TW201515693A - Creating and using controlled fine bubbles - Google Patents
Creating and using controlled fine bubbles Download PDFInfo
- Publication number
- TW201515693A TW201515693A TW103121594A TW103121594A TW201515693A TW 201515693 A TW201515693 A TW 201515693A TW 103121594 A TW103121594 A TW 103121594A TW 103121594 A TW103121594 A TW 103121594A TW 201515693 A TW201515693 A TW 201515693A
- Authority
- TW
- Taiwan
- Prior art keywords
- dense
- bubble
- fluid
- dense bubble
- bubble generator
- Prior art date
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T70/00—Maritime or waterways transport
- Y02T70/10—Measures concerning design or construction of watercraft hulls
Landscapes
- Accessories For Mixers (AREA)
Abstract
Description
本發明係有關一微米奈米氣泡產生系統,一產生緻密氣泡之方法,一清洗裝置,一淋浴頭,一清潔半導體之方法,將一緻密氣泡導引至一目標目的地之方法,一用於導引一緻密氣泡之標定裝置,一用於改良船舶效率之方法,及一船舶。 The invention relates to a micron nano bubble generating system, a method for generating dense bubbles, a cleaning device, a shower head, a method for cleaning semiconductors, and a method for guiding uniform bubbles to a target destination, A calibration device for guiding uniform bubbles, a method for improving the efficiency of a ship, and a ship.
背景 background
在本說明書中,“緻密氣泡”用語係指奈米氣泡、微米氣泡以及微米與奈米氣泡的混合物,皆為可能在液體容積內發生之氣體的氣泡。更明顯來說,緻密氣泡係包括從1nm至約999μm之間的範圍之氣泡,但常認為具有直到約50μm的直徑。“超緻密”氣泡係為小於約3μm的氣泡。奈米氣泡係為具有小於1μm但大於1nm直徑之氣泡。微米氣泡係為具有1及999μm之間直徑之氣泡,但常認為具有從約1μm至約50μm直徑。微米奈米氣泡(MNB)就像緻密氣泡係為具有1nm至999μm之間直徑之氣泡。 In the present specification, the term "tight bubble" means a nanobubble, a microbubble, and a mixture of micron and nanobubbles, all of which are bubbles of a gas which may occur in a liquid volume. More specifically, the dense bubble system includes bubbles ranging from 1 nm to about 999 μm, but is often considered to have a diameter of up to about 50 μm. "Super-dense" bubbles are bubbles of less than about 3 [mu]m. The nanobubbles are bubbles having a diameter of less than 1 μm but greater than 1 nm. The microbubbles are bubbles having a diameter between 1 and 999 μm, but are generally considered to have a diameter of from about 1 μm to about 50 μm. The micron nanobubbles (MNB) are like dense bubbles which are bubbles having a diameter of between 1 nm and 999 μm.
本發明不限於具有一特定尺寸的緻密氣泡之生成及控制,且亦可用來生成及控制甚至比奈米氣泡更小的 氣泡,可能包括飛米氣泡或介米氣泡。 The invention is not limited to the generation and control of dense bubbles having a specific size, and can also be used to generate and control even smaller than nanobubbles. Bubbles, which may include flying rice bubbles or meso bubbles.
在下列討論中,這些不同用語可略為互換使用,特別是MNBs及緻密氣泡。 In the following discussion, these different terms may be used interchangeably, particularly MNBs and dense bubbles.
當一緻密氣泡在一環室液體中崩潰時,慣性力連同質量守恆係導致了變成超音速的氣泡壁速度,而造成氣泡內部的迅速加熱。單一氣泡的崩潰係猛烈到使得光以單氣泡聲致發光(SBSL)作發射。利用發射頻譜所測量的溫度指示出:一空化氣泡雲中的溫度係為約25000Kelvin(例如請見布蘭納(M.P.Brenner)等人,單氣泡聲致發光,現代物理評論(Review of Modern Physics),74,425(2002),及希根菲特(S.Hilgenfeldt)等人,聲致發光中之光發射的簡單說明,自然(Nature),398,402(1999))。 When the uniform bubble collapses in a ring chamber liquid, the inertial force together with the mass conservation system results in a supersonic bubble wall velocity which causes rapid heating inside the bubble. The collapse of a single bubble is so intense that light is emitted as single bubble sonoluminescence (SBSL). The temperature measured using the emission spectrum indicates that the temperature in a cavitation bubble cloud is about 25,000 Kelvin (see, for example, MP Brenner et al., Single Bubble Sonoluminescence, Review of Modern Physics) , 74, 425 (2002), and S. Hilgenfeldt et al., a brief description of light emission in sonoluminescence, Nature, 398, 402 (1999).
液體中若出現成千個緻密氣泡,這些氣泡崩潰時所生成的能量係大到使其值得收回且置於良好應用(例如請見悠希庫柏(F.Y.Ushikubo)等人,水中奈米氣泡的穩定性及存在之證據,膠體及表面A:物理化學工程形態(Colloids and Surfaces A:Physicochem.Eng.Aspects)361,31(2010))。來自崩潰微米奈米氣泡的釋放能量可轉變鄰近的水形成具有強氧化力的根。含有空氣或氧氣的緻密氣泡可為無化學物且環境友善的清潔及消毒媒體。微米奈米氣泡的浮力係隨著氣泡尺寸減小而減小。較小的氣泡因此在液體內具有較長壽命。電荷密度隨著氣泡尺寸減小而增大,且這些負電荷防止奈米氣泡形成叢集。 If there are thousands of dense bubbles in the liquid, the energy generated when these bubbles collapse is so large that it is worthy of recovery and is put into good application (for example, see FYUshikubo et al., the stability of nano-bubble in water) Evidence and evidence of existence, colloid and surface A: Colloids and Surfaces A: Physicochem. Eng. Aspects 361, 31 (2010)). The release energy from the collapsed micron nanobubbles can transform adjacent water to form a root with strong oxidizing power. Dense bubbles containing air or oxygen can be chemical-free and environmentally friendly cleaning and disinfecting media. The buoyancy of the micron nanobubbles decreases as the bubble size decreases. Smaller bubbles therefore have a longer life in the liquid. The charge density increases as the bubble size decreases, and these negative charges prevent the nanobubbles from forming a cluster.
微米奈米氣泡直徑D計算如下:
由於微米奈米氣泡處於持續布朗運動中之事實,其粒子尺寸分佈(PSD)可利用動態光散射(DLS)技術作測量。較晚近的奈米粒子追蹤分析(NTA)亦已經變成一用於測量微米奈米氣泡PSD暨其濃度之普遍方法。 Due to the fact that micron-nano bubbles are in continuous Brownian motion, their particle size distribution (PSD) can be measured using dynamic light scattering (DLS) techniques. The later nanoparticle tracking analysis (NTA) has also become a common method for measuring micron nanobubble PSD and its concentration.
隨時間經過,一微米氣泡或一奈米氣泡的直徑將由於表面張力而收縮,其用來盡量減小其表面的面積。這係藉由氣泡內所含氣體擴散至周遭液體中而發生。 Over time, the diameter of a micron bubble or a nanobubble will shrink due to surface tension, which is used to minimize the area of its surface. This occurs by the gas contained in the bubbles diffusing into the surrounding liquid.
氣泡的性質 Bubble nature
一微米奈米氣泡溶液係為其中微米氣泡及奈米氣泡共同存在者(微米奈米氣泡用語亦將使用在討論涉及與微米氣泡及奈米氣泡相干之處)。 One micron nanobubble solution is one in which microbubbles and nanobubbles coexist (the micron nanobubble term will also be used where the discussion relates to microbubbles and nanobubbles).
微米奈米氣泡具有五種主要的有用性質。其係為: Micron nanobubbles have five main useful properties. Its system is:
●一負的電表面電荷密度 ● A negative electrical surface charge density
●長壽-其係為物理穩定且持續一長時間 ●Longevity - its system is physically stable and lasts for a long time
●很低(幾乎中性)的浮力 ● Very low (almost neutral) buoyancy
●多能性(multipotency)-其可構成任何氣體 ●multipotency - it can constitute any gas
●崩潰時的聲致發光 ●Sound luminescence at the time of collapse
負電荷 Negative charge
現今認為:負表面電荷密度的性質係由於離子而產生,得自於溶解在周遭媒體中的無機鹽,其吸附至氣體-液體介面上且相對於表面張力的崩潰效應呈穩定化。若氣泡被放置在一均勻電場中,可直接顯示出其電荷密度ρ與其直徑Db相關:Db α ρ-1/3,且因此在較小直徑為較大。這清楚顯示於下圖,其中較小的氣泡在x方向經歷較大的平移位移。 It is now believed that the nature of the negative surface charge density is due to ions derived from inorganic salts dissolved in the surrounding medium, which adsorb to the gas-liquid interface and stabilize against the collapse effect of surface tension. If the bubble is placed in a uniform electric field, it can be directly shown that its charge density ρ is related to its diameter D b : D b α ρ -1/3 , and thus is larger at a smaller diameter. This is clearly shown in the figure below, where smaller bubbles experience a large translational shift in the x direction.
利用此方式操控氣泡的能力例如在奈米氣泡對於藥物輸送系統的應用中係為有利,其中與奈米氣泡相關的IV藥物可被引導至其目標區位。 The ability to manipulate bubbles in this manner is advantageous, for example, in the application of nanobubbles to drug delivery systems where IV drugs associated with nanobubbles can be directed to their target location.
長壽及低浮力 Longevity and low buoyancy
此長壽性質係得自於微米奈米氣泡表面帶負電且因此相對於表面張力的崩潰效應呈穩定化之事實。其低浮力係意指其並未快速浮到周遭媒體的表面。事實上,微米奈米氣泡升高經過溶液的速度已經與其半徑平方成正比相關,俾使一100nm氣泡預計花費至少兩週升高1cm,而一10氣泡則將僅花費2至3分鐘即升高同樣遠。這意指其可儲存於溶液中長時間期間而不劣化。在2010年,大阪大學研究係導致生成高濃度的奈米氣泡持續兩週。由於其未快速上升至表面且逃逸到大氣而是長時間期間停留在溶液中藉由擴散至周遭的水而持續供應氧,這使其能夠比起習見方法更有效率地氧化水。圖1顯示這兩種方法如何作比較。 This long-lived property is derived from the fact that the surface of the micron-nano bubble is negatively charged and thus stabilized against the collapse effect of surface tension. Its low buoyancy means that it does not quickly float to the surface of the surrounding media. In fact, the rate at which the micron nanobubbles rise through the solution is already proportional to the square of their radius, so that a 100 nm bubble is expected to rise by 1 cm for at least two weeks, while a 10 bubble will only take 2 to 3 minutes to rise. The same far. This means that it can be stored in solution for a long period of time without deterioration. In 2010, the Department of Research at Osaka University resulted in the production of high concentrations of nanobubbles for two weeks. Since it does not rise quickly to the surface and escapes to the atmosphere but stays in solution for a long period of time by continuously diffusing oxygen to the surrounding water, it makes it possible to oxidize water more efficiently than the conventional method. Figure 1 shows how these two methods are compared.
多能性 Pluripotency
藉由改變不限於空氣/氧的氣體選擇而可能有更廣範圍的應用。例如,臭氧由於其很強的氧化效應而在消毒應用中被製成很有效(藉由微米奈米氣泡滲透很小空間及其聲致發光的能力而被進一步增強),二氧化碳微米奈米氣泡可增高植物生長速率或可有效用來滅火,且氫奈米氣泡預計具有一抗腫瘤效應。為了清潔諸如Si及GaAs等晶圓,諸如氮、氫、氬、氦等惰性氣體可用來防止晶圓材料的氧化。 A wider range of applications are possible by changing the gas selection that is not limited to air/oxygen. For example, ozone is made very effective in disinfection applications due to its strong oxidation effect (further enhanced by the ability of micron nanobubbles to penetrate a small space and its sonoluminescence), carbon dioxide micron nanobubbles can be Increasing plant growth rate can be effectively used to extinguish fires, and Henna bubbles are expected to have an anti-tumor effect. In order to clean wafers such as Si and GaAs, inert gases such as nitrogen, hydrogen, argon, helium, etc. can be used to prevent oxidation of the wafer material.
聲致發光 Sonoluminescence
雖然微米奈米氣泡為穩定,其可在碰撞時崩潰。當如此時,其展現一種稱為聲致發光的顯著現象-光輻射及衝擊波發射。輻射頻譜強烈地依據氣泡內所含氣體的類型而定,但在大部分實例中,位於崩潰點之氣泡中心的推論溫度係為104K的級數。將此高溫度與強力衝擊波及所含氣體的潛在氧化性質作組合係使得微米奈米氣泡成為一清潔/消毒用途之很有效的方法。 Although the micron nanobubbles are stable, they can collapse in the event of a collision. When this is the case, it exhibits a remarkable phenomenon called sonoluminescence - light radiation and shock wave emission. The radiation spectrum is strongly dependent on the type of gas contained within the bubble, but in most instances, the inferred temperature at the center of the bubble at the point of collapse is a sequence of 10 4 K. Combining this high temperature with a powerful shock wave and the potential oxidizing properties of the contained gas makes micron nanobubbles a very effective method for cleaning/disinfecting applications.
先前技藝可能提到:CN-A-201010558037,EP-B1-2139968,US-A1-20120270177,EP-A1-2421983,US-A1-20110241230,US-B2-8201811,US-A1-20070095937,US-A1-20070286795,US-B2-7874546,US-A1-20070108640,US-A1-20120086137,US-A1-20120128749,US-B2-7997563,US-A1-20060054205,US-A1-20080189847,US-A1-20110168210,US-A1-20090001017,EP-A1-2116589,US-A1-2013/0034829, 及US-A1-2007/0095937。 The prior art may be mentioned: CN-A-201010558037, EP-B1-2139968, US-A1-20120270177, EP-A1-2421983, US-A1-20110241230, US-B2-8201811, US-A1-20070095937, US- A1-20070286795, US-B2-7874546, US-A1-20070108640, US-A1-20120086137, US-A1-20120128749, US-B2-7997563, US-A1-20060054205, US-A1-20080189847, US-A1- 20110168210, US-A1-20090001017, EP-A1-2116589, US-A1-2013/0034829, And US-A1-2007/0095937.
1. 邦金(N.F.Bunkin),尤陳科(S.O.Yurchenko),蘇葉佐夫(N.V.Suyazov)及希奇林(A.V.Shkirin),液體媒體中的溶解氧之奈米氣泡叢集的結構,J.Biol.Phys.38(2012)121-152。 1. NFBunkin, SOYurchenko, NVSuyazov and AVShkirin, the structure of dissolved oxygen nanobubble bubbles in liquid media, J.Biol.Phys .38 (2012) 121-152.
2. 邦金(N.F.Bunkin),寧漢(B.W.Ninham),伊聶提夫(P.S.Ignatiev),科洛夫(V.A.Kozlov),希奇林(A.V.Shkirin)及思大洛斯基(A.V.Starosvetskij),液體媒體中的溶解氧之奈米氣泡叢集的結構,J.Biophotonics 4(2011)150-164。 2. NFBunkin, BWNinham, PSIgnatiev, VAKozlov, AVShkirin and AVStarosvetskij, liquid The structure of dissolved oxygen nanobubble bubbles in the medium, J. Biophotonics 4 (2011) 150-164.
3. 茹肯斯坦(E.Ruckenstein),氣泡及油滴在水中的奈米散佈,膠體表面A:Physicochem.Eng.Aspects,423(2013)112-114 3. E. Ruckenstein, the dispersion of bubbles and oil droplets in water, colloidal surface A: Physicochem. Eng. Aspects, 423 (2013) 112-114
4. 大垣(K.Ohgaki),康恩(N.Q.Khanh),約登(Y.Joden),辻(A.Tsuji)及中川(T.Nakagawa),奈米氣泡溶液的物理化學途徑,化工科學(Chem.Eng.Sci.)65(2010)1296-1300 4. K.Ohgaki, NQKhanh, Y.Joden, A.Tsuji and T.Nakagawa, Physicochemical Pathways of Nano Bubble Solutions, Chemical Science ( Chem.Eng.Sci.) 65 (2010) 1296-1300
5. 淺田(R.Asada),蔭山(K.Kageyama),田中(H.Tanaka),松井(H.Matsui),木村(M.Kimura),齊藤(Y.Saitoh)及三輪(N.Miwa),藉由共同存在的鉑膠體及組合的熱療與細胞凋亡狀細胞死亡以增強奈米氣泡氫溶解水的抗腫瘤效應,腫瘤學報告(Oncology Reports)24:14631470,(2010) 5. R.Asada, K.Kageyama, H.Tanaka, H.Matsui, M.Kimura, Y.Saitoh and N.Miwa Enhances the antitumor effect of nanobubbles hydrogen-dissolved water by coexisting platinum colloids and combined hyperthermia and apoptotic cell death, Oncology Reports 24: 14631470, (2010)
6. 布蘭納(M.P.Brenner),希根菲特(S.Hilgenfeldt)及洛司(D.Lohse),單氣泡聲致發光現代物理評論74(2002)。 6. M.P. Brenner, S. Hilgenfeldt and D. Lohse, Single Bubble Acoustic Modern Physics Review 74 (2002).
