TW201619656A - 光學成像系統(四) - Google Patents

光學成像系統(四) Download PDF

Info

Publication number
TW201619656A
TW201619656A TW103140047A TW103140047A TW201619656A TW 201619656 A TW201619656 A TW 201619656A TW 103140047 A TW103140047 A TW 103140047A TW 103140047 A TW103140047 A TW 103140047A TW 201619656 A TW201619656 A TW 201619656A
Authority
TW
Taiwan
Prior art keywords
lens
imaging system
optical imaging
optical axis
refractive power
Prior art date
Application number
TW103140047A
Other languages
English (en)
Other versions
TWI553371B (zh
Inventor
唐廼元
張永明
Original Assignee
先進光電科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 先進光電科技股份有限公司 filed Critical 先進光電科技股份有限公司
Priority to TW103140047A priority Critical patent/TWI553371B/zh
Priority to US14/717,852 priority patent/US9599794B2/en
Priority to CN201510802036.6A priority patent/CN105607228B/zh
Publication of TW201619656A publication Critical patent/TW201619656A/zh
Application granted granted Critical
Publication of TWI553371B publication Critical patent/TWI553371B/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/60Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having five components only

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一種光學成像系統,由物側至像側依序包含第一透鏡、第二透鏡、第三透鏡、第四透鏡以及第五透鏡。第一透鏡具有正屈折力,其物側面可為凸面。第二透鏡至第四透鏡具有屈折力,前述各透鏡之兩表面皆為非球面。第五透鏡可具有負屈折力,其像側面可為凹面,其兩表面皆為非球面,其中第五透鏡的至少一表面具有反曲點。光學成像系統中具屈折力的透鏡為第一透鏡至第五透鏡。當滿足特定條件時,可具備更大的收光以及更佳的光路調節能力,以提升成像品質。

