TW201611469A - Charging structure - Google Patents

Charging structure Download PDF

Info

Publication number
TW201611469A
TW201611469A TW103130797A TW103130797A TW201611469A TW 201611469 A TW201611469 A TW 201611469A TW 103130797 A TW103130797 A TW 103130797A TW 103130797 A TW103130797 A TW 103130797A TW 201611469 A TW201611469 A TW 201611469A
Authority
TW
Taiwan
Prior art keywords
current
voltage
coupled
charging
transistor
Prior art date
Application number
TW103130797A
Other languages
Chinese (zh)
Other versions
TWI539719B (en
Inventor
洪崇智
陳奕安
Original Assignee
華邦電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 華邦電子股份有限公司 filed Critical 華邦電子股份有限公司
Priority to TW103130797A priority Critical patent/TWI539719B/en
Publication of TW201611469A publication Critical patent/TW201611469A/en
Application granted granted Critical
Publication of TWI539719B publication Critical patent/TWI539719B/en

Links

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

A charging structure including a power supply device, a charging battery and a charging management device are provided. The charging structure is configured to switch the corresponding charging mode according to the voltage level of a positive end of the charging battery and stop charging action when a charging current for charging the charging battery is reduced to a preset current value.

Description

充電架構 Charging architecture

本發明是有關於一種充電架構,且特別是有關於一種具有類比式平滑轉換電路以及充電終止電路的充電架構。 The present invention relates to a charging architecture, and more particularly to a charging architecture having an analog smoothing conversion circuit and a charge termination circuit.

在這個綠能科技的時代,電子產品都必須與環保互相連結,電池也不例外,所以充電器在對電池充電時也必須掌握這個原則。一個電池的使用次數大約在500~1000次,其容量會隨著充放電的次數而越來越少,進一步而言,就一般的線性鋰離子充電器來說,由於電池中有內阻,當系統操作各個模式間的轉換時,例如小電流轉定電流、或是定電流轉定電壓模式時,若沒有做好相關電路轉換機制,將會導致電路轉換時發生的振盪現象,進而危害到充電器及電池。 In this era of green energy technology, electronic products must be connected to the environment, and batteries are no exception, so the charger must master this principle when charging the battery. A battery is used in the frequency of about 500 to 1000 times, and its capacity will be less and less with the number of times of charging and discharging. Further, in the case of a general linear lithium ion charger, due to internal resistance in the battery, when When the system operates between the conversion of each mode, such as a small current conversion current or a constant current conversion voltage mode, if the relevant circuit conversion mechanism is not performed, the oscillation phenomenon occurring during the circuit conversion will be caused, thereby jeopardizing the charging. And battery.

除此之外,在電池充飽後,若是充電器未能及時關閉充電動作,亦會導致電池的過充,使得電池壽命大大的減少,如果沒有刻意去做保護電池的機制,很容易對電池產生巨大的損害,其一方面導致電池容量不再像以往一樣大,另一方面電池汰換率也因此而提升,而過多的電池汰換也會造成的垃圾問題與環境污 染等問題。 In addition, after the battery is fully charged, if the charger fails to turn off the charging action in time, it will also cause the battery to overcharge, which greatly reduces the battery life. If you do not deliberately do the mechanism to protect the battery, it is easy to the battery. The huge damage caused, on the one hand, the battery capacity is no longer as large as before, on the other hand, the battery replacement rate is also increased, and the excessive battery replacement will also cause garbage problems and environmental pollution. Dyeing and other issues.

本發明所提出一種具有類比式平滑轉換電路(Analog Smooth Transition Circuit,ASTC)以及充電終止電路(End Of Charge Circuit:EOC)的充電管理裝置,一方面可以使得整體充電架構在各個充電模式轉換間得以穩定切換,以防止振盪效應對電路產生危害,另一方面可以即時地判斷電池的充電狀態並停止充電,確保電池不會過充。 The invention provides a charge management device with an analog smooth transition circuit (ASTC) and an end of charge circuit (EOC), which can make the overall charging architecture between the various charging mode transitions. Stable switching to prevent the oscillation effect from harming the circuit. On the other hand, it can instantly judge the charging state of the battery and stop charging, ensuring that the battery will not overcharge.

本發明的一種充電架構,包括:電源供應裝置、充電電池以及充電管理裝置。電源供應裝置用以提供系統電壓。充電管理裝置用以根據充電電池的正極端的電壓準位切換對應的充電模式,當對充電電池進行充電的充電電流降至預設電流值時,則終止充電動作。 A charging architecture of the present invention includes: a power supply device, a rechargeable battery, and a charging management device. A power supply device is used to provide a system voltage. The charging management device is configured to switch the corresponding charging mode according to the voltage level of the positive terminal of the rechargeable battery. When the charging current for charging the rechargeable battery drops to a preset current value, the charging operation is terminated.

在本發明的一實施例中,上述的充電管理裝置包括:電源開關、平滑轉換電路以及充電終止電路。電源開關具有第一端、第二端及閘極端,電源開關的第一端接收系統電壓,而電源開關的第二端耦接充電電池的正極端而得到輸出端電壓準位。平滑轉換電路耦接電源開關的閘極端,用以根據電源開關的第二端的輸出端電壓準位調整電源開關的閘極端的電壓準位。充電終止電路透過第二電流感測電路感測所述充電電流,並於所述充電電流降至預設電流值時,則啟動充電終止電路並終止充電動作。 In an embodiment of the invention, the charging management device includes: a power switch, a smoothing conversion circuit, and a charging termination circuit. The power switch has a first end, a second end and a gate terminal. The first end of the power switch receives the system voltage, and the second end of the power switch is coupled to the positive end of the rechargeable battery to obtain the output voltage level. The smoothing conversion circuit is coupled to the gate terminal of the power switch for adjusting the voltage level of the gate terminal of the power switch according to the voltage level of the output terminal of the second end of the power switch. The charging termination circuit senses the charging current through the second current sensing circuit, and when the charging current drops to a preset current value, starts the charging termination circuit and terminates the charging operation.

在本發明的一實施例中,上述的平滑轉換電路包括:偏壓電流源、第一電流鏡、第二電流鏡、第三電流鏡以及第一電晶體。偏壓電流源用以提供偏壓電流。第一電流鏡耦接偏壓電流源,用以接收偏壓電流,並依據偏壓電流提供第一電流。第二電流鏡串接第一電流鏡。第三電流鏡耦接至第一電流鏡,並根據第一控制偏壓調整第一控制電流。第一電晶體具有第一端、第二端及閘極端,第一電晶體的第一端接收系統電壓,且第一電晶體的閘極端接收第二控制偏壓,並根據第二控制偏壓調整第二控制電流,其中,第一控制電流與第二控制電流之間的電流和等於第一電流,而平滑轉換電路根據電流和調整電源開關的閘極端的電壓準位。 In an embodiment of the invention, the smoothing conversion circuit includes: a bias current source, a first current mirror, a second current mirror, a third current mirror, and a first transistor. A bias current source is used to provide a bias current. The first current mirror is coupled to the bias current source for receiving the bias current and providing the first current according to the bias current. The second current mirror is connected in series with the first current mirror. The third current mirror is coupled to the first current mirror and adjusts the first control current according to the first control bias. The first transistor has a first end, a second end, and a gate terminal, the first end of the first transistor receives the system voltage, and the gate terminal of the first transistor receives the second control bias, and according to the second control bias The second control current is adjusted, wherein a current sum between the first control current and the second control current is equal to the first current, and the smoothing conversion circuit adjusts the voltage level of the gate terminal of the power switch according to the current.

