TW201608749A - Architecture for 3D memory array and method for manufacturing the same - Google Patents

Architecture for 3D memory array and method for manufacturing the same Download PDF

Info

Publication number
TW201608749A
TW201608749A TW103129178A TW103129178A TW201608749A TW 201608749 A TW201608749 A TW 201608749A TW 103129178 A TW103129178 A TW 103129178A TW 103129178 A TW103129178 A TW 103129178A TW 201608749 A TW201608749 A TW 201608749A
Authority
TW
Taiwan
Prior art keywords
dielectric layer
conductive layer
layer
aperture
dimensional memory
Prior art date
Application number
TW103129178A
Other languages
Chinese (zh)
Other versions
TWI542055B (en
Inventor
黃振浩
黃漢屏
黃宗彬
林于萱
蔡瑋展
陳俊丞
Original Assignee
力晶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 力晶科技股份有限公司 filed Critical 力晶科技股份有限公司
Priority to TW103129178A priority Critical patent/TWI542055B/en
Priority to CN201410529392.0A priority patent/CN105374383B/en
Publication of TW201608749A publication Critical patent/TW201608749A/en
Application granted granted Critical
Publication of TWI542055B publication Critical patent/TWI542055B/en

Links

Abstract

An architecture for 3D memory array includes: a stack structure which is formed by alternatively stacking a dielectric layer and a first conductive layer, wherein the stack structure having a hole penetrated each layers of the stack structure, and the hole having a different aperture in the dielectric layer and the first conductive layer; a second conductive layer which is disposed on the hole of the stack structure; and a data store layer which is deposed between the stack structure and the second conductive layer.

Description

三維記憶體的陣列結構及其製造方法 Array structure of three-dimensional memory and manufacturing method thereof

本發明是有關於一種半導體元件的結構及其製造方法,且特別是有關於一種三維記憶體的陣列結構及其製造方法。 The present invention relates to a structure of a semiconductor device and a method of fabricating the same, and more particularly to an array structure of a three-dimensional memory and a method of fabricating the same.

近年來,隨著軟體的程式運算的複雜化,對於微處理器的速度要求越來越高,同時也提高了記憶體需求。為了製造容量更大且更便宜的記憶體來滿足這種需求的趨勢,製作記憶體元件的技術與製程,已成為半導體科技持續往高積集度挑戰的驅動力。 In recent years, with the complexity of software programming, the speed requirements for microprocessors have become higher and higher, and memory requirements have also increased. In order to create a larger and cheaper memory to meet this demand trend, the technology and process of fabricating memory components has become a driving force for semiconductor technology to continue to accumulate high levels of integration.

記憶體根據儲存能力與電源的關係可分為非揮發性記憶體(Non-Volatile Memory,NVM)與揮發性記憶體(Volatile Memory)。其中,又以非揮發性記憶體(Non-Volatile Memory,NVM)的快速成長最引入注目。在非揮發性記憶體中,又以電阻式隨機存取記憶體(Resistive Random Access Memory,RRAM)最為看好,其具有結構簡單、寫入操作電壓低、可高速操作以及非揮發性等特性,因此電阻式隨機存取記憶體具有與其它非揮發性記憶體競爭的潛力。 The memory can be classified into Non-Volatile Memory (NVM) and Volatile Memory (Volatile Memory) according to the relationship between storage capacity and power. Among them, the rapid growth of Non-Volatile Memory (NVM) has attracted the most attention. Among the non-volatile memory, Resistive Random Access Memory (RRAM) is the most attractive. It has a simple structure, low write operation voltage, high-speed operation, and non-volatile characteristics. Resistive random access memory has the potential to compete with other non-volatile memories.

然而,隨著積體電路製程的微細化,元件的尺寸不斷的 微縮,使得記憶體結構的線寬與電極的厚度大幅減少,而面臨電極的電阻值大幅的增加的問題。因此,如何改善電極的電阻值與增加記憶胞的效能將會是三維記憶體發展上的一項重大挑戰。 However, with the miniaturization of the integrated circuit process, the size of the components is constantly The shrinkage causes the line width of the memory structure and the thickness of the electrode to be greatly reduced, and faces a problem that the resistance value of the electrode is greatly increased. Therefore, how to improve the resistance value of the electrode and increase the performance of the memory cell will be a major challenge in the development of three-dimensional memory.

本發明提供一種三維記憶體的陣列結構,可降低通孔電極的電阻值,並且增加記憶胞的面積與控制記憶胞的形狀,而增加記憶胞的效能。 The invention provides an array structure of three-dimensional memory, which can reduce the resistance value of the through-hole electrode, increase the area of the memory cell and control the shape of the memory cell, and increase the performance of the memory cell.

本發明提供一種三維記憶體的陣列結構的製造方法,可簡化製程步驟,降低生產成本。 The invention provides a method for manufacturing an array structure of three-dimensional memory, which can simplify the process steps and reduce the production cost.

本發明的三維記憶體的陣列結構,包括:堆疊結構,為由介電層與第一導電層交錯堆疊而成的結構,其中堆疊結構具有孔洞貫穿所述堆疊結構的各層,且孔洞於介電層與第一導電層處分別具有不同的孔徑;第二導電層,設置於堆疊結構中的孔洞;以及資料儲存層,設置於堆疊結構與第二導電層之間。 The array structure of the three-dimensional memory of the present invention comprises: a stacked structure, which is a structure in which a dielectric layer and a first conductive layer are alternately stacked, wherein the stacked structure has holes penetrating through the layers of the stacked structure, and the holes are dielectrically The layer and the first conductive layer respectively have different apertures; the second conductive layer is disposed in the hole in the stacked structure; and the data storage layer is disposed between the stacked structure and the second conductive layer.

在本發明的一實施例中,上述的三維記憶體的陣列結構,其中位於介電層處的孔徑為A,位於第一導電層處的孔徑為B,且孔徑為A>B。 In an embodiment of the invention, the array structure of the three-dimensional memory, wherein the aperture at the dielectric layer is A, the aperture at the first conductive layer is B, and the aperture is A>B.

在本發明的一實施例中,上述的三維記憶體的陣列結構,其中位於介電層處的孔徑為A,位於第一導電層處的孔徑為B,且孔徑為A<B。 In an embodiment of the invention, the array structure of the three-dimensional memory, wherein the aperture at the dielectric layer is A, the aperture at the first conductive layer is B, and the aperture is A<B.

在本發明的一實施例中,上述的三維記憶體的陣列結構,其中介電層更包括第一介電層與第二介電層,並且堆疊結構 以第一介電層、第一導電層、第二介電層以及第一導電層的次序堆疊,且孔洞於第一介電層、第二介電層與第一導電層處分別具有不同的孔徑。 In an embodiment of the invention, the array structure of the three-dimensional memory, wherein the dielectric layer further comprises a first dielectric layer and a second dielectric layer, and the stacked structure Stacking in the order of the first dielectric layer, the first conductive layer, the second dielectric layer, and the first conductive layer, and the holes are different at the first dielectric layer, the second dielectric layer, and the first conductive layer, respectively Aperture.

在本發明的一實施例中,上述的三維記憶體的陣列結構,其中位於第一介電層處的孔徑為A1,位於第二介電層處的孔徑為A2,位於第一導電層處的孔徑為B,且孔徑為A1>A2>B。 In an embodiment of the present invention, the array structure of the three-dimensional memory, wherein the aperture at the first dielectric layer is A1, and the aperture at the second dielectric layer is A2, located at the first conductive layer. The pore size is B, and the pore diameter is A1>A2>B.

在本發明的一實施例中,上述的三維記憶體的陣列結構,其中位於第一介電層處的孔徑為A1,位於第二介電層處的孔徑為A2,位於第一導電層處的孔徑為B,且孔徑為A1>B≧A2。 In an embodiment of the present invention, the array structure of the three-dimensional memory, wherein the aperture at the first dielectric layer is A1, and the aperture at the second dielectric layer is A2, located at the first conductive layer. The pore size is B, and the pore diameter is A1>B≧A2.

在本發明的一實施例中,上述的三維記憶體的陣列結構,其中介電層的材質為氧化矽、氮化矽、氮氧化矽、氧化鋁、氧化鈦、氧化鉿或其組合。 In an embodiment of the present invention, the array structure of the three-dimensional memory, wherein the dielectric layer is made of yttrium oxide, tantalum nitride, hafnium oxynitride, aluminum oxide, titanium oxide, cerium oxide or a combination thereof.

在本發明的一實施例中,上述的三維記憶體的陣列結構,其中第一介電層的材質為氧化矽,第二介電層的材質為氮化矽。 In an embodiment of the present invention, the array structure of the three-dimensional memory, wherein the first dielectric layer is made of yttrium oxide and the second dielectric layer is made of tantalum nitride.

