TWI637511B - Enhanced-mode high electron mobility transistor and method for forming the same - Google Patents

Enhanced-mode high electron mobility transistor and method for forming the same Download PDF

Info

Publication number
TWI637511B
TWI637511B TW106130602A TW106130602A TWI637511B TW I637511 B TWI637511 B TW I637511B TW 106130602 A TW106130602 A TW 106130602A TW 106130602 A TW106130602 A TW 106130602A TW I637511 B TWI637511 B TW I637511B
Authority
TW
Taiwan
Prior art keywords
iii
semiconductor layer
electron mobility
high electron
mobility transistor
Prior art date
Application number
TW106130602A
Other languages
Chinese (zh)
Other versions
TW201914023A (en
Inventor
邱建維
林鑫成
林永豪
Original Assignee
世界先進積體電路股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 世界先進積體電路股份有限公司 filed Critical 世界先進積體電路股份有限公司
Priority to TW106130602A priority Critical patent/TWI637511B/en
Application granted granted Critical
Publication of TWI637511B publication Critical patent/TWI637511B/en
Publication of TW201914023A publication Critical patent/TW201914023A/en

Links

Abstract

本發明實施例係關於一種增強型高電子遷移率電晶體(HEMT),其包括基板、設置於上述基板上之第一III-V族半導體層、設置於上述第一III-V族半導體層上之第二III-V族半導體層、設置於上述第二III-V族半導體層上之第三III-V族半導體層、自上述第三III-V族半導體層延伸進入上述第二III-V族半導體層及第一III-V族半導體層中以作為隔離區之非晶(amorphous)區以及設置於上述非晶區中之閘極電極。上述第二III-V族半導體層與第三III-V族半導體層包括相異之材料以形成異質接合(heterojunction)。 Embodiments of the present invention relate to an enhanced high electron mobility transistor (HEMT) including a substrate, a first III-V semiconductor layer disposed on the substrate, and a first III-V semiconductor layer disposed on the first III-V semiconductor layer a second III-V semiconductor layer, a third III-V semiconductor layer disposed on the second III-V semiconductor layer, and extending from the third III-V semiconductor layer into the second III-V The group semiconductor layer and the first III-V semiconductor layer have an amorphous region as an isolation region and a gate electrode disposed in the amorphous region. The second III-V semiconductor layer and the third III-V semiconductor layer include a different material to form a heterojunction.

Description

增強型高電子遷移率電晶體及其形成方法 Enhanced high electron mobility transistor and method of forming same

本發明實施例係有關於一種半導體元件,且特別有關於一種增強型高電子遷移率電晶體。 Embodiments of the present invention relate to a semiconductor component, and more particularly to an enhanced high electron mobility transistor.

半導體裝置已廣泛地使用於各種電子產品中,舉例而言,諸如高功率裝置、個人電腦、手機、以及數位相機...等。半導體裝置的製造通常是藉由在半導體基板上依序沉積絕緣層或介電層材料、導電層材料以及半導體層材料,接著使用微影製程圖案化所形成的各種材料層,藉以在此半導體基板之上形成電路零件及組件。 Semiconductor devices have been widely used in various electronic products such as, for example, high power devices, personal computers, mobile phones, and digital cameras. The semiconductor device is usually fabricated by sequentially depositing an insulating layer or a dielectric layer material, a conductive layer material, and a semiconductor layer material on a semiconductor substrate, and then patterning the various material layers formed by using a lithography process, whereby the semiconductor substrate is formed thereon. Circuit parts and components are formed on top.

其中,高電子遷移率電晶體(例如:增強型高電子遷移率電晶體)因具有高輸出電壓、高崩潰電壓等優點而被廣泛應用於高功率裝置中。 Among them, high electron mobility transistors (for example, enhanced high electron mobility transistors) are widely used in high power devices due to their advantages of high output voltage and high breakdown voltage.

然而,現有之增強型高電子遷移率電晶體仍存在一些缺點而非在各方面皆令人滿意。 However, existing enhanced high electron mobility transistors still have some disadvantages and are not satisfactory in all respects.

本發明實施例提供一種增強型高電子遷移率電晶體,包括:基板;第一III-V族半導體層,設置於上述基板上;第二III-V族半導體層,設置於上述第一III-V族半導體層上; 第三III-V族半導體層,設置於上述第二III-V族半導體層上,其中上述第二III-V族半導體層與上述第三III-V族半導體層包括相異之材料以形成異質接合(heterojunction);非晶區,自上述第三III-V族半導體層延伸進入上述第二III-V族半導體層及上述第一III-V族半導體層中以作為隔離區;以及閘極電極,設置於上述非晶區中。 An embodiment of the present invention provides an enhanced high electron mobility transistor, comprising: a substrate; a first III-V semiconductor layer disposed on the substrate; and a second III-V semiconductor layer disposed on the first III- On the V-group semiconductor layer; a third III-V semiconductor layer disposed on the second III-V semiconductor layer, wherein the second III-V semiconductor layer and the third III-V semiconductor layer comprise different materials to form a heterogeneity a junction region extending from the third III-V semiconductor layer into the second III-V semiconductor layer and the first III-V semiconductor layer as an isolation region; and a gate electrode , disposed in the above amorphous region.

