TW201700741A - Mixed alloy solder paste - Google Patents

Mixed alloy solder paste Download PDF

Info

Publication number
TW201700741A
TW201700741A TW105107400A TW105107400A TW201700741A TW 201700741 A TW201700741 A TW 201700741A TW 105107400 A TW105107400 A TW 105107400A TW 105107400 A TW105107400 A TW 105107400A TW 201700741 A TW201700741 A TW 201700741A
Authority
TW
Taiwan
Prior art keywords
alloy
solder
paste
solder paste
remainder
Prior art date
Application number
TW105107400A
Other languages
Chinese (zh)
Other versions
TWI681063B (en
Inventor
張宏文
寧成 李
Original Assignee
銦業公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/643,868 external-priority patent/US9636784B2/en
Application filed by 銦業公司 filed Critical 銦業公司
Publication of TW201700741A publication Critical patent/TW201700741A/en
Application granted granted Critical
Publication of TWI681063B publication Critical patent/TWI681063B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0244Powders, particles or spheres; Preforms made therefrom
    • B23K35/025Pastes, creams, slurries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • B23K35/262Sn as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • B23K35/264Bi as the principal constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C12/00Alloys based on antimony or bismuth
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • C22C13/02Alloys based on tin with antimony or bismuth as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/02Alloys containing less than 50% by weight of each constituent containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/04Alloys containing less than 50% by weight of each constituent containing tin or lead
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3457Solder materials or compositions; Methods of application thereof
    • H05K3/3485Applying solder paste, slurry or powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material

Abstract

A solder paste consists of an amount of a first solder alloy powder between 44wt% to less than 60wt%; an amount of a second solder alloy powder between greater than 0wt% and 48wt%; and a flux; wherein the first solder alloy powder comprises a first solder alloy that has a solidus temperature above 260 DEG C; and wherein the second solder alloy powder comprises a second solder alloy that has a solidus temperature that is less than 250 DEG C. In another implementation, the solder paste consists of an amount of a first solder alloy powder between 44wt% and 87wt%; an amount of a second solder alloy powder between 13wt% and 48wt%; and flux.

Description

混合合金焊料膏 Mixed alloy solder paste 對相關申請案之交叉參考Cross-reference to related applications

此申請案係2015年2月23日提出申請之第14/629,139號美國專利申請案之部分接續案,該美國專利申請案係2010年5月3日提出申請之第12/772,897號美國專利申請案之接續案,該兩個美國專利申請案以其全文引用方式併入本文中。 This application is part of the continuation of U.S. Patent Application Serial No. 14/629, 139, filed on Feb. The continuation of the case is incorporated herein by reference in its entirety.

本發明一般而言係關於混合合金焊料膏之組合物,且更特定而言,某些實施例係關於用於高溫焊料接頭應用之焊料膏中之每一合金成分之組合物。 The present invention relates generally to compositions of mixed alloy solder pastes, and more particularly, to certain compositions relating to each of the alloying compositions in solder pastes for high temperature solder joint applications.

因電子總成之丟棄產生之鉛被視為對環境及人類健康有害的。規章越來越禁止帶Pb焊料在電子互連及電子封裝工業中之使用。已廣泛地研究用以替換傳統共熔Pb-Sn之無Pb焊料。SnAg、SnCu、SnAgCu及SnZn焊料正變為用於半導體及電子工業中之互連之主流焊料。然而,用以代替習用高鉛焊料(亦即,Pb-5Sn及Pb-5Sn-2.5Ag)之高溫無Pb焊料之開發仍在初始階段。高溫焊料用於在總成正焊接到印刷佈線板(PWB)上時保持該總成中之組件內之內部連接。 Lead produced by the disposal of electronic assemblies is considered to be harmful to the environment and human health. Regulations increasingly prohibit the use of Pb solder in the electronic interconnect and electronic packaging industries. Pb-free solders have been extensively studied to replace conventional eutectic Pb-Sn. SnAg, SnCu, SnAgCu, and SnZn solders are becoming mainstream solders for interconnects in the semiconductor and electronics industries. However, the development of high-temperature Pb-free solders to replace conventional high-lead solders (ie, Pb-5Sn and Pb-5Sn-2.5Ag) is still in its infancy. The high temperature solder is used to maintain the internal connections within the assembly in the assembly while the assembly is being soldered to the printed wiring board (PWB).

高溫焊料之常見用途係用於晶粒附接。在實例性程序中,藉由使用高溫焊料將矽晶粒焊接至引線框上而形成總成。然後,藉由焊接或機械緊扣而將矽晶粒/引線框總成(經囊封或未經囊封)附接至PWB 上。板可曝露至再多幾個回流程序以用於將其他電子裝置表面安裝至板上。在進一步焊接程序期間,應很好地維持矽晶粒與引線框之間的內部連接。此需要高溫焊料在不具有任何功能故障之情況下抵抗多個回流。因此,為了與工業中所使用之焊料回流量變曲線相容,對高溫焊料之主要要求包含(i)大約260℃及高於260℃之熔化溫度(根據典型焊料回流量變曲線),(ii)良好耐熱疲勞性,(iii)高熱導率/電導率,及(iv)低成本。 A common use of high temperature solder is for die attach. In an exemplary procedure, an assembly is formed by soldering a germanium die to a leadframe using a high temperature solder. The germanium die/lead frame assembly (either encapsulated or unencapsulated) is then attached to the PWB by soldering or mechanical snapping on. The board can be exposed to a few more reflow procedures for surface mounting other electronic devices to the board. The internal connection between the germanium die and the leadframe should be well maintained during further soldering procedures. This requires high temperature solder to resist multiple backflows without any functional failure. Therefore, in order to be compatible with the solder backflow profile used in the industry, the main requirements for high temperature solders include (i) a melting temperature of about 260 ° C and above 260 ° C (according to a typical solder return flow curve), (ii) Good thermal fatigue resistance, (iii) high thermal conductivity/conductivity, and (iv) low cost.

當前,不存在可用於工業中之臨時無鉛替代方案。然而,最近已提議幾個無鉛焊料候選者以用於高溫晶粒附接應用,諸如(1)Sn-Sb,(2)基於Zn之合金,(3)Au-Sn/Si/Ge及(4)Bi-Ag。 Currently, there are no temporary lead-free alternatives available for use in industry. However, several lead-free solder candidates have recently been proposed for high temperature die attach applications such as (1) Sn-Sb, (2) Zn-based alloys, (3) Au-Sn/Si/Ge and (4) Bi-Ag.

具有小於10wt%Sb之Sn-Sb合金在不形成大量金屬間化合物之情況下維持良好機械性質。但其固相線溫度不高於250℃,此無法滿足用於回流抵抗之260℃要求。 The Sn-Sb alloy having less than 10% by weight of Sb maintains good mechanical properties without forming a large amount of intermetallic compounds. However, the solidus temperature is not higher than 250 ° C, which cannot meet the 260 ° C requirements for reflow resistance.

基於Zn之合金(包含共熔Zn-Al、Zn-Al-Mg及Zn-Al-Cu)具有高於330℃之熔化溫度。然而,Zn、Al及Mg對氧之高親和力導致各種金屬化表面處理層上之極其不良潤濕。經提議為高溫無鉛代替焊料之一者之Zn-(20-40wt%)Sn焊料合金具有高於300℃之液相線溫度,但固相線溫度僅係大約200℃。處於大約260℃之Zn-Sn焊料之半固態應該在後續回流期間維持組件之間的良好互連。然而,當半固體焊料在經囊封封裝內側經壓縮且強迫半固體焊料流出時出現問題。此形成意外功能故障之風險。基於Zn之焊料合金亦將在金屬化表面與焊料之間形成大量IMC層。IMC層之存在及在後續回流及操作期間其密集型生長亦導致可靠性擔憂。 The Zn-based alloy (including eutectic Zn-Al, Zn-Al-Mg, and Zn-Al-Cu) has a melting temperature higher than 330 °C. However, the high affinity of Zn, Al, and Mg for oxygen results in extremely poor wetting on various metallized surface treatment layers. The Zn-(20-40 wt%) Sn solder alloy, which is proposed to be one of the high temperature lead-free solders, has a liquidus temperature higher than 300 ° C, but the solidus temperature is only about 200 ° C. The semi-solid state of the Zn-Sn solder at about 260 ° C should maintain good interconnection between the components during subsequent reflow. However, problems arise when the semi-solid solder is compressed inside the encapsulated package and forces the semi-solid solder to flow out. This creates a risk of unexpected functional failure. A Zn-based solder alloy will also form a large number of IMC layers between the metallized surface and the solder. The presence of the IMC layer and its intensive growth during subsequent reflow and operation also cause reliability concerns.

由兩種金屬間化合物構成之共熔Au-Sn已由於其280℃之熔化溫度、良好機械性質、高電導率及熱導率以及極好耐腐蝕性而實驗上展示為可靠高溫焊料。然而,極其高成本限制其在其中成本勝過可靠性 考量之領域內之應用。 The eutectic Au-Sn composed of two intermetallic compounds has been experimentally demonstrated as a reliable high-temperature solder due to its melting temperature of 280 ° C, good mechanical properties, high electrical conductivity and thermal conductivity, and excellent corrosion resistance. However, extremely high cost limits its cost over reliability Applications in the field of consideration.

具有262℃之固相線溫度之Bi-Ag合金滿足對高溫晶粒附接焊料之熔化溫度要求。然而,存在幾個主要擔憂:(1)各種表面處理層上之不良潤濕及(2)源自不良潤濕之相關聯弱接合界面。 A Bi-Ag alloy having a solidus temperature of 262 ° C satisfies the melting temperature requirement for high temperature die attach solder. However, there are several major concerns: (1) poor wetting on various surface treatment layers and (2) associated weak joint interfaces from poor wetting.

對高熔化無鉛焊料之熔化溫度要求使Sn-Sb及Zn-Sn焊料為不適合的。富含Au焊料之極其高成本限制其被工業接受。Zn-Al及Bi-Ag滿足熔化溫度要求且係合理地低成本的。然而,歸因於對氧之高親和力(在Zn-Al焊料系統中)或歸因於焊料與基板金屬化物之間的不良反應化學性質(在Bi-Ag焊料系統或甚至諸如Pb-Cu及Pb-Ag系統之某些含鉛焊料中)之其不良潤濕使此等高熔化焊料由於由不良潤濕引起之弱接合強度而難以在工業中使用。然而,BiAg及ZnAl之所要高熔化溫度仍使其作為高溫無鉛焊料之候選者為合格的。 The melting temperature requirements for high melting lead-free solders make Sn-Sb and Zn-Sn solders unsuitable. The extremely high cost of Au-rich solders limits their acceptance to the industry. Zn-Al and Bi-Ag meet the melting temperature requirements and are reasonably low cost. However, due to the high affinity for oxygen (in the Zn-Al solder system) or due to the adverse reaction chemistry between the solder and the substrate metallization (in Bi-Ag solder systems or even Pb-Cu and Pb) The poor wetting of certain lead-containing solders of the -Ag system makes these highly molten solders difficult to use in industry due to the weak joint strength caused by poor wetting. However, the high melting temperature of BiAg and ZnAl still makes it acceptable as a candidate for high temperature lead-free solder.

如上文所闡述,焊料之不良潤濕源自(1)不良反應化學性質或(2)焊料之氧化。弱接合總是與不良潤濕相關聯。舉例而言,不同金屬化表面上之基於Bi之焊料之不良潤濕主要由在回流期間Bi與基板材料(亦即,Cu)之間的不良反應化學性質或Bi之氧化引起。已開發目的在於在熔化期間阻止合金表面上之浮渣之過度形成的摻雜Ge之BiAg。然而,此摻雜將不改變Bi與基板之金屬化表面處理層之間的反應化學性質。Bi及Cu將不在Bi/Cu界面處形成IMC,此係不良潤濕及弱接合界面之主導原因。Bi及Ni將在Bi/Ni界面之間形成IMC層,但脆弱IMC(Bi3Ni或BiNi)弱化接頭強度,此乃因裂縫總是沿著Bi3Ni與焊料基質之間的界面或BiNi與Ni基板之間的界面生長。因此,Bi與基板材料之間的反應化學性質引起不良潤濕及弱接合強度。 As explained above, poor wetting of the solder results from (1) adverse reaction chemistry or (2) oxidation of the solder. Weak joints are always associated with poor wetting. For example, poor wetting of Bi-based solder on different metallized surfaces is primarily caused by undesirable reaction chemistry between Bi and substrate material (ie, Cu) or oxidation of Bi. A Ge-doped BiAg has been developed to prevent excessive formation of scum on the surface of the alloy during melting. However, this doping will not alter the reaction chemistry between Bi and the metallized surface treated layer of the substrate. Bi and Cu will not form IMC at the Bi/Cu interface, which is the dominant cause of poor wetting and weak bonding interfaces. Bi and Ni will form an IMC layer between the Bi/Ni interfaces, but the fragile IMC (Bi3Ni or BiNi) weakens the joint strength because the crack is always along the interface between Bi3Ni and the solder substrate or between the BiNi and Ni substrates. The interface grows. Therefore, the reaction chemistry between Bi and the substrate material causes poor wetting and weak joint strength.

