JP2015204705A - Charge control circuit and method, and charging device - Google Patents

Charge control circuit and method, and charging device Download PDF

Info

Publication number
JP2015204705A
JP2015204705A JP2014083515A JP2014083515A JP2015204705A JP 2015204705 A JP2015204705 A JP 2015204705A JP 2014083515 A JP2014083515 A JP 2014083515A JP 2014083515 A JP2014083515 A JP 2014083515A JP 2015204705 A JP2015204705 A JP 2015204705A
Authority
JP
Japan
Prior art keywords
voltage
charging
circuit
current
constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014083515A
Other languages
Japanese (ja)
Inventor
洋光 広瀬
Hiromitsu Hirose
洋光 広瀬
剛志 井上
Tsuyoshi Inoue
剛志 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Electronic Devices Co Ltd
Original Assignee
Ricoh Electronic Devices Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Electronic Devices Co Ltd filed Critical Ricoh Electronic Devices Co Ltd
Priority to JP2014083515A priority Critical patent/JP2015204705A/en
Publication of JP2015204705A publication Critical patent/JP2015204705A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To shorten an entire charging time by performing constant voltage charge at high speed while keeping a battery voltage of a secondary battery equal to or lower than a rating voltage.SOLUTION: A charge control circuit is configured to perform charge control from a DC power source to the secondary battery with constant current charge by a constant current charging circuit or constant voltage charge by a constant voltage charging circuit. The charge control circuit includes: a threshold voltage generation circuit which outputs a threshold voltage for switching between the constant current charge and the constant voltage charge; a charging method switching circuit which compares the threshold voltage with an anode voltage of the secondary battery and switches between the constant current charge and the constant voltage charge on the basis of a comparison result; and a threshold voltage regulation circuit for regulating the threshold voltage on the basis of a charging current in charging the secondary battery. The threshold voltage regulation circuit regulates the threshold voltage in such a manner that the threshold voltage and an output voltage of the constant voltage charging circuit are made rise by a voltage obtained by converting the charging current into a voltage drop caused by internal resistance or wiring resistance of the secondary battery, while keeping the battery voltage of the secondary battery equal to or lower than the predetermined rating voltage.

Description

本発明は充電制御回路及び方法に関し、特に、二次電池を定電流及び定電圧充電するための充電制御回路及び方法、並びに充電装置に関する。   The present invention relates to a charge control circuit and method, and more particularly, to a charge control circuit and method for charging a secondary battery with constant current and constant voltage, and a charging device.

近年、モバイル電子機器の普及により、二次電池の充電時間短縮が大きな課題となっている。リチウムイオン電池等で構成される二次電池の充電は、電池電圧を定格以下に保つために、定電流及び定電圧の併用で行われるのが一般的である。この充電方法によれば、充電開始から二次電池の電圧が所定のしきい値電圧に達するまでは定電流制御電流による定電流充電が行われ、しきい値電圧に達した後は、定電圧制御電圧で定電圧充電が行われて満充電に達することが既に知られている。この「しきい値電圧」は二次電池の満充電電圧に等しく、二次電池の定格電圧によって決まることが一般的である。電池に定格を越える電圧を印加すると劣化を加速させる原因となる。   In recent years, with the widespread use of mobile electronic devices, shortening the charging time of secondary batteries has become a major issue. Charging of a secondary battery composed of a lithium ion battery or the like is generally performed using a combination of a constant current and a constant voltage in order to keep the battery voltage below the rating. According to this charging method, constant current charging with constant current control current is performed from the start of charging until the voltage of the secondary battery reaches a predetermined threshold voltage, and after reaching the threshold voltage, the constant voltage It is already known that a constant voltage charge is performed with a control voltage to reach a full charge. This “threshold voltage” is equal to the fully charged voltage of the secondary battery and is generally determined by the rated voltage of the secondary battery. If a voltage exceeding the rating is applied to the battery, it will cause deterioration.

このような一般的な定電流及び定電圧方法においては、定電流充電は、比較的短時間(例えば、1時間)で終了する(充電率90%)。ところが、電池電圧がしきい値電圧Vthを上回って定電圧充電に変わり、電池が満充電状態に至るまでは、定電流充電に要する時間の何倍もの時間(例えば、5時間)を要する。これは、電池電圧が満充電電圧に近づくと、定電圧制御の電圧と電池電圧との差及び二次電池の内部抵抗によって二次電池へ流れる充電電流が制限され、充電率を僅かに上昇させるのに長時間を要するようになるからである。従って、一般的な定電流と定電圧を併用する充電方法には、二次電池の電圧が満充電電圧になるまでに長い時間を要するという問題があった。 In such a general constant current and constant voltage method, the constant current charging is completed in a relatively short time (for example, 1 hour) (charging rate 90%). However, it takes many times (for example, 5 hours) the time required for constant current charging until the battery voltage exceeds the threshold voltage Vth to change to constant voltage charging and the battery reaches a fully charged state. This is because when the battery voltage approaches the full charge voltage, the charging current flowing to the secondary battery is limited by the difference between the voltage of the constant voltage control and the battery voltage and the internal resistance of the secondary battery, and the charging rate is slightly increased. This is because it takes a long time. Therefore, the general charging method using a constant current and a constant voltage has a problem that it takes a long time for the voltage of the secondary battery to reach a fully charged voltage.

特許文献1には、充電時間を短縮する目的で、定電流充電によって電池電圧がしきい値を越えた後も、決められた一定時間の定電流充電を行い、定電圧充電の時間を短縮する構成が開示されている。しかし、定電圧充電の方法としては従来方法と同等に時間がかかるという問題は解決できていない。また、この方法では、二次電池のキャパシタのばらつきが大きい時や電池の劣化を考慮して上記充電時間を設定したとき、十分に充電時間を短縮できないという問題は解決できていない。   In Patent Document 1, for the purpose of shortening the charging time, even after the battery voltage exceeds a threshold value due to constant current charging, constant current charging is performed for a fixed time period to reduce the time for constant voltage charging. A configuration is disclosed. However, the problem that the constant voltage charging method takes time as long as the conventional method has not been solved. In addition, this method cannot solve the problem that the charging time cannot be sufficiently shortened when the variation of the capacitor of the secondary battery is large or when the charging time is set in consideration of the deterioration of the battery.

本発明の目的は以上の問題点を解決し、二次電池の電池電圧を定格電圧以下に保ちつつ、定電圧充電を高速に行うことができ、これにより、全体の充電時間を短縮することができる充電制御回路を提供することにある。   The object of the present invention is to solve the above-mentioned problems and to perform constant voltage charging at high speed while keeping the battery voltage of the secondary battery below the rated voltage, thereby reducing the overall charging time. An object of the present invention is to provide a charge control circuit that can be used.

本発明に係る充電制御回路は、直流電源から二次電池に、定電流充電回路による定電流充電、もしくは定電圧充電回路による定電圧充電のいずれかで充電制御する充電制御回路であって、
定電流充電と定電圧充電を切り替えるしきい値電圧を出力するしきい値電圧生成回路と、
上記しきい値電圧と二次電池の陽極電圧を比較して、その比較結果から定電流充電と定電圧充電を切り替える充電方法切り替え回路と、
上記二次電池に充電するときの充電電流に基づいて上記しきい値電圧を調整するしきい値電圧調整回路とを備え、
上記しきい値電圧調整回路は、上記二次電池の電池電圧を所定の定格電圧以下に保持しつつ、上記しきい値電圧と定電圧充電回路の出力電圧をそれぞれ、上記充電電流から二次電池の内部抵抗及び配線抵抗による電圧降下に換算してなる電圧分上昇させるように上記しきい値電圧を調整することを特徴とする。
A charge control circuit according to the present invention is a charge control circuit that performs charge control from a DC power source to a secondary battery by either constant current charging by a constant current charging circuit or constant voltage charging by a constant voltage charging circuit,
A threshold voltage generation circuit that outputs a threshold voltage for switching between constant current charging and constant voltage charging;
A charging method switching circuit that compares the threshold voltage and the anode voltage of the secondary battery, and switches between constant current charging and constant voltage charging from the comparison result;
A threshold voltage adjustment circuit for adjusting the threshold voltage based on a charging current when charging the secondary battery,
The threshold voltage adjustment circuit maintains the battery voltage of the secondary battery at a predetermined rated voltage or less, and converts the threshold voltage and the output voltage of the constant voltage charging circuit from the charging current to the secondary battery, respectively. The threshold voltage is adjusted so as to increase by a voltage converted into a voltage drop due to the internal resistance and wiring resistance.

従って、本発明に係る充電制御回路によれば、二次電池の電池電圧を定格電圧以下に保ちつつ、定電圧充電を高速に行うことにより、全体の充電時間を短縮することができる。また、二次電池の容量値のばらつきと劣化による低下に関係なく、充電時間を短縮することができる。   Therefore, according to the charge control circuit of the present invention, the entire charging time can be shortened by performing constant voltage charging at high speed while keeping the battery voltage of the secondary battery below the rated voltage. In addition, the charging time can be shortened regardless of variations in capacity values of secondary batteries and a decrease due to deterioration.