本發明實施例亦提供一種增強型高電子遷移率電晶體之形成方法,包括:提供基板;形成第一III-V族半導體層於上述基板上;形成第二III-V族半導體層於上述第一III-V族半導體層上;形成第三III-V族半導體層於上述第二III-V族半導體層上,其中上述第二III-V族半導體層與上述第三III-V族半導體層包括相異之材料以形成異質接合;形成自上述第三III-V族半導體層延伸進入上述第二III-V族半導體層及上述第一III-V族半導體層中之非晶區以作為隔離區;以及形成閘極電極於上述非晶區中。 The embodiment of the present invention also provides a method for forming an enhanced high electron mobility transistor, comprising: providing a substrate; forming a first III-V semiconductor layer on the substrate; forming a second III-V semiconductor layer in the above a III-V semiconductor layer; forming a third III-V semiconductor layer on the second III-V semiconductor layer, wherein the second III-V semiconductor layer and the third III-V semiconductor layer Including a dissimilar material to form a heterojunction; forming an amorphous region extending from the third III-V semiconductor layer into the second III-V semiconductor layer and the first III-V semiconductor layer as isolation a region; and forming a gate electrode in the amorphous region.

100‧‧‧基板 100‧‧‧Substrate

200‧‧‧第一III-V族半導體層 200‧‧‧First III-V semiconductor layer

300‧‧‧第二III-V族半導體層 300‧‧‧Second III-V semiconductor layer

400‧‧‧第三III-V族半導體層 400‧‧‧ Third III-V semiconductor layer

402‧‧‧異質接合 402‧‧‧ Heterojunction

404‧‧‧二維電子雲(2DEG) 404‧‧‧Two-dimensional electronic cloud (2DEG)

500‧‧‧非晶區 500‧‧‧Amorphous area

602‧‧‧源極歐姆接觸 602‧‧‧ source ohmic contact

604‧‧‧汲極歐姆接觸 604‧‧‧Bungan ohmic contact

702‧‧‧閘極電極 702‧‧‧ gate electrode

800‧‧‧閘極介電層 800‧‧‧ gate dielectric layer

900‧‧‧鈍化層 900‧‧‧ Passivation layer

10、10’、10”‧‧‧高電子遷移率電晶體 10, 10', 10"‧‧‧ high electron mobility transistor

以下將配合所附圖式詳述本發明實施例。應注意的是,各種特徵並未按照比例繪製且僅用以說明例示。事實上,元件的尺寸可能經放大或縮小,以清楚地表現出本發明實施例的技術特徵。 The embodiments of the present invention will be described in detail below with reference to the accompanying drawings. It is noted that the various features are not drawn to scale and are merely illustrative. In fact, the dimensions of the elements may be enlarged or reduced to clearly show the technical features of the embodiments of the present invention.

第1-7圖為一系列剖面圖,用以說明本發明實施例之增強型高電子遷移率電晶體之形成方法。 1-7 are a series of cross-sectional views for explaining a method of forming an enhanced high electron mobility transistor according to an embodiment of the present invention.

第8圖繪示出本發明一些實施例之增強型高電子遷移率電晶體。 Figure 8 depicts an enhanced high electron mobility transistor of some embodiments of the invention.

第9圖繪示出本發明一些實施例之增強型高電子遷移率電晶體。 Figure 9 illustrates an enhanced high electron mobility transistor of some embodiments of the present invention.

以下的揭露內容提供許多不同的實施例或範例以實施本案的不同特徵。以下的揭露內容敘述各個構件及其排列方式的特定範例,以簡化說明。當然,這些特定的範例並非用以限定。例如,若是本發明實施例敘述了一第一特徵形成於一第二特徵之上或上方,即表示其可能包含上述第一特徵與上述第二特徵是直接接觸的實施例,亦可能包含了有附加特徵形成於上述第一特徵與上述第二特徵之間,而使上述第一特徵與第二特徵可能未直接接觸的實施例。另外,以下所揭露之不同範例可能重複使用相同的參考符號及/或標記。這些重複係為了簡化與清晰的目的,並非用以限定所討論的不同實施例及/或結構之間有特定的關係。 The following disclosure provides many different embodiments or examples to implement various features of the present invention. The following disclosure sets forth specific examples of various components and their arrangement to simplify the description. Of course, these specific examples are not intended to be limiting. For example, if an embodiment of the present invention describes that a first feature is formed on or above a second feature, that is, it may include an embodiment in which the first feature is in direct contact with the second feature, and may also include Additional features are formed between the first feature and the second feature described above, such that the first feature and the second feature may not be in direct contact with each other. In addition, the different examples disclosed below may reuse the same reference symbols and/or labels. These repetitions are not intended to limit the specific relationship between the various embodiments and/or structures discussed.

下文描述實施例的各種變化。為了方便說明起見,類似的元件標號可用於標示類似的元件。應可理解的是,額外的操作步驟可實施於所述方法之前、之間或之後,且在所述方法的其他實施例中,部分的操作步驟可被取代或省略。 Various variations of the embodiments are described below. For ease of explanation, similar component numbers may be used to identify similar components. It will be appreciated that additional operational steps may be performed before, during or after the method, and that in other embodiments of the method, portions of the operational steps may be substituted or omitted.

本發明實施例之增強型高電子遷移率電晶體之形成方法,係以離子佈植製程將III-V族半導體層之一部分轉換成非晶區,並於上述非晶區中形成閘極電極,而可避免或減少閘極漏電。 The method for forming an enhanced high electron mobility transistor according to an embodiment of the present invention converts a portion of a III-V semiconductor layer into an amorphous region by an ion implantation process, and forms a gate electrode in the amorphous region. It can avoid or reduce gate leakage.

