TW201639167A - Semiconductor device - Google Patents
Semiconductor device Download PDFInfo
- Publication number
- TW201639167A TW201639167A TW104112678A TW104112678A TW201639167A TW 201639167 A TW201639167 A TW 201639167A TW 104112678 A TW104112678 A TW 104112678A TW 104112678 A TW104112678 A TW 104112678A TW 201639167 A TW201639167 A TW 201639167A
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- semiconductor
- electrode
- semiconductor device
- ohmic contact
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 115
- 239000000758 substrate Substances 0.000 claims abstract description 23
- 150000004767 nitrides Chemical class 0.000 claims abstract description 18
- NFFIWVVINABMKP-UHFFFAOYSA-N methylidynetantalum Chemical compound [Ta]#C NFFIWVVINABMKP-UHFFFAOYSA-N 0.000 claims description 14
- 229910003468 tantalcarbide Inorganic materials 0.000 claims description 14
- 230000004888 barrier function Effects 0.000 claims description 11
- 238000002161 passivation Methods 0.000 claims description 9
- 230000007704 transition Effects 0.000 claims description 7
- 125000006850 spacer group Chemical group 0.000 claims description 3
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 abstract 2
- 229910010271 silicon carbide Inorganic materials 0.000 abstract 2
- 239000010410 layer Substances 0.000 description 131
- 239000000463 material Substances 0.000 description 21
- 229910002601 GaN Inorganic materials 0.000 description 10
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 7
- 230000015556 catabolic process Effects 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- RNQKDQAVIXDKAG-UHFFFAOYSA-N aluminum gallium Chemical compound [Al].[Ga] RNQKDQAVIXDKAG-UHFFFAOYSA-N 0.000 description 4
- 229910052732 germanium Inorganic materials 0.000 description 4
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 4
- 230000005533 two-dimensional electron gas Effects 0.000 description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000005669 field effect Effects 0.000 description 3
- 239000011229 interlayer Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 3
- 230000010287 polarization Effects 0.000 description 3
- 229910005191 Ga 2 O 3 Inorganic materials 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 239000002019 doping agent Substances 0.000 description 2
- 229910001195 gallium oxide Inorganic materials 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- BIXHRBFZLLFBFL-UHFFFAOYSA-N germanium nitride Chemical compound N#[Ge]N([Ge]#N)[Ge]#N BIXHRBFZLLFBFL-UHFFFAOYSA-N 0.000 description 1
- 229910000449 hafnium oxide Inorganic materials 0.000 description 1
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 1
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(iv) oxide Chemical compound O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- -1 nitrogen ions Chemical class 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000005036 potential barrier Methods 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Junction Field-Effect Transistors (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
Description
本發明是有關於一種半導體元件,且特別是有關於一種具有蕭特基接觸的半導體元件。 This invention relates to a semiconductor component, and more particularly to a semiconductor component having a Schottky contact.
隨著能源短缺以及原油價格飆漲,高功率半導體元件的需求與日俱增。諸如電子、電機、通訊、汽車、家電等製品皆可見其蹤跡。在半導體材料中,氮化物材料因其高崩潰電場(breakdown field)、高熱傳導特性以及高載子傳輸速度等優越的特性表現,而被廣泛地用於製作高功率半導體元件。 With energy shortages and soaring crude oil prices, the demand for high-power semiconductor components is increasing. Products such as electronics, motors, telecommunications, automobiles, and home appliances are all visible. Among semiconductor materials, nitride materials are widely used in the fabrication of high-power semiconductor devices due to their superior characteristics such as high breakdown field, high heat transfer characteristics, and high carrier transport speed.