在本發明的一實施例中,上述的充電終止電路包括:斷路電流源、第四電流鏡、第五電晶體、第五電流鏡、第六電流鏡、第二電流感測器以及第七電流鏡。斷路電流源用以提供參考電流。第四電流鏡接收參考電流,以依據參考電流提供一第二電流。第五電晶體具有第一端、第二端及閘極端,其第一端耦接至第四電流鏡,閘極端耦接至模式選擇電路,用以根據設定電壓的準位決定第二電流的路徑的導通狀態。第五電流鏡耦接第五電晶體的第二端,用以接收第二電流並根據第二電流產生第三電流。第六電流鏡串接第五電流鏡,用以接收並傳送第三電流。第二電流感測器用以感測充電電池的正極端的準位,以產生第二感測電流。第七電流鏡耦接第二電流感測器,用以接收第二感測電流並根據 第二感測電流產生第四電流,其中該充電終止電路根據該第三電流與該第四電流之間的電流差決定該第六電流鏡與該第七電流鏡之間的節點電壓準位。 In an embodiment of the invention, the charge termination circuit includes: a disconnect current source, a fourth current mirror, a fifth transistor, a fifth current mirror, a sixth current mirror, a second current sensor, and a seventh current mirror. A trip current source is used to provide a reference current. The fourth current mirror receives the reference current to provide a second current in accordance with the reference current. The fifth transistor has a first end, a second end and a gate terminal, the first end of which is coupled to the fourth current mirror, and the gate terminal is coupled to the mode selection circuit for determining the second current according to the level of the set voltage The conduction state of the path. The fifth current mirror is coupled to the second end of the fifth transistor for receiving the second current and generating the third current according to the second current. The sixth current mirror is connected in series with the fifth current mirror for receiving and transmitting the third current. The second current sensor is configured to sense a level of the positive terminal of the rechargeable battery to generate a second sensing current. The seventh current mirror is coupled to the second current sensor for receiving the second sensing current and according to The second sensing current generates a fourth current, wherein the charging termination circuit determines a node voltage level between the sixth current mirror and the seventh current mirror according to a current difference between the third current and the fourth current.

在本發明的一實施例中,上述的充電終止電路更包括:反相器,具有輸入端及輸出端,其輸入端耦接於該第六電流鏡與該第七電流鏡之間,其輸出端耦接至該第六電晶體,用以根據該第六電流鏡與該第七電流鏡之間的節點電壓準位輸出反相結果。 In an embodiment of the invention, the charging termination circuit further includes: an inverter having an input end and an output end, wherein the input end is coupled between the sixth current mirror and the seventh current mirror, and the output thereof is The end is coupled to the sixth transistor for outputting an inverted result according to a node voltage level between the sixth current mirror and the seventh current mirror.

在本發明的一實施例中,上述的充電管理裝置更包括第六電晶體(MC),具有第一端、第二端及閘極端,而第六電晶體的第一端耦接系統電壓,第六電晶體的第二端耦接至電源開關的閘極端,其閘極端耦接至充電終止電路,並根據反相結果決定導通狀態。 In an embodiment of the invention, the charging management device further includes a sixth transistor (M C ) having a first end, a second end, and a gate terminal, and the first end of the sixth transistor is coupled to the system voltage The second end of the sixth transistor is coupled to the gate terminal of the power switch, the gate terminal of the sixth transistor is coupled to the charge termination circuit, and the conduction state is determined according to the reverse phase result.

基於上述,本發明提出一種具有平滑轉換電路以及充電終止電路的充電架構,一方面本案藉由平滑轉換電路交錯切換充電模式達成連續輸出穩壓的功能,藉此緩和輸出端的電壓位準及改善鏈波電壓,另一方面,本案透過充電終止電路精準的將電池容量充滿,而直接透過電晶體感測電流以減少判斷上的誤差,從而能夠更精準的關閉充電流程。因此,本發明所提出的充電架構既不會傷害的電池,也能夠精準的充飽鋰電池,大大改善充電品質以及延長電池的壽命。 Based on the above, the present invention proposes a charging architecture with a smooth conversion circuit and a charge termination circuit. On the one hand, the present invention realizes continuous output voltage regulation by interleaving the switching mode by the smooth conversion circuit, thereby easing the voltage level of the output terminal and improving the chain. Wave voltage, on the other hand, in this case, the charge termination circuit accurately fills the battery capacity, and directly senses the current through the transistor to reduce the error in the judgment, thereby enabling the charging process to be more accurately turned off. Therefore, the charging structure proposed by the present invention can neither damage the battery nor accurately charge the lithium battery, greatly improving the charging quality and prolonging the life of the battery.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 The above described features and advantages of the invention will be apparent from the following description.

10‧‧‧充電架構 10‧‧‧Charging architecture

100‧‧‧充電管理裝置 100‧‧‧Charging management device

102‧‧‧充電電池 102‧‧‧Rechargeable battery

104‧‧‧電源供應裝置 104‧‧‧Power supply unit

110‧‧‧平滑轉換電路 110‧‧‧Smooth conversion circuit

112~116‧‧‧電流鏡 112~116‧‧‧current mirror

120‧‧‧模式選擇電路 120‧‧‧ mode selection circuit

122、124‧‧‧電壓比較器 122, 124‧‧‧Voltage comparator

130‧‧‧充電終止電路 130‧‧‧Charging termination circuit

131~134‧‧‧電流鏡 131~134‧‧‧current mirror

135、140‧‧‧電流感測器 135, 140‧‧‧ current sensor

136‧‧‧反相器 136‧‧‧Inverter

MP‧‧‧電源開關 M P ‧‧‧Power switch

M1~M4、MCAP1、MCAP2、MP1~MP4、MN1~MN4、MEN、ME、MEOC、MF、MS、MC、MD、MVA、ML、MN‧‧‧電晶體 M1~M4, M CAP1 , M CAP2 , M P1 ~M P4 , M N1 ~M N4 , M EN , M E , M EOC , M F , M S , M C , M D , M VA , M L , M N ‧‧‧O crystal

Vc‧‧‧節點電壓 Vc‧‧‧ node voltage

Vdd‧‧‧系統電壓 Vdd‧‧‧ system voltage

Vss‧‧‧接地電壓 Vss‧‧‧ Grounding voltage

Vo‧‧‧輸出端電壓 Vo‧‧‧ output voltage

VG‧‧‧閘極電壓 V G ‧‧‧ gate voltage

Vset‧‧‧設定電壓 Vset‧‧‧Set voltage

Veoc‧‧‧控制偏壓 V eoc ‧‧‧Control bias

Vcom、VI、Vref‧‧‧參考電壓 Vcom, VI, Vref‧‧‧ reference voltage

Rsen‧‧‧感測電阻 R sen ‧‧‧resistance resistor

Rset1、Rset2、Rset3‧‧‧設定電阻 R set1 , R set2 , R set3 ‧‧‧Set resistor

Rfb1、Rfb2‧‧‧分壓電阻 R fb1 , R fb2 ‧‧ ‧ voltage divider resistor

I1、I2、I3、I4、IH、IL‧‧‧電流 I1, I2, I3, I4, I H , I L ‧‧‧ current

ICC、ICV‧‧‧控制電流 I CC , I CV ‧‧‧Control current

ID1、ID2‧‧‧感測電流 ID1, ID2‧‧‧ sense current

Icut-off‧‧‧斷路電流源 I cut-off ‧‧‧break current source

IBIAS‧‧‧偏壓電流源 I BIAS ‧‧‧ bias current source

tcut-off‧‧‧截止時間 t cut-off ‧‧‧ deadline

VL、Vn‧‧‧預設電壓準位 V L , V n ‧‧‧Preset voltage level

VSTOP‧‧‧電壓準位 V STOP ‧‧‧voltage level

Asen‧‧‧電壓比較器 Asen‧‧‧Voltage Comparator

Acc、Acv‧‧‧誤差放大器 Acc, Acv‧‧‧ error amplifier

圖1是本發明的一實施例的一種充電管理裝置的充電流程的波形圖。 1 is a waveform diagram of a charging flow of a charge management device according to an embodiment of the present invention.

