JP2009079301A - Reactive sputtering device - Google Patents

Reactive sputtering device Download PDF

Info

Publication number
JP2009079301A
JP2009079301A JP2008284968A JP2008284968A JP2009079301A JP 2009079301 A JP2009079301 A JP 2009079301A JP 2008284968 A JP2008284968 A JP 2008284968A JP 2008284968 A JP2008284968 A JP 2008284968A JP 2009079301 A JP2009079301 A JP 2009079301A
Authority
JP
Japan
Prior art keywords
film
wafer
wafer holder
hfn
dielectric constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008284968A
Other languages
Japanese (ja)
Inventor
Wikuramanayaka Snil
ウィクラマナヤカ スニル
Naoki Yamada
直樹 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Anelva Corp
Original Assignee
Canon Anelva Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Anelva Corp filed Critical Canon Anelva Corp
Priority to JP2008284968A priority Critical patent/JP2009079301A/en
Publication of JP2009079301A publication Critical patent/JP2009079301A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device for depositing a dielectric film having a very thin thickness, high evenness of film quality and a higher dielectric constant, in a MOSFET (metal oxide semiconductor field effect transistor) on a silicon substrate. <P>SOLUTION: The reactive sputtering device is provided with a wafer holder 11 on which a wafer 22 is arranged, a target 12 obliquely arranged above the wafer holder 11 deviating from its rotary shaft, and a gas introducing part 17 and exhausting port 16 respectively provided interposing the wafer holder 11 between them below the wafer holder 11. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は高誘電率誘電体膜を堆積する装置に関し、特に、基板でのシリコン層で非常に薄くかつ均一な厚みを有する各種の酸化膜または窒化膜のごとき高誘電率誘電体膜を堆積する反応性スパッタリング装置に関する。   The present invention relates to an apparatus for depositing a high dielectric constant dielectric film, and particularly deposits a high dielectric constant dielectric film such as various oxide films or nitride films having a very thin and uniform thickness on a silicon layer on a substrate. The present invention relates to a reactive sputtering apparatus.

シリコン基板上にMOSFETデバイスを製作することにおいて、例えばSiO2よりも相当に高い誘電率を備えた誘電体物質の非常に薄い膜を成膜することは、将来の半導体デバイスにとって非常に重要である。MOSFETにおいて薄いより高い誘電率誘電体膜が例えばゲート絶縁層として使用されている。詳しくは、高誘電率誘電体物質は2つの異なる応用においてその使用が期待されている。第1の応用は、CMOSトランジスタゲート誘電体でSiO2、SiON、およびSi34の誘電体物質を現在広く用いることに置き換えることである。第2の応用は、特に、液晶表示パネルのためのより高い容量を有するキャパシタを作ることである。 In fabricating MOSFET devices on a silicon substrate, it is very important for future semiconductor devices to deposit very thin films of dielectric materials with a dielectric constant much higher than for example SiO 2 . Thin, higher dielectric constant dielectric films are used, for example, as gate insulating layers in MOSFETs. Specifically, high dielectric constant dielectric materials are expected to be used in two different applications. The first application is to replace the current widespread use of SiO 2 , SiON, and Si 3 N 4 dielectric materials in CMOS transistor gate dielectrics. The second application is to make a capacitor with higher capacitance, especially for liquid crystal display panels.

現在、高誘電率誘電体物質を成膜することに関して2つの基本的技術が存在する。第1の方法は化学的気相成長(CVD)であり、第2の方法は物理的気相成長(PVD)である。   Currently, there are two basic techniques for depositing high dielectric constant dielectric materials. The first method is chemical vapor deposition (CVD) and the second method is physical vapor deposition (PVD).

たとえCVD方法により膜を堆積することにおいて多くの異なる技術があるとしても、基本的に、産業上では唯一2つの方法が広く応用されている。   Even though there are many different techniques in depositing films by CVD methods, basically only two methods are widely applied in the industry.

第1の技術において、化学的プリカーサー、好ましくは金属有機複合物がプラズマまたは熱的エネルギによって分解され、そして適当なガスと反応して、望ましいより高い誘電率を有する誘電体物質を作る。この技術は通常MO−CVD技術と呼ばれている。   In the first technique, a chemical precursor, preferably a metal-organic composite, is decomposed by plasma or thermal energy and reacts with a suitable gas to produce a dielectric material having a higher dielectric constant than desired. This technique is usually called MO-CVD technique.

第2の方法において、2つの化学的媒介物が基板に対して導入され、それは各ガス導入の間でタイムブレークを交互に作りながら導入される。当該タイムブレークの間、第1に導入されたガスは基板の表面に吸収された分子を除いて排気される。第2の媒介物が導入されるとき、それは当該表面に吸収された第1ガスの分子と反応し、誘電体膜を形成する。それから、残存する過剰なガスは、次のガス投入に至るまでのタイムブレークの間に排気される。この技術は、原子層堆積(ALD)技術と呼ばれている。   In the second method, two chemical mediators are introduced to the substrate, which are introduced with alternating time breaks between each gas introduction. During the time break, the first introduced gas is exhausted except for molecules absorbed on the surface of the substrate. When the second mediator is introduced, it reacts with the first gas molecules absorbed on the surface to form a dielectric film. Then, the remaining excess gas is exhausted during the time break until the next gas input. This technique is called atomic layer deposition (ALD) technique.

CMOS応用におけるゲート絶縁体としてシリコン基板上に高誘電率誘電体膜を堆積することにおいて、2つの基本的な要求が存在する。第1の要求は、当該膜は非常に薄いものでなければならないということである。例えば、将来のCMOSデバイスの大部分は物理的な厚みが3nmよりも小さいという膜を必要とする。第2の要求は、当該膜の厚みが、例えば1%(1σ)よりも小さいものであり、非常に均一であるということである。これらの膜は非常に薄いので、不均一性が僅かでもあるとこの膜は電気的特性、例えば容量や漏れ電流などに重大な変化を与える。これらの2つの基本的要求に関連して上記成膜技術の欠点が議論される。   There are two basic requirements in depositing a high dielectric constant dielectric film on a silicon substrate as a gate insulator in CMOS applications. The first requirement is that the membrane must be very thin. For example, most future CMOS devices require films with a physical thickness of less than 3 nm. The second requirement is that the thickness of the film is, for example, smaller than 1% (1σ) and is very uniform. Since these films are very thin, even a slight non-uniformity can cause significant changes in electrical properties such as capacitance and leakage current. In connection with these two basic requirements, the shortcomings of the film deposition technique are discussed.