在C面磊晶及為金屬面(metal stable)的氮化物材料本身具有獨特的極化效應,包括自發極化(Spontaneous polarization)效應以及壓電極化(Piezoelectric polarization)效應。因此,由氮化物材料組成的結構,如氮化鋁鎵(AlGaN)與氮化鎵(GaN)所組成的異質結構,可以在沒有摻雜質(dopant)的情況下,形成二維電子氣(Two Dimensional Electron Gases,2DEG)。而高鋁成分的AlGaN/GaN異質結構的二維電子氣平板電子濃度(Sheet carrier concentration)更可較傳統的AlGaN/GaN異質結構的二維電子氣平 板電子濃度高出一個數量級,因此常被應用在高功率場效電晶體(High Power FET)的元件,如氮化鎵高電子遷移率(High Electron Mobility)的元件,如高電子遷移率電晶體(High Electron Mobility Transistor,HEMT)。然而,目前的GaN HEMT因閘極金屬與半導體之間的界面能階密度高,尚有閘極漏電流以及閘極崩潰電壓表現未達理想值等問題。 The nitride material on the C-plane and the metal stable itself have unique polarization effects, including the Spontaneous polarization effect and the Piezoelectric polarization effect. Therefore, a structure composed of a nitride material, such as a heterostructure composed of aluminum gallium nitride (AlGaN) and gallium nitride (GaN), can form a two-dimensional electron gas without a dopant ( Two Dimensional Electron Gases, 2DEG). The two-dimensional electron gas plate electron concentration of the AlGaN/GaN heterostructure with high aluminum composition can be compared with the traditional two-dimensional electron gas level of AlGaN/GaN heterostructure. The plate electron concentration is an order of magnitude higher, so it is often used in high power FET devices such as high-electron Mobility components, such as high electron mobility transistors. (High Electron Mobility Transistor, HEMT). However, the current GaN HEMT has high interface energy density between the gate metal and the semiconductor, and there are problems such as gate leakage current and gate breakdown voltage performance not reaching an ideal value.
本發明提供一種半導體元件,其可改善漏電流以及崩潰電壓表現。 The present invention provides a semiconductor element which can improve leakage current and breakdown voltage performance.
本發明的一種半導體元件包括碳化矽基板、半導體層、第一電極以及介電疊層。半導體層位於碳化矽基板上。第一電極位於半導體層上,其中第一電極與半導體層形成蕭特基接觸。介電疊層至少分布在第一電極與半導體層之間。介電疊層的厚度介於0.1nm至50nm之間,且介電疊層包括氮化物層以及氧化物層,且氮化物層位於氧化物層與半導體層之間。 A semiconductor device of the present invention includes a tantalum carbide substrate, a semiconductor layer, a first electrode, and a dielectric laminate. The semiconductor layer is on the tantalum carbide substrate. The first electrode is on the semiconductor layer, wherein the first electrode forms a Schottky contact with the semiconductor layer. The dielectric stack is distributed at least between the first electrode and the semiconductor layer. The thickness of the dielectric stack is between 0.1 nm and 50 nm, and the dielectric stack includes a nitride layer and an oxide layer, and the nitride layer is between the oxide layer and the semiconductor layer.
基於上述,本發明的實施例的半導體元件在半導體層與第一電極之間設置介電疊層。利用介電疊層具有寬能隙(6.2eV)、高介電係數(8.8-9.0)及電負度差大於1的特性,以改善漏電流以及崩潰電壓表現。此外,本發明的實施例以碳化矽基板作為承載基板,以提升磊晶品質,使半導體元件具有理想的電性表現。 Based on the above, the semiconductor element of the embodiment of the present invention is provided with a dielectric laminate between the semiconductor layer and the first electrode. The dielectric stack has a wide energy gap (6.2 eV), a high dielectric constant (8.8-9.0), and an electronegativity difference greater than one to improve leakage current and breakdown voltage performance. In addition, the embodiment of the present invention uses a tantalum carbide substrate as a carrier substrate to improve the epitaxial quality and to make the semiconductor device have an ideal electrical performance.
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉 實施例,並配合所附圖式作詳細說明如下。 In order to make the above features and advantages of the present invention more apparent, the following is a special The embodiments are described in detail below in conjunction with the drawings.
