TW201528524A - Thin film transistor, method of manufacturing thereof, and application thereof - Google Patents

Thin film transistor, method of manufacturing thereof, and application thereof Download PDF

Info

Publication number
TW201528524A
TW201528524A TW103103004A TW103103004A TW201528524A TW 201528524 A TW201528524 A TW 201528524A TW 103103004 A TW103103004 A TW 103103004A TW 103103004 A TW103103004 A TW 103103004A TW 201528524 A TW201528524 A TW 201528524A
Authority
TW
Taiwan
Prior art keywords
layer
tantalum nitride
oxide layer
thin film
film transistor
Prior art date
Application number
TW103103004A
Other languages
Chinese (zh)
Other versions
TWI563668B (en
Inventor
Cheng-Hsien Wang
Ssu-Chun Peng
Chia-Che Hsu
Original Assignee
Everdisplay Optronics Shanghai Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Everdisplay Optronics Shanghai Ltd filed Critical Everdisplay Optronics Shanghai Ltd
Publication of TW201528524A publication Critical patent/TW201528524A/en
Application granted granted Critical
Publication of TWI563668B publication Critical patent/TWI563668B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors

Abstract

The present invention relates to a thin film transistor. The thin film transistor comprises a substrate and a buffer layer is disposed on the substrate. The buffer layer comprises a n-layered silicon nitride layer; and a first silicon oxide layer is disposed over the n-layered silicon nitride layer, wherein the adjacent layers of the n-layered silicon nitride layer have different density and n is greater than or equal to 3. The thin film transistor of the present invention formed the n-layered silicon nitride layer and the buffer layer of the first silicon oxide layer by changing the film structure and film quality, which can enhance the barrier function of the buffer layer, effectively blocks metal ions of glass substrate upward diffusion, reduces defect centers of polysilicon layer and leakage current, improves quality of polysilicon back interface, prevents forming leakage pathways in polysilicon back interface, improves the stability of the polysilicon layer, thus improves film the reliability of the thin film transistors to enhance the yield and quality of the display device.

Description

薄膜電晶體及其製造方法和應用Thin film transistor and manufacturing method and application thereof

本發明涉及半導體領域,特別涉及一種薄膜電晶體及其製造方法和應用。
The present invention relates to the field of semiconductors, and in particular to a thin film transistor and a method and application thereof.

有機發光顯示器(OLED) 由於具有自主發光、快速響應、輕薄、低功耗並可實現可撓性顯示等諸多優點而備受關注,被認爲是下一代的平板顯示技術。目前,OLED 技術已逐步應用於各種電子産品中,其中主動矩陣有機發光顯示螢幕(AMOLED) 憑藉高畫質、移動圖像響應時間短、低功耗、寬視角及超輕超薄等優點而成爲OLED 發展的主要趨勢。Organic light-emitting displays (OLEDs) are considered to be the next-generation flat panel display technology due to their many advantages such as autonomous illumination, fast response, thinness, low power consumption, and flexible display. At present, OLED technology has been gradually applied to various electronic products, among which active matrix organic light-emitting display (AMOLED) has become superior in high image quality, short moving image response time, low power consumption, wide viewing angle and ultra-light and ultra-thin. The main trend in the development of OLEDs.

目前AMOLED 背板技術中多採用多晶矽薄膜電晶體,多晶矽薄膜電晶體具有消耗功率小且電子遷移率大等優點。早期的多晶矽薄膜電晶體的工藝溫度高達攝氏1000℃,因此基板材質的選擇受到大幅的限制,近來由於雷射的發展,工藝溫度可降至攝氏600℃以下,基板可以使用玻璃基板,利用此種工藝方式所得的多晶矽薄膜電晶體又被稱為低溫多晶矽薄膜電晶體(LTPS TFT)。At present, polycrystalline germanium thin film transistors are often used in AMOLED backplane technology, and polycrystalline germanium thin film transistors have the advantages of low power consumption and large electron mobility. The process temperature of early polycrystalline germanium thin film transistors is as high as 1000 °C, so the choice of substrate material is greatly limited. Recently, due to the development of laser, the process temperature can be reduced to below 600 °C, and the substrate can use glass substrate. The polycrystalline germanium thin film transistor obtained by the process is also referred to as a low temperature polycrystalline germanium thin film transistor (LTPS TFT).

傳統堿玻璃中的鋁、鋇和鈉等金屬含量較高,容易因工藝熱迴圈導致擴散。除了採用無堿玻璃外,在現有低溫多晶矽薄膜電晶體的製造工藝中,其中一個步驟是在基板上形成緩衝層,形成緩衝層可防止基板中的金屬離子擴散至LTPS主動區產生缺陷中心進而增加漏電流,合適厚度的緩衝層還可以改善多晶矽背面介面的品質,並且降低熱傳導,減緩被雷射加熱的矽的冷卻速率,有助於形成較大的多晶矽晶粒。The aluminum, barium and sodium in the traditional bismuth glass have a high content of metals, which is easily diffused by the process heat cycle. In addition to the use of flawless glass, in the manufacturing process of the existing low-temperature polysilicon thin film transistor, one of the steps is to form a buffer layer on the substrate, and the buffer layer is formed to prevent metal ions in the substrate from diffusing to the LTPS active region to generate defect centers and thereby increase Leakage current, a suitable thickness of the buffer layer can also improve the quality of the back surface of the polysilicon, and reduce heat transfer, slow down the cooling rate of the laser heated by the laser, and help to form larger polycrystalline grains.

CN1012651311A公開了一種低溫多晶矽薄膜的製備方法,其中的緩衝層為雙層結構SiNx /SiO2 薄膜或者單層結構的SiNx 或SiO2 薄膜,在雙層結構的SiNx /SiO2 薄膜緩衝層中,緩衝層的上層為SiO2 ,下層為在基板上的SiNxCN1012651311A discloses a method for preparing a low temperature polycrystalline germanium film, wherein the buffer layer is a two-layer structure SiN x /SiO 2 film or a single layer structure SiN x or SiO 2 film, and the double layer structure SiN x /SiO 2 film buffer layer The upper layer of the buffer layer is SiO 2 and the lower layer is SiN x on the substrate.

在多晶矽薄膜電晶體的製造中,對雜質的含量有嚴格要求,現有技術的緩衝層較不易完全阻擋玻璃基板中金屬離子的擴散,為解決這一問題,通常會增加緩衝層的厚度以增強阻擋能力,但過厚的緩衝層易產生過大殘留應力而影響晶化特性。In the manufacture of polycrystalline germanium thin film transistors, there is a strict requirement for the content of impurities. The buffer layer of the prior art is less likely to completely block the diffusion of metal ions in the glass substrate. To solve this problem, the thickness of the buffer layer is generally increased to enhance the blocking. Capability, but an excessively thick buffer layer is prone to excessive residual stress and affects crystallization characteristics.

因此,需要一種有效改善緩衝層阻擋能力的可靠方法,製造具備強阻擋能力的緩衝層,提高多晶矽層的穩定性並改善多晶矽背面介面的品質,由此獲得可靠性改善的薄膜電晶體,進而獲得良率和品質提升的顯示裝置。





Therefore, there is a need for a reliable method for effectively improving the barrier layer blocking ability, manufacturing a buffer layer having a strong barrier ability, improving the stability of the polysilicon layer and improving the quality of the polysilicon back surface interface, thereby obtaining a thin film transistor with improved reliability, thereby obtaining A display device with improved yield and quality.