従来の技術の1つとして、例えば反応性スパッタリング方法またはCVDを用いてシリコン層上に直接に高誘電体酸化膜を堆積する方法を開示する特許文献1が存在する。この方法は、高い誘電体または絶縁体のごとき、高誘電率酸化膜の特性を損なうことなくシリコン層上に直接に高誘電体酸化膜を形成するための方法が提案されている。前述した従来の方法によれば、第1に、高誘電率窒化膜がシリコン層の上に形成され、その後、高誘電率窒化膜は、酸化されることによって高誘電率酸化膜になるように変化する。   As one of conventional techniques, there is Patent Document 1 that discloses a method of depositing a high dielectric oxide film directly on a silicon layer by using, for example, a reactive sputtering method or CVD. This method has been proposed for forming a high dielectric oxide film directly on a silicon layer without impairing the characteristics of the high dielectric constant oxide film such as a high dielectric or insulator. According to the conventional method described above, first, a high dielectric constant nitride film is formed on a silicon layer, and then the high dielectric constant nitride film is oxidized to become a high dielectric constant oxide film. Change.

特開平11−168096号公報JP-A-11-168096

本発明の課題は次の通りである。シリコン基板上のMOSFETでゲート絶縁層として用いられる非常に薄い誘電体膜を製作する時、より高い誘電率を備えた均一な誘電体膜が成膜されることが必要とされる。   The subject of the present invention is as follows. When manufacturing a very thin dielectric film used as a gate insulating layer in a MOSFET on a silicon substrate, it is necessary to form a uniform dielectric film having a higher dielectric constant.

本発明の目的は、シリコン基板上のMOSFETにおいて、非常に薄い厚みを有し、膜質の高い均一性を有し、より高い誘電率を有する誘電体膜を堆積する装置を提供することにある。   An object of the present invention is to provide an apparatus for depositing a dielectric film having a very thin thickness, high film quality uniformity, and higher dielectric constant in a MOSFET on a silicon substrate.

本発明は、ウェハーが配置され、所定の回転速度で回転するウェハーホルダと、
前記ウェハーホルダの回転軸から外れた上方の位置に、傾斜姿勢で設けられ、ハフニウムを含有するターゲットが取り付けられ、DC電力を投入可能なカソードと、
前記ウェハーホルダの回転軸から外れた下方の位置であって、上方に前記カソードが位置しない位置に設けられ、プロセスガスとして窒素ガスを導入するためのガス導入部と、
前記ウェハーホルダの下方であって、当該ウェハーホルダを挟んで前記ガス導入部とは反対側の位置に設けられた排気ポートと、
を備えることを特徴とする反応性スパッタリング装置である。
The present invention includes a wafer holder in which a wafer is disposed and rotated at a predetermined rotational speed;
A cathode provided in an inclined position at an upper position off the rotation axis of the wafer holder, a target containing hafnium is attached, and a DC power can be input;
A gas introduction part for introducing nitrogen gas as a process gas, which is provided at a position below the rotation axis of the wafer holder and where the cathode is not located above;
An exhaust port provided below the wafer holder and on the opposite side of the gas introduction unit across the wafer holder;
It is a reactive sputtering apparatus characterized by including.

本発明によれば、PVDおよび熱的アニーリングプロセスによって非常に薄いかつ非常に均一な誘電体膜を堆積することにおいて新技術が提供され、当該新技術では膜はプラズマによって誘導されるダメージを受けない。この技術によれば、EOT(equivalent oxide thickness:等価酸化物厚み)<1nm、かつ漏れ電流が10-1A/cm2よりも小さいという特性を有する高誘電率誘電体膜を作製するということが示される。 In accordance with the present invention, a new technique is provided in depositing a very thin and very uniform dielectric film by PVD and thermal annealing processes, where the film is not subject to plasma-induced damage. . According to this technique, it is possible to produce a high dielectric constant dielectric film having characteristics that EOT (equivalent oxide thickness) <1 nm and a leakage current is smaller than 10 −1 A / cm 2. Indicated.

本発明に係る高誘電率誘電体膜を堆積する方法は、上記目的を達成するため、次のように構成される。   In order to achieve the above object, a method for depositing a high dielectric constant dielectric film according to the present invention is configured as follows.

基板のドープシリコン層またはドープシリコン化合物層の上に高誘電率誘電体膜を堆積する方法は、特定元素(A)を窒化してシリコン層上に窒化膜(Axy)を形成する第1ステップであって、当該窒化膜(Axy)における特定元素(A)と窒素(N)がxとyの間で所定割合の関係を有する上記第1ステップと、当該窒化膜を酸化雰囲気において酸化して酸化かつ窒化された誘電体膜(AON)を形成する第2ステップを含んで構成される。 A method for depositing a high dielectric constant dielectric film on a doped silicon layer or a doped silicon compound layer of a substrate is a method in which a specific element (A) is nitrided to form a nitride film (A x N y ) on the silicon layer. The first step in which the specific element (A) and nitrogen (N) in the nitride film (A x N y ) have a predetermined ratio between x and y, and the nitride film is oxidized It includes a second step of forming a dielectric film (AON) that is oxidized and oxidized and nitrided in an atmosphere.

前述の方法において、好ましくは、特定元素(A)は元素の周期表の3族、4族、または5族に属するいずれかの元素である。   In the above method, preferably, the specific element (A) is any element belonging to Group 3, Group 4, or Group 5 of the periodic table of elements.

前述の方法において、好ましくは、窒化膜(Axy)で特定元素(A)と窒素(N)はyがそのストチオメトリック値(stochiometric value)よりも小さいという関係を有する。 In the above-described method, preferably, in the nitride film (A x N y ), the specific element (A) and nitrogen (N) have a relationship that y is smaller than the stoichiometric value.

前述の方法において、好ましくは、特定元素(A)はハフニウム(Hf)である。   In the above-described method, preferably, the specific element (A) is hafnium (Hf).