其他有關奈米氣泡的公開文件係包括: Other public documents relating to nanobubbles include:
1. http://www.gizmag.com/nanobubbles-cancer-rice-university/25879/ 1. http://www.gizmag.com/nanobubbles-cancer-rice-university/25879/
2. http://discovermagazine.com/2013/jan-feb/28-injectable-nano-bubbles-prevent-suffocaton#.UXhPOIKhUxo 2. http://discovermagazine.com/2013/jan-feb/28-injectable-nano-bubbles-prevent-suffocaton#.UXhPOIKhUxo
3. http://www.azonano.com/article.aspx?ArticleID=3151 3. http://www.azonano.com/article.aspx? ArticleID=3151
4. http://www.rsc.org/chemistryworld/2013/02/nanobubbles- stability-solved-supersaturation 4. http://www.rsc.org/chemistryworld/2013/02/nanobubbles- Stability-solved-supersaturation
5. http://www.lsbu.ac.uk/water/electrolysis.html#intro 5. http://www.lsbu.ac.uk/water/electrolysis.html#intro
6. http://www.lsbu.ac.uk/water/electrolysis.html#intro 6. http://www.lsbu.ac.uk/water/electrolysis.html#intro
已知的奈米氣泡產生器已經由下列產生且揭露於: Known nanobubble generators have been produced and disclosed by:
1. Asupu Asupu
2. COA科技有限公司http://www.alibaba.com/showroom/nano-bubbles-generator.html 2. COA Technology Co., Ltd. http://www.alibaba.com/showroom/nano-bubbles-generator.html
3. http://www.hondakiko.jp/english/microbubble/ 3. http://www.hondakiko.jp/english/microbubble/
本發明具有不同目標,包括: The invention has different objectives, including:
i)提供一系統,其生成比起先前技藝系統具有更大密度及通量的微米奈米氣泡。本發明亦能夠生成具有很窄氣泡尺寸分佈之微米氣泡或奈米氣泡。藉由一包含複數個微米奈米產生器的微米奈米產生器系統達成此目標。其係以串列、併列、或串列與併列的一組合作連接。 i) Providing a system that produces micron nanobubbles having greater density and throughput than prior art systems. The present invention is also capable of generating microbubbles or nanobubbles having a very narrow bubble size distribution. This goal is achieved by a micron nanogen generator system comprising a plurality of micron nano generators. It is connected in tandem, side by side, or in tandem with a group of parallels.
ii)緻密氣泡產生器的序列可以一相容方式作配置以提供各產生器的最大利益。緻密氣泡產生系統較佳包含產生器的至少三者。一脈動式機構亦可實行成在彼此分離的一時間序列中產生緻密氣泡。 Ii) The sequence of dense bubble generators can be configured in a compatible manner to provide maximum benefit to each generator. The dense bubble generation system preferably includes at least three of the generators. A pulsating mechanism can also be implemented to generate dense bubbles in a time series that are separated from one another.
iii)在多種不同應用中使用緻密氣泡。 Iii) Use dense bubbles in a variety of different applications.
依據本發明之第一形態,提供一緻密氣泡產生系統,其包含:一流體輸入;一流體輸出;及複數個緻密氣泡產生器;其中複數個緻密氣泡產生器係配置於流體輸入與流體輸出之間。 According to a first aspect of the present invention, there is provided a uniform bubble generation system comprising: a fluid input; a fluid output; and a plurality of dense bubble generators; wherein the plurality of dense bubble generators are disposed in the fluid input and the fluid output between.
依據本發明之第二形態,提供一在一流體中產生緻密氣泡之方法,其包含下列步驟:提供一流體輸入;提供至少一氣體輸入;提供一流體輸出;提供複數個緻密氣泡產生器於流體輸入與流體輸出之間;及使流體通過複數個緻密氣泡產生器。 According to a second aspect of the present invention, there is provided a method of producing a dense bubble in a fluid, comprising the steps of: providing a fluid input; providing at least one gas input; providing a fluid output; providing a plurality of dense bubble generators to the fluid Between the input and the fluid output; and passing the fluid through a plurality of dense bubble generators.
這些形態係提供生成具有微米氣泡及奈米氣泡的經控制分佈之緻密氣泡之能力。 These morphologies provide the ability to generate controlled distribution of dense bubbles with microbubbles and nanobubbles.
根據本發明的第三形態,提供一清洗裝置,其包含:一用於配送水之清洗龍頭,及一緻密氣泡產生器,以供在一水流束內產生緻密氣泡,水流束在使用中饋送至清洗龍頭。 According to a third aspect of the present invention, there is provided a cleaning apparatus comprising: a cleaning faucet for dispensing water, and a uniform bubble generator for generating dense bubbles in a water stream, the water stream being fed to the use in use Clean the faucet.
根據本發明的第四形態,提供一淋浴頭,其包含一緻密氣泡產生器。 According to a fourth aspect of the present invention, there is provided a shower head comprising a uniform bubble generator.
根據本發明的第五形態,提供一清潔半導體之方法,包含使用一脈動式緻密氣泡多重葉片配置以供以一脈動式方式配送緻密氣泡水。 According to a fifth aspect of the present invention, there is provided a method of cleaning a semiconductor comprising using a pulsating dense bubble multiple blade configuration for dispensing dense bubble water in a pulsating manner.
根據本發明的第六形態,提供一將一緻密氣泡在一液體容積內導引至一目標目的地之方法,其包含下列步 驟:將一正電位施加至目標目的地,以將緻密氣泡靜電性吸引朝向目標目的地。 According to a sixth aspect of the present invention, there is provided a method of guiding a uniform dense bubble to a target destination within a liquid volume, comprising the following steps Step: Apply a positive potential to the target destination to electrostatically attract the dense bubbles toward the target destination.
根據本發明的第七形態,提供一在一液體容積內導引一緻密氣泡至之標定裝置,其包含:一正電極探針,其具有一正電極;用於施加一正靜電電荷至正電極之部件;及用於將一緻密氣泡輸送至液體容積之輸送部件。 According to a seventh aspect of the present invention, there is provided a calibration apparatus for guiding a uniform bubble to a liquid volume, comprising: a positive electrode probe having a positive electrode; and applying a positive electrostatic charge to the positive electrode And a conveying member for conveying the uniform dense air bubbles to the liquid volume.
根據本發明第八形態,提供一將一緻密氣泡在一液體容積內導引至一目標目的地之方法,其包含下列步驟:將一磁位勢施加至目標目的地,以將緻密氣泡吸引朝向目標目的地。 According to an eighth aspect of the present invention, there is provided a method of directing a uniform bubble in a liquid volume to a target destination, comprising the steps of: applying a magnetic potential to a target destination to attract the dense bubble toward the object Target destination.
根據本發明的第九形態,提供一改良一船舶的效率之方法,包含下列步驟:提供一緻密氣泡產生裝置,及將該裝置設置於一船舶的一船殼處,俾使裝置所產生的緻密氣泡注射至近鄰於船舶的水中。 According to a ninth aspect of the present invention, a method for improving the efficiency of a ship includes the steps of: providing a uniform bubble generating device, and arranging the device at a hull of a ship to make the device dense The bubble is injected into the water adjacent to the ship.
根據本發明的第十形態,提供一包含一緻密氣泡產生裝置之船舶,緻密氣泡產生裝置係設置成在使用中將緻密氣泡注射至近鄰於船舶的水中。 According to a tenth aspect of the present invention, there is provided a ship comprising a uniform bubble generating device, the dense bubble generating device being arranged to inject a dense bubble into the water adjacent to the vessel in use.
申請專利範圍中提供其他的形態。 Other forms are provided in the scope of the patent application.
1,11,12,13,34,35,36,37,134‧‧‧奈米氣泡產生器 1,11,12,13,34,35,36,37,134‧‧‧ nano bubble generator
2,5,9,16,21,32,38,81‧‧‧流體輸入 2,5,9,16,21,32,38,81‧‧‧ fluid input
3,10,17,22,33‧‧‧流體輸出 3,10,17,22,33‧‧‧ fluid output
4‧‧‧回饋步驟 4‧‧‧Reward steps
7‧‧‧第一奈米氣泡產生器 7‧‧‧First nano bubble generator
8‧‧‧第二奈米氣泡產生器 8‧‧‧Second nano bubble generator
14‧‧‧奈米氣泡產生器之間的連接 14‧‧‧Nam connection between nano bubble generators
15‧‧‧連接腔室 15‧‧‧Connecting chamber
18,19,20‧‧‧氣泡產生模組 18,19,20‧‧‧ bubble generation module
23,24,25,26,27,28,29,30,31‧‧‧奈米氣泡產生模組 23,24,25,26,27,28,29,30,31‧‧‧Nano bubble generation module
39‧‧‧流體出口 39‧‧‧ Fluid outlet
40‧‧‧泵 40‧‧‧ pump
42,43,44‧‧‧標示區位 42,43,44‧‧‧ marked location
61,62‧‧‧噴嘴 61,62‧‧‧Nozzles
63,64‧‧‧流體入口閥孔 63,64‧‧‧ fluid inlet valve hole
73,74,75‧‧‧微米氣泡產生器系統 73,74,75‧‧‧micron bubble generator system
76,77,78‧‧‧奈米氣泡產生器系統 76,77,78‧‧‧Nano bubble generator system
83‧‧‧圓柱形渦旋流模組 83‧‧‧Cylindrical vortex flow module
84‧‧‧靜態混合器模組 84‧‧‧Static Mixer Module
85‧‧‧文氏加上柯恩達閥模組 85‧‧‧Wenshi plus Coanda Valve Module
86‧‧‧空腔腔室模組 86‧‧‧Cavity chamber module
87‧‧‧球形渦旋流模組 87‧‧‧Spherical vortex flow module
88‧‧‧文氏型奈米氣泡產生器模組 88‧‧‧Wenshi type nano bubble generator module
89‧‧‧氣體饋送 89‧‧‧ gas feed
91‧‧‧直立杆 91‧‧‧straight pole
92‧‧‧流體出口桿 92‧‧‧ Fluid outlet rod
93‧‧‧臂 93‧‧‧ Arm
94‧‧‧DC馬達 94‧‧‧DC motor
95,139,144‧‧‧電源供應器 95,139,144‧‧‧Power supply
96‧‧‧空氣運送裝置動葉輪 96‧‧‧Air transport device moving impeller
97‧‧‧水動態混合泵頭 97‧‧‧Water dynamic mixing pump head
98‧‧‧導管 98‧‧‧ catheter
99‧‧‧加壓空氣腔室 99‧‧‧ pressurized air chamber
101‧‧‧動作感測器/螺旋渦旋組件 101‧‧‧Action Sensor/Spiral Scroll Assembly
102‧‧‧細微孔隙/緻密氣泡裝置腔室 102‧‧‧Subtle/dense bubble device chamber
103‧‧‧水及空氣出口葉片 103‧‧‧Water and air outlet blades
105,303,503,603,703‧‧‧呼吸管 105,303,503,603,703‧‧‧ breathing tube
109‧‧‧螺紋 109‧‧‧ thread
110‧‧‧渦旋型 110‧‧‧ Scroll type
111,123‧‧‧文氏型 111, 123‧‧‧ Wenshi type
112‧‧‧噴蓬 112‧‧‧116
114‧‧‧出口 114‧‧‧Export
115‧‧‧文氏型第一緻密氣泡產生器 115‧‧‧Wenshi type first dense bubble generator
116‧‧‧水通路 116‧‧‧Water access
117‧‧‧淋浴頭噴蓬 117‧‧‧ shower head
118‧‧‧外殼體 118‧‧‧Outer casing
119‧‧‧空氣入口孔 119‧‧‧Air inlet hole
120‧‧‧徑向相對的硬管 120‧‧‧ Radially opposed hard tubes
121‧‧‧柯恩達閥 121‧‧‧Coanda Valve
122‧‧‧串列渦旋型 122‧‧‧Single vortex
124‧‧‧緻密氣泡產生器 124‧‧‧Compact bubble generator
125‧‧‧孔 125‧‧‧ hole
126‧‧‧開關板 126‧‧‧Switch board
127‧‧‧心軸 127‧‧‧ mandrel
131‧‧‧硬管 131‧‧‧ Hard tube
132‧‧‧硬管內部表面 132‧‧‧The inner surface of the hard tube
133‧‧‧奈米氣泡輸送裝置 133‧‧‧Nano bubble conveyor
135‧‧‧直流電(dc)電源供應器 135‧‧‧DC power supply (dc) power supply
136‧‧‧正電極探針140的電極 136‧‧‧electrode of positive electrode probe 140
137,147‧‧‧絕緣覆套 137,147‧‧‧Insulation cover
138‧‧‧負電極探針141的電極 138‧‧‧electrode of negative electrode probe 141
145‧‧‧負電極 145‧‧‧negative electrode
140,142‧‧‧正電極探針 140,142‧‧‧ positive electrode probe
141,143‧‧‧負電極探針 141,143‧‧‧Negative electrode probe
146‧‧‧正電極 146‧‧‧ positive electrode
148‧‧‧探針單元 148‧‧‧ probe unit
150‧‧‧船舶 150‧‧‧Ship
151‧‧‧緻密氣泡產生裝置 151‧‧‧Compact bubble generating device
160‧‧‧文氏管 160‧‧‧ Venturi tube
161‧‧‧渦旋混合頭 161‧‧‧Vortex mixing head
162‧‧‧靜態混合器 162‧‧‧Static mixer
163‧‧‧後續的空腔溢流腔室 163‧‧‧Subsequent cavity overflow chamber
164‧‧‧氣體入口 164‧‧‧ gas inlet
165‧‧‧溢流孔 165‧‧‧ overflow hole
166‧‧‧頂外緣 166‧‧‧Top outer edge
167‧‧‧氣泡水流方向/箭頭 167‧‧‧bubble water flow direction/arrow
168‧‧‧拘限器孔 168‧‧‧Break hole
169‧‧‧外腔室 169‧‧‧External chamber
201‧‧‧圓柱形內部腔室 201‧‧‧Cylindrical internal chamber
300‧‧‧壓力溶解區 300‧‧‧pressure dissolution zone
301‧‧‧最窄段 301‧‧‧ narrowest section
302,602,707‧‧‧斥水性薄膜 302,602,707‧‧‧Water repellent film
303‧‧‧氣體饋送系統 303‧‧‧ gas feeding system
304‧‧‧柯恩達流分割器組件 304‧‧‧Coanda Flow Divider Assembly
309‧‧‧文氏體部 309‧‧‧Ven's body
401‧‧‧橢圓形渦旋腔室 401‧‧‧Oval vortex chamber
501‧‧‧混合銷 501‧‧‧mixed pin
502‧‧‧斥水性多孔球形頭 502‧‧‧Water-repellent porous spherical head
601‧‧‧螺旋脊 601‧‧‧ spiral ridge
702‧‧‧柯恩達(Coanda)球形渦旋組件 702‧‧‧Coanda spherical scroll assembly
704‧‧‧柯恩達葉片 704‧‧‧ Coanda Blades
804‧‧‧混合分區 804‧‧‧Mixed partition
901‧‧‧空的空間 901‧‧‧ empty space
902‧‧‧壁 902‧‧‧ wall
a,b,c‧‧‧閥 a, b, c‧‧‧ valve
Z1‧‧‧第一時間分區 Z1‧‧‧ first time division
Z2‧‧‧第二時間分區 Z2‧‧‧Second time division
詳細描述 A detailed description
現在將參照附圖描述本發明,其中:圖1顯示使用奈米氣泡之氧合(oxygenation)的有效性;圖2示意性顯示一先前技藝奈米氣泡產生系統;圖3示意性顯示一先前技藝奈米氣泡產生系統; 圖4a-c示意性顯示根據本發明之緻密氣泡產生系統,其中緻密氣泡產生器作串列式連接;圖5a及5b示意性顯示根據本發明之緻密氣泡產生系統,其中緻密氣泡產生器作併列式連接;圖6示意性顯示根據本發明之一緻密氣泡產生系統,其中緻密氣泡產生器以串列與併列式的一組合作連接;圖7a及7b示意性顯示根據本發明之一緻密氣泡產生系統,其中緻密氣泡產生器以串列與併列式的一組合作連接;圖8a至v示意性顯示可使用於本發明中之不同的緻密氣泡產生器;圖9示意性顯示一用於緻密氣泡產生器系統之氣體輸入的不同置放;圖10及11示意性顯示一緻密氣泡產生系統,以提供脈動緻密氣泡;圖12顯示緻密氣泡數相對於時間的一圖形,其中緻密氣泡係產生於不同的時間分區中;圖13及14示意性顯示一緻密氣泡產生系統,其具有配置於垂直上流及水平流的一組合中之產生器;圖15顯示圖13及14所示系統中之典型緻密氣泡密度及尺寸分佈的圖形;圖16a至c示意性顯示根據本發明的一實施例之裝置,以供產生緻密氣泡水,其中僅可取得一低壓力水入口; 圖17a至d示意性顯示根據本發明的一實施例之一經組合的手清洗器-乾燥器;圖18示意性顯示根據本發明的一實施例之一淋浴頭的橫剖視圖;圖19示意性顯示圖18的淋浴頭之端視圖;圖20a至c示意性顯示根據本發明的一替代性實施例之一淋浴頭的橫剖視圖;圖21示意性顯示根據本發明的一實施例之一硬管的處理;圖22示意性顯示根據本發明的另一實施例之一標定裝置;圖23示意性顯示根據本發明的又另一實施例之一標定裝置;圖24示意性顯示根據本發明的再另一實施例之一標定裝置;及圖25示意性顯示根據本發明的一實施例之一具有細微氣泡潤滑系統的船舶之剖視圖。 The invention will now be described with reference to the accompanying drawings in which: Figure 1 shows the effectiveness of oxygenation using nanobubbles; Figure 2 schematically shows a prior art nanobubble generating system; Figure 3 schematically shows a prior art Nano bubble generating system; Figures 4a-c schematically show a dense bubble generating system according to the present invention, wherein the dense bubble generator is connected in series; Figures 5a and 5b schematically show a dense bubble generating system according to the present invention, wherein the dense bubble generator is juxtaposed Figure 6 is a schematic illustration of a uniform bubble generation system in accordance with the present invention in which a dense bubble generator is cooperatively coupled in tandem with a side-by-side group; Figures 7a and 7b schematically illustrate uniform bubble generation in accordance with the present invention. a system in which a dense bubble generator is cooperatively connected in tandem with a side-by-side group; Figures 8a to v schematically show different dense bubble generators that can be used in the present invention; and Figure 9 shows schematically a method for dense bubbles Different placement of the gas input to the generator system; Figures 10 and 11 schematically show a uniform bubble generation system to provide pulsating dense bubbles; Figure 12 shows a graph of the number of dense bubbles versus time, wherein the dense bubbles are generated differently In the time partition; Figures 13 and 14 schematically show a uniform bubble generation system having a combination of vertical upstream and horizontal flow. Figure 15 shows a pattern of typical dense bubble density and size distribution in the system of Figures 13 and 14; Figures 16a-c schematically show an apparatus according to an embodiment of the invention for producing dense bubble water, wherein Only a low pressure water inlet can be obtained; Figures 17a to d schematically show a combined hand washer-dryer according to an embodiment of the invention; Figure 18 is a schematic cross-sectional view of a shower head according to an embodiment of the invention; Figure 19 is a schematic representation Figure 18a-c schematically shows a cross-sectional view of a showerhead in accordance with an alternative embodiment of the present invention; Figure 21 schematically shows a rigid tube in accordance with an embodiment of the present invention. Figure 22 is a schematic illustration of one of the calibration devices in accordance with another embodiment of the present invention; Figure 23 is a schematic illustration of one of the calibration devices in accordance with yet another embodiment of the present invention; and Figure 24 is a schematic representation of another embodiment in accordance with the present invention; One of the calibration devices of one embodiment; and FIG. 25 is a schematic cross-sectional view of a vessel having a fine bubble lubrication system in accordance with an embodiment of the present invention.
