TW201638390A - 熱傳導塗層 - Google Patents

熱傳導塗層 Download PDF

Info

Publication number
TW201638390A
TW201638390A TW105105914A TW105105914A TW201638390A TW 201638390 A TW201638390 A TW 201638390A TW 105105914 A TW105105914 A TW 105105914A TW 105105914 A TW105105914 A TW 105105914A TW 201638390 A TW201638390 A TW 201638390A
Authority
TW
Taiwan
Prior art keywords
ald
layer
coating
substrate
conductive coating
Prior art date
Application number
TW105105914A
Other languages
English (en)
Inventor
朱哈娜 寇斯特摩
泰洛 雷托
馬庫 凱利亞
歐西 哈美諾賈
吉瑞 索米納
Original Assignee
皮寇桑公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 皮寇桑公司 filed Critical 皮寇桑公司
Publication of TW201638390A publication Critical patent/TW201638390A/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45529Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations specially adapted for making a layer stack of alternating different compositions or gradient compositions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • C23C28/42Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by the composition of the alternating layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4871Bases, plates or heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

一種用以在一基材表面上提供一熱傳導塗層的方法及一種熱傳導塗層,其中該方法包括藉由ALD沈積至少一層第一材料薄連續層,其中該第一材料具有比該基材低的導熱度。

Description

熱傳導塗層 發明領域
本發明普遍關於一種原子層沈積法(ALD)。更特別的是,本發明係關於藉由ALD提供一種熱傳導塗層。
發明背景
此章節闡明在沒有接納於本文中所描述的典型技藝狀態之任何技術下有用的背景資訊。
電子構件當使用時會產生熱。現代電子裝置的尺寸需要有效率的熱轉移安排,以便轉移來自熱構件的熱及減低過熱的風險。再者,該熱需要以經控制的方式轉移及逸散以避免該電子裝置例如在某些區域中之表面溫度變得太高。亦在電子構件諸如微處理器內及例如在使用例如發光二極體的發光裝置中需要有效率的熱轉移。
當電子裝置的尺寸例如其厚度減少時,需要有效的熱轉移安排。已証明諸如使用熱轉移膠帶之已知的熱轉移及逸散控制安排係小於最理想。
發明概要
根據本發明的第一實施例態樣,有提供一種在一基材表面上提供一熱傳導塗層的方法,其包括:藉由ALD在該基材表面上沈積至少一層第一材料薄連續層,其中該第一材料具有比該基材低的導熱度。