前述の方法において、好ましくは、窒化膜(Hfxy)におけるハフニウム(Hf)と窒素(N)は0<y<1.5、xが1の時という関係を有する。 In the above-described method, preferably, hafnium (Hf) and nitrogen (N) in the nitride film (Hf x N y ) have a relationship that 0 <y <1.5 and x is 1.

前述の方法において、好ましくは、第2ステップでの酸化プロセスは400〜1000℃の温度範囲に含まれる特定温度を有する熱的アニールプロセスによって実行される。   In the above-described method, preferably, the oxidation process in the second step is performed by a thermal annealing process having a specific temperature included in a temperature range of 400 to 1000 ° C.

前述の方法において、好ましくは反応性スパッタリング方法が膜堆積に用いられる。   In the above method, preferably a reactive sputtering method is used for film deposition.

前述の方法において、好ましくは、SiO2層、SiN層、SiON層のいずれかが最初にシリコン層上に設けられ、それから高誘電率誘電体膜(AON)を堆積する。 In the above method, preferably, either a SiO 2 layer, a SiN layer, or a SiON layer is first provided on the silicon layer, and then a high dielectric constant dielectric film (AON) is deposited.

前述の方法において、好ましくは、第1ステップでの窒化プロセスのために供給される窒素ガス(N2)の流速は1〜15sccmの範囲に含まれるいずれかの値である。 In the above-described method, preferably, the flow rate of nitrogen gas (N 2 ) supplied for the nitridation process in the first step is any value within the range of 1 to 15 sccm.

以下に、添付した図面を参照して好適な実施形態を説明する。当該実施形態の説明を通して本発明の詳細が明らかにされる。   Hereinafter, preferred embodiments will be described with reference to the accompanying drawings. Details of the present invention will be clarified through the description of the embodiment.

[実施形態1]
図1〜図6を参照して本発明の第1実施形態が説明される。一例としてPVD処理チャンバ10の概略構成図が図1に示される。本発明による高誘電率誘電体膜を堆積する方法は、当該PVD処理チャンバでMOSFET用ゲート電極を作るためのシリコンウェハー上にゲート絶縁層を作るために、実行される。
[Embodiment 1]
A first embodiment of the present invention will be described with reference to FIGS. As an example, a schematic configuration diagram of a PVD processing chamber 10 is shown in FIG. The method of depositing a high dielectric constant dielectric film according to the present invention is carried out to make a gate insulating layer on a silicon wafer for making a gate electrode for a MOSFET in the PVD processing chamber.

最初に、PVD処理チャンバ10の構造が説明される。この処理チャンバ10は、ウェハーホルダ11、いわゆるカソードと呼ばれる、平板形状を有するターゲット12、側壁13、トッププレート14、ボトムプレート15、排気ポート16、およびガス導入部17から構成されている。ターゲット12の代表的材料は好ましくはハフニウム(Hf)である。ターゲット12は、絶縁支持プレート18を介して、傾斜姿勢で、処理チャンバ10の壁またはプレート(13,14)に固定されている。ターゲット12は、絶縁支持プレート18によって処理チャンバ10のその他の部分から電気的に絶縁されている。   First, the structure of the PVD processing chamber 10 will be described. The processing chamber 10 includes a wafer holder 11, a so-called cathode target 12 having a flat plate shape, a side wall 13, a top plate 14, a bottom plate 15, an exhaust port 16, and a gas introduction part 17. A typical material for the target 12 is preferably hafnium (Hf). The target 12 is fixed to the wall or the plate (13, 14) of the processing chamber 10 in an inclined posture via the insulating support plate 18. Target 12 is electrically isolated from the rest of processing chamber 10 by insulating support plate 18.

ターゲット12の上側または横側では、回転可能な支持プレート20に固定されたマグネット配列19が存在する。支持プレート20は、図示されていない駆動機構を有している。参照番号20aは回転軸を示している。装置が作動している間、マグネット配列19は、駆動機構の中に含まれる電気モータによって回転させられる。マグネット配列19のための電気モータおよび回転機構は図1に示されていない。   On the upper side or side of the target 12, there is a magnet array 19 fixed to a rotatable support plate 20. The support plate 20 has a drive mechanism (not shown). Reference numeral 20a indicates a rotation axis. While the device is operating, the magnet array 19 is rotated by an electric motor included in the drive mechanism. The electric motor and rotation mechanism for the magnet array 19 is not shown in FIG.

前述したターゲット12は、DC電源21からプラズマを生成するためのDC電力が供給される。DC電力を用いることは本質的なことではない。DC電力の代わりにrf(交流)電力をプラズマを発生させるために用いることもできる。   The target 12 described above is supplied with DC power for generating plasma from the DC power source 21. It is not essential to use DC power. Instead of DC power, rf (alternating current) power can also be used to generate plasma.

ターゲット12は、好ましくは、99.99%の純度を有するハフニウム(Hf)によって作られている。ターゲット12はウェハーホルダ11の上に配置されたウェハーまたは基板22に対して好ましい所定の角度をもって配置されている。再び、ウェハーホルダ11の軸11aとターゲット12の軸12aは平行ではなく、所定の角度(α)にて交差するようになっている。2つの軸11aと軸12aは同じ平面内に存在する。これらの2つの軸11aと軸12aの間の角度(α)は90°よりも小さく、代表的にはおよそ45°である。   The target 12 is preferably made of hafnium (Hf) having a purity of 99.99%. The target 12 is disposed at a preferred predetermined angle with respect to the wafer or substrate 22 disposed on the wafer holder 11. Again, the axis 11a of the wafer holder 11 and the axis 12a of the target 12 are not parallel but intersect at a predetermined angle (α). The two axes 11a and 12a are in the same plane. The angle (α) between these two axes 11a and 12a is less than 90 ° and is typically about 45 °.

ウェハーホルダ11は、ウェハー22上での膜堆積の間、およそ60rpm等の回転速度で回転させられている。回転速度は重要なことではなく、広い範囲、例えば10〜500rpmの範囲で変化させることができる。ウェハーホルダの回転機構は図において示されていない。   The wafer holder 11 is rotated at a rotational speed of about 60 rpm during film deposition on the wafer 22. The rotational speed is not critical and can be varied over a wide range, for example, 10-500 rpm. The rotation mechanism of the wafer holder is not shown in the figure.