已嘗試藉由將額外元素熔合於焊料中而修改焊料合金與金屬化表面處理層之間的反應化學性質。然而,熔合通常與某種意外性質損耗相關聯。舉例而言,Sn具有比與Bi相比較更佳的與基板之反應化學 性質。然而,將Sn直接熔合至BiAg(其中Ag目的在於增加熱導率/電導率)中可導致(1)熔化溫度之顯著降低或(2)合金中之Ag3Sn IMC之形成。若不存在供Sn及基板金屬在回流期間溶解於熔化焊料中之足夠時間,則此將不改良Sn與基板金屬之間的反應化學性質。因此,將元素直接熔合至焊料中(諸如將Sn直接熔合至Bi-Ag合金中)揭露最小改良。 Attempts have been made to modify the reaction chemistry between the solder alloy and the metallized surface treated layer by fusing additional elements into the solder. However, fusion is often associated with some unexpected property loss. For example, Sn has a better reaction chemistry with the substrate than Bi. nature. However, direct fusion of Sn to BiAg (where Ag is intended to increase thermal conductivity/conductivity) can result in (1) a significant decrease in melting temperature or (2) formation of Ag3Sn IMC in the alloy. If there is not enough time for the Sn and the substrate metal to dissolve in the molten solder during reflow, this will not improve the reaction chemistry between Sn and the substrate metal. Thus, direct fusion of the elements into the solder, such as direct fusion of Sn into the Bi-Ag alloy, reveals minimal improvements.

本發明主張用於設計及製備混合合金焊料膏(其實現來自構成合金粉末之經組合優點)之新技術。在某些實施例中,混合合金焊料膏適合用於高溫焊料應用(諸如晶粒附接),此乃因成分提供所要優點,包含相應地來自第二合金之經改良反應化學性質、良好地控制之IMC層厚度及經增強可靠性以及來自第一合金之高熔化溫度及良好熱導率/電導率。本發明亦呈現製備混合合金焊料膏之方法及利用混合合金焊料膏結合電子組件或機械部件之方法。 The present invention is directed to new techniques for designing and preparing mixed alloy solder pastes that achieve the combined advantages of forming alloy powders. In certain embodiments, a mixed alloy solder paste is suitable for use in high temperature solder applications, such as die attach, as the composition provides the desired advantages, including improved reaction chemistry from the second alloy, which is well controlled. The IMC layer thickness and enhanced reliability as well as the high melting temperature and good thermal conductivity/conductivity from the first alloy. The present invention also presents a method of preparing a mixed alloy solder paste and a method of using a mixed alloy solder paste in combination with an electronic component or a mechanical component.

所發明之技術提供一種設計混合合金粉末膏之方法,其中膏中存在添加劑粉末以在相對較低溫度下或連同第一合金焊料粉末之熔化改良反應化學性質。在某些實施例中,混合合金粉末膏包含兩種或兩種以上的合金粉末及一焊劑。膏中之合金粉末由作為主要物之一種焊料合金粉末及作為次要物之添加劑合金粉末構成。該等添加劑提供用以在基板之各種金屬化表面處理層(亦即,常用之Cu及Ni表面處理層等)上潤濕之優良化學性質。 The inventive technique provides a method of designing a mixed alloy powder paste in which an additive powder is present in the paste to improve reaction chemistry at relatively low temperatures or in conjunction with melting of the first alloy solder powder. In some embodiments, the mixed alloy powder paste comprises two or more alloy powders and a flux. The alloy powder in the paste is composed of a solder alloy powder as a main component and an additive alloy powder as a secondary material. The additives provide excellent chemical properties for wetting on various metallized surface treatment layers of the substrate (i.e., conventional Cu and Ni surface treatment layers, etc.).

在某些實施例中,該等添加劑將在主要物焊料之熔化之前或與主要物焊料之熔化一起熔化。該等熔化添加劑將在部分地或完全地熔化之第一合金之前或與該第一合金一起在基板上潤濕且黏合至基板。該等添加劑係經設計以支配IMC沿著基板金屬化表面處理層之形成且在回流程序期間完全轉化成IMC。IMC層之厚度因此將由於膏中之添 加劑在IMC形成中扮演之主導角色而受該等添加劑之量良好地控制。在某些實施例中,第一合金焊料將具有對在添加劑與基板之間形成之IMC層之強親和力。此強親和力將增強焊料主體與IMC之間的接合強度。因此,IMC層之所要反應化學性質及良好控制之厚度不僅改良潤濕效能,而且增強與潤濕效能相關聯之接合強度。 In certain embodiments, the additives will melt prior to melting of the main solder or with melting of the main solder. The molten additives will wet and bond to the substrate prior to or with the first alloy, partially or completely melting the first alloy. The additives are designed to dominate the formation of the IMC along the substrate metallization surface treatment layer and are completely converted to IMC during the reflow process. The thickness of the IMC layer will therefore be due to the addition of the paste Additives play a leading role in the formation of IMC and are well controlled by the amount of such additives. In certain embodiments, the first alloy solder will have a strong affinity for the IMC layer formed between the additive and the substrate. This strong affinity will enhance the bond strength between the solder body and the IMC. Thus, the desired chemistry of the IMC layer and the well controlled thickness not only improve wetting efficiency, but also enhance the bond strength associated with wetting performance.

依據結合附圖進行之以下詳細說明將明瞭本發明之其他特徵及態樣,該等附圖以實例之方式圖解說明根據本發明之實施例之特徵。發明內容不意欲限制本發明之範疇,該範疇由附加至本發明之申請專利範圍單獨界定。 Other features and aspects of the present invention will be apparent from the description of the accompanying drawings. The summary is not intended to limit the scope of the invention, which is defined by the scope of the appended claims.

100‧‧‧熔化第一合金/第一合金 100‧‧‧melting the first alloy/first alloy

103‧‧‧溶液 103‧‧‧solution

106‧‧‧混合物 106‧‧‧Mixture

109‧‧‧IMC層/IMC 109‧‧‧IMC layer/IMC

112‧‧‧第二合金/熔化焊料合金/熔化第二合金 112‧‧‧Second alloy/fused solder alloy/melted second alloy

115‧‧‧第二合金焊料顆粒/第二合金 115‧‧‧Second alloy solder particles/second alloy

118‧‧‧第一合金焊料顆粒/第一合金顆粒/第一合金 118‧‧‧First alloy solder particles / first alloy particles / first alloy

121‧‧‧焊料凸塊 121‧‧‧ solder bumps

124‧‧‧基板 124‧‧‧Substrate

200‧‧‧Cu基板 200‧‧‧Cu substrate

201‧‧‧焊料凸塊 201‧‧‧ solder bumps

202‧‧‧去潤濕 202‧‧‧de-wetting

205‧‧‧合金42基板 205‧‧‧ alloy 42 substrate

206‧‧‧去潤濕 206‧‧‧de-wetting

207‧‧‧焊料凸塊 207‧‧‧ solder bumps

210‧‧‧Cu基板 210‧‧‧Cu substrate

211‧‧‧焊料凸塊 211‧‧‧ solder bumps

215‧‧‧合金42基板 215‧‧‧ alloy 42 substrate

216‧‧‧焊料凸塊 216‧‧‧ solder bumps

300‧‧‧Cu試片/Cu 300‧‧‧Cu test piece/Cu

301‧‧‧IMC 301‧‧‧IMC

302‧‧‧富含Bi相 302‧‧‧rich in Bi phase

303‧‧‧Ag 303‧‧‧Ag

400‧‧‧Cu試片 400‧‧‧Cu test piece

401‧‧‧回流之膏 401‧‧‧Returned paste

402‧‧‧回流之膏 402‧‧‧Returned paste

405‧‧‧合金42試片 405‧‧‧ alloy 42 test piece

Tm(A)‧‧‧第一合金之熔化溫度 Tm(A)‧‧‧ melting temperature of the first alloy

Tm(B)‧‧‧第二合金之熔化溫度 Tm(B)‧‧‧ melting temperature of the second alloy

根據一或多項各種實施例,參考以下各圖詳細闡述本發明。各圖式僅出於圖解說明之目的而提供且僅僅繪示本發明之典型或實例性實施例。此等圖式經提供以促進讀者對本發明之理解且不應被視為限制本發明之廣度、範疇或適用性。應注意,為了圖解說明清晰及方便,此等圖式未必係按比例的。 The invention is explained in detail with reference to the following drawings in accordance with one or more embodiments. The drawings are provided for illustrative purposes only and are merely illustrative of typical or exemplary embodiments of the invention. The drawings are provided to facilitate the reader's understanding of the invention and are not to be construed as limiting the scope, scope or applicability of the invention. It should be noted that the drawings are not necessarily to scale unless

圖1圖解說明根據本發明之實施例實施之回流焊程序。 Figure 1 illustrates a reflow process implemented in accordance with an embodiment of the present invention.

圖2展示Cu試片及合金42試片上之由90wt%Bi10.02Ag3.74Sn+10wt%焊劑組成之實例性焊料膏之潤濕效能。 Figure 2 shows the wetting efficiency of an exemplary solder paste consisting of 90 wt% Bi10.02 Ag 3.74 Sn + 10 wt% flux on a Cu coupon and an Alloy 42 coupon.

圖3展示Cu試片及合金42試片上之由84wt%Bi11Ag+6wt%Bi42Sn+10wt%焊劑組成之混合合金粉末焊料膏之實例之潤濕效能。 3 shows the wetting efficiency of an example of a mixed alloy powder solder paste composed of 84 wt% Bi11Ag + 6 wt% Bi42Sn + 10 wt% flux on a Cu test piece and an alloy 42 test piece.

圖4展示Cu試片及合金42試片上之由84wt%Bi11Ag+6wt%52In48Sn+10wt%焊劑組成之混合合金粉末焊料膏之實例之潤濕效能。 4 shows the wetting efficiency of an example of a mixed alloy powder solder paste composed of 84 wt% Bi11Ag + 6 wt% 52 In48Sn + 10 wt% flux on a Cu test piece and an alloy 42 test piece.

圖5係由84wt%Bi11Ag+6wt%Sn15Sb+10wt%焊劑組成之混合合金 粉末焊料膏之DSC圖表。 Figure 5 is a mixed alloy composed of 84wt% Bi11Ag + 6wt% Sn15Sb + 10wt% flux DSC chart of powder solder paste.

圖6係由84wt%Bi11Ag+6wt%Sn3.5Ag+10wt%焊劑組成之混合合金粉末焊料膏之DSC圖表。 Figure 6 is a DSC chart of a mixed alloy powder solder paste consisting of 84 wt% Bi11Ag + 6 wt% Sn 3.5 Ag + 10 wt% flux.

圖7係由84wt%Bi11Ag+6wt%Bi42Sn+10wt%焊劑組成之混合合金粉末焊料膏之DSC圖表。 Figure 7 is a DSC chart of a mixed alloy powder solder paste consisting of 84 wt% Bi11Ag + 6 wt% Bi42Sn + 10 wt% flux.

圖8A及圖8B係由Cu及Ni試片上之混合合金粉末焊料膏製成之接頭之剖面影像。混合合金粉末膏由84wt%Bi11Ag+6wt%Sn3.5Ag+10wt%焊劑組成。 8A and 8B are cross-sectional images of joints made of a mixed alloy powder solder paste on Cu and Ni test pieces. The mixed alloy powder paste consisted of 84 wt% Bi11Ag + 6 wt% Sn 3.5 Ag + 10 wt% flux.

各圖不意欲為窮盡性的或將本發明限於所揭示之精確形式。應理解,本發明可在具有修改及變更之情況下實踐,且本發明僅受申請專利範圍及其等效內容限制。 The figures are not intended to be exhaustive or to limit the invention to the precise forms disclosed. It is to be understood that the invention may be practiced with modifications and variations, and the invention is only limited by the scope of the invention and its equivalents.

本發明針對於焊劑中包括不同焊料合金之混合物之焊料膏。兩個或兩個以上焊料合金或金屬併入至焊劑材料中。第一焊料合金或金屬(「第一合金」)將在回流期間形成焊料接頭之主體。根據與金屬基板之反應化學性質或對第一合金之親和力選擇剩餘第二焊料合金或金屬或者進一步額外焊料合金或金屬(「第二合金」)。第二合金之熔化溫度Tm(B)低於第一合金之熔化溫度Tm(A)。在回流期間,第二合金首先熔化,且散佈至基板上。當第一合金熔化時,第二合金之存在促進熔化第一合金在基板上之佈置。第二合金經設計以完全轉化成IMC,從而導致最終接頭中之最少或不存在低熔化相。 The present invention is directed to a solder paste comprising a mixture of different solder alloys in a flux. Two or more solder alloys or metals are incorporated into the flux material. The first solder alloy or metal ("first alloy") will form the body of the solder joint during reflow. The remaining second solder alloy or metal or further additional solder alloy or metal ("second alloy") is selected based on the reactive chemistry with the metal substrate or affinity for the first alloy. The melting temperature Tm (B) of the second alloy is lower than the melting temperature Tm (A) of the first alloy. During reflow, the second alloy first melts and spreads onto the substrate. The presence of the second alloy promotes melting of the first alloy on the substrate as the first alloy melts. The second alloy is designed to be completely converted to IMC, resulting in minimal or no low melting phase in the final joint.

膏中之添加劑修改回流期間之反應化學性質、改良潤濕、控制IMC之厚度且因此增強接合強度。除用於以所要潤濕及可靠性進行高溫無鉛焊接之焊料之外,設計程序亦可擴展至諸多其他焊接應用中而不論不良潤濕焊料在何處使用。舉例而言,Pb-Cu合金具有高熔化溫度,但具有各種金屬基板上之不良潤濕。因此,Pb-Cu合金難以在焊 接中使用。關於本發明,諸如Sn或含Sn合金之小添加劑將幫助Pb-Cu潤濕各種金屬表面。然而,若Sn僅僅熔合在Pb-Cu中,則Cu6Sn5 IMC形成將降低來自Sn之反應化學性質。將較高量之Sn熔合在焊料中將顯著降低Pb-Cu之熔化溫度,此並非所要的。 The additives in the paste modify the reaction chemistry during reflow, improve wetting, control the thickness of the IMC and thus enhance the bond strength. In addition to the solder used for high-temperature lead-free soldering with the desired wetting and reliability, the design process can be extended to many other soldering applications regardless of where the poorly wet solder is used. For example, Pb-Cu alloys have high melting temperatures but have poor wetting on various metal substrates. Therefore, Pb-Cu alloy is difficult to weld Used in succession. With regard to the present invention, small additives such as Sn or a Sn-containing alloy will help Pb-Cu wet various metal surfaces. However, if Sn is only fused in Pb-Cu, Cu6Sn5 IMC formation will reduce the reaction chemistry from Sn. Fusion of a higher amount of Sn in the solder will significantly reduce the melting temperature of Pb-Cu, which is not desirable.