該方法可進一步包括藉由ALD在該第一材料之至少一層上沈積至少一層第二材料薄連續層。
該方法可進一步包括交替沈積該第一及第二材料層。
該第一材料及/或第二材料薄連續層可係非晶相。
該基材可包含高導熱度材料。
該第一及/或第二材料可包含非晶相金屬氧化物。
該第一及/或第二材料可包含選自於包含鋁、鎂、鉿、鈦、鉭及鋯之群的材料。
該第一材料及/或第二材料可選自於包含氧化鋁、氧化鎂、氧化鉿、氧化鈦、氧化鉭及氧化鋯之群。
該塗層厚度可係最高250奈米。
根據本發明的第二實施例態樣,有提供一種熱傳導塗層,其包括:藉由ALD在一基材表面上沈積之至少一層第一材料薄連續層,其中該第一材料具有比該基材低的導熱度。
該塗層可進一步包括藉由ALD沈積在該第一材料的至少一層上之至少一層第二材料薄連續層。
該塗層可進一步包括藉由ALD交替沈積的第一及第二材料層。
該第一材料及/或第二材料薄連續層可係非晶相。
該第一及/或第二材料可包含非晶相金屬氧化物。
該第一及/或第二材料可包含選自於包含鋁、鎂、鉿、鈦、鉭及鋯之群的材料。
該第一材料及/或第二材料可來自包含氧化鋁、氧化鎂、氧化鉿、氧化鈦、氧化鉭及氧化鋯之群。
該塗層厚度可係最高250奈米。
根據本發明的第三實施例態樣,有提供一種熱轉移設備,其包含:一基材;及一本發明的第二實施例態樣之熱傳導塗層。
該基材可包含高導熱度材料。
根據本發明的第四實施例態樣,有提供一種設備,其包含:一熱源;及一本發明的第二實施例態樣之熱傳導塗層;或一本發明的第三實施例態樣之熱轉移設備。
該設備可係電子裝置、照明裝置或微處理器。
根據本發明的第五實施例態樣,有提供一種方法,其包含:將來自電裝置熱源之熱接收進具有至少一層第一材料薄連續層之ALD層中;及在該ALD層中,藉由聲子將所接收的熱轉移至遠離該熱源。
該ALD層可包含本發明的第二實施例態樣之熱傳導塗層。
該ALD層可由本發明的第一實施例態樣之方法提供。
根據本發明的第六實施例態樣,有提供一種電子設備,其包含:一熱源;及一具有至少一層第一材料薄連續層之ALD層,該設備係經組裝以將從熱源接收進ALD層中的熱在ALD層中藉由聲子轉移至遠離該熱源。
該ALD層可包含本發明的第二實施例態樣之熱傳導塗層。
該ALD層可由本發明的第一實施例態樣之方法提供。
根據本發明的第七實施例態樣,有提供一種用於本發明的第六實施例態樣之電子設備的熱轉移塗層,其包含一基材及一沈積在該基材上的ALD層,該ALD層係由本發明的第二實施例態樣之ALD層提供。
根據本發明的第八實施例態樣,有提供一種提供本發明的第七實施例態樣之熱轉移塗層的方法,其包括將該ALD層沈積在該基材上。
前述已經闡明本發明之不同的非約束性實施例態樣及具體實例。上述具體實例全然使用來解釋所選擇可使用在本發明之執行的態樣或步驟。某些具體實例可僅參考本發明的某些實施例態樣而顯現。應瞭解的是,相應具體實例可同樣地應用至其它實施例態樣。可形成該等具體實例之任何適當組合。
10‧‧‧前蓋
20‧‧‧基材
30‧‧‧背蓋
40‧‧‧電路板
50‧‧‧電子構件
60‧‧‧熱傳導塗層
70‧‧‧熱傳導塗層
80a-h‧‧‧第一材料層
90a-h‧‧‧第二材料層
500,510 520‧‧‧步驟
現在,將僅藉由實施例伴隨著參照伴隨的圖形來說明本發明,其中:圖1顯示出根據本發明的實施例具體實例之裝置及熱傳導塗層的圖式圖;圖2顯示出根據本發明的實施例具體實例之裝置及熱傳導塗層的圖式放大圖;圖3顯示出根據本發明的實施例具體實例之裝置及熱傳導塗層的圖式放大圖及其操作原理;圖4顯示出根據本發明的實施例具體實例之熱傳導塗層的圖式圖;及圖5顯示出根據本發明的實施例具體實例之方法。
較佳實施例之詳細說明
在下列描述中使用原子層沈積(ALD)技術作為 實施例。ALD生長機制的基礎已由熟練人士知曉。ALD係一種特別的化學沈積方法,其係以將至少二種反應性前驅物物種相繼引進至至少一個基材為基底。藉由ALD生長的薄膜緻密、無針孔及具有均勻的厚度。