針對上述問題,發明人經過長期的深入研究,通過改變成膜結構和成膜膜質,形成具有氮化矽和氧化矽多層層疊結構的緩衝層,增加多個晶界,阻擋金屬離子向上擴散,由此提高包含該多層層疊結構緩衝層的薄膜電晶體的可靠性。In view of the above problems, the inventors have long-term in-depth research, by changing the film-forming structure and film-forming film, forming a buffer layer having a multilayer structure of tantalum nitride and yttria, increasing a plurality of grain boundaries, and blocking metal ions from diffusing upward. This improves the reliability of the thin film transistor including the buffer layer of the multilayer laminated structure.

一方面,本發明提供一種薄膜電晶體,所述薄膜電晶體包括基板以及設置在所述基板上的緩衝層,其中所述緩衝層包括:n層氮化矽層;以及第一氧化矽層,所述第一氧化矽層設置在所述n層氮化矽層之上,其中所述n層氮化矽層中相鄰兩層氮化矽層的緻密度不同,且n大於或等於3,且n是自然數。In one aspect, the present invention provides a thin film transistor comprising a substrate and a buffer layer disposed on the substrate, wherein the buffer layer comprises: n layers of tantalum nitride; and a first layer of tantalum oxide, The first ruthenium oxide layer is disposed on the n-layer tantalum nitride layer, wherein a density of two adjacent tantalum nitride layers in the n-layer tantalum nitride layer is different, and n is greater than or equal to 3, And n is a natural number.

在本發明的一種實施方式中,n為5~10的自然數。In one embodiment of the invention, n is a natural number from 5 to 10.

在本發明的另一種實施方式中,所述n層氮化矽層中各氮化矽層的厚度為50~100 Å。In another embodiment of the present invention, each of the n-type tantalum nitride layers has a thickness of 50 to 100 Å.

在本發明的另一種實施方式中,所述第一氧化矽層的厚度為大約1500 Å。In another embodiment of the invention, the first ruthenium oxide layer has a thickness of about 1500 Å.

在本發明的另一種實施方式中,所述相鄰兩層氮化矽層之間還包括介面氧化層。In another embodiment of the present invention, the adjacent two layers of tantalum nitride layers further include an interface oxide layer.

在本發明的另一種實施方式中,所述介面氧化層為氧化矽層。In another embodiment of the invention, the interface oxide layer is a ruthenium oxide layer.

在本發明的另一種實施方式中,所述緩衝層還包括設置在所述第一氧化矽層上的第二氧化矽層,所述第二氧化矽層的緻密度低於所述第一氧化矽層的緻密度。In another embodiment of the present invention, the buffer layer further includes a second ruthenium oxide layer disposed on the first ruthenium oxide layer, the second ruthenium oxide layer having a lower density than the first oxidized layer The density of the enamel layer.

在本發明的另一種實施方式中,所述第二氧化矽層的厚度為500~1000 Å。In another embodiment of the invention, the second ruthenium oxide layer has a thickness of 500 to 1000 Å.

在本發明的另一種實施方式中,所述薄膜電晶體還包括設置在所述緩衝層之上的多晶矽層。In another embodiment of the invention, the thin film transistor further includes a polysilicon layer disposed over the buffer layer.

另一方面,本發明提供一種薄膜電晶體的製造方法,該方法包括:In another aspect, the present invention provides a method of fabricating a thin film transistor, the method comprising:

在基板之上沉積n層氮化矽層,n大於或等於3,且n是自然數,所述n層氮化矽層中相鄰兩層氮化矽層的沉積功率不同,使得所述相鄰兩層氮化矽層的緻密度不同;Depositing n layers of tantalum nitride layer over the substrate, n is greater than or equal to 3, and n is a natural number, and deposition power of adjacent two layers of tantalum nitride layers in the n-layer tantalum nitride layer is different, so that the phase The density of the adjacent two layers of tantalum nitride is different;

在所述n層氮化矽層之上沉積第一氧化矽層,形成所述n層氮化矽層和所述第一氧化矽層層疊的緩衝層;以及Depositing a first hafnium oxide layer over the n-layer tantalum nitride layer to form a buffer layer in which the n-layer tantalum nitride layer and the first hafnium oxide layer are stacked;

在所述緩衝層之上形成主動層。An active layer is formed over the buffer layer.

在本發明方法的一種實施方式中,n為5~10的自然數。In one embodiment of the method of the invention, n is a natural number from 5 to 10.

在本發明方法的另一種實施方式中,所述氮化矽層的厚度為50~100 Å。In another embodiment of the method of the present invention, the tantalum nitride layer has a thickness of 50 to 100 Å.

在本發明方法的另一種實施方式中,所述氮化矽層的沉積功率為500~1500W。In another embodiment of the method of the present invention, the tantalum nitride layer has a deposition power of 500 to 1500 W.

在本發明方法的另一種實施方式中,所述相鄰兩層氮化矽層的沉積功率相差100W。In another embodiment of the method of the present invention, the deposition power of the adjacent two layers of tantalum nitride layers differs by 100 W.

在本發明方法的另一種實施方式中,所述第一氧化矽層的厚度為大約1500 Å。In another embodiment of the method of the present invention, the first ruthenium oxide layer has a thickness of about 1500 Å.

在本發明方法的另一種實施方式中,所述第一氧化矽層的沉積功率不高於500W。In another embodiment of the method of the present invention, the deposition power of the first ruthenium oxide layer is not higher than 500 W.

在本發明方法的另一種實施方式中,在沉積所述相鄰氮化矽層之間還包括通入氧化氣體形成介面氧化層。In another embodiment of the method of the present invention, the depositing of the adjacent tantalum nitride layer further includes introducing an oxidizing gas to form an interface oxide layer.

在本發明方法的另一種實施方式中,所述氧化氣體為N2 O。In another embodiment of the method of the invention, the oxidizing gas is N 2 O.

在本發明方法的另一種實施方式中,還包括在所述第一氧化矽層之上形成第二氧化矽層,所述第二氧化矽層的緻密度低於所述第一氧化矽層的緻密度。In another embodiment of the method of the present invention, the method further includes forming a second ruthenium oxide layer on the first ruthenium oxide layer, the second ruthenium oxide layer having a lower density than the first ruthenium oxide layer Density.

在本發明的另一種實施方式中,所述第二氧化矽層的厚度為500~1000 Å。In another embodiment of the invention, the second ruthenium oxide layer has a thickness of 500 to 1000 Å.

在本發明方法的另一種實施方式中,所述第二氧化矽層的沉積功率不低於1000W。In another embodiment of the method of the present invention, the second cerium oxide layer has a deposition power of not less than 1000 W.

在本發明方法的另一種實施方式中,所述主動層爲多晶矽層。In another embodiment of the method of the invention, the active layer is a polycrystalline germanium layer.

再一方面,本發明提供上述薄膜電晶體在OLED中的應用。In still another aspect, the present invention provides the use of the above-described thin film transistor in an OLED.

本發明的具有改進的緩衝層的薄膜電晶體,通過改變成膜結構和成膜膜質,形成具有n層氮化矽層和一層氧化矽層層疊結構的緩衝層,可強化緩衝層的阻擋能力,有效阻擋玻璃基板中的金屬離子向上擴散,減少多晶矽層的缺陷中心並降低漏電流,同時改善多晶矽背面介面的品質,防止在多晶矽背面介面形成漏電的途徑,提高多晶矽層的穩定性,進而提高薄膜電晶體的可靠性,提升顯示裝置的良率和品質。

























The thin film transistor with the improved buffer layer of the present invention can form a buffer layer having a n-layer tantalum nitride layer and a layer of tantalum oxide layer by changing the film formation structure and the film formation film, thereby enhancing the barrier property of the buffer layer. Effectively blocking the metal ions in the glass substrate to diffuse upward, reducing the defect center of the polysilicon layer and reducing the leakage current, improving the quality of the polysilicon back surface interface, preventing the formation of leakage on the back surface of the polysilicon, improving the stability of the polysilicon layer, and further improving the film. The reliability of the transistor improves the yield and quality of the display device.

























