TW201508064A - 製造甲基丙烯酸及其衍生物之方法 - Google Patents
製造甲基丙烯酸及其衍生物之方法 Download PDFInfo
- Publication number
- TW201508064A TW201508064A TW103126499A TW103126499A TW201508064A TW 201508064 A TW201508064 A TW 201508064A TW 103126499 A TW103126499 A TW 103126499A TW 103126499 A TW103126499 A TW 103126499A TW 201508064 A TW201508064 A TW 201508064A
- Authority
- TW
- Taiwan
- Prior art keywords
- methyl
- acid
- genus
- coa
- microorganism
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/40—Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
- C12P7/42—Hydroxy-carboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/40—Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
- C12P7/44—Polycarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/62—Carboxylic acid esters
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/62—Carboxylic acid esters
- C12P7/625—Polyesters of hydroxy carboxylic acids
Landscapes
- Organic Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Microbiology (AREA)
- General Chemical & Material Sciences (AREA)
- Biotechnology (AREA)
- Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
本發明提供一種用於生物學製造關鍵工業化學甲基丙烯酸及其各種衍生物,包括甲基丙烯酸甲酯之方法。該方法包含使用生物學路徑以產生甲基反丁烯二酸或甲基順丁烯二酸或甲基蘋果酸,該等酸接著脫除羧基,產生甲基丙烯酸。該等酸實質上對細胞無毒,從而能夠實現一種製造關鍵單體之基於生物之可行途徑。因此,本發明可緩解使用化石燃料資源之問題,因為其提供一種形成甲基丙烯酸之替代方法。
Description