典型上,會讓該至少一個基材在反應容器中曝露至暫時分開的前驅物脈衝,藉由相繼自飽和的表面反應將材料沈積在該基材表面上。在本申請案的上下文中,用語”ALD”包含全部可應用之ALD基底的技術及任何同等或緊密相關的技術,諸如例如MLD(分子層沈積)技術。
基本的ALD沈積循環由四個相繼步驟組成:脈衝A、清洗A、脈衝B及清洗B。脈衝A由第一前驅物蒸氣組成及脈衝B係另一種前驅物蒸氣。典型在清洗A及清洗B期間使用無活性氣體及真空泵清洗來自反應空間的氣體反應副產物及殘餘反應物分子。沈積程序包含至少一個沈積循環。重覆該沈積循環直到該沈積程序已產生具有想要的厚度之薄膜或塗層。該沈積循環亦可更複雜。例如,該循環可包括三或更多個由清洗步驟分開的反應物蒸氣脈衝。這些沈積循環全部藉由邏輯單元或微處理器控制形成一限時的沈積程序。
本發明探索藉由在表面上使用經ALD施加的奈米層提供熱傳導塗層來改良現存的熱轉移解決方法。
圖1顯示出根據本發明的實施例具體實例之裝置及熱傳導塗層的圖式圖。在實施例具體實例中,該電子裝置包括例如行動電話、智慧型手機、桌上型電腦或電子書 閱讀器。圖1顯示出一電路板40,即,印刷線路板,在其上裝配或安裝一電子構件50。在使用時,該電子構件50會產生熱,需要將其從由電子構件50所產生的熱點處轉移出。在實施例具體實例中,該電子構件係例如微處理器。圖1進一步顯示出電子裝置的背蓋30,諸如聚合物蓋;及電子裝置的前蓋10。在實施例具體實例中,該前蓋10包含一窗口組件,例如覆蓋玻璃的觸控式螢幕。
圖1進一步顯示出一包含高熱容量基材材料諸如鎂的基材20。該基材20係塗佈一熱傳導塗層60。該熱傳導塗層60係使用ALD沈積在該基材上。在實施例具體實例中,該基材20係在其二邊或全部邊上進行塗佈,及此外,圖1顯示出一使用ALD沈積在基材上的進一步熱傳導塗層70。在具體實例中,該具有熱傳導塗層的基材20係使用在不同型式的裝置諸如照明裝置中,以有效率地將熱從例如由使用作為光源的發光二極體所形成之熱點轉移出。在又進一步實施例具體實例中,不需要個別的基材及該裝置需要熱轉移的部分作用為該基材20,即,該熱傳導塗層60係藉由ALD直接沈積在該裝置需要熱轉移的部分上,例如,在相同電路板上之微處理器構件處。在實施例具體實例中,熱係從熱點轉移出進入熱庫中。
圖2顯示出根據本發明的實施例具體實例之裝置及熱傳導塗層的圖式放大圖。其已顯示出在使用時產生熱的電子構件50,和具有高熱容量之基材20及使用ALD沈積在該基材表面上的熱傳導塗層60。
圖3顯示出根據本發明的實施例具體實例之裝置及熱傳導塗層的圖式放大圖及其操作原理。由該電子構件50所產生的熱係轉移至熱傳導塗層60。該熱傳導塗層60快速轉移來自由電子構件50所產生的熱點之熱及同時將該熱轉移至具有高熱容量的基材20。此外,所產生的熱係以經控制的方式均勻地分佈及逸散。該熱轉移在該熱傳導塗層的縱方向上,即,在與該塗層及基材表面的層平行之方向上特別有效率。在實施例具體實例中,該熱傳導塗層60之層具保形性。
在奈米層諸如熱傳導塗層60中,該熱轉移至少部分係藉由在結晶晶格中的振動已知為聲子進行。該薄膜諸如熱傳導塗層60的熱轉移性質係依材料,即,該塗層的構成物或不同層及亦依該層的形態及界面特徵而定。已經有理論指出,對高導熱度,即,在奈米層中快速及有效率的熱轉移來說,聲子在熱傳導塗層中的傳播應該未受阻礙及聲子彼此之干擾應該經最小化。此係與熱傳導塗層60的結構相依。該材料例如熱傳導塗層的熱轉移及藉此導熱度可係大約與聲子在該材料中的平均自由徑相依。平均自由徑受在材料中的缺陷影響,例如結晶或在晶格結構中的晶界,其定義出該材料的導熱度上限。
本發明家已建立出以ALD施用之熱傳導塗層60提供優良的導熱度,及此外,其能從需要轉移出及逸散熱的熱點有效率地熱轉移。本發明家已建立出特別在該塗層的平面,即,與該塗層的層平行中之熱轉移係有效率的。 本發明家已建立出藉由ALD沈積的薄連續層,即,實質上無缺陷及界限的層在平面熱轉移上提供效率,及進一步建立出一包含隨後藉由ALD沈積的不同材料層之所謂的奈米積層在平面熱轉移上進一步提供效率。