1‧‧‧基板
2‧‧‧緩衝層
21n‧‧‧層氮化矽層
22‧‧‧第一氧化矽層
23‧‧‧第二氧化矽層
3‧‧‧多晶矽層
4‧‧‧閘極絕緣層
5‧‧‧閘極
6‧‧‧層間電介質層
7‧‧‧源/漏極
1‧‧‧Substrate
2‧‧‧buffer layer
21n‧‧‧ layer of tantalum nitride layer
22‧‧‧First ruthenium oxide layer
23‧‧‧Second ruthenium oxide layer
3‧‧‧Polysilicon layer
4‧‧‧ gate insulation
5‧‧‧ gate
6‧‧‧Interlayer dielectric layer
7‧‧‧Source/Drain

圖1為根據本發明一個實施方式的薄膜電晶體的結構示意圖;圖2為根據本發明一個實施方式的緩衝層的結構示意圖;圖3為根據本發明實施例1的製造薄膜電晶體的方法的工藝流程圖。1 is a schematic structural view of a thin film transistor according to an embodiment of the present invention; FIG. 2 is a schematic structural view of a buffer layer according to an embodiment of the present invention; and FIG. 3 is a view showing a method of manufacturing a thin film transistor according to Embodiment 1 of the present invention. Flow chart.

下面根據具體實施例對本發明的技術方案做進一步說明。本發明的保護範圍不限於以下實施例,列舉這些實例僅出於示例性目的而不以任何方式限制本發明。The technical solution of the present invention will be further described below according to specific embodiments. The scope of the present invention is not limited to the following embodiments, and the examples are given for illustrative purposes only and are not intended to limit the invention in any way.

本發明提供一種薄膜電晶體,在一種優選實施方式中,如圖1和圖2所示,該薄膜電晶體包括基板1、緩衝層2、多晶矽層3、閘極絕緣層4、閘極5、層間電介質層6和源/漏極7,其中緩衝層2包括n層氮化矽層21、設置在n層氮化矽層21之上的第一氧化矽層22和設置在第一氧化矽層22之上的第二氧化矽層23,n層氮化矽層21中相鄰兩層氮化矽層的緻密度不同且n大於或等於3,且n是自然數。The present invention provides a thin film transistor. In a preferred embodiment, as shown in FIG. 1 and FIG. 2, the thin film transistor includes a substrate 1, a buffer layer 2, a polysilicon layer 3, a gate insulating layer 4, and a gate 5. Interlayer dielectric layer 6 and source/drain 7, wherein buffer layer 2 includes n layers of tantalum nitride layer 21, first tantalum oxide layer 22 disposed over n-layer tantalum nitride layer 21, and a first tantalum oxide layer The second hafnium oxide layer 23 above 22, the density of adjacent two tantalum nitride layers in the n-layer tantalum nitride layer 21 is different and n is greater than or equal to 3, and n is a natural number.

氧化矽/氮化矽雙層結構作為緩衝層阻擋玻璃基板中的雜質擴散主要是利用氮化矽本身的阻擋作用以及氮化矽與氧化矽之間的晶界。根據本發明,採用相鄰兩層氮化矽層的緻密度不同的n層氮化矽層和第一氧化矽層作為緩衝層,氮化矽層彼此之間形成晶界,增加晶界的數量,從而強化緩衝層阻擋金屬離子擴散的能力。The yttria/tantalum nitride double layer structure acts as a buffer layer to block the diffusion of impurities in the glass substrate mainly by utilizing the barrier action of tantalum nitride itself and the grain boundary between tantalum nitride and tantalum oxide. According to the present invention, the n-layer tantalum nitride layer and the first tantalum oxide layer having different densities of two adjacent tantalum nitride layers are used as buffer layers, and the tantalum nitride layers form grain boundaries with each other to increase the number of grain boundaries. , thereby enhancing the ability of the buffer layer to block the diffusion of metal ions.

由於氧化矽較氮化矽更容易形成晶相較好的多晶矽,而氮化矽對阻擋來自基板的污染物效果更佳,因此優選緩衝層的上層為氧化矽層,下層為氮化矽層。Since ruthenium oxide is more likely to form a better polycrystalline germanium than the tantalum nitride, and tantalum nitride is more effective in blocking contaminants from the substrate, it is preferable that the upper layer of the buffer layer is a ruthenium oxide layer and the lower layer is a tantalum nitride layer.

緩衝層應具有適當的厚度,過薄的緩衝層阻擋金屬離子擴散的能力較差,而過厚的緩衝層易產生過大殘留應力而影響晶化特性,總厚度應維持在3000 Å以下。合適厚度的緩衝層還可以改善多晶矽背面介面的品質,並且降低熱傳導,減緩被雷射加熱的矽的冷卻速率,有助於形成較大的多晶矽晶粒。The buffer layer should have an appropriate thickness. The excessively thin buffer layer is less able to block the diffusion of metal ions, while the excessively thick buffer layer is prone to excessive residual stress and affects the crystallization characteristics, and the total thickness should be maintained below 3000 Å. A suitable thickness of the buffer layer can also improve the quality of the polysilicon back interface and reduce heat transfer, slowing the cooling rate of the laser heated germanium, and helping to form larger polycrystalline grains.

為增加晶界的數量,理論上不同緻密度的氮化矽層的數量應盡可能地多,但綜合考慮工藝的複雜性與生產成本,n優選為5~10的自然數。In order to increase the number of grain boundaries, the number of different density tantalum nitride layers should theoretically be as large as possible, but considering the complexity of the process and the production cost, n is preferably a natural number of 5-10.

n層氮化矽層中各氮化矽層的厚度應大致均勻,優選為50~100 Å,從而保證具有足夠的阻擋金屬離子擴散的能力。The thickness of each of the tantalum nitride layers in the n-layer tantalum nitride layer should be substantially uniform, preferably 50 to 100 Å, to ensure sufficient diffusion of metal ions.

在n層氮化矽層之上形成較緻密的第一氧化矽層,以保證氮化矽層與氧化矽層緊密連接並良好地附著,第一氧化矽層的厚度優選為大約1500 Å。A denser first ruthenium oxide layer is formed over the n-layer tantalum nitride layer to ensure that the tantalum nitride layer is closely connected to the ruthenium oxide layer and adheres well, and the thickness of the first ruthenium oxide layer is preferably about 1500 Å.

在相鄰兩層氮化矽層之間還形成有介面氧化層,該介面氧化層為氧化矽。由於氮化矽與氧化矽之間的晶界對於來自玻璃基板的金屬離子的阻擋效果優於不同緻密度的氮化矽之間的晶界,因此該介面氧化層能有效地增強緩衝層對金屬離子的阻擋能力。An interface oxide layer is also formed between the adjacent two layers of tantalum nitride, and the interface oxide layer is tantalum oxide. Since the grain boundary between tantalum nitride and tantalum oxide is superior to the grain boundary between the different densities of tantalum nitride for the metal ions from the glass substrate, the interface oxide layer can effectively enhance the buffer layer to the metal Ion blocking ability.