次に、前述したPVD処理チャンバで実行されるウェハー22上に高誘電率誘電体膜を堆積する方法またはプロセスが図2を参照して詳細に説明される。   Next, a method or process for depositing a high dielectric constant dielectric film on the wafer 22 performed in the PVD processing chamber described above will be described in detail with reference to FIG.

高誘電率誘電体膜は、ドープシリコン(p−Si,n−Si)またはドープシリコン化合物(ドープされたSiGe。例えば、p−SiGe,n−SiGe)のウェハー22の表面上に形成される。高誘電率誘電体膜は、ウェハー22の上に作製されたCMOSデバイスにおけるMOSFETのゲート誘電体層に用いられる。それは、SiO2の誘電率よりも大きな、より高い誘電率を有する非常に薄い誘電体膜である。 The high dielectric constant dielectric film is formed on the surface of the wafer 22 of doped silicon (p-Si, n-Si) or doped silicon compound (doped SiGe. For example, p-SiGe, n-SiGe). The high dielectric constant dielectric film is used for the gate dielectric layer of the MOSFET in the CMOS device fabricated on the wafer 22. It is a very thin dielectric film with a higher dielectric constant that is larger than that of SiO 2 .

プロセスガスとして、ArまたはN2が、ガス導入部17を経由して処理チャンバ10の中に導入される。処理チャンバ10の内部圧力は好ましくは0.5Paよりも低く維持されている。Hfターゲット12にDC電力を与えることによってスパッタリングが実行される。 Ar or N 2 is introduced as a process gas into the processing chamber 10 via the gas introduction unit 17. The internal pressure of the processing chamber 10 is preferably maintained below 0.5 Pa. Sputtering is performed by applying DC power to the Hf target 12.

Hfターゲット12を用いてスパッタリングを実行する時、処理チャンバ10は予め窒素(N2)/アルゴン(Ar)の混合ガスが導入されている。PVD処理チャンバ10の中にはN2の原子が存在するので、スパッタされた原子Hfは窒素のラジカル/イオンと反応してウェハー22の表面上にHfN(窒化ハフニウム)の膜または層を形成する。ウェハー22の基礎となる物質はシリコンである。当該HfN膜はドープされたシリコン層またはSiGeなどの上に形成される。 When sputtering is performed using the Hf target 12, a mixed gas of nitrogen (N 2 ) / argon (Ar) is introduced into the processing chamber 10 in advance. Since N 2 atoms are present in the PVD processing chamber 10, the sputtered atoms Hf react with nitrogen radicals / ions to form a film or layer of HfN (hafnium nitride) on the surface of the wafer 22. . The material on which the wafer 22 is based is silicon. The HfN film is formed on a doped silicon layer or SiGe.

Hfを基礎とする高誘電率誘電体膜を形成する手順は次の通り進行する。   The procedure for forming a high dielectric constant dielectric film based on Hf proceeds as follows.

(1):ウェハー(前述のウェハー22)は希釈化されたHf溶液によって洗浄され、元々存在したシリコン酸化物を除去する(ステップS1)。
(2):当該ウェハーを乾燥する(ステップS1)。
(3):反応性スパッタリング技術によってウェハー上にHfN膜を堆積する(ステップS2)。
(4):約1%の含有率で酸素を含むほとんどが不活性ガスまたはN2である環境で400℃を越える高い温度でウェハーをアニールする(ステップS3)。
(1): The wafer (wafer 22 described above) is cleaned with a diluted Hf solution to remove the silicon oxide originally present (step S1).
(2): The wafer is dried (step S1).
(3): An HfN film is deposited on the wafer by a reactive sputtering technique (step S2).
(4): The wafer is annealed at a high temperature exceeding 400 ° C. in an environment where the oxygen content is approximately 1% and most of the oxygen is an inert gas or N 2 (step S3).

最初、ウェハーは希釈されたHF溶液で洗浄され、ウェハー表面上における元々存在する酸化物と他の汚れを除去し、乾燥する(ステップS1)。第2に、HfN膜をウェハー表面上に反応性スパッタ成膜技術によって堆積する(ステップS2)。当該HfNの堆積に関して前述したPVD処理チャンバ10が用いられる。第3に、ウェハーは400℃を越えるより高い温度で熱的アニールを受ける(ステップS3)。当該アニールの時の圧力は重要な事項ではなく、数トール(Torr)の圧力から大気圧まで変化させることができる。当該アニールのガス環境はほとんど不活性ガスまたはN2ガスであり、約1%の酸素を含むものである。当該アニールプロセスによってHfN膜は酸化され、HfN膜は高誘電率誘電体膜としてのHfON膜に変化する。 Initially, the wafer is cleaned with a diluted HF solution to remove the originally present oxide and other contaminants on the wafer surface and dried (step S1). Second, an HfN film is deposited on the wafer surface by a reactive sputter deposition technique (step S2). The PVD processing chamber 10 described above for the deposition of HfN is used. Thirdly, the wafer undergoes thermal annealing at a higher temperature above 400 ° C. (step S3). The pressure at the time of the annealing is not an important matter and can be changed from a pressure of several Torr to an atmospheric pressure. The annealing gas environment is almost an inert gas or N 2 gas, and contains about 1% oxygen. The annealing process oxidizes the HfN film and changes the HfN film to a HfON film as a high dielectric constant dielectric film.

非常に薄くかつゲート誘電体として用いられる高誘電率誘電体膜をHfターゲット12を用いて堆積または形成する上記プロセスにおいて、窒化膜(Hfxy)におけるハフニウム(Hf)と窒素(N)はx=1に関して0<y<1.5という関係を有している。 In the above process of depositing or forming a high dielectric constant dielectric film, which is very thin and used as a gate dielectric, using the Hf target 12, hafnium (Hf) and nitrogen (N) in the nitride film (Hf x N y ) are There is a relationship of 0 <y <1.5 with respect to x = 1.