圖2是本發明的一實施例的一種充電管理裝置的電路示意圖。 2 is a circuit diagram of a charge management device according to an embodiment of the present invention.

圖3是本發明的一實施例的一種充電架構的方塊圖。 3 is a block diagram of a charging architecture in accordance with an embodiment of the present invention.

現將詳細參考本揭露之示範性實施例,在附圖中說明所述示範性實施例之實例。另外,凡可能之處,在圖式及實施方式中使用相同標號的元件/構件/符號代表相同或類似部分。 The exemplary embodiments of the present disclosure will now be described in detail with reference to the accompanying drawings. In addition, wherever possible, the elements and/

首先,圖3為本發明的一實施例的一種充電架構的方塊圖。請參照圖3,充電架構10包括:電源供應裝置104、充電管理裝置100以及充電電池102。在本實施例中,電源供應裝置104可以為至少具有電能輸出功能的充電器、行動電源、或燃料電池模組等等,但並不限制於此。另外,充電管理裝置100以及充電電池102可配置於不同類型的終端裝置中,例如:電動車或手持式裝置(例如:智慧型手機、平板電腦等),但並不限制於此。 First, FIG. 3 is a block diagram of a charging architecture according to an embodiment of the present invention. Referring to FIG. 3 , the charging architecture 10 includes a power supply device 104 , a charging management device 100 , and a rechargeable battery 102 . In the present embodiment, the power supply device 104 may be a charger having at least a power output function, a mobile power source, or a fuel cell module, etc., but is not limited thereto. In addition, the charge management device 100 and the rechargeable battery 102 may be disposed in different types of terminal devices, such as electric vehicles or handheld devices (eg, smart phones, tablets, etc.), but are not limited thereto.

於本實施例中,當有充電需求而將充電電池連接至電源供應裝置104時,則充電管理裝置100會根據充電電池102的正 極端的電壓準位調整對應的充電模式,當對於充電電池102進行充電的充電電流降至預設電流值時,充電管理裝置100會終止充電動作。在本實施例中,充電電池可以為鋰電池,但並不限制於此。 In this embodiment, when the charging battery is connected to the power supply device 104 when there is a charging demand, the charging management device 100 is based on the positive charging battery 102. The extreme voltage level adjusts the corresponding charging mode, and when the charging current for charging the rechargeable battery 102 drops to the preset current value, the charging management device 100 terminates the charging operation. In the embodiment, the rechargeable battery may be a lithium battery, but is not limited thereto.

圖1為本發明的一實施例的一種充電管理裝置的充電流程的波形圖。請同時參照圖1以及圖3,對於一般的鋰電池所採用的定電流(Constant Current,CC)充電模式以及定電壓(Constant Voltage,CV)充電模式是現今最為廣泛使用的充電方法,而在本實施例中,充電管理裝置100對於充電電池102的充電過程可分為四個充電模式,分別為小電流充電(Trickle Charge,TC)模式、CC模式、CC-CV模式、CV模式以及截止充電模式,其中虛線曲線代表電池電壓,右側垂直軸代表充電電壓,實線曲線代表電池電流,左側垂直軸代表充電電流,而橫軸則表示充電時間。 1 is a waveform diagram of a charging flow of a charge management device according to an embodiment of the present invention. Please refer to FIG. 1 and FIG. 3 simultaneously. The constant current (CC) charging mode and the constant voltage (CV) charging mode used in a general lithium battery are the most widely used charging methods today. In the embodiment, the charging management device 100 can be divided into four charging modes for the charging process of the rechargeable battery 102, namely, a small current charging (TC) mode, a CC mode, a CC-CV mode, a CV mode, and a cutoff charging mode. Where the dashed curve represents the battery voltage, the right vertical axis represents the charging voltage, the solid line represents the battery current, the left vertical axis represents the charging current, and the horizontal axis represents the charging time.

在TC模式下,由於充電電池過度放電而電池電壓偏低,故充電管理裝置100先用小電流進行充電,當充電電池102的電池電壓準位充到預設電壓準位VL後,充電管理裝置100再將充電模式轉為CC模式。值得一提的是,由於充電管理裝置100初期對電池採用小電流進行充電,可避免直接用大電流(或稱為定電流)對電池充電而導致電池溫度上升或造成電池損毀,從而達到充電安全的功效。在本實施例中,於TC模式到CC模式的轉換點,也就是預設電壓準位VL約位於充電電池102的電壓值在2.8V至3.2V之間,但不以此為限。 In the TC mode, since the battery voltage is low due to overdischarge of the rechargeable battery, the charging management device 100 first charges with a small current, and when the battery voltage level of the rechargeable battery 102 is charged to the preset voltage level V L , the charging management Device 100 then switches the charging mode to CC mode. It is worth mentioning that, since the charging management device 100 initially charges the battery with a small current, it can avoid charging the battery directly with a large current (or called a constant current), causing the battery temperature to rise or causing the battery to be damaged, thereby achieving charging safety. The effect. In the present embodiment, the switching point of the TC mode to the CC mode, that is, the preset voltage level V L is approximately between 2.8V and 3.2V, but not limited thereto.

接著,在CC模式下,充電管理裝置100則會用定電流IH對充電電池102進行定電流充電。隨著充電電池102的電池電壓逐漸提升至預設電壓準位Vn時,則充電管理裝置100中的定電流迴路(未繪示)逐漸失效,而逐漸由充電管理裝置100中的定電壓迴路(未繪示)進行取代。換句話說,此時充電管理裝置100對於充電電池102的充電電流隨著電池電壓升高而逐漸遞減,而充電管理裝置10也會進入一種CC-CV的混合模式,也就是如同圖1所示CC模式與CV模式之間的轉換點。本實施例中,預設電壓準位Vn約位於充電電池的電壓值在4.2V,但不以此為限。 Next, in the CC mode, the charge management device 100 charges the rechargeable battery 102 with a constant current IH . As the battery voltage of the rechargeable battery 102 gradually increases to the preset voltage level V n , the constant current loop (not shown) in the charge management device 100 gradually fails, and gradually becomes a constant voltage loop in the charge management device 100. Replaced (not shown). In other words, at this time, the charging current of the charging management device 100 for the rechargeable battery 102 gradually decreases as the battery voltage increases, and the charging management device 10 also enters a mixed mode of CC-CV, that is, as shown in FIG. The transition point between CC mode and CV mode. In this embodiment, the preset voltage level Vn is approximately 4.2V at the voltage of the rechargeable battery, but is not limited thereto.

此外,應注意的是,此時充電管理裝置100中的平滑轉換電路(未繪示)採用交錯控制、來回切換CC模式與CV模式的狀態,以穩定充電管理裝置100的輸出端電壓(容後參照圖2作更進一步說明),減少模式切換過程中發生的鏈波電壓(ripple voltage),從而達到平滑轉換的效果。而之後電路逐漸進入CV模式,此時輸出電壓將緩慢上升,充電電流迅速下降。最後,充電管理裝置100對於充電電池102進行充電的充電電流低於斷路電流值(例如是Icut-off)時,而充電管理裝置100則會從CV模式切換進入截止充電模式(容後參照圖2作更進一步說明)。 In addition, it should be noted that the smooth conversion circuit (not shown) in the charging management device 100 adopts the state of interleaving control, switching the CC mode and the CV mode back and forth to stabilize the output voltage of the charging management device 100. Referring to FIG. 2 further, the ripple voltage generated during the mode switching is reduced to achieve a smooth transition effect. Then the circuit gradually enters the CV mode, at which time the output voltage will rise slowly and the charging current will drop rapidly. Finally, when the charging current of the charging management device 100 for charging the rechargeable battery 102 is lower than the breaking current value (for example, I cut-off ), the charging management device 100 switches from the CV mode to the cut-off charging mode (refer to the rear reference map). 2 for further explanation).

