JP6292507B2 - Semiconductor device provided with hydrogen diffusion barrier and method of manufacturing the same - Google Patents

Semiconductor device provided with hydrogen diffusion barrier and method of manufacturing the same Download PDF

Info

Publication number
JP6292507B2
JP6292507B2 JP2014037643A JP2014037643A JP6292507B2 JP 6292507 B2 JP6292507 B2 JP 6292507B2 JP 2014037643 A JP2014037643 A JP 2014037643A JP 2014037643 A JP2014037643 A JP 2014037643A JP 6292507 B2 JP6292507 B2 JP 6292507B2
Authority
JP
Japan
Prior art keywords
diffusion barrier
layer
hydrogen
hydrogen diffusion
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014037643A
Other languages
Japanese (ja)
Other versions
JP2015162615A (en
Inventor
知京 豊裕
豊裕 知京
ナム ギュエン
ナム ギュエン
猛 井下
猛 井下
生田目 俊秀
俊秀 生田目
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2014037643A priority Critical patent/JP6292507B2/en
Priority to PCT/JP2015/001013 priority patent/WO2015129279A1/en
Publication of JP2015162615A publication Critical patent/JP2015162615A/en
Application granted granted Critical
Publication of JP6292507B2 publication Critical patent/JP6292507B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28194Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation by deposition, e.g. evaporation, ALD, CVD, sputtering, laser deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28211Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation in a gaseous ambient using an oxygen or a water vapour, e.g. RTO, possibly through a layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/4234Gate electrodes for transistors with charge trapping gate insulator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/511Insulating materials associated therewith with a compositional variation, e.g. multilayer structures
    • H01L29/513Insulating materials associated therewith with a compositional variation, e.g. multilayer structures the variation being perpendicular to the channel plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/518Insulating materials associated therewith the insulating material containing nitrogen, e.g. nitride, oxynitride, nitrogen-doped material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/792Field effect transistors with field effect produced by an insulated gate with charge trapping gate insulator, e.g. MNOS-memory transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Formation Of Insulating Films (AREA)

Description

本発明は、不揮発性電荷トラップ型メモリデバイス等の半導体デバイスに関し、より具体的には、このようなデバイスに使用される水素拡散障壁に関する。本発明はまた、このようなデバイスの製作プロセスにも関する。   The present invention relates to semiconductor devices such as non-volatile charge trap memory devices, and more particularly to hydrogen diffusion barriers used in such devices. The present invention also relates to the fabrication process of such devices.

窒化シリコン層中の局在電荷トラップに基づく不揮発性フラッシュメモリデバイスは、近年、大容量のデータ記憶容量のために大きな注目を集めている。電荷トラップ型メモリデバイスは通常、シリコン基板上に積み重ねられているトンネリング酸化物層、トラップ窒化シリコン層及びブロッキング酸化物層、並びにブロッキング酸化物層上のゲート電極で構成され、シリコン−酸化物−窒化物−酸化物−シリコン(SONOS)としても知られる[特許文献1]。そのシンプルなセル構造、低電力動作、及び最も重要なことには、その従来の相補型金属−酸化物−半導体(CMOS)及び金属−酸化物電界効果トランジスタ(MOFET)技術との互換性から、これらは大容量の情報を保存する携帯記録デバイスにおいて幅広く使用されてきている。しかし、水素拡散はデバイス性能及び信頼性を低下させる一因となると考えられている。   Nonvolatile flash memory devices based on localized charge traps in a silicon nitride layer have recently received much attention due to their large data storage capacity. A charge trap memory device typically consists of a tunneling oxide layer stacked on a silicon substrate, a trapping silicon nitride layer and a blocking oxide layer, and a gate electrode on the blocking oxide layer. Also known as object-oxide-silicon (SONOS) [Patent Document 1]. Its simple cell structure, low power operation, and most importantly, its compatibility with conventional complementary metal-oxide-semiconductor (CMOS) and metal-oxide field effect transistor (MOFET) technologies, These have been widely used in portable recording devices that store large amounts of information. However, hydrogen diffusion is believed to contribute to reduced device performance and reliability.

SiO薄膜トランジスタを備える不揮発性メモリデバイスでは、水素ガスを含むフォーミングガスアニール(FGA)は、SiO膜及び界面準位における欠陥を低減するために本業界で一般的に使用される標準的な製造プロセスである。これらの欠陥は、SiO/Si界面でしばしば見られるSiダングリングボンドと関連する。通常、FGA処理はH−N混合ガス中で約400℃〜450℃にて30分間行う。原子状水素はSiO/Si界面のダングリングボンドを終端させるSi−H結合を形成して界面を修復して界面電荷トラップを減らすことによって、Si−SiO界面トラップを不動態化すると考えられている。しかし、Siへの水素結合は、デバイスがイオン照射にさらされたとき及び/又は外部電場を受けたとき、切れることがあり得る[特許文献2]。言い換えれば、水素を使用してシリコンベースのメモリデバイス中の電気的に活性な界面トラップを不動態化すると、その後のデバイス動作中に水素欠陥又は不純物を形成するための段取りをつけることになりかねないが、これは電荷トラップの生成に影響を及ぼし、その結果電荷損失をもたらし得る。 For non-volatile memory devices comprising SiO 2 thin film transistors, hydrogen gas containing forming gas annealing (FGA) is a standard fabrication commonly used in the industry to reduce defects in the SiO 2 film and interface states. Is a process. These defects are associated with Si dangling bonds often found at the SiO 2 / Si interface. Usually, the FGA treatment is performed in an H 2 —N 2 mixed gas at about 400 ° C. to 450 ° C. for 30 minutes. Atomic hydrogen by to repair the surface to form a Si-H bonds to terminate dangling bonds of SiO 2 / Si interface reduce the interfacial charge traps, believed to passivate the Si-SiO 2 interface traps ing. However, hydrogen bonding to Si can be broken when the device is exposed to ion irradiation and / or subjected to an external electric field [US Pat. In other words, using hydrogen to passivate electrically active interface traps in silicon-based memory devices can set up a setup to form hydrogen defects or impurities during subsequent device operation. Although not, this can affect the generation of charge traps, resulting in charge loss.

これに加えて、CMOS/MOSFET製造プロセスは、ゲート電極を堆積するための水素リッチな低圧化学気相成長(LPCVD)及び/又はプラズマ励起型化学気相成長(PECVD)、並びに/または水素プラズマを使用するエッチングプロセス等の、デバイスをしばしば高温で水素に曝す他の製作工程をしばしば必要とする。水素をともなうこれらのプロセス工程の間、水素種は原理的にはゲート電極を通して下部の層及び/又は界面に拡散し得る。拡散したHはSiOネットワークと反応することがあるが、これは漏れ経路の形成につながり、最終的には絶縁破壊を招く。これに加えて、水素種は窒化物及び底部の窒化物/酸化物界面に到達して留まり、そこで電荷を捕獲し、その結果としてデータが失なわれることがあり得る。水素拡散障壁膜をブロッキング酸化物層と窒化物層との間に組み入れることによって、水素原子の底部酸化物層への拡散を抑止することが可能である。以下の技術は、水素拡散障壁層のタイプに関連して開示されている。 In addition to this, the CMOS / MOSFET fabrication process may include hydrogen-rich low pressure chemical vapor deposition (LPCVD) and / or plasma enhanced chemical vapor deposition (PECVD) and / or hydrogen plasma to deposit the gate electrode. Often, other fabrication steps are often required to expose the device to hydrogen at high temperatures, such as the etching process used. During these process steps with hydrogen, hydrogen species can in principle diffuse through the gate electrode to the underlying layer and / or interface. The diffused H may react with the SiO 2 network, which leads to the formation of leakage paths and ultimately leads to dielectric breakdown. In addition, hydrogen species can reach and stay at the nitride and bottom nitride / oxide interface where they can trap charge and result in data loss. By incorporating a hydrogen diffusion barrier film between the blocking oxide layer and the nitride layer, diffusion of hydrogen atoms into the bottom oxide layer can be suppressed. The following techniques are disclosed in connection with the type of hydrogen diffusion barrier layer.