在第一氧化矽層之上還形成有較疏鬆的第二氧化矽層,可使得非晶矽有足夠的空間重新排列成多晶矽的結構,第二氧化矽層的厚度優選為500~1000 Å。A looser second ruthenium oxide layer is also formed on the first ruthenium oxide layer, so that the amorphous ruthenium has sufficient space to rearrange into a polycrystalline ruthenium structure, and the thickness of the second ruthenium oxide layer is preferably 500 to 1000 Å.

本發明還提供了上述薄膜電晶體的製造方法,包括:在基板之上沉積n層氮化矽層,n大於或等於3,且n是自然數,所述n層氮化矽層中相鄰兩層氮化矽層的沉積功率不同,使得所述相鄰兩層氮化矽層的緻密度不同;在所述n層氮化矽層之上沉積第一氧化矽層,形成所述n層氮化矽層和所述第一氧化矽層層疊的緩衝層;在所述緩衝層之上形成主動層。The present invention also provides a method for fabricating the above thin film transistor, comprising: depositing n layers of tantalum nitride layer on a substrate, n is greater than or equal to 3, and n is a natural number, adjacent to the n-layer tantalum nitride layer The deposition power of the two layers of tantalum nitride layers is different, so that the density of the adjacent two layers of tantalum nitride layers is different; a first layer of tantalum oxide is deposited on the n layers of tantalum nitride layers to form the n layers a buffer layer in which the tantalum nitride layer and the first tantalum oxide layer are stacked; an active layer is formed on the buffer layer.

對於上述主動層,優選爲多晶矽層。For the above active layer, a polycrystalline germanium layer is preferred.

根據本發明,構成薄膜電晶體緩衝層的n層氮化矽層和一層氧化矽層均通過化學氣相沉積方法(CVD)形成,可採用低壓化學氣相沉積法、熱氣相沉積法、催化化學氣相沉積法、等離子增強化學氣相沉積法等,其中優選等離子增強化學氣相沉積法。等離子增強化學氣相沉積法(PECVD)是一種常用的低溫薄膜製備技術,將輝光放電和化學氣相沉積相結合,基本原理是利用低溫等離子體作為能量源,將基板置於輝光放電陰極之上,通入適當的反應原料氣體,氣體經過一系列化學反應和等離子體反應,在基板表面形成一系列薄膜。PECVD具有基本溫度低、沉積速率快、成膜品質好等優點,因而被廣泛應用於低溫多晶矽薄膜製造領域中。According to the present invention, the n-layer tantalum nitride layer and the ruthenium oxide layer constituting the thin film transistor buffer layer are both formed by chemical vapor deposition (CVD), and low pressure chemical vapor deposition, thermal vapor deposition, catalytic chemistry can be employed. A vapor deposition method, a plasma enhanced chemical vapor deposition method, or the like, among which plasma enhanced chemical vapor deposition is preferred. Plasma Enhanced Chemical Vapor Deposition (PECVD) is a commonly used low temperature film preparation technique that combines glow discharge and chemical vapor deposition. The basic principle is to use a low temperature plasma as an energy source to place the substrate on the glow discharge cathode. The appropriate reaction material gas is introduced, and the gas forms a series of thin films on the surface of the substrate through a series of chemical reactions and plasma reactions. PECVD has the advantages of low basic temperature, fast deposition rate and good film formation quality, and is widely used in the field of low temperature polycrystalline germanium film manufacturing.

就形成氮化矽層的原料氣體而言,作爲氮源氣體,可使用NH3 、NH2 H2 N、N2 等,優選NH3 和N2 ,作爲矽源氣體,可使用SiH4 、Si2 H6 、SiCl4 、SiHCl3 、SiH2 Cl2 、SiH3 Cl3 、SiF4 等,優選SiH4As the raw material gas for forming the tantalum nitride layer, as the nitrogen source gas, NH 3 , NH 2 H 2 N, N 2 or the like can be used, and NH 3 and N 2 are preferable. As the germanium source gas, SiH 4 or Si can be used. 2 H 6 , SiCl 4 , SiHCl 3 , SiH 2 Cl 2 , SiH 3 Cl 3 , SiF 4 or the like, preferably SiH 4 .

就形成氧化矽層的原料氣體而言,作爲氧源氣體,可使用O2 、O3 、N2 O等,優選N2 O,作爲矽源氣體,可使用SiH4 、Si2 H6 、SiCl4 、SiHCl3 、SiH2 Cl2 、SiH3 Cl3 、SiF4 等,優選SiH4The raw material gas to form silicon oxide layer, examples of the oxygen source gas may be used O 2, O 3, N 2 O and the like, preferably N 2 O, as the silicon source gas using SiH 4, Si 2 H 6, SiCl 4 , SiHCl 3 , SiH 2 Cl 2 , SiH 3 Cl 3 , SiF 4 or the like, preferably SiH 4 .

爲了形成緻密度不同的膜層,可通過調整工藝參數如原料氣體種類、原料氣體流量比例、沉積功率和沉積溫度等來實現,例如可採用相同的原料氣體種類和流量比例以及沉積溫度,通過調整沉積功率實現對緻密度的控制;還可採用相同的原料氣體種類以及沉積溫度和沉積功率,通過調整原料氣體流量比例實現對緻密度的控制;還可採用相同的原料氣體種類和流量比例以及沉積功率,通過調整沉積溫度實現對緻密度的控制;此外還可以同時調整多個參數,以達到更優化的效果。In order to form a film layer having different densities, it can be realized by adjusting process parameters such as a material gas type, a material gas flow rate ratio, a deposition power, and a deposition temperature, for example, the same material gas type and flow rate ratio and deposition temperature can be adjusted by adjusting The deposition power is used to control the density; the same source gas type and deposition temperature and deposition power can be used to control the density by adjusting the ratio of the material gas flow rate; the same material gas type and flow ratio and deposition can be used. Power, the density is controlled by adjusting the deposition temperature; in addition, multiple parameters can be adjusted simultaneously to achieve a more optimized effect.

綜合考慮工藝的複雜程度與生産成本,優選通過調整沉積功率來實現對緻密度的控制,一般來說,採用較高的沉積功率會得到較疏鬆的膜層,而採用較低的沉積功率會得到較緻密的膜層。Considering the complexity of the process and the production cost, it is preferable to control the density by adjusting the deposition power. Generally, a higher deposition power will result in a looser film layer, and a lower deposition power will result in a lower deposition power. A denser film layer.

在本發明方法的一種實施方式中,沉積n層氮化矽層時相鄰兩層的沉積功率不同,由此使得n層氮化矽層中相鄰兩層的緻密度不同。n層氮化矽層的沉積功率優選爲500~1500W,同時爲使相鄰兩層氮化矽層之間的晶界具有一定的阻擋效果,相鄰兩層氮化矽層的緻密度應具有一定區別,因此相鄰兩層氮化矽層的沉積功率應具有一定區別,優選爲相差100W。In one embodiment of the method of the present invention, the deposition power of the adjacent two layers is different when the n-layer tantalum nitride layer is deposited, thereby causing different densities of adjacent two layers in the n-layer tantalum nitride layer. The deposition power of the n-layer tantalum nitride layer is preferably 500-1500 W, and at the same time, the grain boundary between the adjacent two layers of tantalum nitride layer has a certain blocking effect, and the density of the adjacent two layers of tantalum nitride layer should have Certainly different, so the deposition power of the adjacent two layers of tantalum nitride layer should have a certain difference, preferably 100W.

在本發明方法的另一種實施方式中,在沉積氮化矽層之間通入氧化氣體以形成介面氧化層,氧化氣體可爲O2 、O3 、N2 O等,優選N2 O,通入氧化氣體的功率不高於500W。In another embodiment of the method of the present invention, an oxidizing gas is introduced between the deposited tantalum nitride layers to form an interface oxide layer, and the oxidizing gas may be O 2 , O 3 , N 2 O, etc., preferably N 2 O, The power of the oxidizing gas is not higher than 500W.

