitting devices 100 can be formed simultaneously or at a time.
需了解的是,本發明中上述之實施例在適當的情況下,是可互相組合或替換,而非僅限於所描述之特定實施例。本發明所列舉之各實施例僅用以說明本發明,並非用以限制本發明之範圍。任何人對本發明所作之任何顯而易見之修飾或變更接不脫離本發明之精神與範圍。 It should be understood that the above-mentioned embodiments of the present invention can be combined or replaced with each other where appropriate, instead of being limited to the specific embodiments described. The embodiments listed in the present invention are only used to illustrate the present invention and are not intended to limit the scope of the present invention. Any obvious modifications or changes made by anyone to the present invention can be made without departing from the spirit and scope of the present invention.
Claims (10)
一第一載板,具有一第一部分及以及一從該第一部分延伸的第二部分;
複數個發光單元設置在該第二部分上;
一第一電極墊設置在該第一部分;
一導電線路與該複數個發光單元中至少其一以及該第一電極墊電性連接;
一第一反射層位於該導電線路上;以及
一光學結構包含一波長轉換物質,設置在該第二部分並暴露該第一部分,
其中,在一上視圖中,該第一部分較該第二部分寬。 A light emitting device includes:
A first carrier board having a first portion and a second portion extending from the first portion;
A plurality of light emitting units are disposed on the second part;
A first electrode pad is disposed on the first part;
A conductive line is electrically connected to at least one of the plurality of light-emitting units and the first electrode pad;
A first reflective layer is located on the conductive circuit; and an optical structure includes a wavelength conversion substance disposed on the second portion and exposing the first portion,
Wherein, in a top view, the first portion is wider than the second portion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108101288A TWI666406B (en) | 2015-07-23 | 2015-07-23 | Light-emitting device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108101288A TWI666406B (en) | 2015-07-23 | 2015-07-23 | Light-emitting device |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201920875A TW201920875A (en) | 2019-06-01 |
TWI666406B true TWI666406B (en) | 2019-07-21 |
Family
ID=67702258
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108101288A TWI666406B (en) | 2015-07-23 | 2015-07-23 | Light-emitting device |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI666406B (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110096134A1 (en) * | 2009-10-22 | 2011-04-28 | Samsung Electronics Co., Ltd. | Light emitting diode array including apertures, line printer head, and method of manufacturing the light emitting diode array |
TW201447167A (en) * | 2013-06-11 | 2014-12-16 | Epistar Corp | Light emitting device |
CN204062586U (en) * | 2014-08-15 | 2014-12-31 | 上海翔山实业有限责任公司 | A kind of Split LED lamp bubble |
-
2015
- 2015-07-23 TW TW108101288A patent/TWI666406B/en active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110096134A1 (en) * | 2009-10-22 | 2011-04-28 | Samsung Electronics Co., Ltd. | Light emitting diode array including apertures, line printer head, and method of manufacturing the light emitting diode array |
TW201447167A (en) * | 2013-06-11 | 2014-12-16 | Epistar Corp | Light emitting device |
CN204062586U (en) * | 2014-08-15 | 2014-12-31 | 上海翔山实业有限责任公司 | A kind of Split LED lamp bubble |
Also Published As
Publication number | Publication date |
---|---|
TW201920875A (en) | 2019-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5698496B2 (en) | Light emitting chip, LED package, backlight for liquid crystal display, liquid crystal display and illumination | |
JP4699681B2 (en) | LED module and lighting device | |
TWI389340B (en) | Semiconductor light emitting device | |
US10879440B2 (en) | Light emitting device including light emitting unit arranged in a tube | |
JP5509307B2 (en) | Light emitting diode package | |
JP6964345B2 (en) | Light emitting element package and light source device | |
US20140167092A1 (en) | Optoelectronic assembly and method for producing an optoelectronic assembly | |
JP4116960B2 (en) | Semiconductor light emitting device, light emitting module, lighting device, and method for manufacturing semiconductor light emitting device | |
JP2004281606A (en) | Light emitting device and its manufacturing method | |
CN102117878A (en) | Light emitting device and method of manufacturing the same | |
TW201909451A (en) | Light emitting device package | |
US20150228867A1 (en) | Light emitting diode package and light emitting device using the same | |
JP5853441B2 (en) | Light emitting device | |
TWI680257B (en) | Light-emitting device | |
TWI610470B (en) | Light emitting diode chip scale packaging structure, direct type backlight module, and method for manufacturing light emitting device | |
KR101666844B1 (en) | Optical device and light source module having the same | |
TW202339309A (en) | Arrangements of multiple-chip light-emitting diode packages | |
KR20120030871A (en) | Light emitting device package and lighting unit using the same | |
JP7285439B2 (en) | planar light source | |
TWI688128B (en) | Light emitting diode chip scale packaging structure and direct type backlight module | |
JP2011114342A (en) | Light emitting element package | |
TWI666406B (en) | Light-emitting device | |
CN110260182B (en) | Light emitting device | |
TW201705549A (en) | Light-emitting device | |
JP2016143622A (en) | Led lighting device, projector and headlight |