圖1圖解說明根據本發明之實施例之使用混合焊料膏之回流程序。該混合焊料膏包括懸浮在焊劑中之第一合金焊料顆粒118及第二合金焊料顆粒115。在某些實施例中,第二合金根據其與基板或一定範圍之常見基板之優良反應化學性質而經選擇。混合焊料膏施加至基板124。(為了闡釋,自圖省略焊劑。) Figure 1 illustrates a reflow procedure using a mixed solder paste in accordance with an embodiment of the present invention. The mixed solder paste includes first alloy solder particles 118 and second alloy solder particles 115 suspended in a flux. In certain embodiments, the second alloy is selected based on its excellent reaction chemistry with the substrate or a range of common substrates. A mixed solder paste is applied to the substrate 124. (For illustration, the flux is omitted from the figure.)

在回流期間,總成之溫度上升至第二合金之熔化溫度Tm(B)以上。第二合金112在基板124上方且圍繞仍為固體之第一合金顆粒118熔化且散佈。第二合金之優良表面反應化學性質將促進基板124上之熔化焊料合金112之潤濕。此導致IMC層109在熔化第二合金112與基板124之間的形成。因此,IMC主要受初始膏中之第二合金115之量控制。 During the reflow, the temperature of the assembly rises above the melting temperature Tm(B) of the second alloy. The second alloy 112 is melted and spread over the substrate 124 and around the still solid first alloy particles 118. The superior surface reaction chemistry of the second alloy will promote wetting of the molten solder alloy 112 on the substrate 124. This causes the IMC layer 109 to melt the formation between the second alloy 112 and the substrate 124. Therefore, the IMC is primarily controlled by the amount of the second alloy 115 in the initial paste.

另外,第二合金經設計以具有對第一合金之良好親和力。此親和力可由以下各項判定:(1)第一合金與第二合金之間的負混合焓,或(2)由來自第一及第二合金之構成元素構成之共熔相之形成。在某些實施例中,此親和力引起第一合金118之某些溶解至熔化第二合金112中以形成第一及第二合金之混合物106。 Additionally, the second alloy is designed to have good affinity for the first alloy. This affinity can be determined by (1) a negative mixing enthalpy between the first alloy and the second alloy, or (2) formation of a eutectic phase composed of constituent elements from the first and second alloys. In certain embodiments, this affinity causes some of the first alloy 118 to dissolve into the molten second alloy 112 to form a mixture 106 of the first and second alloys.

當溫度上升至第一合金之熔化溫度Tm(A)以上時,第一合金完成熔化,從而形成第一及第二合金之溶液103,溶液103潤濕至IMC層109。當總成維持在Tm(A)以上時,自溶液103移除第二合金,從而增加IMC層109,且留下熔化第一合金100。在某些實施例中,除形成IMC層109之外,來自第二合金之過量成分亦可與來自第一合金之成分一起併入至IMC中。第一合金與第二合金之間的親和力輔助改良第 一合金100至IMC層109上之潤濕,藉此增強接合強度。 When the temperature rises above the melting temperature Tm(A) of the first alloy, the first alloy is completely melted, thereby forming a solution 103 of the first and second alloys, and the solution 103 is wetted to the IMC layer 109. When the assembly is maintained above Tm(A), the second alloy is removed from solution 103, thereby increasing IMC layer 109 and leaving molten first alloy 100. In certain embodiments, in addition to forming the IMC layer 109, excess components from the second alloy may also be incorporated into the IMC along with the components from the first alloy. Affinity between the first alloy and the second alloy assists the improvement Wetting of an alloy 100 to the IMC layer 109, thereby enhancing joint strength.

當冷卻總成時,焊料凸塊121或接頭由接合至IMC 109之基板124形成,IMC 109接合至固化第一合金。在固化之後,已達成具有經改良接合界面之同質焊料接頭。 When the assembly is cooled, the solder bumps 121 or joints are formed by a substrate 124 bonded to the IMC 109, which is bonded to cure the first alloy. After curing, a homogenous solder joint with a modified joint interface has been achieved.

由使用混合焊料膏所產生之焊料接頭展示使用含有單一焊料合金之焊料膏之大幅改良,甚至當單一焊料合金係由第一及第二焊料合金之元素構成時亦然。圖2圖解說明使用由86.24wt%Bi10.02Ag3.74Sn+10wt%焊劑組成之焊料膏分別在Cu基板200及合金42基板205上形成之焊料凸塊201及207。如此等結果展示,在使用單一焊料合金之情況下發生顯著去潤濕202及206。相對地,圖3圖解說明使用由84wt%Bi11Ag+6wt%Bi42Sn+10wt%焊劑組成之混合焊料膏分別在Cu基板210及合金42基板215上形成之焊料凸塊211及216。如此等結果展示,混合焊料膏之使用展示幾乎不可見的去潤濕。 The solder joint produced by the use of a mixed solder paste exhibits a significant improvement in the use of a solder paste containing a single solder alloy, even when a single solder alloy is composed of elements of the first and second solder alloys. 2 illustrates solder bumps 201 and 207 formed on Cu substrate 200 and alloy 42 substrate 205, respectively, using a solder paste consisting of 86.24 wt% Bi10.02 Ag 3.74 Sn + 10 wt% solder. Such results show that significant dewetting 202 and 206 occurs with a single solder alloy. In contrast, FIG. 3 illustrates solder bumps 211 and 216 formed on Cu substrate 210 and alloy 42 substrate 215, respectively, using a mixed solder paste consisting of 84 wt% Bi11Ag + 6 wt% Bi42Sn + 10 wt% flux. Such results show that the use of a mixed solder paste exhibits almost invisible dewetting.

在一項實施例中,混合焊料膏包括作為第一合金之BiAg及作為第二合金之SnSb。在第二合金中,Sn係針對其優於Bi之與各種基板之反應化學性質而經挑選。SnSb具有低於BiAg之熔化溫度。根據二元相圖,Sn及Bi展現負混合焓且在寬廣組合物範圍中形成共熔相。Sb及Bi亦展示負混合焓及與彼此之無限可溶性。在回流期間,SnSb首先熔化且在基板表面上形成含Sn之IMC層。當溫度達到BiAg之熔化溫度以上時,膏中之所有合金粉末熔化。Bi與Sn/Sb之間的良好親和力確保熔化Bi於含Sn之IMC層上之良好黏合。另外,第一合金中之Ag之存在可將任何額外Sn轉換成駐留在焊料主體中之Ag3Sn IMC。因此,留下最少或未留下低熔化BiSn相,此乃因Sn藉由形成(1)焊料與金屬基板之間的IMC層及(2)BiAg焊料凸塊內側之Ag3Sn而完全消耗掉。 In one embodiment, the mixed solder paste includes BiAg as the first alloy and SnSb as the second alloy. In the second alloy, Sn is selected for its superior reaction chemistry with Bi and various substrates. SnSb has a melting temperature lower than that of BiAg. According to the binary phase diagram, Sn and Bi exhibit a negative mixing enthalpy and form a eutectic phase in a broad composition range. Sb and Bi also exhibit negative mixing and infinite solubility with each other. During reflow, SnSb first melts and forms a Sn-containing IMC layer on the surface of the substrate. When the temperature reaches above the melting temperature of BiAg, all of the alloy powder in the paste melts. The good affinity between Bi and Sn/Sb ensures good bonding of the Bi on the Sn-containing IMC layer. Additionally, the presence of Ag in the first alloy can convert any additional Sn into Ag3Sn IMC residing in the solder body. Therefore, little or no low melting BiSn phase is left, since Sn is completely consumed by forming (1) the IMC layer between the solder and the metal substrate and (2) the Ag3Sn inside the BiAg solder bump.

圖5圖解說明由84wt%Bi11Ag+6wt%Sn15Sb+10wt%焊劑之使用產 生之接頭之DSC曲線。頂部曲線圖解說明陶瓷試片上之回流之後之熱流量變曲線。處於大約138℃之尖峰圖解說明第二合金之存在。底部曲線圖解說明Cu試片上之回流之後之膏之熱流量變曲線。底部曲線中之此尖峰之存在驗證BiAg+SnSb系統中之低熔化相之消失。圖6圖解說明BiAg+SnAg系統中之低熔化相之消失。圖6之實驗使用陶瓷及Cu試片上之84wt%Bi11Ag+6wt%Sn3.5Ag+10wt%焊劑,如在圖5中。圖7圖解說明BiAg+BiSn系統中之消失。圖7之實驗使用陶瓷及Cu試片上之84wt%Bi11Ag+6wt%Bi42Sn+10wt%焊劑,如在圖5及圖6中。在圖7中,圖解說明陶瓷上之焊料回流之後之熱流量變曲線之頂部曲線展示低熔化相之缺乏。此很可能係由於混合焊料膏中之小量反應劑Sn及Sn與Ag之間的高親和力,從而導致第二合金之Sn與第一合金之一些Ag一起併入至最終焊料凸塊中之IMC中。 Figure 5 illustrates the use of 84wt% Bi11Ag + 6wt% Sn15Sb + 10wt% flux The DSC curve of the raw joint. The top curve illustrates the heat flow curve after reflow on the ceramic coupon. A spike at about 138 °C illustrates the presence of the second alloy. The bottom curve illustrates the heat flow curve of the paste after reflow on the Cu coupon. The presence of this spike in the bottom curve verifies the disappearance of the low melting phase in the BiAg+SnSb system. Figure 6 illustrates the disappearance of the low melting phase in the BiAg+SnAg system. The experiment of Figure 6 used 84 wt% Bi11Ag + 6 wt% Sn 3.5 Ag + 10 wt% flux on ceramic and Cu coupons, as in Figure 5. Figure 7 illustrates the disappearance in the BiAg+BiSn system. The experiment of Figure 7 used 84 wt% Bi11Ag + 6 wt% Bi42Sn + 10 wt% flux on ceramic and Cu coupons, as in Figures 5 and 6. In Figure 7, the top curve illustrating the heat flux curve after reflow of the solder on the ceramic shows the lack of a low melt phase. This is most likely due to the high affinity between the small amount of reactant Sn in the mixed solder paste and Sn and Ag, resulting in the incorporation of Sn of the second alloy with some Ag of the first alloy into the final solder bump. in.

圖8A係由使用混合焊料膏(由84wt%Bi11Ag+6wt%Sn3.5Ag+10wt%焊劑組成)所產生之焊料接頭之顯微圖。在此實例中,混合焊料膏施加至Cu試片300。IMC 301在Cu 300與第二合金之間形成。此IMC 301之大小主要取決於相中之第二合金之量。在所圖解說明之實例中,6wt%之第二合金Sn3.5Ag產生僅為幾微米厚之IMC。焊料接頭之塊體由富含Bi相302中之Ag 303構成。在150℃下老化2周不顯著增加IMC厚度。相比之下,Bi及Cu不形成金屬互化物,因此Bi11Ag單獨形成弱接合,此乃因焊料與基板之間不存在IMC層。 Figure 8A is a micrograph of a solder joint produced using a mixed solder paste consisting of 84 wt% Bi11Ag + 6 wt% Sn 3.5 Ag + 10 wt% flux. In this example, a mixed solder paste is applied to the Cu coupon 300. IMC 301 is formed between Cu 300 and the second alloy. The size of this IMC 301 is primarily dependent on the amount of the second alloy in the phase. In the illustrated example, 6 wt% of the second alloy Sn3.5Ag produced an IMC that was only a few microns thick. The block of the solder joint is composed of Ag 303 rich in the Bi phase 302. Aging at 150 ° C for 2 weeks did not significantly increase the IMC thickness. In contrast, Bi and Cu do not form an intermetallic compound, and thus Bi11Ag alone forms a weak bond because there is no IMC layer between the solder and the substrate.

在本發明之一項實施例中,設計混合焊料膏之方法包括根據所完成焊料接頭之所要特點選擇第一合金,且接著根據可適用基板及與選定第一合金之親和力選擇第二合金。可根據諸如所要IMC層厚度、所需要應用條件及回流程序之因素判定第一合金、第二合金及焊劑之相對量。IMC層厚度與焊料膏中之第二合金之量、回流量變曲線及遵 循應用之老化條件相關。IMC層之可接受厚度可隨不同應用條件及不同IMC組合物變化。舉例而言,針對Cu6Sn5/Cu3Sn IMC層,10微米可大約為與可接受的一樣厚。 In one embodiment of the invention, a method of designing a hybrid solder paste includes selecting a first alloy based on the desired characteristics of the finished solder joint, and then selecting a second alloy based on the applicable substrate and affinity with the selected first alloy. The relative amounts of the first alloy, the second alloy, and the flux can be determined based on factors such as the thickness of the desired IMC layer, the desired application conditions, and the reflow procedure. The thickness of the IMC layer and the amount of the second alloy in the solder paste, the return flow curve and compliance Relevant to the aging conditions of the application. The acceptable thickness of the IMC layer can vary with different application conditions and different IMC compositions. For example, for a Cu6Sn5/Cu3Sn IMC layer, 10 microns can be approximately as thick as acceptable.

