TW201608225A - 血球凝集抑制檢定(hai)之自動化成像及分析 - Google Patents

血球凝集抑制檢定(hai)之自動化成像及分析 Download PDF

Info

Publication number
TW201608225A
TW201608225A TW104124462A TW104124462A TW201608225A TW 201608225 A TW201608225 A TW 201608225A TW 104124462 A TW104124462 A TW 104124462A TW 104124462 A TW104124462 A TW 104124462A TW 201608225 A TW201608225 A TW 201608225A
Authority
TW
Taiwan
Prior art keywords
image
disk
antibody
determining
binding activity
Prior art date
Application number
TW104124462A
Other languages
English (en)
Other versions
TWI611173B (zh
Inventor
麥克 奈揚
羅伯特 帕克希爾
Original Assignee
賽諾菲巴斯德維思設計公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 賽諾菲巴斯德維思設計公司 filed Critical 賽諾菲巴斯德維思設計公司
Publication of TW201608225A publication Critical patent/TW201608225A/zh
Application granted granted Critical
Publication of TWI611173B publication Critical patent/TWI611173B/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L9/00Supporting devices; Holding devices
    • B01L9/52Supports specially adapted for flat sample carriers, e.g. for plates, slides, chips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L9/00Supporting devices; Holding devices
    • B01L9/52Supports specially adapted for flat sample carriers, e.g. for plates, slides, chips
    • B01L9/523Supports specially adapted for flat sample carriers, e.g. for plates, slides, chips for multisample carriers, e.g. used for microtitration plates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/5302Apparatus specially adapted for immunological test procedures
    • G01N33/5304Reaction vessels, e.g. agglutination plates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/025Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations having a carousel or turntable for reaction cells or cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/028Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations having reaction cells in the form of microtitration plates
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/005Assays involving biological materials from specific organisms or of a specific nature from viruses
    • G01N2333/08RNA viruses
    • G01N2333/11Orthomyxoviridae, e.g. influenza virus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2469/00Immunoassays for the detection of microorganisms
    • G01N2469/10Detection of antigens from microorganism in sample from host

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Cell Biology (AREA)
  • Clinical Laboratory Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)

Abstract

提供一種高通量確定凝集狀態之系統及方法。所述系統包含轉台及多個盤傾斜站。所述系統亦包含一或多個經安置以對傾斜及/或未傾斜組態之整體盤陣列成像的光學路徑。所述系統較佳包含影像分析軟體以分析一陣列測試孔之影像及基於影像分析確定各孔之凝集狀態。