水素劣化はまた、不揮発性強誘電体メモリ(FeRAM)に使用される複合金属酸化物及びMOSFETアプリケーションにおける高誘電率材料の分野において問題である。FeRAM中で水素劣化の影響を受ける複合金属酸化物の例として、BST、BSN、PZT及びある種のペロブスカイトがある。これらの材料は、FGA等の水素アニールの還元雰囲気中での熱処理の間、酸素原子の脱離に伴う問題を有する。結果として、キャパシタの電子的特性が劣化し、したがってこれらは情報の保存に好適でない[特許文献3]。これに加えて、水素が、負バイアス温度不安定性及びホットキャリア不安定性等のMOSFETの不安定性の主要な原因であることが広く報告されている。こうした問題は、水素のSiO/Si界面への拡散、及びそのSiダングリングボンドを不動態化しまた不動態化解除する能力に関連する[非特許文献1]。 Hydrogen degradation is also a problem in the field of high dielectric constant materials in complex metal oxide and MOSFET applications used in non-volatile ferroelectric memory (FeRAM). Examples of complex metal oxides that are affected by hydrogen degradation in FeRAM include BST, BSN, PZT, and certain perovskites. These materials have problems with desorption of oxygen atoms during heat treatment in a hydrogen annealing reducing atmosphere such as FGA. As a result, the electronic characteristics of the capacitor deteriorate, and therefore they are not suitable for storing information [Patent Document 3]. In addition, it has been widely reported that hydrogen is a major cause of MOSFET instabilities such as negative bias temperature instability and hot carrier instability. These problems are related to the diffusion of hydrogen into the SiO 2 / Si interface and its ability to passivate and depassivate the Si dangling bonds [1].

従来、TiN、AlN、Si及びSiOが、水素拡散を防止するために半導体デバイスの製作に使用されてきた。しかし、これらの水素障壁はそれら自体いくつかの問題を有することが知られている。例えば、窒化シリコン層及び酸窒化シリコン層を生成するのに最も普及している方法は、SiH及びNH等のガスを使用する、しばしば有機金属前駆体と共に使用されるプラズマ励起型化学気相成長(PECVD)によるものであるが、これは膜の中に余剰の水素種を残留させることがある。これに加えて、窒化アルミニウムと窒化チタンは両方とも導電性であり、これらは熱処理中に大きな応力を生じる可能性があり、またその導電性により利用が限定されている。それ故、これらの水素障壁は水素拡散の問題を解決する上で完全に有効というわけではなく、したがって歩留まり及び信頼性を低下させる[特許文献4]。 Traditionally, TiN, AlN, Si 3 N 4 and SiO x N y have been used in the fabrication of semiconductor devices to prevent hydrogen diffusion. However, these hydrogen barriers are themselves known to have several problems. For example, the most popular methods for producing silicon nitride and silicon oxynitride layers use plasma-excited chemical vapor, often used with organometallic precursors, using gases such as SiH 4 and NH 3. This is due to growth (PECVD), which can leave excess hydrogen species in the film. In addition, both aluminum nitride and titanium nitride are conductive, which can cause significant stresses during heat treatment, and their use is limited by their conductivity. Therefore, these hydrogen barriers are not completely effective in solving the problem of hydrogen diffusion, thus reducing yield and reliability [Patent Document 4].

近年、N熱アニールによって窒化物層の上部に直接形成することができる、熱安定性のある酸窒化シリコン(SiO)が、その高密度のマトリックス構造によってH種が底部酸化物層へ拡散することを効果的に遮断できることが報告されている[非特許文献2]。しかし、熱力学的研究により、SiO相は狭い範囲の酸素及び窒素分圧下で高温のみでしか存在できないことが明らかになった[非特許文献3]。これは明らかにSiON拡散障壁層の製作が実験的に困難であることに関係している。 In recent years, thermally stable silicon oxynitride (Si 2 N 2 O), which can be directly formed on the top of a nitride layer by N 2 thermal annealing, has a high-density matrix structure, so that the H species is a bottom oxide. It has been reported that diffusion to the layer can be effectively blocked [Non-Patent Document 2]. However, thermodynamic studies have revealed that the Si 2 N 2 O phase can only exist at high temperatures under a narrow range of oxygen and nitrogen partial pressures [Non-Patent Document 3]. This is clearly related to the experimental difficulty in fabricating a SiON diffusion barrier layer.

その上、フラッシュメモリデバイスの寸法がどんどん縮小化される中、デバイスのスケールダウンは、SiOブロッキング酸化物層の厚さによって大きく制限される。デバイス動作中のゲート漏れ電流を低減するために、高誘電率のブロッキング酸化物が、デバイス性能の改善に向けて提案され研究されている。高誘電率材料のうち、酸化アルミニウム(Al)が、TaN−Al−Si−SiO−Si(TANOS)のような形態で電荷トラップ構造に使用されてきた[非特許文献4]。そのバンドギャップ及び誘電率が大きいために、ブロッキング酸化物層として働くAlを有するメモリデバイスは、この構造が消去動作中にバックトンネリングを解消し、その結果、ブロッキング酸化物層としてSiOを有するデバイスより消去速度及び効率を高めることができることを示している。したがって、高誘電率のブロッキング酸化物層を使用する電荷トラップメモリデバイスにSiO層と類似の性質を有する新規な水素拡散障壁を形成する必要がある。 Moreover, as flash memory device dimensions continue to shrink, device scale down is greatly limited by the thickness of the SiO 2 blocking oxide layer. In order to reduce gate leakage current during device operation, high dielectric constant blocking oxides have been proposed and studied to improve device performance. Among high dielectric constant materials, aluminum oxide (Al 2 O 3 ) has been used for charge trapping structures in the form of TaN—Al 2 O 3 —Si 3 N 4 —SiO 2 —Si (TANOS) [ Non-patent document 4]. Due to its large band gap and dielectric constant, memory devices with Al 2 O 3 acting as a blocking oxide layer eliminate back tunneling during this erase operation, resulting in SiO 2 as a blocking oxide layer. It can be shown that the erase speed and efficiency can be increased as compared with the device having the. Accordingly, there is a need to form a novel hydrogen diffusion barrier having similar properties to the Si 2 N 2 O layer in charge trap memory devices that use high dielectric constant blocking oxide layers.

本発明は、水素拡散の問題及び他の問題に対する解決法を提供し、また水素拡散障壁を有する酸化物−窒化物−酸化物フラッシュメモリデバイス及び水素拡散障壁を形成する方法に対する更なる利点を与える。   The present invention provides a solution to the problem of hydrogen diffusion and other problems, and provides further advantages over oxide-nitride-oxide flash memory devices having hydrogen diffusion barriers and methods of forming hydrogen diffusion barriers. .