當增加膏中之第二合金之量時,最終接頭中可能剩餘低熔化相。若在焊料膏中減少第二合金量,則可難以達成所要潤濕效能。當減少第二合金量時,良好潤濕需要印刷或施配在基板上之較大總量之膏之使用。然而,增加膏之總量可干擾來自焊接封裝之幾何約束。 When the amount of the second alloy in the paste is increased, a low melt phase may remain in the final joint. If the amount of the second alloy is reduced in the solder paste, it may be difficult to achieve the desired wetting performance. When reducing the amount of the second alloy, good wetting requires the use of a larger amount of paste printed or dispensed onto the substrate. However, increasing the total amount of paste can interfere with the geometric constraints from the solder package.

針對高溫焊料應用,第一合金必須自各種高熔化焊料合金挑選。在某些實施例中,使用富含Bi合金,其固相線溫度係大約258℃及高於258℃,亦即Bi-Ag、Bi-Cu及Bi-Ag-Cu。第二合金(或添加劑)選自已展示用以在各種金屬化表面處理層上潤濕及黏合至各種金屬化表面處理層之優良化學性質及對熔化Bi之良好親和力的合金。 For high temperature solder applications, the first alloy must be selected from a variety of high melting solder alloys. In certain embodiments, a Bi-rich alloy is used with a solidus temperature of about 258 ° C and above 258 ° C, namely Bi-Ag, Bi-Cu, and Bi-Ag-Cu. The second alloy (or additive) is selected from the alloys that have been shown to wet and bond to various metallized surface treatment layers on various metallized surface treatment layers and have good affinity for melting Bi.

在此等實施例中,第二合金將在富含Bi合金之前或與富含Bi合金一起熔化且然後容易地在基板上潤濕及黏合至基板。同時,Bi與第二合金之間的良好親和力將提供良好潤濕。因此,Sn、Sn合金、In及In合金經挑選為第二合金。以經挑選第二合金之熔化溫度為基礎,已分類出三個群組。群組A包含具有在大約230℃與250℃之間的固相線溫度之添加劑合金,亦即Sn、Sn-Sb、Sn-Sb-X(X=Ag、Al、Au、Bi、Co、Cu、Ga、Ge、In、Mn、Ni、P、Pd、Pt及Zn)合金等。群組B含有具有在大約200℃與230℃之間的固相線溫度之焊料合金,包含Sn-Ag、Sn-Cu、Sn-Ag-X(X=Al、Au、Bi、Co、Cu、Ga、Ge、In、Mn、Ni、P、Pd、Pt、Sb及Zn)及Sn-Zn合金等。群組C包含具有低於200℃之固相線溫度之焊料合金,亦即Sn-Bi、Sn-In、Bi-In、In-Cu、In-Ag及n-Ag-X(X=Al、Au、Bi、Co、Cu、Ga、Ge、Mn、Ni、P、Pd、Pt、Sb、Sn及Zn)、Sn-Bi-X(X=Ag、Al、Au、Co、Cu、Ga、Ge、In、Mn、Ni、P、Pd、Pt、Sb或Zn)、Sn-In-X(X=Ag、Al、 Au、Bi、Co、Cu、Ga、Ge、Mn、Ni、P、Pd、Pt、Sb或Zn)及Bi-In-X(X=Ag、Al、Au、Co、Cu、Ga、Ge、Mn、Ni、P、Pd、Pt、Sb或Zn)合金等。在此等合金中,Sn及/或In係系統中之反應劑。 In such embodiments, the second alloy will melt prior to or rich with the Bi alloy and then readily wet and bond to the substrate on the substrate. At the same time, good affinity between Bi and the second alloy will provide good wetting. Therefore, Sn, Sn alloy, In and In alloy were selected as the second alloy. Three groups have been classified based on the melting temperature of the selected second alloy. Group A comprises an additive alloy having a solidus temperature between about 230 ° C and 250 ° C, namely Sn, Sn-Sb, Sn-Sb-X (X = Ag, Al, Au, Bi, Co, Cu) , Ga, Ge, In, Mn, Ni, P, Pd, Pt and Zn) alloys. Group B contains a solder alloy having a solidus temperature between about 200 ° C and 230 ° C, including Sn-Ag, Sn-Cu, Sn-Ag-X (X = Al, Au, Bi, Co, Cu, Ga, Ge, In, Mn, Ni, P, Pd, Pt, Sb, and Zn), and Sn-Zn alloy. Group C comprises a solder alloy having a solidus temperature below 200 ° C, namely Sn-Bi, Sn-In, Bi-In, In-Cu, In-Ag, and n-Ag-X (X=Al, Au, Bi, Co, Cu, Ga, Ge, Mn, Ni, P, Pd, Pt, Sb, Sn, and Zn), Sn-Bi-X (X=Ag, Al, Au, Co, Cu, Ga, Ge) , In, Mn, Ni, P, Pd, Pt, Sb or Zn), Sn-In-X (X=Ag, Al, Au, Bi, Co, Cu, Ga, Ge, Mn, Ni, P, Pd, Pt, Sb or Zn) and Bi-In-X (X = Ag, Al, Au, Co, Cu, Ga, Ge, Mn , Ni, P, Pd, Pt, Sb or Zn) alloys, etc. Among these alloys, the reactants in the Sn and/or In system.

在本發明之一項實施例中,第一合金係來自Bi-Ag系統之合金且具有大約260℃及高於260℃之固相線溫度。在特定實施例中,第一合金包括自0至20wt%Ag,其中剩餘部分為Bi。在又一實施例中,第一合金包括自2.6至15wt%Ag,其中剩餘部分為Bi。 In one embodiment of the invention, the first alloy is from an alloy of a Bi-Ag system and has a solidus temperature of about 260 ° C and above 260 ° C. In a particular embodiment, the first alloy comprises from 0 to 20 wt% Ag, with the remainder being Bi. In yet another embodiment, the first alloy comprises from 2.6 to 15 wt% Ag, with the remainder being Bi.

在本發明之第二實施例中,第一合金選自Bi-Cu系統且具有大約270℃及高於270℃之固相線溫度。在特定實施例中,第一合金包括自0至5wt%Cu,其中剩餘部分為Bi。在又一實施例中,第一合金包括自0.2至1.5wt%Cu,其中剩餘部分為Bi。 In a second embodiment of the invention, the first alloy is selected from the Bi-Cu system and has a solidus temperature of about 270 ° C and above 270 ° C. In a particular embodiment, the first alloy comprises from 0 to 5 wt% Cu, with the remainder being Bi. In yet another embodiment, the first alloy comprises from 0.2 to 1.5 wt% Cu, with the remainder being Bi.

在本發明之第三實施例中,第一合金選自Bi-Ag-Cu系統且具有大約258℃及高於258℃之固相線溫度。在特定實施例中,第一合金包括自0至20wt%Ag及自0至5wt%Cu,其中剩餘部分為Bi。在又一實施例中,第一合金包括自2.6至15wt%Ag及自0.2至1.5wt%Cu,其中剩餘部分為Bi。 In a third embodiment of the invention, the first alloy is selected from the Bi-Ag-Cu system and has a solidus temperature of about 258 ° C and above 258 ° C. In a particular embodiment, the first alloy comprises from 0 to 20 wt% Ag and from 0 to 5 wt% Cu, with the remainder being Bi. In yet another embodiment, the first alloy comprises from 2.6 to 15 wt% Ag and from 0.2 to 1.5 wt% Cu, with the remainder being Bi.

在本發明之第四實施例中,第二合金來自Sn-Sb系統且具有在大約231℃與大約250℃之間的固相線溫度。在特定實施例中,第二合金包括自0至20wt%Sb,其中剩餘部分為Sn。在又一實施例中,第二合金包括自0至15wt%Sb,其中剩餘部分為Sn。 In a fourth embodiment of the invention, the second alloy is from the Sn-Sb system and has a solidus temperature between about 231 ° C and about 250 ° C. In a particular embodiment, the second alloy comprises from 0 to 20 wt% Sb, with the remainder being Sn. In yet another embodiment, the second alloy comprises from 0 to 15 wt% Sb, with the remainder being Sn.

在本發明之第五實施例中,第二合金包括Sn-Sb-X(其中X=Ag、Al、Au、Bi、Co、Cu、Ga、Ge、In、Mn、Ni、P、Pd、Pt及Zn)且具有在大約230℃與大約250℃之間的固相線溫度。在特定實施例中,第二合金包括自0至20wt%Sb及自0至20wt%X,其中剩餘部分為Sn。在又一實施例中,第二合金包括自0至10wt%Sb及自0至5wt%X,其中剩餘部分為Sn。 In a fifth embodiment of the present invention, the second alloy includes Sn-Sb-X (where X = Ag, Al, Au, Bi, Co, Cu, Ga, Ge, In, Mn, Ni, P, Pd, Pt) And Zn) and have a solidus temperature between about 230 ° C and about 250 ° C. In a particular embodiment, the second alloy comprises from 0 to 20 wt% Sb and from 0 to 20 wt% X, with the remainder being Sn. In yet another embodiment, the second alloy comprises from 0 to 10 wt% Sb and from 0 to 5 wt% X, with the remainder being Sn.

在本發明之第六實施例中,第二合金包括Sn-Ag且具有大約221℃及高於221℃之固相線溫度。在特定實施例中,第二合金包括自0至10wt%Ag,其中剩餘部分為Sn。在又一實施例中,第二合金包括自0至5wt%Ag,其中剩餘部分為Sn。 In a sixth embodiment of the invention, the second alloy comprises Sn-Ag and has a solidus temperature of about 221 ° C and above 221 ° C. In a particular embodiment, the second alloy comprises from 0 to 10 wt% Ag, with the remainder being Sn. In yet another embodiment, the second alloy comprises from 0 to 5 wt% Ag, with the remainder being Sn.

在本發明之第七實施例中,第二合金包括Sn-Cu且具有大約227℃及高於227℃之固相線溫度。在特定實施例中,第二合金包括自0至5wt%Cu,其中剩餘部分為Sn。在又一實施例中,第二合金包括自0至2wt%Cu,其中剩餘部分為Sn。 In a seventh embodiment of the invention, the second alloy comprises Sn-Cu and has a solidus temperature of about 227 ° C and above 227 ° C. In a particular embodiment, the second alloy comprises from 0 to 5 wt% Cu, with the remainder being Sn. In yet another embodiment, the second alloy comprises from 0 to 2 wt% Cu, with the remainder being Sn.

在本發明之第八實施例中,第二合金包括Sn-Ag-X(其中X=Al、Au、Bi、Co、Cu、Ga、Ge、In、Mn、Ni、P、Pd、Pt、Sb及Zn)且具有大約216℃及高於216℃之固相線溫度。在特定實施例中,第二合金包括自0至10wt%Ag及自0至20wt%X,其中剩餘部分為Sn。在又一實施例中,第二合金包括自0至5wt%Ag及自0至5wt%X,其中剩餘部分為Sn。 In an eighth embodiment of the present invention, the second alloy includes Sn-Ag-X (wherein X = Al, Au, Bi, Co, Cu, Ga, Ge, In, Mn, Ni, P, Pd, Pt, Sb) And Zn) and have a solidus temperature of about 216 ° C and above 216 ° C. In a particular embodiment, the second alloy comprises from 0 to 10 wt% Ag and from 0 to 20 wt% X, with the remainder being Sn. In yet another embodiment, the second alloy comprises from 0 to 5 wt% Ag and from 0 to 5 wt% X, with the remainder being Sn.

在本發明之第九實施例中,第二合金包括Sn-Zn且具有大約200℃及高於200℃之固相線溫度。在特定實施例中,第二合金包括自0至20wt%Zn,其中剩餘部分為Sn。在又一實施例中,第二合金包括自0至9wt%Zn,其中剩餘部分為Sn。 In a ninth embodiment of the invention, the second alloy comprises Sn-Zn and has a solidus temperature of about 200 ° C and above 200 ° C. In a particular embodiment, the second alloy comprises from 0 to 20 wt% Zn, with the remainder being Sn. In yet another embodiment, the second alloy comprises from 0 to 9 wt% Zn, with the remainder being Sn.

在本發明之第十實施例中,第二合金包括Bi-Sn合金,具有大約139℃及高於139℃之固相線溫度。在特定實施例中,第二合金包括自8至80wt%Sn,其中剩餘部分為Bi。在又一實施例中,第二合金包括自30至60wt%Sn,其中剩餘部分為Bi。 In a tenth embodiment of the invention, the second alloy comprises a Bi-Sn alloy having a solidus temperature of about 139 ° C and above 139 ° C. In a particular embodiment, the second alloy comprises from 8 to 80 wt% Sn, with the remainder being Bi. In yet another embodiment, the second alloy comprises from 30 to 60 wt% Sn, with the remainder being Bi.

在本發明之第十一實施例中,第二合金包括Sn-In合金,具有大約120℃及高於120℃之固相線溫度。在特定實施例中,第二合金包括自0至80wt%In,其中剩餘部分為Sn。在又一實施例中,第二合金包括自30至50wt%In,其中剩餘部分為Sn。 In an eleventh embodiment of the invention, the second alloy comprises a Sn-In alloy having a solidus temperature of about 120 ° C and above 120 ° C. In a particular embodiment, the second alloy comprises from 0 to 80 wt% In, with the remainder being Sn. In yet another embodiment, the second alloy comprises from 30 to 50 wt% In, with the remainder being Sn.

在本發明之第十二實施例中,第二合金包括Bi-In合金,具有在大約100℃與大約200℃之間的固相線溫度。在特定實施例中,第二合金包括自0至50wt%In,其中剩餘部分為Bi。在特定實施例中,第二合金包括自20至40wt%In,其中剩餘部分為Bi。 In a twelfth embodiment of the invention, the second alloy comprises a Bi-In alloy having a solidus temperature between about 100 ° C and about 200 ° C. In a particular embodiment, the second alloy comprises from 0 to 50 wt% In, with the remainder being Bi. In a particular embodiment, the second alloy comprises from 20 to 40 wt% In, with the remainder being Bi.