[第一實施例] [First Embodiment]

第1圖繪示出本實施例之起始步驟。首先,提供基 板100。舉例而言,基板100可包括矽基板、碳化矽(SiC)基板、藍寶石(sapphire)基板、多層基板、梯度基板、其他適當之基板或上述之組合。在一些實施例中,基板100亦可包括絕緣層上半導體(semiconductor on insulator,SOI)基板(例如:絕緣層上矽基板或絕緣層上鍺基板),上述絕緣層上半導體基板可包括底板、設置於上述底板上之埋藏氧化層以及設置於上述埋藏氧化層上之半導體層。 Figure 1 illustrates the initial steps of this embodiment. First, provide the base Board 100. For example, substrate 100 can include a germanium substrate, a tantalum carbide (SiC) substrate, a sapphire substrate, a multilayer substrate, a graded substrate, other suitable substrates, or a combination thereof. In some embodiments, the substrate 100 may further include a semiconductor on insulator (SOI) substrate (eg, an insulating layer upper germanium substrate or an insulating layer upper germanium substrate), and the insulating layer upper semiconductor substrate may include a bottom plate and a set a buried oxide layer on the bottom plate and a semiconductor layer disposed on the buried oxide layer.

接著,如第2圖所示,形成第一III-V族半導體層200於基板100之上。在一些實施例中,第一III-V族半導體層200可包括N型的III-V族半導體,其可包括矽、氧、其他適當之摻質或上述之組合。在一些實施例中,上述N型的III-V族半導體可包括N型的二元III-V族半導體(例如:N-GaN)。在一些實施例中,可使用分子束磊晶法(molecular-beam epitaxy,MBE)、化學氣相沉積法(metalorganic chemical vapor deposition,MOCVD)、氫化物氣相磊晶法(hydride vapor phase epitaxy,HVPE)、其他適當之方法或上述之組合形成第一III-V族半導體層200於基板100之上。 Next, as shown in FIG. 2, the first III-V semiconductor layer 200 is formed on the substrate 100. In some embodiments, the first III-V semiconductor layer 200 can include an N-type III-V semiconductor, which can include germanium, oxygen, other suitable dopants, or a combination thereof. In some embodiments, the N-type III-V semiconductor described above may include an N-type binary III-V semiconductor (eg, N-GaN). In some embodiments, molecular-beam epitaxy (MBE), metalorganic chemical vapor deposition (MOCVD), hydride vapor phase epitaxy (HVPE) can be used. And other suitable methods or combinations thereof to form the first III-V semiconductor layer 200 over the substrate 100.

在一些實施例中,在形成第一III-V族半導體層200於基板100之上的步驟之前,可視需求(例如:避免或減少因基板100與第一III-V族半導體層200之間的晶格不匹配(mismatch)所產生之缺陷)先形成緩衝層(未繪示)於基板100上,並於上述緩衝層上形成第一III-V族半導體層200。舉例而言,當第一III-V族半導體層200為N-GaN時,上述緩衝層可包括AlN、AlGaN、其他適當之材料或上述之組合。 In some embodiments, prior to the step of forming the first III-V semiconductor layer 200 over the substrate 100, it may be desirable (eg, to avoid or reduce the relationship between the substrate 100 and the first III-V semiconductor layer 200). A defect generated by lattice mismatch is formed by forming a buffer layer (not shown) on the substrate 100, and forming a first III-V semiconductor layer 200 on the buffer layer. For example, when the first III-V semiconductor layer 200 is N-GaN, the buffer layer may include AlN, AlGaN, other suitable materials, or a combination thereof.

接著,如第3圖所示,形成第二III-V族半導體層300於第一III-V族半導體層200之上。在一些實施例中,第二III-V族半導體層300可包括P型的III-V族半導體,其可包括鎂、其他適當之摻質或上述之組合。在一些實施例中,上述P型的III-V族半導體可包括P型的二元III-V族半導體(例如:P-GaN)。在一些實施例中,可使用分子束磊晶法(molecular-beam epitaxy,MBE)、化學氣相沉積法(metalorganic chemical vapor deposition,MOCVD)、氫化物氣相磊晶法(hydride vapor phase epitaxy,HVPE)、其他適當之方法或上述之組合形成第二III-V族半導體層300於第一III-V族半導體層200之上。 Next, as shown in FIG. 3, a second III-V semiconductor layer 300 is formed over the first III-V semiconductor layer 200. In some embodiments, the second III-V semiconductor layer 300 can include a P-type III-V semiconductor, which can include magnesium, other suitable dopants, or a combination thereof. In some embodiments, the P-type III-V semiconductor described above may include a P-type binary III-V semiconductor (eg, P-GaN). In some embodiments, molecular-beam epitaxy (MBE), metalorganic chemical vapor deposition (MOCVD), hydride vapor phase epitaxy (HVPE) can be used. And other suitable methods or combinations thereof to form the second III-V semiconductor layer 300 over the first III-V semiconductor layer 200.