Description

光學成像系統(四)
本發明是有關於一種光學成像系統組,且特別是有關於一種應用於電子產品上的小型化光學成像系統組。
近年來,隨著具有攝影功能的可攜式電子產品的興起,光學系統的需求日漸提高。一般光學系統的感光元件不外乎是感光耦合元件(Charge Coupled Device;CCD)或互補性氧化金屬半導體元(Complementary Metal-Oxide SemiconduTPor Sensor;CMOS Sensor)兩種,且隨著半導體製程技術的精進,使得感光元件的畫素尺寸縮小,光學系統逐漸往高畫素領域發展,因此對成像品質的要求也日益增加。
傳統搭載於可攜式裝置上的光學系統,多採用三片或四片式透鏡結構為主,然而由於可攜式裝置不斷朝提昇畫素並且終端消費者對大光圈的需求例如微光與夜拍功能或是對廣視角的需求例如前置鏡頭的自拍功能。惟設計大光圈的光學系統常面臨產生更多像差致使周邊成像品質隨之劣化以及製造難易度的處境,而設計廣視角的光學系統則會面臨成像之畸變率(distortion)提高,習知的光學成像系統已無法滿足更高階的攝影要求。
因此,如何有效增加光學成像鏡頭的進光量與增加光學成像鏡頭的視角,除進一步提高成像的總畫素與品質外同時能兼顧微型化光學成像鏡頭之衡平設計,便成為一個相當重要的議題。
本發明實施例之態樣係針對一種光學成像系統及光學影像擷取鏡頭,能夠利用五個透鏡的屈光力、凸面與凹面的組合(本發明所述凸面或凹面原則上係指各透鏡之物側面或像側面於光軸上的幾何形狀描述), 進而有效提高光學成像系統之進光量與增加光學成像鏡頭的視角,同時提高成像的總畫素與品質,以應用於小型的電子產品上。
本發明實施例相關之透鏡參數的用語與其代號詳列如下,作為後續描述的參考:與長度或高度有關之透鏡參數
光學成像系統之成像高度以HOI表示;光學成像系統之高度以HOS表示;光學成像系統之第一透鏡物側面至第五透鏡像側面間的距離以InTL表示;光學成像系統之第五透鏡像側面至成像面間的距離以InB表示;InTL+InB=HOS;光學成像系統之固定光欄(光圈)至成像面間的距離以InS表示;光學成像系統之第一透鏡與第二透鏡間的距離以IN12表示(例示);光學成像系統之第一透鏡於光軸上的厚度以TP1表示(例示)。
與材料有關之透鏡參數
光學成像系統之第一透鏡的色散係數以NA1表示(例示);第一透鏡的折射律以Nd1表示(例示)。
與視角有關之透鏡參數
視角以AF表示;視角的一半以HAF表示;主光線角度以MRA表示。
與出入瞳有關之透鏡參數
光學成像鏡片系統之入射瞳直徑以HEP表示。
與透鏡面形深度有關之參數
第五透鏡物側面於光軸上的交點至第五透鏡物側面的最大有效徑位置於光軸的水平位移距離以InRS51表示(例示);第五透鏡像側面於光軸上的交點至第五透鏡像側面的最大有效徑位置於光軸的水平位移距離以InRS52表示(例示)。
與透鏡面型有關之參數
臨界點C係指特定透鏡表面上,除與光軸的交點外,一與光軸相垂直之切面相切的點。承上,例如第四透鏡物側面的臨界點C41與光軸的垂直距離為HVT41(例示),第四透鏡像側面的臨界點C42與光軸的垂直距離為HVT42(例示),第五透鏡物側面的臨界點C51與光軸的垂直距離為HVT51(例示),第五透鏡像側面的臨界點C52與光軸的垂直距離為HVT52(例示)。第五透鏡物側面上最接近光軸的反曲點為IF511,該點沉陷 量SGI511,該點與光軸間的垂直距離為HIF511(例示)。第五透鏡像側面上最接近光軸的反曲點為IF521,該點沉陷量SGI521(例示),該點與光軸間的垂直距離為HIF521(例示)。第五透鏡物側面上第二接近光軸的反曲點為IF512,該點沉陷量SGI512(例示),該點與光軸間的垂直距離為HIF512(例示)。第五透鏡像側面上第二接近光軸的反曲點為IF522,該點沉陷量SGI522(例示),該點與光軸間的垂直距離為HIF522(例示)。
與像差有關之變數
光學成像系統之光學畸變(Optical Distortion)以ODT表示;其TV畸變(TV Distortion)以TDT表示,並且可以進一步限定描述在成像50%至100%視野間像差偏移的程度;球面像差偏移量以DFS表示;慧星像差偏移量以DFC表示。
本發明提供一種光學成像系統,其第五透鏡的物側面或像側面設置有反曲點,可有效調整各視場入射於第五透鏡的角度,並針對光學畸變與TV畸變進行補正。另外,第五透鏡的表面可具備更佳的光路調節能力,以提升成像品質。
依據本發明提供一種光學成像系統,由物側至像側依序包含第一透鏡、第二透鏡、第三透鏡、第四透鏡以及第五透鏡。第一透鏡具有正屈折力以及第五透鏡具有屈折力。該第五透鏡之物側表面及像側表面皆為非球面,該第一透鏡至該第五透鏡的焦距分別為f1、f2、f3、f4、f5,該光學成像系統的焦距為f,該光學成像鏡片系統之入射瞳直徑為HEP,該光學成像系統之最大視角的一半為HAF,該第一透鏡物側面至該成像面具有一距離HOS,該第一透鏡物側面至該第五透鏡像側面於光軸上具有一距離InTL,該些透鏡個別之物側表面於光軸上的交點至該些透鏡個別之物側表面的最大有效徑位置於光軸的水平位移距離的絕對值總和為InRSO,該些透鏡之像側表面於光軸上的交點至該些透鏡之像側表面的最大有效徑位置於光軸的水平位移距離的絕對值總和為InRSI,InRSO以及InRSI的總和為Σ | InRS |,其滿足下列條件:1.2≦f/HEP≦3.5;0.5≦HOS/f≦3.0;0<Σ | InRS |/InTL≦3。
依據本發明另提供一種光學成像系統,由物側至像側依序 包含第一透鏡、第二透鏡、第三透鏡、第四透鏡以及第五透鏡。第一透鏡具有正屈折力,其物側面及像側面皆為非球面。第二透鏡具有屈折力。第三透鏡具有屈折力。第四透鏡具有屈折力。第五透鏡具有屈折力,其物側面及像側面皆為非球面。該第一透鏡至該第五透鏡的焦距分別為f1、f2、f3、f4、f5,該光學成像系統的焦距為f,該光學成像鏡片系統之入射瞳直徑為HEP,該光學成像系統之最大視角的一半為HAF,該第一透鏡物側面至該成像面具有一距離HOS,該光學成像系統於結像時之光學畸變為ODT並且TV畸變為TDT,該第一透鏡物側面至該第五透鏡像側面於光軸上具有一距離InTL,該些透鏡個別之物側表面於光軸上的交點至該些透鏡個別之物側表面的最大有效徑位置於光軸的水平位移距離的絕對值總和為InRSO,該些透鏡之像側表面於光軸上的交點至該些透鏡之像側表面的最大有效徑位置於光軸的水平位移距離的絕對值總和為InRSI,InRSO以及InRSI的總和為Σ | InRS |,其滿足下列條件:1.2≦f/HEP≦3.5;0.5≦HOS/f≦3.0;0<Σ | InRS |/InTL≦3;| TDT |<60%;以及| ODT |≦50%。
依據本發明再提供一種光學成像系統,由物側至像側依序包含第一透鏡、第二透鏡、第三透鏡、第四透鏡以及第五透鏡。該些透鏡中至少兩透鏡其個別之至少一表面具有至少一反曲點。第一透鏡具有正屈折力,其物側面及像側面皆為非球面。第二透鏡具有屈折力。第三透鏡具有屈折力。第四透鏡具有屈折力。第五透鏡具有屈折力,其像側表面具有至少一個反曲點,其物側面及像側面皆為非球面。該第一透鏡至該第五透鏡的焦距分別為f1、f2、f3、f4、f5,該光學成像系統的焦距為f,該光學成像鏡片系統之入射瞳直徑為HEP,該光學成像系統之最大視角的一半為HAF,該第一透鏡物側面至該成像面具有一距離HOS,該第一透鏡物側面至該第五透鏡像側面於光軸上具有一距離InTL,該光學成像系統於結像時之光學畸變為ODT並且TV畸變為TDT,該些透鏡個別之物側表面於光軸上的交點至該些透鏡個別之物側表面的最大有效徑位置於光軸的水平位移距離的絕對值總和為InRSO,該些透鏡之像側表面於光軸上的交點至該些透鏡之像側表面 的最大有效徑位置於光軸的水平位移距離的絕對值總和為InRSI,InRSO以及InRSI的總和為Σ | InRS |,其滿足下列條件:1.2≦f/HEP≦3.5;0.4≦| tan(HAF) |≦3.0;0.5≦HOS/f≦3.0;| TDT |<1.5%;| ODT |≦2.5%以及0<Σ | InRS |/InTL≦3。
前述光學成像系統可用以搭配成像在對角線長度為1/1.2英吋大小以下的影像感測元件,該影像感測元件之尺寸較佳者為1/2.3英吋,該影像感測元件之像素尺寸小於1.4微米(μm),較佳者其像素尺寸小於1.12微米(μm),最佳者其像素尺寸小於0.9微米(μm)。此外,該光學成像系統可適用於長寬比為16:9的影像感測元件。
前述光學成像系統可適用於千萬像素以上的攝錄影要求(例如4K2K或稱UHD、QHD)並擁有良好的成像品質。
當| f1 |>f5時,光學成像系統的系統總高度(HOS;Height of Optic System)可以適當縮短以達到微型化之目的。
當| f2 |+| f3 |+| f4 |>| f1 |+| f5 |時,藉由第二透鏡至第四透鏡中至少一透鏡具有弱的正屈折力或弱的負屈折力。所稱弱屈折力,係指特定透鏡之焦距的絕對值大於10。當本發明第二透鏡至第四透鏡中至少一透鏡具有弱的正屈折力,其可有效分擔第一透鏡之正屈折力而避免不必要的像差過早出現,反之若第二透鏡至第四透鏡中至少一透鏡具有弱的負屈折力,則可以微調補正系統的像差。
第五透鏡具有負屈折力,其像側面可為凹面。藉此,有利於縮短其後焦距以維持小型化。另外,第五透鏡的至少一表面可具有至少一反曲點,可有效地壓制離軸視場光線入射的角度,進一步可修正離軸視場的像差。
10、20、30、40、50、60‧‧‧光學成像系統
100、200、300、400、500、600‧‧‧光圈
110、210、310、410、510、610‧‧‧第一透鏡
112、212、312、412、512、612‧‧‧物側面
114、214、314、414、514、614‧‧‧像側面
120、220、320、420、520、620‧‧‧第二透鏡
122、222、322、422、522、622‧‧‧物側面
124、224、324、424、524、624‧‧‧像側面
130、230、330、430、530、630‧‧‧第三透鏡
132、232、332、432、532、632‧‧‧物側面
134、234、334、434、534、634‧‧‧像側面
140、240、340、440、540、640‧‧‧第四透鏡
142、242、342、442、542、642‧‧‧物側面
144、244、344、444、544、644‧‧‧像側面
150、250、350、450、550、650‧‧‧第五透鏡
152、252、352、452、552、652‧‧‧物側面
154、254、354、454、554、654‧‧‧像側面
160、260、360、460、560、660‧‧‧第六透鏡
162、262、362、462、562、662‧‧‧物側面
164、264、364、464、564、664‧‧‧像側面
170、270、370、470、570、670‧‧‧紅外線濾光片
180、280、380、480、580、680‧‧‧成像面
190、290、390、490、590、690‧‧‧影像感測元件
f‧‧‧光學成像系統之焦距
f1‧‧‧第一透鏡的焦距
f2‧‧‧第二透鏡的焦距
f3‧‧‧第三透鏡的焦距
f4‧‧‧第四透鏡的焦距
f5‧‧‧第五透鏡的焦距
f/HEP;Fno;F#‧‧‧光學成像系統之光圈值
HAF‧‧‧光學成像系統之最大視角的一半
NA1‧‧‧第一透鏡的色散係數
NA2、NA3、NA4、NA5‧‧‧第二透鏡至第五透鏡的色散係數
R1、R2‧‧‧第一透鏡物側面以及像側面的曲率半徑
R3、R4‧‧‧第二透鏡物側面以及像側面的曲率半徑
R5、R6‧‧‧第三透鏡物側面以及像側面的曲率半徑
R7、R8‧‧‧第四透鏡物側面以及像側面的曲率半徑
R9、R10‧‧‧第五透鏡物側面以及像側面的曲率半徑
TP1‧‧‧第一透鏡於光軸上的厚度
TP2、TP3、TP4、TP5‧‧‧第二透鏡至第五透鏡於光軸上的厚度
Σ TP‧‧‧所有具屈折力之透鏡的厚度總和
IN12‧‧‧第一透鏡與第二透鏡於光軸上的間隔距離
IN23‧‧‧第二透鏡與第三透鏡於光軸上的間隔距離
IN34‧‧‧第三透鏡與第四透鏡於光軸上的間隔距離
IN45‧‧‧第四透鏡與第五透鏡於光軸上的間隔距離
InRS51‧‧‧第五透鏡物側面於光軸上的交點至第五透鏡物側面的最大有效徑位置於光軸的水平位移距離