在本發明之第十三實施例中,第二合金包括In-Cu合金,具有在大約100℃與大約200℃之間的固相線溫度。在特定實施例中,第二合金包括自0至10wt%Cu,其中剩餘部分為In。在特定實施例中,第二合金包括自0至5wt%Cu,其中剩餘部分為In。 In a thirteenth embodiment of the invention, the second alloy comprises an In-Cu alloy having a solidus temperature between about 100 ° C and about 200 ° C. In a particular embodiment, the second alloy comprises from 0 to 10 wt% Cu, with the remainder being In. In a particular embodiment, the second alloy comprises from 0 to 5 wt% Cu, with the remainder being In.

在本發明之第十四實施例中,第二合金包括In-Ag合金,具有在大約100℃與大約200℃之間的固相線溫度。在特定實施例中,第二合金包括自0至30wt%Ag,其中剩餘部分為In。在又一實施例中,第二合金包括自0至10wt%Ag,其中剩餘部分為In。 In a fourteenth embodiment of the invention, the second alloy comprises an In-Ag alloy having a solidus temperature between about 100 ° C and about 200 ° C. In a particular embodiment, the second alloy comprises from 0 to 30 wt% Ag, with the remainder being In. In yet another embodiment, the second alloy comprises from 0 to 10 wt% Ag, with the remainder being In.

在第十五實施例中,第二合金係In-Ag-X(X=Al、Au、Bi、Co、Cu、Ga、Ge、Mn、Ni、P、Pd、Pt、Sb、Sn及Zn)合金,具有在大約100℃與大約200℃之間的固相線溫度。在又一實施例中,第二合金包括自0至20wt%Ag、0至20wt%X,其中剩餘部分為In。在特定實施例中,第二合金包括自0至10wt%Ag、0至5wt%X,其中剩餘部分為In。 In the fifteenth embodiment, the second alloy is In-Ag-X (X = Al, Au, Bi, Co, Cu, Ga, Ge, Mn, Ni, P, Pd, Pt, Sb, Sn, and Zn) The alloy has a solidus temperature between about 100 ° C and about 200 ° C. In yet another embodiment, the second alloy comprises from 0 to 20 wt% Ag, 0 to 20 wt% X, with the remainder being In. In a particular embodiment, the second alloy comprises from 0 to 10 wt% Ag, 0 to 5 wt% X, with the remainder being In.

本發明之進一步實施例提供用於製成混合焊料膏之方法。在某些實施例中,形成第一合金之顆粒且形成第二合金之顆粒。然後將第一及第二合金之顆粒與焊劑混合以形成焊料膏。最終膏包括第一合金粉末、第二合金粉末以及其餘焊劑。在某些實施例中,第一合金顆粒係為具有至少大約260℃之固相線溫度之合金。 A further embodiment of the invention provides a method for making a mixed solder paste. In certain embodiments, particles of the first alloy are formed and particles of the second alloy are formed. The particles of the first and second alloys are then mixed with a flux to form a solder paste. The final paste includes a first alloy powder, a second alloy powder, and the remaining flux. In certain embodiments, the first alloy particles are alloys having a solidus temperature of at least about 260 °C.

在進一步實施例中,第二合金包括具有在大約230℃與大約250℃之間的固相線溫度之合金、具有在大約200℃與大約230℃之間的固相線溫度之合金或具有低於大約200℃之固相線溫度之合金。在某些 實施例中,膏由在大約60wt%與大約92wt%之間的第一合金粉末、大於0%但小於或等於大約12wt%之一定量之第二合金粉末構成,其中其餘為焊劑。在進一步實施例中,第二合金粉末係在2wt%與10wt%之間的混合焊料膏。 In a further embodiment, the second alloy comprises an alloy having a solidus temperature between about 230 ° C and about 250 ° C, an alloy having a solidus temperature between about 200 ° C and about 230 ° C or having a low An alloy at a solidus temperature of about 200 °C. In some In an embodiment, the paste is comprised of a first alloy powder between about 60 wt% and about 92 wt%, a second alloy powder having a quantity greater than 0% but less than or equal to about 12 wt%, with the balance being flux. In a further embodiment, the second alloy powder is between 2 wt% and 10 wt% of the mixed solder paste.

在特定實施例中,第一合金包括Bi-Ag合金、Bi-Cu合金或Bi-Ag-Cu合金。在又一實施例中,具有在大約230℃與大約250℃之間的固相線溫度之合金包括Sn合金、Sn-Sb合金或Sn-Sb-X(其中X=Ag、Al、Au、Bi、Co、Cu、Ga、Ge、In、Mn、Ni、P、Pd、Pt及Zn)合金。在另一實施例中,具有在大約200℃與大約230℃之間的固相線溫度之合金包括Sn-Ag合金、Sn-Cu合金、Sn-Ag-X(其中X=Al、Au、Bi、Co、Cu、Ga、Ge、In、Mn、Ni、P、Pd、Pt、Sb及Zn)合金或Sn-Zn合金。在再一實施例中,具有低於大約200℃之固相線溫度之合金包括Sn-Bi合金、Sn-In合金或Bi-In合金。 In a particular embodiment, the first alloy comprises a Bi-Ag alloy, a Bi-Cu alloy, or a Bi-Ag-Cu alloy. In yet another embodiment, the alloy having a solidus temperature between about 230 ° C and about 250 ° C comprises a Sn alloy, a Sn-Sb alloy, or a Sn-Sb-X (where X = Ag, Al, Au, Bi) , Co, Cu, Ga, Ge, In, Mn, Ni, P, Pd, Pt and Zn) alloys. In another embodiment, the alloy having a solidus temperature between about 200 ° C and about 230 ° C includes a Sn-Ag alloy, a Sn-Cu alloy, and Sn-Ag-X (where X = Al, Au, Bi) , Co, Cu, Ga, Ge, In, Mn, Ni, P, Pd, Pt, Sb, and Zn) alloys or Sn-Zn alloys. In still another embodiment, the alloy having a solidus temperature below about 200 ° C comprises a Sn-Bi alloy, a Sn-In alloy, or a Bi-In alloy.

在進一步實施例中,第二合金粉末包括由複數種合金粉末構成之粉末。舉例而言,第二合金粉末可包括選自本文中所闡述之合金之不同合金之混合。在某些實施例中,根據焊料應用判定混合焊料膏中之第一及第二合金之相對量。在某些情形中,當膏中之第二焊料合金之量增加而超過特定臨限值時,可增加將某一低熔化相保持在最終焊料接頭中之機會。在某些情形中,當膏中之第二焊料合金之量低於特定臨限值時,可減少對基板之潤濕。在一項實施例中,判定膏中之第二焊料合金之量,使得低熔化相可在回流之後完全轉化成高熔化IMC。在又一實施例中,膏中之第二合金在大於0wt%但小於大約12wt%之量之間變化。在特定實施例中,膏中之第二合金大於大約2wt%但小於大約10wt%。 In a further embodiment, the second alloy powder comprises a powder comprised of a plurality of alloy powders. For example, the second alloy powder can comprise a mixture of different alloys selected from the alloys set forth herein. In some embodiments, the relative amounts of the first and second alloys in the mixed solder paste are determined based on the solder application. In some cases, when the amount of the second solder alloy in the paste increases beyond a certain threshold, the chance of holding a certain low melt phase in the final solder joint can be increased. In some cases, wetting of the substrate can be reduced when the amount of the second solder alloy in the paste is below a certain threshold. In one embodiment, the amount of the second solder alloy in the paste is determined such that the low melt phase can be completely converted to a highly molten IMC after reflow. In yet another embodiment, the second alloy in the paste varies between greater than 0 wt% but less than about 12 wt%. In a particular embodiment, the second alloy in the paste is greater than about 2 wt% but less than about 10 wt%.

除各種正常雜質或小量之不同元素之外,其他元素亦可添加或併入於此等合金中,只要維持Sn之反應性質。 In addition to various normal impurities or small amounts of different elements, other elements may be added or incorporated into such alloys as long as the reactive nature of Sn is maintained.

在某些實施例中,用於藉助混合焊料膏進行焊接之回流量變曲線經設計以迅速地升溫至第一合金之熔化溫度以上。在此等情形中,低溫下之較短均熱時間可允許反應劑(諸如Sn)朝向基板迅速地流動且在完全熔化池而非半固體熔化池中與基板發生反應。第一及第二合金兩者之熔化將促進第二合金元素自熔化焊料朝向基板以及部分及「槽」擴散至表面上以形成IMC層。 In some embodiments, the return flow curve for welding by means of a mixed solder paste is designed to rapidly heat up above the melting temperature of the first alloy. In such cases, a shorter soaking time at low temperatures may allow the reactants (such as Sn) to rapidly flow toward the substrate and react with the substrate in a fully molten pool rather than a semi-solid melt pool. The melting of both the first and second alloys will promote diffusion of the second alloying element from the molten solder toward the substrate and portions and "grooves" to the surface to form the IMC layer.

實例 Instance

針對焊料效能測試橫跨本文中所闡述之範圍之各種混合合金粉末焊料膏。 Various mixed alloy powder solder pastes spanning the range described herein for solder potency testing.

表1闡述使用包括Bi11Ag或Bi2.6Ag之第一合金、包括Sn10Ag25Sb或Sn10Ag10Sb之第二合金及焊劑製成之實例性混合焊料膏之配方。 Table 1 illustrates the formulation of an exemplary hybrid solder paste made using a first alloy comprising Bi11Ag or Bi2.6Ag, a second alloy comprising Sn10Ag25Sb or Sn10Ag10Sb, and a flux.

表2闡述使用包括Bi11Ag之第一合金、包括Sn3.8Ag0.7Cu、Sn3.5Ag、Sn0.7Cu或Sn9Zn之第二合金及焊劑製成之實例性混合焊料膏之配方。 Table 2 illustrates the formulation of an exemplary hybrid solder paste made using a first alloy comprising Bi11Ag, a second alloy comprising Sn3.8Ag0.7Cu, Sn3.5Ag, Sn0.7Cu or Sn9Zn, and a flux.

表2 使用群組B第二合金之混合焊料合金之重量百分比 Table 2 Weight percentage of mixed solder alloy using Group B second alloy

表3闡述使用包括Bi11Ag之第一合金、包括Bi42Sn、Bi33In或In48Sn之第二合金及焊劑製成之實例性混合焊料膏之配方。 Table 3 illustrates the formulation of an exemplary hybrid solder paste made using a first alloy comprising Bi11Ag, a second alloy comprising Bi42Sn, Bi33In or In48Sn, and a flux.

由表1、表2及表3闡述之每一膏經製備且使用三孔不銹鋼模板印刷至試片上。使用Cu、Ni、合金42及氧化鋁試片。將每一膏印刷至每一試片上。孔之直徑係1/4英吋。使經印刷試片通過回流爐以經設計以用於混合合金粉末焊料膏之量變曲線進行回流。在處於380℃、400℃及420℃之三區回流爐中以13"/分鐘之皮帶速度在N2氣氛下執行回流。 Each paste described in Tables 1, 2, and 3 was prepared and printed onto the test piece using a three-hole stainless steel stencil. Cu, Ni, alloy 42 and alumina test pieces were used. Each paste was printed onto each test piece. The diameter of the hole is 1/4 inch. The printed test piece was passed through a reflow oven to be refluxed by a quantitative curve designed to mix the alloy powder solder paste. The reflux was carried out under a N 2 atmosphere at a belt speed of 13"/min in a three-zone reflow furnace at 380 ° C, 400 ° C and 420 ° C.

在視覺上檢驗Cu及Ni試片上之潤濕效能。所有混合焊料合金在 與單一BiAg焊料膏相比較時展示經改良潤濕。圖3及圖4係代表典型結果之圖片。圖3展示由84wt%Bi11Ag+6wt%Bi42Sn+10wt%焊劑組成之混合合金粉末焊料膏之實例之潤濕效能。左影像展示在Cu試片上回流之膏;右影像展示在合金42試片上回流之膏。圖4展示由84wt%Bi11Ag+6wt%52In48Sn+10wt%焊劑組成之混合合金粉末焊料膏之實例之潤濕效能。左影像展示在Cu試片400上回流之膏401;右影像展示在合金42試片405上回流之膏402。 The wetting efficiency on Cu and Ni coupons was visually examined. All mixed solder alloys are in Improved wetting is shown when compared to a single BiAg solder paste. Figures 3 and 4 are pictures representing typical results. Figure 3 shows the wetting efficiency of an example of a mixed alloy powder solder paste consisting of 84 wt% Bi11Ag + 6 wt% Bi42Sn + 10 wt% flux. The left image shows the reflow paste on the Cu coupon; the right image shows the reflow paste on the Alloy 42 coupon. Figure 4 shows the wetting efficiency of an example of a mixed alloy powder solder paste consisting of 84 wt% Bi11Ag + 6 wt% 52 In48Sn + 10 wt% flux. The left image shows the paste 401 reflowed on the Cu coupon 400; the right image shows the paste 402 reflowed over the Alloy 42 coupon 405.