上述したことを考慮して、本発明の目的は、下地層、例えば底部の窒化物層及び酸化物層への水素の拡散を防止できる優れた水素障壁特性を有する水素拡散障壁を備えた電荷トラップ半導体メモリデバイス等の半導体デバイスを提供することである。   In view of the above, an object of the present invention is to provide a charge trap with a hydrogen diffusion barrier having excellent hydrogen barrier properties that can prevent diffusion of hydrogen into the underlying layer, eg, the bottom nitride layer and oxide layer. It is to provide a semiconductor device such as a semiconductor memory device.

本発明の一側面によれば、水素拡散障壁を備えた半導体デバイスが提供され、この水素拡散障壁はSiAlONを含有する。
前記水素拡散障壁はアモルファスであってもよい。
前記半導体デバイスは不揮発性電荷トラップ型メモリデバイスであってもよい。
前記水素拡散障壁は層の形状で形成されてもよい。
前記水素拡散障壁の層の厚さは1〜3nmでもよい。
前記水素拡散障壁の層は酸化アルミニウム層と窒化シリコン層との間に挟まれていてもよい。
前記酸化シリコン層は前記窒化シリコン層の水素拡散障壁層と反対側の表面上に設けてもよい。
前記酸化シリコン層はトンネリング酸化物層であってよく、前記酸化アルミニウム層はブロッキング酸化物層であってよい。
ゲート電極をブロッキング酸化物層の水素拡散障壁と反対側の表面上に設けてよく、シリコン基板をトンネリング酸化物層の窒化物層と反対側の表面上に設けてよく、この前記基板はソース及びドレインを備える。
本発明の別の側面によれば、互いに接触している窒化シリコンと酸化アルミニウムとを熱アニールすることによって前記水素拡散障壁が製作される、上記の半導体デバイスのいずれか1つを製作する方法が提供される。
前記熱アニールは水素及び窒素の混合物又は窒素の雰囲気下で行ってよい。
前記熱アニールは600〜900℃の温度で行ってよい。
本発明のさらに別の側面によれば、前記水素拡散障壁が物理的蒸着によって製作される、上記の半導体デバイスのいずれか1つを製作する方法が提供される。
前記物理的蒸着はパルスレーザ蒸着又はスパッタリングでよい。
According to one aspect of the present invention, a semiconductor device with a hydrogen diffusion barrier is provided, the hydrogen diffusion barrier containing SiAlON.
The hydrogen diffusion barrier may be amorphous.
The semiconductor device may be a nonvolatile charge trap memory device.
The hydrogen diffusion barrier may be formed in the shape of a layer.
The hydrogen diffusion barrier layer may have a thickness of 1 to 3 nm.
The hydrogen diffusion barrier layer may be sandwiched between an aluminum oxide layer and a silicon nitride layer.
The silicon oxide layer may be provided on the surface of the silicon nitride layer opposite to the hydrogen diffusion barrier layer.
The silicon oxide layer may be a tunneling oxide layer, and the aluminum oxide layer may be a blocking oxide layer.
A gate electrode may be provided on the surface of the blocking oxide layer opposite the hydrogen diffusion barrier, and a silicon substrate may be provided on the surface of the tunneling oxide layer opposite the nitride layer, the substrate comprising the source and A drain is provided.
According to another aspect of the present invention, there is provided a method of fabricating any one of the above semiconductor devices, wherein the hydrogen diffusion barrier is fabricated by thermally annealing silicon nitride and aluminum oxide in contact with each other. Provided.
The thermal annealing may be performed in a mixture of hydrogen and nitrogen or in an atmosphere of nitrogen.
The thermal annealing may be performed at a temperature of 600 to 900 ° C.
According to yet another aspect of the invention, there is provided a method of fabricating any one of the above semiconductor devices, wherein the hydrogen diffusion barrier is fabricated by physical vapor deposition.
The physical vapor deposition may be pulsed laser vapor deposition or sputtering.

本発明によって、高性能で、製作がより容易な、新規の水素拡散障壁が提供される。   The present invention provides a novel hydrogen diffusion barrier that is high performance and easier to fabricate.

ブロッキング酸化物構造として酸化アルミニウムを有し、水素拡散障壁が備えられていない、先行技術のMONOS構造の側断側面を示すブロック図である。1 is a block diagram showing a side cut side view of a prior art MONOS structure having aluminum oxide as a blocking oxide structure and no hydrogen diffusion barrier. FIG. ブロッキング酸化物構造としての酸化アルミニウムと本発明による水素拡散障壁とを有する、MONOS構造の側断側面を示すブロック図である。1 is a block diagram showing a side cross-sectional side view of a MONOS structure having aluminum oxide as a blocking oxide structure and a hydrogen diffusion barrier according to the present invention. (a)は、SiAlON水素拡散障壁がないMONOS構造の断面TEM像であり、(b)は、SiAlON水素拡散障壁を有するMONOS構造の断面TEM像である。(A) is a cross-sectional TEM image of a MONOS structure having no SiAlON hydrogen diffusion barrier, and (b) is a cross-sectional TEM image of a MONOS structure having a SiAlON hydrogen diffusion barrier. 本発明による水素拡散障壁を備える半導体メモリデバイス及びそれが備えられていない半導体メモリデバイス中のONOS構造の水素含有量とデプスとの間の関係を示すグラフである。6 is a graph showing the relationship between the hydrogen content and depth of an ONOS structure in a semiconductor memory device with and without a hydrogen diffusion barrier according to the present invention. 熱アニールの代わりにPLDによって製作した、より厚いSiAlON水素拡散障壁を有するONOS構造の水素含有量とデプスとの間の関係を示すグラフである。FIG. 6 is a graph showing the relationship between hydrogen content and depth for an ONOS structure with a thicker SiAlON hydrogen diffusion barrier fabricated by PLD instead of thermal annealing. (a)は、水素拡散障壁を有するONOS構造のHO種及びH種のTDSを示すグラフであり、(b)は、水素拡散障壁がないONOS構造のHO種及びH種のTDSを示すグラフである。(A) is a graph showing TDS of H 2 O species and H 2 species of an ONOS structure having a hydrogen diffusion barrier, and (b) is a H 2 O species and H 2 species of an ONOS structure having no hydrogen diffusion barrier. It is a graph which shows TDS of. (a)は、本発明による水素拡散障壁を備えたMONOSメモリデバイスの、メモリデバイスと比較した電気的特性における改善を示すグラフであり、(b)は、本発明による水素拡散障壁がないMONOSメモリデバイスの、メモリデバイスと比較した電気的特性における改善を示すグラフである。(A) is a graph showing an improvement in electrical characteristics of a MONOS memory device with a hydrogen diffusion barrier according to the present invention compared to a memory device, and (b) is a MONOS memory without a hydrogen diffusion barrier according to the present invention. FIG. 6 is a graph showing an improvement in electrical characteristics of a device compared to a memory device.

本発明は、水素拡散障壁層及びこの水素拡散障壁層を製作する方法を対象とする。この水素拡散障壁は、水素が底層まで浸透するのを防止するための水素拡散障壁を必要とする、SONOS、MONOS及び他の半導体デバイス等のメモリデバイスに特に有用な優れた水素障壁特性を有する。   The present invention is directed to a hydrogen diffusion barrier layer and a method of fabricating the hydrogen diffusion barrier layer. This hydrogen diffusion barrier has excellent hydrogen barrier properties especially useful for memory devices such as SONOS, MONOS and other semiconductor devices that require a hydrogen diffusion barrier to prevent hydrogen from penetrating to the bottom layer.