IF511‧‧‧第五透鏡物側面上最接近光軸的反曲點
SGI511‧‧‧該點沉陷量
HIF511‧‧‧第五透鏡物側面上最接近光軸的反曲點與光軸間的垂直距離
IF521‧‧‧第五透鏡像側面上最接近光軸的反曲點
SGI521‧‧‧該點沉陷量
HIF521‧‧‧第五透鏡像側面上最接近光軸的反曲點與光軸間的垂直距離
IF512‧‧‧第五透鏡物側面上第二接近光軸的反曲點
SGI512‧‧‧該點沉陷量
HIF512‧‧‧第五透鏡物側面第二接近光軸的反曲點與光軸間的垂直距離
IF522‧‧‧第五透鏡像側面上第二接近光軸的反曲點
SGI522‧‧‧該點沉陷量
HIF522‧‧‧第五透鏡像側面第二接近光軸的反曲點與光軸間的垂直距離
C51‧‧‧第五透鏡物側面的臨界點
C52‧‧‧第五透鏡像側面的臨界點
SGC51‧‧‧第五透鏡物側面的臨界點與光軸的水平位移距離
SGC52‧‧‧第五透鏡像側面的臨界點與光軸的水平位移距離
HVT51‧‧‧第五透鏡物側面的臨界點與光軸的垂直距離
HVT52‧‧‧第五透鏡像側面的臨界點與光軸的垂直距離
HOS‧‧‧系統總高度(第一透鏡物側面至成像面於光軸上的距離)
Dg‧‧‧影像感測元件的對角線長度
InS‧‧‧光圈至成像面的距離
InTL‧‧‧第一透鏡物側面至該第五透鏡像側面的距離
InB‧‧‧第五透鏡像側面至該成像面的距離
HOI‧‧‧影像感測元件有效感測區域對角線長的一半(最大像高)
TDT‧‧‧光學成像系統於結像時之TV畸變(TV Distortion)
ODT‧‧‧光學成像系統於結像時之光學畸變(Optical Distortion)
本發明上述及其他特徵將藉由參照附圖詳細說明。
第1A圖係繪示本發明第一實施例之光學成像系統的示意圖; 第1B圖由左至右依序繪示本發明第一實施例之光學成像系統的球差、像散以及光學畸變之曲線圖;第1C圖係繪示本發明第一實施例之光學成像系統之TV畸變曲線圖;第2A圖係繪示本發明第二實施例之光學成像系統的示意圖;第2B圖由左至右依序繪示本發明第二實施例之光學成像系統的球差、像散以及光學畸變之曲線圖;第2C圖係繪示本發明第二實施例之光學成像系統之TV畸變曲線圖;第3A圖係繪示本發明第三實施例之光學成像系統的示意圖;第3B圖由左至右依序繪示本發明第三實施例之光學成像系統的球差、像散以及光學畸變之曲線圖;第3C圖係繪示本發明第三實施例之光學成像系統之TV畸變曲線圖;第4A圖係繪示本發明第四實施例之光學成像系統的示意圖;第4B圖由左至右依序繪示本發明第四實施例之光學成像系統的球差、像散以及光學畸變之曲線圖;第4C圖係繪示本發明第四實施例之光學成像系統之TV畸變曲線圖;第5A圖係繪示本發明第五實施例之光學成像系統的示意圖;第5B圖由左至右依序繪示本發明第五實施例之光學成像系統的球差、像散以及光學畸變之曲線圖;第5C圖係繪示本發明第五實施例之光學成像系統之TV畸變曲線圖;第6A圖係繪示本發明第六實施例之光學成像系統的示意圖;第6B圖由左至右依序繪示本發明第六實施例之光學成像系統的球差、像散以及光學畸變之曲線圖;第6C圖係繪示本發明第六實施例之光學成像系統之TV畸變曲線圖。
一種光學成像系統組,由物側至像側依序包含具屈折力的第一透鏡、第二透鏡、第三透鏡、第四透鏡以及第五透鏡。光學成像系統更可包含一影像感測元件,其設置於成像面。
光學成像系統使用三個工作波長進行設計,分別為486.1nm、587.5nm、656.2nm,其中587.5nm為主要參考波長並以555nm為主要提取技術特徵之參考波長。
光學成像系統的焦距f與每一片具有正屈折力之透鏡的焦距fp之比值PPR,光學成像系統的焦距f與每一片具有負屈折力之透鏡的焦距fn之比值NPR,所有正屈折力之透鏡的PPR總和為Σ PPR,所有負屈折力之透鏡的NPR總和為Σ NPR,當滿足下列條件時有助於控制光學成像系統的總屈折力以及總長度:0.5≦Σ PPR/| Σ NPR |≦2.5,較佳地,可滿足下列條件:1≦Σ PPR/| Σ NPR |≦2.0。
光學成像系統的系統高度為HOS,當HOS/f比值趨近於1時,將有利於製作微型化且可成像超高畫素的光學成像系統。
光學成像系統的每一片具有正屈折力之透鏡的焦距fp之總和為Σ PP,每一片具有負屈折力之透鏡的焦距總和為Σ NP,本發明的光學成像系統之一種實施方式,其滿足下列條件:0<Σ PP≦200;以及f1/Σ PP≦0.85。較佳地,可滿足下列條件:0<Σ PP≦150;以及0.01≦f1/Σ PP≦0.6。藉此,有助於控制光學成像系統的聚焦能力,並且適當分配系統的正屈折力以抑制顯著之像差過早產生。同時滿足下列條件:Σ NP<-0.1;以及f5/Σ NP≦0.85。較佳地,可滿足下列條件:Σ NP<0;以及0.01≦f5/Σ NP≦0.5。有助於控制光學成像系統的總屈折力以及總長度。
第一透鏡具有正屈折力,其物側面可為凸面。藉此,可適當調整第一透鏡的正屈折力強度,有助於縮短光學成像系統的總長度。
第二透鏡可具有負屈折力。藉此,可補正第一透鏡產生的像差。
第三透鏡可具有正屈折力。藉此,可分擔第一透鏡的正屈折力。
第四透鏡可具有負屈折力,其像側面可為凸面。藉此,可分擔第一透鏡的正屈折力,以避免像差過度增大並可降低光學成像系統的 敏感度。
第五透鏡可具有負屈折力,其像側面可為凹面。藉此,有利於縮短其後焦距以維持小型化。另外,第五透鏡的至少一表面可具有至少一反曲點,可有效地壓制離軸視場光線入射的角度,進一步可修正離軸視場的像差。較佳地,其物側面以及像側面均具有至少一反曲點。
光學成像系統可更包含一影像感測元件,其設置於成像面。影像感測元件有效感測區域對角線長的一半(即為光學成像系統之成像高度或稱最大像高)為HOI,第一透鏡物側面至成像面於光軸上的距離為HOS,其滿足下列條件:HOS/HOI≦3;以及0.5≦HOS/f≦3.0。較佳地,可滿足下列條件:1≦HOS/HOI≦2.5;以及1≦HOS/f≦2。藉此,可維持光學成像系統的小型化,以搭載於輕薄可攜式的電子產品上。
另外,本發明的光學成像系統中,依需求可設置至少一光圈,以減少雜散光,有助於提昇影像品質。
本發明的光學成像系統中,光圈配置可為前置光圈或中置光圈,其中前置光圈意即光圈設置於被攝物與第一透鏡間,中置光圈則表示光圈設置於第一透鏡與成像面間。若光圈為前置光圈,可使光學成像系統的出瞳與成像面產生較長的距離而容置更多光學元件,並可增加影像感測元件接收影像的效率;若為中置光圈,係有助於擴大系統的視場角,使光學成像系統具有廣角鏡頭的優勢。前述光圈至成像面間的距離為InS,其滿足下列條件:0.5≦InS/HOS≦1.1。較佳地,可滿足下列條件:0.8≦InS/HOS≦1藉此,可同時兼顧維持光學成像系統的小型化以及具備廣角的特性。
本發明的光學成像系統中,第一透鏡物側面至第五透鏡像側面間的距離為InTL,於光軸上所有具屈折力之透鏡的厚度總和Σ TP,其滿足下列條件:0.45≦Σ TP/InTL≦0.95。藉此,當可同時兼顧系統成像的對比度以及透鏡製造的良率並提供適當的後焦距以容置其他元件。
第一透鏡物側面的曲率半徑為R1,第一透鏡像側面的曲率半徑為R2,其滿足下列條件:0.1≦| R1/R2 |≦5。藉此,第一透鏡的具備適當正屈折力強度,避免球差增加過速。較佳地,可滿足下列條件:0.1≦| R1/R2 |≦4。
第五透鏡物側面的曲率半徑為R9,第五透鏡像側面的曲率半徑為R10,其滿足下列條件:-200<(R9-R10)/(R9+R10)<30。藉此,有利於修正光學成像系統所產生的像散。
第一透鏡與第二透鏡於光軸上的間隔距離為IN12,其滿足下列條件:0<IN12/f≦0.25。較佳地,可滿足下列條件:0.01≦IN12/f≦0.20。藉此,有助於改善透鏡的色差以提升其性能。
第一透鏡與第二透鏡於光軸上的厚度分別為TP1以及TP2,其滿足下列條件:1≦(TP1+IN12)/TP2≦10。藉此,有助於控制光學成像系統製造的敏感度並提升其性能。
第四透鏡與第五透鏡於光軸上的厚度分別為TP4以及TP5,前述兩透鏡於光軸上的間隔距離為IN45,其滿足下列條件:0.2≦(TP5+IN45)/TP4≦3。藉此,有助於控制光學成像系統製造的敏感度並降低系統總高度。
第二透鏡、第三透鏡、第四透鏡於光軸上的厚度分別為TP2、TP3、TP4,第二透鏡與第三透鏡於光軸上的間隔距離為IN23,第三透鏡與第四透鏡於光軸上的間隔距離為IN34,第一透鏡物側面至第五透鏡像側面間的距離為InTL,其滿足下列條件:0.1≦(TP2+TP3+TP4)/Σ TP≦0.9。較佳地,可滿足下列條件:0.4≦(TP2+TP3+TP4)/Σ TP≦0.8。藉此,有助於層層微幅修正入射光線行進過程所產生的像差並降低系統總高度。
本發明光學成像系統之第一透鏡物側表面於光軸上的交點至第一透鏡物側表面的最大有效徑位置於光軸的水平位移距離為InRS11(若水平位移朝向像側,InRS11為正值;若水平位移朝向物側,InRS11為負值),第一透鏡像側表面於光軸上的交點至第一透鏡像側表面的最大有效徑位置於光軸的水平位移距離為InRS12,第一透鏡於光軸上的厚度為TP1,其滿足下列條件:0mm<| InRS11 |+| InRS12 |≦2mm;以及1.01≦(| InRS11 |+TP1+| InRS12 |)/TP1≦3。藉此,可控制第一透鏡之中心厚度與其有效徑厚度間的比例(厚薄比),進而提昇該透鏡製造上的良率。
第二透鏡物側表面於光軸上的交點至第二透鏡物側表面的最大有效徑位置於光軸的水平位移距離為InRS21,第二透鏡像側表面於光軸上的交點至第二透鏡像側表面的最大有效徑位置於光軸的水平位移距離 為InRS22,第二透鏡於光軸上的厚度為TP2,其滿足下列條件:0mm<| InRS21 |+| InRS22 |≦2mm;以及1.01≦(| InRS21 |+TP2+| InRS22 |)/TP2≦5。藉此,可控制第二透鏡之中心厚度與其有效徑厚度間的比例(厚薄比),進而提昇該透鏡製造上的良率。
第三透鏡物側表面於光軸上的交點至第三透鏡物側表面的最大有效徑位置於光軸的水平位移距離為InRS31,第三透鏡像側表面於光軸上的交點至第三透鏡像側表面的最大有效徑位置於光軸的水平位移距離為InRS32,第三透鏡於光軸上的厚度為TP3,其滿足下列條件:0mm<| InRS31 |+| InRS32 |≦2mm;以及1.01≦(| InRS31 |+TP3+| InRS32 |)/TP3≦10。藉此,可控制第三透鏡之中心厚度與其有效徑厚度間的比例(厚薄比),進而提昇該透鏡製造上的良率。
第四透鏡物側表面於光軸上的交點至第四透鏡物側表面的最大有效徑位置於光軸的水平位移距離為InRS41,第四透鏡像側表面於光軸上的交點至第四透鏡像側表面的最大有效徑位置於光軸的水平位移距離為InRS42,第四透鏡於光軸上的厚度為TP4,其滿足下列條件:0mm<| InRS41 |+| InRS42 |≦5mm;以及1.01≦(| InRS41 |+TP4+| InRS42 |)/TP4≦10。藉此,可控制第四透鏡之中心厚度與其有效徑厚度間的比例(厚薄比),進而提昇該透鏡製造上的良率。
第五透鏡物側表面於光軸上的交點至第五透鏡物側表面的最大有效徑位置於光軸的水平位移距離為InRS51,第五透鏡像側表面於光軸上的交點至第五透鏡像側表面的最大有效徑位置於光軸的水平位移距離為InRS52,第五透鏡於光軸上的厚度為TP5,其滿足下列條件:0mm<| InRS51 |+| InRS52 |≦8mm;以及1.01≦(| InRS51 |+TP5+| InRS52 |)/TP5≦20。藉此,可控制第五透鏡之中心厚度與其有效徑厚度間的比例(厚薄比),進而提昇該透鏡製造上的良率。
所有具屈折力的透鏡其個別之物側表面於光軸上的交點至該透鏡個別之物側表面的最大有效徑位置於光軸的水平位移距離的絕對值總和為InRSO,亦即InRSO=| InRS11 |+| InRS21 |+| InRS31 |+| InRS41 |+| InRS51 |。所有具屈折力的透鏡其個別之像側表面於光軸上的交點至該透鏡個別之像側表面的最大有效徑位置於光軸的水平位移距離的絕對值 總和為InRSI,亦即InRSI=| InRS12 |+| InRS22 |+| InRS32 |+| InRS42 |+| InRs52 |。本發明的光學成像系統中,所有具屈折力的透鏡之任一表面於光軸上的交點至該表面的最大有效徑位置於光軸的水平位移距離的絕對值之總和為Σ | InRS |=InRSO+InRSI,其滿足下列條件:0<Σ | InRS |≦15mm。藉此,可有效提升系統修正離軸視場像差之能力。