本發明的此形態係有關一緻密氣泡產生系統及一產生緻密氣泡之方法。係描述不同之用於在一流體中產生緻密氣泡之系統,特別是使用串列式、併列式、或串列與併列式的一組合被連接之緻密氣泡產生器者。 This aspect of the invention relates to a uniform bubble generation system and a method of producing dense bubbles. A system for producing dense bubbles in a fluid is described, in particular a dense bubble generator that is connected using a tandem, side-by-side, or a combination of tandem and side-by-side.
一用於高密度緻密氣泡之複合緻密氣泡產生器 A composite dense bubble generator for high density dense bubbles
習見情形中,緻密氣泡係利用單一氣泡產生裝備或至多兩個氣泡產生裝置形成於流體中。裝備可為該技藝已知的數類型微米緻密氣泡產生器的一者(見下表1),例如一採用文氏(Venturi)原理產生氣泡(文氏型)之產生器,一採用流體的一渦旋動作生成氣泡(渦旋型)之產生器,一採用空腔原理生成氣泡(空腔型)之產生器,一採用壓力溶解原理(加壓溶解型)之產生器,等。表1列出各型緻密氣泡產生器的主要優劣點。 In the present case, the dense bubbles are formed in the fluid using a single bubble generating device or up to two bubble generating devices. Equipped with one of several types of micro-density bubble generators known in the art (see Table 1 below), such as a generator that generates bubbles (Ven's type) using the Venturi principle, a fluid-based one The vortex action generates a bubble (vortex type) generator, a generator that generates a bubble (cavity type) by a cavity principle, a generator that uses a pressure dissolution principle (pressurized dissolution type), and the like. Table 1 lists the main advantages and disadvantages of each type of dense bubble generator.
如表格所示,任何單一緻密氣泡產生器類型在其產生高濃度(密度)的緻密氣泡、良好均勻尺寸分佈及長壽命之能力上係受到限制。 As shown in the table, any single uniform bubble generator type is limited in its ability to produce high concentrations (density) of dense bubbles, good uniform size distribution, and long life.
作為先前技藝奈米氣泡產生器的範例,可能提到US 7,874,546、US 7,997,563、US 2013/0034829A1、US 2007/0095937A1及EP2116589,其各揭露使用單一或至少兩個奈米氣泡產生器之奈米氣泡產生裝備。 As an example of prior art nanobubble bubble generators, reference may be made to US 7,874,546, US 7,997,563, US 2013/0034829 A1, US 2007/0095937 A1 and EP 2116589, each of which discloses a nanobubble using a single or at least two nanobubble generators. Produce equipment.
為了增加密度,來自一產生器的輸出可被饋送回到產生器的輸入中。產生器隨後在一已經含有一數量的奈 米氣泡之液體中產生氣泡,且因此奈米氣泡的整體密度係增加。此先前技藝程序示意性顯示於圖2。一奈米氣泡產生器1具有一流體輸入2及一流體輸出3。一回饋步驟4可重覆一數量的次數。 To increase density, the output from a generator can be fed back into the input of the generator. The generator then has a quantity of Bubbles are generated in the liquid of the rice bubble, and thus the overall density of the nanobubbles is increased. This prior art program is shown schematically in Figure 2. The one-nanometer bubble generator 1 has a fluid input 2 and a fluid output 3. A feedback step 4 can be repeated a number of times.
然而,每當輸出饋送回到輸入,奈米氣泡的密度增高即減小,其可終將導致仍相對為低的輸出液體中之奈米氣泡的最大密度。此外,利用此技術在流體輸出點所達成之奈米氣泡通量(亦即每秒通過一固定點之奈米氣泡數)對於許多應用而言可能不足。 However, each time the output is fed back to the input, the density of the nanobubbles increases or decreases, which may eventually result in a maximum density of nanobubbles in the output liquid that is still relatively low. In addition, the nanobubble flux achieved at the fluid output point using this technique (i.e., the number of nanobubbles passing through a fixed point per second) may be insufficient for many applications.
不論使用何者類型的產生器,該產生器所可能生成之奈米氣泡的最大密度將具有極限。時常,可能具有包含奈米氣泡的流體之應用,其中欲產生比起個別產生器的此最大值而言具有高度均勻尺寸分佈及高通量之更大密度的奈米氣泡。 Regardless of the type of generator used, the maximum density of nanobubbles that the generator may generate will have limits. Often, there may be applications for fluids containing nanobubbles in which a larger density of nanobubbles having a highly uniform size distribution and high throughput is produced compared to this maximum of individual generators.
圖3示意性顯示另一種採用兩個奈米氣泡產生器之先前技藝程序。一第一奈米氣泡產生器7具有一流體輸入5。第一奈米氣泡產生器可屬於第一類型,例如渦旋型。第一奈米氣泡產生器7的輸出係饋送至一第二奈米氣泡產生器8的輸入中。這些產生器典型利用一“插刃(bayonet)”配件以一分離的O環作連接。第二奈米氣泡產生器8可屬於異於第一類型之第二類型,例如文氏(Venturi)型。US專利No.7,997,563 B2揭露一用於產生微米氣泡之裝備,其包含一渦旋流產生葉輪噴嘴及一漩渦裂解文氏(Venturi)管。US專利No.2013/0034829A1揭露一使用文氏(Venturi)型管及一具 有<1μm尺寸的孔的多孔氣體配送器之裝備,藉以使已經為氣泡形式的氣體離開進入液體中。孔上方之氣泡的表面張力係為高,然而,時常,氣泡在其已經達到遠大於供其生成的孔的尺寸為止之前並未被釋放,而大幅降低散佈器的效力。遵照楊格-拉普拉斯(Young-Laplace)關係△P=2σ/r,其中σ是氣泡的表面張力,且r是氣泡的半徑,當一大氣泡形成時,氣流由於較小平衡壓力而傾向於充填大氣泡而以全部其他較小氣泡作為代價。US專利No.2007/0095937揭露一裝備,其採用類似於US專利No.2013/0034829A1所描述的一文氏(Venturi)管連同一壓力溶解方法以生成較多微米氣泡之一組合。 Figure 3 shows schematically another prior art procedure using two nanobubble generators. A first nanobubble bubble generator 7 has a fluid input 5. The first nanobubble bubble generator can be of a first type, such as a scroll type. The output of the first nanobubble bubble generator 7 is fed into the input of a second nanobubble bubble generator 8. These generators typically utilize a "bayonet" fitting to connect with a separate O-ring. The second nano bubble generator 8 may belong to a second type other than the first type, such as a Venturi type. US Patent No. 7,997,563 B2 discloses an apparatus for producing microbubbles comprising a vortex flow generating impeller nozzle and a vortex lysing Venturi tube. US Patent No. 2013/0034829 A1 discloses the use of a Venturi type tube and a A porous gas dispenser having a pore size of <1 μm is used to allow gas that has been in the form of bubbles to leave the liquid. The surface tension of the bubbles above the holes is high, however, often, the bubbles are not released until they have reached a size much larger than the size of the holes for which they are formed, which greatly reduces the effectiveness of the spreader. According to the Young-Laplace relationship ΔP = 2σ / r, where σ is the surface tension of the bubble, and r is the radius of the bubble, when a large bubble is formed, the air flow is due to the small equilibrium pressure It tends to fill large bubbles at the expense of all other smaller bubbles. US Patent No. 2007/0095937 discloses an apparatus that uses a Venturi tube similar to that described in US Patent No. 2013/0034829 A1 to combine the same pressure dissolution method to produce a combination of more micron bubbles.
這些先前技藝方法未能產生具有高濃度(密度)、良好的均勻尺寸分佈及長壽命的一組合之緻密氣泡。 These prior art methods have failed to produce a dense bubble of a combination having a high concentration (density), a good uniform size distribution, and a long life.
因此可看出用於產生緻密氣泡的既有系統之現有問題包括: It can thus be seen that existing problems with existing systems for generating dense bubbles include:
a)對於單一循環氣泡產生系統,緻密氣泡計數的濃度通常為低。 a) For a single cycle bubble generation system, the concentration of dense bubble counts is typically low.
b)緻密氣泡產生的任何單一方法亦產生具有低氣泡計數之很低容積的液體流。 b) Any single method of generating dense bubbles also produces a very low volume liquid stream with a low bubble count.
c)無法產生具有低壓力水入口及高氣體入口之高濃度緻密氣泡。 c) It is not possible to produce high-density dense bubbles with a low pressure water inlet and a high gas inlet.
在一範例中,US-B2-7874546及EP-A1-2116589具有很複雜的系統,且其在緻密氣泡的濃度上提供極少改良,且尺寸分佈仍很廣泛。其不適合於使用大量氣體入口。 In one example, US-B 2-7874546 and EP-A1-2116589 have very complex systems and provide very little improvement in the concentration of dense bubbles, and the size distribution is still extensive. It is not suitable for use with a large number of gas inlets.
本發明的一目的係在於解決部分上述與先前技藝奈米氣泡產生器相關之缺點。 It is an object of the present invention to address some of the above-discussed shortcomings associated with prior art nanobubble bubble generators.
本發明提出一系統,其使用串列式緻密氣泡產生器以增加緻密氣泡的濃度,使用併列式緻密氣泡系統以增加整體液體流,且整合串列式及併列式系統以增加緻密氣泡的濃度及總液體流兩者。 The present invention provides a system that uses a tandem dense bubble generator to increase the density of dense bubbles, uses a side-by-side dense bubble system to increase overall liquid flow, and integrates in-line and side-by-side systems to increase the concentration of dense bubbles and Total liquid flow both.
此複合系統將緻密氣泡計數從每立分公分數百個增加至每立方公分數十萬個。流率可從每分鐘小於一加侖增加至數十加侖。 This composite system increases the density of dense bubbles from hundreds of centimeters per cent to 100,000 per cubic centimeter. The flow rate can be increased from less than one gallon per minute to tens of gallons.
可藉由具有數個串列式連接、但擁有一低壓力連接分區之緻密氣泡產生器達成此作用,以確保來自各產生器的出口可達到其最適值效益。如是的串列式連接將導致一遠為較高的緻密氣泡濃度及很均勻的氣泡尺寸分佈。 This can be achieved by a dense bubble generator with several tandem connections but with a low pressure connection zone to ensure that the outlet from each generator can achieve its optimum benefit. A tandem connection would result in a much higher density of dense bubbles and a very uniform bubble size distribution.
數個緻密氣泡產生器可併列式連接,且如是的平行連接將導致一含有緻密氣泡之遠為較高的水流。 Several dense bubble generators can be connected in parallel, and a parallel connection would result in a much higher water flow containing dense bubbles.
上述併列式與串列式組態的組合係達成高水流及具有均勻分佈之較高濃度的緻密氣泡兩者。 The combination of the above-described side-by-side and tandem configuration achieves both high water flow and dense bubbles of a relatively high concentration with uniform distribution.
將對於環境-水處理、清潔、半導體產業等具有一長期效應。 It will have a long-term effect on the environment - water treatment, cleaning, semiconductor industry and the like.
本發明的第一實施例係示意性顯示於圖4a。在此實施例中身為一奈米氣泡產生系統之緻密氣泡產生系統係包含一流體輸入9(例如一水龍頭)及一流體輸出10,具有三個奈米氣泡產生器11、12、13配置於流體輸入8與流體輸出10之間。各奈米氣泡產生器具有一各別的輸入及輸出。 A first embodiment of the invention is shown schematically in Figure 4a. In this embodiment, the dense bubble generating system, which is a nano bubble generating system, comprises a fluid input 9 (for example, a faucet) and a fluid output 10 having three nano bubble generators 11, 12, 13 disposed in the fluid. Input 8 is between the fluid output 10. Each nano bubble generator has a separate input and output.
在此實施例中,三個奈米氣泡產生器11、12、13係串列式連接。這意指第一氣泡產生器11的輸出連接至第二奈米氣泡產生器12的輸入。此外,第二氣泡產生器12的輸出連接至第三奈米氣泡產生器13的輸入。如同可從圖4a的實施例看出,可瞭解“串列式”用語係類比於呈串列的一電路之連接組件。產生器利用一干涉配合作連接,所以不同於先前技藝,不需要分離的O環。 In this embodiment, the three nanobubble generators 11, 12, 13 are connected in series. This means that the output of the first bubble generator 11 is connected to the input of the second nanobubble generator 12. Further, the output of the second bubble generator 12 is connected to the input of the third nano bubble generator 13. As can be seen from the embodiment of Figure 4a, it can be appreciated that the term "in-line" is analogous to a connected component of a circuit in a string. The generator utilizes an interference coordination connection, so unlike prior art, a separate O-ring is not required.
奈米氣泡產生器之間的連接14、15可包括腔室,其可被維持於一預定壓力,高抑或低,以容許後續奈米氣泡產生器以其最大效率運作。例如,若奈米氣泡產生器13具有一文氏型奈米氣泡產生器,先前的連接腔室15將被維持在約0.2MPa的一壓力,以容許文氏型奈米氣泡產生器以其最大值效率運作。 The connections 14, 15 between the nanobubble generators can include a chamber that can be maintained at a predetermined pressure, high or low, to allow the subsequent nanobubble bubble generator to operate at its maximum efficiency. For example, if the nano bubble generator 13 has a Venturi-type nanobubble generator, the previous connection chamber 15 will be maintained at a pressure of about 0.2 MPa to allow the Venturi-type nanobubble generator to have its maximum efficiency. Operation.
三個奈米氣泡產生器11、12、13可各包含一不同型的奈米氣泡產生器以形成一複合奈米氣泡產生系統,例如奈米氣泡產生器11可為一渦旋型奈米氣泡產生器(例如諸如參照下列圖8c所描述者),奈米氣泡產生器12可為一混合器型奈米氣泡產生器(例如諸如參照下列圖8j所描述者),且奈米氣泡產生器13可為一文氏型奈米氣泡產生器(例如諸如參照下列圖8m所描述者),且此配置顯示於圖4b。在一替代性配置中,可出現有同型產生器的不只一者,例如奈米氣泡產生器11可包含一渦旋型奈米氣泡產生器模組且奈米氣泡產生器12及13可包含混合器型奈米氣泡產生器模組,且此配置顯示於圖4c。替代性地,全部三個奈米氣泡產生 器11、12、13可包含同型奈米氣泡產生器模組。奈米氣泡產生器類型的選擇將依據所意圖應用及所需要條件而定,以使奈米氣泡產生效率達到最大。 The three nano bubble generators 11, 12, 13 may each comprise a different type of nano bubble generator to form a composite nano bubble generating system, for example, the nano bubble generator 11 may be a vortex type nano bubble. The generator (e.g., such as described with reference to Figure 8c below), the nanobubble generator 12 can be a mixer type nanobubble bubble generator (e.g., such as described with reference to Figure 8j below), and the nanobubble bubble generator 13 It may be a Winn-type nanobubble generator (such as, for example, as described with reference to Figure 8m below), and this configuration is shown in Figure 4b. In an alternative configuration, more than one of the homogenous generators may be present. For example, the nanobubble generator 11 may include a scroll type nanobubble generator module and the nanobubble bubble generators 12 and 13 may include a mixture. A device type nano bubble generator module, and this configuration is shown in Figure 4c. Alternatively, all three nanobubbles are produced The devices 11, 12, 13 may comprise a homomorphic nano bubble generator module. The choice of nanobubble generator type will depend on the intended application and the conditions required to maximize nanobubble bubble generation efficiency.