接著,如第4圖所示,形成第三III-V族半導體層400於第二III-V族半導體層300之上。在一些實施例中,第三III-V族半導體層400可包括未摻雜的III-V族半導體。在一些實施例中,上述未摻雜的III-V族半導體可包括未摻雜的三元III-V族半導體(例如:未摻雜的AlGaN)。在一些實施例中,可使用分子束磊晶法(molecular-beam epitaxy,MBE)、化學氣相沉積法(metalorganic chemical vapor deposition,MOCVD)、氫化物氣相磊晶法(hydride vapor phase epitaxy,HVPE)、其他適當之方法或上述之組合形成第三III-V族半導體層400於第二III-V族半導體層300之上。 Next, as shown in FIG. 4, a third III-V semiconductor layer 400 is formed over the second III-V semiconductor layer 300. In some embodiments, the third III-V semiconductor layer 400 can include an undoped III-V semiconductor. In some embodiments, the undoped III-V semiconductor described above may include an undoped ternary III-V semiconductor (eg, undoped AlGaN). In some embodiments, molecular-beam epitaxy (MBE), metalorganic chemical vapor deposition (MOCVD), hydride vapor phase epitaxy (HVPE) can be used. And other suitable methods or combinations thereof to form the third III-V semiconductor layer 400 over the second III-V semiconductor layer 300.

如第4圖所示,第三III-V族半導體層400係包括與第二III-V族半導體層300相異之材料而形成異質接合402(例如:以AlGaN層400/GaN層300形成異質接合)。在一些實施例中,異質接合402使得二維電子雲(two-dimensional electron gas, 2DEG)404形成於第二III-V族半導體層300中並延著第二III-V族半導體層300及第三III-V族半導體層400之間的界面延伸。 As shown in FIG. 4, the third III-V semiconductor layer 400 includes a material different from the second III-V semiconductor layer 300 to form a heterojunction 402 (for example, forming a heterostructure with the AlGaN layer 400/GaN layer 300). Joint). In some embodiments, the heterojunction 402 causes a two-dimensional electron gas ( 2DEG) 404 is formed in the second III-V semiconductor layer 300 and extends along the interface between the second III-V semiconductor layer 300 and the third III-V semiconductor layer 400.

接著,如第5圖所示,形成自第三III-V族半導體層400延伸進入第二III-V族半導體層300及第一III-V族半導體層200中之非晶區500。舉例而言,非晶區500可作為隔離區,其可用來避免或減少閘極漏電,後文將對此進行說明。此外,如第5圖所示,非晶區500可延伸進入第一III-V族半導體層200中但並未延伸至第一III-V族半導體層200之底表面。 Next, as shown in FIG. 5, an amorphous region 500 extending from the third III-V semiconductor layer 400 into the second III-V semiconductor layer 300 and the first III-V semiconductor layer 200 is formed. For example, the amorphous region 500 can serve as an isolation region that can be used to avoid or reduce gate leakage, as will be described later. Further, as shown in FIG. 5, the amorphous region 500 may extend into the first III-V semiconductor layer 200 but does not extend to the bottom surface of the first III-V semiconductor layer 200.

舉例而言,非晶區500可包括非晶化的(amorphized)III-V族半導體(例如:於本實施例中,非晶區500包括非晶化的GaN及AlGaN)。在一些實施例中,可使用離子佈植製程將重離子(例如:氧離子、其他適當之離子或上述之組合)佈植至第一III-V族半導體層200之一部分、第二III-V族半導體層300之一部分以及第三III-V族半導體層400之一部分中,使得上述第一III-V族半導體層200之部分、第二III-V族半導體層300之部分以及第三III-V族半導體層400之部分從結晶(crystalline)轉換成非晶(amorphous)而形成非晶區500。 For example, the amorphous region 500 may include an amorphized III-V semiconductor (eg, in the present embodiment, the amorphous region 500 includes amorphized GaN and AlGaN). In some embodiments, heavy ions (eg, oxygen ions, other suitable ions, or combinations thereof) can be implanted into one portion of the first III-V semiconductor layer 200, the second III-V, using an ion implantation process. a portion of the group semiconductor layer 300 and a portion of the third III-V semiconductor layer 400 such that a portion of the first III-V semiconductor layer 200, a portion of the second III-V semiconductor layer 300, and a third III- A portion of the group V semiconductor layer 400 is converted from crystalline to amorphous to form an amorphous region 500.

接著,如第6圖所示,形成源極歐姆接觸602與汲極歐姆接觸604。舉例而言,源極歐姆接觸602與汲極歐姆接觸604各自可包括Ti、Al、Au、Pd、其他適當之金屬材料、其合金或上述之組合。在一些實施例中,源極歐姆接觸602係直接接觸第三III-V族半導體層400,而汲極歐姆接觸604則直接接觸第一III-V族半導體層200。舉例而言,可進行一或多個蝕刻製程以於第一III-V族半導體層200、第二III-V族半導體層300以 及第三III-V族半導體層400中形成對應於源極歐姆接觸602及汲極歐姆接觸604之溝槽(未繪示),接著以物理氣相沉積法(例如蒸鍍或濺鍍)、電鍍、原子層沉積法、其他適當之方法或上述之組合填入導電材料於上述溝槽中並經由適當之圖案化製程(例如:微影製程、蝕刻製程或上述之組合)去除多餘的導電材料以形成源極歐姆接觸602及汲極歐姆接觸604。 Next, as shown in FIG. 6, a source ohmic contact 602 and a drain ohmic contact 604 are formed. For example, source ohmic contact 602 and drain ohmic contact 604 can each comprise Ti, Al, Au, Pd, other suitable metallic materials, alloys thereof, or combinations thereof. In some embodiments, source ohmic contact 602 is in direct contact with third III-V semiconductor layer 400, while drain ohmic contact 604 is in direct contact with first III-V semiconductor layer 200. For example, one or more etching processes may be performed to the first III-V semiconductor layer 200 and the second III-V semiconductor layer 300. And forming a trench (not shown) corresponding to the source ohmic contact 602 and the drain ohmic contact 604 in the third III-V semiconductor layer 400, followed by physical vapor deposition (eg, evaporation or sputtering), Electroplating, atomic layer deposition, other suitable methods, or a combination thereof, filling the conductive material in the trench and removing excess conductive material via a suitable patterning process (eg, lithography process, etching process, or a combination thereof) A source ohmic contact 602 and a drain ohmic contact 604 are formed.