Description

血球凝集抑制檢定(HAI)之自動化成像及分析
血球凝集抑制檢定(Hemagglutination Inhibition Assay;HAI)於70多年前開發作為量測血清中之流行性感冒特異性抗體含量之方法。HAI自此已應用於許多其它含血球凝集素病毒,如風疹、麻疹、流行性腮腺炎、副流行性感冒、腺病毒、多瘤病毒以及蟲媒病毒(僅列舉數例)。當前,HAI公認為用於對人類及動物中之流行性感冒抗體分型之所謂的黃金標準血清測試且其廣泛用於流行性感冒監視及疫苗測試。
100‧‧‧圖1之右上象限
102‧‧‧圖1之右下象限
300‧‧‧成像器
301‧‧‧框架
302‧‧‧成像組件
303‧‧‧滑動組件
304‧‧‧盤固持器
305‧‧‧磁鎖
306‧‧‧背光
307‧‧‧通/斷開關
308‧‧‧組裝導件
309‧‧‧角度調節機構
310‧‧‧高解析度成像CCD
311‧‧‧16mm HR透鏡
312‧‧‧反射鏡
313‧‧‧傾角調節器
500‧‧‧原型3
800‧‧‧HIVE成像器
801‧‧‧高解析度CCD相機
802‧‧‧遠心透鏡
803‧‧‧LED背光
804‧‧‧可調節轉向鏡
805‧‧‧傾斜盤固持器/自定義盤固持器
806‧‧‧轉台
807‧‧‧滑環
808‧‧‧旋轉傳送帶
809‧‧‧馬達
900‧‧‧HIVE雙模式成像器
901‧‧‧光學列
902‧‧‧CCD相機
903‧‧‧遠心透鏡
1000‧‧‧連續時刻表
1001‧‧‧第一步驟
1002‧‧‧步驟
1003‧‧‧步驟
1004‧‧‧步驟
1005‧‧‧步驟
1006‧‧‧步驟
1100‧‧‧流程圖
1101‧‧‧第一步驟
1102‧‧‧步驟
1103‧‧‧步驟
1104‧‧‧步驟
1105‧‧‧步驟
1106‧‧‧步驟
1107‧‧‧步驟
1108‧‧‧步驟
1109‧‧‧步驟
1110‧‧‧步驟
1111‧‧‧步驟
1112‧‧‧步驟
1113‧‧‧步驟
1114‧‧‧步驟
1400‧‧‧流程
2100‧‧‧流程圖
圖1說明根據本發明之實施例的盤平坦時與盤傾斜時之HAI RBC圖案之間的差異。
圖2A至圖2C顯示根據本發明之實施例的不同傾斜程度之成像器。
圖3顯示根據本發明之實施例的成像器。
圖4顯示根據本發明之實施例的於圖3中示出之成像器之光學器件部分之其他細節。
圖5顯示根據本發明之實施例的另一成像器。
圖6顯示關於根據本發明之實施例之96孔盤具有由上至下梯形效應之邊緣周圍的緊湊型透鏡畸變及遮蔽。
圖7顯示根據本發明之實施例,遠心透鏡如何減少盤影像之畸變及遮蔽。
圖8顯示根據本發明之實施例的自動化HAI(HIVE)自動化成像器。
圖9A顯示根據本發明之實施例的HIVE自動化成像器之各種內部組件。
圖9B顯示根據本發明之實施例的HIVE雙模式自動化成像器。
圖10為根據本發明之實施例的與影像分析算法相關之流程圖。
圖11為說明根據本發明之實施例的與自動化HAI成像器相關之方法的流程圖。
圖12為根據本發明之實施例的L*a*b*色彩空間圖。
圖13為根據本發明之實施例的在影像處理算法期間使用之RBC對照孔。
圖14為說明根據本發明之實施例的最佳時間點算法之流程圖。
圖15為顯示根據本發明之實施例的平均標準差相對於影像獲取時間之圖表。
圖16A至16C為顯示根據本發明之實施例的關於不同凝集程度之正規化參數作為影像獲取時間之函數之圖表。
圖17為顯示根據本發明之實施例的單一盤之最佳讀取時間變化之圖表。
圖18顯示為根據本發明之實施例的單一盤之標準差變化之圖表。
圖19A至圖19B為顯示根據本發明之實施例的參數偏差作為時間及凝集狀態之函數之圖表。
圖20為說明根據本發明之實施例的自動孔遮罩算法之流程圖。
圖21為說明根據本發明之實施例的凝集狀態分類算法之流程圖。
圖22說明根據本發明之實施例的足部圖案之邊緣偵測。
圖23說明根據本發明之實施例的GUI之影像獲取標籤。
圖24為根據本發明之實施例的關於6個盤之自動化成像之時序 圖。
圖25為根據本發明之實施例的關於36個盤之自動化成像之時序圖。
圖26為根據本發明之實施例的GUI之影像分析標籤之另一圖示。
圖27說明根據本發明之實施例的GUI之資料分析標籤。
圖28為顯示相比於手動測試的根據本發明之實施例的成像器之一致結果之表。
圖29為顯示相比於手動測試的根據本發明之實施例的成像器之額外一致結果之表。
圖30為顯示相比於手動測試的本發明之HIVE T670成像器實施例之一致結果之表。
圖31為顯示相比於手動測試的本發明之HIVE T670成像器實施例之額外一致結果之表。
圖32為顯示根據本發明之實施例的曲線擬合HAI資料之圖表。
圖33為比較根據本發明之實施例的習知滴定值與IC50值之圖表。
圖34顯示習知成像器系統。
在整個圖式中,相同圖式元件符號應理解為指相同元件、特徵以及結構。
流行性感冒HAI為支持許多(即便不是全部)流行性感冒疫苗行動之關鍵血清學測試。當前,此典型檢定手動進行且符合所有監管期望。隨著測試要求增加,需要改進流行性感冒HAI系統及方法之功效及通量,無論用於流行性感冒或其他含血球凝集素病毒之情形下。
HAI為通常在96孔u形或v形底微量滴定盤中進行之3天檢定。在第1天,藉由用神經胺糖酸酶溶液處理且在水浴中培育大致18小時自測試血清消除非特異性抑制劑。在第2天,血清樣品經熱不活化且使用紅血 球(red blood cell;RBC)自血清吸附凝集素。在2℃至8℃下之2小時培育期之後,經由離心移除RBC。在第3天,進行相關流行性感冒抗原之滴定以確保用於HAI檢定之4 HAU/25μL之目標值。一旦驗證抗原滴定,處理之血清樣品進行連續稀釋且與抗原組合。亦在此時建立僅血清(亦即不存在抗原)的對照孔以隨後用作最佳讀取時間的規格。在37℃(±2℃)或環境溫度(取決於病毒株)下培育1小時之後,將RBC懸浮液添加至樣品及對照樣品中。
在添加RBC懸浮液之後,隨後在環境溫度下培育樣品1小時。在此培育之後,將樣品盤平緩地傾斜60°至70°且一旦RBC對照孔流產生「足狀」圖案即可記錄各樣品稀釋液的凝集狀態。陰性產物以與RBC對照物相同之速率流動,亦即完整流動暗示無凝集,且具有透明上清液。此條件藉由圖1之右上象限100中之影像說明。陽性產物因血球凝集而不以與RBC對照物相同之速率流動。此條件藉由位於圖1之右下象限102中之影像說明。HAI滴定指定為展現血球凝集完全抑制之最高血清稀釋度的倒數。
傳統的HAI技術手動地進行,亦即由人類實驗室技術員或其他專門培訓的人員在滴定之後觀測盤且呈現盤之各孔上之結果的判定。手動進行經典HAI之主要缺點中之一者為視覺讀數之主觀性。取決於如何或何時解釋RBC圖案,滴定賦值通常在分析員之間變化。流動RBC之快速動力學使得分析員難以在最佳時間讀取盤上之所有樣本。此外,分析員與分析員之間的變化及偏差可導致不一致結果且需要對樣品再測試。