本発明によれば、水素拡散障壁は、酸化シリコン、酸化アルミニウム及び窒化シリコン(SiAlON)を含む。   According to the invention, the hydrogen diffusion barrier comprises silicon oxide, aluminum oxide and silicon nitride (SiAlON).

本発明者らは、SiAlONの構造が非常に良好な水素障壁特性を示すSiONの構造と類似していることに気付いた。SiAlONでは、SiのSi原子がAl原子で置換され、それとともに、原子価条件を満たすべく、SiのN原子がO原子により置換される。この化学置換によって、いくつかのSi−N結合がAl−O結合に変更される。これら2つの結合を比較すると、結合の長さはほぼ同じであるが、Al−O結合の強さはSi−Nよりもかなり強い。より強いAl−O結合が存在することにより、格子間種の拡散に必要な活性化エネルギーがより高くなる。本発明はまた、アモルファスの水素拡散障壁層も提供する。高温の製造プロセスを受けると、この水素障壁層は結晶化しない。さらに、アモルファスSiAlON水素拡散障壁は、熱アニール及び/又はパルスレーザ蒸着によって容易に形成することができる。 The inventors have found that the structure of SiAlON is similar to that of SiON, which exhibits very good hydrogen barrier properties. In SiAlON, Si atoms of Si 3 N 4 are replaced with Al atoms, and at the same time, N atoms of Si 3 N 4 are replaced with O atoms to satisfy the valence condition. This chemical substitution changes some Si—N bonds to Al—O bonds. Comparing these two bonds, the bond length is almost the same, but the strength of Al—O bond is much stronger than Si—N. The presence of stronger Al-O bonds results in higher activation energy required for diffusion of interstitial species. The present invention also provides an amorphous hydrogen diffusion barrier layer. When subjected to a high temperature manufacturing process, the hydrogen barrier layer does not crystallize. Furthermore, the amorphous SiAlON hydrogen diffusion barrier can be easily formed by thermal annealing and / or pulsed laser deposition.

本発明の利点を確実なものとするために、水素拡散障壁を有するメモリデバイスサンプルを、金属−酸化物−窒化物−酸化物−シリコン(MONOS)に基づくMIS(金属−絶縁体−半導体)キャパシタ構造として作製した。   In order to ensure the advantages of the present invention, a memory device sample with a hydrogen diffusion barrier was fabricated from a metal-oxide-nitride-oxide-silicon (MONOS) MIS (metal-insulator-semiconductor) capacitor. Fabricated as a structure.

MONOS構造は、下部の薄い酸化物層又はトンネリング酸化物層、窒化シリコン層、薄い水素拡散層及びブロッキング酸化物層を含む。この構造を作製する方法は、熱成長によってシリコン基板の表面上に薄いトンネリング酸化物層(SiO)を形成することで開始される。次に、パルスレーザ蒸着(PLD)によってトンネリング酸化物層の表面上に窒化シリコン(SiN)層を形成する。次いで、窒化シリコン層の堆積時と同じ酸素分圧及び基板温度下で、ブロッキング酸化物(Al)層を窒化シリコンの上部に堆積させて、酸化物−窒化物−酸化物−シリコン(ONOS)を形成する。最後に、ONOS構造をH−N混合ガス中で60分間600℃にてアニールして、SiAlON水素拡散障壁をブロッキング酸化物層と窒化シリコン層との間に形成する。 The MONOS structure includes a lower thin oxide or tunneling oxide layer, a silicon nitride layer, a thin hydrogen diffusion layer, and a blocking oxide layer. The method of making this structure begins by forming a thin tunneling oxide layer (SiO 2 ) on the surface of the silicon substrate by thermal growth. Next, a silicon nitride (SiN) layer is formed on the surface of the tunneling oxide layer by pulsed laser deposition (PLD). A blocking oxide (Al 2 O 3 ) layer is then deposited on top of the silicon nitride under the same oxygen partial pressure and substrate temperature as when the silicon nitride layer was deposited, resulting in oxide-nitride-oxide-silicon ( ONOS). Finally, the ONOS structure is annealed in a H 2 —N 2 gas mixture for 60 minutes at 600 ° C. to form a SiAlON hydrogen diffusion barrier between the blocking oxide layer and the silicon nitride layer.

電気的特性評価のために、シャドーマスクを有するイオンビームスパッタリングシステムを利用して、直径300μmのアルミニウムゲート電極を酸化物−窒化物−酸化物−シリコン構造の上に堆積させてよい。その後、5%H−95%N混合ガス中で、400℃で30分間、FGAプロセスを行う。 For electrical characterization, an ion beam sputtering system with a shadow mask may be utilized to deposit a 300 μm diameter aluminum gate electrode over the oxide-nitride-oxide-silicon structure. Thereafter, an FGA process is performed in a 5% H 2 -95% N 2 mixed gas at 400 ° C. for 30 minutes.

ここで、本発明によるMONOS構造及び当該構造を作製するプロセスを、図2から図7を参照しながら実験に基づいて詳細に説明していく。   Here, the MONOS structure according to the present invention and the process for manufacturing the structure will be described in detail based on experiments with reference to FIGS.

図2は、本発明による水素拡散障壁を含むメモリキャパシタの側断面の概略図を示す。図2を参照すると、MONOS構造は下部の薄い酸化物層又はトンネリング酸化物層、窒化シリコン層、薄い水素拡散障壁層、ブロッキング酸化物層及び金属コンタクトを含む。一般に、基板は任意の公知のシリコンベースの半導体及び/又は非シリコンベースの半導体上に形成されたシリコン層であってよい。好ましくは、基板はドープされているシリコン又はドープされていないシリコン基板である。   FIG. 2 shows a schematic side sectional view of a memory capacitor including a hydrogen diffusion barrier according to the present invention. Referring to FIG. 2, the MONOS structure includes a lower thin oxide or tunneling oxide layer, a silicon nitride layer, a thin hydrogen diffusion barrier layer, a blocking oxide layer, and a metal contact. In general, the substrate may be a silicon layer formed on any known silicon-based semiconductor and / or non-silicon-based semiconductor. Preferably, the substrate is a doped silicon or an undoped silicon substrate.

本方法はシリコン基板の表面上に4nm〜5nmのトンネリング酸化物層(SiO)を形成することで始められる。トンネリング酸化物は熱成長又は化学蒸着法(CVD)によって形成できる。本実験において、トンネリング層はO流量が0.4L/minの乾燥O環境下において800℃で5分間熱成長させ、800℃で5分間酸化させることによって形成した。次に、トンネリング酸化物層の表面上に10nmの窒化シリコン層を形成した。次いで、同じ酸素分圧及び基板温度下で堆積室の真空状態を維持したまま、窒化シリコンの上部に12nmのブロッキング酸化物層(Al)を堆積させて酸化物−窒化物−酸化物−シリコン(ONOS)構造を形成した。一般に、窒化物及びブロッキング酸化物は、これらに限定されないが、CVD、スパッタリング、PLD及び原子層成長法(ALD)等の任意の好適な手段によって形成又は堆積させることができる。本実験では、窒化シリコン層及びブロッキング酸化物層はPLDによって堆積した。以下は窒化物層及びブロッキング酸化物層を作製するために使用したPLD条件である。 The method begins by forming a 4 nm to 5 nm tunneling oxide layer (SiO 2 ) on the surface of the silicon substrate. The tunneling oxide can be formed by thermal growth or chemical vapor deposition (CVD). In this experiment, the tunneling layer was formed by thermally growing at 800 ° C. for 5 minutes and oxidizing at 800 ° C. for 5 minutes in a dry O 2 environment with an O 2 flow rate of 0.4 L / min. Next, a 10 nm silicon nitride layer was formed on the surface of the tunneling oxide layer. A 12 nm blocking oxide layer (Al 2 O 3 ) was then deposited on top of the silicon nitride while maintaining the vacuum in the deposition chamber under the same oxygen partial pressure and substrate temperature to provide an oxide-nitride-oxide -A silicon (ONOS) structure was formed. In general, nitrides and blocking oxides can be formed or deposited by any suitable means such as, but not limited to, CVD, sputtering, PLD, and atomic layer deposition (ALD). In this experiment, the silicon nitride layer and the blocking oxide layer were deposited by PLD. The following are the PLD conditions used to make the nitride layer and the blocking oxide layer.