100、200、300、400、500‧‧‧半導體元件 100, 200, 300, 400, 500‧‧‧ semiconductor components
110、410‧‧‧半導體層 110, 410‧‧‧ semiconductor layer
112‧‧‧通道層 112‧‧‧Channel layer
114‧‧‧阻障層 114‧‧‧Barrier layer
116‧‧‧緩衝層 116‧‧‧buffer layer
120‧‧‧第一電極 120‧‧‧first electrode
130、130A‧‧‧介電疊層 130, 130A‧‧‧ dielectric laminate
132、132A‧‧‧氮化物層 132, 132A‧‧‧ nitride layer
134、134A‧‧‧氧化物層 134, 134A‧‧‧ oxide layer
140‧‧‧第二電極 140‧‧‧second electrode
150‧‧‧第三電極 150‧‧‧third electrode
160‧‧‧第一歐姆接觸層 160‧‧‧First ohmic contact layer
170‧‧‧第二歐姆接觸層 170‧‧‧Second ohmic contact layer
180‧‧‧鈍化層 180‧‧‧ Passivation layer
412‧‧‧過渡層 412‧‧‧Transition layer
414‧‧‧間格層 414‧‧ ‧ compartment
SUB‧‧‧碳化矽基板 SUB‧‧‧Carbide substrate
圖1是依照本發明的第一實施例的一種半導體元件的剖面示意圖。 BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a cross-sectional view showing a semiconductor device in accordance with a first embodiment of the present invention.
圖2至圖5是依照本發明的第二實施例至第五實施例的半導體元件的剖面示意圖。 2 to 5 are schematic cross-sectional views showing a semiconductor device according to second to fifth embodiments of the present invention.
圖1是依照本發明的第一實施例的一種半導體元件的剖面示意圖。請參照圖1,半導體元件100包括碳化矽基板SUB、半導體層110、第一電極120以及介電疊層130。半導體層110、第一電極120以及介電疊層130位於碳化矽基板SUB的同一側,且半導體層110、介電疊層130以及第一電極120例如是依序堆疊在碳化矽基板SUB上。 BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a cross-sectional view showing a semiconductor device in accordance with a first embodiment of the present invention. Referring to FIG. 1 , the semiconductor device 100 includes a tantalum carbide substrate SUB, a semiconductor layer 110 , a first electrode 120 , and a dielectric stack 130 . The semiconductor layer 110, the first electrode 120, and the dielectric stack 130 are located on the same side of the tantalum carbide substrate SUB, and the semiconductor layer 110, the dielectric stack 130, and the first electrode 120 are sequentially stacked on the tantalum carbide substrate SUB, for example.
半導體層110設置在碳化矽基板SUB上且包括通道層112、阻障層114以及緩衝層116,其中阻障層114設置在介電疊層130與通道層112之間。緩衝層116設置在通道層112與碳化矽基板SUB之間,以降低因晶格常數不匹配而造成的缺陷(如線性差排)的生成,從而提升磊晶品質。在本實施例中,半導體層110的材質以氮化物為主。舉例,緩衝層116為氮化鋁層。通道層112 為氮化鎵層。阻障層114為氮化鋁鎵層,且其化學式表示為AlxGa1-xN,其中0<x<1。 The semiconductor layer 110 is disposed on the tantalum carbide substrate SUB and includes a channel layer 112, a barrier layer 114, and a buffer layer 116, wherein the barrier layer 114 is disposed between the dielectric stack 130 and the channel layer 112. The buffer layer 116 is disposed between the channel layer 112 and the tantalum carbide substrate SUB to reduce the generation of defects (such as linear difference rows) caused by lattice constant mismatch, thereby improving the epitaxial quality. In the present embodiment, the material of the semiconductor layer 110 is mainly nitride. For example, the buffer layer 116 is an aluminum nitride layer. Channel layer 112 is a gallium nitride layer. The barrier layer 114 is an aluminum gallium nitride layer, and its chemical formula is represented as Al x Ga 1-x N, where 0<x<1.
如圖所示,半導體元件100為三端子元件,例如為電晶體,但不限於此。除了第一電極120之外,半導體元件100還進一步包括第二電極140以及第三電極150,且第一電極120、第二電極140以及第三電極150例如分別為閘極、源極以及汲極。 As shown, the semiconductor element 100 is a three-terminal element, such as a transistor, but is not limited thereto. In addition to the first electrode 120, the semiconductor device 100 further includes a second electrode 140 and a third electrode 150, and the first electrode 120, the second electrode 140, and the third electrode 150 are, for example, a gate, a source, and a drain, respectively. .