在本發明的一實施例中,上述的三維記憶體的陣列結構,其中第一導電層與第二導電層的材質為多晶矽。 In an embodiment of the present invention, the array structure of the three-dimensional memory, wherein the first conductive layer and the second conductive layer are made of polysilicon.

本發明的三維記憶體陣列結構的製造方法,包括:於基板上形成由介電層與第一導電層交錯堆疊而成的堆疊結構;接著移除部分所述堆疊結構,而形成孔洞以貫穿所述堆疊結構的各層;跟著移除部分介電層或第一導電層,使孔洞於介電層與第一導電層處分別具有不同的孔徑;然後於孔洞表面形成資料儲存 層;以及最後形成第二導電層,以填滿孔洞。 The method for fabricating a three-dimensional memory array structure of the present invention comprises: forming a stacked structure in which a dielectric layer and a first conductive layer are alternately stacked on a substrate; and then removing a part of the stacked structure to form a hole to penetrate the same Each layer of the stacked structure; followed by removing a portion of the dielectric layer or the first conductive layer such that the holes have different apertures at the dielectric layer and the first conductive layer; respectively, and then forming a data storage on the surface of the hole a layer; and finally a second conductive layer is formed to fill the holes.

在本發明的一實施例中,上述的三維記憶體的陣列結構的製造方法,其中位於介電層處的孔徑為A,位於第一導電層處的孔徑為B,且孔徑為A>B。 In an embodiment of the invention, the method for fabricating an array structure of a three-dimensional memory, wherein the aperture at the dielectric layer is A, the aperture at the first conductive layer is B, and the aperture is A>B.

在本發明的一實施例中,上述的三維記憶體的陣列結構的製造方法,其中位於介電層處的孔徑為A,位於第一導電層處的孔徑為B,且孔徑為A<B。 In an embodiment of the invention, the method for fabricating the array structure of the three-dimensional memory, wherein the aperture at the dielectric layer is A, the aperture at the first conductive layer is B, and the aperture is A<B.

在本發明的一實施例中,上述的三維記憶體的陣列結構的製造方法,其中介電層更包括第一介電層與第二介電層,並且堆疊結構以第一介電層、第一導電層、第二介電層與第一導電層的次序堆疊。 In an embodiment of the present invention, the method for fabricating an array structure of a three-dimensional memory, wherein the dielectric layer further comprises a first dielectric layer and a second dielectric layer, and the stacked structure is a first dielectric layer, A conductive layer, a second dielectric layer and a first conductive layer are stacked in the order.

在本發明的一實施例中,上述的三維記憶體的陣列結構的製造方法,其中位於第一介電層處的孔徑為A1,位於第二介電層處的孔徑為A2,位於第一導電層處的孔徑為B,且孔徑為A1>A2>B。 In an embodiment of the present invention, the method for fabricating an array structure of a three-dimensional memory, wherein the aperture at the first dielectric layer is A1, and the aperture at the second dielectric layer is A2, located at the first conductive The pore size at the layer is B, and the pore diameter is A1>A2>B.

在本發明的一實施例中,上述的三維記憶體的陣列結構的製造方法,其中位於第一介電層處的孔徑為A1,位於第二介電層處的孔徑為A2,位於第一導電層處的孔徑為B,且孔徑為A1>B≧A2。 In an embodiment of the present invention, the method for fabricating an array structure of a three-dimensional memory, wherein the aperture at the first dielectric layer is A1, and the aperture at the second dielectric layer is A2, located at the first conductive The pore size at the layer is B, and the pore diameter is A1>B≧A2.

在本發明的一實施例中,上述的三維記憶體的陣列結構的製造方法,其中介電層的材質為氧化矽、氮化矽、氮氧化矽、氧化鋁、氧化鈦、氧化鉿或其組合。 In an embodiment of the present invention, the method for fabricating an array structure of a three-dimensional memory, wherein the dielectric layer is made of yttrium oxide, tantalum nitride, hafnium oxynitride, aluminum oxide, titanium oxide, cerium oxide or a combination thereof. .

在本發明的一實施例中,上述的三維記憶體的陣列結構的製造方法,其中第一介電層的材質為氧化矽,第二介電層的材質為氮化矽。 In an embodiment of the invention, the method for fabricating the array structure of the three-dimensional memory, wherein the material of the first dielectric layer is yttrium oxide and the material of the second dielectric layer is tantalum nitride.

在本發明的一實施例中,上述的三維記憶體的陣列結構的製造方法,其中第一導電層與第二導電層的材質為多晶矽。 In an embodiment of the invention, the method for fabricating the array structure of the three-dimensional memory, wherein the material of the first conductive layer and the second conductive layer is polysilicon.

在本發明的一實施例中,上述的三維記憶體的陣列結構的製造方法,其中移除部分第一導電層或介電層的方法包括濕式蝕刻法。 In an embodiment of the invention, the method for fabricating an array structure of a three-dimensional memory, wherein the method of removing a portion of the first conductive layer or the dielectric layer comprises a wet etching method.

在本發明的一實施例中,上述的三維記憶體的陣列結構的製造方法,其中資料儲存層的材質為氧化矽、氮化矽、氮氧化矽、氧化鋁、氧化鈦、氧化鉿、氧化鎂、鈷鐵硼(CoFeB)、鈷鐵(CoFe)、釕(Ru)、鉑錳合金(PtMn)或其組合。 In an embodiment of the present invention, the method for fabricating the array structure of the three-dimensional memory, wherein the material storage layer is made of yttrium oxide, tantalum nitride, yttrium oxynitride, aluminum oxide, titanium oxide, cerium oxide, magnesium oxide. Cobalt iron boron (CoFeB), cobalt iron (CoFe), ruthenium (Ru), platinum manganese alloy (PtMn) or a combination thereof.

基於上述,由於本發明所提出的三維記憶體的陣列結構具有資料儲存層凹陷結構,可以有效地降低電阻的電阻值以及增加記憶胞的面積,並且可以透過記憶胞的形狀來微調記憶胞的電場產生,而大幅改善記憶胞的效能。此外,由於本發明所提出的三維記憶體的陣列結構的製造方法是利用濕式蝕刻法形成具有凹陷的結構,無需使用種子層就可使資料儲存層設置在孔洞中的表面,因此可以大幅簡化製程步驟而降低記憶體的生產成本。 Based on the above, the array structure of the three-dimensional memory proposed by the present invention has a data storage layer recess structure, which can effectively reduce the resistance value of the resistor and increase the area of the memory cell, and can finely adjust the electric field of the memory cell through the shape of the memory cell. Produced, and greatly improved the performance of memory cells. In addition, since the method for fabricating the array structure of the three-dimensional memory proposed by the present invention is to form a structure having a recess by wet etching, the data storage layer can be disposed on the surface of the hole without using a seed layer, thereby greatly simplifying The process steps reduce the production cost of the memory.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 The above described features and advantages of the invention will be apparent from the following description.

100‧‧‧三維記憶體的陣列結構 100‧‧‧Three-dimensional memory array structure

110‧‧‧介電層 110‧‧‧ dielectric layer

110a‧‧‧第一介電層 110a‧‧‧First dielectric layer

110b‧‧‧第二介電層 110b‧‧‧Second dielectric layer

120‧‧‧第一導電層 120‧‧‧First conductive layer

130‧‧‧堆疊結構 130‧‧‧Stack structure

133‧‧‧孔洞 133‧‧‧ holes

140‧‧‧資料儲存層 140‧‧‧Data storage layer

150‧‧‧第二導電層 150‧‧‧Second conductive layer

160‧‧‧記憶胞 160‧‧‧ memory cells

200‧‧‧基板 200‧‧‧Substrate

A、A1、A2、B‧‧‧孔徑 A, A1, A2, B‧‧‧ aperture

圖1A是本發明第一實施例的一種三維記憶體的陣列結構的剖面示意圖。 1A is a schematic cross-sectional view showing an array structure of a three-dimensional memory according to a first embodiment of the present invention.

圖1B是圖1A的記憶胞的立體示意圖。 FIG. 1B is a schematic perspective view of the memory cell of FIG. 1A.

圖2A是本發明第二實施例的一種三維記憶體的陣列結構的剖面示意圖。 2A is a schematic cross-sectional view showing an array structure of a three-dimensional memory according to a second embodiment of the present invention.

圖2B是圖2A的記憶胞的立體示意圖。 2B is a perspective view of the memory cell of FIG. 2A.

圖3A是本發明第三實施例的一種三維記憶體的陣列結構的剖面示意圖。 3A is a cross-sectional view showing an array structure of a three-dimensional memory according to a third embodiment of the present invention.

圖3B是圖3A的記憶胞的立體示意圖。 3B is a perspective view of the memory cell of FIG. 3A.

圖4是本發明第四實施例的一種三維記憶體的陣列結構的剖面示意圖。 4 is a cross-sectional view showing an array structure of a three-dimensional memory according to a fourth embodiment of the present invention.

