TWI499008B - Resistive random access memory device and fabrications thereof - Google Patents

Resistive random access memory device and fabrications thereof Download PDF

Info

Publication number
TWI499008B
TWI499008B TW102135794A TW102135794A TWI499008B TW I499008 B TWI499008 B TW I499008B TW 102135794 A TW102135794 A TW 102135794A TW 102135794 A TW102135794 A TW 102135794A TW I499008 B TWI499008 B TW I499008B
Authority
TW
Taiwan
Prior art keywords
mask
layer
volatile memory
memory device
opening
Prior art date
Application number
TW102135794A
Other languages
Chinese (zh)
Other versions
TW201515155A (en
Inventor
Bo Lun Wu
Ting Ying Shen
Yen De Lee
Original Assignee
Winbond Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Winbond Electronics Corp filed Critical Winbond Electronics Corp
Priority to TW102135794A priority Critical patent/TWI499008B/en
Publication of TW201515155A publication Critical patent/TW201515155A/en
Application granted granted Critical
Publication of TWI499008B publication Critical patent/TWI499008B/en

Links

Landscapes

  • Semiconductor Memories (AREA)

Description

電阻式非揮發性記憶體裝置及其製作方法Resistive non-volatile memory device and manufacturing method thereof

本發明係有關於一種半導體裝置及其製作方法,特別是關於一種電阻式非揮發性記憶體裝置及其製作方法。The present invention relates to a semiconductor device and a method of fabricating the same, and more particularly to a resistive non-volatile memory device and a method of fabricating the same.

近年來,手機、數位相機和MP3隨身聽等消費性電子產品逐漸流行,使得非揮發性記憶體需求量大增。目前市場上的非揮發性記憶體仍以快閃式記憶體(Flash Memory)為主流,但其有操作電壓大、操作速度慢、資料保存性差等缺點,限制快閃式記憶體未來的發展。In recent years, consumer electronics such as mobile phones, digital cameras and MP3 players have become popular, making the demand for non-volatile memory increasing. Currently, non-volatile memory on the market still uses flash memory as the mainstream, but it has disadvantages such as large operating voltage, slow operation speed, and poor data storage, which limits the future development of flash memory.

目前已有許多新式非揮發性記憶體材料和裝置正被積極研發中,包括磁記憶體(MRAM)、相變化記憶體(OUM)和電阻式記憶體(RRAM)等。其中電阻式非揮發性記憶體具有功率消耗低、操作電壓低、寫入抹除時間短、耐久度長、記憶時間長、非破壞性讀取、多狀態記憶、裝置製程簡單及可微縮性等優點。A number of new non-volatile memory materials and devices are currently being actively developed, including magnetic memory (MRAM), phase change memory (OUM), and resistive memory (RRAM). The resistive non-volatile memory has low power consumption, low operating voltage, short write erasing time, long durability, long memory time, non-destructive reading, multi-state memory, simple device process and scalability. advantage.

根據上述,業界需要一電阻式非揮發性記憶體裝置及相關製作方法,可解決製程相關的問題,以得到較佳的可靠度。According to the above, the industry needs a resistive non-volatile memory device and related manufacturing methods to solve process-related problems for better reliability.

本發明提供一種電阻式非揮發性記憶體裝置之製作方法,包括:提供一基底,其中基底上包括一下電極層、一電阻轉換層、一上電極層和一第一罩幕;形成一層間介電層於基底上方;形成一第二罩幕於層間介電層上;利用第二罩幕作為蝕刻罩幕,蝕刻層間介電層,以形成一開口,其暴露第一罩幕;形成一間隙壁層於開口之底部和側壁上;移除開口底部上之部分間隙壁層;進行一等向性蝕刻,移除開口中的第一罩幕。The invention provides a method for fabricating a resistive non-volatile memory device, comprising: providing a substrate, wherein the substrate comprises a lower electrode layer, a resistance conversion layer, an upper electrode layer and a first mask; The electric layer is above the substrate; a second mask is formed on the interlayer dielectric layer; and the interlayer dielectric layer is etched by using the second mask as an etching mask to form an opening exposing the first mask; forming a gap The wall layer is on the bottom and the side walls of the opening; a portion of the spacer layer on the bottom of the opening is removed; an isotropic etching is performed to remove the first mask in the opening.

本發明提供一種電阻式非揮發性記憶體裝置,包括:一基底;一下電極層、一電阻轉換層和一上電極層,位於基底上;一第一罩幕,位於上電極層上;一層間介電層,位於第一罩幕和基底上;一開口,貫穿層間介電層和第一罩幕,暴露上電極層;一間隙壁,位於開口中,且在第一罩幕上方之部分開口側壁上;及一導電插塞,位於開口中。The present invention provides a resistive non-volatile memory device comprising: a substrate; a lower electrode layer, a resistance conversion layer and an upper electrode layer on the substrate; a first mask on the upper electrode layer; a dielectric layer on the first mask and the substrate; an opening extending through the interlayer dielectric layer and the first mask to expose the upper electrode layer; a spacer wall located in the opening and partially opening above the first mask a sidewall; and a conductive plug located in the opening.