將經回流焊料球自氧化鋁試片剝離以用於DSC測試。亦將形成於Cu試片及Ni試片上之焊料凸塊沖穿掉以用於DSC測試。使用差動掃描熱量計在10℃/min之加熱速率下實行DSC量測。圖5至圖7中展示代表性DSC曲線。圖5圖解說明由84wt%Bi11Ag+6wt%Sn15Sb+10wt%焊劑之使用產生之接頭之DSC曲線。頂部曲線圖解說明陶瓷試片上之回流之後之熱流量變曲線。處於大約138℃之尖峰圖解說明第二合金之存在。底部曲線圖解說明Cu試片上之回流之後之膏之熱流量變曲線。底部曲線中之此尖峰之存在驗證BiAg+SnSb系統中之低熔化相之消失。圖6圖解說明BiAg+SnAg系統中之低熔化相之消失。圖6之實驗使用陶瓷及Cu試片上之84wt%Bi11Ag+6wt%Sn3.5Ag+10wt%焊劑,如在圖5中。圖7圖解說明BiAg+BiSn系統中之消失。圖7之實驗使用陶瓷及Cu試片上之84wt%Bi11Ag+6wt%Bi42Sn+10wt%焊劑,如在圖5及圖6中。在圖7中,圖解說明在陶瓷上之焊料回流之後之熱流量變曲線之頂部曲線展示低熔化相之缺乏。此很可能由於Sn與Ag之間的高親和力,從而導致第二合金之Sn併入至最終焊料凸塊中之IMC中。 The reflowed solder balls were peeled from the alumina coupon for DSC testing. Solder bumps formed on the Cu test piece and the Ni test piece were also punched out for DSC testing. DSC measurements were performed using a differential scanning calorimeter at a heating rate of 10 ° C/min. Representative DSC curves are shown in Figures 5-7. Figure 5 illustrates the DSC curve of a joint resulting from the use of 84 wt% Bi11Ag + 6 wt% Sn 15 Sb + 10 wt% flux. The top curve illustrates the heat flow curve after reflow on the ceramic coupon. A spike at about 138 °C illustrates the presence of the second alloy. The bottom curve illustrates the heat flow curve of the paste after reflow on the Cu coupon. The presence of this spike in the bottom curve verifies the disappearance of the low melting phase in the BiAg+SnSb system. Figure 6 illustrates the disappearance of the low melting phase in the BiAg+SnAg system. The experiment of Figure 6 used 84 wt% Bi11Ag + 6 wt% Sn 3.5 Ag + 10 wt% flux on ceramic and Cu coupons, as in Figure 5. Figure 7 illustrates the disappearance in the BiAg+BiSn system. The experiment of Figure 7 used 84 wt% Bi11Ag + 6 wt% Bi42Sn + 10 wt% flux on ceramic and Cu coupons, as in Figures 5 and 6. In Figure 7, the top curve illustrating the heat flux curve after solder reflow on the ceramic shows the lack of a low melt phase. This is likely due to the high affinity between Sn and Ag, resulting in the incorporation of Sn of the second alloy into the IMC in the final solder bump.

樣本之剖面經成像以判定焊料凸塊與Cu或Ni試片之間的界面處之IMC厚度。圖8中展示代表性影像。圖8a係在Cu試片上使用84wt%Bi11Ag+6wt%Sn3.5Ag+10wt%焊劑之焊料凸塊之剖面。圖8b係在Ni試片上使用相同焊料膏之焊料凸塊之剖面。如此等結果展示, IMC層厚度在兩個試片上限於幾微米。 The cross section of the sample is imaged to determine the IMC thickness at the interface between the solder bump and the Cu or Ni coupon. A representative image is shown in FIG. Figure 8a is a cross section of a solder bump using 84 wt% Bi11Ag + 6 wt% Sn 3.5 Ag + 10 wt% solder on a Cu coupon. Figure 8b is a cross section of a solder bump using the same solder paste on a Ni test strip. Such results show that The IMC layer thickness is limited to a few microns on both coupons.

在實施例中,第二焊料合金係由大於0wt%至40wt%Sb、大於0wt%至40wt%Sn及Bi構成之Bi-Sb-Sn合金。 In an embodiment, the second solder alloy is a Bi-Sb-Sn alloy composed of greater than 0 wt% to 40 wt% Sb, greater than 0 wt% to 40 wt% Sn, and Bi.

在實施例中,第二焊料合金係Bi-Sb-Sn-X合金,其中X=Ag、Al、Au、Co、Cu、Ga、Ge、In、Mn、Ni、P、Pd、Pt或Zn。在此等實施例之實施方案中,Bi-Sb-Sn-X合金由大於0wt%至40wt%Sb、大於0wt%至40wt%Sn、大於0wt%至5wt%X及Bi構成。 In an embodiment, the second solder alloy is a Bi-Sb-Sn-X alloy, wherein X = Ag, Al, Au, Co, Cu, Ga, Ge, In, Mn, Ni, P, Pd, Pt or Zn. In embodiments of these embodiments, the Bi-Sb-Sn-X alloy is comprised of greater than 0 wt% to 40 wt% Sb, greater than 0 wt% to 40 wt% Sn, greater than 0 wt% to 5 wt% X, and Bi.

在實施例中,第一焊料合金係Bi-Ag-Y合金、Bi-Cu-Y合金或Bi-Ag-Cu-Y合金,其中Y係Al、Au、Co、Ga、Ge、In、Mn、Ni、P、Pd、Pt、Sb、Sn或Zn。在此等實施例之實施方案中,Y介於自第一焊料合金之大於0wt%至5wt%之範圍內。 In an embodiment, the first solder alloy is a Bi-Ag-Y alloy, a Bi-Cu-Y alloy or a Bi-Ag-Cu-Y alloy, wherein the Y-based Al, Au, Co, Ga, Ge, In, Mn, Ni, P, Pd, Pt, Sb, Sn or Zn. In embodiments of these embodiments, Y is in a range from greater than 0 wt% to 5 wt% of the first solder alloy.

在進一步實施例中,焊料膏由較高重量百分比之第二合金粉末、較低重量百分比之第一合金粉末或其某一組合構成。在一項此類實施例中,焊料膏由在第一合金粉末之44wt%與小於60wt%之間的一定量之第一焊料合金粉末、大於0wt%且小於48wt%之一定量之第二合金粉末及在0wt%與15wt%之間的一定量之焊劑構成。在此實施例之特定實施方案中,第二合金粉末之量可大於2wt%且小於40wt%。 In a further embodiment, the solder paste is comprised of a higher weight percentage of the second alloy powder, a lower weight percentage of the first alloy powder, or some combination thereof. In one such embodiment, the solder paste consists of a certain amount of the first solder alloy powder between 44 wt% and less than 60 wt% of the first alloy powder, a second alloy of greater than 0 wt% and less than 48 wt% The powder is composed of a certain amount of flux between 0 wt% and 15 wt%. In a particular embodiment of this embodiment, the amount of the second alloy powder can be greater than 2 wt% and less than 40 wt%.

在另一此類實施例中,焊料膏由在44wt%與87wt%之間的一定量之第一焊料合金粉末、在13wt%與48wt%之間的一定量之第二焊料合金粉末及在0wt%與15wt%之間的一定量之焊劑構成。在此實施例之特定實施方案中,第二合金粉末之量可在26wt%與40wt%之間。 In another such embodiment, the solder paste consists of a certain amount of the first solder alloy powder between 44 wt% and 87 wt%, a certain amount of the second solder alloy powder between 13 wt% and 48 wt%, and at 0 wt. A certain amount of flux between % and 15% by weight. In a particular embodiment of this embodiment, the amount of the second alloy powder can be between 26 wt% and 40 wt%.

在此等進一步實施例中,較高重量百分比之第二合金粉末、較低重量百分比之第一焊料合金粉末或組合增強焊料膏之同質性。此經改良同質性准許混合合金焊料膏應用於較小接頭形成,此甚至針對接合直徑至少與0.2mm一樣小之接頭提供潤濕及高溫效能兩者。此外,焊料合金粉末之此組合准許在回流之後甚至更高溫度焊料接頭溫度。 舉例而言,在一項此類實施方案中,所形成接頭再熔化溫度可高於270℃。在另一此類實施方案中,所形成接頭再熔化溫度可高達280℃或甚至更高。 In these further embodiments, a higher weight percentage of the second alloy powder, a lower weight percent of the first solder alloy powder, or a combination enhances the homogeneity of the solder paste. This improved homogeneity permits mixed alloy solder pastes to be applied to smaller joint formations, which provides both wetting and high temperature performance even for joints having a joint diameter at least as small as 0.2 mm. Furthermore, this combination of solder alloy powders permits even higher temperature solder joint temperatures after reflow. For example, in one such embodiment, the joint remelting temperature formed can be above 270 °C. In another such embodiment, the joint remelting temperature can be as high as 280 ° C or even higher.

雖然上文已闡述本發明之各種實施例,但應理解,已僅藉由實例而非限制之方式呈現各種實施例。同樣地,各種圖式可繪示本發明之實例性架構或其他組態,藉此輔助理解可包含於本發明中之特徵及功能性。本發明不限於所圖解說明之實例性架構或組態,但可使用各種替代架構及組態實施所要特徵。實際上,熟習此項技術者將明瞭替代功能、邏輯或實體分割及組態可如何經實施以實施本發明之所要特徵。而且,除本文中所繪示之那些構成模組名稱以外的眾多不同構成模組名稱可應用至各種分區。另外,關於流程圖、操作說明及方法請求項,本文中呈現步驟之次序不應授權各種實施例以同一次序經實施以執行所陳述功能性,除非內容脈絡另有規定。 While the various embodiments of the invention have been described, Likewise, the various figures may illustrate an example architecture or other configuration of the present invention, thereby assisting in understanding the features and functionality that may be included in the present invention. The invention is not limited to the illustrated exemplary architecture or configuration, but various alternative architectures and configurations can be used to implement the desired features. In fact, those skilled in the art will understand how alternative functions, logical or physical partitions and configurations can be implemented to implement the desired features of the present invention. Moreover, a number of different constituent module names other than those constituting the module names described herein can be applied to various partitions. In addition, with regard to the flowcharts, the operation descriptions, and the method claims, the order of the steps presented herein should not be construed as being limited to the various embodiments.

儘管上文就各種例示性實施例及實施方案而言闡述本發明,但應理解,個別實施例中之一或多者中所闡述之各種特徵、態樣及功能性在其適用性方面不限於關於其闡述該等特徵、態樣及功能性之特定實施例,而是替代地可單獨或以各種組合應用於本發明之其他實施例中之一或多者,不論是否闡述此類實施例且不論此類特徵是否呈現為所闡述實施例之一部分。因此,本發明之廣度及範疇不應受上文所闡述之例示性實施例中之任一者限制。 Although the invention has been described above in terms of various exemplary embodiments and embodiments, it should be understood that the various features, aspects, and functionality described in one or more of the individual embodiments are not limited in their applicability. With regard to specific embodiments in which such features, aspects, and functionality are set forth, the invention can be applied to one or more of the other embodiments of the invention, either individually or in various combinations, whether or not such embodiments are Whether or not such features are presented as part of the illustrated embodiment. Therefore, the breadth and scope of the invention should not be limited to any of the illustrative embodiments set forth above.

此文件中使用之術語及片語以及其變化形式應被解釋為開放式的而非限制性的,除非另有明確陳述。作為前述內容之實例:術語「包含」應被解讀為意味「包含但不限於」或諸如此類;術語「實例」用於提供所論述之物項之例示性例項,而非其窮盡性或限制性清單;術語「一(a或an)」應被解讀為意味「至少一個」、「一或多個」或諸如此類;且諸如「習用」、「傳統」、「正常」、「標準」、 「已知」及類似含義之術語之形容詞不應被解釋為將所闡述之物項限於給定時間週期或自給定時間起可用之物項,而是替代地應被解讀為囊括現在或在未來任一時間可為可用或已知之習用、傳統、正常或標準技術。同樣地,在此文件提及熟習此項技術者將明瞭或已知之技術之情況下,此等技術囊括熟習此項技術者現在或在未來任一時間明瞭或已知之彼等技術。 The terms and phrases used in this document, as well as variations thereof, are intended to be construed as an As an example of the foregoing, the term "comprising" is to be interpreted as meaning "including but not limited to" or the like; the term "example" is used to provide an illustrative item of the item in question, rather than its exhaustive or limiting. List; the term "a" or "an" should be interpreted to mean "at least one", "one or more" or the like; and such as "custom", "traditional", "normal", "standard", An adjective of a term "known" and similar terms should not be construed as limiting the stated item to a given time period or item that is available from a given time, but instead should be interpreted as encompassing the present or future Any time may be a customary, conventional, normal or standard technique that is available or known. Likewise, where the document refers to techniques that will be apparent or known to those skilled in the art, such technology encompasses those skilled in the art, either now or in the future.

諸如「一或多個」、「至少」、「但不限於」之廣義術語及片語或其他相似片語在某些例項中之存在不應被解讀為意味在其中可不存在此等廣義片語之例項中預期或需要較窄情形。術語「模組」之使用不暗含經闡述或主張為模組之部分之組件或功能性全部組態於共同封裝中。實際上,模組之各種組件中之任一者或全部(不論是控制邏輯還是其他組件)可組合於單個封裝中或經單獨維持且可進一步在多個分組或封裝中或跨越多個位置分佈。 The existence of broad terms such as "one or more", "at least", "but not limited to" and the use of phrases or other similar phrases in certain instances should not be construed as meaning that there may be no such A narrower case is expected or required in the term. The use of the term "module" does not imply that the components or functionality described or claimed as part of the module are all configured in a common package. In fact, any or all of the various components of the module (whether control logic or other components) may be combined in a single package or separately maintained and may be further distributed in multiple packets or packages or across multiple locations. .

另外,就例示性方塊圖、流程圖及其他圖解說明而言闡述本文中所陳述之各種實施例。如所屬領域之技術人員在閱讀此文件之後將明瞭,所圖解說明之實施例及其各種替代方案可在不拘限於所圖解說明之實例之情況下經實施。舉例而言,方塊圖及其隨附說明不應被解釋為授權特定架構或組態。 In addition, the various embodiments set forth herein are set forth in the description of the exemplary figures, FIG. The illustrated embodiments and their various alternatives can be implemented without limitation to the illustrated examples, as will be apparent to those skilled in the art. For example, the block diagrams and their accompanying description should not be construed as an admission of a particular architecture or configuration.