本発明の一実施形態に係る充電制御回路を含む充電回路の構成を示すブロック図である。It is a block diagram which shows the structure of the charging circuit containing the charge control circuit which concerns on one Embodiment of this invention. 図1の充電制御回路の一部の回路の詳細構成を示す回路図である。FIG. 2 is a circuit diagram showing a detailed configuration of a part of the charge control circuit of FIG. 1. 図1の二次電池20及び保護回路90の等価回路を示す回路図である。FIG. 2 is a circuit diagram showing an equivalent circuit of the secondary battery 20 and the protection circuit 90 of FIG. 1. 比較例、特許文献2及び実施形態に係る充電制御回路による充電時の各電圧のタイミングチャートである。It is a timing chart of each voltage at the time of charge by a comparative example, patent documents 2, and the charge control circuit concerning an embodiment. 実施形態において充電時に二次電池20に供給される電流Icharge及び電圧Vbat_plusのタイミングチャートである。4 is a timing chart of a current Icharge and a voltage Vbat_plus supplied to the secondary battery 20 during charging in the embodiment.

以下、本発明に係る実施形態について図面を参照して説明する。なお、以下の各実施形態において、同様の構成要素については同一の符号を付している。   Hereinafter, embodiments according to the present invention will be described with reference to the drawings. In addition, in each following embodiment, the same code | symbol is attached | subjected about the same component.

図3は一般的な二次電池20及び保護回路90の等価回路を示す回路図である。   FIG. 3 is a circuit diagram showing an equivalent circuit of the general secondary battery 20 and the protection circuit 90.

一般的に二次電池を搭載している電子機器には、保護回路90が二次電池20と直列接続で搭載されている。図3に示すように、二次電池20の等価回路はキャパシタCbatと抵抗Rbatで構成され、保護回路90の等価回路は抵抗Rdevで構成される。すなわち、当該回路の内部抵抗は、主に二次電池20の内部抵抗Rbat(150mΩ〜200mΩ程度)と、保護回路90の抵抗Rdev(50mΩ〜100mΩ程度)を含む。また、定格電圧については、図3における二次電池20の両端電圧(以下、電池電圧という。)Vbatを定格電圧以下に保つ必要がある。満充電については、図3における電圧Vbat_fullを満充電電圧まで上げた状態を指す。また、通常しきい値電圧Vthは図3における電圧Vbat_plusと比較される。 In general, a protection circuit 90 is mounted in series with the secondary battery 20 in an electronic device in which the secondary battery is mounted. As shown in FIG. 3, the equivalent circuit of the secondary battery 20 includes a capacitor C bat and a resistor R bat , and the equivalent circuit of the protection circuit 90 includes a resistor R dev . That is, the internal resistance of the circuit mainly includes the internal resistance R bat (about 150 mΩ to about 200 mΩ) of the secondary battery 20 and the resistance R dev (about 50 mΩ to about 100 mΩ) of the protection circuit 90. As for the rated voltage, it is necessary to keep the voltage V bat across the secondary battery 20 in FIG. 3 (hereinafter referred to as the battery voltage) V bat below the rated voltage. The full charge indicates a state where the voltage V bat — full in FIG. 3 is increased to the full charge voltage. Further, the normal threshold voltage Vth is compared with the voltage Vbat_plus in FIG.

上述した問題に対して、特許文献1では、定電圧充電に切り替わるしきい値電圧Vthを、保護回路90の抵抗Rdevによる電圧降下による電圧Vdev、すなわち、充電電流Icharge×Rdev分は補正できることに着目している。つまり、外部電圧Vbat_plus=Vth+Icharge×Rdevになるまでは、定電流充電が可能というアイデアである。そのために、外部電圧Vbat_plusをモニタし、定電流充電によって、外部電圧Vbat_plusがしきい値電圧Vthを越えた後も、予め決められた一定の充電時間tの定電流充電を行い、定電圧充電の時間を短縮するという方法を考案している。また、配線抵抗等その他にも補正できる抵抗はあるが、ここでは簡単のため抵抗Rdevに含まれるものとして説明を割愛する。 Against above-mentioned problems, Patent Document 1, the voltage V dev by the threshold voltage V th switched to constant voltage charging, the voltage drop due to the resistance R dev protection circuit 90, i.e., the charging current I charge × R dev min Is focused on being able to correct. That is, the idea is that constant current charging is possible until the external voltage V batplus = V th + I charge × R dev . For this purpose, the external voltage V bat_plus is monitored, and after the external voltage V bat_plus exceeds the threshold voltage V th by constant current charging, constant current charging is performed for a predetermined constant charging time t i . A method of shortening the constant voltage charging time has been devised. In addition, although there are other resistances that can be corrected, such as wiring resistance, for the sake of simplicity, the description is omitted here as being included in the resistance R dev .

この方法では、定電流充電時間が長くなった分定電圧充電が短くなるので、全体の充電時間は短くなるが、定電圧充電の方法としては従来方法と速さは変わらないという問題は解決できていない。   This method shortens the constant voltage charge as the constant current charge time becomes longer, so the overall charge time is shortened, but the problem that the speed of the constant voltage charge is not different from the conventional method can be solved. Not.

また、この方法を実施するためには、保護回路90の電圧Vdevを補正するために、保護回路90の抵抗Rdevと二次電池20の静電容量Cbatのそれぞれの製品仕様を用いて、充電時間tを予め計算しておく必要がある。充電時間tは、定電流充電時に電池電圧を定格電圧以下に保つことを優先すれば、保護回路90のばらつきと二次電池20のばらつき及び使用による劣化に起因した容量低下を考慮して、最小値に設定しなければならない。そのため、多くのケースで十分に充電時間を短縮できないという問題は解決できていない。以下に、充電時間tと補正できる電圧の計算例を示す。 In order to implement this method, the product specifications of the resistance R dev of the protection circuit 90 and the capacitance C bat of the secondary battery 20 are used to correct the voltage V dev of the protection circuit 90. The charging time t i needs to be calculated in advance. The charging time t i, if priority is given to keep the battery voltage below the rated voltage during constant current charging, taking into account the volume reduction caused by deterioration due to variation and the use of the variation and the secondary battery 20 of the protection circuit 90, Must be set to the minimum value. Therefore, the problem that the charging time cannot be sufficiently shortened in many cases has not been solved. The following is a calculation example of the voltage can be corrected with the charging time t i.

上述のように、保護回路90の両端電圧Vdevは次式で表される。 As described above, the voltage V dev across the protection circuit 90 is expressed by the following equation.

dev=Rdev・Icharge (1) V dev = R dev · I charge (1)

ここで、電池電圧Vbatがしきい値電圧Vthに達している状態から、さらに充電する電荷をΔQとし、定電流充電時間をtとすると、電荷ΔQは次式で表される。 Here, the state where the battery voltage V bat reaches the threshold voltage V th, further and ΔQ charging to charge, when the constant current charging time is t i, charge ΔQ can be expressed by the following equation.

Figure 2015204705
Figure 2015204705

ここで、充電電流Ichargeは一定値なので次式を得る。 Here, since the charging current Icharge is a constant value, the following equation is obtained.

batΔV=Icharge・t (3) C bat ΔV = I charge · t i (3)

従って、次式を得る。   Therefore, the following equation is obtained.

Figure 2015204705
Figure 2015204705

従って、式(1)及び式(4)から次式を得る。   Therefore, the following equation is obtained from the equations (1) and (4).

=Cbatdev (5) t i = C bat R dev (5)

つまり、上記式(4)の通り、定電流充電時間tは二次電池20のキャパシタCbatに依存していることが分かる。 That is, it can be seen that the constant current charging time t i depends on the capacitor C bat of the secondary battery 20 as in the above equation (4).

これに対して、本発明の一実施形態では、簡易な構成の回路を付加するだけで、電池に印加される電圧を定格電圧以下に保ちつつ、従来より高速に定電圧充電を行うことができ、これにより、全体の充電時間を短縮できる充電制御回路を提供する。   On the other hand, in one embodiment of the present invention, it is possible to perform constant voltage charging at a higher speed than in the past while keeping the voltage applied to the battery below the rated voltage by simply adding a circuit with a simple configuration. Thus, a charge control circuit capable of shortening the entire charging time is provided.

本発明の一実施形態に係る充電制御回路は、直流電源10からの直流電圧又は直流電圧を用いて二次電池20に充電するための充電制御回路である。充電制御回路は、定電流充電回路30と、定電圧充電回路40と、充電方法切り替え回路60と、しきい値電圧生成回路50と、しきい値電圧調整回路80と、充電電流検出回路70とを備えて構成される。ここで、従来技術に係る定電流充電及び定電圧充電を併用した充電制御回路において、特に、定電圧充電回路40はしきい値電圧Vthと同じ電圧を出力するように構成する。さらに、図3における抵抗Rdevを既知のものとする。そして、充電電流Ichargeを、電圧Vdev(=Rdev×Icharge)に換算する充電電流検出回路70と、予め設定された定電流充電から定電圧充電に切り替えるしきい値電圧Vthに対して電圧Vdevを加算するしきい値電圧生成回路50を付加する。これにより、しきい値電圧Vth、すなわち、Vbat_plus=Vth+Vdevを境に定電流制御と定電圧制御が切り替わる。この構成であれば、定電流充電時間を延長し、定電圧充電時間を短縮できることが分かる。さらに、定電圧充電に移行した後も、定電圧充電回路はしきい値電圧と同電位すなわち、Vth+Vdevを出力するため、従来方法よりも高い電圧が印加される状態になり、高速に充電できる。これらの時、常に電池電圧はVbat≦Vbat_plus−Rdev×Ichargeで制御されるため、定格電圧以下を保たれている。 The charge control circuit according to an embodiment of the present invention is a charge control circuit for charging the secondary battery 20 using a DC voltage or a DC voltage from the DC power supply 10. The charge control circuit includes a constant current charging circuit 30, a constant voltage charging circuit 40, a charging method switching circuit 60, a threshold voltage generating circuit 50, a threshold voltage adjusting circuit 80, and a charging current detecting circuit 70. It is configured with. Here, in the charge control circuit using both constant current charging and constant voltage charging according to the prior art, in particular, the constant voltage charging circuit 40 is configured to output the same voltage as the threshold voltage Vth . Further, the resistance R dev in FIG. 3 is assumed to be known. Then, a charging current detection circuit 70 that converts the charging current I charge into a voltage V dev (= R dev × I charge ), and a threshold voltage V th that switches from preset constant current charging to constant voltage charging. Then, a threshold voltage generation circuit 50 for adding the voltage V dev is added. As a result, the constant current control and the constant voltage control are switched at the threshold voltage V th , that is, V bat_plus = V th + V dev . With this configuration, it can be seen that the constant current charging time can be extended and the constant voltage charging time can be shortened. In addition, even after shifting to constant voltage charging, the constant voltage charging circuit outputs the same potential as the threshold voltage, that is, V th + V dev , so that a higher voltage than in the conventional method is applied, and at high speed. Can be charged. At these times, since the battery voltage is always controlled by V bat ≦ V bat — plus −R dev × I charge , the battery voltage is kept below the rated voltage.