在本發明方法的另一種實施方式中,以第一功率沉積第一氧化矽層,以第二功率沉積第二氧化矽層,第一功率小於第二功率,由此使得第一氧化矽層的緻密度高於第二氧化矽層的緻密度。第一功率優選爲不高於500W,所形成的第一氧化矽層較緻密,與前述氮化矽層緊密連接並良好地附著;第二功率優選爲不低於1000W,所形成的第二氧化矽層較疏鬆,具有較好的適應性,使得非晶矽有足夠的空間重新排列成多晶矽的結構。In another embodiment of the method of the present invention, the first ruthenium oxide layer is deposited at a first power, and the second ruthenium oxide layer is deposited at a second power, the first power being less than the second power, thereby causing the first ruthenium oxide layer The density is higher than the density of the second ruthenium oxide layer. The first power is preferably not higher than 500 W, the formed first ruthenium oxide layer is denser, and is closely connected to the tantalum nitride layer and adheres well; the second power is preferably not less than 1000 W, and the second oxidation is formed. The tantalum layer is looser and has better adaptability, so that the amorphous germanium has enough space to rearrange into a polycrystalline germanium structure.

應當指出的是,對於本發明的薄膜電晶體中的所述基板、多晶矽層、閘極絕緣層、閘極、層間電介質層和源/漏極沒有特殊限定,可採用本領域常規材料和結構,並採用常規技術形成。例如,基板可爲玻璃基板,多晶矽層可由非晶矽層經過雷射退火處理形成,閘極絕緣層可爲氮化矽/氧化矽雙層層疊結構,閘極可爲鋁、鉬、鉻、鎢、鉭、鈦等,層間電介質層可爲氮化矽/氧化矽雙層層疊結構,源/漏極可爲多晶矽層經過摻雜形成。It should be noted that the substrate, the polysilicon layer, the gate insulating layer, the gate electrode, the interlayer dielectric layer, and the source/drain electrodes in the thin film transistor of the present invention are not particularly limited, and materials and structures conventional in the art may be employed. And formed using conventional techniques. For example, the substrate may be a glass substrate, and the polysilicon layer may be formed by a laser annealing treatment of the amorphous germanium layer, and the gate insulating layer may be a tantalum nitride/yttria double layer stacked structure, and the gate may be aluminum, molybdenum, chromium, tungsten. The germanium, titanium, etc., the interlayer dielectric layer may be a tantalum nitride/yttria double layer stacked structure, and the source/drain may be doped with a polycrystalline germanium layer.

由於本發明的薄膜電晶體採用具有n層氮化矽層與第一氧化矽層的緩衝層,該緩衝層具有良好的阻擋玻璃基板中金屬離子向上擴散的能力,保證多晶矽層的穩定性,因而本發明的薄膜電晶體相應具有良好的可靠性。Since the thin film transistor of the present invention employs a buffer layer having an n-layer tantalum nitride layer and a first tantalum oxide layer, the buffer layer has a good ability to block metal ions from diffusing upward in the glass substrate, thereby ensuring stability of the polysilicon layer. The thin film transistor of the present invention has correspondingly good reliability.

本發明還提供了上述薄膜電晶體在OLED中的應用。根據本發明的薄膜電晶體,由於具有良好的可靠性,因而作爲顯示裝置的驅動電路開關元件,能夠有效降低顯示裝置的不良率,提高顯示品質。The invention also provides the use of the above thin film transistor in an OLED. According to the thin film transistor of the present invention, since it has excellent reliability, the driving circuit switching element of the display device can effectively reduce the defective rate of the display device and improve the display quality.

除非另作限定,本發明所用術語均為本領域技術人員通常理解的含義。Unless otherwise defined, the terms used in the present invention are intended to be understood by those skilled in the art.

以下通過實施例對本發明作進一步地詳細說明。The invention will now be further described in detail by way of examples.

實施例Example

比較例1Comparative example 1

在真空腔室中,利用射頻頻率為13.56MHZ的射頻源,產生低溫等離子體作為氣體反應能量源,經由多路氣體接入裝置通入反應氣體甲矽烷、氨氣和氮氣,將甲矽烷與氨氣的流量比設定為1:1~3,將沉積溫度設定為420~430℃,以500W的功率在玻璃基板之上採用PECVD方法沉積厚度為1000Å的氮化矽層;In the vacuum chamber, a radio frequency source with a radio frequency of 13.56 MHz is used to generate a low-temperature plasma as a gas reaction energy source, and the reaction gases, methane, ammonia and nitrogen, are introduced through a multi-channel gas inlet device to form a decane with ammonia. The gas flow ratio is set to 1:1~3, the deposition temperature is set to 420~430°C, and a thickness of 1000Å is deposited on the glass substrate by a PECVD method at a power of 500W;

在同一腔室中,利用射頻頻率為13.56MHZ的射頻源,產生低溫等離子體作為氣體反應能量源,經由多路氣體接入裝置通入反應氣體甲矽烷和一氧化二氮,將甲矽烷與一氧化二氮的流量比設定為1:40~50,將沉積溫度設定為420~430℃,以1000W的功率在上述氮化矽層之上採用PECVD方法沉積厚度為大約1500Å的氧化矽層,從而形成氮化矽/氧化矽雙層結構的緩衝層;In the same chamber, a radio frequency source with a radio frequency of 13.56 MHz is used to generate a low-temperature plasma as a gas reaction energy source, and the reaction gases medioxane and nitrous oxide are introduced through a multi-channel gas access device to form a decane with one The flow ratio of nitrous oxide is set to 1:40-50, the deposition temperature is set to 420-430 ° C, and a ruthenium oxide layer having a thickness of about 1500 Å is deposited by PECVD on the above-mentioned tantalum nitride layer at a power of 1000 W, thereby Forming a buffer layer of a tantalum nitride/yttria double layer structure;

在上述緩衝層上形成非晶矽層;Forming an amorphous germanium layer on the buffer layer;

對上述非晶矽層進行雷射退火處理,使非晶矽層轉變形成多晶矽層;Performing a laser annealing treatment on the amorphous germanium layer to transform the amorphous germanium layer into a polycrystalline germanium layer;

在上述多晶矽層之上依次形成閘極絕緣層、閘極、層間電介質層和源/漏極。A gate insulating layer, a gate, an interlayer dielectric layer, and a source/drain are sequentially formed over the polysilicon layer.

對比較例1的薄膜電晶體進行漏電流測量,測量結果為1E-11~1E-12A。The thin film transistor of Comparative Example 1 was subjected to leakage current measurement, and the measurement result was 1E-11 to 1E-12A.