本發明的光學成像系統其滿足下列條件:0<Σ | InRS |/InTL≦3;以及0<Σ | InRS |/HOS≦2,藉此,可同時兼顧降低系統總高度並且有效提升系統修正離軸視場像差之能力。
本發明的光學成像系統其滿足下列條件:0<| InRS41 |+| InRS42 |+| InRS51 |+| InRS52 |≦8mm;0<(| InRS41 |+| InRS42 |+| InRS51 |+| InRS52 |)/InTL≦3;以及0<(| InRs41 |+| InRS42 |+| InRS51 |+| InRS52 |)/HOS≦2,藉此,可同時兼顧提昇最接近成像片之二透鏡製造上的良率以及有效提升系統修正離軸視場像差之能力。
第四透鏡物側面的臨界點與光軸的垂直距離為HVT41,第四透鏡像側面的臨界點與光軸的垂直距離為HVT42,其滿足下列條件:HVT41≧0mm;HVT42≧0mm。藉此,可有效修正離軸視場的像差。
第五透鏡物側面的臨界點與光軸的垂直距離為HVT51,第五透鏡像側面的臨界點與光軸的垂直距離為HVT52,其滿足下列條件:HVT51≧0;HVT52≧0。藉此,可有效修正離軸視場的像差。
本發明的光學成像系統其滿足下列條件:0.2≦HVT52/HOI≦0.9。較佳地,可滿足下列條件:0.3≦HVT52/HOI≦0.8。藉此,有助於光學成像系統之週邊視場的像差修正。
本發明的光學成像系統其滿足下列條件:0≦HVT52/HOS≦0.5。較佳地,可滿足下列條件:0.2≦HVT52/HOS≦0.45。藉此,有助於光學成像系統之週邊視場的像差修正。
本發明的光學成像系統之一種實施方式,可藉由具有高色散係數與低色散係數之透鏡交錯排列,而助於光學成像系統色差的修正。
上述非球面之方程式係為:z=ch2/[1+[1(k+1)c2h2]0.5]+A4h4+A6h6+A8h8+A10h10+A12h12+A14h14+A16h16+A18h18+A20h20+…(1) 其中,z為沿光軸方向在高度為h的位置以表面頂點作參考的位置值,k為錐面係數,c為曲率半徑的倒數,且A4、A6、A8、A10、A12、A14、A16、A18以及A20為高階非球面係數。
本發明提供的光學成像系統中,透鏡的材質可為塑膠或玻璃。當透鏡材質為塑膠,可以有效降低生產成本與重量。另當透鏡的材質為玻璃,則可以控制熱效應並且增加光學成像系統屈折力配置的設計空間。此外,光學成像系統中第一透鏡至第五透鏡的物側面及像側面可為非球面,其可獲得較多的控制變數,除用以消減像差外,相較於傳統玻璃透鏡的使用甚至可縮減透鏡使用的數目,因此能有效降低本發明光學成像系統的總高度。
再者,本發明提供的光學成像系統中,若透鏡表面係為凸面,則表示透鏡表面於近光軸處為凸面;若透鏡表面係為凹面,則表示透鏡表面於近光軸處為凹面。
另外,本發明的光學成像系統中,依需求可設置至少一光欄,以減少雜散光,有助於提昇影像品質。
本發明的光學成像系統中,光圈配置可為前置光圈或中置光圈,其中前置光圈意即光圈設置於被攝物與第一透鏡間,中置光圈則表示光圈設置於第一透鏡與成像面間。若光圈為前置光圈,可使光學成像系統的出瞳與成像面產生較長的距離而容置更多光學元件,並可增加影像感測元件接收影像的效率;若為中置光圈,係有助於擴大系統的視場角,使光學成像系統具有廣角鏡頭的優勢。
本發明的光學成像系統更可視需求應用於移動對焦的光學系統中,並兼具優良像差修正與良好成像品質的特色,從而擴大應用層面。
根據上述實施方式,以下提出具體實施例並配合圖式予以詳細說明。
第一實施例
請參照第1A圖及第1B圖,其中第1A圖繪示依照本發明第一實施例的一種光學成像系統的示意圖,第1B圖由左至右依序為第一實施例的光學成像系統的球差、像散及光學畸變曲線圖。第1C圖為第一實施例的光學成像系統的TV畸變曲線圖。由第1A圖可知,光學成像系統由物側至像側依 序包含第一透鏡110、光圈100、第二透鏡120、第三透鏡130、第四透鏡140、第五透鏡150、紅外線濾光片170、成像面180以及影像感測元件190。
第一透鏡110具有正屈折力,且為塑膠材質,其物側面112為凸面,其像側面114為凹面,並皆為非球面,且其像側面114具有一反曲點。第一透鏡像側面於光軸上的交點至第一透鏡像側面最近光軸的反曲點之間與光軸平行的水平位移距離以SGI121表示,其滿足下列條件:SGI121=0.0387148mm;| SGI121 |/(| SGI121 |+TP1)=0.061775374。
第一透鏡像側面於光軸上的交點至第一透鏡像側面最近光軸的反曲點與光軸間的垂直距離以HIF121表示,其滿足下列條件:HIF121=0.61351mm;HIF121/HOI=0.209139253。
第二透鏡120具有負屈折力,且為塑膠材質,其物側面122為凹面,其像側面124為凸面,並皆為非球面,且其像側面124具有一反曲點。第二透鏡像側面於光軸上的交點至第二透鏡像側面最近光軸的反曲點之間與光軸平行的水平位移距離以SGI221表示,其滿足下列條件:SGI221=-0.0657553mm;| SGI221 |/(| SGI221 |+TP2)=0.176581512。
第二透鏡像側面於光軸上的交點至第二透鏡像側面最近光軸的反曲點與光軸間的垂直距離以HIF221表示,其滿足下列條件:HIF221=0.84667mm;HIF221/HOI=0.288621101。
第三透鏡130具有負屈折力,且為塑膠材質,其物側面132為凹面,其像側面134為凸面,並皆為非球面,且其物側面132以及像側面134皆具有二反曲點。第三透鏡物側面於光軸上的交點至第三透鏡物側面最近光軸的反曲點之間與光軸平行的水平位移距離以SGI311表示,第三透鏡像側面於光軸上的交點至第三透鏡像側面最近光軸的反曲點之間與光軸平行的水平位移距離以SGI321表示,其滿足下列條件:SGI311=-0.341027mm;SGI321=-0.231534mm;| SGI311 |/(| SGI311 |+TP3)=0.525237108;| SGI321 |/(| SGI321 |+TP3)=0.428934269。
第三透鏡物側面於光軸上的交點至第三透鏡物側面第二接近光軸的反曲點之間與光軸平行的水平位移距離以SGI312表示,第三透鏡像側面於光軸上的交點至第三透鏡像側面第二接近光軸的反曲點之間與光軸平行的水平位移距離以SGI322表示,其滿足下列條件:SGI312=-0.376807 mm;SGI322=-0.382162mm;| SGI312 |/(| SGI312 |+TP5)=0.550033428;| SGI322 |/(| SGI322 |+TP3)=0.55352345。
第三透鏡物側面最近光軸的反曲點與光軸間的垂直距離以HIF311表示,第三透鏡像側面於光軸上的交點至第三透鏡像側面最近光軸的反曲點與光軸間的垂直距離以HIF321表示,其滿足下列條件:HIF311=0.987648mm;HIF321=0.805604mm;HIF311/HOI=0.336679052;HIF321/HOI=0.274622124。
第三透鏡物側面第二接近光軸的反曲點與光軸間的垂直距離以HIF312表示,第三透鏡像側面於光軸上的交點至第三透鏡像側面第二接近光軸的反曲點與光軸間的垂直距離以HIF322表示,其滿足下列條件:HIF312=1.0493mm;HIF322=1.17741mm;HIF312/HOI=0.357695585;HIF322/HOI=0.401366968。
第四透鏡140具有正屈折力,且為塑膠材質,其物側面142為凸面,其像側面144為凸面,並皆為非球面,且其物側面142具有一反曲點。第四透鏡物側面於光軸上的交點至第四透鏡物側面最近光軸的反曲點之間與光軸平行的水平位移距離以SGI411表示,其滿足下列條件:SGI411=0.0687683mm;| SGI411 |/(| SGI411 |+TP4)=0.118221297。
第四透鏡物側面最近光軸的反曲點與光軸間的垂直距離以HIF411表示,其滿足下列條件:HIF411=0.645213mm;HIF411/HOI=0.21994648。
第五透鏡150具有負屈折力,且為塑膠材質,其物側面152為凹面,其像側面154為凹面,並皆為非球面,且其物側面152具有三反曲點以及像側面154具有一反曲點。第五透鏡物側面於光軸上的交點至第五透鏡物側面最近光軸的反曲點之間與光軸平行的水平位移距離以SGI511表示,第五透鏡像側面於光軸上的交點至第五透鏡像側面最近光軸的反曲點之間與光軸平行的水平位移距離以SGI521表示,其滿足下列條件:SGI511=-0.236079mm;SGI521=0.023266mm;| SGI511 |/(| SGI511 |+TP5)=0.418297214;| SGI521 |/(| SGI521 |+TP5)=0.066177809。
第五透鏡物側面於光軸上的交點至第五透鏡物側面第二接近光軸的反曲點之間與光軸平行的水平位移距離以SGI512表示,其滿足下 列條件:SGI512=-0.325042mm;| SGI512 |/(| SGI512 |+TP5)=0.497505143。
第五透鏡物側面於光軸上的交點至第五透鏡物側面第三接近光軸的反曲點之間與光軸平行的水平位移距離以SGI513表示,其滿足下列條件:SGI513=-0.538131mm;| SGI513 |/(| SGI513 |+TP5)=0.621087839。
第五透鏡物側面最近光軸的反曲點與光軸間的垂直距離以HIF511表示,第五透鏡像側面最近光軸的反曲點與光軸間的垂直距離以HIF521表示,其滿足下列條件:HIF511=1.21551mm;HIF521=0.575738mm;HIF511/HOI=0.414354866;HIF521/HOI=0.196263167。
第五透鏡物側面第二接近光軸的反曲點與光軸間的垂直距離以HIF512表示,其滿足下列條件:HIF512=1.49061mm;HIF512/HOI=0.508133629。
第五透鏡物側面第三接近光軸的反曲點與光軸間的垂直距離以HIF513表示,其滿足下列條件:HIF513=2.00664mm;HIF513/HOI=0.684042952。
紅外線濾光片170為玻璃材質,其設置於第五透鏡150及成像面180間且不影響光學成像系統的焦距。
第一實施例的光學成像系統中,光學成像系統的焦距為f,光學成像系統之入射瞳直徑為HEP,光學成像系統中最大視角的一半為HAF,其數值如下:f=3.73172mm;f/HEP=2.05;以及HAF=37.5度與tan(HAF)=0.7673。
第一實施例的光學成像系統中,第一透鏡110的焦距為f1,第五透鏡150的焦距為f5,其滿足下列條件:f1=3.7751mm;| f/f1 |=0.9885;f5=-3.6601mm;| f1 |>f5;以及| f1/f5 |=1.0314。
第一實施例的光學成像系統中,第二透鏡120至第四透鏡140的焦距分別為f2、f3、f4,其滿足下列條件:| f2 |+| f3 |+| f4 |=77.3594mm;| f1 |+| f5 |=7.4352mm以及| f2 |+| f3 |+| f4 |>| f1 |+| f5 |。
光學成像系統的焦距f與每一片具有正屈折力之透鏡的焦 距fp之比值PPR,光學成像系統的焦距f與每一片具有負屈折力之透鏡的焦距fn之比值NPR,第一實施例的光學成像系統中,所有正屈折力之透鏡的PPR總和為Σ PPR=f/f1+f/f4=1.9785,所有負屈折力之透鏡的NPR總和為Σ NPR=f/f2+f/f3+f/f5=-1.2901,Σ PPR/| Σ NPR |=1.5336。同時亦滿足下列條件:| f/f1 |=0.9885;| f/f2 |=0.0676;| f/f3 |=0.2029;| f/f4 |=0.9900;| f/f5 |=1.0196。