本發明係關於一種由甲基反丁烯二酸及/或甲基順丁烯二酸及/或甲基蘋果酸產生甲基丙烯酸及/或其衍生物之方法,特別是使用微生物,諸如經一或多種基因轉型以增強例如在厭氧條件下甲基順丁烯二酸及/或甲基反丁烯二酸及/或甲基蘋果酸產生之微生物的方法。本發明亦關於經該等基因轉型之微生物及該等生物體在產生甲基丙烯酸及其衍生物(諸如甲基丙烯酸甲酯)之方法中之用途。
丙烯酸及其烷基酯,詳言之甲基丙烯酸(MAA)及其甲酯甲基丙烯酸甲酯(MMA)為化學工業中重要的單體。其主要應用於製造用於各種應用之聚合物。最重要的聚合物應用為鑄造、模製或擠壓聚甲基丙烯酸甲酯(PMMA)以產生高光學透明度塑膠。此外,丙烯酸及其酯與彼此及其他單體之許多共聚物為已知的且加以使用,重要的共聚物為甲基丙烯酸甲酯與甲基苯乙烯、丙烯酸乙酯及丙烯酸丁酯之共聚物。此外,藉由簡單酯基轉移反應,MMA可轉化成其他酯,諸如甲基丙烯酸丁酯、甲基丙烯酸十二烷酯等。
目前MMA(及MAA)係由多種化學程序產生,其中之一為成功的『α法』,藉此MMA係由丙酸甲酯藉由與甲醛之無水反應來獲得。在α法中,丙酸甲酯係藉由乙烯羰基化來產生。此乙烯原料來源於化石燃料。近來,獲得用於化學工業之可持續的生物質原料亦已變得合乎需
要。因此,產生MMA及其他甲基丙烯酸烷基酯的替代生物質途徑(而非僅使用α法)應為有利的。
因此,本發明之一個目標為解決上述問題且提供用於製造丙烯酸烷基酯之生物學或部分生物學方法。
理論上已提出用由關鍵代謝路徑中之中間物產生MAA且從而產生MMA之路徑對微生物進行基因工程改造。然而,出人意料的是,本發明者已發現MAA及MMA對大部分微生物有毒性,且因此可能不易於在不破壞宿主細胞的情況下由該等提出之方法產生。因此,雖然已鑑別出在微生物內產生烯系不飽和羧酸之方法及可能路徑,但此等路徑目前在技術上為不可行的。
然而,甚至更出人意料的是,本發明者現已發現特定群組之羧酸,其包括烯系不飽和羧酸,諸如甲基反丁烯二酸或甲基順丁烯二酸或甲基蘋果酸,係為大部分微生物所良好耐受。此外,本發明者已發現數種方式將新穎微生物應用於醱酵方法以在工業上可適用的水準下形成此特定群組之羧酸。再者,本發明者已發現此特定群組之羧酸可充當毒性更大但工業上有用之烯系不飽和羧酸(諸如甲基丙烯酸及其酯)之前驅體。此特別出人意料,因為甲基反丁烯二酸及甲基順丁烯二酸類似於甲基丙烯酸在相對於羧酸基團之β位具有雙鍵,且因此可預期以關於麩胱甘肽相關細胞死亡機制之類似方式起作用。甲基反丁烯二酸及甲基順丁烯二酸及甲基蘋果酸可藉由新近途徑用於產生諸如MAA之丙烯酸,且因此藉由使該等產生甲基反丁烯二酸及甲基順丁烯二酸及甲基蘋果酸之生物學途徑與經證實之細胞外化學技術組合以執行最終步驟產生MAA及其衍生物,本發明使得關鍵單體之新穎及可行的基於生物之途徑能夠實現。
根據本發明之第一態樣,提供一種用於產生甲基丙烯酸及/或其衍生物之方法,包含以下步驟:
(a)在微生物中產生甲基反丁烯二酸或甲基順丁烯二酸或甲基蘋果酸或其鹽;(b)使步驟(a)中產生之甲基反丁烯二酸或甲基順丁烯二酸或甲基蘋果酸或其鹽脫除羧基(如需要,使其脫水)形成甲基丙烯酸及/或其衍生物;其中步驟(b)係在微生物外進行,以此方式避免微生物顯著暴露於甲基丙烯酸及/或其衍生物之毒性下。