另外,HAI盤通常不在顯影期間成像且在其經讀取之後丟棄。手動地記錄滴定值且在檢定過程期間破壞原始資料(RBC圖案),進而消除其他分析員在檢定後審閱數據之可能性。標準、手動讀取HAI技術亦不適合於高通量分析,其中將需要在分配時間量內處理大多數盤且 記錄何時讀取盤。舉例而言,單一分析員必須在小於一小時內評估36個96孔HAI盤之典型運行。盤通常一次傾斜3個且以肉眼監測,同時亦注意馬錶。一旦達到最佳讀取時間,測定及記錄滴度,丟棄盤且分析員移向下一組3個盤。隨著所需的HAI測試之量增加,此情況變得有問題。
已有至少一個提供自動化HAI成像器之已知嘗試,但此系統受至少一些與手動測試相關之難以解決的問題困擾。參看圖34,此已知系統為以色列克法沙巴(Kfar Saba,Israel)之科技機器人公司(SciRobotics)提供之FluHemaTM成像器系統。FluHemaTM系統一次對一個HAI盤顯影及成像(亦即由上而下),且隨後進行影像分析以鑑別陽性孔及陰性孔。此系統設計用於帝肯自由(Tecan Freedom)EVO®實驗室自動平台。因此,FluHemaTM系統之通量對於解決當前需求仍不令人滿意。另外,由於FluHemaTM採用之較高畸變、非遠心成像光學器件,系統之功效亦不理想。
美國專利第8,962,012號(其所有教示內容以全文引用的方式併入本文中)揭示比先前已知顯著更敏感型式之HAI檢定。'705申請案中所揭示之HAI檢定基於在受專門調理之盤及ELISA盤之活化表面上而非在溶液中觀測凝集。特定言之,根據'705申請案,揭示一種稱為表面輔助血球凝集/血球凝集抑制功能檢定或「SA-HAI」之方法。SA-HAI用於病毒及病毒特異性抗體以及血清之功能表徵。發現SA-HAI檢定對各種流感病毒之敏感性比傳統的HA檢定高7倍至200倍,且SA-HAI檢定對流行性感冒特異性抗體之敏感性比傳統的HAI高7倍至50倍,其取決於使用之病毒及紅血球之類型。SA-HAI通常使用成像技術評估,但其一次僅成像一個孔。
因此,需要一種具有相比於習知方法經增加之通量且亦提供更一致且可靠的結果之更穩固HAI測試方法。
為解決上文所述之問題,且可能亦解決就手動HAI測試系統及有限可用的自動化系統而言之其他問題,本發明之實施例提供包含獨特硬體及軟體組件之用於HAI測試之成像解決方案。本發明之特定實施例視情況由下而上地同時對多個盤成像,且採用低畸變遠心成像光學器件。
本文中所揭示之HAI成像解決方案之例示性實施例包含藉由使用電腦視覺及影像處理使檢定讀取自動化且獨立於相關病毒株或RBC物質對於任何樣品自動分配滴定值而消除分析員主觀性之獨立系統。本發明之特定實施例可經調適以在適用於多種不同病原性病毒,所述病毒包含腺病毒、腸病毒、呼腸孤病毒、黏液病毒、痘病毒以及黃病毒,其引起大範圍的人類及動物疾病,自流行性感冒及風疹至天花及出血性登革熱。類似地,本發明之實施例可經調適以適用於來自各種物種之RBC。舉例而言,根據WHO建議,火雞、雞以及馬RBC可在經傾斜以成像之v底位置中測試,而天竺鼠及人類O型RBC可在u形底盤中測試且在平坦時成像。與一或多個實施例一致之系統產生HAI盤影像之存檔以充當可在檢定後評估之原始資料,其全部具有超出手動分析之通量能力。
如所提及,本文中所揭示之本發明之實施例包括硬體及軟體組件。下文提供這些個別組件中之每一者之實例的概述。
各種實施例包括若干不同成像器及系統組態。根據這些實施例中之一或多者的不同成像器在本文中稱為原型,因為其起初開發用於概念驗證及獲得用於調諧隨後論述之影像處理算法之初始資料。各種成像器之關鍵焦點區域中的一些包括光學列及盤處理系統,更重要一般態樣中之一者為全自動化成像器。與本發明之較佳實施例一致之自動化成像器之一般但非限制性的系統要求包含(1)每小時處理至多100個盤;(2)以70°角傾斜檢定盤;(3)與標準盤堆疊器整合;(4)全盤 成像以用於真實動力學分析;(5)即時影像處理以用於立即分析及滴定測定;以及(6)小佔據面積,亦即成像器適配於標準實驗台上。
根據各種實施例開發若干原型成像器;這些原型中的一些概述在下文中。
圖2A至2C中示出的原型1成像器類似於關於SA-HAI先前開發之成像器,但具有各種重要修改。特定言之,此成像器包括就附接至Z載台以聚焦之1.3百萬像素相機而言用於盤定位之X-Y載台。另外,添加轉台至成像器中以允許自0°至70°自動化傾斜。圖2A說明傾斜0°之成像器,圖2B說明傾斜45°之成像器,且圖2C說明傾斜70°之成像器。此成像器亦較佳整合至自動線中且藉由機械臂可接近。
原型1成像器在對HAI盤成像時具有兩個問題。第一,相機僅能夠單孔成像且對整個96孔盤成像需要大致1.5分鐘。由於快速RBC圖案顯影動力學,此相對緩慢成像不視為對於自影像之滴定測定理想。第二,HAI盤以落射照明組態照明,其自盤底部之反射產生顯著眩光,使影像分析複雜化。
參看圖3及圖4,原型2成像器藉由改善成像光學器件及實施全盤成像改善原型1之缺點。其使用高f數透鏡以在單一快照中對全盤成像,同時嘗試使畸變最小化。相機為至少5百萬像素CMOS感測器以對於影像處理提供較高解析度。盤經由LED背光以透照組態而非落射照明組態照明以避免反射。成像器藉由在滑動組件上鎖定盤,接著將組件以70°旋轉至成像平面中手動地加載。在運行自定義影像獲取軟體之PC上同時觸發動力學成像。
如圖3中所示,原型2成像器300包含框架301,在其上安放成像組件302及滑動組件303。滑動組件303包括用於固持96孔板之盤固持器304。成像器300包含磁鎖305及背光306。提供通/斷開關307以對成像器300通電及斷電。成像器包含組裝導件308以相對於背光306維持滑動 位置。成像器300亦包含用於調節成像組件302之角度之角度調節機構309。參看圖4,成像器300成像組件302包括高解析度成像CCD 310、16mm HR透鏡311以及反射鏡312。亦提供用於光學路徑之傾角調節器313。成像組件302提供可變軸成像以減少與盤介質相關之遮蔽及透鏡效應。
關於圖5中示出的原型3500,原型2上之成像光學器件經大畫幅遠心透鏡及5百萬像素CCD感測器替換以改進影像品質。舉例而言,圖6說明導致由上至下梯形效應的邊緣周圍之緊湊型透鏡畸變及遮蔽。參看圖7,其顯示添加遠心透鏡減少畸變及遮蔽且跨越盤維持比例。使用手動及自動讀取方法/算法對於覆蓋不同流行性感冒類型及亞型之四種流行性感冒抗原產生HAI資料且結果顯示一致。