第一實施例的光學成像系統中,第一透鏡物側面112至第五透鏡像側面154間的距離為InTL,第一透鏡物側面112至成像面180間的距離為HOS,光圈100至成像面180間的距離為InS,影像感測元件190有效感測區域對角線長的一半為HOI,第五透鏡像側面154至成像面180間的距離為InB,其滿足下列條件:InTL+InB=HOS;HOS=4.5mm;HOI=2.9335mm;HOS/HOI=1.5340;HOS/f=1.2059;InTL/HOS=0.7597;InS=4.19216mm;以及InS/HOS=0.9316。
第一實施例的光學成像系統中,於光軸上所有具屈折力之透鏡的厚度總和為Σ TP,其滿足下列條件:Σ TP=2.044092mm;以及Σ TP/InTL=0.5979。藉此,當可同時兼顧系統成像的對比度以及透鏡製造的良率並提供適當的後焦距以容置其他元件。
第一實施例的光學成像系統中,第一透鏡物側面112的曲率半徑為R1,第一透鏡像側面114的曲率半徑為R2,其滿足下列條件:| R1/R2 |=0.3261。藉此,第一透鏡的具備適當正屈折力強度,避免球差增加過速。
第一實施例的光學成像系統中,第五透鏡物側面152的曲率半徑為R9,第五透鏡像側面154的曲率半徑為R10,其滿足下列條件:(R9-R10)/(R9+R10)=-2.9828。藉此,有利於修正光學成像系統所產生的像散。
第一實施例的光學成像系統中,第一透鏡110與第四透鏡140之個別焦距分別為f1、f4,所有具正屈折力的透鏡之焦距總和為Σ PP,其滿足下列條件:Σ PP=f1+f4=7.5444mm;以及f1/(f1+f4)=0.5004。藉此,有助於適當分配第一透鏡110之正屈折力至其他正透鏡,以抑制入射光線行進過程顯著像差的產生。
第一實施例的光學成像系統中,第二透鏡120、第三透鏡130 與第五透鏡150之個別焦距分別為f2、f3以及f5,所有具負屈折力的透鏡之焦距總和為Σ NP,其滿足下列條件:Σ NP=f2+f3+f5=-77.2502mm;以及f5/(f2+f3+f5)=0.0474。藉此,有助於適當分配第五透鏡之負屈折力至其他負透鏡,以抑制入射光線行進過程顯著像差的產生。
第一實施例的光學成像系統中,第一透鏡110與第二透鏡120於光軸上的間隔距離為IN12,其滿足下列條件:IN12=0.511659mm;IN12/f=0.1371。藉此,有助於改善透鏡的色差以提升其性能。
第一實施例的光學成像系統中,第一透鏡110與第二透鏡120於光軸上的厚度分別為TP1以及TP2,其滿足下列條件:TP1=0.587988mm;TP2=0.306624mm;以及(TP1+IN12)/TP2=3.5863。藉此,有助於控制光學成像系統製造的敏感度並提升其性能。
第一實施例的光學成像系統中,第四透鏡140與第五透鏡150於光軸上的厚度分別為TP4以及TP5,前述兩透鏡於光軸上的間隔距離為IN45,其滿足下列條件:TP4=0.5129mm;TP5=0.3283mm;以及(TP5+IN45)/TP4=1.5095。藉此,有助於控制光學成像系統製造的敏感度並降低系統總高度。
第一實施例的光學成像系統中,第二透鏡120、第三透鏡130、第四透鏡140與於光軸上的厚度分別為TP2、TP3、TP4,第二透鏡120與第三透鏡130於光軸上的間隔距離為IN23,第三透鏡130與第四透鏡140於光軸上的間隔距離為IN34,其滿足下列條件:TP3=0.3083mm;以及(TP2+TP3+TP4)/Σ TP=0.5517。藉此,有助於層層微幅修正入射光線行進過程所產生的像差並降低系統總高度。
第一實施例的光學成像系統中,第五透鏡物側面152於光軸上的交點至第五透鏡物側面152的最大有效徑位置於光軸的水平位移距離為InRS51,第五透鏡像側面154於光軸上的交點至第五透鏡像側面154的最大有效徑位置於光軸的水平位移距離為InRS52,第五透鏡150於光軸上的厚度為TP5,其滿足下列條件:InRS51=-0.576871mm;InRS52=-0.555284mm;| InRS51 |+| InRS52 |=1.1132155mm;| InRS51 |/TP5=1.7571;以及| InRS52 |/TP5=1.691。藉此,有利於鏡片的製作與成型,並有效維持其小型化。
第一實施例的光學成像系統中,第二透鏡120以及第五透鏡150具有負屈折力,第二透鏡的色散係數為NA2,第五透鏡的色散係數為NA5,其滿足下列條件:NA5/NA2=2.5441。藉此,有助於光學成像系統色差的修正。
第一實施例的光學成像系統中,光學成像系統於結像時之TV畸變為TDT,結像時之光學畸變為ODT,其滿足下列條件:| TDT |=0.6343%;| ODT |=2.5001%。
再配合參照下列表一以及表二。
表一為第1圖第一實施例詳細的結構數據,其中曲率半徑、厚度、距離及焦距的單位為mm,且表面0-14依序表示由物側至像側的表面。表二為第一實施例中的非球面數據,其中,k表非球面曲線方程式中的錐面係數,A1-A20則表示各表面第1-20階非球面係數。此外,以下各實施例表格乃對應各實施例的示意圖與像差曲線圖,表格中數據的定義皆與第 一實施例的表一及表二的定義相同,在此不加贅述。
第二實施例
請參照第2A圖及第2B圖,其中第2A圖繪示依照本發明第二實施例的一種光學成像系統的示意圖,第2B圖由左至右依序為第二實施例的光學成像系統的球差、像散及光學畸變曲線圖。第2C圖為第二實施例的光學成像系統的TV畸變曲線圖。由第2A圖可知,光學成像系統由物側至像側依序包含第一透鏡210、光圈200、第二透鏡220、第三透鏡230、第四透鏡240、第五透鏡250、紅外線濾光片270、成像面280以及影像感測元件290。
第一透鏡210具有正屈折力,且為塑膠材質,其物側面212為凹面,其像側面214為凸面,並皆為非球面,且其物側面212以及像側面214皆具有一反曲點。
第二透鏡220具有負屈折力,且為塑膠材質,其物側面222為凸面,其像側面224為凹面,並皆為非球面。
第三透鏡230具有正屈折力,且為塑膠材質,其物側面232為凸面,其像側面234為凸面,並皆為非球面,其物側面232具有一反曲點。
第四透鏡240具有負屈折力,且為塑膠材質,其物側面242為凹面,其像側面244為凸面,並皆為非球面,且其物側面242以及像側面244皆具有二反曲點。
第五透鏡250具有負屈折力,且為塑膠材質,其物側面252為凸面,其像側面254為凹面,並皆為非球面,且其物側面252以及像側面254皆具有一反曲點。
紅外線濾光片270為玻璃材質,其設置於第五透鏡250及成像面280間且不影響光學成像系統的焦距。
第二實施例的光學成像系統中,第二透鏡220至第五透鏡250的焦距分別為f2、f3、f4、f5,其滿足下列條件:| f2 |+| f3 |+| f4 |=114.8894mm;| f1 |+| f5 |=10.1200mm;以及| f2 |+| f3 |+| f4 |>| f1 |+| f5 |。
第二實施例的光學成像系統中,第四透鏡240於光軸上的厚度為TP4,第五透鏡250於光軸上的厚度為TP5,其滿足下列條件:TP4=0.4410mm;以及TP5=0.5313mm。
第二實施例的光學成像系統中,第一透鏡210、第三透鏡230均為正透鏡,其個別焦距分別為f1、f3,所有具正屈折力的透鏡之焦距總和為Σ PP,其滿足下列條件:Σ PP=f1+f3=8.8653mm;以及f1/(f1+f3)=0.7708。藉此,有助於適當分配第一透鏡210之正屈折力至其他正透鏡,以抑制入射光行進過程顯著像差的產生。
第二實施例的光學成像系統中,第二透鏡220、第四透鏡240與第五透鏡250之個別焦距分別為f2、f4以及f5,所有具負屈折力的透鏡之焦距總和為Σ NP,其滿足下列條件:Σ NP=f2+f4+f5=-116.1440mm;以及f5/(f2+f4+f5)=0.1107。藉此,有助於適當分配第五透鏡250之負屈折力至其他負透鏡。
第二實施例的光學成像系統中,第四透鏡物側面242的臨界點與光軸的垂直距離為HVT41,第四透鏡像側面244的臨界點與光軸的垂直距離為HVT42,其滿足下列條件:HVT41=0mm;HVT42=0mm。
第二實施例的光學成像系統中,第五透鏡物側面252的臨界點與光軸的垂直距離為HVT51,第五透鏡像側面254的臨界點與光軸的垂直距離為HVT52,其滿足下列條件:HVT51=0mm;HVT52=0.3839mm。
第二實施例的光學成像系統中,所有正屈折力之透鏡的PPR總和為Σ PPR=f/f1+f/f3=1.9443,所有負屈折力之透鏡的NPR總和為Σ NPR=f/f2+f/f4+f/f5=1.1938,Σ PPR/| Σ NPR |=1.6286。
請配合參照下列表三以及表四。
第二實施例中,非球面的曲線方程式表示如第一實施例的形式。此外,下表參數的定義皆與第一實施例相同,在此不加以贅述。
依據表三及表四可得到下列條件式數值:
第三實施例
請參照第3A圖及第3B圖,其中第3A圖繪示依照本發明第三實施例的一種光學成像系統的示意圖,第3B圖由左至右依序為第三實施例的光學成像系統的球差、像散及光學畸變曲線圖。第3C圖為第三實施例的光學成像系統的TV畸變曲線圖。由第3A圖可知,光學成像系統由物側至像側依序包含第一透鏡310、光圈300、第二透鏡320、第三透鏡330、第四透鏡340、第五透鏡350、紅外線濾光片370、成像面380以及影像感測元件390。
第一透鏡310具有正屈折力,且為塑膠材質,其物側面312為凸面,其像側面314為凹面,並皆為非球面,且其物側面312以及像側面314均具有一反曲點。
第二透鏡320具有負屈折力,且為塑膠材質,其物側面322為凸面,其像側面324為凹面,並皆為非球面,且其物側面322以及像側面324均具有一反曲點。
第三透鏡330具有正屈折力,且為塑膠材質,其物側面332為凹面,其像側面334為凸面,並皆為非球面。
第四透鏡340具有負屈折力,且為塑膠材質,其物側面342為凹面,其像側面344為凸面,並皆為非球面,且物側面342具有二反曲點。
第五透鏡350具有負屈折力,且為塑膠材質,其物側面352為凹面,其像側面354為凹面,並皆為非球面,且其物側面352具有二反曲點以及像側面354具有一反曲點。
紅外線濾光片370為玻璃材質,其設置於第五透鏡350及成像面380間且不影響光學成像系統的焦距。
第三實施例的光學成像系統中,第二透鏡320至第五透鏡350的焦距分別為f2、f3、f4、f5,其滿足下列條件:| f2 |+| f3 |+| f4 |=109.5899mm;| f1 |+| f5 |=8.8602mm;以及| f2 |+| f3 |+| f4 |>| f1 |+| f5 |。
第三實施例的光學成像系統中,第四透鏡340於光軸上的厚度為TP4,第五透鏡350於光軸上的厚度為TP5,其滿足下列條件:TP4=0.5368mm;以及TP5=0.3381mm。
第三實施例的光學成像系統中,第一透鏡310、第三透鏡330均為正透鏡,其個別焦距分別為f1、f3,所有具正屈折力的透鏡之焦距總和為Σ PP,其滿足下列條件:Σ PP=f1+f3=7.7668mm;以及f1/(f1+f3)=0.7975。藉此,有助於適當分配第一透鏡310之正屈折力至其他正透鏡,以抑制入射光線行進過程顯著像差的產生。
第三實施例的光學成像系統中,第二透鏡320、第四透鏡340與第五透鏡350之個別焦距為f2、f4、f5,所有具負屈折力的透鏡之焦距總和為Σ NP,其滿足下列條件:Σ NP=f2+f4+f5=-110.6832mm;以及f5/ (f2+f4+f5)=0.9035。藉此,有助於適當分配第五透鏡350之負屈折力至其他負透鏡。
第三實施例的光學成像系統中,第四透鏡物側面342的臨界點與光軸的垂直距離為HVT41,第四透鏡像側面344的臨界點與光軸的垂直距離為HVT42,其滿足下列條件:HVT41=0mm;HVT42=0mm。
第三實施例的光學成像系統中,第五透鏡物側面352的臨界點與光軸的垂直距離為HVT51,第五透鏡像側面354的臨界點與光軸的垂直距離為HVT52,其滿足下列條件:HVT51=0mm;HVT52=1.6048mm。
第三實施例的光學成像系統中,所有正屈折力之透鏡的PPR總和為Σ PPR=f/f1+f/f3=2.4949,所有負屈折力之透鏡的NPR總和為Σ NPR=f/f2+f/f4+f/f5=1.5953,Σ PPR/| Σ NPR |=1.5639。