串列式連接奈米氣泡產生器11、12、13係容許奈米氣泡密度(亦即每公分流體的奈米氣泡數)相較於先前技藝系統而言大幅增加。實驗上來說,包含一文氏型奈米氣泡產生器、一混合器型奈米氣泡產生器、及一渦旋型奈米氣泡產生器的複合系統係已經顯示出產生水中每立方公分約100,000個奈米氣泡的奈米氣泡密度。 The tandem connection of the nanobubble generators 11, 12, 13 allows the nanobubble density (i.e., the number of nanobubbles per centimeter of fluid) to be substantially increased compared to prior art systems. Experimentally, a composite system comprising a Venturi-type nanobubble generator, a mixer-type nanobubble generator, and a vortex-type nanobubble generator has been shown to produce about 100,000 nai per cubic centimeter of water. Nano bubble density of rice bubbles.
本發明的第二實施例示意性顯示於圖5a及5b。所顯示的奈米氣泡產生系統包含一流體輸入16及一流體輸出17,其中三個氣泡產生模組18、19、20配置於流體輸入16與流體輸出17之間。各奈米氣泡產生器具有一各別的輸入及輸出。 A second embodiment of the invention is shown schematically in Figures 5a and 5b. The illustrated nanobubble generating system includes a fluid input 16 and a fluid output 17, wherein three bubble generating modules 18, 19, 20 are disposed between the fluid input 16 and the fluid output 17. Each nano bubble generator has a separate input and output.
在此實施例中,三個氣泡產生模組18、19、20係併列式連接。這意指流體輸入16係分割且饋送至三個奈米氣泡產生器18、19、20的各者之輸入中。此外(如圖5b所示),三個奈米氣泡產生器18、19、20的各者之輸出可受操縱且經由分別位居從產生器18引至輸出17、從產生器18引至產生器19、從產生器19引至輸出17及從產生器19引至產生器20的輸出線中之閥a、b、c饋送至流體輸出17。如同可從圖5a及5b所示的實施例看出,可瞭解“併列”用語係類比於呈併列的一電路之連接組件。 In this embodiment, the three bubble generating modules 18, 19, 20 are connected in parallel. This means that the fluid input 16 is split and fed into the inputs of each of the three nanobubble generators 18, 19, 20. In addition (as shown in Figure 5b), the outputs of each of the three nanobubble bubble generators 18, 19, 20 can be manipulated and directed from the generator 18 to the output 17 and from the generator 18 to the resulting output. The valve 19, the valve a, b, c leading from the generator 19 to the output 17 and from the generator 19 to the output line of the generator 20 is fed to the fluid output 17. As can be seen from the embodiment shown in Figures 5a and 5b, it can be appreciated that the "parallel" language is analogous to the connected components of a circuit in parallel.
如同第一實施例中,三個奈米氣泡產生器18、19、 20可各包含一不同型的奈米產生器,例如奈米產生器18可為一文氏型奈米氣泡產生器,奈米氣泡產生器19可為一渦旋型奈米氣泡產生器,且奈米氣泡產生器20可為一空腔型奈米氣泡產生器。這已知為一複合奈米氣泡產生器系統。替代性地,全部至少有二個、且可能全部的奈米氣泡產生器18、19、20可包含同型奈米氣泡產生器,例如全為文氏型。 As in the first embodiment, three nano bubble generators 18, 19, 20 may each comprise a different type of nano generator, for example, the nano generator 18 may be a venturi type nano bubble generator, and the nano bubble generator 19 may be a vortex type nano bubble generator, and The rice bubble generator 20 can be a cavity type nano bubble generator. This is known as a composite nano bubble generator system. Alternatively, all of the at least two, and possibly all, of the nanobubble generators 18, 19, 20 may comprise homo-nano bubble generators, for example all of the Venturi type.
併列式連接奈米氣泡產生器係容許奈米氣泡通量(亦即每秒通過位於輸出的一固定點之奈米氣泡數)相較於先前技藝系統大幅增加。 The side-by-side connection of the nanobubble generator allows the nanobubble flux (i.e., the number of nanobubbles per second through a fixed point of output) to be substantially increased compared to prior art systems.
雖然圖4a-c及5a-b的實施例顯示根據本發明所連接之三個奈米氣泡產生器,應注意這僅為範例。 Although the embodiments of Figures 4a-c and 5a-b show three nanobubble bubble generators connected in accordance with the present invention, it should be noted that this is merely an example.
本發明的第三實施例示意性顯示於圖6。所顯示的奈米氣泡產生系統包含一流體輸入21及一流體輸出22,其中九個奈米氣泡產生模組23、24、25、26、27、28、29、30、31配置於流體輸入21與流體輸出22之間。各奈米氣泡產生器具有一各別的輸入及輸出。 A third embodiment of the invention is shown schematically in Figure 6. The nano bubble generating system shown includes a fluid input 21 and a fluid output 22, wherein nine nano bubble generating modules 23, 24, 25, 26, 27, 28, 29, 30, 31 are disposed at the fluid input 21 Between the fluid output 22. Each nano bubble generator has a separate input and output.
在此實施例中,奈米氣泡產生器以串列與併列式的一組合作連接。這意指流體輸入21係分割且饋送至三個奈米氣泡產生器次系統的各者之輸入中,類似於圖4a所示的實施例,其各包含串列式連接的三個奈米氣泡產生器。此外,三個奈米氣泡產生器次系統各者的輸出係組合並饋送至流體輸出22。 In this embodiment, the nanobubble generators are cooperatively connected in tandem with a side-by-side set. This means that the fluid input 21 is split and fed into the input of each of the three nanobubble generator subsystems, similar to the embodiment shown in Figure 4a, each comprising three nanobubbles of tandem connection Generator. In addition, the output of each of the three nanobubble generator subsystems is combined and fed to the fluid output 22.
如同在第一實施例中,各奈米氣泡產生器次系統 的三個奈米氣泡產生器可各包含一不同型的奈米氣泡產生器,例如,在頂奈米氣泡產生器次系統中,奈米氣泡產生器23可為一文氏型奈米氣泡產生器,奈米氣泡產生器24可為一渦旋型奈米氣泡產生器,且奈米氣泡產生器25可為一混合器型奈米氣泡產生器。替代性地,奈米氣泡產生器次系統23、24、25中的至少兩個或可能全部三個奈米氣泡產生器可包含相同型奈米氣泡產生器,例如全為文氏型。同理適用於圖6所示的中間奈米氣泡產生器此系統26、27、28及底奈米氣泡產生器次系統29、30、31。 As in the first embodiment, each nano bubble generator sub system The three nano bubble generators may each comprise a different type of nano bubble generator, for example, in the top nano bubble generator sub-system, the nano bubble generator 23 may be a venturi type nano bubble generator The nano bubble generator 24 may be a vortex type nano bubble generator, and the nano bubble generator 25 may be a mixer type nano bubble generator. Alternatively, at least two or possibly all of the three nanobubble bubble generators of the nanobubble generator subsystems 24, 24, 25 may comprise the same type of nanobubble bubble generator, for example all in the Venturi type. The same applies to the intermediate nano bubble generator shown in Fig. 6 for the systems 26, 27, 28 and the bottom nano bubble generator sub-systems 29, 30, 31.
本發明的另一實施例係示意性顯示於圖7a及7b,圖7b顯示高度示意性圖7a的較細部圖。此實施例顯示奈米氣泡產生器可如何以串列與併列式的一組合作連接之另一範例。所顯示的奈米氣泡產生系統包含一流體輸入32及一流體輸出33,其中四個奈米氣泡產生器34、35、36、37配置於流體輸入32與流體輸出33之間。各奈米氣泡產生器具有一各別的輸入及輸出。 Another embodiment of the invention is shown schematically in Figures 7a and 7b, which shows a more detailed view of the more detailed view of Figure 7a. This embodiment shows another example of how a nanobubble generator can be cooperatively linked in tandem with a side-by-side set. The nano bubble generating system shown includes a fluid input 32 and a fluid output 33, wherein four nanobubble generators 34, 35, 36, 37 are disposed between the fluid input 32 and the fluid output 33. Each nano bubble generator has a separate input and output.
在此實施例中,奈米氣泡產生器以串列與併列式的一組合作連接。前兩個奈米氣泡產生器34及35併列式連接。可看出,流體輸入32係分割且饋送至各奈米氣泡產生器34、35的各別輸入中。各奈米氣泡產生器34、35的輸出係重新組合。接下來兩個奈米氣泡產生器36、37係以串列連接。奈米氣泡產生器36的輸出係饋送至奈米氣泡產生器37的輸入中。 In this embodiment, the nanobubble generators are cooperatively connected in tandem with a side-by-side set. The first two nano bubble generators 34 and 35 are connected in parallel. It can be seen that the fluid input 32 is split and fed into the respective inputs of the respective nano bubble generators 34,35. The outputs of the respective nano bubble generators 34, 35 are recombined. The next two nano bubble generators 36, 37 are connected in series. The output of the nano bubble generator 36 is fed into the input of the nano bubble generator 37.
圖7b顯示在此實例中,兩個併列式產生器34及35 皆為位居一共同產生器模組內之文氏型(例如諸如參照下圖8n所描述者),第二產生器36屬於靜態混合器型例如諸如參照下圖8j所描述者,而第三產生器37屬於文氏型例如諸如參照下圖8q所描述者。 Figure 7b shows that in this example, two side-by-side generators 34 and 35 Both are in the Venturi type within a common generator module (such as, for example, as described below with reference to Figure 8n), and the second generator 36 is of a static mixer type such as, for example, as described below with reference to Figure 8j, and third The generator 37 belongs to the Venturi type, for example, as described with reference to Figure 8q below.
以串列及併列式的一組合連接奈米氣泡產生器係容許奈米氣泡濃度及奈米氣泡通量作調整以配合所意圖的應用。 The combination of a tandem and a side-by-side combination of nanobubble generators allows the nanobubble concentration and nanobubble flux to be adjusted to suit the intended application.
圖8a-v顯示各種不同型的微米奈米氣泡產生器,部分具有單型的產生器且部分具有不同型產生器之組合。 Figures 8a-v show various different types of micron nanobubble bubble generators, some having a single type of generator and some having a combination of different types of generators.
圖8a顯示一渦旋型產生器模組,其具有一位居模組的內部腔室內近似中央處之螺旋渦旋組件101。一盤捲於組件101周圍的螺紋109係強迫穿流的液體氣體混合物以一螺旋漩渦流動。氣體被導入經過引往組件內部及一斥水性薄膜之位於模組壁中的一呼吸管105,形成組件的外部表面之部份,穿設有用以將奈米氣泡釋放至流中之細微孔隙102。 Figure 8a shows a scroll-type generator module having a spiral scroll assembly 101 approximately centrally located within the interior of a module. A thread 109 wound around the assembly 101 forces the flow of the liquid gas mixture to flow in a spiral vortex. The gas is introduced into a breathing tube 105 that is directed into the interior of the module and a water repellent film in the module wall to form a portion of the outer surface of the assembly that is pierced with fine pores 102 for releasing nanobubbles into the flow. .
圖8b顯示一渦旋型產生器模組,其具有一圓柱形渦旋組件而無氣體饋送系統。形成於模組內部腔室的內表面上之螺旋脊601係包括一與其平行之漩渦流。 Figure 8b shows a scroll generator module having a cylindrical scroll assembly without a gas feed system. The spiral ridge 601 formed on the inner surface of the inner chamber of the module includes a vortex flow parallel thereto.
圖8c顯示一渦旋型產生器模組,其具有一擁有一氣體饋送系統之圓柱形渦旋組件。形成於模組的內部腔室的內表面上之螺旋脊601係包括一與其平行之漩渦流。一穿設有細微孔隙、襯墊於腔室之斥水性薄膜602係構成一氣體饋送系統。漩渦流係使薄膜上方的壓力場達到最小,因此 使氣體饋送最大化。氣體亦可經過呼吸管603經過模組壁被導入。 Figure 8c shows a scroll generator module having a cylindrical scroll assembly having a gas feed system. The spiral ridge 601 formed on the inner surface of the inner chamber of the module includes a vortex flow parallel thereto. A water-repellent film 602 having a fine pore and a gasket in the chamber constitutes a gas feeding system. The vortex flow system minimizes the pressure field above the membrane, so Maximize gas feed. Gas can also be introduced through the wall of the module through the breathing tube 603.
圖8b顯示一渦旋型產生器模組,其具有一位居模組的內部腔室內之柯恩達(Coanda)球形渦旋組件702,而無氣體饋送系統。位居組件上之柯恩達葉片704具有適當的曲率半徑以供在其表面上方的流內引發柯恩達效應。所產生的漩渦係生成空腔的很高發生率以供產生進一步微米氣泡及奈米氣泡。 Figure 8b shows a scroll generator module having a Coanda spherical scroll assembly 702 in the interior chamber of a module without a gas feed system. The Coanda blade 704 on the component has a suitable radius of curvature for causing a Coanda effect in the flow above its surface. The resulting vortex creates a high incidence of cavities for the production of further microbubbles and nanobubbles.
圖8e顯示一渦旋型產生器模組,其具有一位居模組的內部腔室內之柯恩達球形渦旋組件702,擁有一氣體饋送系統。柯恩達葉片704具有適當的曲率半徑以供在其表面上方的流內引發柯恩達效應。所產生的漩渦係生成空腔的很高發生率以供產生進一步微米氣泡及奈米氣泡。一穿設有細微孔隙之斥水性薄膜707,位居組件702上,係構成一氣體饋送系統。由於柯恩達效應所導致的漩渦流係使薄膜上方的壓力場達到最小,因此使氣體饋送最大化。氣體亦可經過穿過模組壁的呼吸管703被導入。 Figure 8e shows a scroll generator module having a Coanda spherical scroll assembly 702 in an internal chamber of a module having a gas feed system. Coanda blade 704 has a suitable radius of curvature for causing a Coanda effect in the flow above its surface. The resulting vortex creates a high incidence of cavities for the production of further microbubbles and nanobubbles. A water-repellent film 707 having fine pores is placed on the assembly 702 to form a gas feed system. The vortex flow caused by the Coanda effect minimizes the pressure field above the membrane, thus maximizing gas feed. Gas can also be introduced through a breathing tube 703 that passes through the module wall.
圖8f及8g分別顯示一具有一球形渦旋輸入組件的渦旋型或“旋風”產生器之示意橫剖視及平面圖。流被切線地注射至圓柱形內部腔室201,因此造成其以一螺旋漩渦移動。此處,為求清楚省略了氣體入口及流體輸出。較佳地,流體出口被定形成例如藉由將一有齒周緣提供至出口硬管的內部壁而提供一靜態混合表面。 Figures 8f and 8g show schematic cross-sectional and plan views, respectively, of a scroll or "whirlwind" generator having a spherical scroll input assembly. The flow is injected tangentially into the cylindrical interior chamber 201, thus causing it to move in a spiral vortex. Here, the gas inlet and the fluid output are omitted for clarity. Preferably, the fluid outlet is shaped to provide a static mixing surface, for example by providing a toothed peripheral edge to the inner wall of the outlet tube.
圖8h顯示一渦旋型產生器模組,其具有一橢圓形 渦旋腔室401。腔室的橢球橫剖面係強迫流以一具有窄化直徑的螺旋漩渦作移動。此流圖案在腔室內表面上具有一壓力最小值,而造成氣泡擴大。流出口的曲率半徑係引發其上方之流中的柯恩達效應,並因此引發空腔的高發生率以供產生所驅排流體中的進一步微米氣泡及奈米氣泡。 Figure 8h shows a scroll generator module having an elliptical shape Vortex chamber 401. The ellipsoidal cross-section of the chamber forces the flow to move with a helical vortex having a narrowed diameter. This flow pattern has a minimum pressure on the surface of the chamber, causing the bubble to expand. The radius of curvature of the outflow port initiates the Coanda effect in the flow above it and thus initiates a high incidence of cavities for the production of further microbubbles and nanobubbles in the expelled fluid.
圖8顯示與連接流出口的軸線呈法向之圖8h的橢圓形渦旋腔室之橫剖面圖。其突顯出流輸入如何與渦旋腔室401呈切線。 Figure 8 shows a cross-sectional view of the elliptical scroll chamber of Figure 8h normal to the axis connecting the outflow ports. It highlights how the flow input is tangential to the swirl chamber 401.