102‧‧‧基底102‧‧‧Base

104‧‧‧下電極層104‧‧‧ lower electrode layer

106‧‧‧電阻轉換層106‧‧‧resistive conversion layer

108‧‧‧上電極層108‧‧‧Upper electrode layer

110‧‧‧第一罩幕110‧‧‧First curtain

112‧‧‧阻障層112‧‧‧Barrier layer

114‧‧‧層間介電層114‧‧‧Interlayer dielectric layer

116‧‧‧第二罩幕116‧‧‧Second curtain

118‧‧‧開口118‧‧‧ openings

120‧‧‧襯層120‧‧‧ lining

122‧‧‧導電插塞122‧‧‧conductive plug

302‧‧‧基底302‧‧‧Base

304‧‧‧下電極層304‧‧‧ lower electrode layer

306‧‧‧電阻轉換層306‧‧‧resistive conversion layer

308‧‧‧上電極層308‧‧‧Upper electrode layer

310‧‧‧第一罩幕310‧‧‧First curtain

312‧‧‧阻障層312‧‧‧Barrier layer

314‧‧‧層間介電層314‧‧‧Interlayer dielectric layer

316‧‧‧第二罩幕316‧‧‧second curtain

318‧‧‧開口318‧‧‧ openings

318’‧‧‧開口318’‧‧‧ openings

319‧‧‧間隙壁層319‧‧‧ clearance layer

319’‧‧‧間隙壁319’‧‧‧

320‧‧‧襯層320‧‧‧ lining

322‧‧‧導電插塞322‧‧‧conductive plug

第1A圖~第1D圖揭示一電阻式非揮發性記憶體之製作中間階段的剖面圖。1A to 1D are cross-sectional views showing an intermediate stage of fabrication of a resistive non-volatile memory.

第2圖顯示上述第1A~1D電阻式非揮發性記憶體之電流電壓曲線圖。Fig. 2 is a graph showing current and voltage curves of the first A to 1D resistive non-volatile memory.

第3A圖~第3D圖描述一電阻式非揮發性記憶體裝置之製作中間階段的剖面圖。3A to 3D are cross-sectional views showing an intermediate stage of fabrication of a resistive non-volatile memory device.

第4圖顯示第1A~1D圖電阻式非揮發性記憶體裝置和 第3A~3D圖電阻式非揮發性記憶體裝置累積分布函數和漏電流之關係圖。Figure 4 shows the 1A~1D resistive non-volatile memory device and Fig. 3A~3D diagram showing the relationship between the cumulative distribution function and the leakage current of the resistive non-volatile memory device.

第5圖顯示一電阻式非揮發性記憶體裝置之製作中間階段的剖面圖。Figure 5 is a cross-sectional view showing the intermediate stage of fabrication of a resistive non-volatile memory device.

第6A圖~第6G圖顯示本發明一實施例電阻式非揮發性記憶體裝置製作中間階段的剖面圖。6A to 6G are cross-sectional views showing an intermediate stage of fabrication of a resistive non-volatile memory device in accordance with an embodiment of the present invention.

以下詳細討論實施本發明之實施例。可以理解的是,實施例提供許多可應用的發明概念,其可以較廣的變化實施。所討論之特定實施例僅用來發明使用實施例的特定方法,而不用來限定發明的範疇。為讓本發明之特徵能更明顯易懂,下文特舉實施例,並配合所附圖式,作詳細說明如下:Embodiments embodying the invention are discussed in detail below. It will be appreciated that the embodiments provide many applicable inventive concepts that can be implemented in a wide variety of variations. The specific embodiments discussed are merely illustrative of specific ways to use the embodiments and are not intended to limit the scope of the invention. In order to make the features of the present invention more comprehensible, the following detailed description of the embodiments and the accompanying drawings