實施例1Example 1

圖3爲本發明實施例1的製造薄膜電晶體的方法的工藝流程圖,具體說明如下:3 is a process flow diagram of a method for manufacturing a thin film transistor according to Embodiment 1 of the present invention, and is specifically described as follows:

a)在真空腔室中,利用射頻頻率爲13.56MHZ的射頻源,産生低溫等離子體作爲氣體反應能量源,經由多路氣體接入裝置通入反應氣體甲矽烷、氨氣和氮氣,將甲矽烷與氨氣的流量比設定爲1:1~3,將沉積溫度設定爲420~430℃,以500W的功率在玻璃基板之上採用PECVD方法沉積厚度爲100Å的第一氮化矽層,沉積工藝參數見表1;a) using a radio frequency source with a radio frequency of 13.56 MHz in a vacuum chamber to generate a low-temperature plasma as a gas reaction energy source, and introducing a reaction gas of methooxane, ammonia, and nitrogen through a multi-channel gas inlet device to form a methotane. The flow rate ratio with ammonia gas is set to 1:1~3, the deposition temperature is set to 420~430°C, and the first tantalum nitride layer with a thickness of 100Å is deposited by PECVD on the glass substrate at a power of 500W. The parameters are shown in Table 1;

表1:第一氮化矽層的沉積工藝參數Table 1: Deposition process parameters of the first tantalum nitride layer

【0074】b)在同一腔室中,保持上述工藝條件,僅改變射頻功率,以600W的第二功率,在所形成的第一氮化矽層之上連續沉積厚度爲100Å的第二氮化矽層; [0074] b) maintaining the above process conditions in the same chamber, changing only the RF power, and continuously depositing a second nitridation having a thickness of 100 Å over the formed first tantalum nitride layer at a second power of 600 W Layer

c)重複步驟b,每次沉積氮化矽層時將沉積功率調高100W,共沉積10層氮化矽層;c) repeating step b, each deposition of the tantalum nitride layer increases the deposition power by 100 W, and co-deposits 10 layers of tantalum nitride;

d)在同一腔室中,利用射頻頻率為13.56MHZ的射頻源,產生低溫等離子體作為氣體反應能量源,經由多路氣體接入裝置通入反應氣體甲矽烷和一氧化二氮,將甲矽烷與一氧化二氮的流量比設定為1:40~50,將沉積溫度設定為420~430℃,以500W的第一功率在上述氮化矽層之上採用PECVD方法沉積厚度為大約1500Å的第一氧化矽層,沉積工藝參數見表2;d) in the same chamber, using a radio frequency source with a radio frequency of 13.56 MHz, generating a low temperature plasma as a gas reaction energy source, and introducing a reaction gas of methooxane and nitrous oxide through a multi-channel gas inlet device to form a methotoxane The flow ratio to nitrous oxide is set to 1:40-50, the deposition temperature is set to 420-430 ° C, and the first power of 500 W is deposited on the above-mentioned tantalum nitride layer by PECVD method to a thickness of about 1500 Å. The ruthenium oxide layer, the deposition process parameters are shown in Table 2;

表2:第一氧化矽層的沉積工藝參數Table 2: Deposition process parameters of the first ruthenium oxide layer

【0078】e)在同一腔室中,保持上述工藝條件,僅改變射頻功率,以1000W的第二功率在上述第一氧化矽層之上採用PECVD方法沉積厚度為500~1000Å的第二氧化矽層,從而製成n層氮化矽層和兩層氧化矽層層疊結構的緩衝層; [0078] e) in the same chamber, maintaining the above process conditions, only changing the RF power, using a second power of 1000 W on the first ruthenium oxide layer by PECVD method to deposit a thickness of 500 ~ 1000 Å of second yttrium oxide a layer to form a buffer layer of an n-layer tantalum nitride layer and a two-layer tantalum oxide layer stack structure;

f)採用與比較例1相同的材料與方式在上述緩衝層上依次形成多晶矽層、閘極絕緣層、閘極、層間電介質層和源/漏極。f) A polysilicon layer, a gate insulating layer, a gate, an interlayer dielectric layer, and a source/drain were sequentially formed on the buffer layer in the same manner and in the same manner as in Comparative Example 1.

對實施例1的薄膜電晶體進行漏電流測量,測量結果為1E-12A。The thin film transistor of Example 1 was subjected to leakage current measurement, and the measurement result was 1E-12A.

實施例2Example 2

a)在真空腔室中,利用射頻頻率爲13.56MHZ的射頻源,産生低溫等離子體作爲氣體反應能量源,經由多路氣體接入裝置通入反應氣體甲矽烷、氨氣和氮氣,將甲矽烷與氨氣的流量比設定爲1:1~3,將沉積溫度設定爲420~430℃,以500W的功率在玻璃基板之上採用PECVD方法沉積厚度爲100Å的第一氮化矽層,沉積工藝參數見表3;a) using a radio frequency source with a radio frequency of 13.56 MHz in a vacuum chamber to generate a low-temperature plasma as a gas reaction energy source, and introducing a reaction gas of methooxane, ammonia, and nitrogen through a multi-channel gas inlet device to form a methotane. The flow rate ratio with ammonia gas is set to 1:1~3, the deposition temperature is set to 420~430°C, and the first tantalum nitride layer with a thickness of 100Å is deposited by PECVD on the glass substrate at a power of 500W. The parameters are shown in Table 3;

表3:第一氮化矽層的沉積工藝參數Table 3: Deposition process parameters of the first tantalum nitride layer

【0084】b)在420~430℃的溫度下,向上述腔室中通入N2 O,形成介面氧化層;[0084] b) at a temperature of 420 ~ 430 ° C, N 2 O is introduced into the chamber to form an interface oxide layer;

c)在同一腔室中,保持上述工藝條件,僅改變射頻功率,以600W的第二功率,在所形成的第一氮化矽層之上連續沉積厚度爲100Å的第二氮化矽層;c) maintaining the above process conditions in the same chamber, changing only the RF power, and continuously depositing a second tantalum nitride layer having a thickness of 100 Å on the formed first tantalum nitride layer at a second power of 600 W;

d)重複步驟b)和步驟c),每次沉積氮化矽層時將沉積功率調高100W,共沉積10層氮化矽層;d) repeating steps b) and c), each time depositing a tantalum nitride layer, the deposition power is increased by 100 W, and 10 layers of tantalum nitride layer are co-deposited;

e)在同一腔室中,利用射頻頻率為13.56MHZ的射頻源,產生低溫等離子體作為氣體反應能量源,經由多路氣體接入裝置通入反應氣體甲矽烷和一氧化二氮,將甲矽烷與一氧化二氮的流量比設定為1:40~50,將沉積溫度設定為420~430℃,以500W的第一功率在上述氮化矽層之上採用PECVD方法沉積厚度為大約1500Å的第一氧化矽層,沉積工藝參數見表4;e) in the same chamber, using a radio frequency source with a radio frequency of 13.56 MHz, generating a low temperature plasma as a gas reaction energy source, and introducing a reaction gas of methooxane and nitrous oxide via a multi-channel gas inlet device to form a methotoxane The flow ratio to nitrous oxide is set to 1:40-50, the deposition temperature is set to 420-430 ° C, and the first power of 500 W is deposited on the above-mentioned tantalum nitride layer by PECVD method to a thickness of about 1500 Å. The ruthenium oxide layer, the deposition process parameters are shown in Table 4;

表4:第一氧化矽層的沉積工藝參數Table 4: Deposition process parameters of the first ruthenium oxide layer

【0089】f)在同一腔室中,保持上述工藝條件,僅改變射頻功率,以1000W的第二功率在玻璃基板之上沉積厚度為500~1000Å的第二氧化矽層,從而製成n層包含介面氧化層的氮化矽層和兩層氧化矽層層疊結構的緩衝層; [0089] f) in the same chamber, maintaining the above process conditions, only changing the RF power, depositing a second layer of ruthenium oxide having a thickness of 500 to 1000 Å on the glass substrate at a second power of 1000 W, thereby forming an n layer a buffer layer comprising a tantalum nitride layer of an interface oxide layer and a two-layer yttria layer stack structure;

g)採用與比較例1相同的材料與方式在上述緩衝層上依次形成多晶矽層、閘極絕緣層、閘極、層間電介質層和源/漏極。g) A polysilicon layer, a gate insulating layer, a gate, an interlayer dielectric layer, and a source/drain are sequentially formed on the buffer layer in the same manner and in the same manner as in Comparative Example 1.