圖5是本發明第五實施例的一種三維記憶體的陣列結構的剖面示意圖。 Fig. 5 is a cross-sectional view showing an array structure of a three-dimensional memory according to a fifth embodiment of the present invention.

圖6A至圖6E是本發明一實施例的一種三維記憶體的陣列結構的製造方法的製程剖面圖。 6A to 6E are process cross-sectional views showing a method of fabricating an array structure of a three-dimensional memory according to an embodiment of the present invention.

下文中參照所附圖式來更充分地描述本發明實施例。然而,本發明可以多種不同的形式來實踐,並不限於文中所述之實施例。以下實施例中所提到的方向用語,例如「上」等,僅是參 考附加圖式的方向,因此使用的方向用語是用來詳細說明,而非用來限制本發明。此外,在圖式中為明確起見可能將各層的尺寸以及相對尺寸作誇張的描繪。 Embodiments of the invention are described more fully hereinafter with reference to the accompanying drawings. However, the invention may be practiced in many different forms and is not limited to the embodiments described herein. Directional terms mentioned in the following examples, such as "upper", etc., are only The orientation of the drawings is inferred, and thus the directional terminology used is for the purpose of illustration and not limitation. In addition, the dimensions and relative dimensions of the various layers may be exaggerated in the drawings for clarity.

以下,說明本發明的第一實施例的一種三維記憶體的陣列結構。 Hereinafter, an array structure of a three-dimensional memory according to a first embodiment of the present invention will be described.

圖1A是本發明第一實施例的一種三維記憶體的陣列結構的剖面示意圖。圖1B是圖1A的記憶胞的立體示意圖。請參閱圖1A及圖1B,本實施例的三維記憶體的陣列結構100包括堆疊結構130(例如由多層介電層110與多層第一導電層120交錯堆疊而成)、第二導電層150與資料儲存層140。 1A is a schematic cross-sectional view showing an array structure of a three-dimensional memory according to a first embodiment of the present invention. FIG. 1B is a schematic perspective view of the memory cell of FIG. 1A. Referring to FIG. 1A and FIG. 1B , the array structure 100 of the three-dimensional memory of the present embodiment includes a stacked structure 130 (for example, a stack of a plurality of dielectric layers 110 and a plurality of first conductive layers 120 are alternately stacked), and a second conductive layer 150 and Data storage layer 140.

在堆疊結構130中具有孔洞133,此孔洞133貫穿堆疊結構130的各層。介電層110的材質例如是氧化矽、氮化矽、氮氧化矽、氧化鋁、氧化鈦、氧化鉿或其組合等。第一導電層120的材質例如是多晶矽等。其中,位於介電層110處的孔洞133的孔徑為A,位於第一導電層120處的孔洞133的孔徑為B,且孔徑為A>B。 There is a hole 133 in the stack structure 130 that extends through the layers of the stack structure 130. The material of the dielectric layer 110 is, for example, cerium oxide, cerium nitride, cerium oxynitride, aluminum oxide, titanium oxide, cerium oxide or a combination thereof. The material of the first conductive layer 120 is, for example, polysilicon or the like. The hole 133 at the dielectric layer 110 has a hole diameter A, and the hole 133 at the first conductive layer 120 has a hole diameter B and a hole diameter of A>B.

第二導電層150例如設置於堆疊結構130中的孔洞133中,並填滿孔洞133。第二導電層150的材質例如是多晶矽等。 The second conductive layer 150 is disposed, for example, in the hole 133 in the stacked structure 130 and fills the hole 133. The material of the second conductive layer 150 is, for example, polysilicon or the like.

資料儲存層140例如設置於堆疊結構130與第二導電層150之間。即於孔洞133所暴露的堆疊結構130的表面設置有資料儲存層140,而第二導電層150填滿設置有資料儲存層140的孔洞133。資料儲存層140的材質例如是氧化矽、氮化矽、氮氧化矽、 氧化鋁、氧化鈦、氧化鉿、氧化鎂、鈷鐵硼(CoFeB)、鈷鐵(CoFe)、釕(Ru)、鉑錳合金(PtMn)或其組合等。本發明的資料儲存層140依照其記錄資料的形態可分為電阻式、磁電阻式以及電容式的記憶體。資料儲存層140若為電阻式隨機存取記憶體(RRAM)的情況下,則資料儲存層140為可藉由外加偏壓來改變電阻值,以執行寫入與抹除的動作的材質,例如是氧化鋁、氧化鈦、氧化鉿或其組合等。此外,資料儲存層140若為磁電阻式隨機存取記憶體(MRAM)的情況下,則資料儲存層為藉由磁電阻式質儲存記憶資料的材質例如是氧化鎂、鈷鐵硼(CoFeB)、鈷鐵(CoFe)、釕(Ru)、鉑錳合金(PtMn)或其組合等。資料儲存層亦可為利用電容的原理來儲存記憶資料,例如可用於快閃記憶體(flash)或動態隨機存取記憶體(Dynamic Random Access Memory,DRAM)等,其材質例如是氧化矽、氮化矽、氮氧化矽或其組合等。 The data storage layer 140 is disposed, for example, between the stacked structure 130 and the second conductive layer 150. That is, the surface of the stacked structure 130 exposed by the holes 133 is provided with a data storage layer 140, and the second conductive layer 150 is filled with the holes 133 provided with the data storage layer 140. The material of the data storage layer 140 is, for example, hafnium oxide, tantalum nitride, niobium oxynitride, Alumina, titanium oxide, cerium oxide, magnesium oxide, cobalt iron boron (CoFeB), cobalt iron (CoFe), ruthenium (Ru), platinum manganese alloy (PtMn) or a combination thereof. The data storage layer 140 of the present invention can be classified into a resistive type, a magnetoresistive type, and a capacitive type according to the form of the recorded data. When the data storage layer 140 is a resistive random access memory (RRAM), the data storage layer 140 is a material that can change the resistance value by an external bias to perform writing and erasing operations, for example, It is alumina, titanium oxide, cerium oxide or a combination thereof. In addition, if the data storage layer 140 is a magnetoresistive random access memory (MRAM), the material storage layer is made of a magnetoresistive memory material such as magnesium oxide or cobalt iron boron (CoFeB). Cobalt iron (CoFe), ruthenium (Ru), platinum manganese alloy (PtMn) or a combination thereof. The data storage layer can also store the memory data by using the principle of the capacitor. For example, it can be used for a flash memory or a dynamic random access memory (DRAM), and the material thereof is, for example, hafnium oxide and nitrogen. Huayu, bismuth oxynitride or a combination thereof.

在本發明一實施例中,介電層110的材質為氧化矽,第一導電層120的材質為多晶矽,資料儲存層140的材質為氧化鈦。介電層110、第一導電層120、資料儲存層140與第二導電層150構成記憶胞160。 In an embodiment of the invention, the material of the dielectric layer 110 is yttrium oxide, the material of the first conductive layer 120 is polycrystalline germanium, and the material of the data storage layer 140 is titanium oxide. The dielectric layer 110, the first conductive layer 120, the data storage layer 140, and the second conductive layer 150 constitute a memory cell 160.

圖1B是圖1A的記憶胞的立體示意圖。如圖1B所示,第一導電層120如腰帶狀包覆於資料儲存層140的溝槽外側。此外,資料儲存層140內側則被第二導電層150所填滿。資料儲存層140可於孔徑變化處形成一個角,此角可為直角或帶有弧度的彎曲,且在此直角或彎曲處為電場集中處,可提升記憶體電子注 入與電洞抹除的速度。 FIG. 1B is a schematic perspective view of the memory cell of FIG. 1A. As shown in FIG. 1B, the first conductive layer 120 is wrapped around the trench of the data storage layer 140 as a waistband. In addition, the inside of the data storage layer 140 is filled by the second conductive layer 150. The data storage layer 140 can form an angle at the change of the aperture, the angle can be a right angle or a curvature with a curvature, and the electric field is concentrated at the right angle or the bend, which can enhance the memory electronic injection. Into the speed of erasing with the hole.

以下,說明本發明的第二實施例的一種三維記憶體的陣列結構。在第二實施例中,構件與第一實施例相同者,給予相同的標號,並省略其詳細說明。以下只針對不同點做說明。 Hereinafter, an array structure of a three-dimensional memory according to a second embodiment of the present invention will be described. In the second embodiment, the same components as those in the first embodiment are given the same reference numerals, and the detailed description thereof will be omitted. The following only explains the different points.