圖8j顯示一靜態混合器型產生器模組。在此實例中為九個之複數個徑向往內突起的混合銷501、其突入模組的內部腔室中,係生成一將微米氣泡裂解成奈米氣泡之紊流。氣體係經由位居混合銷501內之呼吸管503作饋送並輸送至銷的斥水性、多孔球形頭502,其將氣體以奈米氣泡輸送至周遭流體內。 Figure 8j shows a static mixer type generator module. In this example, nine of the plurality of radially inwardly projecting mixing pins 501 project into the interior chamber of the module to create a turbulent flow that splits the micron bubbles into nanobubbles. The gas system is fed via a breathing tube 503 located within the mixing pin 501 and delivered to the water repellent, porous spherical head 502 of the pin, which delivers the gas as a bubble in the surrounding fluid.
圖8k顯示經過圖8j所示的平面x、y及z之混合腔室的三個軸向橫剖視圖。混合銷501以120°的規律角度間隔沿腔室作分佈。各個接續的銷三元組相對於前者旋轉達60°角。 Figure 8k shows three axial cross-sectional views through a mixing chamber of planes x, y and z shown in Figure 8j. The mixing pins 501 are distributed along the chamber at regular angular intervals of 120°. Each successive pin triple is rotated by an angle of 60° relative to the former.
圖8l顯示類似於圖8j-k所示者的一靜態混合器型產生器模組,其中混合銷501不具有呼吸管。 Figure 81 shows a static mixer type generator module similar to that shown in Figures 8j-k, wherein the mixing pin 501 does not have a breathing tube.
圖8m顯示一不具有氣體饋送系統之文氏型產生器模組。模組的內部腔室沿著其流軸線形成有一可變式硬管直徑。位於壓力溶解區300之一窄化硬管直徑係強迫氣體溶解至液體中。流在最窄段301內加速,其則容許經溶解的 氣體分子由於對應的壓力下降而聚結並形成微米氣泡。 Figure 8m shows a Venturi-type generator module without a gas feed system. The internal chamber of the module is formed with a variable hard tube diameter along its flow axis. The narrowing of the hard tube diameter in one of the pressure dissolution zones 300 forces the gas to dissolve into the liquid. The flow accelerates in the narrowest section 301, which allows for dissolution The gas molecules coalesce and form microbubbles due to the corresponding pressure drop.
圖8n顯示一具有一氣體饋送系統之文氏型產生器模組。模組的內部腔室沿著其流軸線形成有一可變式硬管直徑。位於壓力溶解區300之一窄化硬管直徑係強迫氣體溶解至液體中。流在最窄段301內加速,其則容許經溶解的氣體分子由於對應的壓力下降而聚結並形成微米氣泡。額外氣體經由一通過腔室壁的呼吸管303被饋送至一穿設有細微孔隙之斥水性薄膜302,在其最窄直徑處形成腔室的內部壁之部份,以供將氣體以奈米氣泡饋送至其中的流。 Figure 8n shows a Venturi-type generator module having a gas feed system. The internal chamber of the module is formed with a variable hard tube diameter along its flow axis. The narrowing of the hard tube diameter in one of the pressure dissolution zones 300 forces the gas to dissolve into the liquid. The flow accelerates within the narrowest section 301, which allows the dissolved gas molecules to coalesce and form microbubbles due to the corresponding pressure drop. The additional gas is fed through a breathing tube 303 through the chamber wall to a water repellent film 302 that is provided with fine pores, forming a portion of the inner wall of the chamber at its narrowest diameter for gas to be used in the nanometer The stream into which the bubbles are fed.
圖8o顯示一具有一串列式位居模組內部腔室內的一文氏組件及柯恩達流分割器組件304兩者之產生器模組,而不具有任何氣體饋送系統。模組的內部腔室係沿著其流軸線形成有一可變式硬管直徑,且文氏組件就像圖8m般運作。柯恩達流分割器組件304具有適當的曲率半徑以供在其上方的流中引發柯恩達效應,且因此引發空腔的高發生率以供在所驅排流體中產生進一步微米氣泡及奈米氣泡。 Figure 8o shows a generator module having both a venturi assembly and a Coanda flow divider assembly 304 in the internal chamber of a tandem module without any gas feed system. The internal chamber of the module is formed with a variable hard tube diameter along its flow axis, and the Venturi assembly operates as shown in Figure 8m. The Coanda flow splitter assembly 304 has a suitable radius of curvature for inducing a Coanda effect in the flow above it, and thus inducing a high incidence of cavities for the creation of further microbubbles and nai in the displaced fluid Rice bubbles.
圖8p顯示一具有串列式的一文氏組件及柯恩達流分割器組件304兩者之產生器模組,其中一具有呼吸管303的氣體饋送系統在後者上引至模組外部。文氏組件就像圖8m般運作。柯恩達流分割器組件304具有適當的曲率半徑以供在其上方的流中引發柯恩達效應,且因此引發空腔的高發生率以供在所驅排流體中產生進一步微米氣泡及奈米氣泡。尚且,柯恩達效應使得部份地覆蓋住分割器304之一 穿設有細微孔隙的斥水性薄膜302上方之壓力場達到最小,因此使自其所釋放的奈米氣泡通量最大化。 Figure 8p shows a generator module having both a tandem one-piece assembly and a Coanda flow divider assembly 304, with a gas feed system having a breathing tube 303 leading to the exterior of the module. The Venturi component works like Figure 8m. The Coanda flow splitter assembly 304 has a suitable radius of curvature for inducing a Coanda effect in the flow above it, and thus inducing a high incidence of cavities for the creation of further microbubbles and nai in the displaced fluid Rice bubbles. Moreover, the Coanda effect partially covers one of the dividers 304 The pressure field above the water repellent film 302 with fine pores is minimized, thereby maximizing the flux of nanobubbles released therefrom.
圖8q顯示一具有一氣體饋送系統之文氏型產生器模組。壓力溶解效應就像圖8m所描述。然而,此實施例的一額外特徵構造係為文氏體部309上的曲率(亦即模組的經定形內部壁,其係為適當以引發其上方的流中之柯恩達效應)。這使得覆蓋住體部309的一下部分之一穿設有細微孔隙的斥水性薄膜302上方之壓力場達到最小,因此使自其所釋放的奈米氣泡通量最大化。 Figure 8q shows a Venturi-type generator module having a gas feed system. The pressure dissolution effect is as described in Figure 8m. However, an additional feature of this embodiment is the curvature on the venturi body 309 (i.e., the shaped inner wall of the module, which is suitably adapted to initiate the Coanda effect in the flow above it). This minimizes the pressure field above the water repellent film 302 that covers one of the lower portions of the body 309 through the fine pores, thereby maximizing the flux of the nanobubbles released therefrom.
圖8r顯示一空腔型產生器模組。流動的微米氣泡進入模組的內部腔室,其在此處為一空的空間901,且由於壓力上升而空化。這所產生的衝擊波係在周遭流體中生成振盪的剪力,其形成進一步的微米氣泡。此空腔可經過機械侵蝕對於組件的固體部份造成損害,所以其中沒有東西的空腔管係容許此程序發生,而對於任何突出組件具有最小損害。 Figure 8r shows a cavity type generator module. The flowing micron bubbles enter the internal chamber of the module, which is here an empty space 901 and cavitation due to the pressure rise. This generated shock wave creates an oscillating shear force in the surrounding fluid that forms further microbubbles. This cavity can be mechanically eroded to damage the solid portion of the assembly, so that a cavity tube with nothing to allow this procedure to occur with minimal damage to any protruding components.
圖8s顯示一具有一推拔狀出口之空腔型產生器模組,其中模組的內部腔室之內部直徑係在流方向上減小。推拔狀出口係增大空腔腔室內的壓力,因此需使微米氣泡及奈米氣泡變得更小。 Figure 8s shows a cavity type generator module having a push-out outlet wherein the internal diameter of the internal chamber of the module is reduced in the flow direction. The push-out outlet increases the pressure in the cavity, so the microbubbles and nanobubbles need to be made smaller.
圖8t顯示一具有與腔室主要軸線呈垂直導引的流出口之空腔型產生器模組。流體內的微米氣泡係碰撞於一位於與入口呈相對的腔室901端之壁902,而造成其空化並產生進一步的微米氣泡。 Figure 8t shows a cavity type generator module having an outflow port that is oriented perpendicular to the main axis of the chamber. The microbubbles in the fluid collide with a wall 902 at the end of the chamber 901 opposite the inlet, causing it to cavitation and creating further microbubbles.
圖8u顯示一具有與一再循環混合器組件呈併列的一文氏組件之產生器模組,在後者機構上具有氣體饋送。文氏機構及混合機構概括分別類似於圖8m及8j所描述者,其中文氏組件包含被置於流中的擋板,俾使入流進入具有降低直徑的中央區、抑或擋板與模組壁之間(混合分區804),其中設有混合器組件的銷。由於擋板在其下端遭遇到模組壁,因此關閉混合分區,混合分區804內的流體被強迫再循環返回朝向流入口,因此增加微米氣泡在混合分區內的留置時間,而容許其有更多在經由出口被驅排之前變成奈米氣泡。 Figure 8u shows a generator module having a Venturi assembly juxtaposed with a recirculating mixer assembly having a gas feed on the latter mechanism. The Venturi mechanism and the hybrid mechanism are summarized similarly to those described in Figures 8m and 8j, respectively, whose Chinese components contain baffles placed in the flow, such that the inflow enters the central zone with reduced diameter, or the baffle and module walls Between (mixing partition 804), a pin of the mixer assembly is provided. Since the baffle encounters the module wall at its lower end, the mixing zone is closed and the fluid in the mixing zone 804 is forced to recirculate back toward the inflow port, thus increasing the retention time of the microbubbles within the mixing zone, allowing for more It becomes a nano bubble before being discharged through the outlet.
圖8v顯示一具有併列式配置的文氏及混合器組件之產生器模組,在混合銷上具有氣體饋送。壓力溶解係以與圖8m所描述者相同的方式發生。形成於最窄段301內之微米氣泡係藉由其中的混合銷被迅速裂解成奈米氣泡。尚且,奈米氣泡如圖8j般藉由氣體饋送系統303釋放。 Figure 8v shows a generator module with a side-by-side configuration of a Venturi and mixer assembly with a gas feed on the mixing pin. The pressure dissolution occurred in the same manner as described in Figure 8m. The microbubbles formed in the narrowest section 301 are rapidly cracked into nanobubbles by the mixing pins therein. Still, the nanobubbles are released by the gas feed system 303 as shown in Fig. 8j.
將注意到:所有的上述產生器模組可藉由螺接(如圖示,各模組在各端具有一螺紋)、或確實藉由能夠依需要斷開及重新連接的其他硬管連接技術而被簡單地連接在一起。 It will be noted that all of the above generator modules can be screwed (as shown, each module has a thread at each end), or indeed by other hard pipe connection techniques that can be disconnected and reconnected as needed. And they are simply connected together.
本發明的另一實施例示意性顯示於圖9,其顯示出在上述系統任一者中在系統內的任何階段可如何發生氣體饋送。若在流體輸入38之後使用一泵40,氣體饋送可發生於泵之前如42處所示,或泵之後如43處所示。氣體饋送亦可發生於微米氣泡及/或奈米氣泡產生器41之後,如44處 所示,流體出口39之前。氣體可在標示區位42、43、44的一者或多重區位中被輸入,其中有多少個區位可供輸入氣體並無上限。 Another embodiment of the invention is schematically illustrated in Figure 9, which shows how gas feed can occur at any stage within the system in any of the above systems. If a pump 40 is used after the fluid input 38, the gas feed can occur as indicated at 42 before the pump, or as indicated at 43 after the pump. Gas feed can also occur after the microbubbles and/or nanobubble bubble generator 41, such as 44 Shown before the fluid outlet 39. Gas may be input in one or more of the marked locations 42, 43, 44, and there are no upper limits on how many locations are available for input gas.
本發明的另一實施例顯示於圖10。此處,微米奈米氣泡產生器系統配備有一機械旋轉器,其具有用於驅動一閥構件之相對的噴嘴61及62,經過旋轉器的水流係生成閥構件的順時針方向旋轉。閥構件設置成相鄰於一形成有流體入口閥孔63及64之表面。閥構件的旋轉將開啟及關閉流體入口閥孔63及64,生成一適合於特定應用的脈動式微米奈米氣泡流體。 Another embodiment of the invention is shown in FIG. Here, the micron nanobubble bubble generator system is equipped with a mechanical rotator having opposed nozzles 61 and 62 for driving a valve member, the flow of water passing through the rotator generating a clockwise rotation of the valve member. The valve member is disposed adjacent to a surface on which the fluid inlet valve holes 63 and 64 are formed. Rotation of the valve member will open and close fluid inlet valve bores 63 and 64 to create a pulsating micron nanobubble fluid suitable for a particular application.
一脈動式微米奈米氣泡流體亦可利用一螺線管閥產生以開啟及關閉流體供應物。這顯示於圖11。若微米奈米氣泡產生器系統73、74及75設計成產生微米氣泡,且76、77、78用於奈米氣泡,則可產生時間分隔的微米氣泡及奈米氣泡。圖12顯示微米/奈米氣泡數vs.時間的圖形,其中在一第一時間分區Z1中產生一數量的奈米氣泡,且在一第二時間分區Z2中產生一數量的微米氣泡。 A pulsating micron nanobubble fluid can also be created using a solenoid valve to open and close the fluid supply. This is shown in Figure 11. If the micron nano bubble generator systems 73, 74, and 75 are designed to produce microbubbles, and 76, 77, 78 are used for nanobubbles, time-separated microbubbles and nanobubbles can be produced. Figure 12 shows a graph of the number of micro/nano bubbles vs. time in which a number of nanobubbles are produced in a first time zone Z1 and a number of micro-bubbles are produced in a second time zone Z2.
本發明的另一實施例示意性顯示於圖13。奈米氣泡產生系統中的流體係配置以從流體輸入81往上流動、經過圓柱形渦旋流模組83、靜態混合器模組84、及文氏加上柯恩達閥模組85。具有微米奈米氣泡的流體隨後進入空腔腔室模組86,接下來是一具有一球形渦旋流模組87及文氏型奈米氣泡產生器模組88之水平奈米氣泡產生器系統。氣體饋送如89所示般發生。 Another embodiment of the invention is shown schematically in Figure 13. The flow system in the nanobubble generating system is configured to flow upward from the fluid input 81, through the cylindrical vortex flow module 83, the static mixer module 84, and the Venturi plus Coanda valve module 85. The fluid having micron nanobubbles then enters the cavity chamber module 86, followed by a horizontal nanobubble generator system having a spherical vortex flow module 87 and a Venturi nanobubble generator module 88. . The gas feed occurs as indicated at 89.
圖14顯示一用於如是組態之系統。上述組件模組的任一者可在一往上方向作串列式連接。在此實例中,組件被包封在一較大的固持貯槽/貯器內,俾使任何微米氣泡將具有一較長的引發時間以演化成奈米氣泡。具有額外渦旋及文氏加上柯恩達閥模組之另一水平奈米氣泡產生器系統係將進一步增加奈米氣泡密度。圖15顯示如是一系統之典型奈米氣泡密度及尺寸分佈。奈米氣泡尺寸在50至300nm範圍內很均勻,且利用Nanosight NS500系統計算密度身為2.5x108/ml。 Figure 14 shows a system for configuration as such. Any of the above component modules can be connected in series in a vertical direction. In this example, the assembly is enclosed within a larger holding reservoir/reservoir such that any micron bubbles will have a longer initiation time to evolve into nanobubbles. Another horizontal nanobubble generator system with additional vortexing and Venturi plus Coanda valve modules will further increase the nanobubble density. Figure 15 shows a typical nanobubble density and size distribution for a system. Nano bubble size is very uniform from 50 to 300 nm, and the density is 2.5x10 8 /ml using the Nanosight NS500 system.
本發明的另一實施例係為其中微米奈米氣泡產生器系統部份或完全地沉浸至流體內。系統的動力可為電力、壓縮空氣、自來水、重力、風力、液壓或任何其他能量源。在一較佳實施例中,設計成被壓縮空氣供應動力,其轉動一轉子葉片,進而轉動一與氣體隔室分離之螺旋槳葉片以將水泵送至裝備中。壓縮空氣可經由一通道逃逸至一斥水性薄膜,其在該處隨後以微米/奈米氣泡形式被導入液體中。在此實例中,產生充足壓力以供藉由壓縮空氣生成奈米氣泡,但本發明一般可由任何充足壓力源供應動力,其可為重力或特定的泵,或甚至家用的水壓力。 Another embodiment of the invention is where the micron nanobubble bubble generator system is partially or completely immersed in the fluid. The power of the system can be electricity, compressed air, tap water, gravity, wind, hydraulics or any other source of energy. In a preferred embodiment, it is designed to be powered by compressed air that rotates a rotor blade to rotate a propeller blade separate from the gas compartment to pump water into the equipment. The compressed air escapes through a passage to a water repellent film where it is subsequently introduced into the liquid in the form of micro/nano bubbles. In this example, sufficient pressure is generated for generating nanobubbles by compressed air, but the invention can generally be powered by any sufficient source of pressure, which can be gravity or a specific pump, or even domestic water pressure.