建立於先前原型中之每一者上,較佳實施例為HIVE T670,或簡言之HIVE。「HIVE」表示高通量成像及可視化設備且「T670」是指以70度同時傾斜6個盤之能力。參看圖8,HIVE 800為能夠對HAI盤完全自動化、高通量動態成像之儀器。HIVE組合高解析度、低畸變遠心成像與完全自動化盤處理,包括傾斜至任何所需角度。RBC顯影及成像較佳以實質上接近0°及/或70°之傾角進行。另外,HIVE與許多不同類型之工業標準自動化盤處理器,如機械臂、堆垛機以及起重機兼容。
接下來,將論述系統硬體之光學器件。更特定言之,且參看圖9A,HIVE成像器800使用附接至提供具有最小視差及涵蓋整個盤之足夠視野之低畸變影像之遠心透鏡802的較佳具有5或11百萬像素解析度之高解析度CCD相機801對HAI盤成像。根據一或多個實施例,盤在盤經傾斜,如70°時自底部成像,且藉由高度均勻LED背光803透照。可調節轉向鏡804安置於透鏡與HAI盤之間以藉由摺疊光學路徑而減小總佔據面積。
就盤處理而言,HIVE具有六(6)個由馬達809控制之單獨可定址 轉台806,傾斜盤固持器805安放至將盤自裝載/卸載位置循環至成像位置且返回之機動旋轉傳送帶808。滑環807在HIVE之旋轉傳送帶808與靜基座之間提供電連接。根據圖9A中示出的實施例,HIVE 800包含高解析度CCD相機801(例如5百萬像素),其安放於自定義盤固持器805上方且裝備有遠心透鏡802。所有運動及相機操作經由隨後更詳細地描述之圖形使用者介面或GUI之影像獲取軟體組件控制。HIVE同時處理至多六個盤且自動化成像器之通量為約100盤/小時,或在單一無人值守式運行中為50盤,其在例如耦接至BioTek BioStackTM NEO微量盤處理器時,假定約120秒之典型盤顯影時間及大致30秒成像窗口。
參看圖9B,HIVE雙模式成像器900藉由添加用於在不傾斜(亦即實質上0°)的情況下對盤成像之第二光學列901擴展HIVE T670之能力。光學器件包括用於在70°成像位置之前的傳送帶旋轉位置處之0°全盤成像之高解析度CCD相機902及遠心透鏡903。盤以下的第二LED背光提供與70°成像類似之透照。相機902及遠心透鏡903可藉由添加轉向鏡以摺疊光學路徑而垂直安放於0°成像位置以上,或垂直於成像平面。HIVE雙模式成像器900在耦接至例如BioTek BioStackTM NEO微量盤處理器時在平坦(0°)成像模式下每小時處理至多三百個盤,或在單一無人值守式運行中處理50個盤。傾斜成像模式之通量與HIVE T670之通量相同,亦即正常檢定條件下之100盤/小時。HIVE DM之應用包含通常在不傾斜的情況下讀取之HAI檢定,例如使用天竺鼠或人類O型RBC之那些檢定,以及表面輔助HAI(SA-HAI)。HIVE DM亦可用於影像斑塊檢定及使用視覺讀取評估的以各種孔格式(包含(但不限於)6孔、12孔、24孔、48孔、96孔、384孔、1536孔以及3456孔)於SBS滴定盤中進行之其他檢定。在較佳實施例中,0°成像光學列具有比70°光學列解析度高之CCD相機,例如11百萬像素,以容納廣泛範圍之可能的檢定類型。應理解,可用於本發明之裝置及方法中之紅血 球(RBC)之一致性不受細胞來源限制。舉例而言,可使用來自哺乳動物物種,包括人類、貓、狗、小鼠、大鼠、天竺鼠、馬、綿羊、豬及類似者之RBC。類似地,可使用來自禽類物種,包括火雞、雞及類似者之細胞。對應於用於本發明之裝置及方法中之RBC之血液同型亦不受限。舉例而言,可使用來自人類血型A、B、AB及O之RBC。
現將描述本發明之各種例示性實施例之軟體組件。特定言之,軟體組件由兩個主要子組件,影像處理算法及圖形使用者介面組成。影像處理算法自動確定樣品滴定值且圖形使用者介面整合影像處理算法與成像、運動以及資料管理控制。
關於影像處理算法,HAI滴定盤成像為整體,自上而下觀察至孔中或由下而上經由孔觀察,以便在相同時刻捕獲所有RBC孔圖案之狀態。另外,如藉由軟體控制,傾斜HAI盤通常在其顯影循環期間之多個時間點成像,諸如傾斜後90秒至傾斜後120秒開始每隔10秒,以捕獲RBC流動動力學。影像處理算法必須發現及評估全盤影像中之各個別孔且確定其凝集狀態。一旦關於盤上之各孔確定凝集狀態,關於對應樣品評估滴定值。圖10顯示根據本發明之實施例之影像分析算法中之各個方法步驟之連續時刻表1000。第一步驟1001為加載影像,且在影像為底部成像時翻轉影像。下一步驟1002為使用自動三角量測或自存儲之量測值界定孔遮罩。下一步驟1003為應用全局L*a*b分割。在下一步驟1004中,影像分析算法經由各孔循環,且界定ROI、分割以及量測。在下一步驟1005中,算法基於量測值對孔分類。分類較佳包括凝集、非凝集、滴度以及離群值。在步驟1006中,影像分析算法產生顯示孔分類之盤影像覆疊圖,且將資料保存於諸如SQL資料庫中。
關於根據例示性實施例之HAI影像處理之更詳細資訊說明於圖11之流程圖1100中。如所示,第一步驟1101為選擇用於處理之影像,亦即盤。通常,HAI盤在其顯影循環期間之多個時間點(諸如在傾斜之 後)成像以捕獲RBC流動動力學。待分析之影像必須手動地或使用選擇最接近最佳讀取時間獲得之影像的算法選自動態影像之此集合。藉由自資料庫中之影像表突出顯示相關盤影像實現手動選擇。如在下文中更詳細地論述,最佳時間點算法使用影像處理分析及比較對照孔圖案與參考圖案而自動確定最佳影像。一旦選擇影像,將其在步驟1102中加載至影像處理算法。由於此為全盤影像,下一步驟1103為界定定位影像中需要處理之所有個別孔之孔遮罩。
存在兩種界定孔位置之模式,亦即手動模式,其中使用者界定孔位置,及自動模式,其中使用例如三角量測技術而採用另一算法。手動模式依賴於使用者藉由將圓與其於盤影像上之輪廓對準而交互式地界定96孔盤之某些特定孔,例如孔A1、A12以及H12之質心及半徑。隨後自這三點計算所有其他孔質心。
在步驟1104,將孔數目設定為1。在步驟1105,檢查算法以查看是否已處理盤中之所有96個孔。若所有孔已經處理,則方法繼續至步驟1106。若仍存在待處理之孔,則方法繼續於步驟1107,其中影像裁剪成相關孔區域(region of interest;ROI)。在步驟1108,應用L*a*b顏色分割。在步驟1109,量測RBC圖案之若干特徵。這些特徵較佳隨凝集狀態變化。在步驟1110,計算血球凝集參數。在步驟1111,根據凝集狀態對孔分類。在步驟1112,孔數目遞增,接著方法循環回步驟1105。
在步驟1106,方法分配滴度且界定離群值。在步驟1113,方法產生顯示孔分類之盤影像覆疊圖。在步驟1114,保存資料,諸如保存至SQL資料庫。