為了更清楚說明,底下即搭配上述圖1、圖2中充電管理裝置100中的各項元件,以說明本發明的充電管理裝置100具體的操作流程。 For the sake of clarity, the components in the charging management device 100 of FIGS. 1 and 2 described above are provided below to explain the specific operational flow of the charging management device 100 of the present invention.

圖2為本發明的一實施例的一種充電管理裝置的電路示 意圖。請參照圖2,充電管理裝置100至少包括:電源開關MP、平滑轉換電路(Analog Smooth Transition Circuit,ASTC)110、模式選擇電路120、充電終止電路(End Of Charge Circuit,EOC)130以及電流感測電路140,其中電源開關MP的第一端耦接至系統電壓Vdd,電源開關MP的第二端耦接至模式選擇電路120、充電終止電路130以及電流感測電路140,同時電源開關MP的第二端可作為充電管理裝置100的輸出電壓端,而電源開關MP的閘極端則耦接至平滑轉換電路110、充電終止電路130以及電流感測電路140。 2 is a circuit diagram of a charge management device according to an embodiment of the present invention. Referring to FIG. 2, the charging management device 100 includes at least a power switch M P , an Smooth Smooth Transition Circuit (ASTC) 110 , a mode selection circuit 120 , an End Of Charge Circuit (EOC) 130 , and a current sense. The measuring circuit 140, wherein the first end of the power switch M P is coupled to the system voltage Vdd, and the second end of the power switch M P is coupled to the mode selecting circuit 120, the charging termination circuit 130, and the current sensing circuit 140, and the power switch The second end of the M P can be used as the output voltage terminal of the charging management device 100 , and the gate terminal of the power switch M P is coupled to the smoothing conversion circuit 110 , the charging termination circuit 130 , and the current sensing circuit 140 .

在一實施例中,模式選擇電路120包括:電晶體ML、設定電阻RSET1、設定電阻RSET2、設定電阻RSET3、電壓比較器122、電壓比較器124以及電晶體MN,其中電晶體ML以PMOS電晶體為示例,而電晶體ML以NMOS電晶體為示例。電晶體ML具有第一端、第二端以及閘極端,電晶體ML第一端耦接至系統電壓Vdd,其閘極端耦接至電壓比較器122的輸出端,電晶體ML的第二端輸出設定電壓。 In an embodiment, the mode selection circuit 120 includes: a transistor M L , a set resistor R SET1 , a set resistor R SET2 , a set resistor R SET3 , a voltage comparator 122 , a voltage comparator 124 , and a transistor M N , wherein the transistor M L in a PMOS transistor as an example, the NMOS transistors to transistors M L as an example. M L transistor having a first end, a second end, and a gate terminal, a first terminal of the transistor M L coupled to the system voltage Vdd, its gate terminal coupled to the output terminal of the voltage comparator 122, L of the first transistor M The two ends output the set voltage.

至於設定電阻RSET1、RSET2、RSET3的部份,設定電阻RSET1具有第一端以及第二端,設定電阻RSET1的第一端耦接至電晶體ML的第二端。設定電阻RSET2具有第一端以及第二端,設定電阻RSET2的第一端耦接至設定電阻RSET1的第二端。設定電阻RSET3具有第一端以及第二端,設定電阻RSET3的第一端耦接至設定電阻RSET2的第二端,設定電阻RSET3的第二端耦接至接地電壓Vss。在本實施例中,上述設定電阻RSET1、RSET2、RSET3的數量可依據設 計選擇進行調整,並不以此為限。 As for the portions of the resistors R SET1 , R SET2 , and R SET3 , the set resistor R SET1 has a first end and a second end, and the first end of the set resistor R SET1 is coupled to the second end of the transistor M L . Setting resistor R SET2 having a first end and a second end, setting a first terminal of the resistor R SET2 is set to the second terminal of the resistor R SET1. The set resistor R SET3 has a first end and a second end. The first end of the set resistor R SET3 is coupled to the second end of the set resistor R SET2 , and the second end of the set resistor R SET3 is coupled to the ground voltage Vss. In this embodiment, the number of the set resistors R SET1 , R SET2 , and R SET3 can be adjusted according to design choices, and is not limited thereto.

此外,模式選擇電路120中的電壓比較器122具有正輸入端、負輸入端以及輸出端,電壓比較器122的正輸入端耦接至設定電阻RSET1的第二端以及設定電阻RSET2的第一端,電壓比較器122的負輸入端耦接至參考電壓VI,用以鎖定設定電阻RSET1與設定電阻RSET2之間節點的電壓。此外,電壓比較器124具有正輸入端、負輸入端以及輸出端,電壓比較器124的正輸入端接收輸出端電壓Vo,電壓比較器124的負輸入端接收參考電壓Vcom,用以比較輸出端電壓Vo與參考電壓Vcom,以輸出控制偏壓Veoc。在本實施例中,參考電壓Vcom約為3V,但不以此為限。模式選擇電路120中的電晶體MN具有第一端、第二端以及閘極端,電晶體MN的第一端耦接至設定電阻RSET3的第一端,電晶體MN的第二端耦接至設定電阻RSET3的第二端,電晶體MN的閘極端耦接至電壓比較器124的輸出端,用以根據控制偏壓Veoc決定導通狀態。 In addition, the voltage comparator 122 in the mode selection circuit 120 has a positive input terminal, a negative input terminal, and an output terminal. The positive input terminal of the voltage comparator 122 is coupled to the second terminal of the set resistor R SET1 and the first resistor of the set resistor R SET2 . At one end, the negative input terminal of the voltage comparator 122 is coupled to the reference voltage VI for locking the voltage of the node between the set resistor R SET1 and the set resistor R SET2 . In addition, the voltage comparator 124 has a positive input terminal, a negative input terminal and an output terminal. The positive input terminal of the voltage comparator 124 receives the output terminal voltage Vo, and the negative input terminal of the voltage comparator 124 receives the reference voltage Vcom for comparing the output terminals. The voltage Vo is compared with the reference voltage Vcom to output a control bias voltage V eoc . In this embodiment, the reference voltage Vcom is about 3V, but is not limited thereto. The transistor M N in the mode selection circuit 120 has a first end, a second end, and a gate terminal. The first end of the transistor M N is coupled to the first end of the set resistor R SET3 , and the second end of the transistor M N setting resistor coupled to the second terminal R SET3, M N of the transistor gate terminal coupled to the output terminal of the voltage comparator 124, for determining a conduction state control bias V eoc.

更具體而言,模式選擇電路120可根據輸出端電壓Vo的電壓準位決定充電管理裝置100的充電模式為TC模式或CC模式。舉例來說,當輸出端電壓Vo小於參考電壓Vcom時,電壓比較器124輸出低準位(例如,0V)的控制偏壓Veoc,致使電晶體MN關斷,則流經電晶體ML的電流順著設定電阻RSET1、RSET2、RSET3的路徑流動,進而模組選擇電路120輸出對應的設定電壓Vset(例如是Vset1),則此時充電管理裝置100會以TC模式對充電電池進行充電。當輸出端電壓Vo大於參考電壓Vcom時,電壓比較器124 輸出高準位的控制偏壓Veoc,致使電晶體MN導通,則流經電晶體ML的電流順著設定電阻RSET1、RSET2、電晶體MN的路徑流動,進而模組選擇電路120輸出對應的設定電壓Vset(例如是Vset2),則此時充電管理裝置100則切換至CC模式對充電電池進行充電。 More specifically, the mode selection circuit 120 can determine the charging mode of the charging management device 100 to be the TC mode or the CC mode according to the voltage level of the output terminal voltage Vo. For example, when the output terminal voltage Vo is less than the reference voltage Vcom, the voltage comparator 124 outputs a low-level (eg, 0V) control bias voltage V eoc , causing the transistor M N to turn off, then flowing through the transistor M L The current flows along the path of the set resistors R SET1 , R SET2 , and R SET3 , and the module selection circuit 120 outputs a corresponding set voltage Vset (for example, Vset1 ). At this time, the charge management device 100 charges the battery in the TC mode. Charge it. When the output terminal voltage Vo is greater than the reference voltage Vcom, the voltage comparator 124 outputs a high-level control bias voltage V eoc , causing the transistor M N to be turned on, and the current flowing through the transistor M L follows the set resistance R SET1 , R The path of the SET2 and the transistor M N flows, and the module selection circuit 120 outputs a corresponding set voltage Vset (for example, Vset2). At this time, the charge management device 100 switches to the CC mode to charge the rechargeable battery.