在實施例具體實例中,該熱傳導塗層60包含至少一層以ALD沈積的單一或第一材料薄連續層,在實施例具體實例中,甚至單層。在進一步實施例具體實例中,該熱傳導塗層包含一些以ALD沈積的單一材料例如Al2O3之單層,以便該塗層厚度例如最高約250奈米或甚至最高約500奈米。在實施例具體實例中,該第一材料具有比基材或在其上已沈積的表面低之導熱度,但是因為該薄連續塗層提供比未塗佈的基材更有效率的熱轉移。在實施例具體實例中,該薄連續塗層係非晶相。
但是,以ALD沈積的單一材料塗層雖然具導熱性並非總是最有效。在又進一步實施例具體實例中,該熱傳導塗層60包含以ALD沈積的奈米積層,即,隨後二或更多種不同材料的薄連續層,以便該奈米積層塗層的厚度係例如最高約250奈米或甚至最高約500奈米。在實施例具體實例中,該第一及/或第二材料的薄連續塗層係非晶相。
可小心地控制藉由ALD沈積的塗層性質。所沈積的塗層具有高均勻性及提供該薄連續層保形性。可將該材料的結構控制成非晶相,即,無結晶特徵。在實施例具體實例中,該藉由ALD沈積之連續薄膜的性質亦係非晶相,其提供好的導熱度。
在較佳的具體實例中,該熱傳導塗層包含至少第一材料的第一層及至少第二材料的第二層。在實施例具體實例中,該第一及第二材料二者具有比基材或在其上已沈積塗層的表面低之導熱度,但是由於聲子熱轉移,其仍然比未塗佈的表面提供更有效率的熱轉移。在又進一步實施例具體實例中,該熱傳導塗層包含一奈米積層結構,即,在該等第二材料層間夾有至少第一材料的第一層。隨著此奈米積層,實現增加的熱轉移。因為該層界限縮小了將造成熱轉移容量減少之相交平面轉移,該奈米積層的層在平面聲子熱轉移上提供效率。在實施例具體實例中,藉由ALD沈積具有層厚度例如2及13奈米的每種材料及例如8層,以產生一塗層厚度125奈米之奈米積層。在實施例具體實例中,該熱傳導塗層60包含非晶相金屬氧化物材料。合適於熱傳導塗層的材料包含例如氧化鋁、氧化鋅、氧化鎂、氧化鉿、氧化鉭、氧化鋯、氧化鈦及其組合。
圖4顯示出根據本發明的實施例具體實例之熱傳導塗層60的圖式圖。圖4顯示出包含第一材料層80a-h及第二材料層90a-h之奈米積層結構。在實施例具體實例中,該第一及第二材料二者的層數目相同,但是容易地設想出每種材料的層數目係不同。在下列表中顯示出第一及第二材料及層80a-h及90a-h厚度之實施例。
下表顯示出以根據本發明的實施例具體實例之熱傳導塗層進行的測試結果。該表顯示出所使用的塗層材料及厚度之某些實施例及在轉移出熱的熱點處,即,在熱源處測量之所產生的溫度。要注意的是,以ALD沈積第一及在實施例具體實例中第二材料塗層將增加從熱點轉移出熱,因此降低在熱點處的溫度。
圖5顯示出根據本發明的實施例具體實例之方法。在步驟500處,使用ALD方法將第一材料層沈積在例如基材的表面上。該ALD方法已由熟練人士知曉。在步驟510處,使用ALD方法將第二材料層沈積在該第一材料層上。在步驟520處,若使用分別的基材時,將經塗佈的基材組合至使用其之裝置。如需要奈米積層結構時,若必要時,重覆步驟500及510。
不欲限制專利申請範圍的範圍及詮釋,下列列出於本文中所揭示的一或多個實施例具體實例之某些工藝效應:本發明的工藝效應係提供一種具有增加的熱傳導之熱傳導塗層。另一種工藝效應為提供一種來自電子裝置之經控制的熱分佈及逸散。
應注意的是,在前述中所討論的某些功能或方法步驟可以不同順序及/或彼此同時發生地進行。再者,可選擇性或可結合上述一或多種功能或方法步驟。
前述說明已藉由本發明的特別執行及具體實例之非為限制的實施例提供一由本發明家目前所預計用以進行本發明的最好模式之完整及資訊性說明。但是要由熟悉此技藝者清楚的是,本發明不限於上述顯現的具體實例之細節,而是可在其它具體實例中使用沒有偏離本發明的特徵之同等工具執行。
再者,可使用本發明上述揭示的具體實例之某些特徵獲利而沒有相應使用其它特徵。就此而論,前述說明應該全然視為本發明的原理之闡明而非為限制其。因此, 本發明之範圍僅由所附加的專利申請範圍限制。
20‧‧‧基材
50‧‧‧電子構件
60‧‧‧熱傳導塗層