図4は比較例、特許文献2及び実施形態に係る充電制御回路による充電時の各電圧のタイミングチャートである。図4では、特に、これらの場合における充電電流カーブと本実施形態の二次電池20の陽極電圧のカーブを示す。本実施形態に係る充電制御回路では、比較例と比較して、(Tc2−Tc1)区間だけ定電流充電を延長し、時刻Tc2から定電圧充電時間を開始する。さらに、時刻Tc2から時刻Tv1(満充電)までの間、定電圧充電回路40の出力電圧を(Vth+Vdev)とすることで、一般的な方法や特許文献1よりも(Tv2−Tv1)区間だけ、高速な定電圧充電が可能となっている。上記に加えて、この構成であれば、補正電圧の計算に電池容量を用いる必要がない。よって、電池の容量のばらつきや劣化による低下に関係なく、充電時間を短縮できる。 FIG. 4 is a timing chart of each voltage during charging by the charge control circuit according to the comparative example, Patent Document 2, and the embodiment. FIG. 4 shows in particular the charging current curve and the anode voltage curve of the secondary battery 20 of the present embodiment in these cases. In the charge control circuit according to the present embodiment, compared to the comparative example, the constant current charging is extended only for the interval (Tc2-Tc1), and the constant voltage charging time is started from time Tc2. Furthermore, by setting the output voltage of the constant voltage charging circuit 40 to (V th + V dev ) from time Tc2 to time Tv1 (full charge), the general method and Patent Document 1 (Tv2-Tv1) High-speed constant voltage charging is possible only in the section. In addition to the above, with this configuration, it is not necessary to use the battery capacity for calculating the correction voltage. Therefore, the charging time can be shortened regardless of the battery capacity variation and the decrease due to deterioration.

本発明の一実施形態について、以下に説明する。本実施形態は、定電流充電及び定電圧充電を併用して充電制御する充電制御回路において、定電流制御から定電圧制御に切り替える制御に際して充電中に当該切り替えるしきい値電圧及び定電圧充電の出力電圧に、充電電流×電池等の内部抵抗による電圧降下分を加算する。   One embodiment of the present invention will be described below. In this embodiment, in the charge control circuit that performs charge control using both constant current charge and constant voltage charge, the threshold voltage and the constant voltage charge output that are switched during the charge when the control is switched from the constant current control to the constant voltage control. The voltage drop is added to the voltage due to the charging current × the internal resistance of the battery or the like.

図1は本発明の一実施形態に係る充電制御回路を含む充電回路の構成を示すブロック図である。また、図2は図1の充電制御回路の一部の回路の詳細構成を示す回路図である。   FIG. 1 is a block diagram showing a configuration of a charging circuit including a charging control circuit according to an embodiment of the present invention. FIG. 2 is a circuit diagram showing a detailed configuration of a part of the charge control circuit of FIG.

図1において、二次電池20と、保護回路90と、充電電流検出回路70とが直列に接続され、充電電流検出回路70は充電電流Ichargeを検出して検出結果をしきい値電圧調整回路80に出力する。しきい値電圧調整回路80は検出された充電電流Ichargeに基づいて、しきい値電圧生成回路50で生成する出力電圧Vcompareが充電電流Ichargeに対応して比例するように調整する。一方、定電流充電回路30は直流電源10からの直流電力をDC/DC変換して、定電流充電で二次電池20を充電する。また、定電圧充電回路40は直流電源10からの直流電力をDC/DC変換して、定電圧充電で二次電池20を充電する。充電方法切り替え回路60は、しきい値電圧生成回路50の出力電圧Vcompareに基づいて、動作切替信号SC,SVを用いて以下のいずれかとなるように定電流充電回路30及び定電圧充電回路40を制御する。
(1)定電流充電回路30及び定電圧充電回路40の動作をともにオフとする。
(2)定電流充電回路30の動作をオンし、定電圧充電回路40の動作をオフする。
(3)定電流充電回路30の動作をオフし、定電圧充電回路40の動作をオンする。
ここで、充電方法切り替え回路60は、原則として二次電池20の陽極電圧Vbat_plusがしきい値電圧生成回路50の出力電圧Vcompareになれば、定電流充電回路30による定電流充電から、定電圧充電回路40による定電圧充電に切り替えるように制御する。
In FIG. 1, a secondary battery 20, a protection circuit 90, and a charging current detection circuit 70 are connected in series. The charging current detection circuit 70 detects the charging current I charge and displays the detection result as a threshold voltage adjustment circuit. Output to 80. Based on the detected charging current Icharge , the threshold voltage adjusting circuit 80 adjusts the output voltage Vcompare generated by the threshold voltage generating circuit 50 in proportion to the charging current Icharge . On the other hand, the constant current charging circuit 30 DC / DC converts the DC power from the DC power supply 10 and charges the secondary battery 20 by constant current charging. The constant voltage charging circuit 40 DC / DC converts DC power from the DC power source 10 and charges the secondary battery 20 by constant voltage charging. The charging method switching circuit 60 uses the operation switching signals SC and SV based on the output voltage V compare of the threshold voltage generation circuit 50 so as to become one of the following, the constant current charging circuit 30 and the constant voltage charging circuit 40. To control.
(1) The operations of the constant current charging circuit 30 and the constant voltage charging circuit 40 are both turned off.
(2) The operation of the constant current charging circuit 30 is turned on, and the operation of the constant voltage charging circuit 40 is turned off.
(3) The operation of the constant current charging circuit 30 is turned off, and the operation of the constant voltage charging circuit 40 is turned on.
Here, in principle, the charging method switching circuit 60 starts from the constant current charging by the constant current charging circuit 30 when the anode voltage V bat — plus of the secondary battery 20 becomes the output voltage V compare of the threshold voltage generating circuit 50. Control is performed to switch to constant voltage charging by the voltage charging circuit 40.

次いで、図1の充電制御回路の動作について以下説明する。   Next, the operation of the charge control circuit of FIG. 1 will be described below.

充電方法切り替え回路60は、二次電池20の陽極電圧Vbat_plusとしきい値電圧生成回路50の出力電圧Vcompareとを比較し、Vbat_plus<Vcompareのときは定電圧充電回路40を停止させており、定電流充電回路30で充電する。ここで、Vbat_plus≧Vcompareになると定電圧充電回路40で充電し定電流充電回路30を停止させる。
(2)しきい値電圧生成回路50の出力電圧Vcompareは、予め所定のしきい値電圧Vthに設定されている。
(3)二次電池20の陽極電圧Vbat_plusは、図3に示すように二次電池20自身の電圧Vbatと、定格電圧に考慮する必要のない内部抵抗Rbat×充電電流Ichargeの電圧降下分Vdevを含んでいる。充電中は充電電流検出回路70で充電電流Ichargeを検出し、しきい値電圧調整回路80で充電電流Ichargeに比例する電圧Vdevに換算して、出力電圧VcompareをVcompare=Vth+Vdevまで上昇させる。これにより、二次電池20自身の電圧VbatがVbat=Vthになるまで、その期間はVbat_plus<Vcompareであるので、充電方法切り替え回路60は定電流充電を選択して充電を継続する。
(4)二次電池20の陽極電圧Vbat_plusがしきい値電圧生成回路50の出力電圧Vcompareを上回った時点で、充電方法切り替え回路60の動作切替信号SV,SCによって、定電圧充電回路40が動作し、定電流充電回路30が停止する。このとき、定電圧充電回路40の出力電圧はしきい値電圧生成回路50の出力電圧Vcompareと同電位、すなわち、Vth+Vdevとなり、従来方法と比較して高い電圧を印加されるので高速に充電ができる。要するに、充電中に定電流制御から定電圧制御に切り替えるしきい値電圧Vth、及び、定電圧充電の出力電圧にそれぞれ、充電電流Icharge×二次電池20等の内部抵抗による電圧降下分を加算することを特徴としている。これにより、二次電池20に対してその定格電圧まで充電制御できる。
Charging method switching circuit 60 compares the output voltage V The compare the anode voltage V Bat_plus and the threshold voltage generation circuit 50 of the rechargeable battery 20, when the V bat_plus <V compare to halt the constant voltage charging circuit 40 The constant current charging circuit 30 charges the battery. Here, when V bat — plus ≧ V compare , the constant voltage charging circuit 40 charges and the constant current charging circuit 30 is stopped.
(2) The output voltage V compare of the threshold voltage generation circuit 50 is set in advance to a predetermined threshold voltage Vth .
(3) The anode voltage V bat_plus of the secondary battery 20 is equal to the voltage V bat of the secondary battery 20 itself and the internal resistance R bat × charge current I charge that does not need to be considered in the rated voltage as shown in FIG. It includes the drop V dev . During charging detects the charging current I charge by the charging current detecting circuit 70, in terms of voltage V dev proportional to the charging current I charge by the threshold voltage adjusting circuit 80, the output voltage V compare V compare = V th Raise to + V dev . As a result, until the voltage V bat of the secondary battery 20 itself becomes V bat = V th , since V bat_plus <V compare during that period, the charging method switching circuit 60 selects constant current charging and continues charging. To do.
(4) When the anode voltage V bat_plus of the secondary battery 20 exceeds the output voltage V compare of the threshold voltage generation circuit 50, the constant voltage charging circuit 40 is operated by the operation switching signals SV and SC of the charging method switching circuit 60. Operates and the constant current charging circuit 30 stops. At this time, the output voltage of the constant voltage charging circuit 40 becomes the same potential as the output voltage V compare of the threshold voltage generation circuit 50, that is, V th + V dev , and a higher voltage is applied compared to the conventional method, so that the high speed is achieved. Can be charged. In short, the threshold voltage V th for switching from constant current control to constant voltage control during charging and the output voltage of constant voltage charging are respectively the charging current I charge × the voltage drop due to the internal resistance of the secondary battery 20 or the like. It is characterized by adding. As a result, the secondary battery 20 can be charged up to its rated voltage.