另一方面,充電管理裝置100無論在TC模式或是CC模式下時,充電管理裝置10中的電流感測器140用以感測流經電源開關MP的電流,從而產生感測電流ID1。 On the other hand, when the charge management device 100 is in the TC mode or the CC mode, the current sensor 140 in the charge management device 10 is used to sense the current flowing through the power switch PT , thereby generating the sense current ID1.

在一實施例中,充電管理裝置100包括感測電阻Rsen以及誤差放大器Acc。感測電阻Rsen具有第一端與第二端,其第一端耦接至電流感測器140,其第二端耦接至接地電壓Vss,用以根據感測電流ID1產生感測電壓。誤差放大器Acc具正輸入端以及負輸入端,其正輸入端耦接至感測電阻Rsen的第一端,其負輸入端耦接至模式選擇電路120,用以接收並比較感測電壓與設定電壓Vset,以產生第一控制偏壓至平滑轉換電路110,如圖2所示。 In an embodiment, the charge management device 100 includes a sense resistor R sen and an error amplifier Acc. The sensing resistor R sen has a first end and a second end, the first end of which is coupled to the current sensor 140 and the second end of which is coupled to the ground voltage Vss for generating a sensing voltage according to the sensing current ID1. The error amplifier Acc has a positive input terminal and a negative input terminal. The positive input terminal is coupled to the first end of the sensing resistor R sen , and the negative input terminal is coupled to the mode selection circuit 120 for receiving and comparing the sensing voltage and The voltage Vset is set to generate a first control bias to the smoothing conversion circuit 110, as shown in FIG.

在一實施例中,充電管理裝置100更包括分壓電阻Rfb1、分壓電阻Rfb2以及誤差放大器Acv。分壓電阻Rfb1具有第一端與第二端,其第一端耦接至輸出端電壓Vo。分壓電阻Rfb2具有第一端與第二端,其第一端耦接至分壓電組Rfb1的第一端,其第二端耦接至接地電壓Vss。誤差放大器Acv具正輸入端以及負輸入端,其正輸入端耦接至分壓電阻Rfb1的第二端與分壓電阻Rfb2的第一端以接收分壓,其負輸入端接收參考電壓Vref,用以接收並比較分壓與參考電壓Vref,以產生第二控制偏壓至平滑轉換電路110, 如圖2所示。 In an embodiment, the charge management device 100 further includes a voltage dividing resistor R fb1 , a voltage dividing resistor R fb2 , and an error amplifier Acv. The voltage dividing resistor R fb1 has a first end and a second end, the first end of which is coupled to the output terminal voltage Vo. The voltage dividing resistor R fb2 has a first end and a second end, the first end of which is coupled to the first end of the voltage dividing group R fb1 , and the second end of which is coupled to the ground voltage Vss . The error amplifier Acv has a positive input terminal and a negative input terminal, and the positive input terminal is coupled to the second end of the voltage dividing resistor R fb1 and the first end of the voltage dividing resistor R fb2 to receive the divided voltage, and the negative input terminal receives the reference voltage Vref is used to receive and compare the divided voltage with the reference voltage Vref to generate a second control bias to the smoothing conversion circuit 110, as shown in FIG.

繼續參照圖2,充電管理裝置100中的平滑轉換電路110包括:偏壓電流源IBIAS、電流鏡114、電流鏡112、電流鏡116以及電晶體MVA,其中電晶體MVA以PMOS電晶體為示例。偏壓電流源IBIAS用以提供偏壓電流。電流鏡114包括電晶體M1、M3,其中電晶體M1、M3以NMOS電晶體為示例,電流鏡114耦接偏壓電流源IBIAS,用以接收偏壓電流,並依據偏壓電流提供電流I1。電流鏡112包括電晶體M2、M4,電晶體M2、M4以NMOS電晶體為示例,電流鏡112串接電流鏡114。電流鏡116包括電晶體MCAP1、MCAP2,其中MCAP1、MCAP2以PMOS電晶體為示例,而電流鏡116耦接至電流鏡114,並根據誤差放大器Acc所產生的第一控制偏壓調整控制電流ICC的大小。至於平滑轉換電路110中的電晶體MVA具有第一端、第二端及閘極端,電晶體MVA的第一端接收系統電壓Vdd,且電晶體MVA的閘極端接收並根據誤差放大器Acv所產生的第二控制偏壓調整控制電流ICV的大小。 With continued reference to FIG. 2, the smoothing conversion circuit 110 in the charge management device 100 includes a bias current source I BIAS , a current mirror 114 , a current mirror 112 , a current mirror 116 , and a transistor M VA , wherein the transistor M VA is a PMOS transistor. As an example. A bias current source I BIAS is used to provide a bias current. The current mirror 114 includes transistors M1 and M3. The transistors M1 and M3 are exemplified by an NMOS transistor. The current mirror 114 is coupled to a bias current source I BIAS for receiving a bias current and providing a current I1 according to the bias current. . The current mirror 112 includes transistors M2, M4, and the transistors M2, M4 are exemplified by an NMOS transistor, and the current mirror 112 is connected in series with the current mirror 114. The current mirror 116 includes transistors M CAP1 and M CAP2 , wherein M CAP1 and M CAP2 are exemplified by a PMOS transistor, and the current mirror 116 is coupled to the current mirror 114 and adjusted according to the first control bias generated by the error amplifier Acc. Controls the magnitude of the current I CC . As for the transistor M VA in the smoothing conversion circuit 110 having the first end, the second end and the gate terminal, the first end of the transistor M VA receives the system voltage Vdd, and the gate terminal of the transistor M VA is received and according to the error amplifier Acv The generated second control bias adjusts the magnitude of the control current I CV .

更具體而言,由於偏壓電流源IBIAS透過電流鏡114、112產生電流I1,也由於電流I1與控制電流ICC以及控制電流ICV位於同一路徑上,故控制電流ICC以及控制電流ICV之間的電流和將被電流I1所鎖定,故平滑轉換電路110在CC模式與CV模式之間,可根據控制電流ICC與控制電流ICV之間的電流和交錯調整(類似於一種電流拉扯的變化),以緩和電源開關MP的閘極電壓VG的電壓準位,從而達成連續輸出穩壓的功能,藉此改善輸出端的電壓位 準及減少鏈波電壓。 More specifically, since the bias current source I BIAS generates the current I1 through the current mirrors 114, 112, and also because the current I1 is in the same path as the control current I CC and the control current I CV , the control current I CC and the control current I The current between the CV and the current will be locked by the current I1, so the smoothing conversion circuit 110 is between the CC mode and the CV mode, and can be adjusted according to the current and the interleaving between the control current I CC and the control current I CV (similar to a current) Pulling changes) to alleviate the voltage level of the gate voltage V G of the power switch M P , thereby achieving a continuous output voltage regulation function, thereby improving the voltage level at the output terminal and reducing the chain voltage.