接著,如第7圖所示,形成閘極電極702於非晶區500中而形成高電子遷移率電晶體10。舉例而言,閘極電極702可包括金屬材料、多晶矽、其他適當之導電材料或上述之組合。舉例而言,可進行一或多個蝕刻製程以於非晶區500中形成對應於閘極電極702之閘極溝槽(未繪示),接著以物理氣相沉積法(例如蒸鍍或濺鍍)、電鍍、原子層沉積法、其他適當之方法或上述之組合填入導電材料於上述閘極溝槽中並經由適當之圖案化製程(例如:微影製程、蝕刻製程或上述之組合)去除多餘的導電材料以形成閘極電極702。 Next, as shown in FIG. 7, the gate electrode 702 is formed in the amorphous region 500 to form the high electron mobility transistor 10. For example, the gate electrode 702 can comprise a metallic material, a polysilicon, other suitable electrically conductive materials, or a combination thereof. For example, one or more etching processes may be performed to form a gate trench (not shown) corresponding to the gate electrode 702 in the amorphous region 500, followed by physical vapor deposition (eg, evaporation or sputtering). Plating, plating, atomic layer deposition, other suitable methods, or a combination thereof, filling the conductive material in the gate trench and via a suitable patterning process (eg, lithography process, etching process, or a combination thereof) Excess conductive material is removed to form gate electrode 702.

如第7圖所示,於本實施例中,高電子遷移率電晶體10係為增強型高電子遷移率電晶體(亦即,normally-off),其中P型的第二III-V族半導體層300(例如:P型GaN)可充當高電子遷移率電晶體10之通道區。如第7圖所示,高電子遷移率電晶體10之閘極電極702係形成於非晶區500中,由於非晶區500可充當隔離區,因此可避免或降低閘極漏電。 As shown in FIG. 7, in the present embodiment, the high electron mobility transistor 10 is an enhanced high electron mobility transistor (ie, normally-off) in which a P-type second III-V semiconductor is used. Layer 300 (eg, P-type GaN) can serve as a channel region for high electron mobility transistor 10. As shown in Fig. 7, the gate electrode 702 of the high electron mobility transistor 10 is formed in the amorphous region 500, and since the amorphous region 500 can serve as an isolation region, gate leakage can be avoided or reduced.

值得注意的是,於本發明實施例中,高電子遷移率電晶體10之通道長度L可實質上等同於P型的第二III-V族半導體層300之厚度,因此可藉由調控P型的第二III-V族半導體層 300之磊晶厚度而精準地控制高電子遷移率電晶體10之通道長度L。相較之下,於習知技術中高電子遷移率電晶體之通道長度係受到蝕刻製程的影響,因此無法如本案實施例藉由調控沉積條件以精準地控制通道長度L。 It should be noted that in the embodiment of the present invention, the channel length L of the high electron mobility transistor 10 can be substantially equivalent to the thickness of the P-type second III-V semiconductor layer 300, and thus can be controlled by the P-type. Second III-V semiconductor layer The epitaxial thickness of 300 precisely controls the channel length L of the high electron mobility transistor 10. In contrast, in the prior art, the channel length of the high electron mobility transistor is affected by the etching process, so that the channel length L cannot be precisely controlled by adjusting the deposition conditions as in the embodiment of the present invention.

綜合上述,本發明實施例之高電子遷移率電晶體之閘極電極係形成於非晶區中(例如:非晶化的III-V族半導體)而可避免或降低閘極漏電以提高其效能。 In summary, the gate electrode of the high electron mobility transistor of the embodiment of the present invention is formed in an amorphous region (for example, an amorphized III-V semiconductor) to avoid or reduce gate leakage to improve its performance. .

[第二實施例] [Second embodiment]

第8圖繪示出本發明第二實施例之高電子遷移率電晶體10’。如第8圖所示,高電子遷移率電晶體10’之閘極電極702及非晶區500之間更設置有閘極介電層800,而可進一步降低閘極漏電流。舉例而言,閘極介電層800可圍繞閘極電極702(例如:部分地圍繞)。在一些實施例中,閘極介電層800可包括氧化矽、氧化鉿(HfO2)、氧化鉿矽(HfSiO)、氮氧化鉿矽(HfSiON)、氧化鉿鉭(HfTaO)、氧化鉿鈦(HfTiO)、氧化鉿鋯(HfZrO)、氮化矽、氮氧化矽、氧化鋯、氧化鈦、氧化鋁、二氧化鉿-氧化鋁(HfO2-Al2O3)、其他適當之介電材料或上述之組合。在一些實施例中,可使用化學氣相沉積法、原子層沉積法、高密度電漿化學氣相沉積(high density plasma CVD,HDPCVD)、金屬有機化學氣相沉積(metal organic CVD,MOCVD)、電漿強化化學氣相沉積(plasma enhanced CVD,PECVD)、其他適當之方法或上述之組合形成閘極介電層800。舉例而言,可在形成對應於閘極電極702之閘極溝槽的步驟之後,以及填入導電材料於上述閘極溝槽中的步驟之前,於上述閘極溝槽中形成閘極 介電層。 Fig. 8 is a view showing a high electron mobility transistor 10' of a second embodiment of the present invention. As shown in FIG. 8, a gate dielectric layer 800 is further disposed between the gate electrode 702 of the high electron mobility transistor 10' and the amorphous region 500, and the gate leakage current can be further reduced. For example, the gate dielectric layer 800 can surround the gate electrode 702 (eg, partially surrounding). In some embodiments, the gate dielectric layer 800 may include hafnium oxide, hafnium oxide (HfO 2 ), hafnium oxide (HfSiO), hafnium oxynitride (HfSiON), hafnium oxide (HfTaO), niobium oxide ( HfTiO), hafnium zirconium oxide (HfZrO), tantalum nitride, niobium oxynitride, zirconia, titania, alumina, ceria-alumina (HfO 2 -Al 2 O 3 ), other suitable dielectric materials or Combination of the above. In some embodiments, chemical vapor deposition, atomic layer deposition, high density plasma CVD (HDPCVD), metal organic CVD (MOCVD), A gate dielectric layer 800 is formed by plasma enhanced CVD (PECVD), other suitable methods, or a combination thereof. For example, a gate dielectric can be formed in the gate trench after the step of forming a gate trench corresponding to the gate electrode 702 and before the step of filling the conductive material in the gate trench Floor.