請配合參照下列表五以及表六。
第三實施例中,非球面的曲線方程式表示如第一實施例的形式。此外,下表參數的定義皆與第一實施例相同,在此不加以贅述。
依據表五及表六可得到下列條件式數值:
第四實施例
請參照第4A圖及第4B圖,其中第4A圖繪示依照本發明第四實施例的一種光學成像系統的示意圖,第4B圖由左至右依序為第四實施例的光學成像系統的球差、像散及光學畸變曲線圖。第4C圖為第四實施例的光學成像系統的TV畸變曲線圖。由第4A圖可知,光學成像系統由物側至像側依序包含光圈400、第一透鏡410、第二透鏡420、第三透鏡430、第四透鏡440、第五透鏡450、紅外線濾光片470、成像面480以及影像感測元件490。
第一透鏡410具有正屈折力,且為塑膠材質,其物側面412為凸面,其像側面414為凸面,並皆為非球面,且像側面414具有一反曲點。
第二透鏡420具有負屈折力,且為塑膠材質,其物側面422為凸面,其像側面424為凹面,並皆為非球面,像側面424均具有一反曲點。
第三透鏡430具有正屈折力,且為塑膠材質,其物側面432為凹面,其像側面434為凸面,並皆為非球面。
第四透鏡440具有負屈折力,且為塑膠材質,其物側面442為凹面,其像側面444為凸面,並皆為非球面,且其物側面442以及像側面444均具有一反曲點。
第五透鏡450具有負屈折力,且為塑膠材質,其物側面452為凸面,其像側面454為凹面,並皆為非球面,且其物側面452以及像側面454均具有一反曲點。
紅外線濾光片470為玻璃材質,其設置於第五透鏡450及成像面480間且不影響光學成像系統的焦距。
第四實施例的光學成像系統中,第二透鏡420至第五透鏡450的焦距分別為f2、f3、f4、f5,其滿足下列條件:| f2 |+| f3 |+| f4 |=203.9003mm;| f1 |+| f5 |=22.2372mm;以及| f2 |+| f3 |+| f4 |>| f1 |+| f5 |。
第四實施例的光學成像系統中,第四透鏡440於光軸上的厚度為TP4,第五透鏡450於光軸上的厚度為TP5,其滿足下列條件:TP4=0.9894mm;以及TP5=1.2227mm。
第四實施例的光學成像系統中,第一透鏡410、第三透鏡430均為正透鏡,其個別焦距分別為f1、f3,所有具正屈折力的透鏡之焦距總和為Σ PP,其滿足下列條件:Σ PP=f1+f3=9.5002mm;以及f1/(f1+f3)=0.5894。藉此,有助於適當分配第一透鏡410之正屈折力至其他正透鏡,以抑制入射光線行進過程顯著像差的產生。
第四實施例的光學成像系統中,第二透鏡420、第四透鏡440與第五透鏡450之個別焦距分別為f2、f4以及f5,所有具負屈折力的透鏡之焦距總和為Σ NP,其滿足下列條件:Σ NP=f2+f4+f5=-216.6373mm;以及f5/(f2+f4+f5)=0.4616。藉此,有助於適當分配第五透鏡之負屈折力至其他負透鏡。
第四實施例的光學成像系統中,第四透鏡物側面442的臨界點與光軸的垂直距離為HVT41,第四透鏡像側面444的臨界點與光軸的垂直距離為HVT42,其滿足下列條件:HVT41=0mm;HVT42=0mm。
第四實施例的光學成像系統中,第五透鏡物側面452的臨界點與光軸的垂直距離為HVT51,第五透鏡像側面454的臨界點與光軸的垂直距離為HVT52,其滿足下列條件:HVT51=0.8731mm;HVT52=2.0611mm。
第四實施例的光學成像系統中,所有正屈折力之透鏡的PPR 總和為Σ PPR=f/f1+f/f3=1.3127,所有負屈折力之透鏡的NPR總和為Σ NPR=f/f2+f/f4+f/f5=0.2418,Σ PPR/| Σ NPR |=5.4299。
請配合參照下列表七以及表八。
第四實施例中,非球面的曲線方程式表示如第一實施例的形式。此外,下表參數的定義皆與第一實施例相同,在此不加以贅述。
依據表七及表八可得到下列條件式數值:
第五實施例
請參照第5A圖及第5B圖,其中第5A圖繪示依照本發明第五實施例的一種光學成像系統的示意圖,第5B圖由左至右依序為第五實施例的光學成像系統的球差、像散及光學畸變曲線圖。第5C圖為第五實施例的光學成像系統的TV畸變曲線圖。由第5A圖可知,光學成像系統由物側至像側依序包含第一透鏡510、光圈500、第二透鏡520、第三透鏡530、第四透鏡540、第五透鏡550、紅外線濾光片570、成像面580以及影像感測元件590。
第一透鏡510具有正屈折力,且為塑膠材質,其物側面512為凸面,其像側面514為凹面,並皆為非球面。
第二透鏡520具有負屈折力,且為塑膠材質,其物側面522為凸面,其像側面524為凹面,並皆為非球面,且其物側面522以及像側面524均具有一反曲點。
第三透鏡530具有正屈折力,且為塑膠材質,其物側面532為凸面,其像側面534為凸面,並皆為非球面,且物側面532具有一反曲點。
第四透鏡540具有負屈折力,且為塑膠材質,其物側面542為凹面,其像側面544為凸面,並皆為非球面,且像側面544具有一反曲點。
第五透鏡550具有負屈折力,且為塑膠材質,其物側面552為凹面,其像側面554為凹面,並皆為非球面,且像側面554具有一反曲點。
紅外線濾光片570為玻璃材質,其設置於第五透鏡550及成像面580間且不影響光學成像系統的焦距。
第五實施例的光學成像系統中,第二透鏡520至第五透鏡550的焦距分別為f2、f3、f4、f5,其滿足下列條件:| f2 |+| f3 |+| f4 |=108.0843mm;| f1 |+| f5 |=8.2967mm;以及| f2 |+| f3 |+| f4 |>| f1 |+| f5 |。
第五實施例的光學成像系統中,第四透鏡540於光軸上的厚度為TP4,第五透鏡550於光軸上的厚度為TP5,其滿足下列條件:TP4=0.5988mm;以及TP5=0.3481mm。
第五實施例的光學成像系統中,第一透鏡510、第三透鏡530均為正透鏡,其個別焦距分別為f1、f3,所有具正屈折力的透鏡之焦距總和為Σ PP,其滿足下列條件:Σ PP=f1+f3=7.5999mm;以及f1/(f1+f3)=0.7905。藉此,有助於適當分配第一透鏡510之正屈折力至其他正透鏡,以抑制入射光線行進過程顯著像差的產生。
第五實施例的光學成像系統中,第二透鏡520、第四透鏡540與第五透鏡550之個別焦距分別為f2、f4以及f5,所有具負屈折力的透鏡之焦距總和為Σ NP,其滿足下列條件:Σ NP=f2+f4+f5=-108.7810mm;以及f5/(f2+f4+f5)=0.0597。藉此,有助於適當分配第五透鏡之負屈折力至其他負透鏡。
第五實施例的光學成像系統中,第四透鏡物側面542的臨界點與光軸的垂直距離為HVT41,第四透鏡像側面544的臨界點與光軸的垂直距離為HVT42,其滿足下列條件:HVT41=0mm;HVT42=0mm。
第五實施例的光學成像系統中,第五透鏡物側面552的臨界點與光軸的垂直距離為HVT51,第五透鏡像側面554的臨界點與光軸的垂直距離為HVT52,其滿足下列條件:HVT51=0mm;HVT52=1.7902mm。
第五實施例的光學成像系統中,所有正屈折力之透鏡的PPR總和為Σ PPR=f/f1+f/f3=2.4348,所有負屈折力之透鏡的NPR總和為Σ NPR=f/f2+f/f4+f/f5=1.8416,Σ PPR/| Σ NPR |=1.3221。
請配合參照下列表九以及表十。
第五實施例中,非球面的曲線方程式表示如第一實施例的形式。此外,下表參數的定義皆與第一實施例相同,在此不加以贅述。
依據表九及表十可得到下列條件式數值:
第六實施例
請參照第6A圖及第6B圖,其中第6A圖繪示依照本發明第五實施例的一種光學成像系統的示意圖,第6B圖由左至右依序為第六實施例的光學成像系統的球差、像散及光學畸變曲線圖。第6C圖為第五實施例的光學成像系統的TV畸變曲線圖。由第6A圖可知,光學成像系統由物側至像側依序包含 第一透鏡610、光圈600、第二透鏡620、第三透鏡630、第四透鏡640、第五透鏡650、紅外線濾光片670、成像面680以及影像感測元件690。
第一透鏡610具有正屈折力,且為塑膠材質,其物側面612為凸面,其像側面614為凹面,並皆為非球面。
第二透鏡620具有負屈折力,且為塑膠材質,其物側面622為凸面,其像側面624為凹面,並皆為非球面,且其物側面622以及像側面624均具有一反曲點。
第三透鏡630具有正屈折力,且為塑膠材質,其物側面632為凸面,其像側面634為凸面,並皆為非球面,且物側面632具有一反曲點。
第四透鏡640具有負屈折力,且為塑膠材質,其物側面642為凹面,其像側面644為凸面,並皆為非球面,且物側面642具有一反曲點。
第五透鏡650具有負屈折力,且為塑膠材質,其物側面652為凹面,其像側面654為凹面,並皆為非球面,且像側面654具有一反曲點。
紅外線濾光片670為玻璃材質,其設置於第五透鏡650及成像面580間且不影響光學成像系統的焦距。
第六實施例的光學成像系統中,第二透鏡620至第五透鏡650的焦距分別為f2、f3、f4、f5,其滿足下列條件:| f2 |+| f3 |+| f4 |=201.6178mm;| f1 |+| f5 |=8.4371mm;以及| f2 |+| f3 |+| f4 |>| f1 |+| f5 |。
第六實施例的光學成像系統中,第四透鏡640於光軸上的厚度為TP4,第五透鏡650於光軸上的厚度為TP5,其滿足下列條件:TP4=0.7356mm;以及TP5=0.3985mm。
第六實施例的光學成像系統中,第一透鏡610、第三透鏡630均為正透鏡,其個別焦距分別為f1、f3,所有具正屈折力的透鏡之焦距總和為Σ PP,其滿足下列條件:Σ PP=f1+f3=8.0203mm;以及f1/(f1+f3)=0.7983。藉此,有助於適當分配第一透鏡610之正屈折力至其他正透鏡,以抑制入射光線行進過程顯著像差的產生。
第六實施例的光學成像系統中,第二透鏡620、第四透鏡640與第五透鏡550之個別焦距分別為f2、f4以及f5,所有具負屈折力的透鏡之焦距總和為Σ NP,其滿足下列條件:Σ NP=f2+f4+f5=-202.0346mm;以 及f5/(f2+f4+f5)=0.4950。藉此,有助於適當分配第五透鏡之負屈折力至其他負透鏡。
第六實施例的光學成像系統中,第四透鏡物側面642的臨界點與光軸的垂直距離為HVT41,第四透鏡像側面644的臨界點與光軸的垂直距離為HVT42,其滿足下列條件:HVT41=0mm;HVT42=0mm。
第六實施例的光學成像系統中,第五透鏡物側面652的臨界點與光軸的垂直距離為HVT51,第五透鏡像側面654的臨界點與光軸的垂直距離為HVT52,其滿足下列條件:HVT51=0mm;HVT52=1.4260mm。
第六實施例的光學成像系統中,所有正屈折力之透鏡的PPR總和為Σ PPR=f/f1+f/f3=2.3063,所有負屈折力之透鏡的NPR總和為Σ NPR=f/f2+f/f4+f/f5=1.5236,Σ PPR/| Σ NPR |=1.5138。
請配合參照下列表十一以及表十二。
第六實施例中,非球面的曲線方程式表示如第一實施例的形式。此外,下表參數的定義皆與第一實施例相同,在此不加以贅述。
依據表十一及表十二可得到下列條件式數值:
雖然本發明已以實施方式揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明的精神和範圍內,當可作各種的更動與潤飾,因此本發明的保護範圍當視後附的申請專利範圍所界定者為準。
雖然本發明已參照其例示性實施例而特別地顯示及描述,將為所屬技術領域具通常知識者所理解的是,於不脫離以下申請專利範圍及其等效物所定義之本發明之精神與範疇下可對其進行形式與細節上之各種變更。
200‧‧‧光圈
210‧‧‧第一透鏡
212‧‧‧物側面
214‧‧‧像側面
220‧‧‧第二透鏡
222‧‧‧物側面
224‧‧‧像側面
230‧‧‧第三透鏡
232‧‧‧物側面
234‧‧‧像側面
240‧‧‧第四透鏡
242‧‧‧物側面
244‧‧‧像側面
250‧‧‧第五透鏡
252‧‧‧物側面
254‧‧‧像側面
270‧‧‧成像面
280‧‧‧紅外線濾光片
290‧‧‧影像感測元件

Claims (25)

  1. 一種光學成像系統,由物側至像側依序包含:一第一透鏡,具有正屈折力;一第二透鏡,具有屈折力;一第三透鏡,具有屈折力;一第四透鏡,具有屈折力;一第五透鏡,具有屈折力;以及一成像面,其中該光學成像系統具有屈折力的透鏡為五枚,該第二透鏡至該第五透鏡中至少一透鏡具有正屈折力,並且該第五透鏡之物側表面及像側表面皆為非球面,該第一透鏡至該第五透鏡的焦距分別為f1、f2、f3、f4、f5,該光學成像系統的焦距為f,該光學成像鏡片系統之入射瞳直徑為HEP,該第一透鏡物側面至該成像面具有一距離HOS,該第一透鏡物側面至該第五透鏡像側面於光軸上具有一距離InTL,該些透鏡個別之物側表面於光軸上的交點至該些透鏡個別之物側表面的最大有效徑位置於光軸的水平位移距離的絕對值總和為InRSO,該些透鏡之像側表面於光軸上的交點至該些透鏡之像側表面的最大有效徑位置於光軸的水平位移距離的絕對值總和為InRSI,InRSO以及InRSI的總和為Σ | InRS |,其滿足下列條件:1.2≦f/HEP≦3.5;0.5≦HOS/f≦3.0;0<Σ | InRS |/InTL≦3。
  2. 如請求項1所述之光學成像系統,其中該光學成像系統於結像時之TV畸變為TDT,其滿足下列公式:| TDT |<60%。
  3. 如請求項1所述之光學成像系統,其中該光學成像系統於結像時之光學畸變為ODT,其滿足下列公式:| ODT |≦50%。
  4. 如請求項1所述之光學成像系統,其中該光學成像鏡片系統滿足下列公式:0mm<HOS≦7mm。
  5. 如請求項1所述之光學成像系統,其中該光學成像鏡片系統之可視角度的一半為HAF,其滿足下列公式:0deg<HAF≦70deg。
  6. 如請求項1所述之光學成像系統,其中該第二透鏡為負屈折力,以及該第五透鏡為負屈折力。
  7. 如請求項1所述之光學成像系統,其中該光學成像鏡片系統滿足下列公式:0.45≦InTL/HOS≦0.9。
  8. 如請求項1所述之光學成像系統,其中所有該些具屈折力之透鏡的厚度總和為Σ TP,其滿足下列條件:0.45≦Σ TP/InTL≦0.95。
  9. 如請求項1所述之光學成像系統,其中更包括一光圈,並且於該光圈至該成像面具有一距離InS,其滿足下列公式:0.5≦InS/HOS≦1.1。
  10. 一種光學成像系統,由物側至像側依序包含:一第一透鏡,具有正屈折力;一第二透鏡,具有屈折力; 一第三透鏡,具有屈折力;一第四透鏡,具有屈折力;一第五透鏡,具有屈折力;以及一成像面,其中該光學成像系統具有屈折力的透鏡為五枚且該第一透鏡至該第五透鏡中至少兩透鏡其個別之至少一表面具有至少一反曲點,該第二透鏡至該第五透鏡中至少一透鏡具有正屈折力,並且該第五透鏡之物側表面及像側表面皆為非球面,該第一透鏡至該第五透鏡的焦距分別為f1、f2、f3、f4、f5,該光學成像系統的焦距為f,該光學成像鏡片系統之入射瞳直徑為HEP,該第一透鏡物側面至該成像面具有一距離HOS,該第一透鏡物側面至該第五透鏡像側面於光軸上具有一距離InTL,該些透鏡個別之物側表面於光軸上的交點至該些透鏡個別之物側表面的最大有效徑位置於光軸的水平位移距離的絕對值總和為InRSO,該些透鏡之像側表面於光軸上的交點至該些透鏡之像側表面的最大有效徑位置於光軸的水平位移距離的絕對值總和為InRSI,InRSO以及InRSI的總和為Σ | InRS |,其滿足下列條件:1.2≦f/HEP≦3.5;0.5≦HOS/f≦3.0;0<Σ | InRS |/InTL≦3。
  11. 如請求項10所述之光學成像系統,其中該第五透鏡具有負屈折力,且其物側表面及像側表面中至少一表面具有至少一反曲點。
  12. 如請求項10所述之光學成像系統,其中該光學成像系統的焦距f與每一片具有正屈折力之透鏡的焦距fp之比值f/fp為PPR,其滿足下列條件:0.5≦Σ PPR≦10。
  13. 如請求項10所述之光學成像系統,其中該光學成像系統於結像時之TV畸變與光學畸變分別為TDT與ODT,其滿足下列條件:| TDT |<60%;以及| ODT |≦50%。
  14. 如請求項10所述之光學成像系統,其中該第二透鏡為負屈折力以及該第四透鏡為負屈折力。
  15. 如請求項10所述之光學成像系統,其中該光學成像系統滿足下列條件:0mm<Σ | InRS |≦10mm。
  16. 如請求項10所述之光學成像系統,其中該第四透鏡物側表面於光軸上的交點至該第四透鏡物側表面的最大有效徑位置於光軸的水平位移距離為InRS41,該第四透鏡像側表面於光軸上的交點至該第四透鏡像側表面的最大有效徑位置於光軸的水平位移距離為InRS42,該第五透鏡物側表面於光軸上的交點至該第五透鏡物側表面的最大有效徑位置於光軸的水平位移距離為InRS51,該第五透鏡像側表面於光軸上的交點至該第五透鏡像側表面的最大有效徑位置於光軸的水平位移距離為InRS52,其滿足下列條件:0mm<| InRS41 |+| InRS42 |+| InRS51 |+| InRS52 |≦8mm。
  17. 如請求項16所述之光學成像系統,其中該光學成像系統滿足下列條件:0<(| InRS41 |+| InRS42 |+| InRS51 |+| InRS52 |)/InTL≦2。
  18. 如請求項16所述之光學成像系統,其中該光學成像系統滿足下列條件:0<(| InRS41 |+| InRS42 |+| InRS51 |+| InRS52 |)/HOS≦2。
  19. 如請求項10所述之光學成像系統,其中該光學成像系統所有具正屈折力之透鏡的焦距總和為Σ PP,其滿足下列條件:0<f1/Σ PP≦0.8。
  20. 一種光學成像系統,由物側至像側依序包含:一第一透鏡,具有正屈折力;一第二透鏡,具有屈折力;一第三透鏡,具有屈折力;一第四透鏡,具有屈折力;一第五透鏡,具有屈折力,且其物側表面及像側表面中至少一表面具有至少一反曲點;以及一成像面,其中該光學成像系統具有屈折力的透鏡為五枚且該第一透鏡至該第四透鏡中至少兩透鏡其個別之至少一表面具有至少一反曲點,該第一透鏡之物側面及像側面皆為非球面,並且該第五透鏡之物側表面及像側表面皆為非球面,該第一透鏡至該第五透鏡的焦距分別為f1、f2、f3、f4、f5,該光學成像系統的焦距為f,該光學成像鏡片系統之入射瞳直徑 為HEP,該光學成像系統之最大視角的一半為HAF,該第一透鏡物側面至該成像面具有一距離HOS,該第一透鏡物側面至該第五透鏡像側面於光軸上具有一距離InTL,該光學成像系統於結像時之光學畸變為ODT並且TV畸變為TDT,該些透鏡個別之物側表面於光軸上的交點至該些透鏡個別之物側表面的最大有效徑位置於光軸的水平位移距離的絕對值總和為InRSO,該些透鏡之像側表面於光軸上的交點至該些透鏡之像側表面的最大有效徑位置於光軸的水平位移距離的絕對值總和為InRSI,InRSO以及InRSI的總和為Σ | InRS |,其滿足下列條件:1.2≦f/HEP≦3.5;0.4≦| tan(HAF) |≦1.5;0.5≦HOS/f≦2.5;| TDT |<1.5%;| ODT |≦2.5%以及0<Σ | InRS |/InTL≦3。
  21. 如請求項20所述之光學成像系統,其中該光學成像系統所有具正屈折力之透鏡的焦距總和為Σ PP,其滿足下列條件:0<f1/Σ PP≦0.8。
  22. 如請求項20所述之光學成像系統,其中該光學成像鏡片系統滿足下列公式:0mm<HOS≦7mm。
  23. 如請求項20所述之光學成像系統,其中該第四透鏡物側表面於光軸上的交點至該第四透鏡物側表面的最大有效徑位置於光軸的水平位移距離為InRS41,該第四透鏡像側表面於光軸上的交點至該第四透鏡像側表面的最大有效徑位置於光軸的水平位移距離為InRS42,該第五透鏡物側表面於光軸上 的交點至該第五透鏡物側表面的最大有效徑位置於光軸的水平位移距離為InRS51,該第五透鏡像側表面於光軸上的交點至該第五透鏡像側表面的最大有效徑位置於光軸的水平位移距離為InRS52,其滿足下列條件:0mm<| InRS41 |+| InRS42 |+| InRS51 |+| InRS52 |≦8mm。
  24. 如請求項23所述之光學成像系統,其中該光學成像系統滿足下列條件:0<(| InRS41 |+| InRS42 |+| InRS51 |+| InRS52 |)/InTL≦2。
  25. 如請求項23所述之光學成像系統,其中該光學成像系統更包括一光圈以及一影像感測元件,該影像感測元件設置於該成像面,並且於該光圈至該成像面具有一距離InS,其滿足下列公式:0.5≦InS/HOS≦1.1。
TW103140047A 2014-11-19 2014-11-19 光學成像系統(四) TWI553371B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW103140047A TWI553371B (zh) 2014-11-19 2014-11-19 光學成像系統(四)
US14/717,852 US9599794B2 (en) 2014-11-19 2015-05-20 Optical image capturing system
CN201510802036.6A CN105607228B (zh) 2014-11-19 2015-11-19 光学成像系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103140047A TWI553371B (zh) 2014-11-19 2014-11-19 光學成像系統(四)