「顯著毒性暴露」意指有效導致微生物之實質性細胞死亡的暴露。「實質性細胞死亡」意指大於50%之細胞死亡,更通常大於25%之細胞死亡,最通常大於10%之細胞死亡,尤其大於5%之細胞死亡,更尤其大於2%之細胞死亡,最尤其大於1%之細胞死亡。
較佳使用基於碳之原料進行步驟(a)。較佳經由檸檬酸循環之酶及組分進行步驟(a),其中該等酶可對檸檬酸循環之組分起氧化或還原作用。較佳選項為經由還原或氧化檸檬酸循環之組分及酶產生甲基反丁烯二酸或其鹽,或經由還原檸檬酸循環之組分及酶產生甲基順丁烯二酸或甲基蘋果酸或其鹽。甲基反丁烯二酸或其鹽可經由α-酮基戊二酸鹽利用氧化或還原檸檬酸循環來製備,或甲基反丁烯二酸或甲基順丁烯二酸或甲基蘋果酸或其鹽可經由丙酮酸鹽及乙醯CoA利用還原檸檬酸循環之酶及組分來製備。
除非上下文另外暗示,否則下文提及甲基反丁烯二酸及/或甲基順丁烯二酸及/或甲基蘋果酸係指甲基反丁烯二酸或其鹽及/或甲基順丁烯二酸或其鹽及/或甲基蘋果酸或其鹽。適合之鹽為銨鹽或二銨鹽、鈉鹽或二鈉鹽、鉀鹽或二鉀鹽。
或者或另外,步驟(a)包含經由糖酵解及/或脂肪酸之β氧化產生甲基反丁烯二酸或甲基順丁烯二酸或甲基蘋果酸。更佳地,步驟(a)包含經由丙酮酸鹽及乙醯CoA,視情況經由糖酵解及/或脂肪酸之β氧化,產生甲基反丁烯二酸或甲基順丁烯二酸或甲基蘋果酸。
較佳地,步驟(a)包含分別經由丙酮酸鹽及乙醯CoA產生甲基反丁烯二酸或甲基順丁烯二酸或甲基蘋果酸。
較佳地,該方法另外包含由基於碳之原料產生丙酮酸鹽及乙醯CoA之步驟。
步驟(a)可視情況包含將丙酮酸鹽及乙醯CoA轉化成(S)-甲基蘋果酸鹽及將(S)-甲基蘋果酸鹽轉化成甲基反丁烯二酸。較佳地,丙酮酸鹽及乙醯CoA藉由適合在EC組號4.1.3.22下之合成酶之作用轉化成(S)-甲基蘋果酸鹽。較佳地,合成酶為甲基蘋果酸鹽解離酶。較佳地,(S)-甲基蘋果酸鹽藉由適合在EC組號4.2.1.34下之脫水酶之作用轉化成甲基反丁烯二酸。較佳地,脫水酶為(S)-2-甲基蘋果酸鹽脫水酶。
(S)-2-甲基蘋果酸鹽脫水酶亦可稱為以下酶名稱中之任一者:甲基反丁烯二酸鹽水合酶;(+)-甲基蘋果酸鹽脫水酶;L-甲基蘋果酸鹽水解酶;甲基蘋果酸鹽脫水酶;(+)-甲基蘋果酸脫水酶;甲基反丁烯二酸鹽甲基反丁烯二酸酶;甲基反丁烯二酸酶;或(S)-2-甲基蘋果酸鹽脫水酶。
或者,步驟(a)可包含將丙酮酸鹽及乙醯CoA轉化成(R)-甲基蘋果酸鹽及將(R)-甲基蘋果酸鹽轉化成甲基順丁烯二酸。較佳地,丙酮酸鹽及乙醯CoA藉由適合在EC組號2.3.1.182下之合成酶之作用轉化成(R)-甲基蘋果酸鹽。較佳地,合成酶為(R)-甲基蘋果酸鹽合成酶。較佳地,(R)-甲基蘋果酸鹽藉由適合在EC組號4.2.1.35下之脫水酶之作用轉化成甲基順丁烯二酸。較佳地,脫水酶為(R)-2-甲基蘋果酸鹽脫水酶。
(R)-2-甲基蘋果酸鹽脫水酶亦可稱為以下名稱中之任一者:甲基順丁烯二酸鹽水合酶或甲基順丁烯二酸酶。
或者,步驟(a)可另外包含將丙酮酸鹽及乙醯CoA轉化成(S)-甲基蘋果酸鹽或(R)-甲基蘋果酸鹽。較佳地,丙酮酸鹽及乙醯CoA藉由適