さらに、本発明の実施形態に係る実施例について以下に説明する。   Furthermore, the Example which concerns on embodiment of this invention is demonstrated below.

図1において、直流電源10は図1の各回路に直流電源を供給し、ここで、その電圧を5.0[V]とする。   In FIG. 1, a DC power supply 10 supplies a DC power supply to each circuit of FIG. 1, where the voltage is set to 5.0 [V].

また、二次電池20は図3の等価回路を有し、電圧Vbatを定格電圧以下に保つ必要がある。また、満充電状態とは電圧Vbat_fullが満充電電圧まで上がった状態を指す。ここで、二次電池20への充電中には二次電池20に充電電流Ichargeが流れる。二次電池20は例えばリチウムイオン電池とし、満充電電圧及び定格電圧共に4.2[V]とする。二次電池20は内部抵抗として図3に示す抵抗Rbatと抵抗Rdevを持つものとする。各抵抗値はそれぞれ、Rbat=100[mΩ]、Rdev=100[mΩ]とする。 Further, the secondary battery 20 has the equivalent circuit of FIG. 3, and the voltage V bat needs to be kept below the rated voltage. The fully charged state refers to a state in which the voltage V bat_full has increased to the fully charged voltage. Here, during charging of the secondary battery 20, a charging current I charge flows through the secondary battery 20. The secondary battery 20 is, for example, a lithium ion battery, and the full charge voltage and the rated voltage are both 4.2 [V]. It is assumed that the secondary battery 20 has a resistance R bat and a resistance R dev shown in FIG. 3 as internal resistance. The respective resistance values are R bat = 100 [mΩ] and R dev = 100 [mΩ].

定電流充電回路30の出力端子は二次電池20の陽極に接続され、動作中は直流電源10から定電流を生成して出力する。充電中は、充電方法切り替え回路60によって、定電圧充電回路40が停止しているときは動作しており、定電圧充電回路40が動作すると停止する。ここで、定電流充電の電流値を2[A]とする。   The output terminal of the constant current charging circuit 30 is connected to the anode of the secondary battery 20, and generates and outputs a constant current from the DC power supply 10 during operation. During charging, the charging method switching circuit 60 operates when the constant voltage charging circuit 40 is stopped, and stops when the constant voltage charging circuit 40 operates. Here, the current value of constant current charging is 2 [A].

定電圧充電回路40の出力端子は二次電池20の陽極に接続され、動作中は直流電源20から定電圧を生成して出力する。充電中は、充電方法切り替え回路60の動作切替信号SVによって動作し又は停止する。定電圧充電電圧はしきい値電圧生成回路50に接続され、しきい値電圧生成回路50の出力電圧Vcompareによって決定される。 The output terminal of the constant voltage charging circuit 40 is connected to the anode of the secondary battery 20 and generates and outputs a constant voltage from the DC power supply 20 during operation. During charging, the battery is operated or stopped by the operation switching signal SV of the charging method switching circuit 60. The constant voltage charging voltage is connected to the threshold voltage generation circuit 50 and is determined by the output voltage V compare of the threshold voltage generation circuit 50.

しきい値電圧生成回路50はしきい値電圧調整回路80に接続され、充電方法切り替え回路60及び定電圧充電回路40に比較電圧Vcompareを出力する。しきい値電圧生成回路50の出力電圧Vcompareは予めしきい値電圧Vthに設定されているが、しきい値電圧調整回路80の制御信号を受けて、出力電圧Vcompareを生成する。ここで、しきい値電圧Vth=4.2[V]とする。 The threshold voltage generation circuit 50 is connected to the threshold voltage adjustment circuit 80 and outputs a comparison voltage V compare to the charging method switching circuit 60 and the constant voltage charging circuit 40. Although the output voltage V compare of the threshold voltage generation circuit 50 is set to the threshold voltage V th in advance, it receives the control signal of the threshold voltage adjustment circuit 80 and generates the output voltage V compare . Here, the threshold voltage V th is set to 4.2 [V].

しきい値電圧生成回路50は、等価回路の図2に示すようにDAコンバータで構成され、出力抵抗Rdacoutを持つものとする。しきい値電圧生成回路50の接続点52はしきい値電圧調整回路80のMOSトランジスタQ3のドレインに接続される。当該DAコンバータはしきい値電圧調整回路80から接続点52を介して、しきい値電圧調整電流Iadjustを流し込まれ、出力電圧VcompareをVcompare=Vth+Rdacout×Iadjustとして定電圧充電回路40及び充電方法切り替え回路60に出力する。ここで、Rdacout=100[kΩ]とする。 As shown in FIG. 2 of the equivalent circuit, the threshold voltage generation circuit 50 is configured by a DA converter and has an output resistance R dacout . The connection point 52 of the threshold voltage generation circuit 50 is connected to the drain of the MOS transistor Q3 of the threshold voltage adjustment circuit 80. The DA converter via a connection point 52 from the threshold voltage adjustment circuit 80, poured the threshold voltage adjustment current I adjust, constant-voltage charging the output voltage V The compare as V compare = V th + R dacout × I adjust Output to the circuit 40 and the charging method switching circuit 60. Here, R dacout = 100 [kΩ].

充電方法切り替え回路60は比較器を備えて構成される。当該比較器の1対の入力端子には、二次電池20の陽極及びしきい値電圧生成回路50の出力端子が接続され、二次電池の陽極の電圧Vbat_plusを出力電圧Vcompareと比較して、上述のように、動作切替信号SVを定電圧充電回路40に出力する。定電圧充電回路40は動作切替信号SVがハイレベルのとき動作、ローレベルのとき停止とする。 The charging method switching circuit 60 includes a comparator. The pair of input terminals of the comparator is connected to the anode of the secondary battery 20 and the output terminal of the threshold voltage generation circuit 50, and compares the voltage V bat_plus of the anode of the secondary battery with the output voltage V compare. Thus, the operation switching signal SV is output to the constant voltage charging circuit 40 as described above. The constant voltage charging circuit 40 operates when the operation switching signal SV is at a high level, and stops when the operation switching signal SV is at a low level.

充電電流検出回路70は二次電池20に接続され、充電電流Ichargeを検出し、その電流値に比例する出力電圧Vsenseをしきい値電圧調整回路80に出力する。充電電流検出回路70は、その等価回路の図2に示すように、抵抗R11で構成される。ここで、抵抗R11の一端は充電電流検出回路70の接続点71に接続された後、保護回路90を介して二次電池20の負極に接続される。抵抗R11の他端は接地される。抵抗R11には充電電流と同量のIchargeが流れる。また、接続点71はしきい値電圧調整回路80の抵抗R2の一端に接続され、検出電圧Vsense(=Icharge×R11)が出力される。ここで、抵抗R11の抵抗値を100[mΩ]とする。 The charging current detection circuit 70 is connected to the secondary battery 20, detects the charging current I charge, and outputs an output voltage V sense proportional to the current value to the threshold voltage adjustment circuit 80. The charging current detection circuit 70 includes a resistor R11 as shown in FIG. Here, one end of the resistor R <b> 11 is connected to the connection point 71 of the charging current detection circuit 70, and then connected to the negative electrode of the secondary battery 20 through the protection circuit 90. The other end of the resistor R11 is grounded. The same amount of I charge as the charging current flows through the resistor R11. Further, the connection point 71 is connected to one end of the resistor R2 of the threshold voltage adjustment circuit 80, and the detection voltage Vsense (= I charge × R11) is output. Here, the resistance value of the resistor R11 is set to 100 [mΩ].