1)レーザー:エネルギー150mJ/mのKrFエキシマレーザー
2)レーザー周波数:5Hz
3)P(O)分圧:1×10−5Torr
4)基板温度:300℃
5)ターゲットと基板との間の距離:50mm
6)装置:パルスレーザ蒸着システム[Pascal Technologiesから購入]
7)ターゲット:株式会社高純度化学研究所によって製造された、直径20mmで純度が少なくとも99.9%のSi及びAl
1) Laser: KrF excimer laser with an energy of 150 mJ / m 2 2) Laser frequency: 5 Hz
3) P (O 2 ) partial pressure: 1 × 10 −5 Torr
4) Substrate temperature: 300 ° C
5) Distance between target and substrate: 50 mm
6) Equipment: Pulsed laser deposition system [purchased from Pascal Technologies]
7) Target: Si 3 N 4 and Al 2 O 3 with a diameter of 20 mm and a purity of at least 99.9% manufactured by Kojundo Chemical Laboratory Co., Ltd.

本実験におけるSiAlON水素拡散障壁は、ONOS構造を600℃で60分間〜約900℃で5秒間95%H−5%N混合ガス中で、好ましくは少なくとも600℃で95%H−5%N混合ガス又は100%Nガス中でアニールすることによって、ブロッキング酸化物層と窒化シリコン層との間に形成した。 SiAlON hydrogen diffusion barrier in this experiment, 5 seconds 95% H 2 -5% N 2 mixed gas for 60 minutes to about 900 ° C. The ONOS structure 600 ° C., preferably 95% at least 600 ° C. The H 2 -5 It was formed between the blocking oxide layer and the silicon nitride layer by annealing in a% N 2 mixed gas or 100% N 2 gas.

図3(a)及び図3(b)は、それぞれ、比較のために、水素拡散障壁を有する場合及び有しない場合の断面TEM像ONOS構造を示す。堆積したままの状態のサンプルのTEM像(図3(a))から酸化アルミニウム層のアモルファス性が確認され、また窒化シリコン層とブロッキング酸化物層との間に混合層が存在しないことが明らかになる。一方、図3bは、アニール後の界面中の酸化アルミニウム及び窒化シリコンの近傍における、厚さ約1nmの比較的均一で厚い界面層を示す。報告されているところでは、酸化アルミニウムの形成中及び/又は後続するポストアニール中における界面層の形成は不可避であると考えられる[非特許文献5]。界面層形成の考えられる理由は、酸化アルミニウムと窒化シリコンとの界面付近での酸素の欠乏及びAl原子とSi原子との間の溶解度の違いである。界面付近の酸化アルミニウム膜中の酸素の欠乏は化学的不適合をもたらし、これが混合層の形成につながる。これに加えて、Al中のSiの溶解度はSi中のAlの溶解度よりも高いため、界面付近の窒化シリコン中のSiが、アニール時に酸化アルミニウム層中に拡散して、アモルファスの界面層SiAlONを形成することがあり得る。角度分解X線光子放出(XPS)の結果(図示せず)は、酸化アルミニウムと窒化シリコンとの界面で放出されたAl2p及びSi2p光電子が、Al及びSiのピーク以外の、これよりも約1eV低い結合エネルギーのピークを示す。このことは、ONOS構造を600℃において5%H−95%N混合ガス中で60分間アニールすることによって、薄いSiAlON層が窒化シリコン膜の上部に形成され得ることを示している。 FIGS. 3A and 3B show cross-sectional TEM image ONOS structures with and without a hydrogen diffusion barrier, respectively, for comparison. From the TEM image of the as-deposited sample (Fig. 3 (a)), the amorphous nature of the aluminum oxide layer is confirmed, and it is clear that there is no mixed layer between the silicon nitride layer and the blocking oxide layer Become. On the other hand, FIG. 3b shows a relatively uniform and thick interface layer about 1 nm thick in the vicinity of aluminum oxide and silicon nitride in the interface after annealing. It has been reported that the formation of an interface layer during the formation of aluminum oxide and / or subsequent post-annealing is inevitable [Non-Patent Document 5]. Possible reasons for the formation of the interface layer are the lack of oxygen near the interface between aluminum oxide and silicon nitride and the difference in solubility between Al and Si atoms. The lack of oxygen in the aluminum oxide film near the interface leads to chemical incompatibility, which leads to the formation of a mixed layer. In addition, since the solubility of Si in Al is higher than the solubility of Al in Si, Si in the silicon nitride near the interface diffuses into the aluminum oxide layer during annealing, and the amorphous interface layer SiAlON is formed. It is possible to form. Angle-resolved X-ray photon emission (XPS) result (not shown), Al2p and Si2p photoelectrons emitted at the interface between the aluminum oxide and silicon nitride, other than the peak of Al 2 O 3 and Si 3 N 4, A peak of binding energy about 1 eV lower than this is shown. This indicates that a thin SiAlON layer can be formed on top of the silicon nitride film by annealing the ONOS structure at 600 ° C. in a 5% H 2 -95% N 2 gas mixture for 60 minutes.

図4は、東京大学のMicroAnalysis Laboratory(MALT)タンデム型加速装置のイオンビームラインに接続された、ベース圧力が10−6Torrの真空室中での核反応分析(NRA)によって測定した、水素拡散障壁を有する場合及び有しない場合のONOS構造の水素含有量とデプスとの間の関係を示す。共鳴エネルギー約6.4eV、ビーム電流100〜200nAの典型的な152+イオンを使用して、垂直から45度の角度でサンプル表面上に入射させ、SiAlON層を有する場合及び有しない場合のONOS構造表面及び酸化アルミニウム/窒化シリコン界面付近の水素濃度分布の変化を可視化する。図4から、スペクトルが2つのピークのシグナルを示しているのを見て取ることができる。両方の構造について、6.385eVのイオンエネルギーを中心とするピークは、原子状H、H、HO、OH及び炭化水素基等の任意のH含有化合物から構成されていて良い、酸化アルミニウム表面のHに対応する。水素拡散障壁がないONOS構造と比較して、SiAlON層を有するONOS構造の表面付近にはより多くのHが存在することがわかる。高イオンビームエネルギー(約6.43eV)であって約12nmの深さにおけるより小さいピークは、酸化アルミニウム表面に存在するがNRAのイオンの高い運動エネルギーによって酸化アルミニウムと窒化シリコンとの界面付近に移動する水素種に対応付けられる。この結果は、SiAlON層を有するONOS構造が、SiAlON層のないONOS構造よりもかなり高いH濃度を酸化アルミニウムと窒化シリコンとの界面付近で蓄積できることを意味する。 FIG. 4 shows hydrogen diffusion measured by nuclear reaction analysis (NRA) in a vacuum chamber with a base pressure of 10 −6 Torr connected to the ion beam line of the University of Tokyo MicroAnalysis Laboratory (MALT) tandem accelerator. The relationship between the hydrogen content and depth of the ONOS structure with and without a barrier is shown. ONOS with and without a SiAlON layer incident on a sample surface at an angle of 45 degrees from normal using a typical 15 N 2+ ion with a resonance energy of about 6.4 eV and a beam current of 100-200 nA Visualize changes in hydrogen concentration distribution near the structure surface and the aluminum oxide / silicon nitride interface. From FIG. 4 it can be seen that the spectrum shows two peaks of signal. For both structures, the peak centered at 6.385 eV ion energy may be composed of any H-containing compound such as atomic H, H 2 , H 2 O, OH and hydrocarbon groups, aluminum oxide Corresponds to H on the surface. It can be seen that more H is present near the surface of the ONOS structure having the SiAlON layer as compared to the ONOS structure having no hydrogen diffusion barrier. Higher ion beam energy (about 6.43 eV) and a smaller peak at a depth of about 12 nm are present on the surface of the aluminum oxide, but move to the vicinity of the interface between aluminum oxide and silicon nitride due to the high kinetic energy of NRA ions. To be associated with the hydrogen species. This result means that an ONOS structure having a SiAlON layer can accumulate a much higher H concentration near the interface between aluminum oxide and silicon nitride than an ONOS structure without a SiAlON layer.