[第三實施例] [Third embodiment]

第9圖繪示出本發明第三實施例之高電子遷移率電晶體10”。如第9圖所示,高電子遷移率電晶體10”之第三III-V族半導體層400上更設置有鈍化層900,其可用來保護下方之膜層。舉例而言,鈍化層900可包括SiN、AlN、其他適當之材料或上述之組合。舉例而言,可使用分子束磊晶法(molecular-beam epitaxy,MBE)、化學氣相沉積法(metalorganic chemical vapor deposition,MOCVD)、氫化物氣相磊晶法(hydride vapor phase epitaxy,HVPE)、其他適當之方法或上述之組合形成鈍化層900。在一些實施例中,亦可使用前述之離子佈植製程將重離子佈植至鈍化層900之一部分中,使得上述鈍化層900之部分轉換成非晶區500之一部分。應注意的是,高電子遷移率電晶體10”之閘極電極702與非晶區500之間亦可設置有前述之閘極介電層。 Fig. 9 is a view showing a high electron mobility transistor 10" of the third embodiment of the present invention. As shown in Fig. 9, the third III-V semiconductor layer 400 of the high electron mobility transistor 10" is further disposed. There is a passivation layer 900 that can be used to protect the underlying film layer. For example, passivation layer 900 can comprise SiN, AlN, other suitable materials, or a combination thereof. For example, molecular-beam epitaxy (MBE), metalorganic chemical vapor deposition (MOCVD), hydride vapor phase epitaxy (HVPE), The passivation layer 900 is formed by other suitable methods or combinations thereof. In some embodiments, heavy ions may also be implanted into a portion of the passivation layer 900 using the ion implantation process described above such that a portion of the passivation layer 900 described above is converted to a portion of the amorphous region 500. It should be noted that the gate dielectric layer 702 of the high electron mobility transistor 10" and the amorphous region 500 may also be provided with the aforementioned gate dielectric layer.

綜合上述,本發明實施例之高電子遷移率電晶體之閘極電極係形成於非晶區中(例如:非晶化的III-V族半導體)而可避免或降低閘極漏電以提高其效能。 In summary, the gate electrode of the high electron mobility transistor of the embodiment of the present invention is formed in an amorphous region (for example, an amorphized III-V semiconductor) to avoid or reduce gate leakage to improve its performance. .

前述內文概述了許多實施例的特徵,使本技術領域中具有通常知識者可以從各個方面更佳地了解本發明實施例。本技術領域中具有通常知識者應可理解,且可輕易地以本發明實施例為基礎來設計或修飾其他製程及結構,並以此達到相同的目的及/或達到與在此介紹的實施例等相同之優點。本技術領域中具有通常知識者也應了解這些相等的結構並未背 離本發明實施例的發明精神與範圍。在不背離本發明實施例的發明精神與範圍之前提下,可對本發明實施例進行各種改變、置換或修改。 The foregoing summary of the various embodiments of the invention may be Those skilled in the art will understand that other processes and structures can be readily designed or modified based on the embodiments of the present invention to achieve the same objectives and/or to achieve the embodiments described herein. The same advantages. Those of ordinary skill in the art should also understand that these equal structures are not backed up. The spirit and scope of the invention are derived from the embodiments of the invention. Various changes, permutations, or modifications may be made to the embodiments of the invention without departing from the spirit and scope of the invention.

Claims (15)