以下根據第1A圖~第1D圖揭示一電阻式非揮發性記憶體裝置之製作方法。首先,請參照第1A圖,提供一基底102,依序形成一下電極層104、一電阻轉換層106和一上電極層108於基底102上。接著,形成第一罩幕110於上電極層108上。以第一罩幕110作為一蝕刻罩幕,進行一蝕刻製程,圖案化下電極層104、電阻轉換層106和上電極層108。請參照第1B圖,順應性地形成一阻障層112於基底102和第一罩幕110上,毯覆性地形成一層間介電層114於阻障層112上。請參照第1C圖,形成一第二罩幕116於層間介電層114上。後續,以第二罩幕116作為一蝕刻罩幕,進行一乾蝕刻(非等向性蝕刻)製程,依序蝕刻層間介電層 114、阻障層112和第一罩幕110,使開口118暴露上電極層108。接著,請參照第1D圖,於上述開口118中形成一襯層120和導電插塞122,以提供上電極層108與外部之電路電性連接。Hereinafter, a method of fabricating a resistive non-volatile memory device will be disclosed based on FIGS. 1A to 1D. First, referring to FIG. 1A, a substrate 102 is provided, and a lower electrode layer 104, a resistance conversion layer 106 and an upper electrode layer 108 are sequentially formed on the substrate 102. Next, a first mask 110 is formed on the upper electrode layer 108. The first mask 110 is used as an etching mask, and an etching process is performed to pattern the lower electrode layer 104, the resistance conversion layer 106 and the upper electrode layer 108. Referring to FIG. 1B, a barrier layer 112 is formed conformally on the substrate 102 and the first mask 110 to form an interlayer dielectric layer 114 on the barrier layer 112. Referring to FIG. 1C, a second mask 116 is formed on the interlayer dielectric layer 114. Subsequently, the second mask 116 is used as an etching mask to perform a dry etching (non-isotropic etching) process to sequentially etch the interlayer dielectric layer. 114, the barrier layer 112 and the first mask 110 expose the opening 118 to the upper electrode layer 108. Next, referring to FIG. 1D, a liner 120 and a conductive plug 122 are formed in the opening 118 to provide an electrical connection between the upper electrode layer 108 and an external circuit.

第2圖顯示上述第1A~1D電阻式非揮發性記憶體之電流電壓曲線圖。如第2圖所示,此電阻式非揮發性記憶體顯示不均勻的電流-電壓分佈,其可能的原因為乾蝕刻製程對上電極層造成損傷,使得電荷累積在下電極層、電阻轉換層和上電極層之結構中,造成裝置可靠度的問題。Fig. 2 is a graph showing current and voltage curves of the first A to 1D resistive non-volatile memory. As shown in Figure 2, the resistive non-volatile memory exhibits a non-uniform current-voltage distribution. The possible cause is that the dry etching process damages the upper electrode layer, causing charge accumulation in the lower electrode layer, the resistance conversion layer, and The structure of the upper electrode layer causes a problem of device reliability.

以下根據第3A圖~第3D圖描述一電阻式非揮發性記憶體裝置之製作方法。首先,請參照第3A圖,提供一基底302,依序形成一下電極層304、一電阻轉換層306和一上電極層308於基底302上。接著,形成氧化矽之第一罩幕310於上電極層308上。以第一罩幕310作為蝕刻罩幕,進行一蝕刻製程,圖案化下電極層304、電阻轉換層306和上電極層308。請參照第3B圖,順應性地形成一阻障層312於基底302和第一罩幕310上,毯覆性地形成一層間介電層314於阻障層312上。請參照第3C圖,形成一第二罩幕316於層間介電層314上。後續,以第二罩幕316作為一蝕刻罩幕,進行一乾蝕刻(非等向性蝕刻)製程,依序蝕刻層間介電層314和阻障層312以形成一開口318,且使此乾蝕刻製程停止在第一罩幕310。後續,如第3D圖所示,進行一例如浸泡氫氟酸之濕蝕刻製程,使開口318暴露出上 電極層。上述製程由於採用濕蝕刻製程移除第一罩幕310,因此,對於上電極層308之損傷較小。Hereinafter, a method of fabricating a resistive non-volatile memory device will be described based on FIGS. 3A to 3D. First, referring to FIG. 3A, a substrate 302 is provided, and a lower electrode layer 304, a resistance conversion layer 306 and an upper electrode layer 308 are sequentially formed on the substrate 302. Next, a first mask 310 of yttrium oxide is formed on the upper electrode layer 308. The first mask 310 is used as an etching mask, and an etching process is performed to pattern the lower electrode layer 304, the resistance conversion layer 306, and the upper electrode layer 308. Referring to FIG. 3B, a barrier layer 312 is formed conformally on the substrate 302 and the first mask 310 to form an interlayer dielectric layer 314 on the barrier layer 312. Referring to FIG. 3C, a second mask 316 is formed on the interlayer dielectric layer 314. Subsequently, the second mask 316 is used as an etching mask to perform a dry etching (non-isotropic etching) process, and the interlayer dielectric layer 314 and the barrier layer 312 are sequentially etched to form an opening 318, and the dry etching is performed. The process stops at the first mask 310. Subsequently, as shown in FIG. 3D, a wet etching process such as soaking hydrofluoric acid is performed to expose the opening 318. Electrode layer. Since the above process removes the first mask 310 by a wet etching process, damage to the upper electrode layer 308 is small.