自動孔界定算法應用相同原理,但使用影像分析以發現質心。關於孔界定算法之其他細節提供在下文中。在確定孔之位置之後,下一步驟迭代地處理孔RBC圖案中之每一者且測定其凝集狀態。根據本發明之實施例的處理孔圖案之一般步驟為(1)影像裁剪成含有RBC圖案 之相關區域,(2)將RGB影像轉化為L*a*b*(Lab)顏色空間,例如如藉由CIELAB所定義,其中維度L指示亮度且ab表示顏色對立維度,其基於非線性壓縮CIE XYZ顏色空間座標,且應用將RBC圖案與其餘影像分割之預定門,以及(3)量測若干隨凝集狀態變化的RBC圖案之特徵。這些衍生自影像矩且包含RBC流之長度(L)、最底部像素之位置(B)以及在Y軸中之加權質心(Y)。在獲取這些量測結果之後,根據EQN.1計算血球凝集參數。
HA P =L*B*Y (EQN.1)
如稍後所詳細論述,血球凝集參數(HA P )隨後用於將孔分類為凝集或非凝集。在對於盤上之各孔測定凝集條件之後,對於各樣品稀釋系列將滴定值分配為非凝集之最高稀釋度之倒數。若樣品稀釋系列展現離群值,諸如非連續凝集狀態或無效對照孔(例如由於吸液誤差),則樣品藉由算法標記且不分配滴定值。在滴定分配及離群值偵測之後,應用偽色盤影像覆疊圖而以肉眼描繪藉由算法確定之孔分類。所有計算值隨後以可藉由一或多個相關資料庫程式辨識之格式存儲於記憶體器件中以用於未來檢索。
關於先前提及之L*a*b*顏色空間中之RBC圖案分割,顏色分割用於分離RBC圖案與盤影像。初始RGB影像首先轉化為L*a*b*顏色空間,接著相比於預定「門」。此顏色門藉由自大量(例如數千)孔產生複合L*a*b*顏色空間門,且記錄對應於RBC之像素之位置而手動地界定。圖12說明根據本發明之一或多個實施例之例示性L*a*b*顏色空間圖。一旦已界定門,藉由丟棄不屬於所述門之像素實現分段RBC圖案。
最佳時間點算法
最佳時間點算法之目標為確定來自盤顯影期間獲得之一批動態影像之最佳盤影像。根據至少一個實施例,其藉由仿效分析員關於最佳讀取時間觀測RBC對照孔實現此目標,最佳讀取時間定義為RBC對 照圖案流動至孔底部且形成如例如圖13中所示之『足部』的點。
根據至少一個實施例之例示性時間點算法之流程1400說明於圖14中。如所示,算法迭代所選盤之一批動態影像且僅處理RBC對照孔以對於各RBC對照孔測定RBC流之長度(L)、最底部像素之位置(B)、孔之面積(A)、周長(P)、當量直徑(D)、在Y軸之加權質心(Y)以及圓度(C)。隨後將這些參數中之每一者的量測值正規化為參考參數,其為衍生自許多(例如數千)已手動選擇為最優之RBC對照孔之平均值。此特定正規化流程之基本原理為當量測參數接近參考參數時,正規化參數之值,或更特定言之其比率將接近統一,亦即1。
當RBC對照孔之所有正規化參數最接近1時,所述孔中之圖案測定為最接近參考值且因此最接近最佳讀取時間。由於所有正規化參數之值在最佳時間點處幾乎相同,例如其接近1,其值之標準差給出給定RBC圖案與最佳者之接近程度的單一數值指示。一般而言,盤內之RBC對照孔將由於正常實驗變化而以略微不同速率顯影。舉例而言,圖17及圖18分別顯示相同盤上之八個RBC對照孔之最佳讀取時間及標準差之變化。在特定實施例中,最佳讀取時間為將盤自0度傾斜至70度之後約100秒至約125秒。為評估盤之總體狀態,考慮所有標準差值之平均值。具有RBC對照孔正規化參數之最低平均標準差之影像因此最接近最佳時間點。RBC對照孔之典型平均標準差相對於時間曲線圖顯示於圖15中。
正規化參數作為成像時間點的函數之特性關於三種各別及不同情況顯示於圖16A至圖16C中:非凝集(圖16A)、凝集起始(圖16B)及凝集(圖16C)。如圖16A中所示,對於100秒之成像時間點處之非凝集案例,正規化參數緊密收斂至1的值。此由於與參考值之緊密匹配。在凝集開始出現的圖16B中示出之情況下,正規化參數之收斂較不明顯,且未在圖16C中對於非凝集案例觀測到聚合。圖19A至圖19B顯示 諸如HA參數(如藉由上文之EQN.1計算)及平均標準差之其他參數如何隨時間及凝集狀態而變化。
自動孔界定算法
根據本發明之實施例的自動孔偵測算法說明於圖20中。此算法藉由對含有孔之區域應用圓形霍夫變換(circular Hough transform)經由影像分析迭代地計算例如96孔盤之孔A1、A12及H12之質心及半徑。發現之質心及半徑隨後用於計算盤上其餘孔的位置。
凝集狀態分類算法
根據本發明之實施例,使用圖21中之流程圖2100中所說明的算法對凝集狀態分類。根據所說明實施例,孔分類為凝集或非凝集。在計算HA參數之後,分類算法關於預設限度確定HA參數處於何處。這些預設限度先驗地確定自匹配許多樣品之數值結果與手動分析。若HA參數小於下限,則孔分類為凝集。若HA參數測定為在上限以上,則孔分類為非凝集。若HA參數之值落入下限與上限之間,則對孔圖案進行額外分析以確定其狀態。
更特定言之,起初進行額外影像處理以確定RBC流是否接觸孔壁或與其重疊。藉由採用例如如圖22中所示之邊緣偵測算法進行此確定。若偵測到壁與流之重疊,則孔分類為非凝集。否則孔分類為凝集。隨後,相對於預設臨限值比較二階中心影像矩以確定RBC圖案是否展現鑽石形。若超出臨限值,則孔分類為凝集。最後,檢驗RBC圖案足部附近之像素以確定足部強度是否足夠。具有低足部強度之圖案分類為凝集。
圖形使用者介面(GUI)
自動化成像及分析之許多(即便不是全部)態樣藉由圖形使用者介面(Graphical User Interface;GUI)整合。根據本文中明確揭示之例示性實施例之GUI分成三個主要區域:影像獲取、影像分析以及資 料管理,在下文中詳細地描述其中之每一者。
影像獲取
根據一或多個實施例之GUI之影像獲取組件負責在使用者指定之時間點獲取全盤影像且在相關資料庫中保存影像連同其後設資料。
運行排程器與影像獲取組件結合操作。排程器關於所需盤成像動力學,諸如顯影時間、成像窗口、成像時間間隔以及盤數目取得使用者輸入且判定最佳運動控制操作以對於給定數目之盤達成使用者請求。藉由排程器產生之排程用於控制影像獲取運行期間之運動及成像硬體。
典型時序圖顯示於圖24及圖25中。圖24及圖25中說明之圖分別對於6及36個盤考慮正常動態輸入參數。根據例示性實施例,先前論述之HIVE成像器在正常操作條件下在一小時內處理大致100個盤。
在運行期間,藉由影像獲取介面顯示切合的資訊,諸如運行完成百分比、當前盤角度及顯影時間以及動態成像狀態。圖23說明在影像獲取期間顯示至使用者之GUI上之例示性標籤。根據此實施例,顯示成像之當前盤之視訊資料以使得使用者可以在電腦監視器上即時觀測顯影過程。根據其他實施例,亦在獲得盤影像時顯示縮略圖影像。點擊縮略圖影像,舉例而言,在GUI之視訊窗口中加載較大影像且亦顯示特定盤及運行資訊。
圖24及圖25說明根據本發明之實施例的分別關於6個盤及36個盤之自動化成像之例示性時序圖。
影像分析