一種增強型(enhanced mode)高電子遷移率電晶體(HEMT),包括:一基板;一第一III-V族半導體層,設置於該基板上;一第二III-V族半導體層,設置於該第一III-V族半導體層上;一第三III-V族半導體層,設置於該第二III-V族半導體層上,其中該第二III-V族半導體層與該第三III-V族半導體層包括相異之材料以形成一異質接合(heterojunction);一非晶(amorphous)區,自該第三III-V族半導體層延伸進入該第二III-V族半導體層及該第一III-V族半導體層中以作為一隔離區;一閘極電極,設置於該非晶區中;一源極歐姆接觸,其中該源極歐姆接觸直接接觸該第三III-V族半導體層;以及一汲極歐姆接觸,其中該汲極歐姆接觸直接接觸該第一III-V族半導體層。 An enhanced mode high electron mobility transistor (HEMT) comprising: a substrate; a first III-V semiconductor layer disposed on the substrate; and a second III-V semiconductor layer disposed on the substrate On the first III-V semiconductor layer; a third III-V semiconductor layer disposed on the second III-V semiconductor layer, wherein the second III-V semiconductor layer and the third III- The group V semiconductor layer includes a different material to form a heterojunction; an amorphous region extending from the third III-V semiconductor layer into the second III-V semiconductor layer and the first a III-V semiconductor layer serves as an isolation region; a gate electrode is disposed in the amorphous region; a source ohmic contact, wherein the source ohmic contact directly contacts the third III-V semiconductor layer; And a drain ohmic contact, wherein the drain ohmic contact directly contacts the first III-V semiconductor layer. 如申請專利範圍第1項所述之增強型高電子遷移率電晶體,其中該非晶區包括非晶化的(amorphized)III-V族半導體。 The enhanced high electron mobility transistor of claim 1, wherein the amorphous region comprises an amorphized III-V semiconductor. 如申請專利範圍第1項所述之增強型高電子遷移率電晶體,其中該第一III-V族半導體層包括N型的二元III-V族半導體,該第二III-V族半導體層包括P型的二元III-V族半導體,該第三III-V族半導體層包括未摻雜的三元III-V族半 導體。 The enhanced high electron mobility transistor according to claim 1, wherein the first III-V semiconductor layer comprises an N-type binary III-V semiconductor, and the second III-V semiconductor layer Including a P-type binary III-V semiconductor, the third III-V semiconductor layer includes an undoped ternary III-V half conductor. 如申請專利範圍第3項所述之增強型高電子遷移率電晶體,其中該第一III-V族半導體層包括N型的GaN,該第二III-V族半導體層包括P型的GaN,該第三III-V族半導體層包括未摻雜的AlGaN。 The enhanced high electron mobility transistor according to claim 3, wherein the first III-V semiconductor layer comprises N-type GaN, and the second III-V semiconductor layer comprises P-type GaN, The third III-V semiconductor layer includes undoped AlGaN. 如申請專利範圍第1項所述之增強型高電子遷移率電晶體,其中該非晶區係經由一離子佈植製程所形成。 The enhanced high electron mobility transistor according to claim 1, wherein the amorphous region is formed by an ion implantation process. 如申請專利範圍第1項所述之增強型高電子遷移率電晶體,其中該第二III-V族半導體層包括一通道區,且該通道區之一通道長度實質上相同於該第二III-V族半導體層之一厚度。 The enhanced high electron mobility transistor according to claim 1, wherein the second III-V semiconductor layer comprises a channel region, and one channel length of the channel region is substantially the same as the second III One of the thicknesses of the -V semiconductor layer. 如申請專利範圍第1項所述之增強型高電子遷移率電晶體,更包括:一閘極介電層,設置於該非晶區中,其中該閘極介電層圍繞該閘極電極。 The enhanced high electron mobility transistor according to claim 1, further comprising: a gate dielectric layer disposed in the amorphous region, wherein the gate dielectric layer surrounds the gate electrode. 如申請專利範圍第1項所述之增強型高電子遷移率電晶體,其中該非晶區未延伸至該第一III-V族半導體層之一底表面。 The reinforced high electron mobility transistor according to claim 1, wherein the amorphous region does not extend to a bottom surface of the first III-V semiconductor layer. 一種增強型高電子遷移率電晶體之形成方法,包括:提供一基板;形成一第一III-V族半導體層於該基板上;形成一第二III-V族半導體層於該第一III-V族半導體層上;形成一第三III-V族半導體層於該第二III-V族半導體層上, 其中該第二III-V族半導體層與該第三III-V族半導體層包括相異之材料以形成一異質接合;形成自該第三III-V族半導體層延伸進入該第二III-V族半導體層及該第一III-V族半導體層中之一非晶區以作為一隔離區;以及形成一閘極電極於該非晶區中。 A method for forming an enhanced high electron mobility transistor, comprising: providing a substrate; forming a first III-V semiconductor layer on the substrate; forming a second III-V semiconductor layer on the first III- Forming a third III-V semiconductor layer on the second III-V semiconductor layer, Wherein the second III-V semiconductor layer and the third III-V semiconductor layer comprise a different material to form a heterojunction; forming a third III-V semiconductor layer extending into the second III-V An amorphous region of the group semiconductor layer and the first III-V semiconductor layer serves as an isolation region; and a gate electrode is formed in the amorphous region. 如申請專利範圍第9項所述之增強型高電子遷移率電晶體之形成方法,其中形成該非晶區之步驟包括:進行一非晶化製程以使該第一III-V族半導體層之一部分、該第二III-V族半導體層之一部分及該第三III-V族半導體層之一部分轉換成該非晶區。 The method for forming an enhanced high electron mobility transistor according to claim 9, wherein the forming the amorphous region comprises: performing an amorphization process to make a portion of the first III-V semiconductor layer And converting a portion of the second III-V semiconductor layer and one of the third III-V semiconductor layer into the amorphous region. 如申請專利範圍第10項所述之增強型高電子遷移率電晶體之形成方法,其中該第一III-V族半導體層之該部分未延伸至該第一III-V族半導體層之一底表面。 The method for forming an enhanced high electron mobility transistor according to claim 10, wherein the portion of the first III-V semiconductor layer does not extend to one of the first III-V semiconductor layers surface. 如申請專利範圍第10項所述之增強型高電子遷移率電晶體之形成方法,其中該非晶化製程包括一離子佈植製程。 The method for forming an enhanced high electron mobility transistor according to claim 10, wherein the amorphization process comprises an ion implantation process. 如申請專利範圍第12項所述之增強型高電子遷移率電晶體之形成方法,其中該離子佈植製程包括佈植氧離子至該第一III-V族半導體層之該部分、該第二III-V族半導體層之該部分及該第三III-V族半導體層之該部分。 The method for forming an enhanced high electron mobility transistor according to claim 12, wherein the ion implantation process comprises implanting oxygen ions to the portion of the first III-V semiconductor layer, the second The portion of the III-V semiconductor layer and the portion of the third III-V semiconductor layer. 如申請專利範圍第9項所述之增強型高電子遷移率電晶體之形成方法,其中形成該閘極電極於該非晶區中之步驟包括:進行一蝕刻製程以形成一閘極溝槽於該非晶區中;以及 填充一導電材料於該閘極溝槽中以形成該閘極電極。 The method for forming an enhanced high electron mobility transistor according to claim 9, wherein the step of forming the gate electrode in the amorphous region comprises: performing an etching process to form a gate trench in the non-etching In the crystal zone; A conductive material is filled in the gate trench to form the gate electrode. 如申請專利範圍第14項所述之增強型高電子遷移率電晶體之形成方法,更包括:於填入該導電材料於該閘極溝槽之步驟之前形成一閘極介電層於該閘極溝槽中。 The method for forming an enhanced high electron mobility transistor according to claim 14, further comprising: forming a gate dielectric layer before the step of filling the conductive material in the gate trench In the pole groove.
TW106130602A 2017-09-07 2017-09-07 Enhanced-mode high electron mobility transistor and method for forming the same TWI637511B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106130602A TWI637511B (en) 2017-09-07 2017-09-07 Enhanced-mode high electron mobility transistor and method for forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106130602A TWI637511B (en) 2017-09-07 2017-09-07 Enhanced-mode high electron mobility transistor and method for forming the same