第4圖顯示以上第1A~1D圖電阻式非揮發性記憶體裝置和第3A~3D圖電阻式非揮發性記憶體裝置累積分布函數(cumulative distribution function,簡稱CDF)和漏電流之關係圖。如第4圖所示,第3A~3D圖電阻式非揮發性記憶體裝置相較於第1A~1D圖電阻式非揮發性記憶體裝置顯示較一致的漏電流分佈,有較佳的可靠度。Fig. 4 is a graph showing the relationship between the cumulative non-volatile memory device of the first 1A to 1D and the cumulative distribution function (CDF) and leakage current of the 3A to 3D resistive non-volatile memory device. As shown in Figure 4, the resistive non-volatile memory devices of Figures 3A to 3D show a more consistent leakage current distribution than the resistive non-volatile memory devices of Figures 1A to 1D, with better reliability. .

然而,請參照第5圖,由於第3A~3D圖電阻式非揮發性記憶體裝置之製作方法在蝕刻第一罩幕310採用等向性之濕蝕刻製程,因此很難控制開口318’的輪廓和尺寸,而造成開口318’的側向尺寸較預期的大,此現象特別是當裝置尺寸微縮後,容易產生短路的問題。However, referring to FIG. 5, since the method of fabricating the resistive non-volatile memory device of FIGS. 3A-3D employs an isotropic wet etching process for etching the first mask 310, it is difficult to control the outline of the opening 318'. And the size, which causes the lateral dimension of the opening 318' to be larger than expected, which is a problem that a short circuit is likely to occur particularly when the device is downsized.

為解決上述問題,本發明於一實施例提供一非揮發性記憶體之製作方法,於開口中形成與層間介電層不同材料之間隙壁,藉以控制開口之側向尺寸,減少短路的問題。In order to solve the above problems, the present invention provides a method for fabricating a non-volatile memory in which a spacer of a material different from the interlayer dielectric layer is formed in the opening, thereby controlling the lateral dimension of the opening to reduce the problem of short circuit.

以下根據第6A圖~第6G圖描述本發明一實施例電阻式非揮發性記憶體裝置之製作方法。首先,請參照第6A圖,提供一基底302,依序形成一下電極層304、一電阻轉換層306和一上電極層308於基底302上。Hereinafter, a method of fabricating a resistive non-volatile memory device according to an embodiment of the present invention will be described based on FIGS. 6A to 6G. First, referring to FIG. 6A, a substrate 302 is provided, and a lower electrode layer 304, a resistance conversion layer 306 and an upper electrode layer 308 are sequentially formed on the substrate 302.

基底302上方可以形成任何所需的半導體裝置,例如電晶體、電阻、邏輯裝置等,不過此處為了簡化圖式,僅以平整的基底302表示之。在本發明的敘述中,「基 底」一詞係包括半導體晶圓上已形成的裝置與覆蓋在晶圓上的各種塗層;「基底表面」一詞係包括半導體晶圓的所露出的最上層,例如矽晶圓表面、絕緣層、金屬導線等。基底可以是絕緣層上有矽基底、矽、砷化鎵、氮化鎵、應變矽、矽鍺、碳化矽、鑽石及/或其它適合材料。Any desired semiconductor device, such as a transistor, resistor, logic device, etc., can be formed over substrate 302, although only a flat substrate 302 is shown herein for simplicity of the drawing. In the description of the present invention, The term "bottom" includes both formed devices on a semiconductor wafer and various coatings overlying the wafer; the term "substrate surface" includes the exposed uppermost layer of the semiconductor wafer, such as the surface of the wafer, and insulation. Layer, metal wire, etc. The substrate may be a germanium substrate on the insulating layer, germanium, gallium arsenide, gallium nitride, strain enthalpy, germanium, tantalum carbide, diamond, and/or other suitable materials.

下電極層304可以為鈦、鉑、鋁、其合金、其堆疊層或其他適合的材料,例如氮化鈦、氮化鉭或氮化鉬。下電極層304可以電子束真空蒸鍍(E-beam evaporation)或濺鍍法(sputtering)形成。電阻轉換層306可以為鋯酸鍶(SrZrO3)、二氧化鉿或氧化鋯。電阻轉換層306可以電子束真空蒸鍍或濺鍍法形成。上電極層308可以為鈦、鉑、鋁、其合金、其堆疊層或其他適合的材料,例如氮化鈦、氮化鉭或氮化鉬。上電極層308可以電子束真空蒸鍍或濺鍍法形成。The lower electrode layer 304 can be titanium, platinum, aluminum, alloys thereof, stacked layers thereof, or other suitable materials such as titanium nitride, tantalum nitride or molybdenum nitride. The lower electrode layer 304 may be formed by E-beam evaporation or sputtering. The resistance conversion layer 306 may be strontium zirconate (SrZrO3), cerium oxide or zirconia. The resistance conversion layer 306 can be formed by electron beam vacuum evaporation or sputtering. The upper electrode layer 308 can be titanium, platinum, aluminum, alloys thereof, stacked layers thereof, or other suitable materials such as titanium nitride, tantalum nitride or molybdenum nitride. The upper electrode layer 308 can be formed by electron beam vacuum evaporation or sputtering.