應注意到: It should be noted that:
-氣體輸入可選用性在泵之前或泵之後被連接。有利地,氣體可在泵之前與之後皆被導入。氣體輸入可包含微米級數或奈米級數尺寸之單一或多重的孔。一額外氣體輸入可設置為接近流體輸出以增加總氣體輸入。 - Gas input availability is connected before or after the pump. Advantageously, the gas can be introduced both before and after the pump. The gas input can include single or multiple pores of micron or nanometer size. An additional gas input can be set proximate to the fluid output to increase the total gas input.
-具有微米級數或奈米級數孔之氣體輸入係可選用性包含至少一斥水性材料或斥水性塗覆物。一適當斥水性材料的一範例係為一氟矽氧薄膜。 - Gas input system having micron or nano series pores optionally comprises at least one water repellent material or water repellent coating. An example of a suitable water repellent material is a fluorofluorene oxide film.
-氣體輸入可被選用性放置於接近流體的表面,具有強烈的柯恩達效應,俾使緻密氣泡在被掃離之前沒有時間生長。 - The gas input can be selectively placed close to the surface of the fluid, with a strong Coanda effect, so that the dense bubbles do not have time to grow before being swept away.
-微米氣泡及奈米氣泡可經由一微米氣泡產生系統及一奈米氣泡產生系統的一併列式配置同時地產生。微米氣泡及奈米氣泡可在同時間從兩不同出口離開。亦可採用一時計閥以一擇時時序產生微米氣泡及奈米氣泡。微米氣泡及奈米氣泡可在不同時間分區中出現於流體中。 - Microbubbles and nanobubbles can be simultaneously produced via a one-micron bubble generation system and a side-by-side configuration of a nano bubble generation system. Microbubbles and nanobubbles can exit from two different outlets at the same time. It is also possible to use a one-time meter valve to generate microbubbles and nanobubbles at a timing. Microbubbles and nanobubbles can appear in the fluid in different time zones.
-緻密氣泡可利用一機械或電子流體脈動控制器以一脈動方式產生,以操縱緻密氣泡產生器系統的輸入流體或流體輸出。 - The dense bubble can be generated in a pulsating manner using a mechanical or electronic fluid pulsation controller to manipulate the input fluid or fluid output of the dense bubble generator system.
-方便地,分離的產生器模組可例如藉由簡單的螺接以一可重覆且可逆的方式被配合在一起。 - Conveniently, the separate generator modules can be mated together in a repeatable and reversible manner, for example by simple screwing.
-被供應以形成氣泡之液體係可為水,IPA,燃料,或其他液體。 - The liquid system supplied to form bubbles may be water, IPA, fuel, or other liquid.
-被供應以形成氣泡之氣體係可為臭氧,氧,氫,空氣,二氧化碳,氮,或其他氣體。 - The gas system supplied to form a bubble may be ozone, oxygen, hydrogen, air, carbon dioxide, nitrogen, or other gases.
-操作壓力:具有約0.08MPa的最小值,具有約0.2MPa至約0.5MPa的一較佳範圍。 Operating pressure: having a minimum of about 0.08 MPa, having a preferred range of from about 0.2 MPa to about 0.5 MPa.
本發明的此形態藉此提供一加成製造方法,其中各組件/模組可以併列或串列或其一組合被添加至微米及奈米氣泡產生系統中,以操縱含有緻密氣泡的液體之總氣 泡密度、氣泡尺寸分佈及總通量。 This aspect of the invention thus provides an additive manufacturing process in which the components/modules can be added to the micron and nanobubble bubble generation system in parallel or in series or a combination thereof to manipulate the total amount of liquid containing dense bubbles. gas Bubble density, bubble size distribution and total flux.
經過一低壓力水入口產生緻密氣泡水 Produces dense bubble water through a low pressure water inlet
在一特定實施例中,可在僅可取得一低壓力水之處使用如是一產生技術產生緻密氣泡水。 In a particular embodiment, a dense bubble water can be produced using a generation technique where only a low pressure water can be obtained.
現今,緻密氣泡產生系統需要一額外的水泵以供有效的系統操作。根據本發明,提供一整合了空腔、文氏效應渦旋方法及一混合器方法之特定複合途徑,其增強緻密氣泡產生效率,且其容許以一遠比先前可能者更低的入口水壓力產生高濃度緻密氣泡。 Today, dense bubble generation systems require an additional pump for efficient system operation. According to the present invention, there is provided a specific composite route incorporating a cavity, a Venturi effect vortex method and a mixer method which enhances the density of dense bubble generation and which allows for a lower inlet water pressure than previously possible Produces high concentration of dense bubbles.
圖16a-c示意性顯示的如是一設計的一範例係具有內建在水流系統內之接續的文氏、渦旋流、靜態混合器及空腔腔室,且為求方便,氣泡水流方向係標示以箭頭例如167,其中圖16a示意性顯示裝置的剖視圖,圖16b從俯視圖示意性顯示空腔腔室,且圖16c示意性顯示空腔腔室的剖視圖。氣體及液體在一文氏管160中混合,其包括一氣體入口164,然後經混合的氣體液體流經一渦旋混合頭161及靜態混合器162以生成緻密氣泡。後續的空腔溢流腔室163、包括頂外緣166上的溢流孔165,係容許緻密氣泡轉換成“超緻密”氣泡,其隨後從溢流孔釋放。超緻密氣泡隨後被釋放經過外腔室169底部中的拘限器孔168。入口龍頭水壓力可低達0.08MPa,不需要導入額外的氣體,且一環室空氣入口已足夠。緻密氣泡的計數可最多達100,000,000每立方公分。 16a-c schematically shows an example of a design having successive Venturi, vortex flow, static mixers and cavity chambers built into the water flow system, and for convenience, the bubble flow direction system Indicated by an arrow such as 167, wherein Fig. 16a schematically shows a cross-sectional view of the device, Fig. 16b schematically shows the cavity chamber from a top view, and Fig. 16c schematically shows a cross-sectional view of the cavity chamber. The gas and liquid are mixed in a venturi 160 which includes a gas inlet 164 which is then passed through a vortex mixing head 161 and static mixer 162 to create a dense bubble. The subsequent cavity overflow chamber 163, including the overflow aperture 165 on the top outer edge 166, allows the dense bubbles to be converted into "super-dense" bubbles which are subsequently released from the overflow holes. The ultra-dense bubbles are then released through the trap holes 168 in the bottom of the outer chamber 169. The inlet faucet water pressure can be as low as 0.08 MPa, no additional gas needs to be introduced, and a ring chamber air inlet is sufficient. The density of dense bubbles can be up to 100,000,000 per cubic centimeter.
特定應用 Specific application
根據本發明,可想見如是氣泡的不同應用,且詳述其中的部分。這些應用係包括:-用於改良船舶潤滑之方法/程序;-用於緻密氣泡以供除垢之方法;-使用緻密氣泡以供半導體清潔之方法;-用於衛生手部清洗/乾燥之方法/程序;-用於降低藻類之方法/程序;-用於標定緻密氣泡之方法/裝備;及-用於生成緻密氣泡水之方法/程序。 According to the present invention, different applications such as air bubbles are conceivable, and portions thereof are detailed. These applications include: - methods/procedures for improving ship lubrication; - methods for dense bubbles for descaling; - methods for using dense bubbles for semiconductor cleaning; - methods for sanitary hand cleaning/drying /procedure;-method/procedure for reducing algae; -method/equipment for calibrating dense bubbles; and -method/procedure for generating dense bubble water.
清洗應用 Cleaning application
富含緻密氣泡水係應用於清洗或清潔多種不同物體,包括身體皮膚、除垢/清潔硬管及清潔半導體晶圓。 The dense bubble water system is used to clean or clean a variety of different objects, including body skin, descaling/cleaning tubing, and cleaning semiconductor wafers.
一使用緻密氣泡作清洗之方法 a method of using dense bubbles for cleaning
現今一般之洗浴方法係將肥皂/清潔劑施加至身體表面並刮拭藉以殺死微生物,清理孔隙及剝去死皮。然而,此處所用的如是化學物係相對昂貴且可能在特定案例中造成皮膚刺激。 The current bathing method is to apply soap/detergent to the body surface and wipe it to kill the microorganisms, clean the pores and peel off the dead skin. However, the chemical systems used herein are relatively expensive and may cause skin irritation in certain cases.
一克服此問題的方式係藉由將緻密氣泡施加至皮膚表面。由於緻密氣泡的聲致發光性質及此自然程序天生之氧化根的後續產生,可能發生清洗而不需使用化學物且具有最少量的機械刮拭。 One way to overcome this problem is by applying dense bubbles to the surface of the skin. Due to the sonoluminescence properties of the dense bubbles and the subsequent generation of natural oxidatives of this natural procedure, cleaning may occur without the use of chemicals and with minimal mechanical wiping.
手清洗器/乾燥器 Hand washer/dryer
此形態係有關使用緻密氣泡之一龍頭及/或手清洗器及/或經組合的手清洗器-乾燥器。 This configuration relates to the use of one of the dense bubbles and/or the hand washer and/or the combined hand washer-dryer.
現今來說,戴森(Dyson)是手部用的空氣乾燥器及衛生處理設備之領導者。其最近已經推出氣刀龍頭(Airblade Tap),一種經組合的水龍頭及手乾燥器。其他經組合的裝置亦為人熟知。 Today, Dyson is the leader in air dryers and sanitary treatment equipment for the hand. It has recently introduced the Airblade Tap, a combined faucet and hand dryer. Other combined devices are also well known.
根據本發明,提議使用緻密氣泡水來改良手清洗。在一特佳實施例中,緻密氣泡水源可與一乾燥器作組合,例如位於一被例如連接至一戴森(Dyson)氣刀龍頭型裝置的奈米氣泡手衛生處理器中或成為其一部份。 In accordance with the present invention, it is proposed to use dense bubble water to improve hand cleaning. In a particularly preferred embodiment, the dense bubble water source can be combined with a dryer, such as in a nanobubble hand hygiene processor that is coupled, for example, to a Dyson air knife faucet type device. Part.
一緻密氣泡DC馬達可被整合至對幹線水供應物的連接中,且可隨後使用緻密氣泡水在利用“無細菌”手乾燥器或其他類似產品予以乾燥之前將手部殺菌。 The uniform bubble DC motor can be integrated into the connection to the mains water supply, and the hand can then be sterilized using dense bubble water prior to drying with a "bacteria free" hand dryer or other similar product.
圖17a-d示意性顯示一實施例,其中圖17a示意性顯示剖視圖,圖17b示意性顯示經過流體出口桿之剖視圖,圖17c示意性顯示側視圖且圖17d顯示立體圖。如圖17d最清楚顯示,清洗器-乾燥器90形成為一概呈“T”形的清洗龍頭,其具有一直立杆91及一藉由一臂93而水平地分隔於杆91之水平延伸的流體出口桿92。杆91含有一DC馬達94,由一電源供應器95供應動力。DC馬達94由一具有一磁性或其他型接合裝置(這本質上是一已知裝置)之時計及微開關控制裝置所控制,並可操作以可旋轉地驅動位居杆頂部的各別腔室中之一空氣運送裝置動葉輪96及一水動態混合泵頭97兩者,其一起形成一空氣-水混合泵頭,腔室係經過一行經該杆之導管98接收空氣及及水。此配置提供有效率的氣體-水混合。桿92係容置緻密氣泡產生裝置-一具有內建的渦旋 頭、靜態混合器、文氏件之固體管。更詳細說,其係容置一加壓空氣腔室99及一緻密氣泡裝置腔室102,具有位居桿92的基底之拘限面積細水及空氣出口葉片103。圖17b顯示出口被拘限以形成細葉片以容許緻密氣泡水外出。空氣腔室99亦為一固體管件,其具有一受拘限葉片邊緣作為空氣出口。 Figures 17a-d schematically show an embodiment in which Figure 17a is a schematic cross-sectional view, Figure 17b is a schematic cross-sectional view through a fluid outlet rod, Figure 17c is a schematic side view and Figure 17d is a perspective view. As best seen in Figure 17d, the washer-dryer 90 is formed as a generally "T" shaped cleaning faucet having a vertical upright 91 and a horizontally extending fluid horizontally separated by a beam 93 from the rod 91. Exit rod 92. The rod 91 contains a DC motor 94 that is powered by a power supply 95. The DC motor 94 is controlled by a timepiece and microswitch control having a magnetic or other type of engagement means (which is essentially a known means) and is operable to rotatably drive the respective chambers at the top of the pole One of the air transport device impeller 96 and the one water dynamic mix pump head 97 together form an air-water mixing pump head that receives air and water through a row of conduits 98 through the rod. This configuration provides efficient gas-water mixing. Rod 92 accommodates a dense bubble generating device - a built-in vortex Head, static mixer, solid tube of venturi. More specifically, it houses a pressurized air chamber 99 and a uniform bubble chamber 102, and has a limited area of fine water and air outlet vanes 103 on the base of the rod 92. Figure 17b shows that the outlet is trapped to form fine blades to allow dense bubble water to escape. The air chamber 99 is also a solid tubular member having a trapped blade edge as an air outlet.
一動作感測器101設置於桿92上以偵測朝向及遠離裝置之手部運動,並將一啟動/解除信號傳送到馬達。因此所產生的緻密氣泡隨後可經過葉片被釋放。 A motion sensor 101 is disposed on the rod 92 to detect hand movement toward and away from the device and to transmit an activation/deactivation signal to the motor. The resulting dense bubbles can then be released through the blades.
時計可操作以藉由首先接合(水)泵頭、然後將泵頭切換至一空氣葉片以供產生經過葉片的高流及高壓力水,而在一預定清洗時間之後將操作從水供應切換至一空氣供應。此空氣係用來乾燥使用者的手。 The timepiece is operable to switch operation from water supply to after a predetermined cleaning time by first engaging (water) the pump head and then switching the pump head to an air blade for generating high flow and high pressure water through the blade An air supply. This air is used to dry the user's hand.
選用性地,至少一紫外光LED 100可裝設於緻密氣泡產生裝置內部以消毒所施配的水,並可經由一施配器在上游添加氧化鈦以在空氣及水上提供一額外消毒效應。此配置亦將容許使用者更易看見塵土。出現在水中的緻密氣泡係用來散射入射光,因此改良照明。緻密氣泡水亦具有一漂白效應,其有助於清潔水以防止雜垢或灰垢累積。這亦降低了清潔水供應硬管之成本。 Optionally, at least one ultraviolet LED 100 can be installed inside the dense bubble generating device to sterilize the dispensed water, and titanium oxide can be added upstream via a dispenser to provide an additional disinfecting effect on air and water. This configuration will also allow the user to see dust more easily. The dense bubbles that appear in the water are used to scatter the incident light, thus improving the illumination. The dense bubble water also has a bleaching effect which helps to clean the water to prevent the accumulation of scale or ash. This also reduces the cost of the clean water supply pipe.
可經由一螺線管閥、壓力感測器及壓力閥建置、簡單時計啟閉閥、或機械振盪裝置(下文參照淋浴頭應用進一步描述)以一脈動式模式產生緻密氣泡。可藉由脈動式模式緻密氣泡經過受處理表面上的脈衝引發式高與低壓力衝 擊來達成額外清潔力。此作用藉由表面的加壓攻擊使得受污染表面的移除速率達到最大,然後壓力驟降的作用像是真空吸力以移除污染物。這類似於潮汐波對於海岸線岸邊的衝擊。 Dense bubbles may be generated in a pulsating mode via a solenoid valve, pressure sensor and pressure valve construction, simple timepiece on-off valve, or mechanical oscillating device (described further below with reference to the shower head application). Pulse-induced high and low pressure rushes through the pulsating mode through the bubble on the treated surface Hit to achieve extra cleansing power. This effect maximizes the rate of removal of the contaminated surface by a pressurized attack on the surface, which then acts like a vacuum suction to remove contaminants. This is similar to the impact of tidal waves on the shoreline.
為了額外的清潔效率,緻密氣泡可包含不只50%的微米氣泡(亦即從1至50微米的直徑)而有較小百分比的奈米氣泡。 For additional cleaning efficiency, the dense bubbles may contain not only 50% of the microbubbles (i.e., from 1 to 50 microns in diameter) but a smaller percentage of nanobubbles.
可看出不需要其他的水出口。水可以一連續或脈動式模式釋放。緻密氣泡具有一消毒效應,且亦當其崩潰時生成一增強清潔之超音波。 It can be seen that no other water outlets are needed. Water can be released in a continuous or pulsating mode. The dense bubble has a disinfecting effect and also generates an enhanced clean ultrasonic wave when it collapses.
一用於高密度緻密氣泡之淋浴頭緻密氣泡產生器 A shower head dense bubble generator for high density dense bubbles
如同已可看出,既有用於產生緻密氣泡的系統之現今問題係包括:i)微米及奈米氣泡計數的濃度對於一單循環氣泡產生系統而言通常為低;ii)任何單一之微米及奈米氣泡產生的方法亦產生具有低氣泡計數之很低容積的液體流;及iii)無法產生具有低壓力水入口之高濃度微米奈米氣泡。 As can be seen, the current problems with both systems for generating dense bubbles include: i) the concentration of micron and nano bubble counts is typically low for a single cycle bubble generation system; ii) any single micron and Nano bubble generation methods also produce very low volume liquid streams with low bubble counts; and iii) high concentration micron nanobubbles with low pressure water inlets are not produced.