Publications (2)

Publication Number Publication Date
TWI637511B true TWI637511B (en) 2018-10-01
TW201914023A TW201914023A (en) 2019-04-01

Family

ID=64797481

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106130602A TWI637511B (en) 2017-09-07 2017-09-07 Enhanced-mode high electron mobility transistor and method for forming the same

Country Status (1)

Country Link
TW (1) TWI637511B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI724694B (en) * 2019-12-18 2021-04-11 新唐科技股份有限公司 GaN HIGH ELECTRON MOBILITY TRANSISTOR AND METHOD FOR FABRICATING THE SAME

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011007483A1 (en) * 2009-07-14 2011-01-20 日本電気株式会社 Vertical transistor, manufacturing method therefor, and semiconductor device
TW201631767A (en) * 2011-05-16 2016-09-01 Renesas Electronics Corp Field effect transistor and semiconductor device
TW201639167A (en) * 2015-04-21 2016-11-01 環球晶圓股份有限公司 Semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011007483A1 (en) * 2009-07-14 2011-01-20 日本電気株式会社 Vertical transistor, manufacturing method therefor, and semiconductor device
TW201631767A (en) * 2011-05-16 2016-09-01 Renesas Electronics Corp Field effect transistor and semiconductor device
TW201639167A (en) * 2015-04-21 2016-11-01 環球晶圓股份有限公司 Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI724694B (en) * 2019-12-18 2021-04-11 新唐科技股份有限公司 GaN HIGH ELECTRON MOBILITY TRANSISTOR AND METHOD FOR FABRICATING THE SAME

Also Published As

Publication number Publication date
TW201914023A (en) 2019-04-01

Similar Documents

Publication Publication Date Title
US8900939B2 (en) Transistor with enhanced channel charge inducing material layer and threshold voltage control
US9543391B2 (en) High electron mobility transistor having reduced threshold voltage variation and method of manufacturing the same
JP5670427B2 (en) Dopant diffusion modulation in GaN buffer layers
US10109728B2 (en) Transistor structure including a scandium gallium nitride back-barrier layer
TWI487036B (en) Compound semiconductor device and method of manufacturing the same
US20150270371A1 (en) Compound semiconductor device having gallium nitride gate structures
TWI512993B (en) Transistor and method of forming the same and semiconductor device
JP2010045343A (en) Semiconductor device
JP2014236105A (en) Semiconductor device and method of manufacturing the semiconductor device
US10847643B2 (en) Enhancement mode HEMT device and method of forming the same
US11955542B2 (en) Semiconductor device
US20160197203A1 (en) Group III-N lateral schottky barrier diode and method for manufacturing thereof
JP6591169B2 (en) Semiconductor device and manufacturing method thereof
US10276454B2 (en) Semiconductor substrate having amorphous and single crystalline III-V compound semiconductor layers
US20150060861A1 (en) GaN Misfets with Hybrid AI203 As Gate Dielectric
TW200537562A (en) Ⅲ-Nitride device passivation and method
JP2011198837A (en) Semiconductor device and method of manufacturing the same
US9679762B2 (en) Access conductivity enhanced high electron mobility transistor
JP2008091394A (en) Field effect transistor, and its manufacturing method
TW201417153A (en) Compound semiconductor device and method of manufacturing the same
JP2006210725A (en) Semiconductor device
JP2016174140A (en) High electron mobility transistor device and method of manufacturing the same
US20190198384A1 (en) Semiconductor device with two-part insulation structure within non-active region
JP2016058721A (en) Semiconductor device
TWI637511B (en) Enhanced-mode high electron mobility transistor and method for forming the same