對實施例2的薄膜電晶體進行漏電流測量,測量結果小於1E-12A。對比較例1、實施例1和實施例2的漏電流大小進行比較,結果如下:比較例1的漏電流>實施例1的漏電流>實施例2的漏電流。Leakage current measurement was performed on the thin film transistor of Example 2, and the measurement result was less than 1E-12A. The leakage currents of Comparative Example 1, Example 1 and Example 2 were compared. The results are as follows: Leakage current of Comparative Example 1 > Leakage current of Example 1 > Leakage current of Example 2.

由此可見採用n層氮化矽和第一氧化矽層結構的緩衝層相對于現有技術可有效降低漏電流,同時在氮化矽層之間加入介面氧化層可以進一步降低漏電流。It can be seen that the buffer layer using the n-layer tantalum nitride and the first tantalum oxide layer structure can effectively reduce the leakage current compared with the prior art, and the addition of the interface oxide layer between the tantalum nitride layers can further reduce the leakage current.

綜上所述,本發明的薄膜電晶體通過改變成膜結構和成膜膜質,形成具有n層氮化矽層和一層氧化矽層層疊結構的緩衝層,可強化緩衝層的阻擋能力,有效阻擋玻璃基板中的金屬離子向上擴散,減少多晶矽層的缺陷中心並降低漏電流,同時改善多晶矽背面介面的品質,防止在多晶矽背面介面形成漏電的途徑,提高多晶矽層的穩定性,進而提高薄膜電晶體的可靠性,提升顯示裝置的良率和品質。In summary, the thin film transistor of the present invention forms a buffer layer having a n-layer tantalum nitride layer and a layer of tantalum oxide layer by changing the film formation structure and the film formation film, thereby enhancing the barrier property of the buffer layer and effectively blocking The metal ions in the glass substrate diffuse upward, reduce the defect center of the polysilicon layer and reduce the leakage current, improve the quality of the polysilicon back surface interface, prevent the formation of leakage in the back surface of the polysilicon, improve the stability of the polysilicon layer, and further improve the thin film transistor. Reliability, improve the yield and quality of the display device.

本領域技術人員應當注意的是,本發明所描述的實施方式僅僅是示範性的,可在本發明的範圍內作出各種其他替換、改變和改進。因而,本發明不限於上述實施方式,而僅由申請專利範圍限定。





































It should be understood by those skilled in the art that the presently described embodiments are merely exemplary, and that various alternatives, modifications and improvements are possible within the scope of the invention. Therefore, the present invention is not limited to the above embodiments, but is limited only by the scope of the patent application.





































 

21‧‧‧n層氮化矽層 21‧‧‧n layer of tantalum nitride layer

22‧‧‧第一氧化矽層 22‧‧‧First ruthenium oxide layer

23‧‧‧第二氧化矽層 23‧‧‧Second ruthenium oxide layer

Claims (23)

一種薄膜電晶體,所述薄膜電晶體包括基板以及設置在所述基板上的緩衝層,其中所述緩衝層包括:
n層氮化矽層;以及
第一氧化矽層,所述第一氧化矽層設置在所述n層氮化矽層之上,其中所述n層氮化矽層中相鄰兩層氮化矽層的緻密度不同,且n大於或等於3,且n是自然數。
A thin film transistor comprising a substrate and a buffer layer disposed on the substrate, wherein the buffer layer comprises:
a n-layer tantalum nitride layer; and a first hafnium oxide layer, the first hafnium oxide layer being disposed on the n-layer tantalum nitride layer, wherein two adjacent layers of the n-layer tantalum nitride layer are nitrided The densities of the crucible layers are different, and n is greater than or equal to 3, and n is a natural number.
根據申請專利範圍第1項的薄膜電晶體,其中n為5~10的自然數。A thin film transistor according to the first aspect of the patent application, wherein n is a natural number of 5 to 10. 根據申請專利範圍第2項的薄膜電晶體,其中所述n層氮化矽層中各氮化矽層的厚度為50~100 Å。The thin film transistor according to claim 2, wherein each of the n-layer tantalum nitride layers has a thickness of 50 to 100 Å. 根據申請專利範圍第1項的薄膜電晶體,其中所述第一氧化矽層的厚度為1500 Å。The thin film transistor according to claim 1, wherein the first ruthenium oxide layer has a thickness of 1500 Å. 根據申請專利範圍第1項的薄膜電晶體,其中所述相鄰兩層氮化矽層之間還包括介面氧化層。A thin film transistor according to claim 1, wherein the adjacent two layers of tantalum nitride further comprise an interface oxide layer. 根據申請專利範圍第5項的薄膜電晶體,其中所述介面氧化層為氧化矽層。A thin film transistor according to claim 5, wherein the interface oxide layer is a ruthenium oxide layer. 根據申請專利範圍第1項的薄膜電晶體,其中所述緩衝層還包括設置在所述第一氧化矽層上的第二氧化矽層,所述第二氧化矽層的緻密度低於所述第一氧化矽層的緻密度。The thin film transistor according to claim 1, wherein the buffer layer further comprises a second ruthenium oxide layer disposed on the first ruthenium oxide layer, the second ruthenium oxide layer having a lower density than the Density of the first ruthenium oxide layer. 根據申請專利範圍第7項的薄膜電晶體,其中所述第二氧化矽層的厚度為500~1000 Å。The thin film transistor according to claim 7, wherein the second ruthenium oxide layer has a thickness of 500 to 1000 Å. 根據申請專利範圍第1至7項中任一項的薄膜電晶體,其中所述薄膜電晶體還包括設置在所述緩衝層之上的多晶矽層。The thin film transistor according to any one of claims 1 to 7, wherein the thin film transistor further comprises a polysilicon layer disposed over the buffer layer. 根據申請專利範圍第1至9項中任一項的薄膜電晶體在OLED中的應用。The use of a thin film transistor according to any one of claims 1 to 9 in an OLED. 一種薄膜電晶體的製造方法,包括:
在基板之上沉積n層氮化矽層,n大於或等於3,且n是自然數,所述n層氮化矽層中相鄰兩層氮化矽層的沉積功率不同,使得所述相鄰兩層氮化矽層的緻密度不同;
在所述n層氮化矽層之上沉積第一氧化矽層,形成所述n層氮化矽層和所述第一氧化矽層層疊的緩衝層;以及
在所述緩衝層之上形成主動層。
A method of manufacturing a thin film transistor, comprising:
Depositing n layers of tantalum nitride layer over the substrate, n is greater than or equal to 3, and n is a natural number, and deposition power of adjacent two layers of tantalum nitride layers in the n-layer tantalum nitride layer is different, so that the phase The density of the adjacent two layers of tantalum nitride is different;
Depositing a first hafnium oxide layer over the n-layer tantalum nitride layer to form a buffer layer of the n-layer tantalum nitride layer and the first tantalum oxide layer; and forming an active layer on the buffer layer Floor.
根據申請專利範圍第11項的方法,其中n為5~10的自然數。According to the method of claim 11, wherein n is a natural number of 5 to 10. 根據申請專利範圍第12項的方法,其中所述氮化矽層的厚度為50~100 Å。The method of claim 12, wherein the tantalum nitride layer has a thickness of 50 to 100 Å. 根據申請專利範圍第13項的方法,其中所述氮化矽層的沉積功率為500~1500W。The method of claim 13, wherein the tantalum nitride layer has a deposition power of 500 to 1500 W. 根據申請專利範圍第14項的方法,其中所述相鄰兩層氮化矽層的沉積功率相差100W。The method of claim 14, wherein the deposition power of the adjacent two layers of tantalum nitride layers differs by 100 W. 根據申請專利範圍第11項的方法,其中所述第一氧化矽層的厚度為1500 Å。The method of claim 11, wherein the first ruthenium oxide layer has a thickness of 1500 Å. 根據申請專利範圍第16項的方法,其中所述第一氧化矽層的沉積功率不高於500W。The method of claim 16, wherein the first cerium oxide layer has a deposition power of not more than 500 W. 根據申請專利範圍第11項的方法,在沉積所述相鄰氮化矽層之間還包括通入氧化氣體形成介面氧化層。According to the method of claim 11, the depositing of the adjacent tantalum nitride layer further includes forming an interface oxide layer by introducing an oxidizing gas. 根據申請專利範圍第18項的方法,其中所述氧化氣體為N2 O。The method of claim 18, wherein the oxidizing gas is N 2 O. 根據申請專利範圍第11項的方法,還包括在所述第一氧化矽層之上形成第二氧化矽層,所述第二氧化矽層的緻密度低於所述第一氧化矽層的緻密度。The method of claim 11, further comprising forming a second ruthenium oxide layer on the first ruthenium oxide layer, the second ruthenium oxide layer having a lower density than the first ruthenium oxide layer degree. 根據申請專利範圍第20項的方法,其中所述第二氧化矽層的厚度為500~1000 Å。The method of claim 20, wherein the second ruthenium oxide layer has a thickness of 500 to 1000 Å. 根據申請專利範圍第20項的方法,其中所述第二氧化矽層的沉積功率不低於1000W。The method of claim 20, wherein the second cerium oxide layer has a deposition power of not less than 1000 W. 根據申請專利範圍第11至22項中任一項的方法,其中所述主動層爲多晶矽層。
The method of any one of clauses 11 to 22, wherein the active layer is a polycrystalline germanium layer.
TW103103004A 2014-01-06 2014-01-27 Thin film transistor, method of manufacturing thereof, and application thereof TWI563668B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410005262.7A CN104766890B (en) 2014-01-06 2014-01-06 Thin film transistor (TFT) and its manufacture method and application