例如,US20070108640A1整合式微米氣泡產生及毛髮清洗裝備、及US20080189847A1用於微米奈米氣泡澡盆水之產生器係具有很複雜的系統。其提供微米及奈米氣泡的濃度之很少改良,且尺寸分佈仍很寬廣。 For example, US20070108640A1 integrated micron bubble generation and hair cleaning equipment, and US20080189847A1 for micron nano bubble bath water generator systems have very complicated systems. It provides little improvement in the concentration of micron and nanobubbles, and the size distribution is still broad.
圖18及19分別顯示根據本發明的一實施例之一淋浴頭的示意橫剖視圖及端視圖。 18 and 19 respectively show schematic cross-sectional and end views of a showerhead in accordance with an embodiment of the present invention.
如同可從這些圖看出,淋浴頭包含兩個被串列式定位之緻密氣泡產生器,即水流方向的一渦旋型110及文氏型111。一空氣入口設置於文氏型產生器處,且額外的空氣入口亦可設置於上游。位於淋浴頭的“噴蓬(rose)”112處之文氏產生器的下游,元件113設置成從噴蓬的內部側突入水流中。這些突起的元件係用來破壞任何由產生程序所生成的漩渦並使流混合。 As can be seen from these figures, the shower head comprises two dense bubble generators positioned in tandem, namely a vortex type 110 and a Venturi type 111 in the direction of water flow. An air inlet is provided at the Venturi generator and an additional air inlet may be placed upstream. Located downstream of the Venturi generator at the "rose" 112 of the shower head, element 113 is arranged to protrude into the water stream from the interior side of the shower. These raised elements are used to break any vortices generated by the generating process and to mix the streams.
圖19顯示噴蓬112之一可能的水出口組態,具有複數個個別出口114。三角形係顯示成展現具有來自淋浴之一淨為零的漩渦流輸出,各三角形提供一零的淨漩渦流輸出。 Figure 19 shows a possible water outlet configuration for one of the spray booths 112 with a plurality of individual outlets 114. The triangle system is shown to exhibit a vortex flow output with a net zero from one of the showers, each triangle providing a zero net vortex output.
此型淋浴頭係相當簡單,並可依需要簡單地被配合以取代一習見淋浴頭。 This type of shower head is quite simple and can be easily fitted to replace a shower head as needed.
圖20顯示一能夠提供一脈動式水流之較複雜的淋浴頭。更特別來說,圖20a示意性顯示淋浴頭在正常使用中位於一實質水平平面中之橫剖視圖,而圖20b及20c分別示意性顯示淋浴頭位於正交平面中的橫剖視圖,呈偏移90度旋轉。 Figure 20 shows a more complex showerhead capable of providing a pulsating flow of water. More particularly, Figure 20a schematically shows a cross-sectional view of the showerhead in a substantially horizontal plane in normal use, while Figures 20b and 20c schematically show cross-sectional views of the showerhead in an orthogonal plane, offset 90. Degree of rotation.
此處,水流束的路徑係分叉,俾使一單水入口沿著一通路引領至兩個出口。一文氏型第一緻密氣泡產生器115設置於水通路116的非分叉部分中,其與淋浴頭噴蓬117的平面呈正交地配置且位於一外殼體118內。文氏型產生器設有一空氣入口孔119。在此部分的下端,通路分叉成兩個徑向相對的硬管120,其對於淋浴頭噴蓬117的平面呈水平 地配置。一柯恩達閥121在分叉點處設置於通路116中。在各硬管120的遠端係為一直角彎折,其中設有一串列渦旋型122+文氏型123緻密氣泡產生器124,而形成一複合模組化產生系統。從此產生器離開之水因此係至少初始地與噴蓬周緣呈切線地移行。彎折受導引俾使水在相同旋轉方向從各硬管離開。通路係攜載一心軸127,其可旋轉地攜載一脈動的開關板126,開關板126實質地平行於淋浴頭噴蓬平面。從硬管離開之水的切線作用係用來旋轉脈動的開關板。開關板及噴蓬皆設有呈現近似相同半徑的複數個孔125。隨著開關板旋轉,各別的孔週期性移動成為及脫離對準。水僅當孔在一預定旋轉角度被對準時方能夠離開淋浴頭。因此,水流呈週期性脈動。此配置可操作以在一脈動式流中以約109/ml濃度傳送含有約數十nm至數十μm的直徑之緻密氣泡的水。 Here, the path of the water stream is bifurcated so that a single water inlet is led along one path to the two outlets. A Venturi-type first dense bubble generator 115 is disposed in the non-forked portion of the water passage 116, which is disposed orthogonally to the plane of the shower head 117 and is located within an outer casing 118. The Venturi type generator is provided with an air inlet opening 119. At the lower end of this portion, the passage branches into two diametrically opposed rigid tubes 120 which are horizontal to the plane of the showerhead 117 Ground configuration. A Coanda valve 121 is disposed in the passage 116 at the bifurcation point. The distal ends of the rigid tubes 120 are bent at right angles, and a tandem scroll type 122 + Wen's 123 dense bubble generator 124 is disposed to form a composite modular production system. The water from which the generator leaves is thus at least initially tangentially moved from the circumference of the lance. The bend is guided so that the water leaves the hard tubes in the same direction of rotation. The access system carries a mandrel 127 that rotatably carries a pulsating switch plate 126 that is substantially parallel to the showerhead plane. The tangential action of the water leaving the tube is used to rotate the pulsating switch plate. Both the switch plate and the spray can are provided with a plurality of holes 125 that exhibit approximately the same radius. As the switch plate rotates, the individual holes are periodically moved into and out of alignment. Water can exit the shower head only when the holes are aligned at a predetermined angle of rotation. Therefore, the water flow is periodically pulsating. This configuration is operable to deliver water containing dense bubbles of diameters of the order of tens of nanometers to tens of micrometers at a concentration of about 109/ml in a pulsating stream.
一替代性實施例(未圖示)可採用一螺線管閥以使緻密氣泡水流作脈動。另一實施例(未圖示)可使用一電程式化蓄壓器以使緻密氣泡水流作脈動。 An alternative embodiment (not shown) may employ a solenoid valve to pulsate the dense bubble water flow. Another embodiment (not shown) may use an electrically stylized accumulator to pulsate the dense bubble water flow.
半導體晶圓的清洗 Semiconductor wafer cleaning
可使用一類似之緻密氣泡輸送的脈動式方法以供清潔半導體。該裝置類似於圖17的手清洗器及乾燥器,差異在於可使用一陣列的如是個別裝置以供晶圓清潔,包括相對配置的裝置以清洗一被裝載其間之晶圓的兩側,且緻密氣泡流體以比起手清洗器更為水平的一角度被射出。一脈動式緻密氣泡多重葉片配置(未圖示)係為一用於半導 體晶圓清潔之最適裝置。為了具有從緻密氣泡產生之高的超音波,在緻密氣泡液體中需要較高濃度的微米氣泡。緻密氣泡受到控制以由較高濃度的微米氣泡及較低濃度的奈米氣泡組成。 A pulsating method similar to dense bubble transport can be used for cleaning the semiconductor. The device is similar to the hand washer and dryer of Figure 17, except that an array of individual devices can be used for wafer cleaning, including relatively configured devices to clean both sides of a wafer being loaded therebetween, and dense. The bubble fluid is ejected at an angle that is more horizontal than the hand washer. A pulsating dense bubble multiple blade arrangement (not shown) is used for semi-conductivity The most suitable device for body wafer cleaning. In order to have a high ultrasonic wave generated from dense bubbles, a higher concentration of microbubbles is required in the dense bubble liquid. The dense bubbles are controlled to consist of a higher concentration of microbubbles and a lower concentration of nanobubbles.
標定的微米奈米氣泡施加 Calibrated micron nano bubble application
此形態係有關一導引一緻密氣泡至一液體容積內的一目標目的地之方法,及一用於在一液體容積內導引一緻密氣泡之標定裝置。如是的標定技術可使用於不同的應用,包括藥物輸送、表面清潔等。 This configuration is directed to a method of directing a uniform bubble to a target destination within a liquid volume, and a calibration device for directing a uniform bubble within a volume of liquid. Calibration techniques can be used for different applications, including drug delivery, surface cleaning, and the like.
氣泡的使用 Use of bubbles
用於處理以供殺細菌或用以標定經感染區域之現今一般方法係無區別地處理健康及患病區域。一種克服此問題的方式係藉由將藥物、輻射、消毒劑或其他藥劑輸送至一特定標定的部位。 The current general methods for treating bacteria for killing bacteria or for calibrating infected areas treat the healthy and diseased areas indiscriminately. One way to overcome this problem is by delivering a drug, radiation, disinfectant or other agent to a particular calibrated site.
可藉由將緻密氣泡輸送至受影響區域以有效地處理例如位於一特定區域中的MRSA或ECOLI。這係透過藉由緻密氣泡爆炸、或藉由輸送緻密氣泡所圍繞的一藥物所產生之超氧化根。下文更詳細地考慮此可能性。 The MRSA or ECOLI, for example located in a particular area, can be efficiently processed by delivering dense bubbles to the affected area. This is the superoxide root generated by a drug that is surrounded by a dense bubble explosion or by transporting a dense bubble. This possibility is considered in more detail below.
此外,緻密氣泡可對於環境具有一長期效應,而影響水處理、清潔、半導體產業等。 In addition, dense bubbles can have a long-term effect on the environment, affecting water treatment, cleaning, the semiconductor industry, and the like.
尤其是在很硬水的區域中之污染物形成係可能造成硬管及其他水接觸表面的阻塞。富含緻密氣泡的水可被沖洗經過硬管,且最終奈米氣泡崩潰會產生一超音波,而破開表面污染物。 In particular, contaminant formation in areas of very hard water may cause blockage of hard tubes and other water contacting surfaces. Water rich in dense bubbles can be washed through the hard tube, and eventually the collapse of the nanobubble produces an ultrasonic wave that breaks the surface contaminants.
然而,雖然緻密氣泡在產業與醫學上顯示出很大潛力,仍有一問題在於難以任何控制程度將緻密氣泡導引至所需要的區域。 However, although dense bubbles have shown great potential in industry and medicine, there is still a problem in that it is difficult to guide the dense bubbles to the desired area with any degree of control.
本發明之一目的係克服此問題。藉由認知到一緻密氣泡的表面概括帶靜電且利用此電荷來導引緻密氣泡而達成此目的。 One of the objects of the present invention is to overcome this problem. This is achieved by recognizing that the surface of the uniform bubble is electrostatically charged and uses this charge to guide the dense bubble.
藉由說明,緻密氣泡的電荷通常為負,其中對於上述系統所產生的從100至500nm尺寸範圍之緻密氣泡而言,電荷密度達到大於100,000離子。本發明的方法利用一庫侖定律,並可利用一經正性偏壓的電極將緻密氣泡引導至目標區域。 By way of illustration, the charge of the dense bubbles is typically negative, with a charge density of greater than 100,000 ions for dense bubbles from the 100 to 500 nm size range produced by the above system. The method of the present invention utilizes a Coulomb's law and can direct dense bubbles to the target area using a positively biased electrode.
在上文提到的藥物輸送之實例中,藥物或藥劑可由於靜電荷而被緻密氣泡所圍繞及侷限,且具有其周遭緻密氣泡之受侷限的藥物係可利用一正電極以與個別緻密氣泡相同的方式被導引至目標區域。 In the above-mentioned example of drug delivery, the drug or agent may be surrounded and confined by dense bubbles due to electrostatic charge, and the drug having its surrounding dense bubbles may utilize a positive electrode to separate individual dense bubbles. The same way is directed to the target area.
本發明的一實施例示意性顯示於圖21。此處,一至少部份地留置用以引導一水流的一液體容積、在此實例中為一硬管131(例如一金屬硬管)之容器係將以含有奈米氣泡的水作處理,以例如從一目標目的地亦即硬管的內部壁表面132移除汙染物沉積物。一奈米氣泡輸送裝置133設置於水流中的上游。輸送裝置133包含一通路,在此實例中為一金屬管或針頭,其係藉由剛性或撓性硬管件或管件被流體式連接至一分離的奈米氣泡產生器134之一輸出。一直流電(dc)電源供應器135、例如一電池、電池芯或其他dc裝置 係被電性連接至硬管131(較佳電性連接至硬管內部表面132)及輸送裝置133,以維持其間的一電位差,其中硬管131被維持在一正電位,且輸送裝置133被維持在一負電位。在使用中,奈米氣泡係由產生器134產生並經由輸送裝置133運送至硬管的水。輸送裝置的負靜電荷係幫助從裝置驅排類似的帶負電奈米氣泡。經驅排的奈米氣泡被靜電性吸引朝向硬管壁表面132,並可藉此處理該表面。 An embodiment of the invention is shown schematically in Figure 21. Here, a container that at least partially retains a liquid volume for guiding a flow of water, in this example a rigid tube 131 (eg, a metal tube), is treated with water containing nanobubbles to For example, contaminant deposits are removed from a target destination, i.e., the inner wall surface 132 of the hard tube. A nano bubble conveying device 133 is disposed upstream of the water flow. The delivery device 133 includes a passageway, in this example a metal tube or needle, that is fluidly coupled to one of the separate nanobubble bubble generators 134 by a rigid or flexible tubular member or tube. a direct current (dc) power supply 135, such as a battery, battery cell or other dc device It is electrically connected to the rigid tube 131 (preferably electrically connected to the inner surface 132 of the hard tube) and the conveying device 133 to maintain a potential difference therebetween, wherein the hard tube 131 is maintained at a positive potential, and the conveying device 133 is Maintain a negative potential. In use, the nanobubbles are water produced by the generator 134 and transported to the rigid tube via the delivery device 133. The negative static charge of the delivery device helps to drive similar negatively charged nanobubbles from the device. The driven nanobubbles are electrostatically attracted toward the hard tube wall surface 132 and the surface can be treated thereby.
在一水硬管的實例中,尤其是在具有很硬水的區域中,接觸雜垢/沉積物形成係造成硬管產生阻塞。藉由硬管表面被正性偏壓而使奈米氣泡水被沖洗經過硬管,奈米氣泡會崩潰,因此產生一超音波以能夠裂解表面雜垢/沉積物。 In the case of a hydraulic tube, especially in areas with very hard water, contact with the scale/sediment formation system causes the tube to become clogged. By the positively biased surface of the hard tube, the nanobubble water is washed through the hard tube, and the nanobubbles collapse, thus producing an ultrasonic wave capable of cracking the surface scale/sediment.
替代性地,亦可使用磁鐵作為操縱緻密氣泡之方法。 Alternatively, a magnet can also be used as a method of handling dense bubbles.
雖然圖21中顯示一硬管,任何容器皆可以此方式作處理,例如一工業用金屬容器,其中容器受到正性偏壓。 Although a rigid tube is shown in Figure 21, any container can be handled in this manner, such as an industrial metal container in which the container is positively biased.
但在圖21中,待處理的容器本身作為一正電極,可能另行具有一用以依需要導引緻密氣泡之專用的標定裝置。 However, in Fig. 21, the container to be treated itself as a positive electrode may additionally have a dedicated calibration device for guiding the dense bubbles as needed.
圖22示意性顯示根據本發明的一實施例之用於在一液體容積內導引奈米氣泡之如是一標定裝置。該裝置包含一dc電源供應器139,其例如藉由撓性絕緣導線被電性連接至可相對移動的電極探針140及141。更特別來說,供應器139將一正性偏壓提供至正電極探針140的一電極136, 將一負性偏壓提供至負電極探針141的電極138,其形成一奈米氣泡輸送流體通路。正電極136部份地覆蓋有一絕緣覆套137,俾只有電極136的一遠端在使用中曝露於周遭的液體。由於僅有電極136的曝露端將作為一目標目的地,這提供奈米氣泡的較精確導引。負電極探針141藉由剛性或撓性硬管件或管件被流體性連接至一奈米氣泡產生器134的輸出。負電極138形成為一針頭或管,含有奈米氣泡的液體可予以流過以供輸送至液體容積。藉由此實施例,對於探針的定位具有大的彈性。若需要,可提供鎖定部件(未圖示)以將探針扣持在液體容積內的所欲區位中,或呈現一固定的位置關係。在使用中,電源供應器139可方便地位居液體容積外,且探針沉浸其內。 Figure 22 is a schematic illustration of a calibration apparatus for directing nanobubbles within a liquid volume in accordance with an embodiment of the present invention. The device includes a dc power supply 139 that is electrically coupled to the relatively movable electrode probes 140 and 141, for example, by flexible insulated wires. More specifically, the supply 139 provides a positive bias to an electrode 136 of the positive electrode probe 140, A negative bias is provided to the electrode 138 of the negative electrode probe 141 which forms a nanobubble transport fluid path. The positive electrode 136 is partially covered with an insulating sheath 137, and only a distal end of the electrode 136 is exposed to ambient fluid during use. Since only the exposed end of the electrode 136 will serve as a target destination, this provides a more precise guidance of the nanobubbles. The negative electrode probe 141 is fluidly coupled to the output of a nano bubble generator 134 by a rigid or flexible tubular member or tube. The negative electrode 138 is formed as a needle or tube through which a liquid containing nanobubbles can be flowed for delivery to the liquid volume. With this embodiment, the positioning of the probe has a large elasticity. If desired, a locking member (not shown) can be provided to hold the probe in the desired location within the liquid volume, or to assume a fixed positional relationship. In use, the power supply 139 can be conveniently located outside of the liquid volume and the probe is immersed therein.