在一實施例中,充電終止電路130包括:斷路電流源Icut-off、電流鏡131、電晶體MEN、電流鏡133、電流鏡132、電流鏡134、電流感測器135以及反相器136,其中電晶體MEN以NMOS電晶體為示例。斷路電流源Icut-off用以提供參考電流。充電終止電路130中的電流鏡131包括電晶體MN3、電晶體MN4,其中電晶體MN3、電晶體MN4以NMOS電晶體為示例,而電流鏡131接收參考電流,以依據參考電流提供電流I2。電晶體MEN具有第一端、第二端及閘極端,電晶體MEN的第一端耦接至電流鏡131,電晶體MEN的閘極端耦接至模式選擇電路120,用以根據控制偏壓Veoc的電壓準位決定電流I2的傳遞路徑的導通狀態。 In an embodiment, the charge termination circuit 130 includes: an open circuit current source I cut-off , a current mirror 131, a transistor M EN , a current mirror 133 , a current mirror 132 , a current mirror 134 , a current sensor 135 , and an inverter 136, wherein the transistor M EN is exemplified by an NMOS transistor. The open current source I cut-off is used to provide a reference current. The current mirror 131 in the charge termination circuit 130 includes a transistor M N3 and a transistor M N4 , wherein the transistor M N3 and the transistor M N4 are exemplified by an NMOS transistor, and the current mirror 131 receives a reference current to provide a reference current. Current I2. The transistor M EN has a first end, a second end and a gate terminal, the first end of the transistor M EN is coupled to the current mirror 131, and the gate terminal of the transistor M EN is coupled to the mode selection circuit 120 for controlling according to the control bias voltage level V eoc determine the conductive state of the transmission path of the current I2.

更具體而言,當模式選擇電路120中的電壓比較器124的輸出端所拉出來的控制偏壓Veoc的電壓準位為低準位(例如,0伏特)時,則會關斷電晶體MEN,即關斷電流I2的傳遞路徑。當模式選擇電路120中的電壓比較器124的輸出端所拉出來的控制偏壓Veoc的電壓準位為高準位時,則會導通電晶體MEN,即導通電流I2的傳遞路徑。 More specifically, when the voltage level of the control bias voltage V eoc pulled out by the output terminal of the voltage comparator 124 in the mode selection circuit 120 is a low level (for example, 0 volt), the transistor is turned off. M EN , the transmission path of the shutdown current I2. When the voltage level of the control bias voltage V eoc pulled out by the output terminal of the voltage comparator 124 in the mode selection circuit 120 is at a high level, the conduction path of the transistor M EN , that is, the conduction current I2 is turned on.

請繼續參照圖2,充電終止電路130中的電流鏡133包括電晶體MP2、電晶體MP4,其中電晶體MP2、電晶體MP4以PMOS電晶體為示例,電流鏡133耦接電晶體MEN的第二端。電流鏡132包括電晶體MP1以及電晶體MP3,其中電晶體MP1以及電晶體MP3以PMOS電晶體為示例,而電流鏡132串接電流鏡133。當電晶 體MEN導通時,電流鏡132用以接收並根據電流I2產生電流I3。,而電流鏡133則用以接收並傳送電流I3,其中電流I2等於電流I3。 Referring to FIG. 2, the current mirror 133 in the charge termination circuit 130 includes a transistor M P2 and a transistor M P4 , wherein the transistor M P2 and the transistor M P4 are exemplified by a PMOS transistor, and the current mirror 133 is coupled to the transistor. The second end of M EN . Current mirror 132 comprises transistor M P1 and M P3 transistor, wherein the transistor M P1 and M P3 transistor in PMOS transistor as an example, a current mirror 132 and current mirror 133 connected in series. When the transistor M EN is turned on, the current mirror 132 is used to receive and generate a current I3 based on the current I2. The current mirror 133 is used to receive and transmit a current I3, wherein the current I2 is equal to the current I3.

另一方面,充電終止電路130中的電流感測器135用以感測充電電池的正極端的電壓準位,以產生感測電流ID2。充電終止電路130中的電流鏡134包括電晶體MN1以及電晶體MN2,其中電晶體MN1以及電晶體MN2以NMOS電晶體為示例,而電流鏡134耦接電流感測器135,用以接收感測電流ID2並根據感測電流ID2產生電流I4,其中感測電流ID2等於電流I4。至於充電終止電路130中的反相器136的輸入端則耦接於電流鏡133與電流鏡134之間,反相器136的輸出則耦接至電晶體Mc的閘極端。由於電流I3為固定電流值且與電流I4位於相同的傳輸路徑上,故依照電流I3與電流I4之間的電流差即可決定電流鏡133與電流鏡134之間的節點電壓Vc的電壓準位。換句話說,當電流I4的值上升時,則節點電壓Vc的電壓準位即會下降;相反而言,當電流I4的值下降時,則節點電壓Vc的電壓準位即會上升。而後,經由反相器136輸出反相結果。 On the other hand, the current sensor 135 in the charge termination circuit 130 is used to sense the voltage level of the positive terminal of the rechargeable battery to generate the sense current ID2. The current mirror 134 in the charge termination circuit 130 includes a transistor M N1 and a transistor M N2 , wherein the transistor M N1 and the transistor M N2 are exemplified by an NMOS transistor, and the current mirror 134 is coupled to the current sensor 135. The current I4 is generated by receiving the sense current ID2 and according to the sense current ID2, wherein the sense current ID2 is equal to the current I4. The input terminal of the inverter 136 in the charge termination circuit 130 is coupled between the current mirror 133 and the current mirror 134, and the output of the inverter 136 is coupled to the gate terminal of the transistor M c . Since the current I3 is a fixed current value and is located on the same transmission path as the current I4, the voltage level of the node voltage Vc between the current mirror 133 and the current mirror 134 can be determined according to the current difference between the current I3 and the current I4. . In other words, when the value of the current I4 rises, the voltage level of the node voltage Vc decreases; on the contrary, when the value of the current I4 decreases, the voltage level of the node voltage Vc rises. Then, the inverted result is output via the inverter 136.

在本實施例中,充電管理裝置100更包括電晶體Mc,具有第一端、第二端及閘極端,而電晶體Mc的第一端耦接系統電壓Vdd,電晶體Mc的第二端耦接至電源開關MP的閘極端,電晶體Mc的閘極端耦接至充電終止電路130的反相器136,並根據反相器136所輸出的反相結果切換導通狀態,其中電晶體Mc以PMOS電晶體為示例。當電晶體Mc的閘極端接收到的反相結果為高準位 時,則導通並使電源開關MP的閘極電壓VG的電壓準位被拉高,導致電源開關MP被關斷,對於充電電池的充電電流降至預設電流值(例如是Icut-off),以致於充電管理裝置100進入截止充電模式,並終止充電動作。藉此,充電終止電路130可以精準的判斷電池被充飽,並且及時的關閉充電流程,以防止電池的過充,從而達到保護鋰離子充電器電路及電池的目的。 In this embodiment, the charging management device 100 further includes a transistor M c having a first end, a second end, and a gate terminal, and the first end of the transistor M c is coupled to the system voltage Vdd, and the transistor M c is The two ends are coupled to the gate terminal of the power switch M P , the gate terminal of the transistor M c is coupled to the inverter 136 of the charge termination circuit 130 , and switches the conduction state according to the inverted result output by the inverter 136 , wherein The transistor M c is exemplified by a PMOS transistor. When the result of the inverted transistor M c gate terminal of the received level is high, the voltage level is turned on and the gate voltage V G M P of the power switch is pulled, causing the power switch is turned off M P The charging current for the rechargeable battery drops to a preset current value (for example, I cut-off ), so that the charging management device 100 enters the cut-off charging mode and terminates the charging operation. Thereby, the charging termination circuit 130 can accurately determine that the battery is fully charged, and close the charging process in time to prevent overcharging of the battery, thereby achieving the purpose of protecting the lithium ion charger circuit and the battery.