合在EC組號4.1.3.22下之合成酶之作用轉化成(S)-甲基蘋果酸鹽。較佳地,合成酶為甲基蘋果酸鹽解離酶。較佳地,丙酮酸鹽及乙醯CoA藉由適合在EC組號2.3.1.182下之合成酶之作用轉化成(R)-甲基蘋果酸鹽。較佳地,合成酶為(R)-甲基蘋果酸鹽合成酶。
較佳地,該方法另外包含經由糖酵解或逆向檸檬酸循環產生丙酮酸鹽及/或經由脂肪酸之β氧化或逆向檸檬酸循環產生乙醯CoA之步驟。
視情況,該方法以好氧方式進行,在此情況下該方法適當包含經由糖酵解產生丙酮酸鹽及/或經由脂肪酸之β氧化產生乙醯CoA之另外一或多個步驟。
或者,該方法以厭氧方式進行,在此情況下該方法適當包含經由還原檸檬酸循環產生乙醯CoA及/或由該乙醯CoA及/或糖酵解產生丙酮酸鹽之另外一或多個步驟。
因此,較佳地,本發明之方法另外包含修改糖酵解路徑及/或β氧化路徑及/或逆向檸檬酸循環之活性的步驟。較佳地,該方法另外包含修改糖酵解路徑以增加關鍵中間物丙酮酸鹽之產生,丙酮酸鹽可視情況藉由脫除羧基轉化成乙醯CoA,及修改β氧化路徑以增加關鍵中間物乙醯CoA之產生的步驟。或者,該方法另外包含修改逆向檸檬酸循環以增加關鍵中間物丙酮酸鹽及乙醯CoA中之一者或兩者之產生。
視情況,該方法以好氧方式進行,在此情況下本發明之方法適當包含經由糖酵解產生丙酮酸鹽及視情況由其脫除羧基產生乙醯CoA之另外一或多個步驟,該另外一或多個步驟為以下中之任一者:
視情況,該方法之步驟(a)因此包含藉由脫除羧基將丙酮酸鹽轉化成乙醯CoA。較佳地,丙酮酸鹽藉由適合在EC組號1.2.4.1、2.3.1.12及1.8.1.4下之脫氫酶之作用轉化成乙醯CoA。較佳地,脫氫酶為由丙酮酸鹽脫氫酶、二氫硫辛醯基轉乙醯基酶及二氫硫辛醯基脫氫
酶組成之丙酮酸鹽脫氫酶複合物。
較佳地,該方法之步驟(a)包含將磷酸烯醇丙酮酸鹽轉化成丙酮酸鹽。較佳地,磷酸烯醇丙酮酸鹽藉由適合在EC組號2.7.1.40下之激酶之作用轉化成丙酮酸鹽。較佳地,激酶為丙酮酸鹽激酶。或者,激酶可在EC組號2.7.9.2下,在此情況下激酶可為丙酮酸鹽水二激酶。
丙酮酸鹽激酶亦可稱為以下名稱中之任一者:磷酸烯醇轉磷酸酶或磷酸烯醇丙酮酸鹽激酶。
較佳地,該方法之步驟(a)另外包含將2-磷酸甘油酸鹽轉化成磷酸烯醇丙酮酸鹽之步驟。較佳地,2-磷酸甘油酸鹽藉由適合在EC組號4.2.1.11下之解離酶之作用轉化成磷酸烯醇丙酮酸鹽。較佳地,解離酶為磷酸丙酮酸鹽水合酶。
磷酸丙酮酸鹽水合酶亦可稱為以下名稱中之任一者:2-磷酸甘油酸鹽脫水酶。
較佳地,該方法之步驟(a)另外包含將3-磷酸甘油酸鹽轉化成2-磷酸甘油酸鹽之步驟。較佳地,3-磷酸甘油酸鹽藉由適合在EC組號5.4.2.1之異構酶之作用下轉化成2-磷酸甘油酸鹽。較佳地,異構酶為磷酸甘油酸鹽變位酶。
較佳地,該方法之步驟(a)另外包含將1,3-二磷酸甘油酸鹽轉化成3-磷酸甘油酸鹽之步驟。較佳地,1,3-二磷酸甘油酸鹽藉由適合在EC組號2.7.2.3下之激酶之作用轉化成3-磷酸甘油酸鹽。較佳地,激酶為磷酸甘油酸鹽激酶。