圖23示意性顯示根據另一實施例之一標定裝置。此裝置類似於圖22者,但此處,正電極探針142及負電極探針143一起形成為一單探針單元,俾使其被永久性固定於其相對位置中,其中正電極136被固持於輸送通路負電極138外部。探針單元再度例如藉由撓性絕緣導線與其連接而可相對移動至電源供應器139。此實施例係能夠相較於先前而言具有一簡化的結構,其中僅有一可依需要位居液體容積內之單探針單元。此處,再度可提供鎖定部件(未圖示)以將探針單元扣持在液體容積內的所欲區位中。 Figure 23 is a schematic illustration of a calibration device in accordance with another embodiment. This device is similar to that of Fig. 22, but here, the positive electrode probe 142 and the negative electrode probe 143 are formed together as a single probe unit, which is permanently fixed in its relative position, wherein the positive electrode 136 is It is held outside the negative electrode 138 of the transport path. The probe unit is again movable relative to the power supply 139, for example by being connected thereto by a flexible insulated wire. This embodiment is capable of a simplified structure compared to the prior, in which there is only one single probe unit that can be placed within the liquid volume as desired. Here, a locking member (not shown) may again be provided to hold the probe unit in the desired location within the liquid volume.
圖24示意性顯示根據另一實施例的一標定裝置。此裝置類似於圖23者,但此處,正電極146延伸經過輸送通路負電極145的內部。電極146的遠端延伸經過負電極145, 且未被絕緣覆套147所覆蓋,其包圍負電極145內之電極146的其餘部分。在此實施例中,電源供應器144被容置於探針單元148內,其亦藉由剛性或撓性硬管件或管件被流體性連接至一奈米氣泡產生器134的輸出。此實施例提供一密實且經高度聚焦的標定裝置。 Figure 24 schematically shows a calibration device in accordance with another embodiment. This device is similar to that of Figure 23, but here the positive electrode 146 extends through the interior of the transport path negative electrode 145. The distal end of the electrode 146 extends through the negative electrode 145, It is not covered by an insulating sheath 147 that surrounds the remainder of the electrode 146 within the negative electrode 145. In this embodiment, power supply 144 is housed within probe unit 148, which is also fluidly coupled to the output of a nano bubble generator 134 by a rigid or flexible tubular or tubular member. This embodiment provides a compact and highly focused calibration device.
熟悉該技藝者將得知本發明的範圍內之其他可能性及替代方式。例如,dc電源供應器係可位居具有正抑或負電極探針之單一單元中、或一組合的探針單元內、或分開地設置。 Other possibilities and alternatives within the scope of the invention will be apparent to those skilled in the art. For example, the dc power supply can be located in a single unit with positive or negative electrode probes, or within a combined probe unit, or separately.
藥物輸送/直接處理 Drug delivery / direct treatment
如上述,一正電位探針可被插入經標定部位以引導緻密氣泡以處理該特定區域。這係經過緻密氣泡爆炸所產生之超氧化根,或藉由經過其表面電荷被緻密氣泡所圍繞之經設計藥物。藥物或藥劑可被緻密氣泡所圍繞並以與緻密氣泡相同的方式作導引。 As described above, a positive potential probe can be inserted into the calibrated portion to induce a dense bubble to treat the particular region. This is a superoxide radical produced by a dense bubble explosion, or a designed drug surrounded by dense bubbles through its surface charge. The drug or agent can be surrounded by dense bubbles and guided in the same manner as dense bubbles.
可使用經正性偏壓的電極將緻密氣泡及被緻密氣泡所侷限的藥物引導至經標定區域。 A densely biased electrode can be used to direct dense bubbles and drugs that are confined by the dense bubbles to the calibrated area.
利用此方式,可藉由將正電極插入經標定部位中以有效地處理例如特定區域中的MRSA或ECOLI。 In this manner, MRSA or ECOLI in, for example, a particular region can be effectively processed by inserting a positive electrode into the calibrated site.
如同上文(例如圖22至24)所提供,處理工具可設計成兩個電極,一者具有正性偏壓且一者具有負性偏壓,經正性偏壓的電極係為一固體電極,但經負性偏壓的電極則為一針頭或小管件,其中供緻密氣泡運送經過。利用此裝置,由於經正性偏壓的電極附接至經處理區域,緻密氣 泡或緻密氣泡所攜載的藥物可被引導至經標定區域。 As provided above (eg, Figures 22 through 24), the processing tool can be designed as two electrodes, one having a positive bias and one having a negative bias, and the positively biased electrode being a solid electrode However, the negatively biased electrode is a needle or small tube in which the dense bubbles are transported. With this device, due to the positively biased electrode attached to the treated area, tight gas The drug carried by the bubble or dense bubble can be directed to the calibrated area.
可利用超音波、IR雷射引發的熱性崩潰、採用電解質或電流注入緻密氣泡液體中等之電荷中性化方法,來達成藥物輸送及/或氣泡的經控制崩潰。 Charge-neutralization methods such as thermal shocks caused by ultrasonic waves, IR lasers, and electrolyte injection or current injection into dense bubble liquids can be utilized to achieve controlled collapse of drug delivery and/or bubbles.
在其表面上具有負電荷的緻密氣泡係將其自身附接至有機化合物或活器官、並可利用具有正電荷或簡單緻密管的電極被引導朝向經標定處理部位。緻密氣泡的經控制崩潰係可對於經標定區域具有顯著損害:若緻密氣泡不具有表面附接的化合物,可利用諸如臭氧、O2、H2或其他反應性氣體等氣泡內部所攜載的簡單氣體生成大量的OH根以供消毒用,從緻密氣泡崩潰所產生的極高熱量會損害或殺死經處理區域中的病原體或癌細胞;在具有附接至其表面的一特定化合物之緻密氣泡的實例中,則緻密氣泡的崩潰亦將化合物釋放至經標定區域以供處理。 A dense bubble having a negative charge on its surface attaches itself to an organic compound or living organ, and can be directed toward the calibrated treatment site using an electrode having a positive charge or a simple dense tube. The controlled collapse of dense bubbles can have significant damage to the calibrated area: if the dense bubbles do not have surface-attached compounds, the simplicity of carrying inside the bubbles such as ozone, O 2 , H 2 or other reactive gases can be utilized. The gas generates a large amount of OH root for disinfection, and the extremely high heat generated by the collapse of the dense bubble can damage or kill pathogens or cancer cells in the treated area; dense bubbles with a specific compound attached to its surface In the example, the collapse of the dense bubble also releases the compound to the calibrated area for processing.
用於改良船舶潤滑的方法/裝備 Method/equipment for improving ship lubrication
現在認知到:可藉由在船舶與供其倚坐的水之間生成一相對低的摩擦介面,降低水中的阻力(drag),利用一流束之富含緻密氣泡的水來改良船舶的效能。 It is now recognized that the resistance of the water can be reduced by creating a relatively low friction interface between the ship and the water on which it is seated, and using the first-class bundle of water rich in dense bubbles to improve the performance of the ship.
圖25示意性顯示如是一系統的一實施例。一緻密氣泡產生裝置151座落在船舶150的船殼,使其可在船舶前部將緻密氣泡注射至水中。產生裝置可例如包含如前述的一複合模組化裝置,或替代性包含一馬達驅動式動態混合緻密氣泡產生系統,如該技藝概括所知。該裝置可被建造於船殼中,或分開附接於他處。緻密氣泡在其移行期間於 船舶底下產生流。 Figure 25 is a schematic illustration of an embodiment of a system. The uniform bubble generating device 151 is seated in the hull of the vessel 150 so that dense bubbles can be injected into the water at the front of the vessel. The generating means may, for example, comprise a composite modular device as described above, or alternatively comprise a motor-driven dynamic hybrid dense bubble generating system, as is generally known in the art. The device can be built into the hull or attached separately. The dense bubble is during its transition A flow is produced under the ship.
緻密氣泡亦作為一用於船舶之自我清潔機構,以防止額外的垢屑累積在船殼上。 The dense air bubbles also act as a self-cleaning mechanism for the ship to prevent additional debris from accumulating on the hull.
本發明不限於上文揭露的特定實施例,且熟悉該技藝者將得知其他可能性。 The invention is not limited to the specific embodiments disclosed above, and other possibilities will be apparent to those skilled in the art.
301‧‧‧最窄段 301‧‧‧ narrowest section
302‧‧‧斥水性薄膜 302‧‧‧Water repellent film
303‧‧‧氣體饋送系統 303‧‧‧ gas feeding system
501‧‧‧混合銷 501‧‧‧mixed pin
502‧‧‧斥水性多孔球形頭 502‧‧‧Water-repellent porous spherical head
503‧‧‧呼吸管 503‧‧‧ breathing tube
Claims (87)
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB201311159A GB201311159D0 (en) | 2013-05-16 | 2013-06-24 | Nanobubble hand washer & dryer |
??1311159.6 | 2013-06-24 | ||
GBGB1316992.5A GB201316992D0 (en) | 2013-09-24 | 2013-09-24 | Micronanobubble shower device and system |
??1316992.5 | 2013-09-24 | ||
GB1319275.2A GB2514202A (en) | 2013-05-16 | 2013-10-31 | Micro-nanobubble generation systems |
??PCT/GB2014/051521 | 2013-10-31 | ||
??1319275.2 | 2013-10-31 | ||
PCT/GB2014/051521 WO2014184585A2 (en) | 2013-05-16 | 2014-05-16 | Creating and using controlled fine bubbles |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201515693A true TW201515693A (en) | 2015-05-01 |
TWI642475B TWI642475B (en) | 2018-12-01 |
Family
ID=65432208
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW103121594A TWI642475B (en) | 2013-06-24 | 2014-06-23 | Fine bubbles generrator system and method generating fine bubbles in a fluid |
TW107129800A TWI705851B (en) | 2013-06-24 | 2014-06-23 | Cleaning device, shower head and method of cleaning semiconductor, designating device for guiding fine bubbles in fluid volume, method of guideing fine bubbles from fluid volume to object destination, method for improving efficiency of boat and boat including fine bubble generator |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107129800A TWI705851B (en) | 2013-06-24 | 2014-06-23 | Cleaning device, shower head and method of cleaning semiconductor, designating device for guiding fine bubbles in fluid volume, method of guideing fine bubbles from fluid volume to object destination, method for improving efficiency of boat and boat including fine bubble generator |
Country Status (1)
Country | Link |
---|---|
TW (2) | TWI642475B (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107970796A (en) * | 2017-12-22 | 2018-05-01 | 宁波聚清源环保科技有限公司 | Bubble maker assembly |
TWI624329B (en) * | 2016-07-25 | 2018-05-21 | Sio Co Ltd | Fluid supply pipe, machine tool, shower nozzle, and fluid mixing device |
TWI627022B (en) * | 2017-01-09 | 2018-06-21 | Sio Co Ltd | Fluid supply pipe, machine tool, shower nozzle, and fluid mixing device |
CN108854609A (en) * | 2017-05-10 | 2018-11-23 | 青岛经济技术开发区海尔热水器有限公司 | Micro-bubble water production device |
CN111715426A (en) * | 2019-03-22 | 2020-09-29 | 日东精工株式会社 | Spray head |
CN112742228A (en) * | 2019-10-31 | 2021-05-04 | 佳能株式会社 | Equipment and method for producing liquid containing ultramicrobubbles |
CN113209847A (en) * | 2021-06-11 | 2021-08-06 | 同济大学 | Sterile nano bubble water and preparation method and application thereof |
TWI776896B (en) * | 2017-09-26 | 2022-09-11 | 日商鹽股份有限公司 | Fluid supply pipe |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI696587B (en) * | 2019-01-02 | 2020-06-21 | 英屬開曼群島商納諾股份有限公司 | Nano microbubble manufacturing and cleaning system |
TWI744738B (en) * | 2019-12-11 | 2021-11-01 | 顏穩保 | Cleaning household water pipe control system and its method |
TWI850164B (en) * | 2023-12-06 | 2024-07-21 | 國立雲林科技大學 | Micro bubbles generating device |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4674888A (en) * | 1984-05-06 | 1987-06-23 | Komax Systems, Inc. | Gaseous injector for mixing apparatus |
KR100267626B1 (en) * | 1996-01-24 | 2000-10-16 | 듀앙 듀참 | Oxygenating apparatus, method for oxygenating liquid therewith and oxygenated liquid |
US8552399B2 (en) * | 2005-10-11 | 2013-10-08 | K2R Co., Ltd. | Apparatus for producing photocatalytic reaction water |
NO328780B1 (en) * | 2007-11-15 | 2010-05-10 | Yara Int Asa | Apparatus and method for forming and distributing bubbles in a gas / liquid mixture |
TWM411904U (en) * | 2011-04-01 | 2011-09-21 | Wen-Ping Chen | Ultra-fine bubble piping system |
JP2013086076A (en) * | 2011-10-21 | 2013-05-13 | Panasonic Corp | Microbubble generation nozzle |
TWM435536U (en) * | 2012-04-19 | 2012-08-11 | Geann Ind Co Ltd | Ozonated water outlet structure |
-
2014
- 2014-06-23 TW TW103121594A patent/TWI642475B/en active
- 2014-06-23 TW TW107129800A patent/TWI705851B/en active
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI624329B (en) * | 2016-07-25 | 2018-05-21 | Sio Co Ltd | Fluid supply pipe, machine tool, shower nozzle, and fluid mixing device |
TWI627022B (en) * | 2017-01-09 | 2018-06-21 | Sio Co Ltd | Fluid supply pipe, machine tool, shower nozzle, and fluid mixing device |
US10279324B2 (en) | 2017-01-09 | 2019-05-07 | Sio Co., Ltd. | Fluid supply pipe |
US10668438B2 (en) | 2017-01-09 | 2020-06-02 | Sio Co., Ltd. | Fluid supply pipe |
CN108854609A (en) * | 2017-05-10 | 2018-11-23 | 青岛经济技术开发区海尔热水器有限公司 | Micro-bubble water production device |
TWI776896B (en) * | 2017-09-26 | 2022-09-11 | 日商鹽股份有限公司 | Fluid supply pipe |
CN107970796A (en) * | 2017-12-22 | 2018-05-01 | 宁波聚清源环保科技有限公司 | Bubble maker assembly |
CN111715426A (en) * | 2019-03-22 | 2020-09-29 | 日东精工株式会社 | Spray head |
CN112742228A (en) * | 2019-10-31 | 2021-05-04 | 佳能株式会社 | Equipment and method for producing liquid containing ultramicrobubbles |
US11673101B2 (en) | 2019-10-31 | 2023-06-13 | Canon Kabushiki Kaisha | Ultrafine bubble-containing liquid producing apparatus and ultrafine bubble-containing liquid producing method |
CN112742228B (en) * | 2019-10-31 | 2023-08-29 | 佳能株式会社 | Device and method for producing liquid containing ultrafine bubbles |
CN113209847A (en) * | 2021-06-11 | 2021-08-06 | 同济大学 | Sterile nano bubble water and preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
TWI642475B (en) | 2018-12-01 |
TWI705851B (en) | 2020-10-01 |
TW201840358A (en) | 2018-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI642475B (en) | Fine bubbles generrator system and method generating fine bubbles in a fluid | |
WO2014184585A2 (en) | Creating and using controlled fine bubbles | |
KR101937133B1 (en) | Micro and nano bubble generating method, generating nozzle, and generating device | |
JP5748162B2 (en) | Swivel unit-based microbubble generator | |
KR101191146B1 (en) | Ballast water treatment apparatus based on plasma discharging using micro bubble | |
JP3544350B2 (en) | Spray nozzle device | |
KR101629202B1 (en) | Ship for removing green or red tides using plasma | |
JP2009136864A (en) | Microbubble generator | |
KR101869487B1 (en) | Nano bubble generator for bathtub or sink with cleaning and sterilizing function | |
KR20170104351A (en) | Apparatus for generating micro bubbles | |
US10427118B2 (en) | Ultrasonic nutrient mixing reactor | |
JP2018069213A (en) | Fine bubble generation device | |
KR20120067394A (en) | A device for dissolving gas and a apparatus for dissolving oxygen which used it | |
KR20190027103A (en) | water rap shower | |
JP4609678B2 (en) | Shower device with fine bubble generation function | |
KR200497600Y1 (en) | Connector for nano bubble generator | |
KR20110004010A (en) | Apparatus of generating microbubble | |
GB2523412A (en) | Device to generate a liquid containing gases | |
JP2008055145A (en) | Method for haircutting/hairdressing and washing_water supplying apparatus therefor | |
JP2006043636A (en) | Fine bubble generating apparatus | |
KR102570424B1 (en) | Eco-friendly water purification apparatus using micro bubble | |
KR102348801B1 (en) | a ultrasonic wave ozone generater and ozone bubble producing device | |
KR102205332B1 (en) | Micro bubble generator | |
KR102221231B1 (en) | Nano bubble dissolution device | |
JP2009178702A (en) | Gas-liquid mixing equipment |