圖2A是本發明第二實施例的一種三維記憶體的陣列結構的剖面示意圖。圖2B是圖2A的記憶胞的立體示意圖。請參閱圖2A及圖2B,本實施例的三維記憶體的陣列結構100包括堆疊結構130(例如由多層介電層110與多層第一導電層120交錯堆疊而成)、第二導電層150與資料儲存層140。 2A is a schematic cross-sectional view showing an array structure of a three-dimensional memory according to a second embodiment of the present invention. 2B is a perspective view of the memory cell of FIG. 2A. Referring to FIG. 2A and FIG. 2B, the array structure 100 of the three-dimensional memory of the present embodiment includes a stacked structure 130 (for example, a stack of a plurality of dielectric layers 110 and a plurality of first conductive layers 120), and a second conductive layer 150 and Data storage layer 140.

於本發明第二實施例的一種三維記憶體的陣列結構中,位於介電層110處的孔洞133的孔徑為A,位於第一導電層120處的孔洞133的孔徑為B,且孔徑為A<B。另外,介電層110、第一導電層120、資料儲存層140與第二導電層150構成記憶胞160。 In the array structure of the three-dimensional memory according to the second embodiment of the present invention, the hole 133 at the dielectric layer 110 has a hole diameter A, and the hole 133 at the first conductive layer 120 has a hole diameter B and a hole diameter of A. <B. In addition, the dielectric layer 110, the first conductive layer 120, the data storage layer 140, and the second conductive layer 150 constitute a memory cell 160.

圖2B是圖2A的記憶胞的立體示意圖。如圖2B所示,第一導電層120如腰帶狀包覆於資料儲存層140的突起處外側。此外,資料儲存層140內側則被第二導電層150所填滿。資料儲存層140可於孔徑變化處形成一個角,此角可為直角或帶有弧度的彎曲,且在此直角或彎曲處為電場集中處,可提升記憶體電子注入與電洞抹除的速度。 2B is a perspective view of the memory cell of FIG. 2A. As shown in FIG. 2B, the first conductive layer 120 is wrapped around the protrusion of the data storage layer 140 as a waistband. In addition, the inside of the data storage layer 140 is filled by the second conductive layer 150. The data storage layer 140 can form an angle at a change in the aperture, which can be a right angle or a curvature with a curvature, and where the right angle or the bend is an electric field concentration, the speed of the memory electron injection and the hole erasing can be improved. .

以下,說明本發明的第三實施例的一種三維記憶體的陣列結構。在第三實施例中,構件與第一實施例相同者,給予相同的標號,並省略其詳細說明。以下只針對不同點做說明。 Hereinafter, an array structure of a three-dimensional memory according to a third embodiment of the present invention will be described. In the third embodiment, the same members as those of the first embodiment are given the same reference numerals, and the detailed description thereof will be omitted. The following only explains the different points.

圖3A是本發明第三實施例的一種三維記憶體的陣列結構的剖面示意圖。圖3B是圖3A的記憶胞的立體示意圖。請參閱圖3A及圖3B,本實施例的三維記憶體的陣列結構100包括由堆疊結構130(例如由多層第一介電層110a、多層第二介電層110b與多層第一導電層120交錯堆疊而成)、第二導電層150與資料儲存層140。 3A is a cross-sectional view showing an array structure of a three-dimensional memory according to a third embodiment of the present invention. 3B is a perspective view of the memory cell of FIG. 3A. Referring to FIG. 3A and FIG. 3B, the array structure 100 of the three-dimensional memory of the present embodiment includes a stacked structure 130 (eg, interleaved from the plurality of first dielectric layers 110a and the plurality of second dielectric layers 110b and the plurality of first conductive layers 120). Stacked), second conductive layer 150 and data storage layer 140.

堆疊結構130以第一介電層110a、第一導電層120、第二介電層110b與第一導電層120的次序堆疊。堆疊結構130具有孔洞133。此孔洞133貫穿堆疊結構130的各層。第一介電層110a的材質例如是氧化矽、氮化矽、氮氧化矽、氧化鋁、氧化鈦、氧化鉿或其組合等。第二介電層110b的材質例如是氧化矽、氮化矽、氮氧化矽、氧化鋁、氧化鈦、氧化鉿或其組合等,且第一介電層110a的材質與第二介電層110b的材質不相同。第一導電層120的材質例如是多晶矽等。位於第一介電層110a處的孔洞133的孔徑為A1,位於第二介電層110b處的孔洞133的孔徑為A2,位於第一導電層120處的孔洞133的孔徑為B,孔徑為A1>B=A2。 The stacked structure 130 is stacked in the order of the first dielectric layer 110a, the first conductive layer 120, the second dielectric layer 110b, and the first conductive layer 120. The stacked structure 130 has a hole 133. This hole 133 extends through the various layers of the stacked structure 130. The material of the first dielectric layer 110a is, for example, cerium oxide, cerium nitride, cerium oxynitride, aluminum oxide, titanium oxide, cerium oxide or a combination thereof. The material of the second dielectric layer 110b is, for example, hafnium oxide, tantalum nitride, hafnium oxynitride, aluminum oxide, titanium oxide, hafnium oxide or a combination thereof, and the material of the first dielectric layer 110a and the second dielectric layer 110b. The materials are different. The material of the first conductive layer 120 is, for example, polysilicon or the like. The hole 133 at the first dielectric layer 110a has a hole diameter A1, the hole 133 at the second dielectric layer 110b has a hole diameter A2, and the hole 133 at the first conductive layer 120 has a hole diameter B and a hole diameter A1. >B=A2.

第二導電層150例如設置於堆疊結構130中的孔洞133。第二導電層150的材質例如是多晶矽等。 The second conductive layer 150 is disposed, for example, in the hole 133 in the stacked structure 130. The material of the second conductive layer 150 is, for example, polysilicon or the like.

資料儲存層140例如設置於堆疊結構130與第二導電層150之間。即於所暴露的堆疊結構130的表面設置有資料儲存層140,並以第二導電層150填滿設置有資料儲存層140的孔洞133。資料儲存層140的材質例如是氧化矽、氮化矽、氮氧化矽、氧化 鋁、氧化鈦、氧化鉿、氧化鎂、鈷鐵硼(CoFeB)、鈷鐵(CoFe)、釕(Ru)、鉑錳合金(PtMn)或其組合等。資料儲存層140的製造方法例如是化學氣相沉積法。 The data storage layer 140 is disposed, for example, between the stacked structure 130 and the second conductive layer 150. That is, the data storage layer 140 is disposed on the surface of the exposed stacked structure 130, and the hole 133 provided with the data storage layer 140 is filled with the second conductive layer 150. The material of the data storage layer 140 is, for example, hafnium oxide, tantalum nitride, niobium oxynitride, oxidation. Aluminum, titanium oxide, cerium oxide, magnesium oxide, cobalt iron boron (CoFeB), cobalt iron (CoFe), ruthenium (Ru), platinum manganese alloy (PtMn) or a combination thereof. The method of manufacturing the data storage layer 140 is, for example, a chemical vapor deposition method.

在本發明一實施例中,第一介電層110a的材質為氧化矽,第二介電層110b的材質為氮化矽,第一導電層120的材質為多晶矽,資料儲存層140的材質為氧化鈦。 In one embodiment of the present invention, the material of the first dielectric layer 110a is yttrium oxide, the material of the second dielectric layer 110b is tantalum nitride, the material of the first conductive layer 120 is polysilicon, and the material of the data storage layer 140 is Titanium oxide.

第一介電層110a、第二介電層110b、第一導電層120、資料儲存層140與第二導電層150構成記憶胞160。此外,於本發明第三實施例的一種三維記憶體的陣列結構中,記憶胞160被第二介電層110b區分成兩個記憶胞160。 The first dielectric layer 110a, the second dielectric layer 110b, the first conductive layer 120, the data storage layer 140, and the second conductive layer 150 constitute a memory cell 160. Further, in an array structure of a three-dimensional memory according to a third embodiment of the present invention, the memory cell 160 is divided into two memory cells 160 by the second dielectric layer 110b.

圖3B是圖3A的記憶胞的立體示意圖。如圖3B所示,第一導電層120如腰帶狀包覆於資料儲存層140的溝槽外側。此外,資料儲存層140內側則被第二導電層150所填滿。資料儲存層140可於孔徑變化處形成一個角,此角可為直角或帶有弧度的彎曲,且在此直角或彎曲處為電場集中處,可提升記憶體電子注入與電洞抹除的速度。 3B is a perspective view of the memory cell of FIG. 3A. As shown in FIG. 3B, the first conductive layer 120 is wrapped around the trench of the data storage layer 140 as a waistband. In addition, the inside of the data storage layer 140 is filled by the second conductive layer 150. The data storage layer 140 can form an angle at a change in the aperture, which can be a right angle or a curvature with a curvature, and where the right angle or the bend is an electric field concentration, the speed of the memory electron injection and the hole erasing can be improved. .