較佳地,該方法之步驟(a)另外包含將甘油醛-3-磷酸鹽轉化成1,3-二磷酸甘油酸鹽之步驟。較佳地,甘油醛-3-磷酸鹽藉由適合在EC組號1.2.1.12、1.2.1.13或1.2.1.59下之脫氫酶之作用轉化成1,3-二磷酸甘油酸鹽。較佳地,脫氫酶為甘油醛磷酸鹽脫氫酶。或者,該酶可在EC組號1.2.7.6下。
較佳地,該方法之步驟(a)另外包含將果糖-1,6-二磷酸鹽轉化成甘油醛-3-磷酸鹽之步驟。較佳地,果糖-1,6-二磷酸鹽藉由適合在EC組號4.1.2.13下之解離酶之作用轉化成甘油醛-3-磷酸鹽。較佳地,解離酶為果糖二磷酸鹽醛縮酶。
或者,該方法之步驟(a)另外包含將果糖-1,6-二磷酸鹽轉化成二羥基丙酮磷酸鹽之步驟,及將二羥基丙酮磷酸鹽轉化成甘油醛-3-磷酸鹽之步驟。較佳地,果糖-1,6-二磷酸鹽藉由適合在EC組號4.1.2.13下之解離酶之作用轉化成二羥基丙酮磷酸鹽。較佳地,解離酶為果糖二磷酸鹽醛縮酶。較佳地,二羥基丙酮磷酸鹽藉由適合在EC組號5.3.1.1下之異構酶之作用轉化成甘油醛-3-磷酸鹽。較佳地,異構酶為丙糖磷酸鹽異構酶。
較佳地,該方法之步驟(a)另外包含將果糖-6-磷酸鹽轉化成果糖-1,6-二磷酸鹽之步驟。較佳地,果糖-6-磷酸鹽藉由適合在EC組號2.7.1.11下之激酶之作用轉化成果糖-1,6-二磷酸鹽。較佳地,激酶為6-磷酸果糖激酶。
較佳地,該方法之步驟(a)另外包含將葡萄糖-6-磷酸鹽轉化成果糖-6-磷酸鹽之步驟。較佳地,葡萄糖-6-磷酸鹽藉由適合在EC組號5.3.1.9下之異構酶之作用轉化成果糖-6-磷酸鹽。較佳地,異構酶為葡萄糖-6-磷酸鹽異構酶。
較佳地,該方法之步驟(a)另外包含將葡萄糖轉化成葡萄糖-6-磷酸鹽之步驟。較佳地,葡萄糖藉由適合在EC組號2.7.1.1下之激酶之作用轉化成葡萄糖-6-磷酸鹽。較佳地,激酶為己醣激酶。
視情況,葡萄糖可用任何適當的糖或碳水化合物受質替代,該糖或碳水化合物受質可經由糖酵解或任何其他適合之代謝路徑直接或間接轉化成丙酮酸鹽。舉例而言,適合之葡萄糖替代物包括:木糖、蔗糖、右旋糖、澱粉、纖維素、麥芽糖、果糖或其類似物。
視情況,該方法以好氧方式進行,在此情況下該方法適當包含由脂肪酸之β氧化產生乙醯CoA之另外一或多個步驟,該另外一或多個步驟為以下中之任一者:
較佳地,該方法之步驟(a)另外包含將3-酮脂醯CoA轉化成乙醯CoA之步驟。較佳地,3-酮脂醯CoA藉由適合在EC組號2.3.1.16或2.3.1.9下之硫解酶之作用轉化成乙醯CoA。較佳地,硫解酶為乙醯CoA C-轉醯基酶或乙醯CoA C-轉乙醯基酶。
較佳地,該方法之步驟(a)另外包含將3-羥醯CoA轉化成3-酮脂醯CoA之步驟。較佳地,3-羥醯CoA藉由適合在EC組號1.1.1.35或1.1.1.157下之脫氫酶之作用轉化成3-酮脂醯CoA。較佳地,脫氫酶為3-羥醯CoA脫氫酶或3-羥丁醯CoA脫氫酶。
較佳地,該方法之步驟(a)另外包含將2,3-烯醯CoA轉化成3-羥醯CoA之步驟。較佳地,2,3-烯醯CoA藉由適合在EC組號4.2.1.17或4.2.1.55下之水合酶之活性轉化成3-羥醯CoA。較佳地,水合酶為烯醯CoA水合酶。