Publications (2)

Publication Number Publication Date
TW201619656A true TW201619656A (zh) 2016-06-01
TWI553371B TWI553371B (zh) 2016-10-11

Family

ID=55961505

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103140047A TWI553371B (zh) 2014-11-19 2014-11-19 光學成像系統(四)

Country Status (3)

Country Link
US (1) US9599794B2 (zh)
CN (1) CN105607228B (zh)
TW (1) TWI553371B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI553370B (zh) * 2014-11-19 2016-10-11 先進光電科技股份有限公司 光學成像系統(二)
TWI542900B (zh) * 2014-12-04 2016-07-21 先進光電科技股份有限公司 光學成像系統(二)
TWI584017B (zh) * 2015-02-03 2017-05-21 先進光電科技股份有限公司 光學成像系統(四)
TWI584016B (zh) * 2015-02-03 2017-05-21 先進光電科技股份有限公司 光學成像系統(二)
TWI591397B (zh) * 2015-02-03 2017-07-11 先進光電科技股份有限公司 光學成像系統(三)
TWI572893B (zh) * 2015-03-03 2017-03-01 先進光電科技股份有限公司 光學成像系統(二)
TWI563283B (en) * 2015-03-18 2016-12-21 Ability Opto Electronics Technology Co Ltd Optical image capturing system
WO2019024493A1 (zh) 2017-07-31 2019-02-07 浙江舜宇光学有限公司 成像镜头
TWI652520B (zh) 2018-03-02 2019-03-01 大立光電股份有限公司 電子裝置
CN111123482A (zh) * 2020-01-19 2020-05-08 厦门力鼎光电股份有限公司 一种光学镜头
TWI710794B (zh) 2020-03-30 2020-11-21 大立光電股份有限公司 成像用光學透鏡組、取像裝置及電子裝置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4963187B2 (ja) * 2006-04-05 2012-06-27 富士フイルム株式会社 撮像レンズおよび撮像装置
TWI439720B (zh) * 2011-03-11 2014-06-01 Largan Precision Co Ltd 影像擷取鏡片組
TWI457594B (zh) * 2011-08-26 2014-10-21 Largan Precision Co Ltd 影像鏡頭
TWI561845B (en) * 2012-02-23 2016-12-11 Hon Hai Prec Ind Co Ltd Image lens
JP5915462B2 (ja) * 2012-08-28 2016-05-11 ソニー株式会社 撮像レンズおよび撮像装置
JP2014123034A (ja) * 2012-12-21 2014-07-03 Konica Minolta Inc 撮像光学系、撮像装置およびデジタル機器
JP2014160158A (ja) * 2013-02-20 2014-09-04 Konica Minolta Inc 撮像レンズ、撮像装置及び携帯端末
TWI476435B (zh) * 2013-03-20 2015-03-11 Largan Precision Co Ltd 結像鏡頭系統組
TWI456247B (zh) * 2013-07-17 2014-10-11 Largan Precision Co Ltd 影像擷取系統鏡片組
TWI537586B (zh) * 2014-10-01 2016-06-11 先進光電科技股份有限公司 光學成像系統
TWI553335B (zh) * 2014-10-07 2016-10-11 先進光電科技股份有限公司 光學成像系統
TWI557427B (zh) * 2014-10-09 2016-11-11 先進光電科技股份有限公司 光學成像系統
TWI553370B (zh) * 2014-11-19 2016-10-11 先進光電科技股份有限公司 光學成像系統(二)

Also Published As

Publication number Publication date
CN105607228A (zh) 2016-05-25
US9599794B2 (en) 2017-03-21
US20160139364A1 (en) 2016-05-19
TWI553371B (zh) 2016-10-11
CN105607228B (zh) 2018-08-03

Similar Documents

Publication Publication Date Title
TWI591374B (zh) 光學成像系統(二)
TWI554801B (zh) 光學成像系統(二)
TWI553335B (zh) 光學成像系統
TWI553370B (zh) 光學成像系統(二)
TWI589916B (zh) 光學成像系統(五)
TWI584017B (zh) 光學成像系統(四)
TWI542918B (zh) 光學成像系統(三)
TWI591397B (zh) 光學成像系統(三)
TWI546565B (zh) 光學成像系統
TWI553371B (zh) 光學成像系統(四)
TWI584016B (zh) 光學成像系統(二)
TW201621375A (zh) 光學成像系統
TWI594001B (zh) 光學成像系統(四)
TW201621383A (zh) 光學成像系統(一)
TWI572887B (zh) 光學成像系統(六)
TWI589947B (zh) 光學成像系統(一)
TWI579584B (zh) 光學成像系統(一)
TW201621382A (zh) 光學成像系統(二)
TWI595259B (zh) 光學成像系統(一)
TWI594002B (zh) 光學成像系統(三)
TW201621377A (zh) 光學成像系統(二)
TW201638623A (zh) 光學成像系統
TW201627703A (zh) 光學成像系統(三)
TW201619655A (zh) 光學成像系統(一)
TW201627704A (zh) 光學成像系統(四)