綜上所述,本發明提出一種具有平滑轉換電路以及充電終止電路的充電架構,一方面本案藉由平滑轉換電路交錯切換充電模式達成連續輸出穩壓的功能,藉此緩和輸出端的電壓位準及改善鏈波電壓;另一方面,本案透過充電終止電路精準的將電池容量充滿,而直接透過電晶體感測電流以減少判斷上的誤差,從而能夠更精準的關閉充電流程。因此,本發明所提出的充電架構既不會傷害的電池,也能夠精準的充飽鋰電池,大大改善充電品質以及延長電池的壽命。 In summary, the present invention provides a charging architecture with a smooth conversion circuit and a charge termination circuit. On the one hand, the present invention achieves a continuous output voltage regulation function by smoothly switching the switching mode to switch the charging mode, thereby easing the voltage level of the output terminal and Improve the chain voltage; on the other hand, the case accurately fills the battery capacity through the charge termination circuit, and directly senses the current through the transistor to reduce the error in the judgment, thereby enabling the charging process to be more accurately turned off. Therefore, the charging structure proposed by the present invention can neither damage the battery nor accurately charge the lithium battery, greatly improving the charging quality and prolonging the life of the battery.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.

10‧‧‧充電架構 10‧‧‧Charging architecture

100‧‧‧充電管理裝置 100‧‧‧Charging management device

102‧‧‧充電電池 102‧‧‧Rechargeable battery

104‧‧‧電源供應裝置 104‧‧‧Power supply unit

Claims (10)

一種充電架構,包括:電源供應裝置,用以提供系統電壓;充電電池,並聯至該電源供應裝置;以及充電管理裝置,並聯至該電源供應裝置及該充電電池,用以根據該充電電池的正極端的電壓準位切換對應的充電模式,當對該充電電池進行充電的充電電流降至預設電流值時,則終止充電動作。 A charging architecture includes: a power supply device for providing a system voltage; a rechargeable battery connected in parallel to the power supply device; and a charging management device connected in parallel to the power supply device and the rechargeable battery for positively charging the rechargeable battery The extreme voltage level switches the corresponding charging mode, and when the charging current for charging the rechargeable battery drops to the preset current value, the charging operation is terminated. 如申請專利範圍第1項所述的充電架構,其中該充電管理裝置包括:電源開關,具有第一端、第二端及閘極端,該電源開關的第一端接收該系統電壓,而該電源開關的第二端耦接該充電電池的正極端而得到輸出端電壓準位;平滑轉換電路,耦接該電源開關的閘極端,用以根據該電源開關的第二端的該輸出端電壓準位調整該電源開關的閘極端的電壓準位;以及充電終止電路,耦接該電源開關的第二端,用以透過其中的第二感測電路感測該充電電流,並於該充電電流降至該預設電流值時,則終止該充電動作。 The charging architecture of claim 1, wherein the charging management device comprises: a power switch having a first end, a second end, and a gate terminal, the first end of the power switch receiving the system voltage, and the power source a second end of the switch is coupled to the positive terminal of the rechargeable battery to obtain an output voltage level; a smoothing conversion circuit is coupled to the gate terminal of the power switch for determining the voltage level of the output terminal according to the second end of the power switch Adjusting a voltage level of a gate terminal of the power switch; and a charging termination circuit coupled to the second end of the power switch for sensing the charging current through the second sensing circuit therein, and reducing the charging current When the preset current value is reached, the charging action is terminated. 如申請專利範圍第2項所述的充電架構,其中該平滑轉換電路包括:偏壓電流源,用以提供偏壓電流; 第一電流鏡,耦接該偏壓電流源,用以接收該偏壓電流,並依據該偏壓電流提供第一電流;第二電流鏡,串接該第一電流鏡;第三電流鏡,耦接至該第一電流鏡,並根據第一控制偏壓調整第一控制電流;以及第一電晶體,具有第一端、第二端及閘極端,該第一電晶體的第一端接收該系統電壓,且該第一電晶體的閘極端接收第二控制偏壓,並根據該第二控制偏壓調整第二控制電流,其中,該第一控制電流與該第二控制電流之間的電流和等於該第一電流,而該平滑轉換電路根據該電流和調整該電源開關的閘極端的閘極電壓準位。 The charging architecture of claim 2, wherein the smoothing conversion circuit comprises: a bias current source for providing a bias current; a first current mirror coupled to the bias current source for receiving the bias current and providing a first current according to the bias current; a second current mirror connected in series with the first current mirror; a third current mirror, Coupling to the first current mirror, and adjusting the first control current according to the first control bias; and the first transistor having a first end, a second end, and a gate terminal, the first end of the first transistor receiving The system voltage, and the gate terminal of the first transistor receives the second control bias, and adjusts the second control current according to the second control bias, wherein the first control current and the second control current are The current sum is equal to the first current, and the smoothing conversion circuit adjusts the gate voltage level of the gate terminal of the power switch according to the current. 如申請專利範圍第2項所述的充電架構,其中該充電終止電路包括:斷路電流源,用以提供參考電流;第四電流鏡,接收該參考電流,以依據該參考電流提供一第二電流;第五電晶體,具有第一端、第二端及閘極端,該第五電晶體的第一端耦接至該第四電流鏡,該閘極端耦接至該模式選擇電路,用以根據該設定電壓的準位決定該第二電流的路徑的導通狀態;第五電流鏡,耦接該第五電晶體的第二端,用以接收該第二電流並根據該第二電流產生第三電流; 第六電流鏡,串接該第五電流鏡,用以接收並傳送該第三電流;該第二電流感測器,用以感測該充電電池的正極端的電流準位,以產生第二感測電流;以及第七電流鏡,耦接該第二電流感測器,用以接收該第二感測電流並根據該第二感測電流產生第四電流,其中該充電終止電路根據該第三電流與該第四電流之間的電流差決定該第六電流鏡與該第七電流鏡之間的節點電壓準位。 The charging architecture of claim 2, wherein the charging termination circuit comprises: an open current source for providing a reference current; and a fourth current mirror receiving the reference current to provide a second current according to the reference current a fifth transistor having a first end, a second end, and a gate terminal, the first end of the fifth transistor being coupled to the fourth current mirror, the gate terminal being coupled to the mode selection circuit for The level of the set voltage determines a conduction state of the path of the second current; the fifth current mirror is coupled to the second end of the fifth transistor for receiving the second current and generating a third according to the second current Current a sixth current mirror serially connected to the fifth current mirror for receiving and transmitting the third current; the second current sensor for sensing a current level of the positive terminal of the rechargeable battery to generate a second current Sensing a current; and a seventh current mirror coupled to the second current sensor for receiving the second sensing current and generating a fourth current according to the second sensing current, wherein the charging termination circuit is configured according to the first The current difference between the three currents and the fourth current determines a node voltage level between the sixth current mirror and the seventh current mirror. 如申請專利範圍第4項所述的充電架構,其中該充電終止電路更包括:反相器,具有輸入端及輸出端,其輸入端耦接於該第六電流鏡與該第七電流鏡之間,其輸出端耦接至該第六電晶體,用以根據該第六電流鏡與該第七電流鏡之間的節點電壓準位輸出反相結果。 The charging architecture of claim 4, wherein the charging termination circuit further comprises: an inverter having an input end and an output end, the input end of which is coupled to the sixth current mirror and the seventh current mirror The output end is coupled to the sixth transistor for outputting an inverted result according to a node voltage level between the sixth current mirror and the seventh current mirror. 如申請專利範圍第5項所述的充電架構,該充電管理裝置更包括:第六電晶體,具有第一端、第二端及閘極端,而該第六電晶體的第一端耦接該系統電壓,該第六電晶體的第二端耦接至該電源開關的閘極端,其閘極端耦接至該充電終止電路,並根據該反相結果決定導通狀態。 The charging management device further includes: a sixth transistor having a first end, a second end, and a gate terminal, wherein the first end of the sixth transistor is coupled to the charging structure The system voltage, the second end of the sixth transistor is coupled to the gate terminal of the power switch, the gate terminal of the sixth transistor is coupled to the charge termination circuit, and the conduction state is determined according to the reverse phase result. 如申請專利範圍第2項所述的充電架構,更包括:第一電流感測器,耦接於該電源開關與該平滑轉換電路之 間,用以感測該電源開關的第二端的輸出端電壓準位,以產生第一感測電流。 The charging structure of claim 2, further comprising: a first current sensor coupled to the power switch and the smoothing conversion circuit And sensing an output voltage level of the second end of the power switch to generate a first sensing current. 如申請專利範圍第2項所述的充電架構,該充電管理裝置更包括:模式選擇電路,用以根據該輸出端電壓準位決定充電模式,並輸出設定電壓,其中包括:第一設定電阻,具有第一端以及第二端,其第一端耦接至該第三電晶體的第二端;第二設定電阻,具有第一端以及第二端,其第一端耦接至該第一設定電阻的第二端;第三設定電阻,具有第一端以及第二端,其第一端耦接至該第二設定電阻的第二端,其第二端耦接至接地電壓;第一電壓比較器,具有正輸入端、負輸入端以及輸出端,其正輸入端耦接至該第一設定電阻的第二端以及該第二設定電阻的第一端,其負輸入端耦接至第三參考電壓,用以接收並比較該第三參考電壓以及該第一設定電阻與第二設定電阻之間的分壓;第三電晶體,具有第一端、第二端以及閘極端,其第一端耦接至該系統電壓,其閘極端耦接至該第一電壓比較器的輸出端,並由其第二端輸出該設定電壓;第二電壓比較器,具有正輸入端、負輸入端以及輸出端,其中該正輸入端接收該輸出端電壓,該負輸入端接收第一參考電壓,並比較該輸出端電壓與該第一參考電壓產生一第三控制偏 壓;以及第四電晶體,具有第一端、第二端以及閘極端,其第一端耦接至該三設定電阻的第一端,其第二端耦接至該第三設定電阻的第二端,其閘極端耦接至該第一電壓比較器的輸出端,用以根據該第三控制偏壓決定導通狀態。 The charging management device further includes: a mode selection circuit, configured to determine a charging mode according to the voltage level of the output terminal, and output a set voltage, including: a first setting resistor, The first end and the second end have a first end coupled to the second end of the third transistor; the second set resistor has a first end and a second end, the first end of which is coupled to the first end Setting a second end of the resistor; the third set resistor has a first end and a second end, the first end of which is coupled to the second end of the second set resistor, the second end of which is coupled to the ground voltage; The voltage comparator has a positive input terminal, a negative input terminal and an output terminal, the positive input terminal of which is coupled to the second end of the first set resistor and the first end of the second set resistor, and the negative input terminal thereof is coupled to a third reference voltage for receiving and comparing the third reference voltage and a voltage division between the first set resistor and the second set resistor; the third transistor having a first end, a second end, and a gate terminal, The first end is coupled to the system voltage, The gate terminal is coupled to the output end of the first voltage comparator and outputs the set voltage by the second terminal thereof; the second voltage comparator has a positive input terminal, a negative input terminal and an output terminal, wherein the positive input terminal receives The output terminal voltage, the negative input terminal receives the first reference voltage, and compares the output terminal voltage with the first reference voltage to generate a third control bias And a fourth transistor having a first end, a second end, and a gate terminal, the first end of which is coupled to the first end of the three set resistors, and the second end of which is coupled to the third set resistor The second terminal has a gate terminal coupled to the output end of the first voltage comparator for determining a conduction state according to the third control bias voltage. 如申請專利範圍第2項所述的充電架構,該充電管理裝置更包括:感測電阻,具有第一端與第二端,其第一端耦接至該第一電流感測器,其第二端耦接至該接地電壓,用以根據該第一感測電流產生第一感測電壓;以及第一誤差放大器,具正輸入端以及負輸入端,其正輸入端耦接至該感測電阻的第一端,其負輸入端耦接至該模式選擇電路,用以接收並比較該第一感測電壓與設定電壓,以產生該第一控制偏壓。 The charging management device further includes: a sensing resistor having a first end and a second end, the first end of which is coupled to the first current sensor, the first The second end is coupled to the ground voltage for generating a first sensing voltage according to the first sensing current; and the first error amplifier has a positive input end and a negative input end, the positive input end of which is coupled to the sensing The first end of the resistor is coupled to the mode selection circuit for receiving and comparing the first sensing voltage and the set voltage to generate the first control bias. 如申請專利範圍第2項所述的充電架構,該充電管理裝置更包括:第一分壓電阻,具有第一端與第二端,其第一端接收該輸出端電壓;第二分壓電阻,具有第一端與第二端,其第一端耦接至該第一分壓電組的第一端,其第二端耦接至該接地電壓;以及第二誤差放大器,具正輸入端以及負輸入端,其正輸入端耦接至該第一分壓電阻的第二端與第二分壓電阻的第一端以接收分 壓,其負輸入端接收第二參考電壓,用以接收並比較該分壓與該第二參考電壓,以產生該第二控制偏壓。 The charging management device further includes: a first voltage dividing resistor having a first end and a second end, the first end receiving the output terminal voltage; the second voltage dividing resistor a first end and a second end, the first end of which is coupled to the first end of the first divided piezoelectric group, the second end of which is coupled to the ground voltage; and the second error amplifier has a positive input end And a negative input terminal, the positive input end of which is coupled to the second end of the first voltage dividing resistor and the first end of the second voltage dividing resistor to receive the Pressing, the negative input thereof receives the second reference voltage for receiving and comparing the divided voltage with the second reference voltage to generate the second control bias.
TW103130797A 2014-09-05 2014-09-05 Charging structure TWI539719B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW103130797A TWI539719B (en) 2014-09-05 2014-09-05 Charging structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103130797A TWI539719B (en) 2014-09-05 2014-09-05 Charging structure

Publications (2)

Publication Number Publication Date
TW201611469A true TW201611469A (en) 2016-03-16
TWI539719B TWI539719B (en) 2016-06-21

Family

ID=56085303

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103130797A TWI539719B (en) 2014-09-05 2014-09-05 Charging structure

Country Status (1)

Country Link
TW (1) TWI539719B (en)

Also Published As

Publication number Publication date
TWI539719B (en) 2016-06-21

Similar Documents

Publication Publication Date Title
JP3476347B2 (en) Battery charger
CN101617455B (en) Battery charger with constant-current to constant-voltage transition
CN100373742C (en) Over voltage transient controller
JP6323727B2 (en) Solar cell power feeder and solar cell system
CN101383522B (en) Constant-current, constant-voltage and constant-temperature current supply of a battery charger
US20040095095A1 (en) Battery charging method, battery charging circuit, and portable electronic device having a battery
US20090096427A1 (en) Apparatus for detecting end-of-charge for a battery charger
KR101871020B1 (en) system for charging battery of energy storage system using PCS
CN103023461A (en) RC (remote control) oscillating circuit
CN112821497B (en) Lithium battery protection system and lithium battery
CN1877946B (en) Secondary battery protective chip
JP2015204705A (en) Charge control circuit and method, and charging device
CN104919676A (en) Electrical storage apparatus and startup method
US8248036B2 (en) Battery charging circuit for improving operating stability
CN103779906A (en) Charge management device and system
CN108879881A (en) A kind of bidirectional linear charging circuit and quick charge chip
CN201893589U (en) Serial battery pack charge balance system
US9641015B2 (en) Charging structure
TWI539719B (en) Charging structure
KR20150050215A (en) Apparatus and method for managing battery pack
JP2020520624A (en) Battery management system and method for optimizing internal resistance of battery
CN204681115U (en) Battery charger
US20210050735A1 (en) Charging apparatus
CN109274153B (en) Temperature compensation circuit for charging energy storage module and charger
JP5014933B2 (en) CHARGE CONTROL CIRCUIT AND ELECTRONIC DEVICE USING THE SAME