しきい値電圧調整回路80は、図2に示すように、基準電圧源81と、4個の抵抗R1〜R4と、オペアンプOP1と、PチャネルMOSトランジスタQ1〜Q3とを備えて構成される。ここで、しきい値電圧調整回路80への入力電圧は充電電流検出回路70からの検出電圧Vsenseであり、しきい値電圧調整回路80からの出力電流はIadjustであり、しきい値電圧生成回路50に出力される。しきい値電圧調整回路80は検出電圧Vsensを充電電流Ichargeの電流値に換算して、出力電圧Vcompareを電圧降下分(Rdev×Icharge)補正する量を示す信号をしきい値電圧生成回路50に出力する。 As shown in FIG. 2, the threshold voltage adjustment circuit 80 includes a reference voltage source 81, four resistors R1 to R4, an operational amplifier OP1, and P channel MOS transistors Q1 to Q3. Here, the input voltage to the threshold voltage adjustment circuit 80 is the detection voltage V sense from the charging current detection circuit 70, the output current from the threshold voltage adjustment circuit 80 is I adjust , and the threshold voltage It is output to the generation circuit 50. The threshold voltage adjustment circuit 80 converts the detection voltage V sens into a current value of the charging current I charge and outputs a signal indicating an amount for correcting the output voltage V compare by a voltage drop (R dev × I charge) as a threshold. The voltage is output to the voltage generation circuit 50.

充電電流検出回路70からの検出電圧Vsenseは抵抗R2を介してオペアンプOP1の非反転入力端子に印加される。また、しきい値電圧調整回路80の基準電圧源81は基準電圧Vadjustを抵抗R1を介してオペアンプOP1の非反転入力端子に印加するとともに、抵抗R3を介してオペアンプOP1の反転入力端子に印加する。従って、オペアンプOP1の非反転入力端子には基準電圧Vadjustを検出電圧Vsense基準で抵抗R1とR2により分圧してなる分圧電圧Vinpが印加される。一方、オペアンプOP1の反転入力端子には、基準電圧Vadjustを接地電圧基準で抵抗R3とR4で分圧してなる分圧電圧Vinmが印加される。オペアンプOP1の出力端子はMOSトランジスタQ2のゲートに接続され、MOSトランジスタQ2のドレインは抵抗R4を介して接地される。これにより、フィードバック制御で電圧Vinpと電圧Vinmが同電位となるようMOSトランジスタQ2を制御して抵抗R4に動作電流Iopを流し込む。なお、MOSトランジスタQ2の動作電流Iopはそのソースに接続されたMOSトランジスタQ1から供給される。 The detection voltage V sense from the charging current detection circuit 70 is applied to the non-inverting input terminal of the operational amplifier OP1 through the resistor R2. Further, the reference voltage source 81 of the threshold voltage adjusting circuit 80 applies the reference voltage Vadjust to the non-inverting input terminal of the operational amplifier OP1 through the resistor R1 and to the inverting input terminal of the operational amplifier OP1 through the resistor R3. To do. Therefore, the divided voltage V inp obtained by dividing the reference voltage V adjust by the resistors R 1 and R 2 with respect to the detection voltage V sense is applied to the non-inverting input terminal of the operational amplifier OP 1. On the other hand, a divided voltage V inm obtained by dividing the reference voltage V adjust by the resistors R3 and R4 with respect to the ground voltage is applied to the inverting input terminal of the operational amplifier OP1. The output terminal of the operational amplifier OP1 is connected to the gate of the MOS transistor Q2, and the drain of the MOS transistor Q2 is grounded via the resistor R4. As a result, the MOS transistor Q2 is controlled so that the voltage V inp and the voltage V inm have the same potential by feedback control, and the operating current I op is supplied to the resistor R4. The operating current I op of the MOS transistor Q2 is supplied from the MOS transistor Q1 connected to its source.

MOSトランジスタQ1とQ3はカレントミラー回路を構成しており、MOSトランジスタQ3はIop×(Q1とQ3のサイズ比M)の電流をしきい値電圧調整電流Iadjustとしてしきい値電圧生成回路50に出力する。 The MOS transistors Q1 and Q3 constitute a current mirror circuit, and the MOS transistor Q3 uses a current of I op × (size ratio M Q of Q1 and Q3) as a threshold voltage adjustment current Iadjust , and a threshold voltage generation circuit Output to 50.

以上の動作をまとめてIadjustを求める式を以下に示す。但し、この構成ではR1=R3、R2=R4と設定するため、R1=R3=Rtop、R2=R4=Rbottomとする。 A formula for obtaining I adjust by summarizing the above operations is shown below. However, since R1 = R3 and R2 = R4 are set in this configuration, R1 = R3 = R top and R2 = R4 = R bottom are set.

図2から次式を得る。   The following equation is obtained from FIG.

Figure 2015204705
Figure 2015204705

Figure 2015204705
Figure 2015204705

ここで、オペアンプOP1はVinm=Vinpとなるように動作するので次式を得る。 Here, since the operational amplifier OP1 operates so that V inm = V inp , the following equation is obtained.

Figure 2015204705
Figure 2015204705

ここで、
adjust=M×Iopなので次式を得る。
here,
Since I adjust = M Q × I op, the following equation is obtained.

Figure 2015204705
Figure 2015204705

次いで、図2において、二次電池20の抵抗Rdevの値からサイズ比M、及び抵抗R1、R2、R3、R4を決定する必要があるので、以下に決定のための式を示す。ここで、定格電圧に考慮する必要がない電圧Vdevは抵抗Rdevと抵抗R11による電圧降下を指すので、次式を得る。 Next, in FIG. 2, since it is necessary to determine the size ratio M Q and the resistances R1, R2, R3, and R4 from the value of the resistance R dev of the secondary battery 20, an expression for determination is shown below. Here, the voltage V dev that does not need to be taken into consideration for the rated voltage indicates a voltage drop caused by the resistor R dev and the resistor R 11, and thus the following equation is obtained.

dev=(Rdev+R11)×Icharge (9) V dev = (R dev + R11) × I charge (9)

また、
dev=Rdacout×Iadjust (10)
であるので、次式を得る。
Also,
V dev = R dacout × I adjust (10)
Therefore, the following equation is obtained.

Figure 2015204705
Figure 2015204705

ここで、式(8)から次式を得る。

Figure 2015204705
Here, the following equation is obtained from the equation (8).
Figure 2015204705

sense=R11×Icharge
であるので、次式を得る。
V sense = R11 × I charge
Therefore, the following equation is obtained.

Figure 2015204705
Figure 2015204705

上記式を変形して次式を得る。   The above equation is modified to obtain the following equation.

Figure 2015204705
Figure 2015204705

ここで、各変数に上記の抵抗R11及び抵抗Rdacoutの値を代入すると次式を得る。 Here, when the values of the resistor R11 and the resistor Rdacout are substituted for each variable, the following equation is obtained.

Figure 2015204705
Figure 2015204705

式(12)に上記抵抗Rdevの値を代入し、サイズ比M=8とすると、次式を得る。 Substituting the value of the resistor R dev into the equation (12) and setting the size ratio M Q = 8, the following equation is obtained.

Figure 2015204705
Figure 2015204705

式(13)より抵抗Rbottom=300[kΩ]とし、これを式(13)に代入すると、Rtop=900[kΩ]となる。以上より、サイズ比M=8、抵抗R1=R3=900[kΩ]、抵抗R2=R4=300[kΩ]と決定する。 From the equation (13), the resistance R bottom = 300 [kΩ] is substituted into the equation (13), so that R top = 900 [kΩ]. From the above, the size ratio M Q = 8, the resistance R1 = R3 = 900 [kΩ], and the resistance R2 = R4 = 300 [kΩ] are determined.

式(12)より、この方式であれば、抵抗R1〜R4の抵抗値及び、サイズ比Mを可変とすることで、抵抗Rdevの設定を変更できることが分かる。また、上記の一連の計算式より二次電池20の容量を計算にする必要がないことが分かる。そのため、二次電池20は指定のものである必要はない。 From equation (12), if this method, the resistance values of the resistors R1~R4 and, by varying the size ratio M Q, it can be seen that can change the setting of the resistance R dev. Moreover, it turns out that it is not necessary to calculate the capacity | capacitance of the secondary battery 20 from said series of calculation formulas. Therefore, the secondary battery 20 does not need to be specified.

次いで、図1の充電制御回路が二次電池20の充電におけるときの動作について、図2の回路を用いて、図5を参照して説明する。また、各設定値については上記で記載した値を使用する。また、電圧Vbat、電圧Vbat_fullに関しては図3に示すものとする。 Next, an operation when the charge control circuit of FIG. 1 is in charge of the secondary battery 20 will be described with reference to FIG. 5 using the circuit of FIG. For each set value, the value described above is used. The voltage V bat and the voltage V bat_full are shown in FIG.

(S1)Vbat_plus<4.2[V]のときの動作について
(S1−1)定電流充電回路30は二次電池20に対して定電流2[A]の充電を行う。
(S1−2)充電電流検出回路70は、図2から、検出電圧Vsense=R11×Icharge=0.1×2=0.2[V]を出力する。
(S1−3)しきい値電圧調整回路80は式(9)から次式の調整電流Iadjustを出力する。
(S1) Operation when V bat — plus <4.2 [V] (S1-1) The constant current charging circuit 30 charges the secondary battery 20 with a constant current 2 [A].
(S1-2) The charging current detection circuit 70 outputs the detection voltage V sense = R11 × I charge = 0.1 × 2 = 0.2 [V] from FIG.
(S1-3) The threshold voltage adjustment circuit 80 outputs an adjustment current Iadjust of the following equation from the equation (9).

Figure 2015204705
Figure 2015204705

(S1−4)しきい値電圧生成回路50は次式の出力電圧Vcompareを出力する。 (S1-4) The threshold voltage generation circuit 50 outputs an output voltage V compare of the following equation.

compare
=Vth+Iadjust×Rdacout
=4.2+4×10−6×100×10
=4.6[V]
V compare
= V th + I adjust × R dacout
= 4.2 + 4 × 10 −6 × 100 × 10 3
= 4.6 [V]

(S1−5)充電方法切り替え回路60はVbat_plus<Vcompareなので、ローレベルの動作切替信号SVを出力し、定電圧充電回路40は停止している。このとき、Vbat_plus<4.2[V]であり、Vbatは定格電圧以下である。 (S1-5) charging method switching circuit 60 because V bat_plus <V compare, and outputs the operation switching signal SV at a low level, the constant voltage charging circuit 40 is stopped. At this time, V bat_plus <4.2 [V], and V bat is equal to or lower than the rated voltage.