Publications (2)

Publication Number Publication Date
TW201528524A true TW201528524A (en) 2015-07-16
TWI563668B TWI563668B (en) 2016-12-21

Family

ID=53648616

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103103004A TWI563668B (en) 2014-01-06 2014-01-27 Thin film transistor, method of manufacturing thereof, and application thereof

Country Status (3)

Country Link
JP (1) JP5998232B2 (en)
CN (1) CN104766890B (en)
TW (1) TWI563668B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI643012B (en) * 2017-12-28 2018-12-01 大陸商友達光電(昆山)有限公司 An lpts transistor and its display device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6557585B2 (en) * 2015-12-02 2019-08-07 株式会社日立ハイテクノロジーズ Plasma processing method
US10191345B2 (en) * 2016-11-01 2019-01-29 Innolux Corporation Display device
CN106604197B (en) * 2016-11-29 2019-10-11 深圳倍声声学技术有限公司 A method of improving moving-iron receiver coil corrosion resistance
CN109300918A (en) * 2018-10-08 2019-02-01 惠科股份有限公司 A kind of conductive layer insulating method, conductive layer insulation system and display device
CN110212071B (en) * 2019-05-22 2020-07-07 华灿光电(浙江)有限公司 Light emitting diode chip and manufacturing method thereof
CN114447144A (en) * 2021-12-27 2022-05-06 张家港博佑光电科技有限公司 Before-after-alkali polishing protection process for PERC + SE battery

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11145482A (en) * 1997-11-11 1999-05-28 Matsushita Electric Ind Co Ltd Semiconductor device and manufacture thereof
JPH11312809A (en) * 1998-04-28 1999-11-09 Matsushita Electric Ind Co Ltd Top gate type thin-film transistor and its manufacture
JP2000091584A (en) * 1998-09-08 2000-03-31 Matsushita Electric Ind Co Ltd Thin film transistor
JP4680850B2 (en) * 2005-11-16 2011-05-11 三星モバイルディスプレイ株式會社 Thin film transistor and manufacturing method thereof
EP2325871B1 (en) * 2006-02-07 2014-06-04 Fujitsu Limited Semiconductor device and method of manufacturing the same
JP5448960B2 (en) * 2010-03-23 2014-03-19 富士フイルム株式会社 Thin film transistor substrate, display device including the same, and electromagnetic wave sensor
JP2013062307A (en) * 2011-09-12 2013-04-04 Sony Corp Thin film transistor and electronic apparatus
CN102629555B (en) * 2011-10-11 2014-11-26 北京京东方光电科技有限公司 Gate insulation layer and preparation method thereof, TFT and preparation method thereof, array substrate and display device
CN103219230B (en) * 2013-04-19 2015-09-30 京东方科技集团股份有限公司 The manufacture method of low temperature polycrystalline silicon, low-temperature polysilicon film and thin-film transistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI643012B (en) * 2017-12-28 2018-12-01 大陸商友達光電(昆山)有限公司 An lpts transistor and its display device

Also Published As

Publication number Publication date
JP5998232B2 (en) 2016-09-28
JP2015130509A (en) 2015-07-16
CN104766890B (en) 2018-04-27
TWI563668B (en) 2016-12-21
CN104766890A (en) 2015-07-08

Similar Documents

Publication Publication Date Title
TW201528524A (en) Thin film transistor, method of manufacturing thereof, and application thereof
TWI291235B (en) Low temperature process for TFT fabrication
JP4018625B2 (en) Multi-stage CVD method for thin film transistors
US20100014212A1 (en) Capacitor and method for fabricating the same
TW201021131A (en) Capping layers for metal oxynitride TFTs
WO2014169601A1 (en) Method for fabricating low temperature polysilicon, low temperature polysilicon thin film, and thin film transistor
TWI543270B (en) Gate insulation layer with improved etching angle and manufacturing method thereof
TW201445746A (en) Thin-film transistor and manufacturing method thereof and display device having thin-film transistor
JP2015154078A (en) Method of manufacturing gate insulation layer
KR20020002596A (en) Method for manufactruing capacitor in semiconductor memory device
US20090155988A1 (en) Element of low temperature poly-silicon thin film and method of making poly-silicon thin film by direct deposition at low temperature and inductively-coupled plasma chemical vapor deposition equipment therefor
US11239263B2 (en) Thin film transistor, method for manufacturing thereof and display device
TW202118071A (en) Pas s ivation f ilm stack, thin- f i lmtrans i stor us ing the same and method for depos i ting s ilicon nitride material
TW201813089A (en) High-K dielectric materials comprising zirconium oxide utilized in display devices
US20050202652A1 (en) High-density plasma hydrogenation
TW200428657A (en) High definition semiconductor device and method of manufacturing such semiconductor device
US7259059B2 (en) Method for forming capacitor of semiconductor device
US10748759B2 (en) Methods for improved silicon nitride passivation films
TWI773844B (en) Thin-film transistor and method for manufacturing the same
US20080241355A1 (en) Thin film transistor devices having high electron mobility and stability
TWI817338B (en) Method for fabricating semiconductor device with air gap
KR20230170095A (en) Methods and applications of novel amorphous high-K metal oxide dielectrics by supercycle atomic layer deposition
KR20020002156A (en) Method for fabricating capacitor
KR100521416B1 (en) Capacitor with hafnium-nitride bottom electrode
JP2009079301A (en) Reactive sputtering device