之後,形成例如氧化矽、氮氧化矽或氮化矽之第一罩幕310於上電極層308上。第一罩幕310之形成步驟可包括:形成一氧化矽層(未繪示)於上電極層308上,後續,形成一光阻層(未繪示)於氧化矽層上,對光阻層進行微影之圖案化製程,形成圖案化光阻層,以圖案化光阻層作為罩幕,對氧化矽層進行一蝕刻製程,形成第一罩幕310。接著,以第一罩幕310作為蝕刻罩幕,進行一蝕刻製程,圖案化下電極層304、電阻轉換層306和上電極層308。Thereafter, a first mask 310 such as hafnium oxide, hafnium oxynitride or tantalum nitride is formed on the upper electrode layer 308. The forming process of the first mask 310 may include: forming a ruthenium oxide layer (not shown) on the upper electrode layer 308, and subsequently forming a photoresist layer (not shown) on the ruthenium oxide layer, and the photoresist layer A lithography patterning process is performed to form a patterned photoresist layer, and the photoresist layer is patterned as a mask, and an etch process is performed on the ruthenium oxide layer to form a first mask 310. Next, an etching process is performed using the first mask 310 as an etching mask to pattern the lower electrode layer 304, the resistance conversion layer 306, and the upper electrode layer 308.

請參照第6B圖,順應性地形成一阻障層312於基底302和第一罩幕310上,毯覆性地形成一層間介電層 314於阻障層312上。在一些實施例中,阻障層312包括氮化矽,層間介電層314包括四乙氧基矽烷(Tetraethoxy silane,TEOS)為前驅物形成之氧化矽。在一些範例中,阻障層312之厚度為約200埃~約400埃,層間介電層314之厚度為約3000埃~約4000埃。Referring to FIG. 6B, a barrier layer 312 is formed conformally on the substrate 302 and the first mask 310 to form an interlayer dielectric layer. 314 is on the barrier layer 312. In some embodiments, the barrier layer 312 includes tantalum nitride, and the interlayer dielectric layer 314 includes Tetraethoxy silane (TEOS) as a precursor to form cerium oxide. In some examples, barrier layer 312 has a thickness of between about 200 angstroms and about 400 angstroms, and interlayer dielectric layer 314 has a thickness of between about 3,000 angstroms and about 4,000 angstroms.

請參照第6C圖,形成第二罩幕316於層間介電層314上。第二罩幕316之形成步驟可包括:形成一氮化矽層(未繪示)於層間介電層314上,後續,形成一光阻層(未繪示)於氮化矽層上,對光阻層進行微影之圖案化製程,形成圖案化光阻層,以圖案化光阻層作為罩幕,對氮化矽層進行一蝕刻製程,形成第二罩幕316。Referring to FIG. 6C, a second mask 316 is formed on the interlayer dielectric layer 314. The forming process of the second mask 316 may include: forming a tantalum nitride layer (not shown) on the interlayer dielectric layer 314, and subsequently forming a photoresist layer (not shown) on the tantalum nitride layer, The photoresist layer performs a patterning process of lithography to form a patterned photoresist layer, and the photoresist layer is patterned as a mask, and an etching process is performed on the tantalum nitride layer to form a second mask 316.

後續,以第二罩幕316作為蝕刻罩幕,進行一非等向性蝕刻製程,依序蝕刻層間介電層314和阻障層312,以形成開口318,而此非等向性蝕刻製程停止在第一罩幕310,不蝕刻穿過第一罩幕310,以避免對上電極層308造成損傷。Subsequently, the second mask 316 is used as an etching mask to perform an anisotropic etching process, and the interlayer dielectric layer 314 and the barrier layer 312 are sequentially etched to form the opening 318, and the anisotropic etching process is stopped. At the first mask 310, the first mask 310 is not etched to avoid damage to the upper electrode layer 308.