(S2)Vbat_plus≧4.2[V]かつVbat<4.2[V]のときのときの動作について
(S2−1)Vbat_plus≧Vthとなるが、(S1−4)のように、しきい値電圧生成回路50の出力電圧Vcompareは4.6[V]であるため、定電流充電を継続することができる。
(S2−2)上記の(S1−1)〜(S1−4)と同様に動作する。
(S2−3)このとき、二次電池20の陽極電圧Vbat_plus≧4.2[V]であり、定格電圧を上回っている。しかし、二次電池20自身の電池電圧Vbatは、次式で表される。
(S2) Operation when V bat — plus ≧ 4.2 [V] and V bat <4.2 [V] (S2-1) V bat — plus ≧ V th , but as in (S1-4) In addition, since the output voltage V compare of the threshold voltage generation circuit 50 is 4.6 [V], constant current charging can be continued.
(S2-2) Operates in the same manner as (S1-1) to (S1-4) above.
(S2-3) At this time, the anode voltage V bat — plus ≧ 4.2 [V] of the secondary battery 20 is obtained, which exceeds the rated voltage. However, the battery voltage V bat of the secondary battery 20 itself is expressed by the following equation.

bat
=Vbat_plus−(Rdev+R11)×Icharge
V bat
= V bat_plus- (R dev + R11) × I charge

また、電池電圧Vbat=Vbat_plus−0.4[V]のため、電池電圧Vbatは定格電圧を下回る。そのため、二次電池20の劣化は起こらない。 Further, since the battery voltage V bat = V batplus −0.4 [V], the battery voltage V bat is lower than the rated voltage. Therefore, the secondary battery 20 does not deteriorate.

(S3)Vbat_plus=4.6[V]かつVbat=4.2[V]のときの動作について
(S3−1)定電流充電で、二次電池20の陽極電圧Vbat_plus=4.6[V]となったとき、電池電圧Vbatは次式となる。
bat
=Vbat_plus−(Rdev×R11)×Icharge
=4.6−0.4
=4.2[V]
(S3) Operation when V batplus = 4.6 [V] and V bat = 4.2 [V] (S3-1) The anode voltage V batplus of the secondary battery 20 with constant current charging is 4.6 When [V] is reached, the battery voltage V bat is given by the following equation.
V bat
= V bat_plus - (R dev × R11) × I charge
= 4.6-0.4
= 4.2 [V]

(S3−2)二次電池20の陽極電圧Vbat_plus=4.6[V]を上回った時点で、充電方法切り替え回路60はVbat_plus>Vcompareなので、ハイレベルの動作切替信号SVを出力し、定電圧充電回路40を動作させる。また、ローレベルの動作切替信号SCを出力して定電流充電回路30を停止させる。出力電圧Vcompare=4.6[V]のため定電圧充電回路40は4.6[V]を出力する。この動作によって、二次電池20は定格電圧以下を保ちながら充電を継続できる。 (S3-2) When the anode voltage V batplus of the secondary battery 20 exceeds 4.6 [V], the charging method switching circuit 60 outputs the high-level operation switching signal SV because V bat — plus > V compare. Then, the constant voltage charging circuit 40 is operated. Further, the low-level operation switching signal SC is output to stop the constant current charging circuit 30. Since the output voltage V compare = 4.6 [V], the constant voltage charging circuit 40 outputs 4.6 [V]. By this operation, the secondary battery 20 can continue to be charged while maintaining the voltage below the rated voltage.

(S3−3)この時点で、二次電池20の陽極電圧Vbat_fullは次式で表される。 (S3-3) At this time, the anode voltage V bat — full of the secondary battery 20 is expressed by the following equation.

bat_full
=Vbat−Rbat×Icharge
=4.2−0.1×2
=4.0[V]
V bat_full
= V bat -R bat × I charge
= 4.2-0.1 × 2
= 4.0 [V]

従って、二次電池20は満充電電圧には至っていない。そのため、さらに定電圧充電を行う。   Therefore, the secondary battery 20 has not reached the full charge voltage. Therefore, constant voltage charging is further performed.

(S3−4)定電圧充電時の充電電流Ichargeは次式で表される。 (S3-4) The charging current Icharge during constant voltage charging is expressed by the following equation.

charge
=(Vbat_plus−Vbat_full)/(Rbat+Rdev+R11)
I charge
= (V bat_plus -V bat_full ) / (R bat + R dev + R11)

従って、二次電池20の陽極電圧Vbat_plus=4.6[V]、電池電圧Vbat_full=4.0[V]のときは、定電圧充電回路40は2[A]で充電する。 Therefore, when the anode voltage V bat_plus = 4.6 [V] of the secondary battery 20 and the battery voltage V bat_full = 4.0 [V], the constant voltage charging circuit 40 charges at 2 [A].

(S4)4.0[V]<Vbat_full<4.2[V]のときの動作について
(S4−1)さらに充電を続けて、例えば電池電圧Vbat_full=4.01[V]になると、充電電流Icharge=1.97[A]に減少する。
(S4−2)このとき、充電電流検出回路70は次式の検出電圧Vsenseを出力する。
sense
=R11×Icharge
=0.197[V]
(S4) Operation when 4.0 [V] <V bat_full <4.2 [V] (S4-1) Further charging continues, for example, when battery voltage V bat_full = 4.01 [V] The charging current I charge is reduced to 1.97 [A].
(S4-2) At this time, the charging current detection circuit 70 outputs a detection voltage V sense of the following equation.
V sense
= R11 × I charge
= 0.197 [V]

(S4−3)しきい値電圧調整回路80は式(9)より次式の調整電流Iadjustを出力する。 (S4-3) The threshold voltage adjustment circuit 80 outputs an adjustment current Iadjust according to the following equation from equation (9).

Figure 2015204705
Figure 2015204705

(S4−4)しきい値電圧生成回路50は(S1−4)の式から次式の出力電圧Vcompareを出力する。
compare
=Vth+Iadjust×Rdacout
=4.2+3.94×10−6×100×10
=4.594[V]
(S4-4) The threshold voltage generation circuit 50 outputs an output voltage V compare of the following equation from the equation of (S1-4).
V compare
= V th + I adjust × R dacout
= 4.2 + 3.94 × 10 −6 × 100 × 10 3
= 4.594 [V]

(S4−5)これにより、充電電流Ichargeは、Icharge=1.947[A]まで減少し、電池電圧Vbat=4.2[V]を保つ。
(S4−6)つまり、定電圧充電中は、二次電池20の陽極電圧Vbat_fullが上昇すると、充電電流Ichargeが減少する。それによって、しきい値電圧生成回路50の出力電圧Vcompareが小さくなり、定電圧充電回路40からの出力電圧Vbat_plusが小さくなる。この動作を繰り返し、電池電圧Vbat=4.2[V]を保ちつつ、充電を継続する。この動作により、定格を保持しながら電圧(Vth+Vdev)を電池の陽極に印加して充電を継続できるので、一般的な定電圧充電回路である特許文献1の定電圧充電回路より、高速な充電が可能となっている。
(S4-5) Accordingly, the charging current I charge is reduced to I charge = 1.947 [A], the battery voltage V bat = 4.2 keep [V].
(S4-6) That is, during the constant voltage charging, when the anode voltage V bat_full of the secondary battery 20 increases, the charging current I charge decreases. As a result, the output voltage V compare of the threshold voltage generation circuit 50 is reduced, and the output voltage V bat_plus from the constant voltage charging circuit 40 is reduced. This operation is repeated to continue charging while maintaining the battery voltage V bat = 4.2 [V]. By this operation, the voltage (V th + V dev ) can be applied to the anode of the battery while maintaining the rating, and charging can be continued. Therefore, the operation is faster than the constant voltage charging circuit of Patent Document 1 which is a general constant voltage charging circuit. Charging is possible.

(S5)Vbat_full=4.2[V]のときの動作について
(S5−1)さらに定電圧充電を継続すると、定電圧充電回路40の出力電圧Vbat_plusは次式となる。
(S5) Operation when V batfull = 4.2 [V] (S5-1) When constant voltage charging is further continued, the output voltage V bat — plus of the constant voltage charging circuit 40 is expressed by the following equation.

bat_plus
=Vbat_full
=4.2[V]
V bat_plus
= V bat_full
= 4.2 [V]

従って、充電電流Ichargeは流れなくなり、満充電状態となる。 Accordingly, the charging current Icharge does not flow and the battery is fully charged.

図5は実施形態において充電時に二次電池20に供給される電流Icharge及び電圧Vbat_plusのタイミングチャートである。図5では、二次電池20の陽極電圧Vbat_fullが3Vの状態から充電をスタートし、満充電に至るまで各電圧Vbat_plus、Vbat、Vbat_fullの動きを示す。 FIG. 5 is a timing chart of the current I charge and the voltage V bat_plus supplied to the secondary battery 20 during charging in the embodiment. FIG. 5 shows the behavior of the voltages V bat_plus , V bat , and V bat_full until charging starts when the anode voltage V bat_full of the secondary battery 20 is 3V and reaches full charge.