前述した膜の準備の後、TaN膜がゲート電極としてHfN膜の上に成膜され、ウェハー22上で金属酸化半導体(MOS)キャパシタを形成するようにパターン化されかつエッチングされる。これらのMOSキャパシタのCV(容量・電圧)特性およびIV(電流・電圧)特性を検査し、等価酸化物厚み(equivalent oxide thickness:EOT)および漏れ電流を評価した。   After the film preparation described above, a TaN film is deposited on the HfN film as a gate electrode, patterned and etched to form a metal oxide semiconductor (MOS) capacitor on the wafer 22. The CV (capacitance / voltage) characteristics and IV (current / voltage) characteristics of these MOS capacitors were inspected, and equivalent oxide thickness (EOT) and leakage current were evaluated.

前述した装置構成によれば、200mmまたは300mmの直径のウェハーの上に全体に渡って極めて均一な膜を作る。図3は200mmウェハー上での当該HfN膜の均一性を示す。図3(A)は膜の厚みを示すウェハーの平面図であり、図3(B)は当該膜の規格化された抵抗値を示す直径ラインにおける縦方向の図である。膜の厚みは、直径180mmの円形表面領域の全面で分散して設定した49点で測定され、その標準偏差(σ)は0.95%として概算された。標準偏差は膜の非均一性を表している。図3において、参照番号23は均一性の等高線を示し、参照番号24は抵抗値データによって形成された特性線を示す。   According to the apparatus configuration described above, a very uniform film is formed on a wafer having a diameter of 200 mm or 300 mm. FIG. 3 shows the uniformity of the HfN film on a 200 mm wafer. FIG. 3A is a plan view of the wafer showing the thickness of the film, and FIG. 3B is a longitudinal view of the diameter line showing the standardized resistance value of the film. The thickness of the film was measured at 49 points dispersed and set over the entire surface of a circular surface area having a diameter of 180 mm, and the standard deviation (σ) was estimated as 0.95%. Standard deviation represents the non-uniformity of the membrane. In FIG. 3, reference numeral 23 indicates a contour line of uniformity, and reference numeral 24 indicates a characteristic line formed by resistance value data.

図4および図5は、先に説明した手順で得られた、準備されたハフニウム酸化窒化膜(HfON)に関する電気的データを示している。それらのHfON膜は次のようなプロセスパラメータおよび膜パラメータで堆積されたものである。   4 and 5 show electrical data regarding the prepared hafnium oxynitride film (HfON) obtained by the procedure described above. These HfON films are deposited with the following process parameters and film parameters.

圧力 0.019Pa
Arガス流速 20sccm
2ガス流速 6sccm
DC電力 300W
成膜速度 2.4nm/分
成膜時間 12.5秒
HfN膜厚み 0.5nm
HfN膜抵抗値 516μ/Ωcm
HfN膜均一性 0.95%(1σ)
Pressure 0.019Pa
Ar gas flow rate 20sccm
N 2 gas flow rate 6sccm
DC power 300W
Deposition rate 2.4 nm / min Deposition time 12.5 seconds HfN film thickness 0.5 nm
HfN film resistance 516μ / Ωcm
HfN film uniformity 0.95% (1σ)

図4および図5は、それぞれ、準備された膜のCV特性およびIV特性を示す。この場合において、熱的アニール前の元々のHfN膜の厚みは0.5nmである。熱的アニールは、N2およびO2(〜1%)の混合ガスで、大気圧の下で、600℃の温度で、30秒間実行される。堆積されたHfNは低い抵抗値を有し、金属的な特性を示す。HfN膜の抵抗値特性は、当該膜の窒素の含有量で変化する。図6は、処理チャンバ10の中に導入される窒素の流速の関数としてHfN抵抗値特性の変化を示す。 4 and 5 show the CV and IV characteristics of the prepared film, respectively. In this case, the original thickness of the HfN film before thermal annealing is 0.5 nm. Thermal annealing is performed for 30 seconds at a temperature of 600 ° C. under atmospheric pressure with a mixed gas of N 2 and O 2 (˜1%). The deposited HfN has a low resistance value and exhibits metallic properties. The resistance characteristic of the HfN film varies depending on the nitrogen content of the film. FIG. 6 shows the change in HfN resistance characteristic as a function of the flow rate of nitrogen introduced into the processing chamber 10.

図4および図5に示されるように、熱的アニールの処理後、結果として生じる膜(HfON)は誘電体の特性を示す。結果としての膜は非常に薄い厚みを有した高誘電率誘電体膜になる。それ故に、熱的アニールの間に、HfN膜は酸素と反応して前述の条件を満足しHfONを形成する(分子的な窒素は600℃ではHfNと反応しない)。   As shown in FIGS. 4 and 5, after thermal annealing, the resulting film (HfON) exhibits dielectric properties. The resulting film is a high dielectric constant dielectric film with a very thin thickness. Therefore, during thermal annealing, the HfN film reacts with oxygen to satisfy the above conditions and form HfON (molecular nitrogen does not react with HfN at 600 ° C.).

再び、Si/HfN境界面において、SiはHfON膜を通り抜けて到来する酸素と反応し、非常に薄いSiO層を形成する。より高い温度でHfとSiは境界面の近傍で合成され、HfSiONを形成する。従って、結果として生じる膜はHfON、HfSiON、およびSiOを含む。図4および図5に示される膜に関して、概算されたEOTおよび漏れ電流は、それぞれ、0.95nmおよび0.03A/cm-2である。漏れ電流は−1.2ボルト(V)で概算され、それは−0.2ボルトのVfb(フラットバンド電圧)から−1ボルトのより低い電圧である。 Again, at the Si / HfN interface, Si reacts with oxygen coming through the HfON film to form a very thin SiO layer. At higher temperatures, Hf and Si are synthesized in the vicinity of the interface to form HfSiON. Accordingly, the resulting film includes HfON, HfSiON, and SiO. For the films shown in FIGS. 4 and 5, the estimated EOT and leakage currents are 0.95 nm and 0.03 A / cm −2 , respectively. The leakage current is estimated at -1.2 volts (V), which is from -0.2 volts Vfb (flat band voltage) to -1 volts lower.

Siの酸化の程度とSiおよびHfの混合の程度とは、アニ−ルの温度および時間に依存する。初期のHfNの厚みに依存して、最も低いEOTおよび/または最も低い漏れ電流を得るために最適なアニ−ル温度とアニール時間が見出されなければならない。   The degree of oxidation of Si and the degree of mixing of Si and Hf depend on the temperature and time of the anneal. Depending on the initial HfN thickness, optimal annealing temperatures and annealing times must be found to obtain the lowest EOT and / or lowest leakage current.