以下,說明本發明的第四實施例的一種三維記憶體的陣列結構。在第四實施例中,構件與第三實施例相同者,給予相同的標號,並省略其詳細說明。以下只針對不同點做說明。 Hereinafter, an array structure of a three-dimensional memory according to a fourth embodiment of the present invention will be described. In the fourth embodiment, the same components as those in the third embodiment are given the same reference numerals, and the detailed description thereof will be omitted. The following only explains the different points.

圖4是本發明第四實施例的一種三維記憶體的陣列結構的剖面示意圖。請參閱圖4,本實施例的三維記憶體的陣列結構100包括由堆疊結構130(例如由多層第一介電層110a、多層第二 介電層110b與多層第一導電層120交錯堆疊而成)、第二導電層150與資料儲存層140。 4 is a cross-sectional view showing an array structure of a three-dimensional memory according to a fourth embodiment of the present invention. Referring to FIG. 4, the array structure 100 of the three-dimensional memory of the present embodiment includes a stacked structure 130 (for example, by a plurality of first dielectric layers 110a, multiple layers, and second layers). The dielectric layer 110b is interleaved with the plurality of first conductive layers 120, the second conductive layer 150 and the data storage layer 140.

於本發明第四實施例的一種三維記憶體的陣列結構中,位於第一介電層110a處的孔洞133的孔徑為A1,位於第二介電層110b處的孔洞133的孔徑為A2,位於第一導電層120處的孔洞133的孔徑為B,孔徑為A1>B>A2。另外,第一介電層110a、第二介電層110b、第一導電層120、資料儲存層140與第二導電層150構成記憶胞160。此外,於本發明第四實施例的一種三維記憶體的陣列結構中,記憶胞160被第二介電層110b區分成兩個記憶胞160。 In the array structure of the three-dimensional memory of the fourth embodiment of the present invention, the aperture 133 at the first dielectric layer 110a has an aperture A1, and the aperture 133 at the second dielectric layer 110b has an aperture A2. The hole 133 at the first conductive layer 120 has a pore diameter B and a pore diameter of A1>B>A2. In addition, the first dielectric layer 110a, the second dielectric layer 110b, the first conductive layer 120, the data storage layer 140, and the second conductive layer 150 constitute a memory cell 160. Further, in an array structure of a three-dimensional memory according to a fourth embodiment of the present invention, the memory cell 160 is divided into two memory cells 160 by the second dielectric layer 110b.

以下,說明本發明的第五實施例的一種三維記憶體的陣列結構。在第五實施例中,構件與第三實施例相同者,給予相同的標號,並省略其詳細說明。以下只針對不同點做說明。 Hereinafter, an array structure of a three-dimensional memory according to a fifth embodiment of the present invention will be described. In the fifth embodiment, the same components as those in the third embodiment are given the same reference numerals, and the detailed description thereof will be omitted. The following only explains the different points.

圖5是本發明第五實施例的一種三維記憶體的陣列結構的剖面示意圖。請參閱圖5,本實施例的三維記憶體的陣列結構100包括由堆疊結構130(例如由多層第一介電層110a、多層第二介電層110b與多層第一導電層120交錯堆疊而成)、第二導電層150與資料儲存層140。 Fig. 5 is a cross-sectional view showing an array structure of a three-dimensional memory according to a fifth embodiment of the present invention. Referring to FIG. 5 , the array structure 100 of the three-dimensional memory of the present embodiment includes a stack structure 130 (eg, a plurality of first dielectric layers 110 a , a plurality of second dielectric layers 110 b , and a plurality of first conductive layers 120 are alternately stacked). ), the second conductive layer 150 and the data storage layer 140.

於本發明第五實施例的一種三維記憶體的陣列結構中,位於第一介電層110a處的孔洞133的孔徑為A1,位於第二介電層110b處的孔洞133的孔徑為A2,位於第一導電層120處的孔洞133的孔徑為B,孔徑為A1>A2>B。另外,第一介電層110、 第二介電層110b、第一導電層120、資料儲存層140與第二導電層150構成記憶胞160。此外,於本發明第五實施例的一種三維記憶體的陣列結構中,記憶胞160被第二介電層110b區分成兩個記憶胞160。 In the array structure of the three-dimensional memory of the fifth embodiment of the present invention, the aperture 133 at the first dielectric layer 110a has an aperture A1, and the aperture 133 at the second dielectric layer 110b has an aperture A2. The hole 133 at the first conductive layer 120 has a pore diameter B and a pore diameter of A1>A2>B. In addition, the first dielectric layer 110, The second dielectric layer 110b, the first conductive layer 120, the data storage layer 140, and the second conductive layer 150 constitute a memory cell 160. Further, in an array structure of a three-dimensional memory according to a fifth embodiment of the present invention, the memory cell 160 is divided into two memory cells 160 by the second dielectric layer 110b.

接著,說明本發明的三維記憶體的陣列結構的製造方法。在此實施例中,半導體元件是以電阻式記憶體為例進行說明,但並不用以限制本發明。 Next, a method of manufacturing the array structure of the three-dimensional memory of the present invention will be described. In this embodiment, the semiconductor element is described by taking a resistive memory as an example, but is not intended to limit the present invention.

圖6A至圖6E是本發明的一實施例的一種三維記憶體的陣列結構的製造方法的製程剖面圖。本實施例的三維記憶體的陣列結構的製造方法,包括:於基板200上形成由介電層110與第一導電層120交錯堆疊而成的堆疊結構130(圖6A);移除部分堆疊結構130,而形成孔洞133以貫穿所述堆疊結構130的各層(圖6B);接著移除孔洞133內的部分介電層110或第一導電層120,使所述孔洞133於介電層110與第一導電層120處分別具有不同的孔徑(圖6C);於孔洞133表面形成資料儲存層140(圖6D);以及形成第二導電層150,以填滿孔洞133(圖6E)。 6A to 6E are process cross-sectional views showing a method of fabricating an array structure of a three-dimensional memory according to an embodiment of the present invention. The method for fabricating the array structure of the three-dimensional memory of the present embodiment includes: forming a stacked structure 130 (FIG. 6A) formed by interleaving the dielectric layer 110 and the first conductive layer 120 on the substrate 200; removing a part of the stacked structure 130, holes 133 are formed to penetrate the layers of the stacked structure 130 (FIG. 6B); then a portion of the dielectric layer 110 or the first conductive layer 120 in the holes 133 is removed, and the holes 133 are formed in the dielectric layer 110. The first conductive layer 120 has different apertures respectively (FIG. 6C); a data storage layer 140 is formed on the surface of the hole 133 (FIG. 6D); and a second conductive layer 150 is formed to fill the hole 133 (FIG. 6E).

首先,參照圖6A,於一基板200上形成由介電層110與第一導電層120交錯堆疊而成的堆疊結構130。亦即,所述堆疊結構130是於基板200上,以介電層110、第一導電層120、介電層110、第一導電層120的順序堆疊所形成。其中,對於基板200並沒有特別地限制。舉例來說,可為任意的半導體基板,或可為具有其他膜層於其上的基板。 First, referring to FIG. 6A, a stacked structure 130 in which a dielectric layer 110 and a first conductive layer 120 are alternately stacked is formed on a substrate 200. That is, the stacked structure 130 is formed on the substrate 200 in the order of the dielectric layer 110, the first conductive layer 120, the dielectric layer 110, and the first conductive layer 120. However, the substrate 200 is not particularly limited. For example, it may be any semiconductor substrate, or may be a substrate having other film layers thereon.

堆疊結構130的形成方法包括如下:首先,於基板200上,可以採用化學氣相沈積法、熱氧化法或其組合來形成介電層110;然後,在堆疊有介電層110的基板上,可採用化學氣相沈積法來形成第一導電層120;接著,重複進行介電層110與第一導電層120的堆疊而形成堆疊結構130。介電層110的材質例如是氧化矽、氮化矽、氮氧化矽、氧化鋁、氧化鈦、氧化鉿或其組合等。第一導電層120的材質例如是多晶矽等。 The method for forming the stacked structure 130 includes the following steps. First, on the substrate 200, the dielectric layer 110 may be formed by chemical vapor deposition, thermal oxidation, or a combination thereof; then, on the substrate on which the dielectric layer 110 is stacked, The first conductive layer 120 may be formed by chemical vapor deposition; then, the stacking of the dielectric layer 110 and the first conductive layer 120 is repeated to form the stacked structure 130. The material of the dielectric layer 110 is, for example, cerium oxide, cerium nitride, cerium oxynitride, aluminum oxide, titanium oxide, cerium oxide or a combination thereof. The material of the first conductive layer 120 is, for example, polysilicon or the like.

