TW201625952A - 在電容感測器中的連續自我測試 - Google Patents

在電容感測器中的連續自我測試 Download PDF

Info

Publication number
TW201625952A
TW201625952A TW104136836A TW104136836A TW201625952A TW 201625952 A TW201625952 A TW 201625952A TW 104136836 A TW104136836 A TW 104136836A TW 104136836 A TW104136836 A TW 104136836A TW 201625952 A TW201625952 A TW 201625952A
Authority
TW
Taiwan
Prior art keywords
self
tested
inertial
testing
capacitive
Prior art date
Application number
TW104136836A
Other languages
English (en)
Other versions
TWI611189B (zh
Inventor
拉瑟 艾爾托能
提姆 薩羅
Original Assignee
村田製作所股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 村田製作所股份有限公司 filed Critical 村田製作所股份有限公司
Publication of TW201625952A publication Critical patent/TW201625952A/zh
Application granted granted Critical
Publication of TWI611189B publication Critical patent/TWI611189B/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P21/00Testing or calibrating of apparatus or devices covered by the preceding groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/02Microstructural systems; Auxiliary parts of microstructural devices or systems containing distinct electrical or optical devices of particular relevance for their function, e.g. microelectro-mechanical systems [MEMS]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5719Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using planar vibrating masses driven in a translation vibration along an axis
    • G01C19/5733Structural details or topology
    • G01C19/5755Structural details or topology the devices having a single sensing mass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D18/00Testing or calibrating apparatus or arrangements provided for in groups G01D1/00 - G01D15/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/24Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/125Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/3181Functional testing
    • G01R31/3187Built-in tests
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D2218/00Indexing scheme relating to details of testing or calibration
    • G01D2218/10Testing of sensors or measuring arrangements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Gyroscopes (AREA)
  • Pressure Sensors (AREA)

Abstract

一種電容式感測器裝置係包含電容性元件以用於偵測至少兩個慣性的通道。該慣性的通道中的至少一個係包括至少兩個具有不同的基本頻率之自我測試的音調。在該至少兩個慣性的通道中之慣性的信號是藉由因為轉子質量的移動所造成在該些電容性元件中的電容的變化所引起的。自我測試的音調係在一自我測試的控制模組的控制下被饋入到至少一電容性元件中,並且該至少兩個慣性的通道係在時間上加以多工處理,以容許該些自我測試的音調能夠在該電容式感測器裝置的正常操作期間的饋送。在該些慣性的通道中的信號係被處理以用於抽取對應於該些自我測試的音調之自我測試的信號,並且該些自我測試的信號係為了自我測試的目的而被分析。若預先定義的自我測試的信號組的多個連續的樣本指出具有相同的極性的錯誤時,則警報係被觸發。

Description

在電容感測器中的連續自我測試
本發明係有關於微機電裝置,並且明確地說是有關於一種具有自我測試功能之慣性感測器以及一種用於一慣性感測器之自我測試的方法。
微機電系統或是MEMS可被定義為微尺度的機械及機電式系統,其中至少某些元件係具有一機械功能。MEMS結構可被應用來快速且精確地偵測在物理性質上的非常小的變化。
電容式微機電感測器已經成為是許多消費者裝置的部分,並且它們也被使用在例如是電子穩定控制(ESC)的各種嚴格的安全性應用中。尤其在安全相關的應用中,識別在電容式感測器的機械或電性信號路徑中的可能的失效是重要的。
一電容式感測器係包括至少一微機電元件,其係包括至少一電容性元件。該電容性元件係包括一轉子質量(又稱質量塊、或是就簡稱為轉子)以及一定子,當該轉子質量響應於加速而移動時,該定子係維持靜止的。該轉子質量在一參考系統中的位置係藉由偵測信號電容來加以量測。一附接至或是被納入到該轉子質量的電極以及一附接至或是被納入到該定子的電極係形成一電容。當該轉子質量相對於該定子或是慣性參考座標移 動時,在該些電極之間的距離上的變化係被轉換成為在電容上的變化。單一可變電容器係被產生在該定子的一靜態電極與該轉子質量(轉子)的一移動的電極之間。該單一可變電容器的總電容係包含一藉由該電容器配置所界定的靜態電容、以及一產生自該轉子質量響應於外部的加速的運動之信號電容。一電容性元件可包括超過一可變電容器,例如其可被形成為一電容橋或是一電容半橋。
在MEMS感測器中的電容式換能器通常是利用兩個電容器來應用差動偵測。對於差動偵測而言,響應於一偵測到的活動,一電容器對的一第一電容器係產生一第一輸入信號,並且該電容器對的一第二電容器係產生一第二輸入信號。該第一輸入信號以及第二輸入信號可以平行加以偵測,並且為了增高的精確性而組合地加以處理。
一種適合用於此種差動偵測之電路的一個例子是自平衡電容器橋(SBB),其中該電容式換能器係由在每一側的具有一固定的電極之一可移動的板所組成。該三個電極係一起形成兩個電容器,該SBB係將該兩個電容器的電荷保持平衡的。該板的偏轉係相關在固定的電子電路之間的距離而被正規化。該自平衡電容器橋的正規化係提供一線性且穩定的轉換函數,但是較高的信號對雜訊的位準是許多現代的應用所需的,尤其是具有從進一步小型化的MEMS裝置所達到之減小的信號大小之應用。
內建的功能診斷是一種確保一裝置可以快速地識別其本身錯誤的操作之方式。辨識裝置之錯誤的操作或失效對於被使用於重要的功能之裝置而言尤其是重要的。具有此種重要的功能之裝置的一個例子是在汽車構件中的加速度計。連續的自我測試係提供一種監測一裝置的操作之 可靠的方式,並且提供重要的內部變化之大量的資訊。
當超過一信號的處理是所需的時候,多工處理是一種減少ASIC電路面積之已知的方法。其係容許利用至少部分相同的電路於處理多個信號。
US 6,629,448係提出一種其中正常及自我測試的間隔是交替的系統。當該裝置是在一自我測試的模式時,自我測試的偏壓激勵以及偵測的相位是交替的。在自我測試的模式中,一DC信號係被使用在用於激勵的偏壓相位中,並且在偵測相位中,該電容係利用一AC信號來加以偵測。然而,該DC測試信號並無法在正常的操作期間被使用,因為在自我測試的響應與真正的慣性加速之間並沒有區別的方法。在正常的操作模式中,該裝置係使用零偏壓的DC電壓。
專利申請公開案US 2009/0241634係提出一種具有連續的自我測試之感測器系統。在此,具有明顯高於正常的操作信號頻帶的頻率之單一測試頻率係被饋送至該裝置,並且一響應係在正常的操作期間藉由一測試響應比較器在該裝置的輸出中來加以偵測。然而,此解決方案需要寬頻帶的放大器以及一額外的解調變級,此係使得該實施方式變為消耗功率而且複雜的。
本發明之一目的是提供一本地的自我測試的功能給一電容式感測器,其係避免或是至少減輕以上的挑戰中的至少一個。本發明的此目標係利用根據獨立項申請專利範圍之特徵部分的一種電容式感測器以及一種自我測試的方法來加以達成。本發明的較佳實施例係被揭示在附屬項 申請專利範圍中。
本發明是根據提供一連續的自我測試的功能給一種多工處理的電容式感測器的概念。
本發明的實施例係具有自我測試的功能可以是連續的優點,並且其係造成最小的寄生效應、以及尤其是在該電路的類比部分中之最小的額外的面積消耗。
根據一第一特點,一種連續的自我測試的電容式感測器裝置係被提出。該感測器裝置係包括至少兩個被配置以偵測至少兩個慣性的通道的電容性元件。該至少兩個慣性的通道中的至少一個係包括至少兩個具有不同的基本頻率之自我測試的音調、以及被配置以在時間上多工處理該至少兩個慣性的通道之多工器電路。
根據一第二特點,該感測器裝置進一步包括自我測試的控制電路,其係被配置以控制該至少兩個自我測試的音調進入到該感測器裝置的該至少一電容性元件的饋送;讀出電路,其係被配置以提供有關該至少兩個多工的慣性的通道的每一個之電壓讀出資訊;解多工器電路,其係被配置以解多工該至少兩個多工的慣性的通道成為至少兩個平行的慣性的輸出通道;以及自我測試的處理電路,其係被配置以處理該至少兩個慣性的輸出通道以用於抽取對應於該至少兩個自我測試的音調之至少兩個自我測試的信號。
根據一第三特點,該感測器裝置進一步包括自我測試的監測電路,其係被配置以持續地分析該至少兩個自我測試的信號。該自我測試的監測電路係在偵測到一錯誤狀況時觸發一警報。
根據一第四特點,該至少兩個電容性元件係包括電容式半橋電路。該電容式半橋電路係包括一共同的轉子連接以及個別的轉子連接中的任一種。
根據一第五特點,該感測器裝置進一步包括至少一類比至數位轉換器電路。該至少兩個慣性的輸出通道係包括數位信號,並且該類比至數位轉換器電路係被配置以執行以下的任一個:在解多工該至少兩個慣性的通道以用於產生該至少兩個慣性的輸出通道之前,將該至少兩個慣性的通道轉換成為數位信號;以及在該至少兩個慣性的輸出通道已經被解多工之後,將該至少兩個慣性的輸出通道轉換成為數位信號。
根據一第六特點,該感測器裝置係包括用於饋送每一個自我測試的音調作為在時間上受控制的偏壓電壓脈衝至一所選的電容性元件的至少一定子之電路。該自我測試的音調被饋送至所選的電容性元件是只有在該個別的電容性元件未正被該讀出電路偵測時。
根據一第七特點,該自我測試的音調的該基本頻率係藉由切換被饋入所選的電容性元件的至少兩個定子的該些偏壓電壓脈衝的串的極性之頻率所界定。
根據一第八特點,該自我測試的音調的一相位係藉由在時間上調整被饋入所選的電容性元件的一所選的定子中的該串的偏壓電壓脈衝的開始的時序來加以調整。
根據一第九特點,該自我測試的音調的該些偏壓電壓脈衝係在以下的至少一個被饋送至該至少一定子:只有在另一慣性的通道的一通道選擇期間的一重置期間的期間;以及在另一慣性的通道的一通道選擇期 間的一重置期間以及一讀出期間的期間。
根據一第十特點,該自我測試的控制模組係被配置以藉由調整被饋送至該至少一定子的該基本頻率的每一週期的偏壓電壓脈衝的一數量來控制該自我測試的音調的大小。
根據一第十一特點,被饋送至該至少一定子的該基本頻率的每一週期的偏壓電壓脈衝的一數量係用以下的任一個來加以調整:在該自我測試的音調的該基本頻率的週期的每一個半部之一界定的部分期間,在兩個連續的偏壓電壓脈衝之間的期間係維持相同的;以及在該自我測試的音調的該基本頻率的該週期上,偏壓電壓脈衝的設定的數量係被均勻地分配。
根據一第十二特點,該至少兩個慣性的通道的每一個係包括至少兩個具有不同的基本頻率之不同的自我測試的音調。
根據一第十三特點,該電容式感測器裝置係包括至少三個電容性元件以用於偵測至少三個慣性的通道。該至少三個慣性的通道的每一個係包括至少兩個具有不同的基本頻率之不同的自我測試的音調。
根據一第十四特點,該至少兩個自我測試的音調的每一個的頻率係高於所要的慣性的信號的頻率。
根據一第十五特點,該自我測試的處理及監測電路係針對於每一個包括至少兩個自我測試的音調之慣性的輸出通道包括一組電路。每一組電路係包括以下中的一個i)一降頻濾波器(decimation filter),其係用於內含在該慣性的輸出通道中的每一個自我測試的音調;以及ii)一降頻濾波器,其係用於濾波該慣性的輸出通道。該至少一組電路進一步包括一組解 調變器,內含在該個別的慣性的輸出通道中的每一個自我測試的音調係使用一解調變器,其係被配置以轉換該些自我測試的音調的每一個成為一對應於該個別的自我測試的音調之DC自我測試的信號;一第二組濾波器,其係用於抽取每一個自我測試的信號;以及選配的是一狀態機,其係用於持續地分析該些抽取出的自我測試的信號的大小及極性。
根據一第十六特點,一警報係在預先定義的一組自我測試的信號的每一個中之一預先定義的數量的連續的樣本指出具有相同的極性的錯誤時被觸發。
根據另一特點,一種方法係被提出以用於一電容式感測器裝置的連續的自我測試。該方法係包括偵測至少兩個電容性元件的輸出,該輸出係對應於至少兩個慣性的通道;其中該至少兩個慣性的通道中的至少一個係包括至少兩個具有不同的基本頻率之自我測試的音調,並且在時間上多工處理該至少兩個慣性的通道。
根據另一特點,該方法進一步包括控制該至少兩個自我測試的音調進入到該電容式感測器裝置的該至少一電容性元件的饋送;提供有關該至少兩個多工的慣性的通道的每一個的電壓讀出資訊;解多工該至少兩個多工的慣性的通道成為至少兩個平行的慣性的輸出通道;以及處理該至少兩個慣性的輸出通道以用於抽取對應於該至少兩個自我測試的音調之至少兩個自我測試的信號。
根據另一特點,該方法進一步包括持續地分析該至少兩個自我測試的信號,以及根據該連續的分析,在偵測到一錯誤狀況時觸發一警報。
根據另一特點,該至少兩個慣性的輸出通道係包括數位信號。該些數位信號係藉由以下的任一個來加以獲得:在解多工該至少兩個慣性的通道以用於產生該至少兩個慣性的輸出通道之前,將該至少兩個慣性的通道轉換成為數位信號;以及在該至少兩個慣性的輸出通道已經被解多工之後,將該至少兩個慣性的輸出通道轉換成為數位信號。
根據另一特點,該方法可包含饋送每一個自我測試的音調作為在時間上受控制的偏壓電壓脈衝至一所選的電容性元件的至少一定子,其中該自我測試的音調被饋送至所選的電容性元件是只有在該個別的電容性元件未正被偵測時。
根據另一特點,該方法可包含藉由切換被饋入所選的電容性元件的至少兩個定子的該串的偏壓電壓脈衝的極性的頻率,來界定該自我測試的音調的該基本頻率。
根據另一方法的特點,該方法可包含藉由在時間上調整被饋入所選的電容性元件的一所選的定子中的每一串的偏壓電壓脈衝的開始的時序,來控制該自我測試的音調的相位。
根據另一特點,該方法可包含藉由調整被饋送至該至少一定子的該基本頻率的每一週期的偏壓電壓脈衝的該數量,來控制該自我測試的音調的大小。
根據另一特點,該些偏壓電壓脈衝係在以下的至少一個被饋送至該至少一定子:只有在另一慣性的通道的一通道選擇期間的一重置期間的期間;以及在另一慣性的通道的一通道選擇期間的一重置期間以及一讀出期間的期間。
根據另一特點,該方法可包含調整被饋送至該感測器裝置的該至少一定子的該基本頻率的每一週期的偏壓電壓脈衝的一數量。該調整係包括以下的任一個:在該自我測試的音調的該基本頻率的週期的每一個半部之一界定的部分期間,保持在兩個連續的偏壓電壓脈衝之間的期間相同的;以及在該自我測試的音調的該基本頻率的該週期上,均勻地分配偏壓電壓脈衝的設定的數量。
根據另一特點,該至少兩個慣性的通道的每一個係包括至少兩個具有不同的基本頻率之不同的自我測試的音調。
根據另一特點,該電容式感測器裝置係包括至少三個電容性元件以用於偵測至少三個慣性的通道。該至少三個信號通道的每一個係包括至少兩個具有不同的基本頻率之不同的自我測試的音調。
根據另一特點,該至少兩個自我測試的音調的每一個的頻率係高於所要的慣性的信號的頻率。
根據另一特點,對於每一個包括自我測試的音調之慣性的輸出通道而言,該方法進一步包括:i)個別地針對於每一個自我測試的音調降頻濾波該慣性的輸出通道,ii)轉換該些自我測試的音調的每一個至對應於一自我測試的音調之一DC自我測試的信號,iii)濾波以用於抽取每一個自我測試的信號。在某些實施例中,該方法亦可包括持續地分析該些抽取出的自我測試的信號的大小及極性。
根據又一特點,一警報係在預先定義的一組自我測試的信號的每一個中之一預先定義的數量的連續的樣本指出具有相同的極性的錯誤時被觸發。
100、102‧‧‧可變電容器
104‧‧‧開關電容器讀出電路
106‧‧‧第一開關配置S1
108‧‧‧致動電路
110‧‧‧第二開關配置S2
114‧‧‧第三開關配置S3
120‧‧‧電容性元件
300a、302a‧‧‧第一對可變電容器
300b、302b‧‧‧第二對可變電容器
304‧‧‧讀出電路
306a‧‧‧第一開關配置
306b‧‧‧第二開關配置
310a、310b‧‧‧開關
501‧‧‧加速度計信號電容元件ACC
502‧‧‧多工器及自我測試的控制模組
503‧‧‧讀出模組
504‧‧‧類比至數位轉換的ADC模組
505‧‧‧解多工器模組
516‧‧‧第一自我測試的濾波器模組
517‧‧‧降頻轉換模組
518‧‧‧第二自我測試的濾波器模組
519‧‧‧自我測試的監測模組
600‧‧‧慣性的通道
605‧‧‧解多工器模組
606a~606d‧‧‧CIC(級聯積分梳狀)濾波器
607b、607c、607d‧‧‧混波器(降頻轉換器)
608‧‧‧組
610‧‧‧慣性的通道
616a~616d‧‧‧CIC(級聯積分梳狀)濾波器
618‧‧‧組
620‧‧‧慣性的通道
626a~626d‧‧‧CIC(級聯積分梳狀)濾波器
628‧‧‧組
630‧‧‧慣性的通道
636a~636d‧‧‧CIC(級聯積分梳狀)濾波器
638‧‧‧組
650‧‧‧慣性的ACC信號
660‧‧‧諧波以及其它非所要的信號
1610~1692‧‧‧階段
ACC OUT‧‧‧慣性的輸出通道
CH1‧‧‧慣性的通道(第一通道)
CH2‧‧‧慣性的通道(第二通道)
CH3、CH4‧‧‧慣性的通道
CHx‧‧‧其它慣性的通道
CT‧‧‧讀出期間
CT1‧‧‧第一極性計數器
CTmax1‧‧‧第一極性計數器臨界值
CTmax2‧‧‧第二極性計數器臨界值
ERR1、ERR2‧‧‧偵測到的錯誤狀態之布林變數
FsST1‧‧‧取樣頻率
fST1、fST2、fST3‧‧‧自我測試的音調的基本頻率
M‧‧‧轉子質量的連接(轉子電位)
POLnew1、POLprev1‧‧‧極性
POLnew2、POLprev2‧‧‧極性
R‧‧‧重置期間
S1、S2‧‧‧定子質量的連接
St1‧‧‧響應信號
St2‧‧‧響應信號
STF1‧‧‧自我測試的音調
STF3‧‧‧信號
TC1‧‧‧第一觸發狀況
TC2‧‧‧第二觸發狀況
T_mf1‧‧‧第一測試頻率輸入
T_mf2‧‧‧第二測試頻率輸入
TP_STF1‧‧‧時間期間
Ts‧‧‧時槽
TS_CH1‧‧‧期間
VCH1_S1、VCH1_S2、VCH2_S1、VCH2_S2‧‧‧偏壓電壓
VCM‧‧‧虛擬的接地
VM‧‧‧轉子電壓
VOUTM、VOUTP‧‧‧輸出電壓
VR‧‧‧值
XVR‧‧‧值
ΦCH1‧‧‧第一通道選擇期間
ΦCH2‧‧‧第二通道選擇期間
在以下,本發明將會參考所附的圖式,相關較佳實施例來更詳細地加以描述,其中圖1係展示一電容式感測器以及一讀出電路的簡化的圖;圖2係進一步描繪圖1的電路的操作;圖3係描述一種具有兩對的可變電容器之電容式加速感測器電路的一第二範例實施例;圖4係進一步描繪圖3的電路的操作;圖5是一實施一種連續的自我測試的設計的電路之高階的方塊圖;圖6a是一實施解多工器、濾波器以及降頻轉換的電路的方塊圖;圖6b及6c係提出在該信號鏈路之給定的點中的信號的概要的呈現;圖6d係提出一種實施解多工器、第一濾波器以及降頻轉換之電路的另一方塊圖;圖7a及7b係呈現通道電容器配置的例子;圖8係提出多工的通道的時序的一個例子;圖9係提出多工的通道的時序的另一個例子;圖10係描繪慣性的輸出信號以及自我測試的信號的頻率範圍;圖11係提出自我測試的信號頻率以及自我測試的信號大小控制的一個例子;圖12係提出大小控制的一個例子;圖13係描繪基本頻率成分的大小的設定;圖14係提出大小控制的一個例子; 圖15係描繪基本頻率成分的大小的設定的另一個例子;圖16係提出一用於連續的自我測試的狀態機。
以下的實施例是範例的。儘管說明書可能會指稱"一"、"一個"、或是"某些"實施例,但是此並不一定表示每一個此種參照是針對於相同的實施例、或是該特點只適用於單一實施例。不同的實施例的單一特點可加以組合,以提供進一步的實施例。
如同在此所用的,該術語''電路''是指以下的全部:(a)只有硬體的電路實施方式,例如是只用類比及/或數位電路的實施方式,其中該電路可包括離散及/或整合的構件、以及(b)電路以及軟體(及/或韌體)的組合,例如是(視實際情況而定):(i)處理器的一組合、或是(ii)處理器/軟體的部分,其包含一起作用以使得一裝置執行各種的功能之數位信號處理器、軟體及記憶體、以及(c)需要軟體或韌體以用於操作的電路,例如是微處理器或是一微處理器的一部分,即使是該軟體或韌體實際上並未存在。
"電路"的此定義係適用於在此申請案中之此術語的所有的使用處。作為另一例子的是,如同在此申請案中所用的,該術語"電路"亦將會涵蓋僅僅一處理器或是多個處理器、或是一處理器的一部分以及其所附的軟體及/或韌體的一實施方式。該術語"電路"將會適用於一或多個特殊應用積體電路ASIC、或是應用處理器積體電路,以用於一微電子感測器裝置或系統。
如同在此申請案中所用的,"一電容性元件"係代表能夠電容式偵測一轉子質量相關於一或多個靜止的定子的移動之電路。電容性元件 可包括單一可變電容器,但是其亦可包括兩個或多個電容器以用於偵測同一個轉子質量的移動。一電容性元件的一個例子是一電容式半橋。
"慣性的通道"係包括源自於一電容性元件的電性信號,其係載有相關該電容性元件的電性偵測的結果之資訊。慣性的通道可包括一差動信號。在該慣性的通道中的電性信號可以藉由電路來加以處理,亦即放大、濾波或是轉換該電性信號成為一不同的形式(亦即,將一類比信號轉變成為一數位信號、或是將一數位信號轉變成為一類比信號)。多個(至少兩個)慣性的通道可以在時間上加以多工及/或解多工。該慣性的通道有時可以簡稱為"通道",並且一載有多工的形式之多個慣性的通道之例如是讀出通道的信號通道可被稱為"多工的慣性的通道"。
"慣性的信號"係指源自於一電容性元件的電性信號,其係載有相關該轉子質量的移動的資訊。該慣性的信號係構成藉由該慣性的通道所載有的信號的部分,亦即其並不包括該些自我測試的音調。
術語"音調"係表示一電性信號、或是一機械電性可量測的信號,其係具有一正弦波的形式之一特殊的基本頻率。一音調可以透過一被嵌入到一具有多個成分的信號中之信號通道來加以載有。一"自我測試的音調"是一用於自我測試的目的之音調,並且其可以透過偏壓一電容性元件的定子而被饋入該電容性元件中。自我測試的音調可以和所偵測到的慣性的信號一起被載有在該慣性的通道上。
圖1係展示一描繪敘述本發明的實施例所必要的基本元件的簡化的圖。其係描繪具有兩個可變電容器100、102的電容式加速感測器的一範例實施例。該些電容器100、102係構成一電容式半橋,其中該第一 可變電容器100對於轉子質量位置的靈敏度係與該第二可變電容器102的靈敏度相反的,因而該些電容器的總電容係以相反的正負號來變化。此種電容式半橋是一電容性元件的一個例子。在該電容式半橋的一側的電容係隨著加速而增加,而另一側則成比例地減小。此外,具有超過兩個可變電容器的電容性元件也可以在範疇內加以應用。
該電容式感測器亦包含一開關電容器讀出電路104,以用於偵測產生自構成一電容性元件的可變電容器100、102的運動之信號電容。
在電容式偵測中,建立一零點量測是必要的,亦即該開關電容電路104在取樣期間之間需要被重置。因此,該電容式感測器係包括一第一開關配置S1 106,其係適配於在該特定的慣性的通道的一重置期間R以及一讀出期間CT的持續期間將該讀出電路104電耦接至該電容性元件,並且適配於在任何其它慣性的通道的重置期間R以及讀出期間CT將該讀出電路104從形成該電容性元件的一或多個可變電容器100、102電性地分離。此係被描繪在圖2中,其中範例的信號的一時間期間已經時間分割成為交替的重置期間R以及讀出期間CT。第一重置期間R以及讀出期間CT係對應於慣性的通道CH1,而該第二重置期間R以及讀出期間CT則對應於被表示為CHx的任何其它慣性的通道。
在本發明中,開關電容器的偵測之此種時間離散的本質係被應用來實施一種電壓產生系統,以使得該感測器裝置的現場自我測試的功能變得容易。為此,該電容式感測器係包含一致動電路108,以用於產生一用於該一或多個可變電容器100、102的靜電偏轉之偏壓電壓。在目前的例子中,該兩個可變電容器100、102係一起形成一電容性元件。為了自我測 試,該致動電路108可以在任何其它電容性元件的重置期間R及/或讀出期間CT的期間,針對於一特定的通道電耦接至形成一電容性元件的一或多個可變電容器100、102,並且在該特定的電容性元件的重置期間R以及讀出期間CT的期間,藉由一第二開關配置S2 110以與可變電容器100、102分離。當該致動電路108耦接至該電容性元件時,所產生的偏壓電壓係產生一靜電力,並且對於該電容性元件造成一偏轉。該造成的偏轉可以在該慣性的通道的讀出期間加以偵測,並且被應用以判斷該電容性元件是否正常操作。該第二開關配置110係直接同步化到該第一開關配置S1 106。開關配置S1 106以及開關配置S2 110的切換期間的同步化本質係進一步利用符號ΦCH1以及/ΦCH1來加以描繪,後者是指前者的一反相,亦即該兩個開關係以相反的相位來加以切換:當一個是開路時,另一個是閉路的,並且反之亦然。然而,此直接的同步化不應該被嚴格地理解,因為開關配置S1 106以及S2 110之確切的時序可能不是絕對相同的(亦即,該兩個開關配置的狀態是相反的),而是該時序可以為了該目的適當地加以計畫,以處理亦即由開關本身所引起的暫態。藉由該電壓致動電路108產生的偏壓電壓VCH1_S2以及VCH1_S1可以是彼此相同或是不同的。該第二開關配置S2 110係適配於當在此通道中的一自我測試的音調至該電容式感測器的饋送被一自我測試的控制電路致能時,將該致動電路108電耦接至該電容性元件。
該電容式感測器可以進一步包括一第三開關配置S3 114,其係適當地同步化至該第一開關配置106並且適配於在該讀取期間的開始時重置該讀出電路104。此係容許運算放大器的輸入與輸出能夠在一讀取脈衝(VM暫態)的發生之前趨穩。此係從偵測中消除或是至少顯著地降低與自我測 試的偏壓相關的暫態之影響。同樣地,該同步化不應該被嚴格地理解為指出確切同時的切換,而是該時序可以適當地加以組態設定以達成所要的功能。
為了致能連續的自我測試,該至少一微機電元件係包括至少兩個電容性元件。此係表示當一電容性元件被使用於感測該慣性的信號以及自我測試的音調時,其它的電容性元件可被使用於饋送自我測試的音調。在目前的例子中,每一個電容性元件係包括一電容式半橋,其係包括兩個可變電容器100、102。在一範例實施例中,另外的電容性元件120可以是類似於在圖1中所示者,但是利用一不同組的開關配置及/或致動電路來加以控制的。當所有的慣性的通道都被多工到單一多工信號通道時,該讀出電路可以是共用於所有的電容性元件,但是若有數個(亦即至少四個)電容性元件時,則超過一讀出電路可被使用,其係提供超過一個的多工的信號通道。該些淺虛線是指出一包括三個電容性元件120的範例實施例。
作為另一實施例,當多工處理設計被適當地調整時,多工處理至少兩個自我測試的音調可以只利用兩個電容性元件來加以實施。當從其它電容性元件讀取該慣性的資料時,兩個不同的自我測試的音調(具有不同的基本頻率)可以在兩個不同的時間週期期間被饋入到一電容性元件中。因此,該至少兩個自我測試的音調是可利用於在至少一慣性的通道中的偵測。術語"不同的自我測試的音調"可包括自我測試的音調的各種配置。某些用於不同的電容性元件(慣性的通道)之自我測試的音調可以具有相同的基本頻率,但是可以具有不同的大小。然而,為了實施一種可靠的連續的自我測試的設計,每一個具有自我測試的功能之慣性的通道都應該具有至少 兩個具有不同的基本頻率之自我測試的音調。較佳的是,此種具有不同的基本頻率之自我測試的音調並不是具有相同的基本頻率的諧波頻率。
圖2係描繪圖1的電容性元件以及讀出電路的操作。橫跨每一個可變電容器100、102的一電壓VM係以充電及放電步驟來加以調變,其係形成兩個非重疊的期間。在該些期間的第一期間,每一個可變電容器100、102係連接至一轉子電壓VM並且累積電荷。此期間係被標記R。在第二期間,每一個可變電容器100、102係被拉到接地,並且每一個可變電容器100、102係被放電。該開關電容器讀出電路104可包含一具有高的開迴路的增益之高增益的運算放大器,並且該兩個可變電容器100、102可以連接至其輸入。於是,在一讀出期間CT,當至一第一可變電容器100的轉子電壓VM改變為零時,輸出電壓VOUTP係從零變化為一個對應於該第一可變電容器100之累積的電荷的值。該讀出期間CT有時可以被稱為"電荷傳輸"期間,其係描述此功能。類似地,當至一第二可變電容器102的轉子電壓VM改變為零時,該輸出電壓VOUTM係從零變化為一個對應於該第二可變電容器102之累積的電荷的值。在VOUTP與VOUTM之間的差值係依據該轉子質量在該轉子電壓VM零邊緣的時間的位置而定。在一替代方案中,該轉子電壓VM的極性可加以改變為相反的,因而所產生的輸出電壓VOUTP與VOUTM的改變的極性也是相反的。所了解的是,圖1是只有用於描述本發明所必要的基本的部件之一簡化的例子。例如,該開關電容器讀出電路104的運算放大器可以具有輸入共模的電路、或是其可包括兩個單端運算放大器,以保持該運算放大器的差動以及共模的輸入在一固定的電壓。
圖2係進一步描繪多工處理在不同的電容性元件之間的自 我測試的量測的一個例子。當該第一讀出期間CT是指出一包括一對可變電容器100、120的第一電容性元件的讀出輸出時,該第二讀出期間CT可被用來讀出一第二電容性元件(那些利用虛線120所指出者中的任一其它的電容性元件)的輸出。該些自我測試的偏壓電壓VCH1_S1及VCH1_S2可以在除了該第一電容性元件的重置期間R及讀出期間CT的期間之外的任何時間,透過該第二開關配置S2 110而被饋送至該第一電容性元件。一特定的慣性的通道的重置期間R以及讀出期間CT可以一起被稱為一用於此通道的通道選擇期間。自我測試的偏壓電壓可以在所有時間期間(但除了在該特定的電容性元件的通道選擇期間之外)被饋入任一電容性元件。
圖3係描述一種電容式加速感測器的一第二範例實施例,其係具有兩對可變電容器:用於一第一通道CH1的第一對300a、302a以及用於一第二通道CH2的第二對300b、302b。在類似的方式下,可以有任意數量的可變電容器對(電容性元件),其可以個別地被切換及偏壓,但是為了簡化起見,在此只有呈現兩對(兩個電容性元件)。兩個通道CH1及CH2的轉子係連接至轉子電壓VM,並且定子係根據多工處理設計而連接至不同的偏壓電壓。在此例子中,該轉子電壓VM係共用於兩對可變電容器,但替代的是該些轉子電壓亦可以是個別且不同的。應該注意到的是,即使用於該兩個電容性元件的電性轉子電壓VM是相同的,但是該些電容性元件較佳的是偵測不同的轉子質量,該些轉子質量在機械上可以是與彼此無關的。在此例子中,吾人可以看到兩個電容性元件可以用多工的方式而被使用於慣性的感測以及自我測試。開關310a係控制連接可變電容器300a及302a的定子至偏壓電壓,例如是自我測試的偏壓電壓VCH1_S1及VCH1_S2。類似地,開關 310b係控制連接可變電容器300b及302b的定子至偏壓電壓,例如是自我測試的偏壓電壓VCH2_S1及VCH2_S2
該電容式感測器係包括一第一開關配置306a,其係適配於在一被配置給該第一電容性元件的第一通道選擇期間ΦCH1,將該讀出電路304電耦接至包括可變電容器300a及302a的第一電容性元件,並且在一被配置給包括可變電容器300b及302b的第二電容性元件的第二通道選擇期間ΦCH2,電性地分離該讀出電路304與該電容性元件(300a及302a)。該電容式感測器係包括一第二開關配置306b,其係適配於在該第二通道選擇期間ΦCH2,將該讀出電路304電耦接至該第二電容性元件,該第二電容性元件係包括可變電容器300b及302b,並且在被配置給該第一電容性元件的第一選擇期間ΦCH1,電性地分離該讀出電路304與該第二電容性元件。該讀出電路304可以是類似於圖1的讀出電路104,並且因此並未更詳細地敘述。
圖4係提供用於圖3的電容式加速感測器之概要的時序圖。在此例子中,該定子電壓VM係被切換在重置期間R的一正參考或供應電壓與在該讀出期間CT的零電壓之間。當相較於該定子電壓時,該些輸出電壓VOUTP及VOUTM的時序總是反相的。該多工處理設計係控制每一個別的慣性的通道可被偏壓及讀取的期間之時間槽。在此例子中,在包括一重置期間以及一讀出期間CT的第一通道選擇期間CH1,亦即當CH1被讀取時,CH2的定子可被偏壓至第一偏壓電壓VCH2_S1及VCH2_S2,並且在包括一重置期間R以及一讀出期間CT的第二通道選擇期間CH2,當CH2被讀取時,CH1的定子可被偏壓至第二偏壓電壓VCH1_S1及VCH1_S2。根據針對於該裝置的效能以及該自我測試的設計所設定的要求,該些偏壓電壓之確切的值以及時序可 以用各種方式來設定。不同的通道CH1、CH2的時序期間的數量及順序係藉由該多工處理設計來加以設定。多工處理的設計亦可以見於在每一個讀出期間CT所接收到的輸出電壓VOUTP及VOUTM:在一第一讀出期間,該些輸出電壓VOUTP以及VOUTM係對應於通道CH1的讀出,而在該第二讀出期間,該些輸出電壓VOUTP及VOUTM係對應於通道CH2的讀出。讀出期間的數量可以被選擇成使得充分數量的包括慣性的信號以及自我測試的音調之慣性的通道係被產出,以用於進一步的處理。
應瞭解的是,當一自我測試的音調被饋送至該慣性的元件時,該自我測試的音調所饋送到的同一個電容性元件的輸出並不可以直接加以偵測。而是,藉由透過非被偵測的通道的定子而被饋送的一自我測試的音調所引起的靜電力係影響一慣性的元件,亦即該元件的轉子質量,並且這些靜電力係對於該慣性的元件產生移動成分。在至少兩個不同的頻率中之多個自我測試的音調係造成在至少兩個不同的頻率中的多個移動成分。該慣性的元件(轉子質量)係對於藉由該些自我測試的音調所引起的靜電脈衝作用像是一機械式低通濾波器,因而藉由被饋送在該至少兩個頻率的每一個頻率中之自我測試的音調脈衝所引起的靜電力係變成平均的。此平均的本質係使得藉由一自我測試的音調所引起的移動變成是連續的,並且其可以在任何時點加以偵測。多個自我測試的音調係使得具有多個在不同的頻率中的移動成分之慣性的質量可以在該些通道的每一個之組合的讀出信號中加以偵測。儘管該通道讀出是在時間上多工的,因而在一時間點只有偵測一通道,但是當一電容性元件係連接至該讀出電路以用於偵測時,代表其它目前未被讀取/未被偵測的通道之其它電容性元件則可被使用於自 我測試的偏壓。以此種方式,該自我測試的偏壓可以利用針對於該至少兩個通道的在時間上多工的讀出序列來加以實施。
圖5係展示實施一種用於加速度計的連續的自我測試的設計之一範例的電路的高階的方塊圖。該些模組係代表不同功能的邏輯劃分,並且實施這些的電路可以包括專用於一特定模組的個別的電路、或是當適當時,該些模組可以使用某些共用的電路。實際上,不同的功能可以用各種方式組合成為一或多個電路區塊,而不脫離所主張的發明。例如,不同的模組的功能可以在一般用途的處理環境中加以實施、或是被實施為一專用的ASIC電路。
該加速度計信號電容元件ACC 501係從n個信號通道提供n個平行的量測信號,該n個信號通道例如是利用關聯圖1至4所敘述的電容式感測元件。該加速度計可以利用電容性元件來實施該量測,並且指出該加速的這些信號可以被稱為慣性的信號,因為它們是根據該轉子的由於加速所造成的相對的移動而定。一信號可以利用單一電容器、或更典型的是一例如是在圖1及3中所述者的電容式半橋來加以偵測。
多工處理功能係在多工器及自我測試的控制模組502中加以實施。在此例子中,進入到該多工處理的區塊的n個信號通道係在時間上被多工成為單一多工的通道。在一替代實施例中,來自該些電容性元件的n個信號通道可以在時間上被多工成為超過一多工的通道,亦即四個或六個信號通道可以被多工成為兩個不同的多工的通道,每一個多工的通道係包括至少兩個慣性的通道。該多工處理的設計將會相關於圖6及8來進一步加以解說。模組502亦透過控制該些自我測試的音調到該ACC中的饋 送,並且亦控制自我測試的頻率、相位及大小,來處理該自我測試的控制。儘管該多工處理及自我測試的控制在此已經被展示為單一模組,但是這些功能在範疇內可以被實施在兩個不同的模組中。
讀出模組503係負責該通道的讀出。此可以對應於圖1的讀出模組104或是圖3的讀出模組304之範例的功能。多工處理係致能具有一用於多個電容性元件之共用的讀出通道,而不是n個慣性的通道分別有一個別的讀出通道。讀出可被描述特徵為一電流至電壓的轉換,其中在一讀出期間從該些可變電容器接收到的電流係被轉換成為一電壓值。儘管未被展示,從該讀出模組503接收到的類比信號可以用一或多個放大器級來加以放大。其它能夠執行所主張的特點之構件或是電路配置也可以被應用,而不偏離該範疇。
模組504係代表類比至數位轉換的ADC。在此,從藉由該讀出通道所載有之多工的慣性的通道讀出的類比電壓位準係被轉換成為一數位信號。在此例子中,有單一ADC係在該信號鏈路中被設置在解多工器模組505之前,其係將在該讀出通道中的n個多工的慣性的通道轉換成為數位形式。或者是,類比至數位的轉換可以只有在該解多工器模組505之後才加以實施,在此情形中,n個慣性的通道分別可以具有其本身的ADC。儘管此種配置看起來可能是消耗更多的晶片面積,但是此替代方案可以容許利用具有較不嚴格的頻寬要求的ADC,並且因此實際上可能是比處理所有的通道的單一ADC更簡單來實施。一ADC的詳細的實施方式是熟習此項技術者已知的,因而在此為了簡化起見而予以省略。
模組505是一解多工器模組,其係接收包括該一或多個多工 的慣性的通道之時間上多工的讀出信號,並且提供該原始數量的n個平行的慣性的輸出通道ACC OUT,以用於進一步的信號處理。當超過一個時間上多工的讀出通道被接收到時,該解多工可以藉由一或多個解多工器來加以實施。該n個慣性的輸出通道ACC OUT係對應於該n個慣性的通道,其係包含頻帶內的慣性的信號,並且亦包含頻帶外的非所要的信號成分以及自我測試的音調。因此,該些慣性的輸出通道ACC OUT將會利用一或多個低通及/或帶通濾波器而進一步被濾波,因而只有在所要的信號頻帶內的資訊才被傳遞至該裝置的輸出,該所要的信號只代表該慣性的信號而已。這些濾波器並未顯示在該圖中。如先前所提及的,該解多工器模組505亦可以存在於該類比至數位的轉換之前。在此例中,該解多工器模組係接收在該一或多個多工的讀出通道中的n個類比讀出信號,並且提供n個平行的類比慣性的通道,其接著將會被轉換成為數位信號,而較佳的是利用n個ADC。不論該ADC的位置為何,最終結果都是相同的:n個數位慣性的輸出通道係包括n2個自我測試的音調。
為了實現一種強健的自我測試的設計,每一個信號通道係需要超過一個自我測試的音調,因為單一自我測試的音調可能是難以與在該ACC元件501中因為一外部的加速所造成之交流的AC分開的,此因此造成假警報。讓吾人將一慣性的通道中之自我測試的音調的數量描述為n2。相同的測試頻率可被使用於不同的信號通道,但是不同的測試頻率亦可被選擇。只要每一通道有至少兩個自我測試的信號具有不同的頻率,即使多個具有相同的頻率之自我測試的信號也可被使用於單一慣性的通道。相乘參數n及n2係給出內含在該n個慣性的通道中之自我測試的音調的總數。 所有的自我測試的音調都可以透過每一個輸出慣性的通道的降頻轉換,而被轉換成為直流DC自我測試的信號,其係利用和在該ACC元件中所用的自我測試的音調頻率相同的頻率以用於降頻轉換。例如,若有n個慣性的通道,並且這些慣性的通道的每一個都具有三個(n2=3)不同的自我測試的音調,則可利用的自我測試的音調的總數係n*3。這些不同的自我測試的音調可以具有相同或是不同的頻率。為了防止在該些自我測試的音調與該頻帶內的所要的慣性的信號之間的干擾,在降頻轉換之前以及之後通常都需要濾波。第一自我測試的濾波器模組516係位在降頻轉換模組517之前,該降頻轉換模組517係包含分別用於每一個自我測試的音調之個別的降頻轉換電路,該降頻轉換模組517之後接著是一第二自我測試的濾波器模組518,該第二自我測試的濾波器模組518是被用來只濾出對應於該個別的自我測試的音調之所選的DC自我測試的信號。該第一自我測試的濾波器模組可被實施為降頻濾波器,其係將該ADC輸出資料速率轉換成為對應於解調變載波信號的解調變器輸入信號速率。該濾波器亦移除在所關注的頻率範圍之外的非所要的信號成分及雜訊,並且避免其在該解調變之後耦合至信號頻帶。在目前的例子中,經降頻轉換及濾波的自我測試的信號係接著利用一自我測試的監測模組519來加以分析,其係產生指出自我測試的狀態是否顯示該電容性元件正常運作、或者某些故障是否已經被偵測到的輸出信號。儘管該第一自我測試的濾波器模組516、降頻轉換模組517以及第二自我測試的濾波模組518係處理該些自我測試的音調,但是吾人可以將這些組合地稱為自我測試的處理電路,其係為了監測的目的而從該些慣性的輸出信號抽取出該些自我測試的音調,並且將這些轉換成為適合用於監測的 自我測試的信號。再者,該自我測試的處理電路以及自我測試的監測模組519的組合可以被稱為一自我測試的處理及監測電路。用於一內含在該自我測試的監測電路之內的自我測試的狀態機之範例的流程圖係被描述在圖16中。該自我測試的監測電路是選配的,亦即其並不必被實施為該加速度計裝置的一整體的部分。因此,在一替代實施例中,該些DC自我測試的信號可被提供為例如是一來自該加速度計的自我測試的輸出信號,因而用於錯誤監測的分析可以產生在該加速度計裝置之外。舉例而言,該些自我測試的信號可以藉由被配置以用於監測該些自我測試的信號之個別的電路來加以監測,該電路可以是一用於該監測之專用的電路、或者其可以是一與其它功能共同使用的共用的電路。
在圖5中敘述的區塊可以用各種方式來實施,而不脫離本發明。該些區塊可以包括任意數量的離散的構件及/或積體電路及/或一些軟體構件,該些軟體構件可以在一般用途的處理裝置上、或是在一特殊應用的處理環境中加以執行。該電路可以是一般用途的電路、或是其可以包括特殊用途的電路,例如是一或多個特殊應用的積體電路ASIC。該電路係包括用於儲存應用程式碼的RAM及/或ROM記憶體、或是其係存取到外部的RAM或ROM記憶體以用於存取該程式碼。
圖6a係提出該解多工、第一濾波以及降頻轉換電路的一範例實施例。多工的讀出通道係到達解多工器模組605,其中它們係被劃成為n個平行的慣性的通道600、610、620、630。在此例子中,n是4。這n個慣性的通道的每一個係利用一群組的CIC(級聯積分梳狀)濾波器606a至606d、616a至616d、626a至626d、636a至636d而被濾波,其通常是被用在 多速率的數位信號處理。吾人將會描述一範例組608的CIC濾波器606a、606b、606c、606d以及混波器607b、607c、607d的功能。所有的n個慣性的通道600、610、620、630係利用一組具有CIC濾波器的電路608、618、628、638來加以處理,該些電路係適配於慣性的通道之特定的頻率以及用於該慣性的通道之自我測試的音調。組618、628、638並未完整地被展示在該圖中,而是應該被理解為像是在此論述的該組608。該慣性的輸出通道ACC OUT以及每一個自我測試的音調係具有其本身的具有一適合用於該特定的慣性的輸出通道或是自我測試的音調頻率之預設的減樣比例(decimation ratio)之CIC濾波器。在目前的例子中,CIC濾波器606a係提供輸出給該第一ACC OUT慣性的輸出通道,其係包括從該感測器裝置讀取的加速量測信號。可利用的自我測試的音調的總數是n2,在此例中是n個慣性的通道分別有三個(3),因而可利用的不同的自我測試的音調的總數在此例子中是12。被提供用於不同的慣性的通道之自我測試的音調的數量可以變化。如同較早所指出的,自我測試的音調的數量可以自由地選擇,並且其較佳的是兩個或多個,並且在每一個慣性的通道上的至少兩個自我測試的音調應具有不同的頻率。具有相同的頻率之自我測試的音調可被使用在超過一個慣性的通道上。對於該範例的通道600而言,每一個自我測試的音調係具有其本身的CIC濾波器606b、606c、606d。每一個CIC濾波器的減樣比例係針對於該特定的自我測試的音調來加以設計,以濾除超出測試頻率的非所要的頻率,因而進入的自我測試的音調可以用新的奈奎斯特(Nyquist)頻率是等於該特定的自我測試的音調頻率的此種方式而被降取樣。在CIC濾波之後,經濾波的自我測試的音調接著分別被饋入降頻轉換器607b、607c、607d,其中 代表每一個自我測試的音調之信號的樣本係被降頻轉換成為一稱為自我測試的信號之DC信號。此係藉由混合從該CIC濾波器接收到的信號與一對應於在該ACC模組中的自我測試的音調信號的原始的頻率之信號來加以達成。除被展示在此概要圖中的基本功能之外,該些自我測試的音調可能需要相位調整以便於適當地匹配該信號的相位,以便於確保在奈奎斯特頻率的測試音調大小大約是最大的。
圖6b係概要地描述在一自我測試的分支中的降頻轉換之前的不同的信號的頻率,該自我測試的分支係包括在組608、618、628、638的任一組中的一CIC降頻濾波器以及一降頻轉換器,例如是CIC濾波器606b以及降頻轉換器607b。在圖6b或6c中,該大小與頻率都不一定成比例的,因為這些圖只是欲描繪原理而已。所關注的自我測試的音調的基本頻率係被標記為fST1,並且其它自我測試的音調為fST2以及fST3。該慣性的ACC信號650較佳的是具有比該些測試信號的任一個較低的頻率。諧波以及其它非所要的信號660最初是存在於高於該慣性的加速信號650而且亦主要高於該些自我測試的頻率fST1、fST2及fST3之頻率。該特定的分支的降頻濾波器(在此例中是606a)係被用來從該樣本濾除該非所要的信號660,因而該些自我測試的信號的取樣係在其特徵的奈奎斯特頻率下加以致能。在此例子中,該取樣頻率FsST1係針對於自我測試的頻率fST1而被展示。在利用該降頻濾波器的濾波之後,代表具有自我測試的頻率fST1的測試音調之信號係備妥以用於降頻轉換。
圖6c係概要地描述在和圖6b所敘述者相同的信號分支中,在降頻轉換之後的信號的信號頻率。所關注的測試信號fST1現在是具有零頻 率,亦即是一DC信號,而其它的自我測試的頻率以及該慣性的信號650係具有較高的頻率並且可以便利地加以濾掉,因而對應於此自我測試的音調之此自我測試的信號的DC值可加以偵測到。
圖6d係提出解多工、第一濾波以及降頻轉換電路的另一範例實施例。多工的讀出通道係到達解多工器模組605,其中它們係被劃分成為n個平行的慣性的通道600、610、620、630。在此例子中,n是4。這n個慣性的通道的每一個係利用單一CIC(級聯積分梳狀)降頻濾波器606a、616a、626a、636a而被濾波,每一個CIC濾波器係被配置以執行用於在該個別的慣性的通道中的信號之濾波。每一個慣性的通道可以代表沿著或是繞著一設定軸的加速。四個範例的慣性的通道分別可以用類似的方式來加以處理。在慣性的通道600中處理信號將會被描述以作為一個例子。該CIC濾波器的減樣比例係針對於該個別的慣性的通道來加以設計,因而該些特殊的基本的自我測試的音調頻率係在該CIC濾波器的輸出資料中被再現,並且在該音調頻率的濾波器衰減較佳的是小於10dB。在CIC濾波之後,該濾波後的ACC OUT信號係被饋入一些降頻轉換器607b、607c、607d。在此例子中,用於該慣性的通道610之自我測試的音調的數量是3。該降頻轉換器607b、607c、607d係分別使用一不同的載波頻率,因而一不同的自我測試的音調係被降頻轉換至零頻率,亦即變成為一DC信號。此DC信號係被稱為該自我測試的信號。相較於較早在圖6a所描繪的實施例,此替代實施例係降低對於從該些慣性的通道抽取該些自我測試的信號所需的電路的量以及因此的面積,因為每一慣性的通道只需要單一CIC濾波器。在該CIC濾波前面的電路以及在該降頻轉換之後的電路可以是類似於在圖5中所繪 者。
圖7a及7b係提出用於構成半橋通道的多個電容性元件之兩個範例的實施方式。在此例子中,吾人已經提出一種具有四個慣性的通道CH1、CH2、CH3及CH4之配置,但是慣性的通道的實際數量可以變化,而不脫離本發明。例如,慣性的通道的總數可以替代的是兩個、三個、五個或是六個。圖7a及7b都是提出四個慣性的通道CH1、CH2、CH3及CH4,每一個慣性的通道都具有三個連接:一轉子質量的連接(M)以及兩個定子質量的連接(S1及S2)。在這些圖中所提出的兩個替代方案之間的差異是在圖7a中的配置係對於每一個慣性的通道包括獨立的連接至該轉子質量(M),而在圖7b的配置中,所有的慣性的通道係共用一共同的連接至該轉子質量(M),因而該些轉子將會總是連接至一共同的轉子電位。在圖7a中的配置係容許對於不同的通道選擇不同的轉子電位,儘管相同的轉子電位亦可被使用。不同或是分開的轉子電位的使用可以改善在通道之間的隔離、或是容許最佳化用於每一個通道之等效的偏壓位準。應該注意到的是,儘管該些轉子質量可以電連接至相同的轉子質量電位,但是相關於不同的慣性的通道的轉子質量較佳的是彼此在機械上分開的。
圖8係描述用於如同在圖7a或7b中提出的四個通道的電容器配置之一範例的多工處理設計的時序,其係致能一種連續的自我測試的設計的實施方式。此例子係在該四個慣性的通道之間均分時間,但是被配置給每一個通道的時間亦可以依據信號電容器的尺寸以及所需的趨穩時間而變化。該些不同的慣性的通道並不必要以如同在該些所給定的例子中的循環類型來加以讀取,而是一或多個通道可以在一Ts_CH的多個時槽期間 加以讀取,亦即任何通道可以在兩個連續的時槽期間連續被讀取兩次,因此容許在其它通道中有更多時槽以用於饋送自我測試的音調。在目前的例子中,吾人是使用一種循環的多工處理設計,並且用於每一個慣性的通道的資料速率係被定義為Ts_CH,其係等於同一個通道的連續的樣本。被保留用於每一個慣性的通道的單一時槽Ts係被分成重置期間(R)以及讀出(又稱為電荷傳輸)期間(CT)。這些時間期間係對應於在圖2中所示的R及CT之範例的期間。重置期間(R)是用於在讀出期間(CT)中偵測該電容性信號之前,初始化該讀出通道至一已知的狀態。為了達成此種已知的狀態(亦即相關雙取樣CDS),電容器的重置或斬波(chopping)可加以執行,此係使得該通道處於一受到良好控制的狀態。CDS係提供偏移值的一內部的樣本,因而任何現有的偏移都可以從在下一個輸出值中的輸出被降低,因而該輸出值是沒有偏移的。時槽Ts可以被分成R及CT期間,因而在考量任何特殊的狀況下,最佳的功率消耗係被達成,並且符合在兩個期間中所需的趨穩速度。
在目前範例的系統中的四個電容性元件下,三個獨立的頻率可被選擇以用於測試每一個慣性的通道。一時槽係被使用於偵測所關注的每一個慣性的通道之實際的加速信號以及自我測試的音調,而其餘的三個時槽(其它三個慣性的通道係在該些期間加以偵測)係可利用於自我測試的音調輸入。換言之,吾人亦可以說是每一個慣性的通道係在工作週期期間被偵測一次,並且當一慣性的通道被偵測時,所有其它慣性的通道的電容性元件是可利用於自我測試的音調輸入。當一慣性的通道正被偵測時,其並不可被使用於自我測試的音調輸入。例如,在第一CH1時槽期間,CH1 的定子係連接至虛擬的接地(VCM),並且該CH1的電容器對係針對於該信號來加以偵測。通道CH2、CH3及CH4在此時槽期間係可利用於自我測試。類似地,在用於CH2偵測的時槽期間,CH2的定子係連接至虛擬的接地,並且CH2可以針對於該信號來加以偵測,而通道CH1、CH3及CH4係可利用於自我測試。在此例子中,在重置期間(R),所有的轉子都連接至相同的轉子電位M。該電容性信號係藉由轉子電位M從值VR到值XVR的轉變而被偵測到。在一自我測試的音調時槽期間,一用於自我測試的通道的定子可以連接至該共同的轉子電位M、或是連接至一自我測試的偏壓電壓,此係根據一電容式自我測試的力是否為所需的而定。
當非零的電壓存在於轉子與定子之間時,一吸引力係橫跨一信號電容器而被產生在轉子與定子之間。當待被偵測的信號是差動的,並且個別的電容性介面係利用一電容式半橋來加以實施時,在該些定子的兩個有效的偏壓電壓是相等的並且該信號電容也是盡可能對稱的時候,在每一個定子與該轉子之間的兩個靜電力係彼此平衡。以這種方式,用於偵測的所必要的非零的電壓係被容忍。然而,即使在一差動元件中的一對稱的偏壓也可能造成非線性,並且根據電容式電極類型而使得該通道更容易遭受到粘附(sticking)以及吸附(pull-in)。因此,即使是對稱的偏壓,也應該被最小化。此係在該多工的系統中被達成,因為該偏壓只存在於特定的多工處理期間,亦即相較於所有的四個通道的平行的連續的量測,只要四分之一的時間。當一不對稱的自我測試的力是所需的時候,該兩個定子-轉子電極對中之一理想上是被偏壓至零,而另一對係根據該自我測試的設計而被偏壓。
在用於CH1的時槽Ts期間,CH2的定子S2係假設是被連接/偏壓至轉子電位M。因此,理想上沒有靜電力存在於CH2的定子與轉子之間。CH2的S1於是被偏壓至信號STF3。此信號STF3的值相較於轉子電位可以是相反的。以這種方式,吸引力係存在於CH2的定子與轉子之間。定子偏壓的極性可以週期性地被改變,亦即藉由相互切換被饋送至該兩個定子的偏壓電壓,M->STF3以及STF3->M,因而靜電力變成是一AC信號,並且該平均偏壓的不對稱性是零。該極性被改變所在的速率係被表示為fST1、fST2及fST3。在該例子中,假設三個頻率係被使用,並且它們對於所有四個慣性的通道都是相同的。然而,若必要的話,該些通道可以利用不同的測試頻率。
若單一可變電容器被使用作為電容性元件,則饋送一偏壓電壓將會產生一DC成分至該元件。該轉子所體驗到並且由此種自我測試的音調所引起的平均吸引力將會偏離零。儘管此在許多應用中不是較佳的,但是其對於其它應用而言可能是可接受的。假使單一定子是可利用於饋送該自我測試的音調,則該信號的極性可能無法用傳統的方式來加以改變。其並非是切換極性,而是該偏壓力的通斷所在的期間可被切換。
儘管實際狀況是用於施加每一個自我測試的頻率的時槽是獨立的,但是在該元件介面內之所有的暫態都必須仔細地加以識別。一重要的暫態是被施加用於偵測每一個慣性的通道的電容性信號之實際的讀出脈衝。在圖8中,該讀出脈衝可被假設為發生在電荷傳輸CT的相位中,而且通常是在CT期間的開始時,因而對於該讀出暫態容許有最大的趨穩時間。這也是所描繪的範例情形,因為該質量的電位的改變(亦即電荷被移動) 是和期間R被改變到期間CT同時的。在自我測試的期間,現在該些定子是以它們在零的力下是相同的、而在需要非零的力時是不同的此種方式來依循該轉子(M)的電位。以此種方式,當轉子電位改變時,該定子的值亦必須加以相應地改變。若在定子之間實際上有任何不對稱的交叉耦合,其將會因為在相鄰的通道中之定子電壓暫態而造成輸出偏移。若例如是因為在封裝中的介電係數漂移而造成交叉耦合的量並未保持固定的,則此偏移亦可能變成是不穩定的。一種解決方案是在該些慣性的通道之間的轉子偏壓位準可以是獨立的,此係例如是利用一在圖7a中敘述的結構而被致能。以此種方式,在目前並未被偵測、而是被自我測試的偏壓之轉子的電壓位準在重置期間(R)以及電荷傳輸期間(CT)之間可被設定為固定的。
圖9係提供用於該多工處理控制的另一實施例,其目標在於改善當發現轉子的電性隔離是困難時之自我測試的效能。
圖9係提出一替代的實施方式,其中該自我測試的偏壓電壓只可以在重置(R)期間被產生。當在目前未被偵測的通道中,定子電位在該電荷傳輸發生之前係回到和在轉子的偏壓(M)相同的位準時,沒有暫態及個別的偏移在該偵測期間(CT-期間)被產生。該詳細的時序係被描繪在圖9的主要表之下的小表中,其中時間是在水平的方向上變化。兩種情形都是重要的:R期間的結束使得暫態不發生在電荷傳輸期間、以及CT期間的結束使得該暫態在信號被取樣之前並不干擾到該電荷傳輸以及信號偵測。
一進一步的選項是在其它慣性的通道的CT期間,亦切換未被量測的慣性的通道的定子至M以外的其它實質固定的電位,例如是虛擬的接地VCM。此情形也是相關於M讀出轉變(VR->XVR)是被定時於CT期 間的剛開始之後的何時發生。該時序改變可能是必要的,以便於例如是達成洩漏免疫。此改變可能會造成額外的靜電力,但是在另一方面,其在該質量電極中的VR至XVR暫態期間可以降低未被量測的定子電極至被量測的定子電極的電容性耦合。
當每一個慣性的通道的轉子連接M都像是在圖7a中分開的,則所有的電容性元件的轉子都可以在重置期間(R)連接至電位VR,而只有慣性的信號從其被讀取的電容性元件的轉子電位在讀出期間(CT)被改變至該XVR電位。一更進一步的選項是將該轉子連接至個別的質量電位。
該些自我測試的頻率(在該範例的情形中是fST1、fST2及fST3的頻率)可以如同在圖10中所示地加以選擇。該些測試頻率應該充分地高於所關注的信號頻帶,因而在自我測試的音調與所關注的慣性的信號之間的干擾可加以避免。該些自我測試的頻率中的一或多個亦可以高於該機械式元件的截角頻率(-3dB),因而任何與該可預測的截角頻率變化的偏差都可被觀察到。此種偏差可能是破裂的MEMS封裝以及在該機械式裝置內之個別的壓力位準移位的結果。
不同的自我測試的音調的實施方式係在以上加以敘述,並且在圖11的協助下,更多的細節係被揭示。該畫面係顯示一自我測試的音調STF1的實施方式。音調的週期係藉由質量至定子的電壓被改變所在的速率來加以設定。在該例子中,可以選擇通道一TS_CH1的取樣時間是例如1/64kHz。在該畫面中,單一自我測試的週期係取得16個樣本,此係得到一4kHz的測試頻率1/TP_STF1。此係利用具有TP_STF1的週期之正弦波基本頻率成分(STF1)來加以描繪。在一定子電位中的每一個脈衝係代表當一非零 的偏壓被施加至該定子的一期間。
自我測試的音調的大小可以藉由改變連接至定子端子的測試信號的電壓位準來加以控制。然而,此係需要一DAC(數位至類比轉換器)電路,並且由於低的供應電壓位準而可能有動態範圍的限制。圖11係進一步展示該自我測試的信號的大小是如何可以利用更佳的方式來加以改變。上方的圖係提出一用於低的大小(最小的力)的實施例。在該處,該CH1的定子S1及S2的每一個係在一時間期間TP_STF1只被激勵一次,亦即在該TP_STF1期間的個別的半部期間,每一個定子只有單一脈衝。應注意到的是,此圖只展示在定子與轉子電壓之間的差值的絕對值(abs)而已,而不是極性。下方的圖係提出一用於高的大小(最大的力)的實施例。在該處,該CH1的定子S1及S2的每一個係在該自我測試的音調時間期間TP_STF1的個別的半部期間的每次可利用的期間TS_CH1被激勵,亦即每一個定子有數個脈衝。該基本的(最低的)自我測試的頻率fST1並未在這些最小的力與最大的力的情形之間變化,因為其係藉由該週期TP_STF1所界定的。然而,該基本的音調的大小係被改變。亦可以看出的是該大小可以輕易地藉由改變在一測試信號期間的脈衝數量來加以改變。當兩個定子在自我測試期間都被保持在轉子電位時,並沒有額外的力被產生。重要的是,在兩個定子的方向上的自我測試的電壓脈衝的數量以及持續期間兩者都必須是以沒有不對稱的DC成分因為該自我測試的音調而被產生的此種方式相等的。亦注意到的是,該畫面係被簡化,因為在實際情形中,在單一TS_CH1期間,將會因為其它的自我測試的音調以及讀出期間而有非零的偏壓,但是這些並未被展示。而是,該定子至質量的電壓在STF1時槽之外係被假設為零。
該大小控制可以利用兩種不同的方法來加以達成。一選項係被展示在圖12中。該畫面係描繪一慣性的通道的轉子所看到的靜電力。在該圖中的絕對值是不重要的。正力脈衝係藉由非零的轉子至第一定子的偏壓而被產生,並且負電壓是藉由非零的轉子至第二定子的偏壓而被產生。只有單一非零的偏壓係被假設存在於非零的力脈衝是可見的時候。在該畫面中,該大小係藉由增加脈衝而被增大,因而脈衝的數量係被均勻地分布在該脈衝是正或負的期間的每一個半部期間。該基本頻率係維持相同的。在連續的脈衝之間的時間係根據不同的大小而改變。
該基本頻率成分之個別的相對的大小係被展示在圖13中。可看出的是,力的大小係利用在一自我測試的期間中的加倍的脈衝數量而加倍。然而,顯著的非線性可以在該最小的力被加倍時偵測到,在此情形中該力的大小只被增大約40%而已。同樣清楚的是,該基本的自我測試的頻率係具有多個諧波。這些較高頻的信號將會藉由該機械式元件的響應而被衰減,並且可以在該電子介面之內進一步被濾波。
一用於大小控制的第二選項係被描繪在圖14中。在此,該力的大小係藉由增加連續的樣本的數量而被增大。該些界定該力的脈衝係以最小的間隔(TS_CH)彼此相鄰地增加,因而兩個連續的脈衝是在被排定用於特定的慣性的通道之自我測試的輸入之連續的時槽中。在一串於連續的時槽中的脈衝之後,同一個定子可能有一些期間是沒有脈衝的時槽,直到一等長的串的在被排定用於該特定的慣性的通道之連續的時槽中之連續的脈衝被饋送至其它定子為止。此方法係容許在力的大小與每一週期期間的樣本數量之間的相同的線性比例能夠成立,直到接近該最大的力狀況為 止。尤其,如同在圖15中所示,此方法係在大小接近該最小值時,在脈衝的數量與大小之間提供一線性比例。然而,此替代方案在大小接近該最大的位準時,是以非線性的方式運作。設計者可以依據對於自我測試的音調的大小的線性之需要、以及將會較可能需要一接近最小值或是接近最大值的大小,來在該兩個用於大小控制的選項之間做選擇。
最終,對應於某一自我測試的音調(例如,具有頻率fST1的STF1)之一自我測試的信號將從該ADC輸出資料被抽取出,以用於監測。用以達成此的程序係被描繪在圖5中。在該信號於該降頻轉換模組(517)中的解調變之前,第一濾波係在一第一濾波器模組(516)中加以執行。此第一濾波較佳的是用於降低或移除任何高頻的干擾。應該被注意到的是,總共可以有n組濾波器以及解調變器,該n個慣性的通道的每一個分別有一組,因而所有的自我測試的音調都可被抽取出。在該降頻轉換模組(517)中利用該音調的用於解調變的基本頻率本身之解調變以及在該第二濾波器模組(518)中濾波其餘的AC成分之後,對應於個別的自我測試的音調(例如STF1)之所產生的自我測試的信號是位在DC之處。該有效的DC自我測試的信號的位準可以藉由如同關連圖11至15中所示的控制脈衝密度而被校準。該自我測試的信號的大小位準例如可以是該ADC轉換器的全刻度的動態範圍的0.5-1%,因而其係遠高於雜訊基準,但是又足夠低到使得該轉子之連續的測試運動並不會干擾到標稱操作。該測試信號的相位可以藉由移位相關該第一濾波器模組(516)的操作時脈相位來產生該自我測試的音調之脈衝串(如同相關於圖11、12及14所敘述者)的時序來加以控制。此係容許該自我測試的音調大小能夠在該降頻轉換模組(517)的輸入處被最大化。
單一自我測試的音調無法可靠地被使用於即時的連續的自我測試,因為機械式振動可能會命中該測試頻率,因而觸發一假警報。為此理由,較佳的是應該使用至少兩個音調頻率。圖16係提出用於兩個頻率的情形之一範例的自我測試的狀態機。此種類型的自我測試的狀態機可以存在於該監測模組519之內。該自我測試的狀態機的重要的功能是在自我測試產生錯誤前,相同的臨界值必須連續地被穿越預先選擇的次數。該些自我測試的音調係閘控該輸出的錯誤旗標,此係表示除非全部所需的自我測試的音調以及個別的狀態機都指出一錯誤,否則該警報或錯誤旗標無法被設定。所需的自我測試的音調的數量可以針對於該警報狀況來加以選擇。例如,在一警報被設定之前,用於所有的測試音調之所有的狀態機都指出一錯誤可能是必要的、或是在一警報被設定之前,用於測試音調的一子集合之狀態機的一子集合都將指出一錯誤可能是必要的。一警報可包括一錯誤旗標,其例如是一專用於指出錯誤的位元、或是該慣性感測器裝置的一輸出的一狀態。在接近自我測試的頻率之非常高的振動的存在下,自我測試的狀態機並無法給予一假的錯誤旗標,因為該慣性的輸入對於兩個音調將會造成相同次數的連續的錯誤極性是非常不可能的。該機率可以藉由利用更多的自我測試的音調,例如是在先前的例子中的三個、或甚至是更多個,而進一步被降低。
圖16係描繪一種加速度計的自我測試的方法的另一實施例。該實施例係應用該雙重錯誤偵測,並且藉由一進一步的極性檢查來強化該錯誤偵測,其係降低因為在具有挑戰性的操作環境中之亂真的外部運動所造成的假警報。此功能可見於如同在圖5中所示的自我測試的監測模 組519內。在圖16中,左手邊的流程係有關於一第一測試音調,並且右手邊的流程係有關於一第二測試音調。在該左手邊的流程中,該方法係開始於組態設定(階段1610)該加速度計的測試信號分析器,以包含一第一觸發狀況TC1,該第一觸發狀況TC1係設定用於具有一第一測試頻率輸入T_mf1的響應信號St1之一可接受的範圍、以及一第一極性計數器臨界值CTmax1,其係設定用於具有相同的極性之連續的異常值的一極限。為了該過程,參數POLprev1、CT1以及ERR1係被初始化(階段1612)。當接收到一響應信號St1時(階段1614),其係被檢查(階段1616)該信號值是否符合該第一觸發狀況TC1。若是的話,該過程可以返回到階段1612以用於初始化,並且接著繼續接收該響應信號St1。若否的話,該測試信號分析器將會檢查(階段1618)該界定的範圍是否第一次被穿越。當階段1616是第一次報告不OK的狀態時,則此係在階段1618中辨識出,並且POLnew1的值係被更新以匹配目前被處理的樣本的極性。若該穿越是第一次發生,則被認為是該過程可以返回到階段1614。若在階段1616發現一新的臨界值突破是接在一較早於階段1618中辨識出的突破之後,則該些極性參數的值係在階段1619中被更新:首先,POLprev1係被指定先前的POLnew1的值,而POLnew1之後係被給定目前被處理的樣本的極性值。
若該穿越已經不是第一次發生,則該測試信號分析器將會檢查(階段1620)該穿越的極性,亦即該值是上升超過、或是下降到低於所界定的範圍。該被判斷出的極性係接著與在所界定的範圍的一先前的穿越中的極性POLprev1做比較(階段1622)。若本次穿越POLnew1的極性與該先前的穿越POLprev1的極性並不相同,則該過程可以返回到階段1612以重置該計 數器以及極性值CT1。在該初始化/重置階段1612中,該參數POLprev1最初可以被給定負或是正極性值的任一個,並且之後被給定產生自階段1620的極性值POLnew1的值。若本次穿越POLnew1的被判斷出的極性是與在先前的穿越中的極性POLprev1相同的,則一第一極性計數器CT1係被增量(階段1624)。儘管未被展示,該狀態機可以進一步包括用於限制該CT1計數器的值之功能,因而CT1計數器的值絕不會超出該上限CTmax1。
該第一極性計數器CT1的增量值係相較於該預先定義的第一極性計數器臨界值CTmax1(階段1626)。若該計數器值CT1是低於該臨界值,則該過程可以返回到階段1614。若該計數器值超出該臨界值,則-一指出在該第一流程路徑中的一偵測到的錯誤狀態之布林變數ERR1係被設定為真(階段1628)。
類似地,在該右手邊的流程中,該方法係開始於組態設定(階段1650)該加速度計的測試信號分析器以包含一第二觸發狀況TC2,該第二觸發狀況TC2係設定用於具有一第二測試頻率輸入T_mf2的響應信號St2之一可接受的範圍、以及一第二極性計數器臨界值CTmax2,其係設定用於具有相同的極性之連續的異常值的一極限。為了該過程,參數POLprev2、CT2以及ERR2係被初始化(階段1652)。當接收到一響應信號St2時(階段1654),其係被檢查(階段1656)該信號值是否符合該第二觸發狀況TC2。若是的話,該過程可以返回到階段1652以用於初始化,並且接著繼續接收該響應信號St2。若否的話,該測試信號分析器將會檢查(階段1658)該界定的範圍現在是否第一次被穿越。當階段1656是第一次報告不OK的狀態時,則此係在階段1658中被辨識出,並且POLnew1的值係被更新以匹配目前被處 理的樣本的極性。若該穿越是第一次發生,則被認為是該過程可以返回到階段1654。若在階段1656發現一新的臨界值突破是接在一較早於階段1658中辨識出的突破之後,則該些極性參數的值係在階段1659中被更新:首先,POLprev2係被指定先前的POLnew2的值,而POLnew2之後係被給定目前被處理的樣本的極性值。
若否的話,該測試信號分析器將會檢查(階段1660)該穿越的極性,亦即該值是上升超過、或是下降到低於所界定的範圍。該被判斷出的極性POLnew2係接著與在所界定的範圍的一先前的穿越中的極性POLprev2做比較(階段1662)。若本次穿越POLnew2的極性與該先前的穿越POLprev2的極性並不相同,則該過程可以返回到階段1652以重置該計數器以及極性值。同樣在該初始化/重置階段1652中,該參數POLprev2最初可以被給定負或是正極性值的任一個,並且之後被給定產生自階段1660的極性值POLnew2的值。若該被判斷出的極性POLnew2是與該先前的極性POLprev2相同的,則一第二極性計數器CT2係被增量(階段1664)。該第二極性計數器CT2的增量值係相較於該預先定義的第二極性計數器臨界值CTmax2(階段1666)。若該計數器值是低於該臨界值,則該過程可以返回到階段1654。若該計數器值超出該臨界值,則一指出在該第二流程路徑中的一偵測到的錯誤狀態之布林變數ERR2係被設定為真(階段1668)。
該測試信號分析器現在可以檢查(階段1690)該些變數ERR1、ERR2,並且若該些變數都是真,則觸發一警報(階段1692),並且返回到階段1614、1654以繼續該些測試響應St1、St2的接收。若在階段1690中,該些變數ERR1、ERR2中只有一個、或是沒有一個是真,則該過程可 以直接返回到階段1614、1654。在一警報已經被給予之後,其可以用各種方式來加以禁能。例如,若ERR1及ERR2的後續的量測並沒有指出錯誤,其可以自動地被禁能、或是該禁能可以需要讀取該警報及/或某種類型的人為重置。在沒有偵測到進一步的警報之後的一警報的自動的禁能在任何假警報被觸發的情形中是有用的,該情形是可能的,儘管不太可能發生。
所敘述的用於連續失效的樣本之額外的極性檢查係有效地消除不必要的警報,並且因此使得該自我測試的功能為強健的,並且因此適合於要求非常高的應用。
對於熟習此項技術者而言明顯的是,隨著技術進步,本發明的基本的概念可以用各種方式來加以實施。因此,本發明以及其實施例並未被限制到以上的例子,而是它們可以在申請專利範圍的範疇內變化。
100、102‧‧‧可變電容器
104‧‧‧開關電容器讀出電路
106‧‧‧第一開關配置S1
108‧‧‧致動電路
110‧‧‧第二開關配置S2
114‧‧‧第三開關配置S3
120‧‧‧電容性元件
CH1‧‧‧慣性的通道
VCH1_S1、VCH1_S2‧‧‧偏壓電壓
VM‧‧‧轉子電壓
VOUTM、VOUTP‧‧‧輸出電壓
ΦCH1‧‧‧第一通道選擇期間

Claims (31)

  1. 一種具有連續的自我測試的電容式感測器裝置,該感測器裝置係包括:至少兩個電容性元件,其係被配置以偵測至少兩個慣性的通道;以及一多工器電路,其係被配置以在時間上多工處理該至少兩個慣性的通道,其特徵在於該至少兩個慣性的通道中的至少一個係包括至少兩個具有不同的基本頻率之自我測試的音調。
  2. 根據申請專利範圍第1項之具有連續的自我測試的電容式感測器裝置,其中,該感測器裝置進一步包括自我測試的控制電路,其係被配置以控制該至少兩個自我測試的音調進入到該感測器裝置的該至少一電容性元件的饋送;讀出電路,其係被配置以提供有關該至少兩個多工的慣性的通道的每一個之電壓讀出資訊;解多工器電路,其係被配置以解多工該至少兩個多工的慣性的通道成為至少兩個平行的慣性的輸出通道;以及自我測試的處理電路,其係被配置以處理該至少兩個慣性的輸出通道,以用於抽取對應於該至少兩個自我測試的音調之至少兩個自我測試的信號。
  3. 根據申請專利範圍第2項之具有連續的自我測試的電容式感測器裝置,其中,該感測器裝置進一步包括自我測試的監測電路,其係被配置以持續地分析該至少兩個自我測試 的信號,該自我測試的監測電路係在偵測到一錯誤狀況時觸發一警報。
  4. 根據申請專利範圍第1至3項的任一項之具有連續的自我測試的電容式感測器裝置,其中,該至少兩個電容性元件係包括電容式半橋電路,並且其中該電容式半橋電路係包括以下的任一個:一共同的轉子連接;以及個別的轉子連接。
  5. 根據申請專利範圍第2至3項的任一項之具有連續的自我測試的電容式感測器裝置,其中,該感測器裝置進一步包括至少一類比至數位轉換器電路,並且該至少兩個慣性的輸出通道係包括數位信號,並且該類比至數位轉換器電路係被配置以執行以下的任一個:在解多工該至少兩個慣性的通道以用於產生該至少兩個慣性的輸出通道之前,將該至少兩個慣性的通道轉換成為數位信號;以及在該至少兩個慣性的輸出通道已經被解多工之後,將該至少兩個慣性的輸出通道轉換成為數位信號。
  6. 根據申請專利範圍第2至3項的任一項之具有連續的自我測試的電容式感測器裝置,其中,該感測器裝置係包括用於饋送每一個自我測試的音調作為在時間上受控制的偏壓電壓脈衝至一所選的電容性元件的至少一定子之電路,其中該自我測試的音調被饋送至所選的電容性元件是只有在該個別的電容性元件未正被該讀出電路偵測時。
  7. 根據申請專利範圍第6項之具有連續的自我測試的電容式感測器裝置,其中,該自我測試的音調的該基本頻率係藉由切換被饋入所選的電容性元件的至少兩個定子的該些偏壓電壓脈衝的串的極性之頻率所界定。
  8. 根據申請專利範圍第6項之具有連續的自我測試的電容式感測器裝置,其中,該自我測試的音調的一相位係藉由在時間上調整被饋入所選的電容性元件的一所選的定子中的該串的偏壓電壓脈衝的開始的時序來加以調整。
  9. 根據申請專利範圍第6項之具有連續的自我測試的電容式感測器裝置,其中,該自我測試的音調的該些偏壓電壓脈衝係在以下的至少一個被饋送至該至少一定子:只有在另一慣性的通道的一通道選擇期間的一重置期間的期間;以及在另一慣性的通道的一通道選擇期間的一重置期間以及一讀出期間的期間。
  10. 根據申請專利範圍第6項之具有連續的自我測試的電容式感測器裝置,其中,該自我測試的控制模組係被配置以藉由調整被饋送至該至少一定子的該基本頻率的每一週期的偏壓電壓脈衝的一數量來控制該自我測試的音調的大小。
  11. 根據申請專利範圍第10項之具有連續的自我測試的電容式感測器裝置,其中,被饋送至該至少一定子的該基本頻率的每一週期的偏壓電壓脈衝的該數量係用以下的任一個來加以調整:在該自我測試的音調的該基本頻率的週期的每一個半部之一界定的部分期間,一在兩個連續的偏壓電壓脈衝之間的期間係維持相同的;以及在該自我測試的音調的該基本頻率的該週期上,偏壓電壓脈衝的設定的數量係被均勻地分配。
  12. 根據申請專利範圍第1至3項的任一項之具有連續的自我測試的電 容式感測器裝置,其中,該至少兩個慣性的通道的每一個係包括至少兩個具有不同的基本頻率之不同的自我測試的音調。
  13. 根據申請專利範圍第1至3項的任一項之具有連續的自我測試的電容式感測器裝置,其中,該電容式感測器裝置係包括至少三個電容性元件以用於偵測至少三個慣性的通道,其中該至少三個慣性的通道的每一個係包括至少兩個具有不同的基本頻率之不同的自我測試的音調。
  14. 根據申請專利範圍第1至3項的任一項之具有連續的自我測試的電容式感測器裝置,其中,該至少兩個自我測試的音調的每一個的頻率係高於所要的慣性的信號的頻率。
  15. 根據申請專利範圍第1至3項的任一項之具有連續的自我測試的電容式感測器裝置,其中,該自我測試的處理及監測電路係針對於每一個包括至少兩個自我測試的音調之慣性的輸出通道包括一組電路,每一組電路係包括:以下中的一個:i)用於內含在該個別的慣性的輸出通道中的每一個自我測試的音調之一降頻濾波器;以及ii)用於該慣性的輸出通道的一降頻濾波器;一組解調變器,內含在該個別的慣性的輸出通道中的每一個自我測試的音調係使用一解調變器,其係被配置以轉換該些自我測試的音調的每一個成為一對應於該個別的自我測試的音調之DC自我測試的信號;一第二組濾波器,其係用於抽取每一個自我測試的信號;以及一狀態機,其係用於持續地分析該些抽取出的自我測試的信號的大小 及極性。
  16. 根據申請專利範圍第2至3項的任一項之具有連續的自我測試的電容式感測器裝置,其中,一警報係在預先定義的一組自我測試的信號的每一個中之一預先定義的數量的連續的樣本指出具有相同的極性的錯誤時被觸發。
  17. 一種用於一電容式感測器裝置之連續的自我測試的方法,該方法係包括:偵測至少兩個電容性元件的輸出,該輸出係對應於至少兩個慣性的通道,以及在時間上多工處理該至少兩個慣性的通道,其特徵在於該至少兩個慣性的通道中的至少一個係包括至少兩個具有不同的基本頻率之自我測試的音調。
  18. 根據申請專利範圍第17項的用於一電容式感測器裝置之連續的自我測試的方法,其中,該方法進一步包括:控制該至少兩個自我測試的音調進入到該電容式感測器裝置的該至少一電容性元件的饋送;提供有關該至少兩個多工的慣性的通道的每一個之電壓讀出資訊;解多工該至少兩個多工的慣性的通道成為至少兩個平行的慣性的輸出通道;以及處理該至少兩個慣性的輸出通道以用於抽取對應於該至少兩個自我測試的音調之至少兩個自我測試的信號。
  19. 根據申請專利範圍第17至18項的任一項的用於一電容式感測器裝 置之連續的自我測試的方法,其中,該方法進一步包括:持續地分析該至少兩個自我測試的信號,以及根據該連續的分析,在偵測到一錯誤狀況時觸發一警報。
  20. 根據申請專利範圍第18項的用於一電容式感測器裝置之連續的自我測試的方法,其中,該至少兩個慣性的輸出通道係包括數位信號,並且該些數位信號係藉由以下的任一個來加以獲得:在解多工該至少兩個慣性的通道以用於產生該至少兩個慣性的輸出通道之前,將該至少兩個慣性的通道轉換成為數位信號;以及在該至少兩個慣性的輸出通道已經被解多工之後,將該至少兩個慣性的輸出通道轉換成為數位信號。
  21. 根據申請專利範圍第18項的用於一電容式感測器裝置之連續的自我測試的方法,其中,該方法進一步包括饋送每一個自我測試的音調作為在時間上受控制的偏壓電壓脈衝至一所選的電容性元件的至少一定子,其中該自我測試的音調被饋送至所選的電容性元件是只有在該個別的電容性元件未正被偵測時。
  22. 根據申請專利範圍第21項的用於一電容式感測器裝置之連續的自我測試的方法,其中,該方法進一步包括藉由切換被饋入所選的電容性元件的至少兩個定子的該串的偏壓電壓脈衝的極性的頻率來界定該自我測試的音調的該基本頻率。
  23. 根據申請專利範圍第22項的用於一電容式感測器之連續的自我測試的方法,其中,該方法進一步包括藉由在時間上調整被饋入所選的電容性元件的一所選的定子中的每一串的偏壓電壓脈衝的開始的時序,來控制該 自我測試的音調的一相位。
  24. 根據申請專利範圍第21至23項的任一項的用於一電容式感測器之連續的自我測試的方法,其中,該方法進一步包括藉由調整被饋送至該至少一定子的該基本頻率的每一週期的偏壓電壓脈衝的該數量,來控制該自我測試的音調的大小。
  25. 根據申請專利範圍第21至23項的任一項的用於一電容式感測器裝置之連續的自我測試的方法,其中,該偏壓電壓脈衝係在以下的至少一個被饋送至該至少一定子:只有在另一慣性的通道的一通道選擇期間的一重置期間的期間;以及在另一慣性的通道的一通道選擇期間的一重置期間以及一讀出期間的期間。
  26. 根據申請專利範圍第25項的用於一電容式感測器之連續的自我測試的方法,其中,該方法進一步包括調整被饋送至該感測器裝置的該至少一定子的該基本頻率的每一週期的偏壓電壓脈衝的該數量,該調整係包括以下的任一個:在該自我測試的音調的該基本頻率的週期的每一個半部之一界定的部分期間,保持在兩個連續的偏壓電壓脈衝之間的期間相同的;以及在該自我測試的音調的該基本頻率的該週期上,均勻地分配偏壓電壓脈衝的設定的數量。
  27. 根據申請專利範圍第17至18項的任一項的用於一電容式感測器之連續的自我測試的方法,其中,該至少兩個慣性的通道的每一個係包括至少兩個具有不同的基本頻率之不同的自我測試的音調。
  28. 根據申請專利範圍第17至18項的任一項的用於一電容式感測器之連續的自我測試的方法,其中,該電容式感測器裝置係包括至少三個電容性元件以用於偵測至少三個慣性的通道,其中該至少三個信號通道的每一個係包括至少兩個具有不同的基本頻率之不同的自我測試的音調。
  29. 根據申請專利範圍第17至18項的任一項的用於一電容式感測器之連續的自我測試的方法,其中,該至少兩個自我測試的音調的每一個的頻率係高於所要的慣性的信號的頻率。
  30. 根據申請專利範圍第18項的用於一電容式感測器之連續的自我測試的方法,其中,對於每一個包括自我測試的音調之慣性的輸出通道而言,該方法進一步包括:降頻濾波以下的任一個:個別地針對於在該個別的慣性的輸出通道中的每一個自我測試的音調之該慣性的輸出通道;以及每一個慣性的輸出通道;降頻轉換該些自我測試的音調的每一個至對應於一自我測試的音調之一DC自我測試的信號;濾波以用於抽取每一個自我測試的信號;以及持續地分析該些抽取出的自我測試的信號的大小及極性。
  31. 根據申請專利範圍第19項的用於一電容式感測器之連續的自我測試的方法,其中,該方法進一步包括在預先定義的一組自我測試的信號的每一個中之一預先定義的數量的連續的樣本指出具有相同的極性的錯誤時,觸發一警報。
TW104136836A 2015-01-12 2015-11-09 用於在電容感測器中進行連續自我測試的裝置和方法 TWI611189B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
??20155015 2015-01-12
FI20155015A FI127069B (en) 2015-01-12 2015-01-12 Continuous self-testing of capacitive sensor

Publications (2)

Publication Number Publication Date
TW201625952A true TW201625952A (zh) 2016-07-16
TWI611189B TWI611189B (zh) 2018-01-11

Family

ID=55221466

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104136836A TWI611189B (zh) 2015-01-12 2015-11-09 用於在電容感測器中進行連續自我測試的裝置和方法

Country Status (5)

Country Link
US (1) US10024882B2 (zh)
EP (1) EP3245523B1 (zh)
FI (1) FI127069B (zh)
TW (1) TWI611189B (zh)
WO (1) WO2016113653A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201600103234A1 (it) 2016-10-14 2018-04-14 Green Seas Ventures Ldt Sistema Costruttivo afferente un sensore capacitivo di tensione
EP3327446B1 (en) * 2016-11-24 2019-06-05 EM Microelectronic-Marin SA Capacitive accelerometer
US9983032B1 (en) 2017-06-01 2018-05-29 Nxp Usa, Inc. Sensor device and method for continuous fault monitoring of sensor device
EP3524999B1 (en) * 2018-02-08 2023-12-06 Nxp B.V. Built-in self-test for a radar unit receiver and method therefor
US10531213B2 (en) * 2018-03-29 2020-01-07 Cirrus Logic, Inc. MEMS transducer system
IT201800004114A1 (it) 2018-03-30 2019-09-30 Green Seas Ventures Ltd C/O Citco B V I Ltd Sistema costruttivo afferente un sensore capacitivo di tensione
US11112269B2 (en) 2018-07-09 2021-09-07 Analog Devices, Inc. Methods and systems for self-testing MEMS inertial sensors
CN109085370A (zh) * 2018-08-31 2018-12-25 高新兴创联科技有限公司 机车速度采集装置及控制方法
EP3899557A4 (en) 2018-12-17 2022-10-26 G & W Electric Company ELECTRIC DETECTOR ASSEMBLY
BR112021011522A2 (pt) 2018-12-17 2021-08-31 G & W Electric Company Conjunto de sensores elétricos
US11268975B2 (en) * 2019-12-19 2022-03-08 Invensense, Inc. Accelerometer sensitivity self-calibration with duty cycle control of drive signal
EP4092424A1 (en) * 2021-05-19 2022-11-23 Murata Manufacturing Co., Ltd. Safety mechanism for sensors
US11953533B2 (en) * 2021-06-15 2024-04-09 Capital One Services, Llc Detecting capacitive faults and sensitivity faults in capacitive sensors
US20230128205A1 (en) * 2021-10-25 2023-04-27 Stmicroelectronics S.R.L. Mems accelerometer self-test using a variable excitation voltage and fixed timing
US20230152346A1 (en) * 2021-11-16 2023-05-18 Alexey Vladimirovich Veryyaskin Capacitance sensing method and assembly

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5900529A (en) * 1997-07-10 1999-05-04 Trw Inc. Apparatus and method for testing an acceleration sensor
US6629448B1 (en) 2000-02-25 2003-10-07 Seagate Technology Llc In-situ testing of a MEMS accelerometer in a disc storage system
US6497146B1 (en) * 2000-09-15 2002-12-24 Bei Technologies, Inc. Inertial rate sensor and method with built-in testing
JP2004258019A (ja) * 2003-02-06 2004-09-16 Denso Corp 物理量センサ
US7031863B2 (en) * 2003-12-22 2006-04-18 Texas Instruments Incorporated Variable condition responsive sense system and method
TWI292034B (en) * 2006-01-18 2008-01-01 Analog Integrations Corp Single-chip device for micro-array inertial system
EP1959233A1 (en) * 2007-02-13 2008-08-20 STMicroelectronics S.r.l. Microelectromechanical gyroscope with self-test function and control method of a microelectromechanical gyroscope
US20090241634A1 (en) 2008-03-28 2009-10-01 Cenk Acar Micromachined accelerometer and method with continuous self-testing
US20100145660A1 (en) 2008-12-08 2010-06-10 Robert Bosch Gmbh Mems sensor with built-in self-test
IT1397594B1 (it) * 2009-12-21 2013-01-16 St Microelectronics Rousset Giroscopio microelettromeccanico con funzione di auto-test continua e metodo di controllo di un giroscopio microelettromeccanico.
US9238580B2 (en) 2013-03-11 2016-01-19 Analog Devices Global Spread-spectrum MEMS self-test system and method

Also Published As

Publication number Publication date
EP3245523A1 (en) 2017-11-22
US20160202286A1 (en) 2016-07-14
US10024882B2 (en) 2018-07-17
WO2016113653A1 (en) 2016-07-21
FI20155015A (fi) 2016-07-13
EP3245523B1 (en) 2022-03-02
FI127069B (en) 2017-10-31
TWI611189B (zh) 2018-01-11

Similar Documents

Publication Publication Date Title
TWI611189B (zh) 用於在電容感測器中進行連續自我測試的裝置和方法
CN108981760B (zh) 传感器装置和用于传感器装置的连续故障监测的方法
CN109073713B (zh) 用于使用频率响应来测量测试电池的内部阻抗的设备、系统和方法
US9727050B2 (en) Processing machinery protection and fault prediction data natively in a distributed control system
US6298709B1 (en) Sensor device
KR101619624B1 (ko) 트랜스듀서의 자동 캘리브레이션을 위한 시스템 및 방법
US6528982B1 (en) Jitter detector, phase difference detector and jitter detecting method
US20080103705A1 (en) Online Testing Of A Signal Path By Means Of At Least Two Test Signals
JP2001516059A5 (zh)
EP2060887A1 (en) Photodetector
US20210405085A1 (en) Sensing an icmfb output to detect functional state of a mems sensor
WO2015138116A1 (en) Integrated self-test for electro-mechanical capacitive sensors
JP2009097932A (ja) 容量型検出装置
KR20170091678A (ko) 노이즈-성형 연속 근사 adc 오버샘플링
US9329042B1 (en) Innovative angular sensor read-out multi-axes digital front-end chain
JP2011107086A (ja) 静電容量検出回路、圧力検出装置、加速度検出装置、および、マイクロフォン用トランスデューサ
JP4765708B2 (ja) 容量式物理量センサ
US10673416B2 (en) Suppression of electromagnetic interference in sensor signals
CN1120160A (zh) 检测热电偶开路状态的测试方法和设备
US11245409B2 (en) Systems and methods for removing low frequency offset components from a digital data stream
JP4590394B2 (ja) 電流センサおよび電流センサのオフセット除去方法
EP3144640B1 (en) Sensor arrangement and method for operation of a sensor
JP2010218056A (ja) データ収集システム
TWI753189B (zh) 處理連續感測器訊號的方法和感測器系統
JP5210646B2 (ja) 被測定信号の変化点を検出する装置、方法および試験装置