請參照第6D圖,形成一間隙壁層319於第二罩幕316上,且形成於開口318之底部和側壁上。值得注意的是,間隙壁層319之材料與第一罩幕310之材料不同,且兩者間具有一定的蝕刻選擇比,以使間隙壁層319於後續之蝕刻步驟可具有保護層間介電層314之作用,避免或減少開口318之側向尺寸擴大。在一些實施例中,後續移除部份之第一罩幕310的等向性蝕刻製程使用一蝕刻劑,且該蝕刻劑對間隙壁層319與第一罩幕310之蝕刻選擇比為約 30至約100之間。在一些實施例中,間隙壁層319包括氮化鈦、氮化矽或多晶矽,間隙壁層319之厚度可以為約100埃至約200埃之間。在一範例中,間隙壁層319為氮化鈦。Referring to FIG. 6D, a spacer layer 319 is formed on the second mask 316 and formed on the bottom and sidewalls of the opening 318. It should be noted that the material of the spacer layer 319 is different from the material of the first mask 310, and has a certain etching selectivity ratio therebetween, so that the spacer layer 319 can have a protective interlayer dielectric layer in the subsequent etching step. The effect of 314 avoids or reduces the lateral dimension of the opening 318. In some embodiments, the isotropic etching process of the subsequently removed portion of the first mask 310 uses an etchant, and the etching selectivity of the etchant to the spacer layer 319 and the first mask 310 is about 30 to about 100. In some embodiments, the spacer layer 319 includes titanium nitride, tantalum nitride, or polysilicon, and the spacer layer 319 can have a thickness between about 100 angstroms and about 200 angstroms. In an example, the spacer layer 319 is titanium nitride.

請參照第6E圖,進行一非等向性蝕刻製程,移除開口318底部之間隙壁層319的一部分,形成位於開口318側壁上的間隙壁319’。請參照第6F圖,進行一等向性蝕刻製程,移除開口318中的第一罩幕310。在一些實施例中,等向性蝕刻製程包括熱磷酸蝕刻或氫氟酸蝕刻。在第一罩幕310包括氧化矽之實施例中,等向性蝕刻製程可以為浸泡氫氟酸。值得注意的是,由於層間介電層314被間隙壁319’保護,因此,此步驟的非等向性蝕刻製程不會造成層間介電層314的側向蝕刻,所以開口318在阻障層312以上的部分不會造成側向尺寸的擴大,可減少或避免因為開口318尺寸擴大產生之短路的問題。Referring to FIG. 6E, an anisotropic etching process is performed to remove a portion of the spacer layer 319 at the bottom of the opening 318 to form a spacer 319' on the sidewall of the opening 318. Referring to FIG. 6F, an isotropic etching process is performed to remove the first mask 310 in the opening 318. In some embodiments, the isotropic etch process includes hot phosphoric acid etching or hydrofluoric acid etching. In embodiments where the first mask 310 includes yttrium oxide, the isotropic etch process can be soaking hydrofluoric acid. It should be noted that since the interlayer dielectric layer 314 is protected by the spacer 319', the anisotropic etching process of this step does not cause lateral etching of the interlayer dielectric layer 314, so the opening 318 is at the barrier layer 312. The above portion does not cause an increase in the lateral dimension, and the problem of short circuit due to the expansion of the opening 318 can be reduced or avoided.

請參照第6G圖,於開口318之底部和側壁上進一步形成一襯層320,並於開口318中填入一導電層,形成一導電插塞322。在一些實施例中,襯層320包括氮化鈦、氮化鎢或氮化鉭,襯層320之厚度可以為約150埃~約200埃。導電插塞322可包括鎢、銅、鋁或其他適合的導電材料。襯層320和導電插塞322可以化學氣相沉積法形成。Referring to FIG. 6G, a liner 320 is further formed on the bottom and sidewalls of the opening 318, and a conductive layer is filled in the opening 318 to form a conductive plug 322. In some embodiments, the liner 320 comprises titanium nitride, tungsten nitride or tantalum nitride, and the liner 320 may have a thickness of from about 150 angstroms to about 200 angstroms. Conductive plug 322 can comprise tungsten, copper, aluminum, or other suitable electrically conductive material. The liner 320 and the conductive plug 322 can be formed by chemical vapor deposition.

雖然本發明之較佳實施例說明如上,然其並非用以限定本發明,任何熟習此領域之技術者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為 準。Although the preferred embodiments of the present invention are described above, it is not intended to limit the present invention, and those skilled in the art can make some modifications and refinements without departing from the spirit and scope of the present invention. The scope of protection of the invention is defined by the scope of the appended patent application. quasi.