第一電極120與半導體層110形成蕭特基接觸。第一電極120的材質較佳選自功函數高及可降低介面能階的導電材質,以降低蕭特基接觸的漏電流。舉例,第一電極120的材質可以是鎳、金或上述功能的導電材質。第二電極140以及第三電極150分別與半導體層110形成歐姆接觸。並且,第二電極140以及第三電極150的材質較佳選自功函數低於半導體層110的功函數的材質,以使主要載子(majority carrier)移動不會有位能障(potential barrier)的阻礙。舉例,第二電極140以及第三電極150的材質可以分別是鈦、鋁、鎳、金或上述功能的導電材質。此外,半導體元件100可進一步包括第一歐姆接觸層160以及第二歐姆接觸層170。第一歐姆接觸層160以及第二歐姆接觸層170設置在半導體層110上,且第二電極140設置在第一歐姆接觸層160上,而第三電極150設置在第二歐姆接觸層170上。 The first electrode 120 forms a Schottky contact with the semiconductor layer 110. The material of the first electrode 120 is preferably selected from a conductive material having a high work function and a lower energy level to reduce the leakage current of the Schottky contact. For example, the material of the first electrode 120 may be nickel, gold or a conductive material of the above function. The second electrode 140 and the third electrode 150 are in ohmic contact with the semiconductor layer 110, respectively. Moreover, the material of the second electrode 140 and the third electrode 150 is preferably selected from a material whose work function is lower than the work function of the semiconductor layer 110, so that the main carrier is moved without a potential barrier. Obstruction. For example, the materials of the second electrode 140 and the third electrode 150 may be titanium, aluminum, nickel, gold or a conductive material of the above function, respectively. Further, the semiconductor element 100 may further include a first ohmic contact layer 160 and a second ohmic contact layer 170. The first ohmic contact layer 160 and the second ohmic contact layer 170 are disposed on the semiconductor layer 110, and the second electrode 140 is disposed on the first ohmic contact layer 160, and the third electrode 150 is disposed on the second ohmic contact layer 170.
介電疊層130亦設置在半導體層110上,其例如作為閘極介電層。換言之,介電疊層130至少分布在第一電極120與半導體層110之間。在本實施例中,介電疊層130分布在第一歐姆 接觸層160以及第二歐姆接觸層170以外的區域,且例如僅分布在第一電極120與半導體層110之間。介電疊層130包括氮化物層132以及氧化物層134,且氮化物層132位於氧化物層134與半導體層110之間。氮化物層132可包括氮化鋁層(AlN)、氮化硼層(BN)或氮化鋁鎵層(AlGaN)。氧化物層134可包括氧化鎵層(Ga2O3)、氧化鋁層(Al2O3)或氧化鉺層(Er2O3)。為避免介電疊層130的厚度過厚而造成不必要的壓降,介電疊層130的厚度較佳介於0.1nm至50nm之間。 Dielectric stack 130 is also disposed over semiconductor layer 110, for example as a gate dielectric layer. In other words, the dielectric stack 130 is at least distributed between the first electrode 120 and the semiconductor layer 110. In the present embodiment, the dielectric stack 130 is distributed over regions other than the first ohmic contact layer 160 and the second ohmic contact layer 170, and is, for example, only distributed between the first electrode 120 and the semiconductor layer 110. Dielectric stack 130 includes nitride layer 132 and oxide layer 134, and nitride layer 132 is between oxide layer 134 and semiconductor layer 110. The nitride layer 132 may include an aluminum nitride layer (AlN), a boron nitride layer (BN), or an aluminum gallium nitride layer (AlGaN). The oxide layer 134 may include a gallium oxide layer (Ga 2 O 3 ), an aluminum oxide layer (Al 2 O 3 ), or a hafnium oxide layer (Er 2 O 3 ). In order to avoid unnecessary pressure drop caused by the thickness of the dielectric stack 130 being too thick, the thickness of the dielectric stack 130 is preferably between 0.1 nm and 50 nm.