100‧‧‧熔化第一合金/第一合金 100‧‧‧melting the first alloy/first alloy

103‧‧‧溶液 103‧‧‧solution

106‧‧‧混合物 106‧‧‧Mixture

109‧‧‧IMC層/IMC 109‧‧‧IMC layer/IMC

112‧‧‧第二合金/熔化焊料合金/熔化第二合金 112‧‧‧Second alloy/fused solder alloy/melted second alloy

115‧‧‧第二合金焊料顆粒/第二合金 115‧‧‧Second alloy solder particles/second alloy

118‧‧‧第一合金焊料顆粒/第一合金顆粒/第一合金 118‧‧‧First alloy solder particles / first alloy particles / first alloy

121‧‧‧焊料凸塊 121‧‧‧ solder bumps

124‧‧‧基板 124‧‧‧Substrate

Tm(A)‧‧‧第一合金之熔化溫度 Tm(A)‧‧‧ melting temperature of the first alloy

Tm(B)‧‧‧第二合金之熔化溫度 Tm(B)‧‧‧ melting temperature of the second alloy

Claims (32)

一種焊料膏,其由以下各項組成:在44wt%與小於60wt%之間的一定量之第一焊料合金粉末;在大於0wt%與48wt%之間的一定量之第二焊料合金粉末;及焊劑;其中該第一焊料合金粉末包括具有高於260℃之固相線溫度之第一焊料合金;且其中該第二焊料合金粉末包括具有小於250℃之固相線溫度之第二焊料合金。 A solder paste comprising: a certain amount of a first solder alloy powder between 44 wt% and less than 60 wt%; a certain amount of a second solder alloy powder between greater than 0 wt% and 48 wt%; a flux; wherein the first solder alloy powder comprises a first solder alloy having a solidus temperature above 260 ° C; and wherein the second solder alloy powder comprises a second solder alloy having a solidus temperature of less than 250 ° C. 如請求項1之焊料膏,其中該第二焊料合金具有在230℃與250℃之間的固相線溫度。 A solder paste according to claim 1, wherein the second solder alloy has a solidus temperature between 230 ° C and 250 ° C. 如請求項2之焊料膏,其中該第二焊料合金包括Sn合金、Sn-Sb合金或Sn-Sb-X(X=Ag、Al、Au、Bi、Co、Cu、Ga、Ge、In、Mn、Ni、P、Pd、Pt或Zn)合金。 The solder paste of claim 2, wherein the second solder alloy comprises a Sn alloy, a Sn-Sb alloy or a Sn-Sb-X (X=Ag, Al, Au, Bi, Co, Cu, Ga, Ge, In, Mn , Ni, P, Pd, Pt or Zn) alloys. 如請求項1之焊料膏,其中該第二焊料合金具有在200℃與230℃之間的固相線溫度。 A solder paste according to claim 1, wherein the second solder alloy has a solidus temperature between 200 ° C and 230 ° C. 如請求項4之焊料膏,其中該第二焊料合金包括Sn-Ag合金、Sn-Cu合金、Sn-Ag-X(X=Al、Au、Bi、Co、Cu、Ga、Ge、In、Mn、Ni、P、Pd、Pt、Sb或Zn)合金或Sn-Zn合金。 The solder paste of claim 4, wherein the second solder alloy comprises a Sn-Ag alloy, a Sn-Cu alloy, and a Sn-Ag-X (X=Al, Au, Bi, Co, Cu, Ga, Ge, In, Mn , Ni, P, Pd, Pt, Sb or Zn) alloy or Sn-Zn alloy. 如請求項1之焊料膏,其中該第二焊料合金具有低於200℃之固相線溫度。 The solder paste of claim 1, wherein the second solder alloy has a solidus temperature below 200 °C. 如請求項6之焊料膏,其中該第二焊料合金包括Sn-Bi合金、Sn-In合金、Bi-In合金、Sn-Bi-X(X=Ag、Al、Au、Co、Cu、Ga、Ge、In、Mn、Ni、P、Pd、Pt、Sb或Zn)合金、Sn-In-X(X=Ag、Al、Au、Bi、Co、Cu、Ga、Ge、Mn、Ni、P、Pd、Pt、Sb或 Zn)合金或Bi-In-X(X=Ag、Al、Au、Co、Cu、Ga、Ge、Mn、Ni、P、Pd、Pt、Sb或Zn)合金。 The solder paste of claim 6, wherein the second solder alloy comprises a Sn-Bi alloy, a Sn-In alloy, a Bi-In alloy, and a Sn-Bi-X (X=Ag, Al, Au, Co, Cu, Ga, Ge, In, Mn, Ni, P, Pd, Pt, Sb or Zn) alloy, Sn-In-X (X=Ag, Al, Au, Bi, Co, Cu, Ga, Ge, Mn, Ni, P, Pd, Pt, Sb or Zn) alloy or Bi-In-X (X=Ag, Al, Au, Co, Cu, Ga, Ge, Mn, Ni, P, Pd, Pt, Sb or Zn) alloy. 如請求項1之焊料膏,其中該第二焊料合金粉末之該量係在2wt%與40wt%之間。 The solder paste of claim 1, wherein the amount of the second solder alloy powder is between 2% by weight and 40% by weight. 如請求項1之焊料膏,其中該第二焊料合金係由大於0wt%至40wt%Sb、大於0wt%至40wt%Sn以及Bi組成之Bi-Sb-Sn合金。 The solder paste of claim 1, wherein the second solder alloy is a Bi-Sb-Sn alloy composed of more than 0 wt% to 40 wt% Sb, more than 0 wt% to 40 wt% Sn, and Bi. 如請求項1之焊料膏,其中該第二焊料合金係由大於0wt%至40wt%Sb、大於0wt%至40wt%Sn、大於0wt%至5wt%X以及Bi組成之Bi-Sb-Sn-X(X=Ag、Al、Au、Co、Cu、Ga、Ge、In、Mn、Ni、P、Pd、Pt或Zn)合金。 The solder paste of claim 1, wherein the second solder alloy is Bi-Sb-Sn-X composed of more than 0 wt% to 40 wt% Sb, more than 0 wt% to 40 wt% Sn, more than 0 wt% to 5 wt% X, and Bi composition. (X = Ag, Al, Au, Co, Cu, Ga, Ge, In, Mn, Ni, P, Pd, Pt or Zn) alloy. 如請求項1之焊料膏,其中該第一焊料合金包括Bi-Ag合金、Bi-Cu合金或Bi-Ag-Cu合金。 The solder paste of claim 1, wherein the first solder alloy comprises a Bi-Ag alloy, a Bi-Cu alloy, or a Bi-Ag-Cu alloy. 如請求項1之焊料膏,其中該第一焊料合金包括Bi-Ag-Y合金、Bi-Cu-Y合金或Bi-Ag-Cu-Y合金,其中Y係由Al、Au、Co、Ga、Ge、In、Mn、Ni、P、Pd、Pt、Sb、Sn或Zn組成,且其中Y係介於自大於0wt%至5wt%之範圍內。 The solder paste of claim 1, wherein the first solder alloy comprises a Bi-Ag-Y alloy, a Bi-Cu-Y alloy or a Bi-Ag-Cu-Y alloy, wherein the Y system is composed of Al, Au, Co, Ga, Ge, In, Mn, Ni, P, Pd, Pt, Sb, Sn or Zn, and wherein the Y system is in a range from more than 0 wt% to 5 wt%. 如請求項1之焊料膏,其中該第一焊料合金包括:自大於0wt%至20wt%Ag,其中剩餘部分為Bi;自大於0wt%至5wt%Cu,其中剩餘部分為Bi;或自大於0wt%至20wt%Ag及自0至5wt%Cu,其中剩餘部分為Bi。 The solder paste of claim 1, wherein the first solder alloy comprises: from greater than 0 wt% to 20 wt% Ag, wherein the remainder is Bi; from greater than 0 wt% to 5 wt% Cu, wherein the remainder is Bi; or from greater than 0 wt % to 20 wt% Ag and from 0 to 5 wt% Cu, with the remainder being Bi. 如請求項1之焊料膏,其中該第一焊料合金包括:自2.6wt%至15wt%Ag,其中剩餘部分為Bi;自0.2wt%至1.5wt%Cu,其中剩餘部分為Bi;或自2.6wt%至15wt%Ag及自0.2wt%至1.5wt%Cu,其中剩餘部分為Bi。 The solder paste of claim 1, wherein the first solder alloy comprises: from 2.6 wt% to 15 wt% Ag, wherein the remainder is Bi; from 0.2 wt% to 1.5 wt% Cu, wherein the remainder is Bi; or from 2.6 From wt% to 15 wt% Ag and from 0.2 wt% to 1.5 wt% Cu, with the remainder being Bi. 一種焊料膏,其由以下各項組成:在44wt%與87wt%之間的一定量之第一焊料合金粉末; 在13wt%與48wt%之間的一定量之第二焊料合金粉末;及焊劑;其中該第一焊料合金粉末包括具有高於260℃之固相線溫度之第一焊料合金;且其中該第二焊料合金粉末包括具有小於250℃之固相線溫度之第二焊料合金。 A solder paste comprising: a certain amount of a first solder alloy powder between 44 wt% and 87 wt%; a quantity of the second solder alloy powder between 13 wt% and 48 wt%; and a flux; wherein the first solder alloy powder comprises a first solder alloy having a solidus temperature above 260 ° C; and wherein the second The solder alloy powder includes a second solder alloy having a solidus temperature of less than 250 °C. 如請求項15之焊料膏,其中該第二焊料合金具有在230℃與250℃之間的固相線溫度。 The solder paste of claim 15 wherein the second solder alloy has a solidus temperature between 230 ° C and 250 ° C. 如請求項16之焊料膏,其中該第二焊料合金包括Sn合金、Sn-Sb合金或Sn-Sb-X(X=Ag、Al、Au、Bi、Co、Cu、Ga、Ge、In、Mn、Ni、P、Pd、Pt或Zn)合金。 The solder paste of claim 16, wherein the second solder alloy comprises a Sn alloy, a Sn-Sb alloy or a Sn-Sb-X (X=Ag, Al, Au, Bi, Co, Cu, Ga, Ge, In, Mn). , Ni, P, Pd, Pt or Zn) alloys. 如請求項15之焊料膏,其中該第二焊料合金具有在200℃與230℃之間的固相線溫度。 The solder paste of claim 15, wherein the second solder alloy has a solidus temperature between 200 ° C and 230 ° C. 如請求項18之焊料膏,其中該第二焊料合金包括Sn-Ag合金、Sn-Cu合金、Sn-Ag-X(X=Al、Au、Bi、Co、Cu、Ga、Ge、In、Mn、Ni、P、Pd、Pt、Sb或Zn)合金或Sn-Zn合金。 The solder paste of claim 18, wherein the second solder alloy comprises a Sn-Ag alloy, a Sn-Cu alloy, and a Sn-Ag-X (X=Al, Au, Bi, Co, Cu, Ga, Ge, In, Mn). , Ni, P, Pd, Pt, Sb or Zn) alloy or Sn-Zn alloy. 如請求項15之焊料膏,其中該第二焊料合金具有低於200℃之固相線溫度。 The solder paste of claim 15 wherein the second solder alloy has a solidus temperature below 200 °C. 如請求項20之焊料膏,其中該第二焊料合金包括Sn-Bi合金、Sn-In合金、Bi-In合金、Sn-Bi-X(X=Ag、Al、Au、Co、Cu、Ga、Ge、In、Mn、Ni、P、Pd、Pt、Sb或Zn)合金、Sn-In-X(X=Ag、Al、Au、Bi、Co、Cu、Ga、Ge、Mn、Ni、P、Pd、Pt、Sb或Zn)合金或Bi-In-X(X=Ag、Al、Au、Co、Cu、Ga、Ge、Mn、Ni、P、Pd、Pt、Sb或Zn)合金。 The solder paste of claim 20, wherein the second solder alloy comprises a Sn-Bi alloy, a Sn-In alloy, a Bi-In alloy, and a Sn-Bi-X (X=Ag, Al, Au, Co, Cu, Ga, Ge, In, Mn, Ni, P, Pd, Pt, Sb or Zn) alloy, Sn-In-X (X=Ag, Al, Au, Bi, Co, Cu, Ga, Ge, Mn, Ni, P, An alloy of Pd, Pt, Sb or Zn) or Bi-In-X (X=Ag, Al, Au, Co, Cu, Ga, Ge, Mn, Ni, P, Pd, Pt, Sb or Zn). 如請求項15之焊料膏,其中該第二焊料合金粉末之該量係在26wt%與40wt%之間。 The solder paste of claim 15, wherein the amount of the second solder alloy powder is between 26 wt% and 40 wt%. 如請求項15之焊料膏,其中該第二焊料合金係由大於0wt%至40wt%Sb、大於0wt%至40wt%Sn以及Bi組成之Bi-Sb-Sn合金。 The solder paste of claim 15, wherein the second solder alloy is a Bi-Sb-Sn alloy composed of greater than 0 wt% to 40 wt% Sb, greater than 0 wt% to 40 wt% Sn, and Bi. 如請求項15之焊料膏,其中該第二焊料合金係由大於0wt%至40wt%Sb、大於0wt%至40wt%Sn、大於0wt%至5wt%X以及Bi組成之Bi-Sb-Sn-X(X=Ag、Al、Au、Co、Cu、Ga、Ge、In、Mn、Ni、P、Pd、Pt或Zn)合金。 The solder paste of claim 15, wherein the second solder alloy is Bi-Sb-Sn-X composed of more than 0 wt% to 40 wt% Sb, more than 0 wt% to 40 wt% Sn, more than 0 wt% to 5 wt% X, and Bi composition. (X = Ag, Al, Au, Co, Cu, Ga, Ge, In, Mn, Ni, P, Pd, Pt or Zn) alloy. 如請求項15之焊料膏,其中該第一焊料合金包括Bi-Ag合金、Bi-Cu合金或Bi-Ag-Cu合金。 The solder paste of claim 15, wherein the first solder alloy comprises a Bi-Ag alloy, a Bi-Cu alloy, or a Bi-Ag-Cu alloy. 如請求項15之焊料膏,其中該第一焊料合金包括Bi-Ag-Y合金、Bi-Cu-Y合金或Bi-Ag-Cu-Y合金,其中Y係由Al、Au、Co、Ga、Ge、In、Mn、Ni、P、Pd、Pt、Sb、Sn或Zn組成,且其中Y係介於自大於0wt%至5wt%之範圍內。 The solder paste of claim 15, wherein the first solder alloy comprises a Bi-Ag-Y alloy, a Bi-Cu-Y alloy or a Bi-Ag-Cu-Y alloy, wherein the Y system is composed of Al, Au, Co, Ga, Ge, In, Mn, Ni, P, Pd, Pt, Sb, Sn or Zn, and wherein the Y system is in a range from more than 0 wt% to 5 wt%. 如請求項15之焊料膏,其中該第一焊料合金包括:自大於0wt%至20wt%Ag,其中剩餘部分為Bi;自大於0wt%至5wt%Cu,其中剩餘部分為Bi;或自大於0wt%至20wt%Ag及自0至5wt%Cu,其中剩餘部分為Bi。 The solder paste of claim 15 wherein the first solder alloy comprises: from greater than 0 wt% to 20 wt% Ag, wherein the remainder is Bi; from greater than 0 wt% to 5 wt% Cu, wherein the remainder is Bi; or from greater than 0 wt % to 20 wt% Ag and from 0 to 5 wt% Cu, with the remainder being Bi. 如請求項15之焊料膏,其中該第一焊料合金包括:自2.6wt%至15wt%Ag,其中剩餘部分為Bi;自0.2wt%至1.5wt%Cu,其中剩餘部分為Bi;或自2.6wt%至15wt%Ag及自0.2wt%至1.5wt%Cu,其中剩餘部分為Bi。 The solder paste of claim 15, wherein the first solder alloy comprises: from 2.6 wt% to 15 wt% Ag, wherein the remainder is Bi; from 0.2 wt% to 1.5 wt% Cu, wherein the remainder is Bi; or from 2.6 From wt% to 15 wt% Ag and from 0.2 wt% to 1.5 wt% Cu, with the remainder being Bi. 如請求項1之焊料膏,其中該第一焊料合金之該固相線溫度係低於320℃。 The solder paste of claim 1, wherein the solidus temperature of the first solder alloy is less than 320 °C. 如請求項1之焊料膏,其中:該第一焊料合金係Bi-Ag合金、Bi-Cu合金、Bi-Ag-Cu合金或Bi-Ag-Cu-Y合金,其中Y係由Al、Au、Co、Ga、Ge、In、Mn、Ni、P、Pd、Pt、Sb、Sn或Zn組成;且 該第二焊料合金係Bi-Sn合金、Bi-In合金、Bi-Sb-Sn合金、Sn-Bi-X(X=Ag、Al、Au、Co、Cu、Ga、Ge、In、Mn、Ni、P、Pd、Pt、Sb或Zn)合金、Sn-In-X(X=Ag、Al、Au、Bi、Co、Cu、Ga、Ge、Mn、Ni、P、Pd、Pt、Sb或Zn)合金、Bi-In-X(X=Ag、Al、Au、Co、Cu、Ga、Ge、Mn、Ni、P、Pd、Pt、Sb或Zn)合金或Bi-Sb-Sn-X(X=Ag、Al、Au、Co、Cu、Ga、Ge、In、Mn、Ni、P、Pd、Pt或Zn)合金。 The solder paste of claim 1, wherein: the first solder alloy is a Bi-Ag alloy, a Bi-Cu alloy, a Bi-Ag-Cu alloy or a Bi-Ag-Cu-Y alloy, wherein the Y system is composed of Al, Au, Co, Ga, Ge, In, Mn, Ni, P, Pd, Pt, Sb, Sn or Zn; The second solder alloy is a Bi-Sn alloy, a Bi-In alloy, a Bi-Sb-Sn alloy, and a Sn-Bi-X (X=Ag, Al, Au, Co, Cu, Ga, Ge, In, Mn, Ni). , P, Pd, Pt, Sb or Zn) alloy, Sn-In-X (X=Ag, Al, Au, Bi, Co, Cu, Ga, Ge, Mn, Ni, P, Pd, Pt, Sb or Zn Alloy, Bi-In-X (X=Ag, Al, Au, Co, Cu, Ga, Ge, Mn, Ni, P, Pd, Pt, Sb or Zn) alloy or Bi-Sb-Sn-X (X =Ag, Al, Au, Co, Cu, Ga, Ge, In, Mn, Ni, P, Pd, Pt or Zn) alloys. 如請求項15之焊料膏,其中該第一焊料合金之該固相線溫度係低於320℃。 The solder paste of claim 15, wherein the solidus temperature of the first solder alloy is less than 320 °C. 如請求項15之焊料膏,其中:該第一焊料合金係Bi-Ag合金、Bi-Cu合金、Bi-Ag-Cu合金或Bi-Ag-Cu-Y(Y=Al、Au、Co、Ga、Ge、In、Mn、Ni、P、Pd、Pt、Sb、Sn或Zn)合金;且該第二焊料合金係Bi-Sn合金、Bi-In合金、Bi-Sb-Sn合金、Sn-Bi-X(X=Ag、Al、Au、Co、Cu、Ga、Ge、In、Mn、Ni、P、Pd、Pt、Sb或Zn)合金、Sn-In-X(X=Ag、Al、Au、Bi、Co、Cu、Ga、Ge、Mn、Ni、P、Pd、Pt、Sb或Zn)合金、Bi-In-X(X=Ag、Al、Au、Co、Cu、Ga、Ge、Mn、Ni、P、Pd、Pt、Sb或Zn)合金或Bi-Sb-Sn-X(X=Ag、Al、Au、Co、Cu、Ga、Ge、In、Mn、Ni、P、Pd、Pt或Zn)合金。 The solder paste of claim 15 wherein: the first solder alloy is a Bi-Ag alloy, a Bi-Cu alloy, a Bi-Ag-Cu alloy or a Bi-Ag-Cu-Y (Y=Al, Au, Co, Ga , Ge, In, Mn, Ni, P, Pd, Pt, Sb, Sn or Zn) alloy; and the second solder alloy is Bi-Sn alloy, Bi-In alloy, Bi-Sb-Sn alloy, Sn-Bi -X (X=Ag, Al, Au, Co, Cu, Ga, Ge, In, Mn, Ni, P, Pd, Pt, Sb or Zn) alloy, Sn-In-X (X=Ag, Al, Au) , Bi, Co, Cu, Ga, Ge, Mn, Ni, P, Pd, Pt, Sb or Zn) alloys, Bi-In-X (X=Ag, Al, Au, Co, Cu, Ga, Ge, Mn , Ni, P, Pd, Pt, Sb or Zn) alloy or Bi-Sb-Sn-X (X=Ag, Al, Au, Co, Cu, Ga, Ge, In, Mn, Ni, P, Pd, Pt Or Zn) alloy.
TW105107400A 2015-03-10 2016-03-10 Mixed alloy solder paste TWI681063B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/643,868 US9636784B2 (en) 2010-05-03 2015-03-10 Mixed alloy solder paste
US14/643,868 2015-03-10