Claims (29)

  1. 一種用以在一基材表面上提供一熱傳導塗層的方法,其包括:藉由ALD在該基材表面上沈積至少一層第一材料薄連續層,其中該第一材料具有比該基材低的導熱度。
  2. 如請求項1之方法,更包括藉由ALD將至少一層第二材料薄連續層沈積在該第一材料的至少一層上。
  3. 如請求項1或2之方法,更包括沈積該第一及該第二材料交替層。
  4. 如請求項1或2之方法,其中該第一材料及/或該第二材料之薄連續層係非晶相。
  5. 如請求項1或2之方法,其中該基材包含高導熱度材料。
  6. 如請求項1或2之方法,其中該第一及/或該第二材料包含非晶相金屬氧化物。
  7. 如請求項1或2之方法,其中該第一及/或該第二材料包括選自於包含鋁、鎂、鉿、鈦、鉭及鋯之群的材料。
  8. 如請求項1或2之方法,其中該第一材料及/或該第二材料係選自於包含氧化鋁、氧化鎂、氧化鉿、氧化鈦、氧化鉭及氧化鋯之群。
  9. 如請求項1或2之方法,其中該塗層之厚度上達250奈米。
  10. 一種熱傳導塗層,其包含:至少一層藉由ALD沈積在一基材表面上之第一材 料薄連續層,其中該第一材料具有比該基材低的導熱度。
  11. 如請求項10之塗層,更包括至少一層藉由ALD沈積在該第一材料的至少一層上之第二材料薄連續層。
  12. 如請求項1或2之塗層,更包括一藉由ALD沈積的該第一與該第二材料交替層。
  13. 如請求項1或2之塗層,其中該第一材料及/或該第二材料薄連續層係非晶相。
  14. 如請求項1或2之塗層,其中該第一及/或該第二材料包含非晶相金屬氧化物。
  15. 如請求項1或2之塗層,其中該第一及/或該第二材料包括選自於包含鋁、鎂、鉿、鈦、鉭及鋯之群的材料。
  16. 如請求項1或2之塗層,其中該第一材料及/或該第二材料係來自包含氧化鋁、氧化鎂、氧化鉿、氧化鈦、氧化鉭及氧化鋯之群。
  17. 如請求項1或2之塗層,其中該塗層厚度上達250奈米。
  18. 一種熱轉移設備,其包含:一基材;及一如請求項10-17中之任一項的熱傳導塗層。
  19. 如請求項18之熱轉移設備,其中該基材包含高導熱度材料。
  20. 一種設備,其包含:一熱源;及一如請求項10-17中之任一項的熱傳導塗層;或 一如請求項18-19中之任一項的熱轉移設備。
  21. 如請求項20之設備,其中該設備係電子裝置、照明裝置或微處理器。
  22. 一種方法,其包括:將來自電裝置之熱源之熱接收進一具有至少一層第一材料薄連續層之ALD層中;及將所接收的熱在該ALD層中藉由聲子轉移至遠離該熱源。
  23. 如請求項22之方法,其中該ALD層包含一如請求項10至17中之任一項的熱傳導塗層。
  24. 如請求項22或23之方法,其中該ALD層係以如請求項1至9中之任一項的方法提供。
  25. 一種電子設備,其包含:一熱源;及一具有至少一層第一材料薄連續層之ALD層,該設備係經配置以將從該熱源接收進該ALD層中的熱在ALD層中藉由聲子轉移至遠離該熱源。
  26. 如請求項25之電子設備,其中該ALD層包含一如請求項10至17中之任一項的熱傳導塗層。
  27. 如請求項25或26之電子設備,其中該ALD層係以如請求項1至9中之任一項的方法提供。
  28. 一種用於如請求項25的電子設備之熱轉移塗層,其包含一基材及一沈積在該基材上的ALD層,該ALD層提供如請求項10-17中之任一項的ALD層。
  29. 一種提供如請求項28之熱轉移塗層的方法,其包括將該ALD層沈積在該基材上。
TW105105914A 2015-03-17 2016-02-26 熱傳導塗層 TW201638390A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/FI2015/050177 WO2016146881A1 (en) 2015-03-17 2015-03-17 Heat conductive ald-coating in an electrical device

Publications (1)

Publication Number Publication Date
TW201638390A true TW201638390A (zh) 2016-11-01

Family

ID=56918446

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105105914A TW201638390A (zh) 2015-03-17 2016-02-26 熱傳導塗層

Country Status (6)