閘極介電層是一種配置在電晶體(如場效電晶體)的閘道與基板上的介電質。對矽基場效電晶體來說,閘極介電層的材質通常採用二氧化矽。然而,對於氮化鎵場效電晶體來說,目前並無通用的材質。介電疊層130中的氮化物層132除了具有高介電常數之外,更具有較寬的能隙以及電負度差大於1的特性。電負度差大於1則表面能階很少(<1011cm3)。此外,當氧化物層134為氧化鎵層(Ga2O3)時,其有助於有效抑制閘極漏電流,而當氧化物層134為氧化鋁層(Al2O3)時,其可具有較低的缺陷密度以及較高的均勻性。因此,相較於以單層氧化物層作為閘極介電層,介電疊層130可有效降低阻障層114的表面能階密度,使得影響第一電極120與阻障層114之間的介面能階較小,從而能夠有效地降低閘極漏電流以及提升閘極的崩潰電壓。在介面品質與晶體密度的考量下,介電疊層130的磊晶過程中,可透過高溫成長,使介電疊層130的各層為單晶(single crystal)狀態。或者,也可透過低 溫成長,使介電疊層130的各層為非晶(amorphous)狀態。 The gate dielectric layer is a dielectric disposed on a gate and a substrate of a transistor such as a field effect transistor. For bismuth field effect transistors, the material of the gate dielectric layer is usually cerium oxide. However, for GaN field effect transistors, there is currently no general material. In addition to having a high dielectric constant, the nitride layer 132 in the dielectric stack 130 has a wider energy gap and a characteristic that the electronegativity difference is greater than one. If the electronegativity difference is greater than 1, the surface energy level is small (<10 11 cm 3 ). In addition, when the oxide layer 134 is a gallium oxide layer (Ga 2 O 3 ), it helps to effectively suppress the gate leakage current, and when the oxide layer 134 is an aluminum oxide layer (Al 2 O 3 ), it can Has a lower defect density and higher uniformity. Therefore, the dielectric stack 130 can effectively reduce the surface energy density of the barrier layer 114 compared to the single-layer oxide layer as the gate dielectric layer, so that the first electrode 120 and the barrier layer 114 are affected. The interface energy level is small, which can effectively reduce the gate leakage current and increase the breakdown voltage of the gate. Under the consideration of interface quality and crystal density, during the epitaxial process of the dielectric stack 130, the layers of the dielectric stack 130 can be in a single crystal state by high temperature growth. Alternatively, each layer of the dielectric laminate 130 may be in an amorphous state by low temperature growth.
在傳統以矽基板成長半導體材料時,矽與部分半導體材料之間存在互溶的問題。此外,在長晶的高溫環境(如攝氏1100度)下,矽容易揮發,而自動摻雜(autodoping)於半導體層中,影響到所成長之半導體層的摻質濃度或導電度。特別是在成長氮化物時,矽與氮離子容易反應生成非晶矽材料,如矽的氮化物(Si3Nx)。上述種種都會影響半導體元件的電性表現。因此,本實施例採用碳化矽基板SUB作為承載基板,以提升磊晶品質,使半導體元件100具有理想的電性表現。 In the conventional growth of semiconductor materials with germanium substrates, there is a problem of mutual solubility between germanium and some semiconductor materials. In addition, in the high temperature environment of the crystal growth (eg, 1100 degrees Celsius), the ruthenium is easily volatilized, and is automatically doped in the semiconductor layer, affecting the dopant concentration or conductivity of the grown semiconductor layer. In particular, when a nitride is grown, germanium and nitrogen ions are easily reacted to form an amorphous germanium material such as germanium nitride (Si 3 Nx). All of the above will affect the electrical performance of semiconductor components. Therefore, in this embodiment, the tantalum carbide substrate SUB is used as the carrier substrate to improve the epitaxial quality, so that the semiconductor device 100 has an ideal electrical performance.
在本實施例中,半導體元件100還可進一步包括鈍化層180,以提升半導體元件100阻擋水氧與表面雜質的能力,使半導體元件100具有良好的信賴性(reliability)。鈍化層180設置在半導體層110上,且例如分布在介電疊層130、第一歐姆接觸層160以及第二歐姆接觸層170以外的區域。鈍化層180的材質可包括無機材料、有機材料或上述之組合。所述無機材料例如是氧化鋁(Al2O3)、氧化鎵(Ga2O3)、二氧化鉿(HfO2)或上述至少二種材料的堆疊層。 In the present embodiment, the semiconductor device 100 may further include a passivation layer 180 to enhance the ability of the semiconductor device 100 to block water oxygen and surface impurities, so that the semiconductor device 100 has good reliability. The passivation layer 180 is disposed on the semiconductor layer 110 and is distributed, for example, in regions other than the dielectric stack 130, the first ohmic contact layer 160, and the second ohmic contact layer 170. The material of the passivation layer 180 may include an inorganic material, an organic material, or a combination thereof. The inorganic material is, for example, aluminum oxide (Al 2 O 3 ), gallium oxide (Ga 2 O 3 ), hafnium oxide (HfO 2 ) or a stacked layer of at least two of the above materials.