以上の実施形態においては、補正できる抵抗は保護回路の抵抗Rdeと述べた。しかし、実施例では、サイズ比M、抵抗R1、R2、R3、R4の決定において示した通り、回路の抵抗とトランジスタ比を可変とすることで、補正できる抵抗値には範囲を持たせることができる。 In the above embodiment, the correction can resist said the resistance R de protection circuit. However, in the embodiment, as shown in the determination of the size ratio M Q and the resistances R1, R2, R3, and R4, the resistance value that can be corrected has a range by making the circuit resistance and the transistor ratio variable. Can do.

以上の実施形態においては、充電制御回路について説明したが、本発明はこれに限らず、充電制御回路に例えば直流電源を備えた充電装置に適用してもよい。   In the above embodiment, although the charge control circuit was demonstrated, this invention is not restricted to this, You may apply to the charging device provided with DC power supply, for example in the charge control circuit.

以上説明したように、本実施形態によれば、図1の充電制御回路の構成を有することで、多くの二次電池において、充電時間が短縮できる。また、保護回路90の抵抗値だけでなく、抵抗基板の配線抵抗等の抵抗値も補正することができる。   As described above, according to the present embodiment, the charging time can be shortened in many secondary batteries by having the configuration of the charging control circuit of FIG. Further, not only the resistance value of the protection circuit 90 but also the resistance value such as the wiring resistance of the resistance substrate can be corrected.

なお、本実施形態では、図1の充電制御回路の構成を用いたが、本発明はこれに限らず、少なくとも、充電電流Ichargeを検出して、以下のように構成してもよい。
(1)定電流充電及び定電圧充電の切り替えのしきい値電圧をVdev分上げる。
(2)定電圧充電回路40の出力電圧をVdev分上げる。
(3)上記(1)及び(2)を達成しながら、二次電池20の電圧Vbat_fullは定格電圧以下を保つ。
In the present embodiment, the configuration of the charging control circuit of FIG. 1 is used. However, the present invention is not limited to this, and at least the charging current Icharge may be detected and configured as follows.
(1) The threshold voltage for switching between constant current charging and constant voltage charging is increased by V dev .
(2) Increase the output voltage of the constant voltage charging circuit 40 by V dev .
(3) While achieving the above (1) and (2), the voltage V bat — full of the secondary battery 20 is kept below the rated voltage.

なお、実施例において説明したように、二次電池20の容量は計算に必要ないので考慮する必要がないという特有の効果を有する。   Note that, as described in the embodiment, the capacity of the secondary battery 20 is not necessary for the calculation and thus has a specific effect that it is not necessary to consider.

実施形態のまとめ.
本実施形態の第1の態様に係る充電制御回路は、直流電源から二次電池に、定電流充電回路による定電流充電、もしくは定電圧充電回路による定電圧充電のいずれかで充電制御する充電制御回路であって、
定電流充電と定電圧充電を切り替えるしきい値電圧を出力するしきい値電圧生成回路と、
上記しきい値電圧と二次電池の陽極電圧を比較して、その比較結果から定電流充電と定電圧充電を切り替える充電方法切り替え回路と、
上記二次電池に充電するときの充電電流に基づいて上記しきい値電圧を調整するしきい値電圧調整回路とを備え、
上記しきい値電圧調整回路は、上記二次電池の電池電圧を所定の定格電圧以下に保持しつつ、上記しきい値電圧と定電圧充電回路の出力電圧をそれぞれ、上記充電電流から二次電池の内部抵抗及び配線抵抗による電圧降下に換算してなる電圧分上昇させるように上記しきい値電圧を調整することを特徴とする。
Summary of embodiments.
The charge control circuit according to the first aspect of the present embodiment is a charge control that controls charging from a DC power source to a secondary battery by either constant current charging by a constant current charging circuit or constant voltage charging by a constant voltage charging circuit. A circuit,
A threshold voltage generation circuit that outputs a threshold voltage for switching between constant current charging and constant voltage charging;
A charging method switching circuit that compares the threshold voltage and the anode voltage of the secondary battery, and switches between constant current charging and constant voltage charging from the comparison result;
A threshold voltage adjustment circuit for adjusting the threshold voltage based on a charging current when charging the secondary battery,
The threshold voltage adjustment circuit maintains the battery voltage of the secondary battery at a predetermined rated voltage or less, and converts the threshold voltage and the output voltage of the constant voltage charging circuit from the charging current to the secondary battery, respectively. The threshold voltage is adjusted so as to increase by a voltage converted into a voltage drop due to the internal resistance and wiring resistance.

本実施形態に第2の態様に係る充電制御回路は、第1の態様に係る充電制御回路において、上記しきい値電圧調整回路は、
二次電池と直列に接続された抵抗に充電電流を流すことにより、上記充電電流に比例する検出電圧を検出し、
上記検出電圧と、所定の基準電圧とを比較して、上記検出電圧が上記基準電圧よりも大きいときにその差に対応する電流を上記しきい値電圧生成回路に調整電流として流すことで上記しきい値電圧を調整することを特徴とする。
The charge control circuit according to the second aspect of the present embodiment is the charge control circuit according to the first aspect, wherein the threshold voltage adjustment circuit is:
By flowing a charging current through a resistor connected in series with the secondary battery, a detection voltage proportional to the charging current is detected,
The detection voltage is compared with a predetermined reference voltage, and when the detection voltage is larger than the reference voltage, a current corresponding to the difference is caused to flow as an adjustment current in the threshold voltage generation circuit. The threshold voltage is adjusted.

本実施形態に係る第3の態様に係る充電制御回路は、第2の態様に係る充電制御回路において、上記しきい値電圧調整回路は、
上記基準電圧を発生する基準電圧源と、
上記検出電圧と、所定の基準電圧とを比較するオペアンプと、
所定の電流を流す電流源を構成する第1のトランジスタと、
上記オペアンプの出力電圧に基づいて、上記電流源からの電流を制御する第2のトランジスタと、
上記第1のトランジスタと第3のトランジスタとにより構成されるカレントミラー回路であって、上記第2のトランジスタに流れる電流に対応する電流を上記調整電流として流すカレントミラー回路とを備えることを特徴とする。
The charge control circuit according to a third aspect of the present embodiment is the charge control circuit according to the second aspect, wherein the threshold voltage adjustment circuit is
A reference voltage source for generating the reference voltage;
An operational amplifier for comparing the detection voltage with a predetermined reference voltage;
A first transistor constituting a current source for supplying a predetermined current;
A second transistor for controlling a current from the current source based on an output voltage of the operational amplifier;
A current mirror circuit configured by the first transistor and the third transistor, the current mirror circuit including a current mirror circuit that supplies a current corresponding to a current flowing through the second transistor as the adjustment current. To do.

10…直流電源、
20…二次電池、
30…定電流充電回路、
40…定電圧充電回路、
50…しきい値電圧生成回路、
51…基準電圧源、
52…接続点、
60…充電方法切り替え回路、
70…充電電流検出回路、
71…接続点、
80…しきい値電圧調整回路、
81…基準電圧源、
90…保護回路、
bat…キャパシタ、
OP1…オペアンプ、
Q1〜Q3…MOSトランジスタ、
R1〜R4,R11,Rbat,Rdacout,Rdev…抵抗。
10 ... DC power supply,
20 ... secondary battery,
30 ... constant current charging circuit,
40 ... constant voltage charging circuit,
50: Threshold voltage generation circuit,
51 ... Reference voltage source,
52 ... Connection point,
60: Charging method switching circuit,
70: Charging current detection circuit,
71 ... Connection point,
80... Threshold voltage adjustment circuit,
81: Reference voltage source,
90 ... protection circuit,
C bat ... capacitor
OP1 ... operational amplifier,
Q1-Q3 ... MOS transistors,
R1~R4, R11, R bat, R dacout, R dev ... resistance.

特開平6−0325794号公報JP-A-6-0325794 特開2004−274874号公報JP 2004-274874 A

Claims (5)