根據此實施例及其他實施例之GUI之影像分析組件應用影像處理算法至獲取之全盤影像且提供呈覆疊盤遮罩形式之結果的視覺表示。圖26顯示將在根據此實施例之影像分析期間顯示之例示性螢幕擷取畫面。如所示,盤遮罩指示凝集狀態、滴定值、離群值、樣品數目、稀 釋度且亦包含後設資料,如抗原及影像採集時間。手動模式允許使用者亦手動地分析盤且標記滴定值及離群值且添加註釋至盤遮罩。分析結果亦可查看為具有數值之熱圖或強度圖。盤影像資料庫亦可使用允許使用者快速訪問基於若干後設資料類別,如抗原、分析員、時間戳記及/或實驗之相關盤圖像的交互式及可過濾表開採。
與提及之影像分析之各種實施例一致,使用若干不同可選分析模式分析盤影像:手動分析、自動單盤分析、分批分析以及全自動分析。
手動分析模式允許使用者藉由例如左擊相關特定孔而手動標記孔影像上之滴定點。離群值孔藉由例如右擊那些孔指示。指示或標記之孔藉由例如其周界周圍著色及/或虛線的圓區分。結果隨後保存至資料庫且可視需要在隨後作業階段中檢索。根據此實施例及其他實施例之自動單盤分析模式提供單一選擇盤之分析且傳回滴定值及凝集狀態。根據分批分析模式,連續分析定義批次內包含的所有盤影像。藉由表明盤經分析以及剩餘盤之進度條及狀態訊息向用戶指示分析進度。全自動分析模式使用最佳時間點算法處理盤。當採用此模式時,處理可在來自單一盤或整個運行之盤的影像上進行。
根據其他實施例,在分析標籤上建構用於觀看分析結果之若干不同觀看模式(例如如圖26中所示):盤遮罩、強度圖、熱圖以及圖表。
盤遮罩為指示孔之凝集狀態、滴定值、RBC對照之有效性以及由不連續凝集狀態所致的離群值之偽色覆疊圖。盤遮罩亦覆疊各行之稀釋因數、各列之樣本編號以及含有例如分析員姓名、盤時間戳記、所用抗原以及由於自定義註釋之區域的註釋部分。強度圖為依據像素強度著色的來自所有孔之經分割RBC圖案之偽色影像。此例如適用於檢閱算法如何對圖案分割且為算法如何分配滴定值提供見解。熱圖為HAI盤之8×12網格表示,各部分之顏色藉由對應孔之HA-參數值界定。其適用於觀察樣品凝集之起始,因為在非凝集至凝集之過渡期間觀測 到顏色變化。最後,圖表部分包括於根據此實施例之分析標籤上以對於選擇盤顯示資料,資料為諸如RBC對照孔標準差值、樣品滴定值以及劑量反應曲線。
資料處理
根據本發明之實施例,資料管理GUI組件對於開採及輸出由影像分析組件產生之資料提供控制。圖27為與此實施例一致的呈現至使用者之例示性資料分析之螢幕擷取畫面。舉例而言,如所示之交互式及可過濾表基於運行->盤->樣品->滴定之等級結構內之後設資料提供創建及輸出資料亞群之能力。根據此實施例及其他實施例提供之輸出控制產生預格式化、自定義微軟優越試算表(Microsoft Excel)或一些其他格式,其直接報導自相關資料庫。根據其他實施例,資料以自定義格式化pdf報告形式輸出。
組配
資料分析設定、儀器設定及使用者角色之組配經由GUI內產生之基於標籤之選單處理。舉例而言,根據一或多個實施例,用於預先論述之影像處理算法中之所有參數均界定於分析設定選單中。硬體設定,諸如載台偏移、相機設定以及通信端口經由設定選單之硬體標籤控制及界定。另外,根據至少一個實施例,軟體支持三種不同使用者角色:一般、管理者以及管理員。這些各別角色中之每一者之權限以及特定使用者之設定經由設定選單之使用者標籤控制及界定。
在測試期間,已使用根據本文所揭示之各種實施例之原型及HIVE成像器獲得若干不同流行性感冒抗原之大量動態影像資料。此資料已用於開發及優化揭示之影像處理算法且對於硬體進一步界定儀器設計要求。藉由使用原型3及HIVE成像系統之實施例進行一致測試,各自在不同合格分析員及不同批次之火雞紅血球之情況下之兩個獨立檢定運行中進行。藉由各讀取方法(手動及自動)產生每抗原每樣品總共2 個結果。自動化滴定分配使用由揭示之最佳時間點算法界定之最佳靜態影像,藉由揭示之算法界定。樣品組由60個人類血清樣品組成,包括來自接種2012-2013流行性感冒疫苗之前及之後的30對血清樣品。抗原測試包括H1N1、H3N2、B以及醚處理B。結果之統計分析包括個別檢定運行及兩個檢定運行之幾何平均滴度(GMT)之標準一致性分析、人類用藥委員會(Committee for Medicinal Products for Human Use;CHMP)標準(包括血清陽性%、血清轉化%以及GMT比率(GMTR,之前/之後)),以及使用個別讀取方法之精密度分析。手動讀取流動RBC之當前方法與使用根據本發明之實施例之成像器之自動化分析之間的一致性分析已關於大範圍之流行性感冒病毒株顯示極好一致性。圖28及圖29之表中提供之資料表明在使用使用原型3成像系統之實施例時,在各種流行性感冒病毒株之手動與自動分析之間高水平的一致性。圖30及圖31之表中提供之資料表明在使用使用HIVE成像系統之實施例時,在手動與自動分析之間甚至更高水平的一致性。亦已關於包括B/湖北-伍家崗(Hubei-Wujiagang)/158/2009(全型及醚處理型二者)以及B/佛羅里達州(Florida)/04/2006(資料未示出)之其他菌株展示使用根據本發明之實施例之成像器之手動與自動讀取方法之間的一致性。本文中所揭示之各種算法亦顯示菌株獨立性,因為諸如限度、臨限值以及顏色閘控之算法參數對於各別成像器上測試之所有菌株固定。
影像處理藉由分配定量量測至凝集狀態而提供相比於傳統分析的就分析HAI而言經擴展之能力。HAI樣品稀釋系列可使用這些數值(HA參數)擬合至劑量反應曲線。如例如圖32中所示,劑量反應曲線使得有可能分配連續滴定值,其基本上內插傳統報導之離散值。凝集開始之實際滴定之結果更精密且其描述更精確。
所得曲線類似於適用於測定抑制促效劑活性某一量所需的物質 (稱作抑制劑或拮抗劑)之濃度,通常報導為半最大抑制濃度或IC50之抑制反應曲線。在HAI的情況下,IC50值描述減少HA參數一半所需的樣品稀釋因數。由於HA參數與凝集狀態有關,IC50值隨後提供基於凝集程度而非凝集或非凝集之離散分類來分類樣品之方法。舉例而言,圖32中之劑量反應曲線各自表示不同血清樣品之稀釋系列。各曲線之對應IC50值連同樣品之傳統離散滴定值標繪於圖33中。值得注意的是樣品2及樣品3,其具有320之相同習知滴定值,但具有顯著不同IC50值。這些樣品之劑量反應曲線之間的差異證明於圖32中,其中樣品3之曲線相比於樣品2之曲線移動至右側,表明其展現相異的凝集活性。然而,基於分配離散值之標準,其習知滴定值相同。在此狀況下,劑量反應曲線及IC50值提供樣品凝集狀態之更完整表示。
300‧‧‧成像器
301‧‧‧框架
302‧‧‧成像組件
303‧‧‧滑動組件
304‧‧‧盤固持器
305‧‧‧磁鎖
306‧‧‧背光
307‧‧‧通/斷開關
308‧‧‧組裝導件
309‧‧‧角度調節機構