較佳地,該方法之步驟(a)另外包含將醯基CoA轉化成2,3-烯醯CoA之步驟。較佳地,醯基CoA藉由適當選自在EC組號1.3.8.9、1.3.8.8、1.3.8.7、1.3.99.3、1.3.8.1或1.3.99.2下之群之脫氫酶作用轉化成2,3-烯醯CoA。較佳地,脫氫酶視受質而定,選自極長鏈醯基CoA脫氫酶、長鏈醯基CoA脫氫酶、中鏈醯基CoA脫氫酶、短鏈醯基CoA脫氫酶。
視情況,該方法之步驟(a)另外包含將包含奇數個碳雙鍵之醯基CoA中間物轉化成包含偶數個碳雙鍵之醯基CoA中間物的步驟。較佳藉由適合分別在EC組號5.3.3.8及1.3.1.34下之一或多種異構酶及還原酶之作用。較佳地,異構酶為烯醯CoA異構酶及/或二烯醯CoA異構酶。較佳地,還原酶為2,4-二烯醯CoA還原酶。
因此,較佳地,產生甲基丙烯酸及/或其衍生物之方法包含以下步驟:(a)(i)由糖酵解產生丙酮酸鹽;及/或(ii)由脂肪酸之β氧化及/或丙酮酸鹽脫除羧基產生乙醯CoA;(iii)將丙酮酸鹽及乙醯CoA轉化成甲基反丁烯二酸或甲基順丁烯二酸或甲基蘋果酸;其中步驟(a)(i)或(ii)或(iii)中之至少一者且較佳兩個或全部三個步驟係在微生物中進行;(b)使甲基反丁烯二酸或甲基順丁烯二酸或甲基蘋果酸脫除羧基及若需要脫水成甲基丙烯酸;其中步驟(b)係在微生物外進行,以此方式避免微生物顯著暴露於甲基丙烯酸及/或其衍生物之毒性下。
視情況,本發明之方法以厭氧方式或在限制氧氣的條件下進行,在此情況下該方法適當包含由逆向檸檬酸循環產生乙醯CoA之另外一或多個步驟,該另外一或多個步驟為以下中之任一者。
較佳地,該方法之步驟(a)另外包含由檸檬酸鹽產生乙醯CoA之步驟。更佳地,步驟(a)包含藉由適合在EC組號2.3.3.1下之解離酶、較佳檸檬酸鹽(Si)合成酶之作用將檸檬酸鹽轉化成乙醯CoA及草醯乙酸鹽。
檸檬酸鹽(Si)合成酶亦可稱為以下名稱中之任一者:乙醯CoA:草醯乙酸鹽轉乙醯基酶、三磷酸腺苷檸檬酸鹽解離酶、ATP檸檬酸鹽(前S)解離酶、ATP檸檬酸解離酶、ATP:檸檬酸鹽草醯乙酸鹽解離酶、檸檬酸鹽解離酶、檸檬酸鹽ATP解離酶或檸檬酸裂解酶。
較佳地,該方法之步驟(a)另外包含將異檸檬酸鹽轉化成檸檬酸鹽之步驟。較佳地,異檸檬酸鹽藉由適合在EC組號4.2.1.3下之異構酶之作用轉化成檸檬酸鹽。較佳地,異構酶為烏頭酸鹽水合酶。
較佳地,該方法之步驟(a)另外包含將α-酮基戊二酸鹽轉化成異檸檬酸鹽之步驟。較佳地,α-酮基戊二酸鹽藉由適合在EC組號1.1.1.41或1.1.1.42下之脫氫酶之作用轉化成異檸檬酸鹽。較佳地,脫氫酶為異檸檬酸鹽脫氫酶(NAD+)或異檸檬酸鹽脫氫酶(NADP(+))。
較佳地,該方法之步驟(a)另外包含將琥珀醯CoA轉化成α-酮基戊二酸鹽之步驟。較佳地,琥珀醯CoA藉由適合在EC組號1.2.4.2下之還原酶之作用轉化成α-酮基戊二酸鹽。較佳地,還原酶為酮基戊二酸鹽脫氫酶(轉移琥珀醯)(OGOR)。
較佳地,該方法之步驟(a)另外包含將琥珀酸鹽轉化成琥珀醯CoA之步驟。較佳地,琥珀酸鹽藉由適合在EC組號6.2.1.5下之合成酶之作用轉化成琥珀醯CoA。較佳地,合成酶為琥珀酸鹽-CoA連接酶(ADP形成)。