直流電源から二次電池に、定電流充電回路による定電流充電、もしくは定電圧充電回路による定電圧充電のいずれかで充電制御する充電制御回路であって、
定電流充電と定電圧充電を切り替えるしきい値電圧を出力するしきい値電圧生成回路と、
上記しきい値電圧と二次電池の陽極電圧を比較して、その比較結果から定電流充電と定電圧充電を切り替える充電方法切り替え回路と、
上記二次電池に充電するときの充電電流に基づいて上記しきい値電圧を調整するしきい値電圧調整回路とを備え、
上記しきい値電圧調整回路は、上記二次電池の電池電圧を所定の定格電圧以下に保持しつつ、上記しきい値電圧と定電圧充電回路の出力電圧をそれぞれ、上記充電電流から二次電池の内部抵抗及び配線抵抗による電圧降下に換算してなる電圧分上昇させるように上記しきい値電圧を調整することを特徴とする充電制御回路。
A charge control circuit that controls charging from a DC power source to a secondary battery by either constant current charging by a constant current charging circuit or constant voltage charging by a constant voltage charging circuit,
A threshold voltage generation circuit that outputs a threshold voltage for switching between constant current charging and constant voltage charging;
A charging method switching circuit that compares the threshold voltage and the anode voltage of the secondary battery, and switches between constant current charging and constant voltage charging from the comparison result;
A threshold voltage adjustment circuit for adjusting the threshold voltage based on a charging current when charging the secondary battery,
The threshold voltage adjustment circuit maintains the battery voltage of the secondary battery at a predetermined rated voltage or less, and converts the threshold voltage and the output voltage of the constant voltage charging circuit from the charging current to the secondary battery, respectively. A charge control circuit, wherein the threshold voltage is adjusted so as to increase by a voltage converted into a voltage drop due to the internal resistance and wiring resistance of the circuit.
上記しきい値電圧調整回路は、
二次電池と直列に接続された抵抗に充電電流を流すことにより、上記充電電流に比例する検出電圧を検出し、
上記検出電圧と、所定の基準電圧とを比較して、上記検出電圧が上記基準電圧よりも大きいときにその差に対応する電流を上記しきい値電圧生成回路に調整電流として流すことで上記しきい値電圧を調整することを特徴とする請求項1記載の充電制御回路。
The threshold voltage adjustment circuit is
By flowing a charging current through a resistor connected in series with the secondary battery, a detection voltage proportional to the charging current is detected,
The detection voltage is compared with a predetermined reference voltage, and when the detection voltage is larger than the reference voltage, a current corresponding to the difference is caused to flow as an adjustment current in the threshold voltage generation circuit. 2. The charge control circuit according to claim 1, wherein the threshold voltage is adjusted.
上記しきい値電圧調整回路は、
上記基準電圧を発生する基準電圧源と、
上記検出電圧と、所定の基準電圧とを比較するオペアンプと、
所定の電流を流す電流源を構成する第1のトランジスタと、
上記オペアンプの出力電圧に基づいて、上記電流源からの電流を制御する第2のトランジスタと、
上記第1のトランジスタと第3のトランジスタとにより構成されるカレントミラー回路であって、上記第2のトランジスタに流れる電流に対応する電流を上記調整電流として流すカレントミラー回路とを備えることを特徴とする請求項2記載の充電制御回路。
The threshold voltage adjustment circuit is
A reference voltage source for generating the reference voltage;
An operational amplifier for comparing the detection voltage with a predetermined reference voltage;
A first transistor constituting a current source for supplying a predetermined current;
A second transistor for controlling a current from the current source based on an output voltage of the operational amplifier;
A current mirror circuit configured by the first transistor and the third transistor, the current mirror circuit including a current mirror circuit that supplies a current corresponding to a current flowing through the second transistor as the adjustment current. The charge control circuit according to claim 2.
請求項1〜3のうちのいずれか1つに記載の充電制御回路を備える充電装置。   A charging device comprising the charge control circuit according to claim 1. 直流電源から二次電池に、定電流充電回路による定電流充電、もしくは定電圧充電回路による定電圧充電のいずれかで充電制御する充電制御方法であって、
定電流充電と定電圧充電を切り替えるしきい値電圧を出力するしきい値電圧生成回路と、
上記しきい値電圧と二次電池の陽極電圧を比較して、その比較結果から定電流充電と定電圧充電を切り替える充電方法切り替え回路と、
上記二次電池に充電するときの充電電流に基づいて上記しきい値電圧を調整するしきい値電圧調整回路とを備える充電制御回路のための充電制御方法において、
上記しきい値電圧調整回路が、上記二次電池の電池電圧を所定の定格電圧以下に保持しつつ、上記しきい値電圧と定電圧充電回路の出力電圧をそれぞれ、上記充電電流から二次電池の内部抵抗及び配線抵抗による電圧降下に換算してなる電圧分上昇させるように上記しきい値電圧を調整するステップを含むことを特徴とする充電制御方法。
A charge control method for controlling charging from a DC power source to a secondary battery by either constant current charging by a constant current charging circuit or constant voltage charging by a constant voltage charging circuit,
A threshold voltage generation circuit that outputs a threshold voltage for switching between constant current charging and constant voltage charging;
A charging method switching circuit that compares the threshold voltage and the anode voltage of the secondary battery, and switches between constant current charging and constant voltage charging from the comparison result;
In a charge control method for a charge control circuit comprising a threshold voltage adjustment circuit for adjusting the threshold voltage based on a charging current when charging the secondary battery,
While the threshold voltage adjustment circuit maintains the battery voltage of the secondary battery below a predetermined rated voltage, the threshold voltage and the output voltage of the constant voltage charging circuit are respectively changed from the charging current to the secondary battery. A charge control method comprising the step of adjusting the threshold voltage so as to increase by a voltage converted into a voltage drop due to the internal resistance and wiring resistance.
JP2014083515A 2014-04-15 2014-04-15 Charge control circuit and method, and charging device Pending JP2015204705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014083515A JP2015204705A (en) 2014-04-15 2014-04-15 Charge control circuit and method, and charging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014083515A JP2015204705A (en) 2014-04-15 2014-04-15 Charge control circuit and method, and charging device

Publications (1)

Publication Number Publication Date
JP2015204705A true JP2015204705A (en) 2015-11-16

Family

ID=54597863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014083515A Pending JP2015204705A (en) 2014-04-15 2014-04-15 Charge control circuit and method, and charging device

Country Status (1)

Country Link
JP (1) JP2015204705A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106329019A (en) * 2016-08-29 2017-01-11 北京小米移动软件有限公司 Charging method and device
CN107897158A (en) * 2017-12-08 2018-04-13 台州市协丰机械有限公司 Power spraye
CN107980191A (en) * 2016-12-12 2018-05-01 深圳市柔宇科技有限公司 Electronic device and its charge control method
CN109525013A (en) * 2018-12-05 2019-03-26 兰正年 It is a kind of to charge and decompression conversion integrated chip
KR20210005247A (en) * 2018-06-18 2021-01-13 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 Battery fast charging method, charging device, charging standby equipment and charging system
CN113904399A (en) * 2021-09-03 2022-01-07 荣耀终端有限公司 Charging method and terminal equipment
CN114189024A (en) * 2021-12-20 2022-03-15 浙江特康电子科技有限公司 Method and device for realizing constant current mode, switching power supply and medium
WO2023077962A1 (en) * 2021-11-02 2023-05-11 Oppo广东移动通信有限公司 Charging control method and apparatus, and chip, terminal and readable storage medium
WO2024043679A1 (en) * 2022-08-26 2024-02-29 원제영 Secondary battery charging system and method

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106329019B (en) * 2016-08-29 2019-01-18 北京小米移动软件有限公司 charging method and device
CN106329019A (en) * 2016-08-29 2017-01-11 北京小米移动软件有限公司 Charging method and device
CN107980191A (en) * 2016-12-12 2018-05-01 深圳市柔宇科技有限公司 Electronic device and its charge control method
WO2018107309A1 (en) * 2016-12-12 2018-06-21 深圳市柔宇科技有限公司 Electronic device and charging control method therefor
CN107897158A (en) * 2017-12-08 2018-04-13 台州市协丰机械有限公司 Power spraye
CN107897158B (en) * 2017-12-08 2023-10-13 台州市协丰机械有限公司 electric sprayer
JP7179091B2 (en) 2018-06-18 2022-11-28 オッポ広東移動通信有限公司 Battery rapid charging method, charging device, charged device, and charging system
KR20210005247A (en) * 2018-06-18 2021-01-13 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 Battery fast charging method, charging device, charging standby equipment and charging system
JP2021526348A (en) * 2018-06-18 2021-09-30 オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. Battery fast charging method, charging device, charged device and charging system
KR102532572B1 (en) * 2018-06-18 2023-05-16 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 Battery rapid charging method, charging device, charging standby equipment and charging system
CN109525013B (en) * 2018-12-05 2023-01-03 兰正年 Charging and voltage reduction conversion integrated chip
CN109525013A (en) * 2018-12-05 2019-03-26 兰正年 It is a kind of to charge and decompression conversion integrated chip
CN113904399B (en) * 2021-09-03 2022-10-14 荣耀终端有限公司 Charging method and terminal equipment
CN113904399A (en) * 2021-09-03 2022-01-07 荣耀终端有限公司 Charging method and terminal equipment
WO2023077962A1 (en) * 2021-11-02 2023-05-11 Oppo广东移动通信有限公司 Charging control method and apparatus, and chip, terminal and readable storage medium
CN114189024A (en) * 2021-12-20 2022-03-15 浙江特康电子科技有限公司 Method and device for realizing constant current mode, switching power supply and medium
CN114189024B (en) * 2021-12-20 2024-06-11 浙江特康电子科技有限公司 Method and device for realizing constant current mode, switching power supply and medium
WO2024043679A1 (en) * 2022-08-26 2024-02-29 원제영 Secondary battery charging system and method

Similar Documents

Publication Publication Date Title
JP2015204705A (en) Charge control circuit and method, and charging device
US20190252893A1 (en) Battery charger with segmented power path switch
US8222869B2 (en) System and method for battery charging
US9018921B2 (en) Battery charger architecture
US20090096427A1 (en) Apparatus for detecting end-of-charge for a battery charger
TWI637579B (en) Charging device
JPWO2014203490A1 (en) Solar cell power feeder and solar cell system
JP2003116269A (en) Regulator circuit
TWI514735B (en) Controller for controlling a power converter to output constant power and related method thereof
US9240716B2 (en) Switching power supply circuit
CN111934404A (en) Charging circuit
JP2016213923A (en) Battery device
KR101282355B1 (en) Apparatus and method for controlling battery current
KR20150093415A (en) Apparatus and method for balancing battery cells
WO2018010400A1 (en) Charging method for mobile terminal and mobile terminal
KR20120068053A (en) Charger and discharer for secondary battery
JP2018125190A (en) Charger
JP2014010660A (en) Power controller
US20110254515A1 (en) Charge control device
US9024574B2 (en) Battery charger and system method
KR101347538B1 (en) Inrush current protecting circuit of low drop output regulator
JP2020202640A (en) Cut-off circuit
JP2014096896A (en) Charging circuit
TWI796840B (en) Overcurrent detection circuit and low dropout regulating system using the same
TWI523387B (en) Power circuit