膜堆積のプロセスの間、Hfターゲット12の中心とウェハーホルダ11との間の垂直な距離は300mmである。DC電力によって生成されるプラズマは基本的に強い磁界によってHfターゲット12の近傍に閉じ込められる。これらの2つの理由に基づいて、ウェハー表面上におけるプラズマ密度は無視できる程度により小さいものである。このように、前述した装置構成を用いた膜の堆積はリモートプラズマによる成膜として考えることができる。これらの事実のため、ウェハー22上に堆積する膜はプラズマによって誘導されるダメージを受けることはない。このことは、さらに、膜に対するプラズマ誘導ダメージの証拠が見出されないCV測定およびIV測定によって確認される。   During the film deposition process, the vertical distance between the center of the Hf target 12 and the wafer holder 11 is 300 mm. The plasma generated by the DC power is basically confined in the vicinity of the Hf target 12 by a strong magnetic field. Based on these two reasons, the plasma density on the wafer surface is negligibly small. Thus, film deposition using the above-described apparatus configuration can be considered as film formation by remote plasma. Because of these facts, the film deposited on the wafer 22 is not damaged by the plasma. This is further confirmed by CV and IV measurements where no evidence of plasma induced damage to the film is found.

第1実施形態の変形例として、上記のハフニウム(Hf)の代わりに、ゲート誘電体を得ることにおける初期の膜として、他の金属または金属窒化物を用いることができる。他の金属は元素の周期表の3族、4族、または5族に属する特定の元素である。特定の元素に関するいくつかの例としては、Zr,La,Ti,Ta等のものである。当該特定の元素を一般的にシンボル“A”で示す場合に、堆積した窒化物質はAxyとして表現される。この場合において、窒化膜(Axy)における特定の元素(A)と窒素(N)はxとyの間で予め定められた割合関係を有している。具体的にyは窒化膜(Axy)に関してそのストチオメトリック値(stochiometric value)よりも小さいものとなっている。 As a variation of the first embodiment, other metals or metal nitrides can be used as the initial film in obtaining the gate dielectric instead of the above hafnium (Hf). Other metals are specific elements belonging to Group 3, 4, or 5 of the periodic table of elements. Some examples for specific elements are Zr, La, Ti, Ta, etc. When the specific element is generally indicated by the symbol “A”, the deposited nitride material is expressed as A x N y . In this case, the specific element (A) and nitrogen (N) in the nitride film (A x N y ) have a predetermined ratio relationship between x and y. Specifically, y is smaller than the stoichiometric value of the nitride film (A x N y ).

同様にまた金属ゲートとして濃密にドープされたポリシリコンを用いることができる。さらに、1つのタイプの物質の代わりに、金属ゲートとして異なる金属/金属窒化物の組合せを用いることも可能である。金属ゲート物質のタイプに依存して、フラットバンド電圧はシフトし、作製されたMOSデバイスの金属ゲートの仕事関数は変化する。   Similarly, heavily doped polysilicon can be used as the metal gate. Furthermore, different metal / metal nitride combinations can be used as metal gates instead of one type of material. Depending on the type of metal gate material, the flat band voltage shifts and the work function of the metal gate of the fabricated MOS device changes.

[実施形態2]
次に本発明の第2実施形態を説明する。第2実施形態の特徴は膜の準備手順にある。第2実施形態における膜の準備手順は次の通りである。
[Embodiment 2]
Next, a second embodiment of the present invention will be described. A feature of the second embodiment is a film preparation procedure. The film preparation procedure in the second embodiment is as follows.

(1):ウェハーは希釈されたHF溶液において洗浄され、元々のシリコン酸化物を除去する。
(2):ウェハーを乾燥する。
(3):NH3のガス雰囲気で500℃を越えて熱アニ−ルする。
(4):反応性スパッタリング技術においてHfNを堆積する。
(5):約1%の含有率の酸素を含むほとんどが不活性ガスまたはN2の雰囲気において400℃を越えるより高い温度でウェハーをアニールする。
(1): The wafer is cleaned in diluted HF solution to remove the original silicon oxide.
(2): Dry the wafer.
(3): Thermal annealing is performed at over 500 ° C. in NH 3 gas atmosphere.
(4): HfN is deposited by reactive sputtering technique.
(5): Annealing the wafer at a higher temperature above 400 ° C. in an atmosphere of mostly inert gas or N 2 containing about 1% oxygen.

第2実施形態においてHfN膜の成膜前における初期のウェハーの準備のみが第1実施形態に比較して変更される。上で説明したように、ウェハーは希釈化されたHF溶液での洗浄の後であってHfNの成膜前に、NH3のガス雰囲気で熱的アニールを受ける。このアニールプロセスの間、シリコン窒化物(SiNx)の薄い層がウェハー表面上に形成される。代表的に、アニール時間とアニール温度は、1nmの厚みよりもより小さい厚みのシリコン窒化物膜を有するように制御される。しかしながら、このことは重要な要求ではない。このシリコン窒化物層は、その後の成膜アニールの間、Siウェハー22への酸素の拡散を抑制する。Siウェハー22への酸素の拡散はSiO2の形成の原因となり、それによってEOTの増加の原因となる。従ってシリコン窒化物層は、結果的に生じた膜のEOTを最小化することを支援する。 In the second embodiment, only the initial wafer preparation before the formation of the HfN film is changed as compared with the first embodiment. As explained above, the wafer is subjected to thermal annealing in an NH 3 gas atmosphere after cleaning with diluted HF solution and before deposition of HfN. During this annealing process, a thin layer of silicon nitride (SiN x ) is formed on the wafer surface. Typically, the annealing time and annealing temperature are controlled to have a silicon nitride film with a thickness smaller than 1 nm. However, this is not an important requirement. This silicon nitride layer suppresses the diffusion of oxygen into the Si wafer 22 during subsequent film formation annealing. Diffusion of oxygen to the Si wafer 22 is responsible for the formation of SiO 2, thereby becoming a cause of the increase in EOT. Thus, the silicon nitride layer helps to minimize the EOT of the resulting film.

前述した追加のステップを除いて、第2実施形態におけるすべてのその他の処理ステップおよび処理システムの構成は第1実施形態で説明したそれらと同じである。   Except for the additional steps described above, all other processing steps and the configuration of the processing system in the second embodiment are the same as those described in the first embodiment.

[実施形態3]
次に本発明の第3実施形態を説明する。第3実施形態の特徴は同様にまた膜準備手順にある。第3実施形態における膜準備手順は次の通りである。第3実施形態において、初期のウェハー準備の方法のみが変更される。
[Embodiment 3]
Next, a third embodiment of the present invention will be described. The feature of the third embodiment is also in the film preparation procedure. The film preparation procedure in the third embodiment is as follows. In the third embodiment, only the initial wafer preparation method is changed.

(1):ウェハーは希釈化されたHF溶液で洗浄され元々存するシリコン酸化物が除去される。
(2):ウェハーを乾燥する。
(3):CVDまたはRTPプロセスによって下地層と呼ばれるSiO2またはSiONまたはSi34の非常に薄い層を堆積する。
(4):反応性スパッタリング技術によってHfNを堆積する。
(5):約1%の含有率の酸素を含むほとんどが不活性ガスまたはN2の雰囲気において400℃を越えるより高い温度でウェハーをアニールする。
(1): The wafer is cleaned with a diluted HF solution to remove originally existing silicon oxide.
(2): Dry the wafer.
(3): Deposit a very thin layer of SiO 2 or SiON or Si 3 N 4 called underlayer by CVD or RTP process.
(4): HfN is deposited by a reactive sputtering technique.
(5): Annealing the wafer at a higher temperature above 400 ° C. in an atmosphere of mostly inert gas or N 2 containing about 1% oxygen.

CVDまたはRTPによって堆積されるSiO2層、SiON層、またはSi34層は、通常、およそ1nmまたはそれより小さく保持される。この層の使用することは、最終的な混成の誘電体物質の電気的特性を改善することである。 The SiO 2 layer, SiON layer, or Si 3 N 4 layer deposited by CVD or RTP is typically kept at approximately 1 nm or less. The use of this layer is to improve the electrical properties of the final hybrid dielectric material.

前述した相違を除いて、すべての他の膜準備の方法は第1実施形態で説明されたそれらと同じである。   Except for the differences described above, all other film preparation methods are the same as those described in the first embodiment.

図7と図8は、それぞれ、下地層が1.2nmの厚みを有するSiO2である処の結果的に生じた膜に関して、CV曲線とIV曲線を示す。図9と図10は、それぞれ、下地層が1.2nmの厚みを有するSiONである処の結果的に生じた膜に関して、CV曲線とIV曲線を示す。これらのSiO2とSiONはRTPプロセスによって堆積されたものである。HfNは第1実施形態で与えられた条件の下で反応性スパッタリングによってこれらのウェハー上に堆積される。その後、当該膜は900℃の温度で30秒間熱的にアニールされる。その後、CVデータとIVデータがTaN金属ゲート電極を用いて測定される。 FIGS. 7 and 8 show the CV and IV curves, respectively, for the resulting film where the underlying layer is SiO 2 having a thickness of 1.2 nm. 9 and 10 show the CV and IV curves, respectively, for the resulting film where the underlayer is SiON having a thickness of 1.2 nm. These SiO 2 and SiON are deposited by the RTP process. HfN is deposited on these wafers by reactive sputtering under the conditions given in the first embodiment. Thereafter, the film is thermally annealed at a temperature of 900 ° C. for 30 seconds. Thereafter, CV data and IV data are measured using a TaN metal gate electrode.

これらの膜の電気的特性の要約は図11に描かれた表で示される。   A summary of the electrical properties of these films is shown in the table depicted in FIG.

その後の成膜のアニール温度およびアニール時間は電気的特性を最適化する上で重要である。前述したアニール時間およびアニール温度はおそらく最良な条件ではないということは留意すべきである。同様にまたRTP法以外の異なるアニーリング技術を用いることも可能である。   The annealing temperature and annealing time for subsequent film formation are important in optimizing the electrical characteristics. It should be noted that the annealing time and annealing temperature described above are probably not the best conditions. Similarly, different annealing techniques other than the RTP method can be used.

本発明は、ドープされたシリコンまたはトープされたSi(シリコン)化合物のウェハーの上で非常に薄いかつ均一な厚みを有する各種の金属酸化物膜または金属酸化窒化膜のごとき高誘電率誘電体膜であって、MOSFETデバイスのゲート誘電体層として用いられるものを堆積するのに使用される。   The present invention relates to high dielectric constant dielectric films, such as various metal oxide films or metal oxynitride films having very thin and uniform thickness on doped silicon or doped Si (silicon) compound wafers. And used to deposit what is used as the gate dielectric layer of MOSFET devices.

この図はHfN成膜のために用いられるDCマグネトロンPVD装置の構成図である。This figure is a block diagram of a DC magnetron PVD apparatus used for HfN film formation. この図はゲート絶縁膜として高誘電率誘電体膜を形成するための工程図である。This figure is a process diagram for forming a high dielectric constant dielectric film as a gate insulating film. この図((A),(B))は膜厚を示すウェハーの平面図(A)と膜の規格化抵抗を示す直径ラインにおける縦方向の図(B)である。These drawings ((A) and (B)) are a plan view (A) of the wafer showing the film thickness and a vertical view (B) in the diameter line showing the normalized resistance of the film. この図は結果的に生じた誘電体膜に関して得られたCVデータを示す特性グラフである。This figure is a characteristic graph showing CV data obtained for the resulting dielectric film. この図は結果的に得られた誘電体膜に関して得られたIVデータを示す特性グラフである。This figure is a characteristic graph showing IV data obtained for the resultant dielectric film. この図は処理チャンバに導入された窒素の流速に対してHfNの抵抗値の変化を示す特性グラフである。This figure is a characteristic graph showing a change in the resistance value of HfN with respect to the flow rate of nitrogen introduced into the processing chamber. この図は下地層が1.2nmのSiO2でありかつHfNの厚みが0.5nmおよび1nmであるところの最終的誘電体膜に関するCV曲線を示す特性グラフである。This figure is a characteristic graph showing a CV curve for the final dielectric film in which the underlayer is 1.2 nm of SiO 2 and the thickness of HfN is 0.5 nm and 1 nm. この図は下地層が1.2nmのSiO2およびHfNの厚みが0.5nmおよび1nmであるときの最終的誘電体膜のIV曲線を示す特性グラフである。This figure is a characteristic graph showing the IV curve of the final dielectric film when the underlying layer has a thickness of 1.2 nm of SiO 2 and HfN of 0.5 nm and 1 nm. この図は下地層が1.2nmのSiONでありかつHfNの厚みが0.5nmおよび1nmであるときの最終的誘電体膜のCV曲線を示す特性グラフである。This figure is a characteristic graph showing the CV curve of the final dielectric film when the underlayer is SiON of 1.2 nm and the thickness of HfN is 0.5 nm and 1 nm. この図は、下地層が1.2nmのSiONでありかつHfNの厚みが0.5nmまたは1nmであるときの最終的誘電体膜のIVカーブを示す特性グラフである。This figure is a characteristic graph showing the IV curve of the final dielectric film when the underlayer is SiON of 1.2 nm and the thickness of HfN is 0.5 nm or 1 nm. この図は特別な元素の電気的属性の要約を示す表である。This figure is a table that summarizes the electrical attributes of special elements.

符号の説明Explanation of symbols

10 PVD処理チャンバ
11 ウェハーホルダ
12 ターゲット
19 マグネット配列
22 ウェハー
10 PVD processing chamber 11 Wafer holder 12 Target 19 Magnet array 22 Wafer

Claims (1)

ウェハーが配置され、所定の回転速度で回転するウェハーホルダと、
前記ウェハーホルダの回転軸から外れた上方の位置に、傾斜姿勢で設けられ、ハフニウムを含有するターゲットが取り付けられ、DC電力を投入可能なカソードと、
前記ウェハーホルダの回転軸から外れた下方の位置であって、上方に前記カソードが位置しない位置に設けられ、プロセスガスとして窒素ガスを導入するためのガス導入部と、
前記ウェハーホルダの下方であって、当該ウェハーホルダを挟んで前記ガス導入部とは反対側の位置に設けられた排気ポートと、
を備えることを特徴とする反応性スパッタリング装置。
A wafer holder in which a wafer is arranged and rotated at a predetermined rotation speed;
A cathode provided in an inclined position at an upper position off the rotation axis of the wafer holder, a target containing hafnium is attached, and a DC power can be input;
A gas introduction part for introducing nitrogen gas as a process gas, which is provided at a position below the rotation axis of the wafer holder and where the cathode is not located above;
An exhaust port provided below the wafer holder and on the opposite side of the gas introduction unit across the wafer holder;
A reactive sputtering apparatus comprising:
JP2008284968A 2008-11-06 2008-11-06 Reactive sputtering device Pending JP2009079301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008284968A JP2009079301A (en) 2008-11-06 2008-11-06 Reactive sputtering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008284968A JP2009079301A (en) 2008-11-06 2008-11-06 Reactive sputtering device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004160928A Division JP2005340721A (en) 2004-05-31 2004-05-31 Method of depositing dielectric film having high dielectric constant

Publications (1)

Publication Number Publication Date
JP2009079301A true JP2009079301A (en) 2009-04-16

Family

ID=40654268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008284968A Pending JP2009079301A (en) 2008-11-06 2008-11-06 Reactive sputtering device

Country Status (1)

Country Link
JP (1) JP2009079301A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101430054B1 (en) 2012-09-20 2014-08-18 한국기술교육대학교 산학협력단 Processing method for crystalline silicon solar cell

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0565642A (en) * 1991-09-10 1993-03-19 Matsushita Electric Ind Co Ltd Reactive sputtering apparatus
JP2003315977A (en) * 2002-04-25 2003-11-06 Hoya Corp Method for producing lithography mask blank and apparatus therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0565642A (en) * 1991-09-10 1993-03-19 Matsushita Electric Ind Co Ltd Reactive sputtering apparatus
JP2003315977A (en) * 2002-04-25 2003-11-06 Hoya Corp Method for producing lithography mask blank and apparatus therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101430054B1 (en) 2012-09-20 2014-08-18 한국기술교육대학교 산학협력단 Processing method for crystalline silicon solar cell

Similar Documents

Publication Publication Date Title
US7816283B2 (en) Method of depositing a higher permittivity dielectric film
CN111033686B (en) Method for improving performance of hafnium oxide based ferroelectric material by plasma and/or heat treatment
JP4165076B2 (en) Semiconductor device having high dielectric constant insulating film
TWI392022B (en) Semiconductor device manufacturing apparatus and method
US6762114B1 (en) Methods for transistor gate fabrication and for reducing high-k gate dielectric roughness
TWI482218B (en) Method of forming a semiconductor device
JP4914573B2 (en) Method of manufacturing field effect transistor having high dielectric gate insulating film and metal gate electrode
US9224594B2 (en) Surface preparation with remote plasma
JP4162601B2 (en) Formation method of insulating film
US8288234B2 (en) Method of manufacturing hafnium-containing and silicon-containing metal oxynitride dielectric film
KR101384265B1 (en) Semiconductor device and manufacturing method thereof
KR100928023B1 (en) Semiconductor device and manufacturing method
JP4224044B2 (en) Manufacturing method of semiconductor device
JP2009079301A (en) Reactive sputtering device
WO2009119148A1 (en) Film forming method and semiconductor device manufacturing method
JP4523994B2 (en) Method for manufacturing field effect transistor
JP4523995B2 (en) Method for manufacturing field effect transistor
TWI777179B (en) Fabricating method of gate dielectric layer
JP2005079563A (en) Manufacturing method for electronic device
JP2007073637A (en) Film deposition method and manufacturing method of semiconductor device
JP2009124177A (en) Method for vapor-depositing metal gate on high-k dielectric film, method for improving interface between high-k dielectric film and metal gate, and substrate treatment system
KR20040086495A (en) Method of manufacturing semiconductor device, semiconductor device and apparatus for manufacturing semiconductor device
JP2010003843A (en) Formation method of insulation film, and manufacturing method of semiconductor device

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20110415

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20110426

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20110816

Free format text: JAPANESE INTERMEDIATE CODE: A02