図5は、PLDによって作製されたSiAlON水素拡散障壁を有するONOSの水素含有量とデプスプロファイルとの間の関係を示す。PLDによって製作されたSiAlONを有するONOS構造を形成するプロセスは、熱成長によってシリコン基板の表面上に4nmのトンネリング酸化物層(SiO)を形成することで始められた。次に、10nmの窒化シリコン(SiN)層をパルスレーザ蒸着(PLD)によってトンネリング酸化物層の表面上に形成した。次いで、Al:Si(1:1モル比)ターゲットを使用して、PLDにより3nmのSiAlONを窒化シリコン層の上部に形成した。最後に、上記と同じPLD条件を利用して9nmのブロッキング酸化物(Al)を堆積した。次いで、ONOS構造をFGAで600℃において1時間アニールした。図5から、PLDによって成長したSiAlONも水素を蓄積できることがわかる。この結果は、熱アニールによって形成されたものであってもあるいはPLDによって成長したものであっても、そのようなSiAlON層が効果的な水素障壁特性を有することを示す。しかし、NRAにおける化学的同定が行なわれないため、安定性水素と不安定性水素とを簡単に区別できない。したがって、水素拡散障壁を有する場合と有しない場合のONOS構造中の水素の熱挙動を、昇温脱離分光法(TDS)によって調べる。 FIG. 5 shows the relationship between the hydrogen content and depth profile of ONOS with SiAlON hydrogen diffusion barrier made by PLD. The process of forming an ONOS structure with SiAlON fabricated by PLD began with the formation of a 4 nm tunneling oxide layer (SiO 2 ) on the surface of the silicon substrate by thermal growth. Next, a 10 nm silicon nitride (SiN) layer was formed on the surface of the tunneling oxide layer by pulsed laser deposition (PLD). Next, using an Al 2 O 3 : Si 3 N 4 (1: 1 molar ratio) target, 3 nm of SiAlON was formed on top of the silicon nitride layer by PLD. Finally, a 9 nm blocking oxide (Al 2 O 3 ) was deposited using the same PLD conditions as above. The ONOS structure was then annealed with FGA at 600 ° C. for 1 hour. FIG. 5 shows that SiAlON grown by PLD can also store hydrogen. This result shows that such SiAlON layers have effective hydrogen barrier properties, whether formed by thermal annealing or grown by PLD. However, because chemical identification in NRA is not performed, stable hydrogen and unstable hydrogen cannot be easily distinguished. Therefore, the thermal behavior of hydrogen in the ONOS structure with and without a hydrogen diffusion barrier is examined by temperature programmed desorption spectroscopy (TDS).

図6(a)及び図6(b)はSiAlON層を有する場合及び有しない場合のONOS構造のHO種及びH種のTDSを示す。このTDSデータは、どちらの構造でもHが600℃未満で顕著に脱着することを明らかにしている。130℃〜150℃でのHOピーク及びHピーク(αピーク)は酸化アルミニウムの表面からの水素脱着に対応付けられる。約500℃でのHOピーク及びHピーク(βピーク)はシラノール(SiO−H)からの水素脱着に対応付けられる。SiAlON層を有するONOS構造は約500℃においてより少ない水素脱着挙動を示すことがわかる。これは、ONOS構造が600℃でアニールされる必要があるSiAlON層の形成中、SiO/Si界面に存在するダングリングボンドによるSi−H結合の大部分が真空中に脱着されるからであると説明できる。興味深いことに、図6bは、SiAlON層を有するONOSの場合には900℃において追加のγピークが出現するが、SiAlON層がないONOS構造では出現しないことを示す。これは熱安定なH種を捕獲するSiAlONの能力を示している。従来のSi−H、N−H、Al−H及びO−Hの構成単位の中のH結合ではこのような高温に耐えられないことが知られている。これらの結果は、これらのH種の安定性が、水素の結合力ではなくSiAlONネットワークの高熱安定性によるものであることを示唆している。 6 (a) and 6 (b) show the TDS of the H 2 O species and the H 2 species of the ONOS structure with and without the SiAlON layer. The TDS data reveals that H is significantly desorbed at less than 600 ° C. in either structure. The H 2 O peak and H peak (α peak) at 130 ° C. to 150 ° C. are associated with hydrogen desorption from the surface of aluminum oxide. The H 2 O peak and H peak (β peak) at about 500 ° C. are associated with hydrogen desorption from silanol (SiO—H 2 ). It can be seen that the ONOS structure with the SiAlON layer shows less hydrogen desorption behavior at about 500 ° C. This is because during the formation of the SiAlON layer where the ONOS structure needs to be annealed at 600 ° C., most of the Si—H bonds due to dangling bonds present at the SiO 2 / Si interface are desorbed in vacuum. Can be explained. Interestingly, FIG. 6b shows that an additional γ peak appears at 900 ° C. for ONOS with a SiAlON layer, but not for an ONOS structure without a SiAlON layer. This indicates the ability of SiAlON to capture thermally stable H species. It is known that H bonds in conventional Si—H, N—H, Al—H, and O—H structural units cannot withstand such high temperatures. These results suggest that the stability of these H species is due to the high thermal stability of the SiAlON network rather than the hydrogen binding force.