Claims (17)

  1. 一種確定一抗體之功能結合活性之方法,包括:製備一由一凝集因子及所述抗體組成之樣品;在允許藉由所述凝集因子凝集一目標物之條件下添加所述目標物至所述樣品;由添加之所述目標物製備一所述樣品之影像;在一程式化處理器件中處理所述影像以確定一所述目標物之凝集。
  2. 如申請專利範圍第1項所述之確定一抗體之功能結合活性之方法,其中所述樣品及所述目標物一起安置於一具有複數個孔之培養盤內且各孔含有一各別樣品及一定量之所述目標物。
  3. 如申請專利範圍第2項所述之確定一抗體之功能結合活性之方法,其中所述影像包含各孔之影像資料。
  4. 如申請專利範圍第3項所述之確定一抗體之功能結合活性之方法,更包括:以一角度傾斜所述培養盤;以及用一光源照亮所述盤。
  5. 如申請專利範圍第4項所述之確定一抗體之功能結合活性之方法,其中所述角度為約0度或約70度。
  6. 如申請專利範圍第2至5項所述之確定一抗體之功能結合活性之方法,其中各自具有對應複數個孔之複數個盤獨立地進行自動成像及處理。
  7. 如申請專利範圍第6項所述之確定一抗體之功能結合活性之方法,其中至多6個盤同時傾斜。
  8. 如申請專利範圍第2項所述之確定一抗體之功能結合活性之方 法,其中所述盤由下而上成像。
  9. 如申請專利範圍第2項所述之確定一抗體之功能結合活性之方法,其中由所述目標物製備所述樣品之影像包括由一遠心透鏡對所述一或多個培養盤成像。
  10. 一種確定一抗體之結合活性之系統,包括:一光學路徑,所述光學路徑包含:一相機,一透鏡,以及一反射鏡;一轉台,包括複數個盤固持站及一台馬達,所述台馬達經調適以使所述轉台旋轉以將所述盤固持站中之任一者移動至與所述光學路徑對準,一盤固持站包括:一盤固持器,經調適以固持包括一陣列測試孔之盤,及一傾斜馬達,經調適以調節一所述盤固持器之傾角;以及一控制器,經調適以控制所述台馬達、所述旋轉馬達以及所述相機以獲取至少一個盤之至少一個影像。
  11. 如申請專利範圍第10項所述之確定一抗體之結合活性之系統,更包括經調適以照亮所述盤之背光。
  12. 如申請專利範圍第10項所述之確定一抗體之結合活性之系統,其中所述控制器控制所述傾斜馬達以將所述盤固持器實質上傾斜至70°,且控制所述相機以在所述盤固持器經傾斜之後的一預定時間獲取一所述盤之影像。
  13. 如申請專利範圍第10項所述之確定一抗體之結合活性之系統,更包括一第二光學路徑,包括:一相機,一透鏡,以及 一反射鏡,其中所述第二光學路徑經安置以獲取一未傾斜盤之一影像。
  14. 如申請專利範圍第10項所述之確定一抗體之結合活性之系統,其中所述相機為一CCD相機。
  15. 如申請專利範圍第14項所述之確定一抗體之結合活性之系統,其中所述CCD相機具有一至少5百萬像素之影像感測器。
  16. 如申請專利範圍第10項所述之確定一抗體之結合活性之系統,其中所述透鏡為一遠心透鏡。
  17. 如申請專利範圍第10項所述之確定一抗體之結合活性之系統,更包括一計算元件,所述計算元件經調適以接收獲自所述相機之影像,且分析所述影像以確定盤之實質上所有測試孔的一凝集狀態。
TW104124462A 2014-07-28 2015-07-28 用於確定抗體結合活性之方法及系統 TWI611173B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201462029922P 2014-07-28 2014-07-28
US62/029,922 2014-07-28