Publications (2)

Publication Number Publication Date
TW201700741A true TW201700741A (en) 2017-01-01
TWI681063B TWI681063B (en) 2020-01-01

Family

ID=55587375

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105107400A TWI681063B (en) 2015-03-10 2016-03-10 Mixed alloy solder paste

Country Status (5)

Country Link
JP (1) JP2018511482A (en)
KR (1) KR101913994B1 (en)
CN (1) CN107530834A (en)
TW (1) TWI681063B (en)
WO (1) WO2016144945A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI756575B (en) * 2018-10-24 2022-03-01 美商阿爾發金屬化工公司 Low temperature soldering solutions for polymer substrates, printed circuit boards and other joining applications
TWI821296B (en) * 2018-05-29 2023-11-11 美商銦業公司 Hybrid high temperature lead-free solder preform

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108857135A (en) * 2018-03-12 2018-11-23 深圳市鑫富锦新材料有限公司 A kind of hybrid alloys solder cream
US20220395934A1 (en) * 2018-10-31 2022-12-15 Robert Bosch Gmbh Mixed Alloy Solder Paste, Method of Making the Same and Soldering Method
CN110029248B (en) * 2019-04-17 2021-05-11 广东科学技术职业学院 Metal paste for 3D printing and preparation method thereof
US11267080B2 (en) 2019-05-09 2022-03-08 Indium Corporation Low temperature melting and mid temperature melting lead-free solder paste with mixed solder alloy powders
CN110936062A (en) * 2019-12-18 2020-03-31 陕西易莱德新材料科技有限公司 Solder added with platinum metal and preparation method thereof
US11738411B2 (en) * 2020-04-29 2023-08-29 Indium Corporation Lead-free solder paste with mixed solder powders for high temperature applications

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3091098B2 (en) * 1994-11-01 2000-09-25 三井金属鉱業株式会社 Solder alloy for heat exchanger
JPH11347784A (en) * 1998-06-01 1999-12-21 Victor Co Of Japan Ltd Soldering paste and electronic circuit using the same
JP2003211289A (en) * 2002-01-21 2003-07-29 Fujitsu Ltd Electrically conductive joining material, method of joining by using the same and electronic device
US7888411B2 (en) * 2003-04-01 2011-02-15 Creative Electron, Inc. Thermally conductive adhesive composition and process for device attachment
JP2005072173A (en) * 2003-08-22 2005-03-17 Senju Metal Ind Co Ltd Electronic component and solder paste
JP2005183903A (en) * 2003-12-22 2005-07-07 Rohm & Haas Electronic Materials Llc Electronic device and method for forming electronic device
JP4391299B2 (en) * 2004-04-19 2009-12-24 パナソニック株式会社 Solder materials and soldered articles
CN100537120C (en) * 2005-03-09 2009-09-09 千住金属工业株式会社 Method of producing particles of low melting point metal and apparatus therefor
KR101088658B1 (en) * 2005-11-11 2011-12-01 가부시키가이샤 무라타 세이사쿠쇼 Soldering paste and solder joints
JP5373464B2 (en) * 2008-04-23 2013-12-18 パナソニック株式会社 Conductive paste and mounting structure using the same
JP5292977B2 (en) * 2008-08-01 2013-09-18 富士電機株式会社 Bonding material, semiconductor device and manufacturing method thereof
JP5470816B2 (en) * 2008-11-26 2014-04-16 富士通株式会社 Manufacturing method of electronic device
JP5169871B2 (en) * 2009-01-26 2013-03-27 富士通株式会社 Solder, soldering method and semiconductor device
JP2012523091A (en) * 2009-04-02 2012-09-27 オーメット サーキッツ インク Conductive composition comprising mixed alloy filler
US9017446B2 (en) * 2010-05-03 2015-04-28 Indium Corporation Mixed alloy solder paste
KR20130137122A (en) * 2010-06-30 2013-12-16 센주긴조쿠고교 가부시키가이샤 Bi-sn-based high-temperature solder alloy
JP2014007192A (en) * 2012-06-21 2014-01-16 Industrial Technology Research Institute Method for bonding led wafer, method for manufacturing led chip, and bonding structure
JP5958811B2 (en) * 2012-07-12 2016-08-02 パナソニックIpマネジメント株式会社 Solder material and mounting structure using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI821296B (en) * 2018-05-29 2023-11-11 美商銦業公司 Hybrid high temperature lead-free solder preform
TWI756575B (en) * 2018-10-24 2022-03-01 美商阿爾發金屬化工公司 Low temperature soldering solutions for polymer substrates, printed circuit boards and other joining applications

Also Published As

Publication number Publication date
KR101913994B1 (en) 2018-12-28
JP2018511482A (en) 2018-04-26
TWI681063B (en) 2020-01-01
WO2016144945A1 (en) 2016-09-15
KR20180002606A (en) 2018-01-08
CN107530834A (en) 2018-01-02

Similar Documents

Publication Publication Date Title
US10118260B2 (en) Mixed alloy solder paste
TWI681063B (en) Mixed alloy solder paste
JP2021178364A (en) Solder composition
KR101160860B1 (en) Cream solder and method of soldering electronic part
US5928404A (en) Electrical solder and method of manufacturing
US9636784B2 (en) Mixed alloy solder paste
WO2016178000A1 (en) Lead-free solder alloy with low melting point
WO2012086745A1 (en) Bonding method, bonding structure, electronic device, manufacturing method for electronic device, and electronic component
WO2010122764A1 (en) Soldering material and electronic component assembly
WO2013132953A1 (en) Bonding method, electronic device manufacturing method, and electronic component
US20220072664A1 (en) Lead-free solder compositions
JP2011062736A (en) Lead-free high-temperature solder material
US11738411B2 (en) Lead-free solder paste with mixed solder powders for high temperature applications
CN108857135A (en) A kind of hybrid alloys solder cream
WO2016157971A1 (en) Solder paste
Samiappan Alternative Pb-free soldering alloys
JP2017148862A (en) Solder Paste
LEE High Melting Lead-Free Mixed BiAgX Solder Paste System