接著,參照圖6B,將所形成的堆疊結構130進行圖案化而形成孔洞133。具體而言,堆疊結構130的孔洞133是藉由在形成有堆疊結構130的基板200上形成光阻層。接著,對形成有光阻層的堆疊結構130進行曝光,使得光阻層的光阻劑的溶解度改變。然後,進行顯影製程,去除溶解度較高的光阻層的部分,而獲得形成有所需圖案化的光阻層作為罩幕。接著,進行蝕刻製程,可利用例如是電漿蝕刻方法等的乾式蝕刻方法來形成一貫穿堆疊結構130的各層的孔洞133。最後,自形成有孔洞133的堆疊結構130上移除光阻層。 Next, referring to FIG. 6B, the formed stacked structure 130 is patterned to form a hole 133. Specifically, the holes 133 of the stacked structure 130 are formed by forming a photoresist layer on the substrate 200 on which the stacked structure 130 is formed. Next, the stacked structure 130 on which the photoresist layer is formed is exposed so that the solubility of the photoresist of the photoresist layer changes. Then, a developing process is performed to remove a portion of the photoresist layer having a higher solubility, and a photoresist layer formed with a desired pattern is obtained as a mask. Next, an etching process is performed, and a hole 133 penetrating each layer of the stacked structure 130 can be formed by a dry etching method such as a plasma etching method. Finally, the photoresist layer is removed from the stacked structure 130 in which the holes 133 are formed.

然後,參照圖6C,使孔洞133內具有不同孔徑。使孔洞133內具有不同孔徑的方法例如是進行濕式蝕刻法。舉例來說,將晶片浸沒於適當的蝕刻劑中,或將蝕刻劑噴灑至晶片上,經由蝕刻劑與被蝕刻物間的化學反應,來進行等向性蝕刻。並且,可透過選用具有蝕刻選擇性的蝕刻液,調控對於介電層110或第一導電層120的蝕刻程度,例如使用硝酸、氫氟酸等蝕刻液來移除部 分介電層110或第一導電層120,使孔洞133於介電層110與第一導電層120處分別具有不同的孔徑。其中,位於介電層110處的孔徑為A,位於第一導電層120處的孔徑為B。孔徑的大小可根據產品需求而決定,可使用單一的蝕刻液或混合兩種以上的蝕刻液,或經多步蝕刻製程來形成所需的孔徑的大小。舉例來說,可形成如圖1A與1B所示,孔徑為A>B;如圖2A與2B所示,孔徑為A<B。 Then, referring to FIG. 6C, the holes 133 have different apertures therein. A method of making the pores 133 have different pore diameters is, for example, a wet etching method. For example, the wafer is immersed in a suitable etchant, or an etchant is sprayed onto the wafer, and an isotropic etch is performed via a chemical reaction between the etchant and the object to be etched. Moreover, the etching degree to the dielectric layer 110 or the first conductive layer 120 can be adjusted by using an etching solution having an etch selectivity, for example, using an etching solution such as nitric acid or hydrofluoric acid to remove the portion. Dividing the dielectric layer 110 or the first conductive layer 120 such that the holes 133 have different apertures at the dielectric layer 110 and the first conductive layer 120, respectively. Wherein, the aperture at the dielectric layer 110 is A, and the aperture at the first conductive layer 120 is B. The size of the aperture can be determined according to the requirements of the product, and a single etching solution or a mixture of two or more etching liquids or a multi-step etching process can be used to form a desired aperture size. For example, as shown in FIGS. 1A and 1B, the aperture is A>B; as shown in FIGS. 2A and 2B, the aperture is A<B.

此外,在本發明一實施例中,如圖3至圖5所示,介電層可為不同材質的第一介電層110a與第二介電層110b。可透過選用具有蝕刻選擇性的蝕刻液,調控對於第一介電層110a、第二介電層110b與第一導電層120的蝕刻程度,例如使用硝酸、氫氟酸等蝕刻液來移除部分第一介電層110a、第二介電層110b與第一導電層120,使孔洞133於第一介電層110a、第二介電層110b與第一導電層120處分別具有不同的孔徑。其中,位於第一介電層處的孔徑為A1,位於第二介電層處的孔徑為A2,位於第一導電層120處的孔徑為B。孔徑的大小可根據產品需求而決定,可使用單一的蝕刻液或混合兩種以上的蝕刻液,或經多步蝕刻製程來形成所需的孔徑的大小。舉例來說,可形成如圖3A與3B所示,孔徑為A1>B=A2;如圖4所示,孔徑為A1>B>A2;如圖5所示,孔徑為A1>A2>B。 In addition, in an embodiment of the invention, as shown in FIG. 3 to FIG. 5 , the dielectric layer may be the first dielectric layer 110 a and the second dielectric layer 110 b of different materials. The etching degree of the first dielectric layer 110a, the second dielectric layer 110b and the first conductive layer 120 can be adjusted by using an etchant having an etch selectivity, for example, an etching solution such as nitric acid or hydrofluoric acid is used to remove a portion. The first dielectric layer 110a, the second dielectric layer 110b and the first conductive layer 120 have holes 133 having different apertures at the first dielectric layer 110a, the second dielectric layer 110b and the first conductive layer 120, respectively. The aperture at the first dielectric layer is A1, the aperture at the second dielectric layer is A2, and the aperture at the first conductive layer 120 is B. The size of the aperture can be determined according to the requirements of the product, and a single etching solution or a mixture of two or more etching liquids or a multi-step etching process can be used to form a desired aperture size. For example, as shown in FIGS. 3A and 3B, the aperture is A1>B=A2; as shown in FIG. 4, the aperture is A1>B>A2; as shown in FIG. 5, the aperture is A1>A2>B.

接著,參照圖6D,於孔洞133所暴露的堆疊結構130的表面形成資料儲存層140。資料儲存層140的形成方法例如是化學 氣相沈積法、熱氧化法或其組合。其中,資料儲存層140若為電阻式隨機存取記憶體(RRAM)的情況下,則資料儲存層140為可藉由外加偏壓來改變電阻值,以執行寫入與抹除的動作的材質。此外,資料儲存層140若為磁電阻式隨機存取記憶體(MRAM)的情況下,則資料儲存層為藉由磁電阻式質儲存記憶資料的材質。另外,資料儲存層亦可為利用電容的原理來儲存記憶資料,例如可用於快閃記憶體(flash)或動態隨機存取記憶體(Dynamic Random Access Memory,DRAM)等。 Next, referring to FIG. 6D, a material storage layer 140 is formed on the surface of the stacked structure 130 exposed by the holes 133. The method of forming the data storage layer 140 is, for example, chemistry. A vapor deposition method, a thermal oxidation method, or a combination thereof. Wherein, if the data storage layer 140 is a resistive random access memory (RRAM), the data storage layer 140 is a material that can change the resistance value by applying a bias voltage to perform writing and erasing operations. . In addition, if the data storage layer 140 is a magnetoresistive random access memory (MRAM), the data storage layer is a material for storing the memory data by the magnetoresistive quality. In addition, the data storage layer can also store memory data by using the principle of capacitance, for example, can be used for flash memory or dynamic random access memory (DRAM).

參照圖6E,於孔洞133中形成第二導電層150。第二導電層150填滿孔洞133。另外,第二導電層150的材質例如是多晶矽等。第二導電層150的形成方法,例如是化學氣相沉積法並且利用化學機械研磨進行平坦化製程。 Referring to FIG. 6E, a second conductive layer 150 is formed in the hole 133. The second conductive layer 150 fills the holes 133. In addition, the material of the second conductive layer 150 is, for example, polysilicon or the like. The method of forming the second conductive layer 150 is, for example, a chemical vapor deposition method and a planarization process using chemical mechanical polishing.

綜上所述,本發明提供一種三維記憶體的陣列結構與其製造方法,藉由利用濕式蝕刻法形成具有凹陷的結構,無需使用種子層就可使資料儲存層設置在孔洞中的表面,因此可以大幅簡化製程步驟而降低記憶體的生產成本。此外,因為少了種子層亦可有效降低通孔電極的電阻值。並且可透過所形成的具有凹陷的結構增加記憶胞的面積與控制記憶胞的形狀來微調記憶胞的電場產生,而增加記憶胞的效能。例如,用於電阻式隨機存取記憶體(RRAM)可有效改善記憶胞的效能,透過增加記憶胞面積將具有小的形成電壓與較大的開電流。因此,本發明的三維記憶體的陣列結構與其製造方法可用於下一個世代記憶體的製造,對於例如 三維電阻式隨機存取記憶體、三維氧化矽/氮化矽/氧化矽/矽快閃記憶體(Silicon-Oxide-Nitride-Oxide-Silicon,SONOS flash)與三維磁電阻式隨機存取記憶體(Magnetoresistive Random Access Memory,MRAM)等的技術發展將有重大的助益。 In summary, the present invention provides an array structure of a three-dimensional memory and a method of fabricating the same, by forming a structure having a recess by a wet etching method, and the data storage layer can be disposed on a surface in the hole without using a seed layer, The process steps can be greatly simplified and the production cost of the memory can be reduced. In addition, the resistance value of the via electrode can be effectively reduced because the seed layer is reduced. Moreover, the electric field generation of the memory cell can be finely adjusted by increasing the area of the memory cell and controlling the shape of the memory cell through the formed recessed structure, thereby increasing the efficiency of the memory cell. For example, the use of resistive random access memory (RRAM) can effectively improve the performance of the memory cell, and will have a small formation voltage and a large on-current by increasing the memory cell area. Therefore, the array structure of the three-dimensional memory of the present invention and the manufacturing method thereof can be used for the manufacture of the next generation memory, for example Three-dimensional resistive random access memory, three-dimensional yttrium oxide/tantalum nitride/yttria/silicon flash memory (Silicon-Oxide-Nitride-Oxide-Silicon, SONOS flash) and three-dimensional magnetoresistive random access memory ( Technological developments such as Magnetoresistive Random Access Memory (MRAM) will be of great help.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.