302‧‧‧基底302‧‧‧Base

304‧‧‧下電極層304‧‧‧ lower electrode layer

306‧‧‧電阻轉換層306‧‧‧resistive conversion layer

308‧‧‧上電極層308‧‧‧Upper electrode layer

310‧‧‧第一罩幕310‧‧‧First curtain

312‧‧‧阻障層312‧‧‧Barrier layer

314‧‧‧層間介電層314‧‧‧Interlayer dielectric layer

316‧‧‧第二罩幕316‧‧‧second curtain

318‧‧‧開口318‧‧‧ openings

319’‧‧‧間隙壁319’‧‧‧

Claims (13)

一種電阻式非揮發性記憶體裝置之製作方法,包括:提供一基底,其中該基底上包括一下電極層、一電阻轉換層、一上電極層和一第一罩幕;形成一層間介電層於該基底上方;形成一第二罩幕於該層間介電層上;利用該第二罩幕作為蝕刻罩幕,蝕刻該層間介電層,以形成一開口,其暴露該第一罩幕;形成一間隙壁層於該開口之底部和側壁上;移除開口底部上之部分間隙壁層;及進行一等向性蝕刻製程,移除該開口中的該第一罩幕。A method of fabricating a resistive non-volatile memory device, comprising: providing a substrate, wherein the substrate comprises a lower electrode layer, a resistance conversion layer, an upper electrode layer and a first mask; forming an interlayer dielectric layer Above the substrate; forming a second mask on the interlayer dielectric layer; using the second mask as an etching mask, etching the interlayer dielectric layer to form an opening, exposing the first mask; Forming a spacer layer on the bottom and sidewalls of the opening; removing a portion of the spacer layer on the bottom of the opening; and performing an isotropic etching process to remove the first mask in the opening. 如申請專利範圍第1項所述之電阻式非揮發性記憶體裝置之製作方法,其中該等向性蝕刻製程使用一蝕刻劑,且該蝕刻劑對該間隙壁層與該第一罩幕之蝕刻選擇比為約30至約100之間。The method of fabricating a resistive non-volatile memory device according to claim 1, wherein the isotropic etching process uses an etchant, and the etchant applies the spacer layer to the first mask The etch selectivity ratio is between about 30 and about 100. 如申請專利範圍第1項所述之電阻式非揮發性記憶體裝置之製作方法,其中該間隙壁層包括氮化鈦、氮化矽、多晶矽或氧化矽。The method of fabricating a resistive non-volatile memory device according to claim 1, wherein the spacer layer comprises titanium nitride, tantalum nitride, polycrystalline germanium or germanium oxide. 如申請專利範圍第1項所述之電阻式非揮發性記憶體裝置之製作方法,尚包括形成一襯層於該開口之底部和側壁上,且形成一導電插塞於該開口中。The method of fabricating the resistive non-volatile memory device of claim 1, further comprising forming a liner on the bottom and sidewalls of the opening and forming a conductive plug in the opening. 如申請專利範圍第1項所述之電阻式非揮發性記憶體裝置之製作方法,其中該第一罩幕包括氧化矽、氮氧化矽或氮化矽。The method of fabricating a resistive non-volatile memory device according to claim 1, wherein the first mask comprises ruthenium oxide, ruthenium oxynitride or tantalum nitride. 如申請專利範圍第1項所述之電阻式非揮發性記憶體裝置之製作方法,其中該等向性蝕刻製程包括浸泡氫氟酸或熱磷酸。The method of fabricating a resistive non-volatile memory device according to claim 1, wherein the isotropic etching process comprises soaking hydrofluoric acid or hot phosphoric acid. 如申請專利範圍第1項所述之電阻式非揮發性記憶體裝置之製作方法,其中在形成該層間介電層之前,尚包括形成一阻障層於該基底上。The method of fabricating a resistive non-volatile memory device according to claim 1, wherein before forming the interlayer dielectric layer, forming a barrier layer on the substrate is further included. 如申請專利範圍第1項所述之電阻式非揮發性記憶體裝置之製作方法,其中以該第二罩幕作為蝕刻罩幕,蝕刻該層間介電層之蝕刻製程為一非等向性蝕刻製程,且該非等向性蝕刻製程停止在該第一罩幕。The method for fabricating a resistive non-volatile memory device according to claim 1, wherein the etching process for etching the interlayer dielectric layer is an anisotropic etching using the second mask as an etching mask The process, and the anisotropic etching process is stopped at the first mask. 一種電阻式非揮發性記憶體裝置,包括:一基底;一下電極層、一電阻轉換層和一上電極層,位於該基底上;一第一罩幕,位於該上電極層上;一層間介電層,位於該第一罩幕和該基底上;一開口,貫穿該層間介電層和該第一罩幕,暴露該上電極層;一間隙壁,位於該開口中,且在該第一罩幕上方之部分該開口側壁上;及一導電插塞,位於該開口中。A resistive non-volatile memory device comprising: a substrate; a lower electrode layer, a resistance conversion layer and an upper electrode layer on the substrate; a first mask on the upper electrode layer; An electrical layer on the first mask and the substrate; an opening extending through the interlayer dielectric layer and the first mask to expose the upper electrode layer; a spacer wall located in the opening, and at the first a portion of the upper side of the opening above the mask; and a conductive plug located in the opening. 如申請專利範圍第9項所述之電阻式非揮發性記憶體裝置,其中該間隙壁包括氮化鈦、氮化矽、多晶矽或氧化矽。The resistive non-volatile memory device of claim 9, wherein the spacer comprises titanium nitride, tantalum nitride, polysilicon or tantalum oxide. 如申請專利範圍第9項所述之電阻式非揮發性記憶體裝置,其中該第一罩幕包括氧化矽、氮氧化矽或氮化矽。The resistive non-volatile memory device of claim 9, wherein the first mask comprises ruthenium oxide, ruthenium oxynitride or tantalum nitride. 如申請專利範圍第9項所述之電阻式非揮發性記憶體裝置,尚包括一襯層,位於該間隙壁和該導電插塞間。The resistive non-volatile memory device of claim 9, further comprising a liner between the spacer and the conductive plug. 如申請專利範圍第12項所述之電阻式非揮發性記憶體裝置,其中該襯層包括氮化鈦、氮化鎢或氮化鉭,該導電插塞包括鎢、銅或鋁。The resistive non-volatile memory device of claim 12, wherein the underlayer comprises titanium nitride, tungsten nitride or tantalum nitride, and the conductive plug comprises tungsten, copper or aluminum.
TW102135794A 2013-10-03 2013-10-03 Resistive random access memory device and fabrications thereof TWI499008B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102135794A TWI499008B (en) 2013-10-03 2013-10-03 Resistive random access memory device and fabrications thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102135794A TWI499008B (en) 2013-10-03 2013-10-03 Resistive random access memory device and fabrications thereof