Publications (2)

Publication Number Publication Date
TW201608225A true TW201608225A (zh) 2016-03-01
TWI611173B TWI611173B (zh) 2018-01-11

Family

ID=55166570

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104124462A TWI611173B (zh) 2014-07-28 2015-07-28 用於確定抗體結合活性之方法及系統

Country Status (8)

Country Link
US (2) US10012643B2 (zh)
EP (1) EP3175022B1 (zh)
JP (1) JP6646647B2 (zh)
KR (1) KR102395935B1 (zh)
CN (1) CN106661764B (zh)
CA (1) CA2955866C (zh)
TW (1) TWI611173B (zh)
WO (1) WO2016018940A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3532985B1 (en) 2016-10-28 2023-07-12 Beckman Coulter, Inc. Substance preparation evaluation system
CN108663527A (zh) * 2017-03-27 2018-10-16 南京市畜牧兽医站 血凝和血凝抑制试验读数仪
CN107091935A (zh) * 2017-04-20 2017-08-25 陈凡 自动化血凝抑制实验工作站的总体设计方案及其用途
CN107064503B (zh) * 2017-05-16 2020-07-31 上海兰卫医学检验所股份有限公司 一种梅毒螺旋体抗体检测结果的判断方法及装置
CN109936767A (zh) * 2017-12-18 2019-06-25 大猩猩科技股份有限公司 一种影像分析系统与方法
US11492585B2 (en) * 2019-05-31 2022-11-08 Canon Medical Systems Corporation Cell identification system and cell identification method
CN111912843A (zh) * 2020-09-02 2020-11-10 北京哈美顿生物科技有限公司 一种血凝和血凝抑制实验结果判读装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2897027B2 (ja) 1988-10-27 1999-05-31 スズキ株式会社 免疫学的凝集反応検出装置
JP3360484B2 (ja) * 1995-05-09 2002-12-24 富士レビオ株式会社 検体の検査装置
US6121054A (en) * 1997-11-19 2000-09-19 Trega Biosciences, Inc. Method for separation of liquid and solid phases for solid phase organic syntheses
US6274088B1 (en) * 1998-04-06 2001-08-14 Pharmacopeia, Inc. Methods and apparatus for high throughput plate to plate or plate to membrane transfer
WO2001007896A1 (en) * 1999-07-21 2001-02-01 Tropix, Inc. Luminescence detection workstation
US6793893B2 (en) * 1999-10-12 2004-09-21 Crystal Spring Colony Farms Ltd. Semen storage
US20070098766A1 (en) 2003-06-24 2007-05-03 Saitama Daiichi Pharmaceutical Co., Ltd. Nonaqueous pressure-sensitive adhesive for medicinal tape preparation for percutaneous absorption, medicinal tape preparation for percutaneous asorption, and process for producing the same
US20090213382A1 (en) * 2003-08-01 2009-08-27 Ge Healthcare Bio-Sciences Ab Optical resonance analysis unit
US7355698B2 (en) * 2005-04-25 2008-04-08 Spin Diagnostics, Inc. High throughput imaging device and method
CN101277758A (zh) * 2005-09-14 2008-10-01 Illumina公司 连续聚合物合成器
US8962256B2 (en) * 2009-10-20 2015-02-24 Sanofi Pasteur Vaxdesign Corp. Surface-assisted hemagglutination and hemagglutination inhibition assays
CN106290160A (zh) 2011-01-21 2017-01-04 提拉诺斯公司 样品使用最大化的系统和方法
EP2670840A4 (en) * 2011-02-01 2015-08-19 Arryx Inc METHOD AND DEVICES FOR IMMUNDIAGNOSTIC APPLICATIONS
US9250229B2 (en) 2011-09-25 2016-02-02 Theranos, Inc. Systems and methods for multi-analysis
US9389229B2 (en) * 2012-07-18 2016-07-12 Theranos, Inc. Methods for detecting and measuring aggregation

Also Published As

Publication number Publication date
US10502730B2 (en) 2019-12-10
US20180292397A1 (en) 2018-10-11
WO2016018940A1 (en) 2016-02-04
CA2955866A1 (en) 2016-02-04
CN106661764B (zh) 2020-06-30
KR20170044666A (ko) 2017-04-25
JP2017522568A (ja) 2017-08-10
JP6646647B2 (ja) 2020-02-14
EP3175022B1 (en) 2020-09-16
EP3175022A1 (en) 2017-06-07
US20160025727A1 (en) 2016-01-28
US10012643B2 (en) 2018-07-03
CN106661764A (zh) 2017-05-10
CA2955866C (en) 2023-01-10
TWI611173B (zh) 2018-01-11
KR102395935B1 (ko) 2022-05-10
EP3175022A4 (en) 2018-01-10

Similar Documents

Publication Publication Date Title
TWI611173B (zh) 用於確定抗體結合活性之方法及系統
CN110383038B (zh) 用于对空气样本进行自动分析的系统和方法
TWI795453B (zh) 基於顏色形成反應執行分析量測的方法及裝置
US9726584B2 (en) Sample imaging apparatus
JP6428883B2 (ja) 微小粒子測定装置におけるデータ補正方法及び微小粒子測定装置
JP6490337B2 (ja) 物体の最大解像度カラー撮像
RU2011127424A (ru) Разбиение образца на оптические срезы и регистрация частиц в образце
JP4405600B2 (ja) 凝集反応を分析するためのイメージング装置を校正するための方法及び装置
JP2017508132A5 (zh)
KR101363791B1 (ko) 세포 활성도 측정 장치 및 세포 활성도 분석 방법
US8873815B2 (en) System and apparatus for the remote analysis of chemical compound microarrays
US20190003979A1 (en) Automated agglutination analyzer with contour comparison
TWI722340B (zh) 在近場成像中分類微粒的設備及方法
JP2018529947A (ja) 生物学的試料の多重分析におけるクロストークの修正
JP4898828B2 (ja) 凝集判定方法
CN116783660A (zh) 减少测定错误
Fawaz et al. Micro-flow imaging multi-instrument evaluation for sub-visible particle detection
US11698342B2 (en) Method and system for analysing fluorospot assays
Schimek et al. Challenges at Submicron Particle Characterisation: A Case Study Using Nanoparticle Tracking Analysis (NTA)
JP2022539402A (ja) 体液中の分析物の濃度を決定する方法