図7(a)及び図7(b)は、SiAlON水素拡散障壁がないメモリデバイスと比較したときの、本発明によるSiAlON水素拡散障壁を有するMONOSメモリデバイスの電気的特性の改善を説明するグラフを示している。図7aは、キャパシタンスと印加電圧との間の関係(C−V)を示す。この測定において、C−Vウィンドウはこの構造がどれほどよく電荷を蓄積するかを示す。図7aから、水素拡散障壁がないONOS構造の場合のC−Vウィンドウは、水素拡散障壁を有するONOS構造よりも小さい。これは、水素拡散障壁を有するメモリデバイスが、水素拡散障壁を持たない従来のメモリデバイスと比較して同程度又はより良好な電荷トラップ能力を与えることを示唆する。図7bは漏れ電流と印加電圧との間の関係(I−V)を示す。この図から、SiAlON水素拡散障壁を有するONOS構造が、SiAlON水素拡散障壁がないONOS構造よりも漏れ電流が少ないことがわかる。この事実から、ONOS構造にSiAlON水素拡散障壁を組み入れることによって、効果的に水素を蓄積できるだけでなく、電荷トラップメモリデバイスの電気的特性を改善することもできることが確認される。   7 (a) and 7 (b) are graphs illustrating the improvement in electrical characteristics of a MONOS memory device having a SiAlON hydrogen diffusion barrier according to the present invention when compared to a memory device without a SiAlON hydrogen diffusion barrier. Show. FIG. 7a shows the relationship (CV) between capacitance and applied voltage. In this measurement, the CV window shows how well the structure accumulates charge. From FIG. 7a, the CV window for the ONOS structure without a hydrogen diffusion barrier is smaller than the ONOS structure with a hydrogen diffusion barrier. This suggests that a memory device with a hydrogen diffusion barrier provides a similar or better charge trapping capability compared to a conventional memory device without a hydrogen diffusion barrier. FIG. 7b shows the relationship (IV) between leakage current and applied voltage. From this figure, it can be seen that the ONOS structure having the SiAlON hydrogen diffusion barrier has less leakage current than the ONOS structure having no SiAlON hydrogen diffusion barrier. This fact confirms that by incorporating a SiAlON hydrogen diffusion barrier into the ONOS structure, not only can hydrogen be effectively stored, but also the electrical characteristics of the charge trap memory device can be improved.

本発明の熱アニール又はPLDによって形成されるSiAlON水素障壁は、SONOS又はMONOS不揮発性電荷トラップ型メモリデバイスで非常に良好な障壁特性を示す。本発明は不揮発性電荷トラップ型メモリデバイス及びFeRAMメモリデバイスに限定されない。したがって、当業者は本方法の様々な変更を特許請求の範囲で定義される本発明から逸脱することなく行うことができる。   The SiAlON hydrogen barrier formed by thermal annealing or PLD of the present invention exhibits very good barrier properties in SONOS or MONOS nonvolatile charge trap memory devices. The present invention is not limited to non-volatile charge trapping memory devices and FeRAM memory devices. Accordingly, those skilled in the art can make various changes in the method without departing from the invention as defined in the claims.

本発明を、特定のデバイス構造、すなわち不揮発性電荷トラップ型メモリデバイスを参照することによって詳細に説明したが、本発明がこのような特定のタイプの半導体デバイスに限定されず、水素拡散障壁の導入が有益となる、あらゆる半導体デバイスに適用可能であることに留意されたい。   Although the present invention has been described in detail by reference to a specific device structure, i.e., a non-volatile charge trapping memory device, the present invention is not limited to such a specific type of semiconductor device and the introduction of a hydrogen diffusion barrier. Note that this is applicable to any semiconductor device for which is beneficial.

米国特許第7,187,030号US Pat. No. 7,187,030 米国特許公開第2008/0096396号US Patent Publication No. 2008/0096396 米国特許第6,781,184号US Pat. No. 6,781,184 US006455882B1US006455882B1

JOURNAL OF APPLIED PHYSIC, 94, 1, (2003), D. Schroder and J. A. Babcock, “Negative bias temperature instability: Road to cross in deep submicron silicon semiconductor manufacturing”JOURNAL OF APPLIED PHYSIC, 94, 1, (2003), D. Schroder and J. A. Babcock, “Negative bias temperature instability: Road to cross in deep submicron silicon semiconductor manufacturing” APPLIED PHYSICS LETTERS, 92, 192115 (2008), Z. Liu, S. Ito, M. Wilde, K. Fukutani, I. Hirozawa, and T. Koganezawa, “A hydrogen storage layer on the surface of silicon nitride films”APPLIED PHYSICS LETTERS, 92, 192115 (2008), Z. Liu, S. Ito, M. Wilde, K. Fukutani, I. Hirozawa, and T. Koganezawa, “A hydrogen storage layer on the surface of silicon nitride films” JOURNAL OF ELECTROCHEMICAL SOCIETY, 136, 5, (1989), H. Du, R. E. Tressler, K. E. Spear, and C. G. Pantano, “ Oxidation Studies of Crystalline CVD Silicon Nitride”JOURNAL OF ELECTROCHEMICAL SOCIETY, 136, 5, (1989), H. Du, R. E. Tressler, K. E. Spear, and C. G. Pantano, “Oxidation Studies of Crystalline CVD Silicon Nitride” Non-volatile Semiconductor Memory Workshop, 2006, IEEE NVSMW 2006. 21st, C. H. Lee, C. Kang, J. Sim, J. S. Lee, J. Kim, Y. Shin, K. Park, S. Jeon, J. Sel, Y. Jeong, B. Choi, V. Kim, W. Jung, C. Hyun, J. Choi, K. Kim, “Charge Trapping Memory Cell of TANOS (Si-Oxide, SiN-Al2O3-TaN) Structure Compatible to Conventional NAND Flash Memory”Non-volatile Semiconductor Memory Workshop, 2006, IEEE NVSMW 2006. 21st, CH Lee, C. Kang, J. Sim, JS Lee, J. Kim, Y. Shin, K. Park, S. Jeon, J. Sel, Y Jeong, B. Choi, V. Kim, W. Jung, C. Hyun, J. Choi, K. Kim, “Charge Trapping Memory Cell of TANOS (Si-Oxide, SiN-Al2O3-TaN) Structure Compatible to Conventional NAND “Flash Memory” JOURNAL OF ELECTROCHEMICAL SOCIETY, 151, G833 (2004), I. Levin, M. Kovler, Ya. Roizin, M. Vofsi, R. D. Leapman, G. Goodman, N. Kawada, and M. Funahashi, “Structure, Chemistry, and Electrical Performance of Silicon Oxide-Nitride-Oxide Stacks on Silicon”JOURNAL OF ELECTROCHEMICAL SOCIETY, 151, G833 (2004), I. Levin, M. Kovler, Ya. Roizin, M. Vofsi, RD Leapman, G. Goodman, N. Kawada, and M. Funahashi, “Structure, Chemistry, and Electrical Performance of Silicon Oxide-Nitride-Oxide Stacks on Silicon ”

Claims (11)