圖2至圖5是依照本發明的第二實施例至第五實施例的半導體元件的剖面示意圖。請參照圖2,本實施例的半導體元件200大致相同於圖1的半導體元件100,且相同的元件以相同的標號表示,於此不再贅述這些元件的材質、相對設置關係以及功效。半導體元件200與半導體元件100的主要差異在於,本實施例的 介電疊層130A(包括氮化物層132A以及氧化物層134A)更延伸至半導體層110未被第一歐姆接觸層160以及第二歐姆接觸層170覆蓋的區域上,且介電疊層130A例如覆蓋半導體層110未被第一歐姆接觸層160以及第二歐姆接觸層170覆蓋的所有區域。藉此,介電疊層130A除了作為閘極介電層之外,還可用於保護半導體層110。因此,本實施例可省略圖1中鈍化層180的設置,而減少一道工序、製程成本以及時間。 2 to 5 are schematic cross-sectional views showing a semiconductor device according to second to fifth embodiments of the present invention. Referring to FIG. 2, the semiconductor device 200 of the present embodiment is substantially the same as the semiconductor device 100 of FIG. 1, and the same components are denoted by the same reference numerals, and the materials, relative arrangement, and efficacy of the components are not described herein. The main difference between the semiconductor element 200 and the semiconductor element 100 is that the present embodiment The dielectric stack 130A (including the nitride layer 132A and the oxide layer 134A) extends further to a region where the semiconductor layer 110 is not covered by the first ohmic contact layer 160 and the second ohmic contact layer 170, and the dielectric stack 130A is, for example All regions of the semiconductor layer 110 that are not covered by the first ohmic contact layer 160 and the second ohmic contact layer 170 are covered. Thereby, the dielectric laminate 130A can be used to protect the semiconductor layer 110 in addition to being a gate dielectric layer. Therefore, the present embodiment can omit the arrangement of the passivation layer 180 of FIG. 1 while reducing one process, process cost, and time.
請參照圖3,本實施例的半導體元件300大致相同於圖2的半導體元件200,且相同的元件以相同的標號表示,於此不再贅述這些元件的材質、相對設置關係以及功效。半導體元件300與半導體元件200的主要差異在於,半導體元件300在介電疊層130A上第一電極120以外的區域形成鈍化層180,以提供進一步的保護以及提升信賴性。 Referring to FIG. 3, the semiconductor device 300 of the present embodiment is substantially the same as the semiconductor device 200 of FIG. 2, and the same components are denoted by the same reference numerals, and the materials, relative arrangement, and efficacy of the components are not described herein. The main difference between the semiconductor element 300 and the semiconductor element 200 is that the semiconductor element 300 forms a passivation layer 180 in a region other than the first electrode 120 on the dielectric stack 130A to provide further protection and improve reliability.
請參照圖4,本實施例的半導體元件400大致相同於圖2的半導體元件200,且相同的元件以相同的標號表示,於此不再贅述這些元件的材質、相對設置關係以及功效。半導體元件400與半導體元件200的主要差異在於,半導體元件400的半導體層410更包括過渡層412以及間格層414,其中過渡層412設置在通道層112與緩衝層116之間,而間格層414設置在阻障層114與通道層112之間。過渡層412以及間格層414皆可用以降低因熱膨脹係數與晶格常數差異所累積的應力以及提升磊晶品質。在本實施例中,過渡層412為氮化鋁鎵層,且其化學式表示為AlxGa1-xN,其 中0<x<1。間格層414為氮化鎵層,且其厚度約為1nm。 Referring to FIG. 4, the semiconductor device 400 of the present embodiment is substantially the same as the semiconductor device 200 of FIG. 2, and the same components are denoted by the same reference numerals, and the materials, relative arrangement, and efficacy of the components are not described herein. The main difference between the semiconductor device 400 and the semiconductor device 200 is that the semiconductor layer 410 of the semiconductor device 400 further includes a transition layer 412 and a spacer layer 414, wherein the transition layer 412 is disposed between the channel layer 112 and the buffer layer 116, and the interlayer layer 414 is disposed between the barrier layer 114 and the channel layer 112. Both the transition layer 412 and the interlayer layer 414 can be used to reduce the stress accumulated by the difference in thermal expansion coefficient and lattice constant and to improve the epitaxial quality. In the present embodiment, the transition layer 412 is an aluminum gallium nitride layer, and its chemical formula is represented as Al x Ga 1-x N, where 0 < x < 1. The spacer layer 414 is a gallium nitride layer and has a thickness of about 1 nm.