100‧‧‧三維記憶體的陣列結構 100‧‧‧Three-dimensional memory array structure

110‧‧‧介電層 110‧‧‧ dielectric layer

120‧‧‧第一導電層 120‧‧‧First conductive layer

130‧‧‧堆疊結構 130‧‧‧Stack structure

133‧‧‧孔洞 133‧‧‧ holes

140‧‧‧資料儲存層 140‧‧‧Data storage layer

150‧‧‧第二導電層 150‧‧‧Second conductive layer

160‧‧‧記憶胞 160‧‧‧ memory cells

A、B‧‧‧孔徑 A, B‧‧‧ aperture

Claims (20)

一種三維記憶體的陣列結構,包括:堆疊結構,為由介電層與第一導電層交錯堆疊而成的結構,其中所述堆疊結構具有孔洞貫穿所述堆疊結構的各層,且所述孔洞於所述介電層與所述第一導電層處分別具有不同的孔徑;第二導電層,設置於所述堆疊結構中的所述孔洞;以及資料儲存層,設置於所述堆疊結構與所述第二導電層之間。 An array structure of a three-dimensional memory, comprising: a stacked structure, a structure in which a dielectric layer and a first conductive layer are alternately stacked, wherein the stacked structure has holes penetrating through layers of the stacked structure, and the holes are The dielectric layer and the first conductive layer respectively have different apertures; a second conductive layer disposed in the hole in the stacked structure; and a data storage layer disposed on the stacked structure and the Between the second conductive layers. 如申請專利範圍第1項所述的三維記憶體的陣列結構,其中位於所述介電層處的孔徑為A,位於所述第一導電層處的孔徑為B,且孔徑為A>B。 The array structure of the three-dimensional memory according to claim 1, wherein the aperture at the dielectric layer is A, the aperture at the first conductive layer is B, and the aperture is A>B. 如申請專利範圍第1項所述的三維記憶體的陣列結構,其中位於所述介電層處的孔徑為A,位於所述第一導電層處的孔徑為B,且孔徑為A<B。 The array structure of the three-dimensional memory according to claim 1, wherein the aperture at the dielectric layer is A, the aperture at the first conductive layer is B, and the aperture is A<B. 如申請專利範圍第1項所述的三維記憶體的陣列結構,其中所述介電層更包括第一介電層與第二介電層,並且所述堆疊結構以所述第一介電層、所述第一導電層、所述第二介電層以及所述第一導電層的次序堆疊,且所述孔洞於所述第一介電層、所述第二介電層與所述第一導電層處分別具有不同的孔徑。 The array structure of the three-dimensional memory of claim 1, wherein the dielectric layer further comprises a first dielectric layer and a second dielectric layer, and the stacked structure is the first dielectric layer And sequentially stacking the first conductive layer, the second dielectric layer, and the first conductive layer, and the holes are in the first dielectric layer, the second dielectric layer, and the first Each of the conductive layers has a different aperture. 如申請專利範圍第4項所述的三維記憶體的陣列結構,其中位於所述第一介電層處的孔徑為A1,位於所述第二介電層處的孔徑為A2,位於所述第一導電層處的孔徑為B,且孔徑為A1>A2>B。 The array structure of the three-dimensional memory of claim 4, wherein the aperture at the first dielectric layer is A1, and the aperture at the second dielectric layer is A2, located at the The pore size at a conductive layer is B, and the pore diameter is A1>A2>B. 如申請專利範圍第4項所述的三維記憶體的陣列結構,其中位於所述第一介電層處的孔徑為A1,位於所述第二介電層處的孔徑為A2,位於所述第一導電層處的孔徑為B,且孔徑為A1>B≧A2。 The array structure of the three-dimensional memory of claim 4, wherein the aperture at the first dielectric layer is A1, and the aperture at the second dielectric layer is A2, located at the The pore size at a conductive layer is B, and the pore diameter is A1>B≧A2. 如申請專利範圍第1項所述的三維記憶體的陣列結構,其中所述介電層的材質為氧化矽、氮化矽、氮氧化矽、氧化鋁、氧化鈦、氧化鉿或其組合。 The array structure of the three-dimensional memory according to claim 1, wherein the dielectric layer is made of cerium oxide, cerium nitride, cerium oxynitride, aluminum oxide, titanium oxide, cerium oxide or a combination thereof. 如申請專利範圍第4項至所述的三維記憶體的陣列結構,其中所述第一介電層的材質為氧化矽,所述第二介電層的材質為氮化矽。 The array structure of the three-dimensional memory according to the fourth aspect of the invention, wherein the material of the first dielectric layer is yttrium oxide and the material of the second dielectric layer is tantalum nitride. 如申請專利範圍第1項所述的三維記憶體的陣列結構,其中所述第一導電層與所述第二導電層的材質為多晶矽。 The array structure of the three-dimensional memory according to claim 1, wherein the material of the first conductive layer and the second conductive layer is polysilicon. 一種三維記憶體陣列結構的製造方法,包括:於基板上形成由介電層與第一導電層交錯堆疊而成的堆疊結構;移除部分所述堆疊結構,而形成孔洞以貫穿所述堆疊結構的各層;移除部分所述介電層或所述第一導電層,使所述孔洞於所述介電層與所述第一導電層處分別具有不同的孔徑;於所述孔洞表面形成資料儲存層;以及形成第二導電層,以填滿所述孔洞。 A method for fabricating a three-dimensional memory array structure includes: forming a stacked structure in which a dielectric layer and a first conductive layer are alternately stacked on a substrate; removing a portion of the stacked structure to form a hole to penetrate the stacked structure Removing a portion of the dielectric layer or the first conductive layer such that the holes have different apertures at the dielectric layer and the first conductive layer; forming data on the surface of the hole a storage layer; and a second conductive layer is formed to fill the holes. 如申請專利範圍第10項所述的三維記憶體陣列結構的製 造方法,其中位於所述介電層處的孔徑為A,位於所述第一導電層處的孔徑為B,且孔徑為A>B。 The system of three-dimensional memory array structure as described in claim 10 The method wherein the pore size at the dielectric layer is A, the pore size at the first conductive layer is B, and the pore diameter is A>B. 如申請專利範圍第10項所述的三維記憶體陣列結構的製造方法,其中位於所述介電層處的孔徑為A,位於所述第一導電層處的孔徑為B,且孔徑為A<B。 The method of fabricating a three-dimensional memory array structure according to claim 10, wherein the aperture at the dielectric layer is A, the aperture at the first conductive layer is B, and the aperture is A< B. 如申請專利範圍第10項所述的三維記憶體陣列結構的製造方法,其中所述介電層更包括第一介電層與第二介電層,並且所述堆疊結構以所述第一介電層、所述第一導電層、所述第二介電層與所述第一導電層的次序堆疊。 The method of fabricating a three-dimensional memory array structure according to claim 10, wherein the dielectric layer further comprises a first dielectric layer and a second dielectric layer, and the stacked structure is the first dielectric layer The electrical layer, the first conductive layer, the second dielectric layer and the first conductive layer are stacked in the order. 如申請專利範圍第13項所述的三維記憶體陣列結構的製造方法,其中位於所述第一介電層處的孔徑為A1,位於所述第二介電層處的孔徑為A2,位於所述第一導電層處的孔徑為B,且孔徑為A1>A2>B。 The method for fabricating a three-dimensional memory array structure according to claim 13, wherein the aperture at the first dielectric layer is A1, and the aperture at the second dielectric layer is A2. The aperture at the first conductive layer is B, and the aperture is A1>A2>B. 如申請專利範圍第13項所述的三維記憶體陣列結構的製造方法,其中位於所述第一介電層處的孔徑為A1,位於所述第二介電層處的孔徑為A2,位於所述第一導電層處的孔徑為B,且孔徑為A1>B≧A2。 The method for fabricating a three-dimensional memory array structure according to claim 13, wherein the aperture at the first dielectric layer is A1, and the aperture at the second dielectric layer is A2. The pore size at the first conductive layer is B, and the pore diameter is A1>B≧A2. 如申請專利範圍第10項所述的三維記憶體陣列結構的製造方法,其中所述介電層的材質為氧化矽、氮化矽、氮氧化矽、氧化鋁、氧化鈦、氧化鉿或其組合。 The method for fabricating a three-dimensional memory array structure according to claim 10, wherein the dielectric layer is made of yttrium oxide, lanthanum nitride, lanthanum oxynitride, aluminum oxide, titanium oxide, cerium oxide or a combination thereof. . 如申請專利範圍第13項所述的三維記憶體陣列結構的製造方法,其中所述第一介電層的材質為氧化矽,所述第二介電層 的材質為氮化矽。 The method for fabricating a three-dimensional memory array structure according to claim 13, wherein the first dielectric layer is made of yttrium oxide, and the second dielectric layer is used. The material is tantalum nitride. 如申請專利範圍第10項所述的三維記憶體陣列結構的製造方法,其中所述第一導電層與所述第二導電層的材質為多晶矽。 The method for fabricating a three-dimensional memory array structure according to claim 10, wherein the material of the first conductive layer and the second conductive layer is polysilicon. 如申請專利範圍第10項所述的三維記憶體陣列結構的製造方法,其中移除部分所述介電層或所述第一導電層的方法包括濕式蝕刻法。 The method of fabricating a three-dimensional memory array structure according to claim 10, wherein the method of removing a portion of the dielectric layer or the first conductive layer comprises a wet etching method. 如申請專利範圍第10項所述的三維記憶體陣列結構的製造方法,其中所述資料儲存層的材質為氧化矽、氮化矽、氮氧化矽、氧化鋁、氧化鈦、氧化鉿、氧化鎂、鈷鐵硼(CoFeB)、鈷鐵(CoFe)、釕(Ru)、鉑錳合金(PtMn)或其組合。 The method for fabricating a three-dimensional memory array structure according to claim 10, wherein the material storage layer is made of yttrium oxide, lanthanum nitride, yttrium oxynitride, aluminum oxide, titanium oxide, cerium oxide, magnesium oxide. Cobalt iron boron (CoFeB), cobalt iron (CoFe), ruthenium (Ru), platinum manganese alloy (PtMn) or a combination thereof.
TW103129178A 2014-08-25 2014-08-25 Architecture for 3d memory array and method for manufacturing the same TWI542055B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW103129178A TWI542055B (en) 2014-08-25 2014-08-25 Architecture for 3d memory array and method for manufacturing the same
CN201410529392.0A CN105374383B (en) 2014-08-25 2014-10-10 Array structure of three-dimensional memory and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103129178A TWI542055B (en) 2014-08-25 2014-08-25 Architecture for 3d memory array and method for manufacturing the same

Publications (2)

Publication Number Publication Date
TW201608749A true TW201608749A (en) 2016-03-01
TWI542055B TWI542055B (en) 2016-07-11

Family

ID=55376507

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103129178A TWI542055B (en) 2014-08-25 2014-08-25 Architecture for 3d memory array and method for manufacturing the same

Country Status (2)

Country Link
CN (1) CN105374383B (en)
TW (1) TWI542055B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10964718B2 (en) 2019-03-29 2021-03-30 Yangtze Memory Technologies Co., Ltd. Three-dimensional memory devices and fabrication methods thereof
TWI724512B (en) * 2019-03-29 2021-04-11 大陸商長江存儲科技有限責任公司 Three-dimensional memory devices and fabrication methods thereof
US11004861B2 (en) 2019-03-29 2021-05-11 Yangtze Memory Technologies Co., Ltd. Three-dimensional memory devices and fabrication methods thereof
US11011540B2 (en) 2019-03-29 2021-05-18 Yangtze Memory Technologies Co., Ltd. Three-dimensional memory devices and fabrication methods thereof
US11081496B2 (en) 2019-03-29 2021-08-03 Yangtze Memory Technologies Co., Ltd. Three-dimensional memory devices and fabrication methods thereof
US11665903B2 (en) 2019-03-29 2023-05-30 Yangtze Memory Technologies Co., Ltd. Three-dimensional memory devices and fabrication methods thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109585645B (en) * 2017-09-28 2020-09-22 中电海康集团有限公司 MTJ device, manufacturing method thereof and MRAM

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8304755B2 (en) * 2009-02-18 2012-11-06 Macronix International Co., Ltd. Three-dimensional semiconductor structure
US8173987B2 (en) * 2009-04-27 2012-05-08 Macronix International Co., Ltd. Integrated circuit 3D phase change memory array and manufacturing method
US8383512B2 (en) * 2011-01-19 2013-02-26 Macronix International Co., Ltd. Method for making multilayer connection structure
CN103367127B (en) * 2012-04-11 2015-10-21 旺宏电子股份有限公司 Semiconductor structure and manufacture method thereof
US9343469B2 (en) * 2012-06-27 2016-05-17 Intel Corporation Three dimensional NAND flash with self-aligned select gate
CN103730470B (en) * 2012-10-16 2016-02-10 旺宏电子股份有限公司 3-D stacks semiconductor structure and manufacture method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10964718B2 (en) 2019-03-29 2021-03-30 Yangtze Memory Technologies Co., Ltd. Three-dimensional memory devices and fabrication methods thereof
TWI724512B (en) * 2019-03-29 2021-04-11 大陸商長江存儲科技有限責任公司 Three-dimensional memory devices and fabrication methods thereof
US11004861B2 (en) 2019-03-29 2021-05-11 Yangtze Memory Technologies Co., Ltd. Three-dimensional memory devices and fabrication methods thereof
US11011540B2 (en) 2019-03-29 2021-05-18 Yangtze Memory Technologies Co., Ltd. Three-dimensional memory devices and fabrication methods thereof
US11081496B2 (en) 2019-03-29 2021-08-03 Yangtze Memory Technologies Co., Ltd. Three-dimensional memory devices and fabrication methods thereof
US11462565B2 (en) 2019-03-29 2022-10-04 Yangtze Memory Technologies Co., Ltd. Three-dimensional memory devices and fabrication methods thereof
US11502102B2 (en) 2019-03-29 2022-11-15 Yangtze Memory Technologies Co., Ltd. Three-dimensional memory devices and fabrication methods thereof
US11581332B2 (en) 2019-03-29 2023-02-14 Yangtze Memory Technologies Co., Ltd. Three-dimensional memory devices and fabrication methods thereof
US11665903B2 (en) 2019-03-29 2023-05-30 Yangtze Memory Technologies Co., Ltd. Three-dimensional memory devices and fabrication methods thereof
US11943923B2 (en) 2019-03-29 2024-03-26 Yangtze Memory Technologies Co., Ltd. Three-dimensional memory devices and fabrication methods thereof

Also Published As

Publication number Publication date
CN105374383A (en) 2016-03-02
TWI542055B (en) 2016-07-11
CN105374383B (en) 2017-11-10

Similar Documents

Publication Publication Date Title
TWI542055B (en) Architecture for 3d memory array and method for manufacturing the same
JP6987876B2 (en) Memory device and method
CN105845821B (en) Autoregistration magnetic random access memory (MRAM) structure that technique damage minimizes
JP4763858B2 (en) Manufacturing method of semiconductor memory
CN106252505B (en) RRAM device and method
CN101267002B (en) Non-volatile memory element and its fabrication method
TWI413237B (en) Magnetoresistive random access memory element and fabrication method thereof
JP6009971B2 (en) Semiconductor memory device and manufacturing method thereof
US10096654B2 (en) Three-dimensional resistive random access memory containing self-aligned memory elements
CN103066204B (en) Phase change memory device and the manufacture method of semiconductor device
CN110211965A (en) 3D nand memory and forming method thereof
JP2014216553A (en) Resistance change storage device
TW202218129A (en) Method of manufacturing three-dimensional memory device
JP6640147B2 (en) Method for additive formation of STT-MRAM stack
JP2022019661A (en) Three-dimensional memory device and method
JP2013065772A (en) Semiconductor device manufacturing method
US20150280121A1 (en) Non-volatile memory device and methods for fabricating the same
US10593870B2 (en) Sidewall image transfer on magnetic tunnel junction stack for magnetoresistive random-access memory patterning
CN108376690B (en) Self-aligned interconnection method for manufacturing high-density MRAM
US9502422B2 (en) Electromechanical nonvolatile memory
KR20230037441A (en) Gate end cap and boundary placement in transistor structures for n-metal oxide semiconductor (n-mos) performance tuning
JP2022022181A (en) Three-dimensional memory device and method
CN109962158A (en) A kind of production method of small-size magnetic random access memory
TW201606943A (en) Memory device and method for fabricating the same
TWI499008B (en) Resistive random access memory device and fabrications thereof