厚さが1〜3nmの層の形状で形成されるとともに、酸化アルミニウム層と窒化シリコン層との間に挟まれており、SiAlONを含有する水素拡散障壁を備えた半導体デバイス。 A semiconductor device having a hydrogen diffusion barrier containing SiAlON, which is formed in the form of a layer having a thickness of 1 to 3 nm and sandwiched between an aluminum oxide layer and a silicon nitride layer . 前記水素拡散障壁がアモルファスである、請求項1に記載の半導体デバイス。   The semiconductor device of claim 1, wherein the hydrogen diffusion barrier is amorphous. 不揮発性電荷トラップ型メモリデバイスである、請求項1又は2に記載の半導体デバイス。   The semiconductor device according to claim 1, wherein the semiconductor device is a nonvolatile charge trap memory device. 前記酸化シリコン層が前記窒化シリコン層の前記水素拡散障壁層と反対側の表面上に設けられる、請求項1〜3のいずれか一項に記載の半導体デバイス。 The semiconductor device according to claim 1, wherein the silicon oxide layer is provided on a surface of the silicon nitride layer opposite to the hydrogen diffusion barrier layer. 前記酸化シリコン層がトンネリング酸化物層であり、前記酸化アルミニウム層がブロッキング酸化物層である、請求項に記載の半導体デバイス。 The semiconductor device according to claim 4 , wherein the silicon oxide layer is a tunneling oxide layer and the aluminum oxide layer is a blocking oxide layer. ゲート電極が前記ブロッキング酸化物層の前記水素拡散障壁と反対側の表面上に設けられ、シリコン基板が前記トンネリング酸化物層の前記窒化物層と反対側の表面上に設けられ、前記基板がソース及びドレインを備える、請求項に記載の半導体デバイス。 A gate electrode is provided on the surface of the blocking oxide layer opposite to the hydrogen diffusion barrier, a silicon substrate is provided on the surface of the tunneling oxide layer opposite to the nitride layer, and the substrate is a source. 6. The semiconductor device of claim 5 , comprising a drain and a drain. 前記水素拡散障壁が互いに接している窒化シリコンと酸化アルミニウムとを熱アニールすることによって製作される、請求項1〜のいずれか一項に記載の半導体デバイスを製作する方法。 The hydrogen diffusion barrier is fabricated by thermal annealing silicon nitride and the aluminum oxide are in contact with each other, a method of fabricating a semiconductor device according to any one of claims 1-6. 前記熱アニールが水素及び窒素の混合ガス又は窒素ガスの雰囲気下で行われる、請求項に記載の半導体デバイスを製作する方法。 The method of manufacturing a semiconductor device according to claim 7 , wherein the thermal annealing is performed in a mixed gas of hydrogen and nitrogen or an atmosphere of nitrogen gas. 前記熱アニールが600〜900℃の温度で行われる、請求項7又は8に記載の半導体デバイスを製作する方法。 The method for manufacturing a semiconductor device according to claim 7 or 8 , wherein the thermal annealing is performed at a temperature of 600 to 900C. 前記水素拡散障壁が物理的蒸着によって作製される、請求項1〜のいずれか一項に記載の半導体デバイスを製作する方法。 The hydrogen diffusion barrier is produced by physical vapor deposition, a method of fabricating a semiconductor device according to any one of claims 1-6. 前記物理的蒸着がパルスレーザ蒸着又はスパッタリングである、請求項10に記載の半導体を製作する方法。 The method of fabricating a semiconductor according to claim 10 , wherein the physical vapor deposition is pulsed laser vapor deposition or sputtering.
JP2014037643A 2014-02-28 2014-02-28 Semiconductor device provided with hydrogen diffusion barrier and method of manufacturing the same Active JP6292507B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014037643A JP6292507B2 (en) 2014-02-28 2014-02-28 Semiconductor device provided with hydrogen diffusion barrier and method of manufacturing the same
PCT/JP2015/001013 WO2015129279A1 (en) 2014-02-28 2015-02-26 Semiconductor device comprising a hydrogen diffusion barrier and method of fabricating same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014037643A JP6292507B2 (en) 2014-02-28 2014-02-28 Semiconductor device provided with hydrogen diffusion barrier and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2015162615A JP2015162615A (en) 2015-09-07
JP6292507B2 true JP6292507B2 (en) 2018-03-14

Family

ID=54008610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014037643A Active JP6292507B2 (en) 2014-02-28 2014-02-28 Semiconductor device provided with hydrogen diffusion barrier and method of manufacturing the same

Country Status (2)

Country Link
JP (1) JP6292507B2 (en)
WO (1) WO2015129279A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6659283B2 (en) * 2015-09-14 2020-03-04 株式会社東芝 Semiconductor device
JP6773873B2 (en) * 2019-11-19 2020-10-21 株式会社東芝 Semiconductor device
CN110867376A (en) * 2019-11-25 2020-03-06 上海华力集成电路制造有限公司 Method and structure for improving NBTI of semiconductor strain device
CN116344478A (en) 2021-12-24 2023-06-27 长鑫存储技术有限公司 Semiconductor structure and preparation method thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6982448B2 (en) * 2004-03-18 2006-01-03 Texas Instruments Incorporated Ferroelectric capacitor hydrogen barriers and methods for fabricating the same
KR100604846B1 (en) * 2004-04-23 2006-07-31 삼성전자주식회사 Memory Device with Dielectric Multilayer and Method of Manufacturing the same
JP2008536318A (en) * 2005-04-07 2008-09-04 アヴィザ テクノロジー インコーポレイテッド Multi-layer multi-component high-k film and method for depositing the same
JP4365850B2 (en) * 2006-11-20 2009-11-18 株式会社東芝 Nonvolatile semiconductor memory device
US7898850B2 (en) * 2007-10-12 2011-03-01 Micron Technology, Inc. Memory cells, electronic systems, methods of forming memory cells, and methods of programming memory cells
JP2009267366A (en) * 2008-04-02 2009-11-12 Nec Electronics Corp Semiconductor memory and method of manufacturing the same
JP5275056B2 (en) * 2009-01-21 2013-08-28 株式会社東芝 Semiconductor device manufacturing method and semiconductor device
KR20110048614A (en) * 2009-11-03 2011-05-12 삼성전자주식회사 Gate structure and method of manufacturing the same
JP2011100950A (en) * 2009-11-09 2011-05-19 Toshiba Corp Semiconductor memory device
WO2012078162A1 (en) * 2010-12-09 2012-06-14 Texas Instruments Incorporated Ferroelectric capacitor encapsulated with hydrogen barrier
JP5699862B2 (en) * 2011-08-26 2015-04-15 コニカミノルタ株式会社 Optical film manufacturing method and device substrate using the optical film

Also Published As

Publication number Publication date
JP2015162615A (en) 2015-09-07
WO2015129279A1 (en) 2015-09-03

Similar Documents

Publication Publication Date Title
US20220093773A1 (en) Oxide-Nitride-Oxide Stack Having Multiple Oxynitride Layers
TW561513B (en) Semiconductor device and method of manufacturing the same
TWI435441B (en) A nonvolatile charge trap memory device including a deuterated gate cap layer to increase data retention and manufacturing method thereof
US20110248332A1 (en) Oxide-Nitride-Oxide Stack Having Multiple Oxynitride Layers
US7374997B2 (en) Method of manufacturing flash memory device
US10319733B2 (en) Oxide formation in a plasma process
JP2009267366A (en) Semiconductor memory and method of manufacturing the same
KR20070102408A (en) Semiconductor device and manufacturing method thereof
US20080169501A1 (en) Flash memory device with hybrid structure charge trap layer and method of manufacturing same
JP4357526B2 (en) Nonvolatile semiconductor memory device and manufacturing method thereof
JP6292507B2 (en) Semiconductor device provided with hydrogen diffusion barrier and method of manufacturing the same
KR101027350B1 (en) Non volatile memory device with multi blocking layer and method ofr manufacturing the same
WO2013148343A1 (en) Oxide-nitride-oxide stack having multiple oxynitride layers
JP4609980B2 (en) Method for manufacturing flash memory device
US20070202645A1 (en) Method for forming a deposited oxide layer
TWI245347B (en) Method of fabricating a semiconductor structure
TWI225287B (en) Method for fabricating a non-volatile memory and metal interconnects process
JP2009252841A (en) Semiconductor memory device and its manufacturing method
US9406519B2 (en) Memory device structure and method
JP4734799B2 (en) Method for manufacturing nonvolatile semiconductor memory device
JPH09223752A (en) Manufacture of nonvolatile semiconductor storage device
KR101151153B1 (en) The Method of manufacturing a flash memory device
JP2011210999A (en) Semiconductor device and method of manufacturing the same
KR20180090656A (en) Fabrication method of 3-dimensional flash memory device
TWI534897B (en) Oxide-nitride-oxide stack having multiple oxynitride layers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180202

R150 Certificate of patent or registration of utility model

Ref document number: 6292507

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250