請參照圖5,本實施例的半導體元件500大致相同於圖2的半導體元件200,且相同的元件以相同的標號表示,於此不再贅述這些元件的材質、相對設置關係以及功效。半導體元件500與半導體元件200的主要差異在於,半導體元件500為雙端子元件,因此,半導體元件500省略圖2中第三電極150以及第二歐姆接觸層170的設置。半導體元件500例如為二極體,但不限於此。在另一實施例中,半導體元件500可依據不同的設計需求而增設其他膜層,如上述鈍化層180、過渡層412以及間格層414。 Referring to FIG. 5, the semiconductor device 500 of the present embodiment is substantially the same as the semiconductor device 200 of FIG. 2, and the same components are denoted by the same reference numerals, and the materials, relative arrangement, and efficacy of the components are not described herein. The main difference between the semiconductor element 500 and the semiconductor element 200 is that the semiconductor element 500 is a two-terminal element, and therefore, the semiconductor element 500 omits the arrangement of the third electrode 150 and the second ohmic contact layer 170 in FIG. The semiconductor element 500 is, for example, a diode, but is not limited thereto. In another embodiment, the semiconductor device 500 may be provided with other film layers, such as the passivation layer 180, the transition layer 412, and the interlayer layer 414, according to different design requirements.
綜上所述,本發明的實施例的半導體元件在半導體層與第一電極之間設置介電疊層。利用介電疊層具有寬能隙、高介電係數及其電負度差大於1的特性,以改善閘極漏電流以及閘極崩潰電壓表現。此外,本發明的實施例以碳化矽基板作為承載基板,以提升磊晶品質,使半導體元件具有理想的電性表現。 In summary, the semiconductor device of the embodiment of the present invention is provided with a dielectric laminate between the semiconductor layer and the first electrode. The dielectric stack has a wide energy gap, a high dielectric constant, and a characteristic that the electronegativity difference is greater than one to improve gate leakage current and gate breakdown voltage performance. In addition, the embodiment of the present invention uses a tantalum carbide substrate as a carrier substrate to improve the epitaxial quality and to make the semiconductor device have an ideal electrical performance.
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.
200‧‧‧半導體元件 200‧‧‧Semiconductor components
110‧‧‧半導體層 110‧‧‧Semiconductor layer
112‧‧‧通道層 112‧‧‧Channel layer
114‧‧‧阻障層 114‧‧‧Barrier layer
116‧‧‧緩衝層 116‧‧‧buffer layer
120‧‧‧第一電極 120‧‧‧first electrode
130A‧‧‧介電疊層 130A‧‧‧Dielectric Lamination
132A‧‧‧氮化物層 132A‧‧‧ nitride layer
134A‧‧‧氧化物層 134A‧‧‧Oxide layer
140‧‧‧第二電極 140‧‧‧second electrode
150‧‧‧第三電極 150‧‧‧third electrode
160‧‧‧第一歐姆接觸層 160‧‧‧First ohmic contact layer
170‧‧‧第二歐姆接觸層 170‧‧‧Second ohmic contact layer
SUB‧‧‧碳化矽基板 SUB‧‧‧Carbide substrate
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW104112678A TWI559538B (en) | 2015-04-21 | 2015-04-21 | Semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW104112678A TWI559538B (en) | 2015-04-21 | 2015-04-21 | Semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201639167A true TW201639167A (en) | 2016-11-01 |
TWI559538B TWI559538B (en) | 2016-11-21 |
Family
ID=57850403
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW104112678A TWI559538B (en) | 2015-04-21 | 2015-04-21 | Semiconductor device |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI559538B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10068986B1 (en) | 2017-10-27 | 2018-09-04 | Vanguard International Semiconductor Corporation | Enhanced-mode high electron mobility transistor and method for forming the same |
TWI637511B (en) * | 2017-09-07 | 2018-10-01 | 世界先進積體電路股份有限公司 | Enhanced-mode high electron mobility transistor and method for forming the same |