Country Link
US (1) US20180116045A1 (zh)
EP (1) EP3271499A4 (zh)
KR (1) KR20170128565A (zh)
CN (1) CN107429395A (zh)
TW (1) TW201638390A (zh)
WO (1) WO2016146881A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020226985A1 (en) 2019-05-03 2020-11-12 E Ink Corporation Layered structure with high dielectric constant for use with active matrix backplanes
KR102298085B1 (ko) * 2019-08-14 2021-09-03 세메스 주식회사 반도체 기판 및 기판 열처리 방법

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6713177B2 (en) * 2000-06-21 2004-03-30 Regents Of The University Of Colorado Insulating and functionalizing fine metal-containing particles with conformal ultra-thin films
US6660660B2 (en) * 2000-10-10 2003-12-09 Asm International, Nv. Methods for making a dielectric stack in an integrated circuit
EP1412175B1 (en) * 2001-07-18 2009-07-08 The Regents of the University of Colorado Insulating and functionalizing fine metal-containing particles with comformal ultra-thin films
US20070122622A1 (en) * 2002-04-23 2007-05-31 Freedman Philip D Electronic module with thermal dissipating surface
US7067407B2 (en) * 2003-08-04 2006-06-27 Asm International, N.V. Method of growing electrical conductors
US7405143B2 (en) * 2004-03-25 2008-07-29 Asm International N.V. Method for fabricating a seed layer
KR100653705B1 (ko) * 2004-10-13 2006-12-04 삼성전자주식회사 원자층증착법을 이용한 박막 형성방법
US20090035946A1 (en) * 2007-07-31 2009-02-05 Asm International N.V. In situ deposition of different metal-containing films using cyclopentadienyl metal precursors
US9095869B2 (en) * 2011-04-07 2015-08-04 Picosun Oy Atomic layer deposition with plasma source
US9576930B2 (en) * 2013-11-08 2017-02-21 Taiwan Semiconductor Manufacturing Co., Ltd. Thermally conductive structure for heat dissipation in semiconductor packages

Also Published As

Publication number Publication date
EP3271499A1 (en) 2018-01-24
WO2016146881A1 (en) 2016-09-22
US20180116045A1 (en) 2018-04-26
CN107429395A (zh) 2017-12-01
EP3271499A4 (en) 2018-12-19
KR20170128565A (ko) 2017-11-22

Similar Documents

Publication Publication Date Title
JP6987646B2 (ja) 原子層堆積による多層耐プラズマ性コーティング
JP2020068382A (ja) プレクリーンおよびエッチング装置のための高温コーティングならびに関連する方法
TWI398213B (zh) 熱介面材料組合件、包含此種組合件的裝置及製造此種組合件的方法
US10039209B1 (en) Structure for transferring heat in devices
WO2013149420A1 (zh) 一种高导热金属箔胶带
TW201638390A (zh) 熱傳導塗層
JP2011233865A (ja) 有機金属化学気相堆積装置
KR20080109100A (ko) 성막 처리 장치 및 성막 처리 방법
EP3767005A1 (en) Method of forming transition metal dichalcogenide thin film
US20170107619A1 (en) Thermal chemical vapor deposition system and operating method thereof
CN107072074B (zh) 一种用于印刷电路板pcb的散热孔的加工方法
KR20150138232A (ko) 가스 배리어성 필름 및 그 제조 방법
JP2009115867A (ja) 反射フィルムの製造方法及び反射フィルム
US9103021B2 (en) Amorphous diamond-like carbon coatings for increasing the thermal conductivity of structural frames in portable electronic devices
US20170370884A1 (en) Quartz crystal microbalance sensor for deposition monitoring
JP2017520675A (ja) ナノチューブを堆積するための装置
JP2012104703A5 (ja) 半導体装置の製造方法、半導体装置、基板処理装置
CN106801222B (zh) 一种晶片托盘及mocvd系统
TWI628073B (zh) 超穎材料及使用原子層沉積形成超穎材料之方法
KR20210008913A (ko) 가이드 프레임이 일체화된 서셉터
TWI331635B (en) Substrate holder
CN208776832U (zh) 传送装置
KR20210002779A (ko) 가이드 프레임이 일체화된 서셉터
KR20200072686A (ko) 기판 처리 장치의 서셉터 및 기판 처리 장치
US20150047559A1 (en) Susceptor and wafer holder