Publications (2)

Publication Number Publication Date
TW201515155A TW201515155A (en) 2015-04-16
TWI499008B true TWI499008B (en) 2015-09-01

Family

ID=53437737

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102135794A TWI499008B (en) 2013-10-03 2013-10-03 Resistive random access memory device and fabrications thereof

Country Status (1)

Country Link
TW (1) TWI499008B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI717138B (en) * 2019-12-09 2021-01-21 華邦電子股份有限公司 Resistive random access memory and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201304222A (en) * 2011-04-13 2013-01-16 Micron Technology Inc Vertical memory cell for high-density memory
TW201327690A (en) * 2011-12-26 2013-07-01 Samsung Electronics Co Ltd Semiconductor devices and methods of manufacturing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201304222A (en) * 2011-04-13 2013-01-16 Micron Technology Inc Vertical memory cell for high-density memory
TW201327690A (en) * 2011-12-26 2013-07-01 Samsung Electronics Co Ltd Semiconductor devices and methods of manufacturing the same

Also Published As

Publication number Publication date
TW201515155A (en) 2015-04-16

Similar Documents

Publication Publication Date Title
CN106252505B (en) RRAM device and method
TWI776362B (en) Memory cell and manufacturing method thereof
CN106356374B (en) Flash memory and manufacturing method thereof
CN111527605B (en) Three-dimensional memory device and method of fabricating the same
US8519374B2 (en) Resistive memory device and method for fabricating the same
US8546177B2 (en) Methods of manufacturing phase-change memory device and semiconductor device
US10593870B2 (en) Sidewall image transfer on magnetic tunnel junction stack for magnetoresistive random-access memory patterning
US9203020B2 (en) Resistance memory device
KR20150007520A (en) Phase-change random access memory device and method of manufacturing the same
KR101087880B1 (en) Method for manufacturing semiconductor device
TWI508340B (en) Resistive random access memory and method of manufacture thereof
TWI552316B (en) Resistive random access memory device and method for fabricating the same
KR20140148068A (en) Phase-change random access memory device and method of manufacturing the same
TWI555179B (en) Method of manufacturing isolation structure and non-volatile memory with the isolation structure
US9466792B2 (en) Memory device and method for fabricating the same
TWI499008B (en) Resistive random access memory device and fabrications thereof
US20080251498A1 (en) Phase change memory device and fabrications thereof
TWI395290B (en) Flash memory and method of fabricating the same
KR102464198B1 (en) Method for fabricating semiconductor device
CN104617217B (en) Resistance-type nonvolatile memory device and preparation method thereof
TWI505446B (en) Semiconductor device and method of fabricating the same
TWI521576B (en) Resistive random-access memory and method for fabricating the same
TWI469269B (en) Method of forming word line of embedded flash memory
CN103943775B (en) Resistive memory element
KR100924862B1 (en) Flash device fabrication method