US20230064733A1 (en) * | 2021-08-31 | 2023-03-02 | Hestia Power Shanghai Technology Inc. | Silicon carbide semiconductor device and manufacturing method thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI716230B (en) * | 2019-12-20 | 2021-01-11 | 國家中山科學研究院 | Aluminum nitride transistor structure |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100920434B1 (en) * | 2001-07-24 | 2009-10-08 | 크리, 인코포레이티드 | INSULATING GATE AlGaN/GaN HEMT |
US20070138506A1 (en) * | 2003-11-17 | 2007-06-21 | Braddock Walter D | Nitride metal oxide semiconductor integrated transistor devices |
WO2013155396A1 (en) * | 2012-04-12 | 2013-10-17 | The Regents Of The University Of California | Method for heteroepitaxial growth of high channel conductivity and high breakdown voltage nitrogen polar high electron mobility transistors |
TWI488303B (en) * | 2012-12-19 | 2015-06-11 | Ind Tech Res Inst | Enhancement mode gallium nitride based transistor device |
-
2015
- 2015-04-21 TW TW104112678A patent/TWI559538B/en not_active IP Right Cessation
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI637511B (en) * | 2017-09-07 | 2018-10-01 | 世界先進積體電路股份有限公司 | Enhanced-mode high electron mobility transistor and method for forming the same |
US10068986B1 (en) | 2017-10-27 | 2018-09-04 | Vanguard International Semiconductor Corporation | Enhanced-mode high electron mobility transistor and method for forming the same |
US20230064733A1 (en) * | 2021-08-31 | 2023-03-02 | Hestia Power Shanghai Technology Inc. | Silicon carbide semiconductor device and manufacturing method thereof |
US11615959B2 (en) * | 2021-08-31 | 2023-03-28 | Hestia Power Shanghai Technology Inc. | Silicon carbide semiconductor device and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
TWI559538B (en) | 2016-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8895993B2 (en) | Low gate-leakage structure and method for gallium nitride enhancement mode transistor | |
JP5634681B2 (en) | Semiconductor element | |
US8264001B2 (en) | Semiconductor wafer having multi-layered buffer region formed from compound semiconductor materials | |
JP5810293B2 (en) | Nitride semiconductor device | |
US20140110759A1 (en) | Semiconductor device | |
US10784361B2 (en) | Semiconductor device and method for manufacturing the same | |
JP6330148B2 (en) | Semiconductor device | |
JP2010135640A (en) | Field-effect transistor | |
JP2017073506A (en) | Nitride semiconductor device and method for manufacturing the same | |
Zhou et al. | Schottky-contact technology in InAlN/GaN HEMTs for breakdown voltage improvement | |
US11545566B2 (en) | Gallium nitride high electron mobility transistors (HEMTs) having reduced current collapse and power added efficiency enhancement | |
JP6649208B2 (en) | Semiconductor device | |
JP2012204351A (en) | Nitride semiconductor device and method of manufacturing the same | |
JP2007035905A (en) | Nitride semiconductor element | |
TWI559538B (en) | Semiconductor device | |
JP2012227456A (en) | Semiconductor device | |
JP5689245B2 (en) | Nitride semiconductor device | |
JP2016167499A (en) | Semiconductor device | |
TW201709512A (en) | Semiconductor cell | |
JP4908856B2 (en) | Semiconductor device and manufacturing method thereof | |
JP2009272574A (en) | GaN-BASED FIELD-EFFECT TRANSISTOR AND METHOD OF MANUFACTURING THE SAME | |
Han et al. | Normally-Off MOS-HFET on AlGaN/GaN-on-Si (110) Grown by NH 3 MBE | |
JP2007123824A (en) | Electronic device using group-iii nitride based compound semiconductor | |
JP5667136B2 (en) | Nitride-based compound semiconductor device and manufacturing method thereof | |
TW201246538A (en) | Nitride-based heterostructure field effect transistor having high efficiency |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |