TW201624568A - Semiconductor device and method of manufacturing thereof - Google Patents

Semiconductor device and method of manufacturing thereof Download PDF

Info

Publication number
TW201624568A
TW201624568A TW103144753A TW103144753A TW201624568A TW 201624568 A TW201624568 A TW 201624568A TW 103144753 A TW103144753 A TW 103144753A TW 103144753 A TW103144753 A TW 103144753A TW 201624568 A TW201624568 A TW 201624568A
Authority
TW
Taiwan
Prior art keywords
layer
semiconductor device
based material
germanium
substrate
Prior art date
Application number
TW103144753A
Other languages
Chinese (zh)
Other versions
TWI548000B (en
Inventor
陳家政
Original Assignee
力晶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 力晶科技股份有限公司 filed Critical 力晶科技股份有限公司
Priority to TW103144753A priority Critical patent/TWI548000B/en
Priority to CN201510004401.9A priority patent/CN105826267B/en
Publication of TW201624568A publication Critical patent/TW201624568A/en
Application granted granted Critical
Publication of TWI548000B publication Critical patent/TWI548000B/en

Links

Landscapes

  • Element Separation (AREA)
  • Semiconductor Memories (AREA)

Abstract

A semiconductor device and a method of manufacturing thereof is provided. The method of manufacturing the semiconductor device includes the following steps. A substrate is provided, wherein a plurality of trenches are formed in the substrate and an oxide layer, a silicon-based layer and a mask layer are sequentially disposed on the substrate between the trenches. A dielectric layer is formed to fill the trenches and cover the mask layer, the silicon-based layer, the oxide layer and the substrate. An annealing process is performed on the substrate, wherein a silicon-hydrogen bond is formed between the hydrogen in the mask layer and the silicon in the silicon-based layer.

Description

半導體元件及其製作方法 Semiconductor component and manufacturing method thereof

本發明是有關於一種元件及其製作方法,且特別是有關於一種半導體元件及其製作方法。 The present invention relates to an element and a method of fabricating the same, and more particularly to a semiconductor element and a method of fabricating the same.

隨著積體電路的蓬勃發展,記憶體的特徵尺寸日益縮小,諸如負偏壓溫度不穩定性(NBTI,Negative Bias Temperature Instability)、熱載子注入(HCI,Hot Carrier Injection)、時依性介電層崩潰(TDDB,Time Dependence Dielectric Breakdown)等元件可靠性的問題也隨之產生。其中,NBTI效應是指元件在對閘極施加負偏壓的溫度應力條件下所產生的元件電性飄移,又以閘極起始電壓Vth的偏移最為嚴重,也就是說,隨著溫度應力條件增加,偏移的量也不斷增加。 With the development of integrated circuits, the feature size of memory is shrinking, such as Negative Bias Temperature Instability (NBTI), Hot Carrier Injection (HCI), and Time-dependent Injection (HCI). The problem of component reliability such as TDDB (Time Dependence Dielectric Breakdown) also arises. Among them, the NBTI effect refers to the electrical drift of the component under the temperature stress condition that the component applies a negative bias to the gate, and the offset of the gate initial voltage Vth is the most serious, that is, with the temperature stress. As the conditions increase, the amount of offset increases.

一般來說,認為氫對於NBTI具有一定的影響,其主要的論點聚焦在製程中氫的擴散與鍵結。舉例來說,在氧化矽與矽之間的介面陷阱(Interface Trap)中,當較弱的矽-氫鍵結在應力條件下被打斷後,空缺的介面陷阱會捕捉電洞(hole)而造成閘極起始電 壓Vth飄移。 In general, hydrogen is believed to have a certain effect on NBTI, and its main argument focuses on the diffusion and bonding of hydrogen in the process. For example, in an interface trap between yttrium oxide and ytterbium, when a weaker 矽-hydrogen bond is interrupted under stress conditions, the vacant interface trap captures a hole. Causing the start of the gate The pressure Vth drifts.

由此可知,在目前元件小型化的趨勢下,如何在有限的空間中兼顧元件的積集度及元件可靠度,將是各界研究的重點之一。 It can be seen that under the current trend of miniaturization of components, how to balance the integration of components and component reliability in a limited space will be one of the focuses of research.

本發明提供一種半導體元件及其製作方法,能改善負偏壓溫度不穩定性。 The present invention provides a semiconductor device and a method of fabricating the same that can improve negative bias temperature instability.

本發明的半導體元件的製作方法包括以下步驟。提供一基底,基底中已形成有多個溝槽,其中溝槽之間的基底上已依序配置有一氧化層、一矽基材料層以及一罩幕層。形成一介電層,以填入溝槽中並覆蓋罩幕層、矽基材料層、氧化層以及基底。對基底進行一退火製程,其中來自罩幕層的氫會與矽基材料層中的矽形成矽-氫鍵。 The method of fabricating the semiconductor device of the present invention includes the following steps. A substrate is provided, and a plurality of trenches are formed in the substrate, wherein an oxide layer, a germanium-based material layer and a mask layer are sequentially disposed on the substrate between the trenches. A dielectric layer is formed to fill the trench and cover the mask layer, the germanium-based material layer, the oxide layer, and the substrate. An annealing process is performed on the substrate, wherein hydrogen from the mask layer forms a 矽-hydrogen bond with the ruthenium in the ruthenium-based material layer.

在本發明的一實施例中,更包括於矽基材料層與罩幕層之間形成一氧化矽層。 In an embodiment of the invention, a ruthenium oxide layer is further formed between the ruthenium-based material layer and the mask layer.

在本發明的一實施例中,上述的氧化矽層的形成方法包括在形成罩幕層之前,對矽基材料層進行一氧化製程。 In an embodiment of the invention, the method for forming the ruthenium oxide layer includes performing an oxidation process on the ruthenium-based material layer prior to forming the mask layer.

在本發明的一實施例中,上述的氧化製程包括一快速熱氧化(RTO)。 In an embodiment of the invention, the oxidation process includes a rapid thermal oxidation (RTO).

在本發明的一實施例中,上述的氧化矽層的形成方法包括一低壓化學氣相沉積製程。 In an embodiment of the invention, the method for forming the ruthenium oxide layer includes a low pressure chemical vapor deposition process.

在本發明的一實施例中,上述的退火製程的溫度介於700 ℃至1000℃。 In an embodiment of the invention, the annealing process has a temperature of 700 °C to 1000 °C.

在本發明的一實施例中,上述的溝槽的深寬比大於4:1。 In an embodiment of the invention, the groove has an aspect ratio greater than 4:1.

在本發明的一實施例中,上述的矽基材料層包括一非晶矽層或一多晶矽層。 In an embodiment of the invention, the germanium-based material layer comprises an amorphous germanium layer or a poly germanium layer.

在本發明的一實施例中,上述的罩幕層為氮化矽層。 In an embodiment of the invention, the mask layer is a tantalum nitride layer.

在本發明的一實施例中,上述的形成矽基材料層的溫度低於退火製程的溫度。 In an embodiment of the invention, the temperature at which the bismuth-based material layer is formed is lower than the temperature of the annealing process.

在本發明的一實施例中,進行退火製程後,更包括移除部分介電層,以於溝槽中形成多個隔離結構。 In an embodiment of the invention, after performing the annealing process, the method further includes removing a portion of the dielectric layer to form a plurality of isolation structures in the trench.

在本發明的一實施例中,上述的移除部分介電層的方法包括以罩幕層為終止層,對介電層進行一平坦化製程。 In an embodiment of the invention, the method for removing a portion of the dielectric layer includes performing a planarization process on the dielectric layer with the mask layer as a termination layer.

在本發明的一實施例中,進行退火製程後,更包括移除罩幕層與矽基材料層。 In an embodiment of the invention, after the annealing process is performed, the mask layer and the germanium-based material layer are further removed.

在本發明的一實施例中,上述的移除罩幕層的方法包括使用一溼式蝕刻製程。 In an embodiment of the invention, the method of removing the mask layer includes using a wet etching process.

在本發明的一實施例中,上述的移除矽基材料層的方法包括使用一溼式蝕刻製程。 In an embodiment of the invention, the method of removing the layer of germanium-based material includes using a wet etching process.

本發明的半導體元件包括一基底、一氧化層、一矽基材料層、一罩幕層以及一介電層。基底中已形成有多個溝槽。氧化層配置於溝槽之間的基底上。矽基材料層配置於氧化層上。罩幕層配置於矽基材料層上,其中來自罩幕層的氫會與矽基材料層中的矽形成矽-氫鍵。介電層填入溝槽並覆蓋罩幕層、矽基材料層、氧化層以及基底。 The semiconductor device of the present invention comprises a substrate, an oxide layer, a germanium-based material layer, a mask layer, and a dielectric layer. A plurality of grooves have been formed in the substrate. The oxide layer is disposed on the substrate between the trenches. The ruthenium-based material layer is disposed on the oxide layer. The mask layer is disposed on the layer of germanium-based material, wherein hydrogen from the mask layer forms a helium-hydrogen bond with the germanium in the layer of germanium-based material. The dielectric layer fills the trench and covers the mask layer, the germanium-based material layer, the oxide layer, and the substrate.

在本發明的一實施例中,更包括一氧化矽層,配置於矽基材料層與罩幕層之間。 In an embodiment of the invention, a ruthenium oxide layer is further disposed between the ruthenium-based material layer and the mask layer.

在本發明的一實施例中,上述的氧化矽層的厚度介於10Å至50Å。 In an embodiment of the invention, the yttria layer has a thickness of between 10 Å and 50 Å.

在本發明的一實施例中,上述的矽基材料層與氧化矽層的介面之間的矽-氫鍵濃度高於基底與氧化層的介面之間的矽-氫鍵濃度。 In an embodiment of the invention, the 矽-hydrogen bond concentration between the bismuth-based material layer and the yttrium oxide layer interface is higher than the 矽-hydrogen bond concentration between the substrate and the oxide layer interface.

在本發明的一實施例中,上述的矽基材料層與罩幕層的介面之間的矽-氫鍵濃度高於基底與氧化層的介面之間的矽-氫鍵濃度。 In an embodiment of the invention, the 矽-hydrogen bond concentration between the ruthenium-based material layer and the mask layer interface is higher than the 矽-hydrogen bond concentration between the substrate and the oxide layer interface.

在本發明的一實施例中,上述的矽基材料層包括一非晶矽層或一多晶矽層。 In an embodiment of the invention, the germanium-based material layer comprises an amorphous germanium layer or a poly germanium layer.

在本發明的一實施例中,上述的罩幕層包括氮化矽層。 In an embodiment of the invention, the mask layer comprises a tantalum nitride layer.

在本發明的一實施例中,上述的氧化層的厚度介於1000Å至1500Å。 In an embodiment of the invention, the oxide layer has a thickness of between 1000 Å and 1500 Å.

在本發明的一實施例中,上述的矽基材料層與氧化矽層的介面之間的矽-氫鍵濃度高於基底與氧化層的介面之間的矽-氫鍵濃度。 In an embodiment of the invention, the 矽-hydrogen bond concentration between the bismuth-based material layer and the yttrium oxide layer interface is higher than the 矽-hydrogen bond concentration between the substrate and the oxide layer interface.

在本發明的一實施例中,上述的矽基材料層與罩幕層的介面之間的矽-氫鍵濃度高於基底與氧化層的介面之間的矽-氫鍵濃度。 In an embodiment of the invention, the 矽-hydrogen bond concentration between the ruthenium-based material layer and the mask layer interface is higher than the 矽-hydrogen bond concentration between the substrate and the oxide layer interface.

在本發明的一實施例中,上述的罩幕層的厚度介於500Å至1000Å。 In an embodiment of the invention, the mask layer has a thickness of between 500 Å and 1000 Å.

在本發明的一實施例中,更包括一襯墊氧化層,配置於溝槽與介電層之間。 In an embodiment of the invention, a pad oxide layer is further disposed between the trench and the dielectric layer.

基於上述,本發明是在基底與含有氫的罩幕層之間形成一 矽基材料層,矽基材料層能捕捉因高溫製程而由罩幕層驅入至基底的氫。如此一來,能避免氫被捕捉於氧化層與基底之間的介面之介面陷阱,進而改善負偏壓溫度不穩定性。 Based on the above, the present invention forms a gap between the substrate and the mask layer containing hydrogen. The ruthenium-based material layer, which is capable of capturing hydrogen driven by the mask layer to the substrate due to the high temperature process. In this way, hydrogen can be prevented from being trapped in the interface interface between the oxide layer and the substrate, thereby improving the negative bias temperature instability.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 The above described features and advantages of the invention will be apparent from the following description.

100‧‧‧基底 100‧‧‧Base

102‧‧‧第一區 102‧‧‧First District

104‧‧‧第二區 104‧‧‧Second District

110‧‧‧氧化層 110‧‧‧Oxide layer

120‧‧‧矽基材料層 120‧‧‧矽 base material layer

122‧‧‧氧化矽層 122‧‧‧Oxide layer

130‧‧‧罩幕層 130‧‧‧ Cover layer

140‧‧‧溝槽 140‧‧‧ trench

142‧‧‧襯墊氧化層 142‧‧‧Sheath oxide layer

150‧‧‧介電層 150‧‧‧ dielectric layer

160‧‧‧隔離結構 160‧‧‧Isolation structure

AP‧‧‧退火製程 AP‧‧‧ Annealing Process

圖1A至圖1C為依照本發明實施例所繪示之非揮發性記憶體的製造流程的示意圖。 1A-1C are schematic diagrams showing a manufacturing process of a non-volatile memory according to an embodiment of the invention.

圖1A至圖1C為依照本發明實施例所繪示之半導體元件的製作流程的示意圖。首先,請參照圖1A,提供基底100,基底中已形成有多個溝槽140,其中溝槽140之間的基底100上已依序配置有氧化層110、矽基材料層120以及罩幕層130。基底100例如為矽基底。基底100例如是包括第一區102與第二區104。第一區102例如是高壓電路區,第二區104例如是低壓電路區,而高壓電路區與低壓電路區組合即為週邊電路區。基底100例如是更包括記憶胞區,但省略繪示之。 1A-1C are schematic diagrams showing a manufacturing process of a semiconductor device according to an embodiment of the invention. First, referring to FIG. 1A, a substrate 100 is provided. A plurality of trenches 140 are formed in the substrate. The substrate 100 between the trenches 140 is sequentially provided with an oxide layer 110, a germanium-based material layer 120, and a mask layer. 130. The substrate 100 is, for example, a crucible substrate. The substrate 100 includes, for example, a first region 102 and a second region 104. The first region 102 is, for example, a high voltage circuit region, the second region 104 is, for example, a low voltage circuit region, and the combination of the high voltage circuit region and the low voltage circuit region is a peripheral circuit region. The substrate 100 includes, for example, a memory cell region, but is not shown.

在本實施例中,位於第一區102的氧化層110例如是高壓閘氧化層,其厚度例如是介於1000Å至1500Å,位於第二區104的氧化 層110例如是襯墊氧化層,其厚度例如是介於100Å至150Å。在本實施例中,氧化層110的材料例如是氧化矽,其形成方法例如是熱氧化法。 In the present embodiment, the oxide layer 110 located in the first region 102 is, for example, a high-voltage gate oxide layer having a thickness of, for example, 1000 Å to 1500 Å, which is located in the second region 104. Layer 110 is, for example, a pad oxide layer having a thickness of, for example, between 100 Å and 150 Å. In the present embodiment, the material of the oxide layer 110 is, for example, ruthenium oxide, and the formation method thereof is, for example, a thermal oxidation method.

矽基材料層120例如是多晶矽層或非晶矽層,其厚度例如是介於100Å至300Å。矽基材料層120的形成方法例如是以矽甲烷作為氣體源進行低壓化學氣相沉積製程,其沈積溫度例如是介於500℃至550℃。在本實施例中,更包括於矽基材料層120與罩幕層130之間形成一氧化矽層122。氧化矽層122的形成方法可以是對矽基材料層120的表面進行一氧化製程或者是於矽基材料層120上沈積一氧化矽層,以形成諸如二氧化矽/多晶矽介面。氧化製程可以是快速熱氧化(RTO),其溫度例如是介於500℃至800℃,其氣體例如是氧氣,以及其氣體流量例如是介於1slm至30slm。沈積方法可以是低壓化學氣相沉積製程,沈積溫度例如是介於500℃至550℃,其氣體例如是氧氣,以及其氣體流量例如是介於1slm至30slm。其中,矽基材料層120與氧化矽層122可以在相同的沈積腔室中進行,也就是以原位方式依序形成矽基材料層120與氧化矽層122,其中矽基材料層120與氧化矽層122的沈積溫度例如是相同。氧化矽層122的厚度例如是介於10Å至50Å。 The germanium-based material layer 120 is, for example, a polysilicon layer or an amorphous germanium layer, and has a thickness of, for example, 100 Å to 300 Å. The method for forming the germanium-based material layer 120 is, for example, a low-pressure chemical vapor deposition process using germanium methane as a gas source, and the deposition temperature thereof is, for example, between 500 ° C and 550 ° C. In this embodiment, a ruthenium oxide layer 122 is further formed between the ruthenium-based material layer 120 and the mask layer 130. The ruthenium oxide layer 122 may be formed by performing an oxidation process on the surface of the ruthenium-based material layer 120 or depositing a ruthenium oxide layer on the ruthenium-based material layer 120 to form a ruthenium dioxide/polysilicon interface. The oxidation process may be rapid thermal oxidation (RTO), such as a temperature between 500 ° C and 800 ° C, a gas such as oxygen, and a gas flow rate of, for example, between 1 slm and 30 slm. The deposition method may be a low pressure chemical vapor deposition process, for example, a deposition temperature of from 500 ° C to 550 ° C, a gas such as oxygen, and a gas flow rate of, for example, from 1 slm to 30 slm. Wherein, the ruthenium-based material layer 120 and the ruthenium oxide layer 122 may be performed in the same deposition chamber, that is, the ruthenium-based material layer 120 and the ruthenium oxide layer 122 are sequentially formed in an in-situ manner, wherein the ruthenium-based material layer 120 is oxidized. The deposition temperature of the germanium layer 122 is, for example, the same. The thickness of the yttrium oxide layer 122 is, for example, between 10 Å and 50 Å.

罩幕層130例如是氮化矽層,其厚度例如是介於500Å至1000Å。罩幕層130的形成方法例如是以含氫氣體為氣體源進行沉積製程,其中氣體源例如是二氯乙烷和氨氣。其中,沈積製程可為低壓化學氣相沉積製程,沈積溫度例如是介於700℃至800℃。特別注意的 是,在沉積製程中,氣體源通常都會有反應不完全的現象,因此所沈積後的膜層會包括未反應之氣體源中的氣體,也就是說,罩幕層130中含有氫。 The mask layer 130 is, for example, a tantalum nitride layer having a thickness of, for example, 500 Å to 1000 Å. The method of forming the mask layer 130 is, for example, a deposition process using a hydrogen-containing gas as a gas source, such as dichloroethane and ammonia. The deposition process may be a low pressure chemical vapor deposition process, and the deposition temperature is, for example, between 700 ° C and 800 ° C. Special attention Yes, in the deposition process, the gas source usually has a phenomenon of incomplete reaction, so the deposited film layer will include the gas in the unreacted gas source, that is, the mask layer 130 contains hydrogen.

在本實施例中,溝槽140例如是具有高深寬比,諸如大於4:1。溝槽140的形成方法例如是以罩幕層130為罩幕,移除部分氧化矽層122、矽基材料層120、氧化層110以及基底100,以形成多個溝槽140。其中,移除部分氧化矽層122、矽基材料層120、氧化層110以及基底100的方法例如是乾式蝕刻製程或溼式蝕刻製程。溝槽140例如是位於第一區102與第二區104之間,且特定言之,溝渠104的一部分位於第一區102以及溝渠104的另一部分位於第二區104。 In the present embodiment, the trench 140 has, for example, a high aspect ratio, such as greater than 4:1. The trench 140 is formed by, for example, masking the mask layer 130, removing a portion of the hafnium oxide layer 122, the germanium-based material layer 120, the oxide layer 110, and the substrate 100 to form a plurality of trenches 140. The method of removing the partial yttrium oxide layer 122, the ruthenium-based material layer 120, the oxide layer 110, and the substrate 100 is, for example, a dry etching process or a wet etching process. The trench 140 is, for example, located between the first region 102 and the second region 104, and in particular, a portion of the trench 104 is located in the first region 102 and another portion of the trench 104 is located in the second region 104.

請參照圖1B,在本實施例中,於形成溝槽140後,更包括於溝槽140中形成襯墊氧化層142。襯墊氧化層142的材質例如是氧化矽,其形成方法例如是熱氧化法、臨場蒸氣產生(ISSG)氧化法、化學氣相沉積法(CVD)、原子層沉積法(ALD)或爐管氧化法。襯墊氧化層142的厚度例如是介於100Å至150Å。 Referring to FIG. 1B , in the embodiment, after the trench 140 is formed, the pad oxide layer 142 is further formed in the trench 140 . The material of the pad oxide layer 142 is, for example, ruthenium oxide, and the formation method thereof is, for example, thermal oxidation, on-site vapor generation (ISSG) oxidation, chemical vapor deposition (CVD), atomic layer deposition (ALD) or furnace tube oxidation. law. The thickness of the pad oxide layer 142 is, for example, between 100 Å and 150 Å.

然後,形成一介電層150,以填入溝槽140中並覆蓋罩幕層130、矽基材料層120、氧化層110以及基底100。介電層150例如是包括適於填入高深寬比溝槽的材料。 Then, a dielectric layer 150 is formed to fill the trench 140 and cover the mask layer 130, the germanium-based material layer 120, the oxide layer 110, and the substrate 100. Dielectric layer 150 is, for example, a material that is adapted to fill a high aspect ratio trench.

而後,基底100進行一退火製程AP。退火製程AP例如是使用常壓爐管,其溫度例如是介於700℃至1000℃。在本實施例中,退火製程AP例如是用以使填入溝槽140中的填入材料緻密,也就是使得介電層150能完整地填入溝槽140中。當然,在其他實施例中,退 火製程AP也有可能是其他元件製作過程中使用的高溫製程,本發明不以此為限。特別注意的是,在進行退火製程AP時,罩幕層130中的氫會產生逸氣現象,或驅入至基底100而被矽基材料層120或基底100的介面陷阱捕捉,因而形成鍵結強度弱的矽-氫鍵。在本實施例中,由於在基底100與罩幕層130之間形成矽基材料層120,因此由罩幕層130驅入至基底100的氫會優先驅入矽基材料層120與罩幕層130的介面,而被介面陷阱補捉,而僅有少數的氫會進一步驅入至基底100與氧化層110的介面。也就是說,矽基材料層120與罩幕層130的介面之間的矽-氫鍵濃度高於基底100與氧化層110的介面之間的矽-氫鍵濃度。此外,由於矽基材料層120與罩幕層130之間更形成有氧化矽層122,因此由罩幕層130驅入至基底100的氫會更輕易地被捕捉於矽基材料層120與氧化矽層122之間的介面陷阱。因此,在本實施例中,矽基材料層120與氧化矽層122的介面之間的矽-氫鍵濃度高於基底100與氧化層110的介面之間的矽-氫鍵濃度。 Then, the substrate 100 is subjected to an annealing process AP. The annealing process AP is, for example, an atmospheric pressure furnace tube whose temperature is, for example, between 700 ° C and 1000 ° C. In the present embodiment, the annealing process AP is used, for example, to densify the fill material filled in the trenches 140, that is, to allow the dielectric layer 150 to be completely filled into the trenches 140. Of course, in other embodiments, The fire process AP may also be a high temperature process used in the fabrication of other components, and the invention is not limited thereto. It is particularly noted that hydrogen is generated in the mask layer 130 during the annealing process AP, or is driven into the substrate 100 to be trapped by the interface of the germanium-based material layer 120 or the substrate 100, thereby forming a bond. A weak 矽-hydrogen bond. In the present embodiment, since the germanium-based material layer 120 is formed between the substrate 100 and the mask layer 130, hydrogen driven by the mask layer 130 to the substrate 100 preferentially drives the germanium-based material layer 120 and the mask layer. The interface of 130 is trapped by the interface trap, and only a small amount of hydrogen is further driven into the interface of the substrate 100 and the oxide layer 110. That is, the 矽-hydrogen bond concentration between the ruthenium-based material layer 120 and the interface of the mask layer 130 is higher than the 矽-hydrogen bond concentration between the interface of the substrate 100 and the oxide layer 110. In addition, since the ruthenium oxide layer 122 is further formed between the ruthenium-based material layer 120 and the mask layer 130, hydrogen driven by the mask layer 130 to the substrate 100 is more easily captured by the ruthenium-based material layer 120 and oxidized. Interface traps between layers 122. Therefore, in the present embodiment, the 矽-hydrogen bond concentration between the interface of the ruthenium-based material layer 120 and the ruthenium oxide layer 122 is higher than the 矽-hydrogen bond concentration between the interface of the substrate 100 and the oxide layer 110.

在本實施例中,半導體元件包括基底100、氧化層110、矽基材料層120、罩幕層130以及介電層150。基底100中已形成有多個溝槽140。氧化層110配置於溝槽140之間的基底100上。矽基材料層120配置於氧化層110上。罩幕層130配置於矽基材料層120上,其中來自罩幕層130的氫會與矽基材料層120中的矽形成矽-氫鍵。介電層150填入溝槽140並覆蓋罩幕層130、矽基材料層120、氧化層110以及基底100。在本實施例中,更包括氧化矽層122與襯墊氧化層142。氧化矽層122例如是配置於矽基材料層120與罩幕層130之 間。襯墊氧化層142配置於溝槽140與介電層150之間。 In the present embodiment, the semiconductor device includes a substrate 100, an oxide layer 110, a germanium-based material layer 120, a mask layer 130, and a dielectric layer 150. A plurality of trenches 140 have been formed in the substrate 100. The oxide layer 110 is disposed on the substrate 100 between the trenches 140. The germanium-based material layer 120 is disposed on the oxide layer 110. The mask layer 130 is disposed on the ruthenium-based material layer 120, wherein hydrogen from the mask layer 130 forms a 矽-hydrogen bond with ruthenium in the ruthenium-based material layer 120. The dielectric layer 150 fills the trench 140 and covers the mask layer 130, the germanium-based material layer 120, the oxide layer 110, and the substrate 100. In this embodiment, the ruthenium oxide layer 122 and the pad oxide layer 142 are further included. The yttrium oxide layer 122 is disposed, for example, on the ruthenium-based material layer 120 and the mask layer 130. between. The pad oxide layer 142 is disposed between the trench 140 and the dielectric layer 150.

接下來將進一步描述後續製程。請參照圖1C,接著,在進行退火製程AP後,移除部分介電層150,以於溝槽140中形成多個隔離結構160。在本實施例中,移除部分介電層150的方法包括以罩幕層130為終止層,對介電層150進行一平坦化製程。 The subsequent process will be further described next. Referring to FIG. 1C , after the annealing process AP is performed, a portion of the dielectric layer 150 is removed to form a plurality of isolation structures 160 in the trenches 140 . In the present embodiment, the method of removing a portion of the dielectric layer 150 includes performing a planarization process on the dielectric layer 150 with the mask layer 130 as a termination layer.

然後,移除罩幕層130以及矽基材料層120。移除罩幕層130的方法例如是溼式蝕刻製程,諸如使用熱磷酸。移除矽基材料層120的方法例如是溼式蝕刻製程,諸如使用稀釋氫氟酸(diluted hydrofluoric acid,DHF)與稀釋的氨水與過氧化氫的混合液(diluted ammonium peroxide mixture,DAPM)。在本實施例中,更包括移除氧化矽層122,其方法包括溼式蝕刻製程,諸如使用稀釋的氨水與過氧化氫的混合液(DAPM)。接著,後續再視元件需求來進行一般熟悉的製程步驟,諸如高壓閘極製作等,而這些步驟已為公知技術,於此不再另行說明。 Then, the mask layer 130 and the germanium-based material layer 120 are removed. The method of removing the mask layer 130 is, for example, a wet etching process, such as using hot phosphoric acid. The method of removing the ruthenium-based material layer 120 is, for example, a wet etching process such as the use of diluted hydrofluoric acid (DHF) and diluted aqueous ammonia mixture (DAPM). In this embodiment, the method further includes removing the ruthenium oxide layer 122 by a wet etching process such as using a mixed solution of diluted aqueous ammonia and hydrogen peroxide (DAPM). Subsequent re-viewing of component requirements to perform generally familiar process steps, such as high voltage gate fabrication, etc., are well known in the art and will not be further described herein.

一般來說,由於填入材料對於高深寬比之溝槽具有一定的製程極限,因此在將填入材料填入溝槽後,會進行一高溫退火製程以使填入材料緻密化。然而,此高溫退火製程會導致罩幕層中的氫產生逸氣現象,或驅入至基底與閘氧化層的介面且被介面陷阱捕捉,因而形成鍵結強度弱的矽-氫鍵。此弱的矽-氫鍵會在壓力測試下斷鍵,進而導致閘極起始電壓Vth飄移。在本實施例中,在基底100與含有氫的罩幕層130之間形成一矽基材料層120,使得矽基材料層120的介面陷阱能優先捕捉因退火製程等高溫製程而由罩 幕層130驅入至基底100的氫。因此,能避免氫被捕捉於氧化層110與基底100之間的介面之介面陷阱,進而改善負偏壓溫度不穩定性。 此外,在本實施例中,進一步於矽基材料層120的表面上形成氧化矽層122,使得矽基材料層120/氧化矽層122的介面能優先捕捉原先驅入至基底100/氧化層110的介面的氫,如此能大幅減少存在於基底100/氧化層110的介面處的弱鍵結的矽-氫鍵。此外,在進行退火製程後,會去除矽基材料層120與氧化矽層122,也就是矽基材料層120與氧化矽層122不會作為後續的閘極材料,因此能避免已被捕捉的氫再度逸出。如此一來,能大幅改善閘極起始電壓Vth在壓力測試下所產生的偏移情形。因此,本實施例的半導體元件具有改善的高壓閘極負偏壓溫度不穩定性,故具有較佳的良率與元件特性。 In general, since the filled material has a certain process limit for the trench having a high aspect ratio, after the filling material is filled into the trench, a high temperature annealing process is performed to densify the filled material. However, this high temperature annealing process may cause hydrogen evolution in the mask layer, or drive into the interface of the substrate and the gate oxide layer and be trapped by the interface trap, thereby forming a 矽-hydrogen bond with weak bonding strength. This weak 矽-hydrogen bond will break under the pressure test, which will cause the gate start voltage Vth to drift. In this embodiment, a germanium-based material layer 120 is formed between the substrate 100 and the hydrogen-containing mask layer 130, so that the interface trap of the germanium-based material layer 120 can preferentially capture the mask due to a high-temperature process such as an annealing process. The curtain layer 130 drives the hydrogen into the substrate 100. Therefore, it is possible to prevent hydrogen from being trapped in the interface interface between the oxide layer 110 and the substrate 100, thereby improving the negative bias temperature instability. In addition, in the present embodiment, the yttrium oxide layer 122 is further formed on the surface of the ruthenium-based material layer 120 such that the interface of the ruthenium-based material layer 120/the yttrium oxide layer 122 preferentially captures the original drive to the substrate 100/oxide layer 110. The hydrogen of the interface can greatly reduce the 矽-hydrogen bonds of the weak bonds present at the interface of the substrate 100/oxide layer 110. In addition, after the annealing process, the germanium-based material layer 120 and the hafnium oxide layer 122 are removed, that is, the germanium-based material layer 120 and the hafnium oxide layer 122 are not used as a subsequent gate material, thereby avoiding trapped hydrogen. Escape again. As a result, the offset generated by the gate start voltage Vth under the stress test can be greatly improved. Therefore, the semiconductor element of the present embodiment has an improved high-voltage gate negative bias temperature instability, so that it has better yield and element characteristics.

綜上所述,本發明之一實施例是在基底與含有氫的罩幕層之間形成矽基材料層或者是矽基材料層與氧化矽層,使得矽基材料層或矽基材料層與氧化矽層的介面能優先捕捉因退火製程而由罩幕層驅入至基底的氫。如此一來,能避免氫驅入氧化層與基底之間的介面,以大幅降低氫被捕捉於氧化層與基底之間的介面之介面陷阱。也就是說,使得矽基材料層與氧化矽層的介面之間的矽-氫鍵濃度遠高於基底與氧化層的介面之間的矽-氫鍵濃度。此外,在進行退火製程之後,會移除矽基材料層與氧化矽層,而不以其作為後續用以製作閘極的材料,如此能避免已捕捉的氫再度逸出而影響閘極的特性。如此一來,能大幅改善閘極起始電壓Vth在壓力測試下所產生的偏移情形。因此,本實施例的半導體元件具有改善的高壓閘極負偏壓溫度不穩定 性,故具有較佳的良率與元件特性。 In summary, an embodiment of the present invention forms a germanium-based material layer or a germanium-based material layer and a tantalum oxide layer between the substrate and the hydrogen-containing mask layer, such that the germanium-based material layer or the germanium-based material layer The interface of the yttrium oxide layer preferentially captures hydrogen that is driven into the substrate by the mask layer due to the annealing process. In this way, hydrogen can be prevented from driving into the interface between the oxide layer and the substrate to greatly reduce the interface trap of hydrogen trapped between the oxide layer and the substrate. That is, the concentration of the 矽-hydrogen bond between the interface of the ruthenium-based material layer and the ruthenium oxide layer is much higher than the 矽-hydrogen bond concentration between the interface of the substrate and the oxide layer. In addition, after the annealing process, the germanium-based material layer and the hafnium oxide layer are removed, instead of being used as a material for subsequently forming the gate, so that the trapped hydrogen can be prevented from re-escape and affect the characteristics of the gate. . As a result, the offset generated by the gate start voltage Vth under the stress test can be greatly improved. Therefore, the semiconductor device of the present embodiment has an improved high voltage gate negative bias temperature instability Sex, so it has better yield and component characteristics.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.

100‧‧‧基底 100‧‧‧Base

102‧‧‧第一區 102‧‧‧First District

104‧‧‧第二區 104‧‧‧Second District

110‧‧‧氧化層 110‧‧‧Oxide layer

120‧‧‧矽基材料層 120‧‧‧矽 base material layer

122‧‧‧氧化矽層 122‧‧‧Oxide layer

130‧‧‧罩幕層 130‧‧‧ Cover layer

140‧‧‧溝槽 140‧‧‧ trench

142‧‧‧襯墊氧化層 142‧‧‧Sheath oxide layer

150‧‧‧介電層 150‧‧‧ dielectric layer

AP‧‧‧退火製程 AP‧‧‧ Annealing Process

Claims (25)

一種半導體元件的製作方法,包括:提供一基底,該基底中已形成有多個溝槽,其中該些溝槽之間的基底上已依序配置有一氧化層、一矽基材料層以及一罩幕層;形成一介電層,以填入該些溝槽中並覆蓋該罩幕層、該矽基材料層、該氧化層以及該基底;以及對該基底進行一退火製程,其中來自該罩幕層的氫會與該矽基材料層中的矽形成矽-氫鍵。 A method of fabricating a semiconductor device, comprising: providing a substrate having a plurality of trenches formed therein, wherein an oxide layer, a germanium-based material layer, and a mask are sequentially disposed on the substrate between the trenches a mask layer; forming a dielectric layer to fill the trenches and covering the mask layer, the germanium-based material layer, the oxide layer, and the substrate; and performing an annealing process on the substrate, wherein the mask is from the mask The hydrogen of the curtain layer forms a 矽-hydrogen bond with the ruthenium in the ruthenium-based material layer. 如申請專利範圍第1項所述之半導體元件的製作方法,更包括於該矽基材料層與該罩幕層之間形成一氧化矽層。 The method for fabricating a semiconductor device according to claim 1, further comprising forming a hafnium oxide layer between the germanium-based material layer and the mask layer. 如申請專利範圍第2項所述之半導體元件的製作方法,其中該氧化矽層的形成方法包括在形成該罩幕層之前,對該矽基材料層進行一氧化製程。 The method of fabricating a semiconductor device according to claim 2, wherein the method for forming the ruthenium oxide layer comprises performing an oxidation process on the ruthenium-based material layer before forming the mask layer. 如申請專利範圍第3項所述之半導體元件的製作方法,其中該氧化製程包括一快速熱氧化(RTO)。 The method of fabricating a semiconductor device according to claim 3, wherein the oxidation process comprises a rapid thermal oxidation (RTO). 如申請專利範圍第2項所述之半導體元件的製作方法,其中該氧化矽層的形成方法包括一低壓化學氣相沉積製程。 The method of fabricating a semiconductor device according to claim 2, wherein the method for forming the ruthenium oxide layer comprises a low pressure chemical vapor deposition process. 如申請專利範圍第1項所述之半導體元件的製作方法,其中該退火製程的溫度介於700℃至1000℃。 The method for fabricating a semiconductor device according to claim 1, wherein the annealing process has a temperature of from 700 ° C to 1000 ° C. 如申請專利範圍第1項所述之半導體元件的製作方法,其中該些溝槽的深寬比大於4:1。 The method of fabricating the semiconductor device of claim 1, wherein the trenches have an aspect ratio greater than 4:1. 如申請專利範圍第1項所述之半導體元件的製作方法,其中該矽基材料層包括一非晶矽層或一多晶矽層。 The method of fabricating a semiconductor device according to claim 1, wherein the germanium-based material layer comprises an amorphous germanium layer or a poly germanium layer. 如申請專利範圍第1項所述之半導體元件的製作方法,其中該罩幕層為氮化矽層。 The method of fabricating a semiconductor device according to claim 1, wherein the mask layer is a tantalum nitride layer. 如申請專利範圍第1項所述之半導體元件的製作方法,其中形成該矽基材料層的溫度低於該退火製程的溫度。 The method of fabricating a semiconductor device according to claim 1, wherein a temperature at which the bismuth-based material layer is formed is lower than a temperature of the annealing process. 如申請專利範圍第1項所述之半導體元件的製作方法,進行該退火製程後,更包括移除部分該介電層,以於該些溝槽中形成多個隔離結構。 The method for fabricating a semiconductor device according to claim 1, after the annealing process, further comprising removing a portion of the dielectric layer to form a plurality of isolation structures in the trenches. 如申請專利範圍第11項所述之半導體元件的製作方法,其中移除部分該介電層的方法包括以該罩幕層為終止層,對該介電層進行一平坦化製程。 The method of fabricating a semiconductor device according to claim 11, wherein the method of removing a portion of the dielectric layer comprises performing a planarization process on the dielectric layer by using the mask layer as a termination layer. 如申請專利範圍第1項所述之半導體元件的製作方法,進行該退火製程後,更包括移除該罩幕層與該矽基材料層。 The method for fabricating a semiconductor device according to claim 1, after the annealing process, further comprising removing the mask layer and the germanium-based material layer. 如申請專利範圍第13項所述之半導體元件的製作方法,其中移除該罩幕層的方法包括使用一溼式蝕刻製程。 The method of fabricating a semiconductor device according to claim 13, wherein the method of removing the mask layer comprises using a wet etching process. 如申請專利範圍第13項所述之半導體元件的製作方法,其中移除該矽基材料層的方法包括使用一溼式蝕刻製程。 The method of fabricating a semiconductor device according to claim 13, wherein the method of removing the germanium-based material layer comprises using a wet etching process. 一種半導體元件,包括:一基底,該基底中已形成有多個溝槽;一氧化層,配置於該些溝槽之間的該基底上;一矽基材料層,配置於該氧化層上;一罩幕層,配置於該矽基材料層上,其中來自該罩幕層的氫會與該矽基材料層中的矽形成矽-氫鍵;以及一介電層,填入該些溝槽並覆蓋該罩幕層、該矽基材料層、該氧 化層以及該基底。 A semiconductor device comprising: a substrate having a plurality of trenches formed therein; an oxide layer disposed on the substrate between the trenches; a germanium-based material layer disposed on the oxide layer; a mask layer disposed on the germanium-based material layer, wherein hydrogen from the mask layer forms a germanium-hydrogen bond with germanium in the germanium-based material layer; and a dielectric layer fills the trenches And covering the mask layer, the germanium-based material layer, and the oxygen Layer and the substrate. 如申請專利範圍第16項所述之半導體元件,更包括一氧化矽層,配置於該矽基材料層與該罩幕層之間。 The semiconductor device of claim 16, further comprising a ruthenium oxide layer disposed between the ruthenium-based material layer and the mask layer. 如申請專利範圍第17項所述之半導體元件,其中該氧化矽層的厚度介於10Å至50Å。 The semiconductor device of claim 17, wherein the yttrium oxide layer has a thickness of from 10 Å to 50 Å. 如申請專利範圍第17項所述之半導體元件,其中該矽基材料層與該氧化矽層的介面之間的矽-氫鍵濃度高於該基底與該氧化層的介面之間的矽-氫鍵濃度。 The semiconductor device according to claim 17, wherein a 矽-hydrogen bond concentration between the ruthenium-based material layer and the interface of the ruthenium oxide layer is higher than 矽-hydrogen between the substrate and the interface of the oxide layer. Key concentration. 如申請專利範圍第16項所述之半導體元件,其中該矽基材料層與該罩幕層的介面之間的矽-氫鍵濃度高於該基底與該氧化層的介面之間的矽-氫鍵濃度。 The semiconductor device of claim 16, wherein a concentration of a 矽-hydrogen bond between the layer of the ruthenium-based material and the interface of the mask layer is higher than that of the interface between the substrate and the interface of the oxide layer. Key concentration. 如申請專利範圍第16項所述之半導體元件,其中該矽基材料層包括一非晶矽層或一多晶矽層。 The semiconductor device of claim 16, wherein the germanium-based material layer comprises an amorphous germanium layer or a poly germanium layer. 如申請專利範圍第16項所述之半導體元件,其中該罩幕層為使用含矽甲烷的氣體源所形成的氮化矽層。 The semiconductor device according to claim 16, wherein the mask layer is a tantalum nitride layer formed using a gas source containing methane. 如申請專利範圍第16項所述之半導體元件,其中該氧化層的厚度介於1000Å至1500Å。 The semiconductor device of claim 16, wherein the oxide layer has a thickness of from 1000 Å to 1500 Å. 如申請專利範圍第16項所述之半導體元件,其中該罩幕層的厚度介於500Å至1000Å。 The semiconductor component of claim 16, wherein the mask layer has a thickness of between 500 Å and 1000 Å. 如申請專利範圍第16項所述之半導體元件,更包括一襯墊氧化層,配置於該些溝槽與該介電層之間。 The semiconductor device of claim 16, further comprising a pad oxide layer disposed between the trenches and the dielectric layer.
TW103144753A 2014-12-22 2014-12-22 Semiconductor device and method of manufacturing thereof TWI548000B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW103144753A TWI548000B (en) 2014-12-22 2014-12-22 Semiconductor device and method of manufacturing thereof
CN201510004401.9A CN105826267B (en) 2014-12-22 2015-01-06 Semiconductor element and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103144753A TWI548000B (en) 2014-12-22 2014-12-22 Semiconductor device and method of manufacturing thereof

Publications (2)

Publication Number Publication Date
TW201624568A true TW201624568A (en) 2016-07-01
TWI548000B TWI548000B (en) 2016-09-01

Family

ID=56513644

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103144753A TWI548000B (en) 2014-12-22 2014-12-22 Semiconductor device and method of manufacturing thereof

Country Status (2)

Country Link
CN (1) CN105826267B (en)
TW (1) TWI548000B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111725213B (en) * 2019-03-18 2023-06-02 华邦电子股份有限公司 Semiconductor memory device and method for manufacturing the same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001069659A2 (en) * 2000-03-14 2001-09-20 Cree Lighting Company Fabrication of semiconductor materials and devices with controlled electrical conductivity
JP5110783B2 (en) * 2004-10-28 2012-12-26 ルネサスエレクトロニクス株式会社 Semiconductor device
US8022465B2 (en) * 2005-11-15 2011-09-20 Macronrix International Co., Ltd. Low hydrogen concentration charge-trapping layer structures for non-volatile memory
US7678636B2 (en) * 2006-06-29 2010-03-16 Taiwan Semiconductor Manufacturing Company, Ltd. Selective formation of stress memorization layer
JP2008277530A (en) * 2007-04-27 2008-11-13 Renesas Technology Corp Nonvolatile semiconductor memory device
US8384190B2 (en) * 2009-03-06 2013-02-26 Texas Instruments Incorporated Passivation of integrated circuits containing ferroelectric capacitors and hydrogen barriers
CN103262223A (en) * 2010-12-09 2013-08-21 德克萨斯仪器股份有限公司 Hydrogen passivation of integrated circuits
JP5330433B2 (en) * 2011-03-11 2013-10-30 株式会社東芝 Semiconductor device and manufacturing method of semiconductor device
CN103972109A (en) * 2014-05-21 2014-08-06 上海华力微电子有限公司 Method for manufacturing MOS device capable of reducing negative bias temperature instability

Also Published As

Publication number Publication date
CN105826267A (en) 2016-08-03
CN105826267B (en) 2018-09-21
TWI548000B (en) 2016-09-01

Similar Documents

Publication Publication Date Title
JP7058962B2 (en) Dielectric film forming method and semiconductor device manufacturing method
JP5566845B2 (en) Manufacturing method of semiconductor device
TWI420674B (en) Plasma treatment of silicon nitride and silicon oxynitride
TWI582854B (en) Method for integration of non-volatile charge trap memory devices and logic cmos devices
JP2015142034A (en) Method for manufacturing semiconductor device
JP2008300779A (en) Semiconductor device and manufacturing method therefor
TW201338053A (en) Semiconductor structure and method for fabricating the same
WO2012071843A1 (en) Semiconductor structure and method of manufacturing the same
CN106257620B (en) A kind of semiconductor devices and its manufacturing method, electronic device
TW201712850A (en) Semiconductor device and method of forming the same
US20120329285A1 (en) Gate dielectric layer forming method
TWI548000B (en) Semiconductor device and method of manufacturing thereof
JP6292507B2 (en) Semiconductor device provided with hydrogen diffusion barrier and method of manufacturing the same
JP4985855B2 (en) Manufacturing method of semiconductor device
JP2006114747A (en) Method for manufacturing semiconductor device
KR100907931B1 (en) Radical oxide film formation method and dual gate oxide film formation method using the same
CN105097695B (en) A kind of semiconductor devices and its manufacturing method, electronic device
CN106298663B (en) A kind of semiconductor devices and its manufacturing method, electronic device
JP6790808B2 (en) Semiconductor devices and their manufacturing methods
JP4997809B2 (en) Semiconductor device and manufacturing method of semiconductor device
TWI555065B (en) Method of manufacturing non-volatile memory
JP6235298B2 (en) Semiconductor device and manufacturing method thereof
KR100799057B1 (en) Method of Manufacturing a Flash Memory Device
JP2009253195A (en) Method for manufacturing semiconductor device and the semiconductor device
TWI490985B (en) Method of manufacturing flash memory device