琥珀酸鹽CoA連接酶(ADP形成)亦可稱為以下名稱中之任一者:琥珀酸鹽硫激酶或琥珀醯CoA合成酶(ADP形成)。
較佳地,該方法之步驟(a)另外包含將反丁烯二酸鹽轉化成琥珀酸鹽之步驟。較佳地,反丁烯二酸鹽藉由適合在EC組號1.3.1.6下之還原酶之作用轉化成琥珀酸鹽。較佳地,還原酶為反丁烯二酸鹽還原酶(NADH)。
較佳地,該方法之步驟(a)另外包含將蘋果酸鹽轉化成反丁烯二酸鹽之步驟。較佳地,蘋果酸鹽藉由適合在EC組號4.2.1.2下之水合酶之作用轉化成反丁烯二酸鹽。較佳地,水合酶為反丁烯二酸鹽水合酶。
較佳地,該方法之步驟(a)另外包含將草醯乙酸鹽轉化成蘋果酸鹽之步驟。較佳地,草醯乙酸鹽藉由適合在EC組號1.1.1.37下之脫氫酶之作用轉化成蘋果酸鹽。較佳地,脫氫酶為蘋果酸鹽脫氫酶。
因此,較佳地,產生甲基丙烯酸及/或其衍生物之方法包含以下
步驟:(a)(i)由逆向檸檬酸循環及/或由丙酮酸鹽產生乙醯CoA及由葡萄糖產生丙酮酸鹽;(ii)將丙酮酸鹽及乙醯CoA轉化成甲基反丁烯二酸或甲基順丁烯二酸或甲基蘋果酸;其中步驟(a)(i)或(ii)中之至少一者且較佳兩個步驟係在微生物中進行;(b)使甲基反丁烯二酸或甲基順丁烯二酸或甲基蘋果酸脫除羧基及若需要脫水成甲基丙烯酸;其中步驟(b)係在微生物外進行,以此方式避免微生物顯著暴露於甲基丙烯酸及/或其衍生物之毒性下。
作為使用丙酮酸鹽及乙醯CoA之替代,檸檬酸循環內之中間物α-酮基戊二酸鹽亦可經由麩胺酸轉化成甲基反丁烯二酸。諸如麩胺酸棒狀桿菌(Corynebacterium glutamicum)之細菌已知可在好氧條件下產生大量麩胺酸,可用作能夠產生甲基反丁烯二酸,例如使用氧化循環產生工業量之甲基反丁烯二酸之遺傳工程改造微生物的起始點。諸如嗜熱產氫桿菌(Hydrogenobacter thermophilus)之細菌已知可在厭氧或限制氧氣的條件下產生麩胺酸,可用作能夠產生甲基反丁烯二酸,例如使用還原循環產生工業量之甲基反丁烯二酸之遺傳工程改造微生物的起始點。
因此,替代地,該方法內之步驟(a)包含由麩胺酸產生甲基反丁烯二酸。
因此,較佳地,該方法可另外包含由基於碳之原料產生麩胺酸之步驟。
因此,較佳地,根據本發明提供一種產生甲基丙烯酸及/或其衍生物之方法,其包含以下步驟:
(a)(i)由基於碳之原料產生麩胺酸;(ii)將麩胺酸轉化成甲基反丁烯二酸;其中步驟(a)(i)或(ii)中之至少一者且較佳兩個步驟係在微生物中進行;(b)使甲基反丁烯二酸脫除羧基形成甲基丙烯酸;其中步驟(b)係在微生物外進行,以此方式避免微生物顯著暴露於甲基丙烯酸及/或其衍生物之毒性下。
較佳地,步驟(a)(i)包含在微生物中之一或多個步驟。較佳地,步驟(a)(i)包含由檸檬酸循環產生麩胺酸。更佳地,步驟(a)(i)包含由檸檬酸循環內之α-酮基戊二酸鹽產生麩胺酸。
視情況,該方法以好氧方式進行,在此情況下步驟(a)(i)適當包含由氧化檸檬酸循環產生麩胺酸。
或者,該方法以厭氧方式進行,在此情況下步驟(a)(i)適當包含由還原檸檬酸循環產生麩胺酸。
更佳地,步驟(a)(i)包含藉由適合在EC組號1.4.1.2下之脫氫酶之作用將α-酮基戊二酸鹽轉化成麩胺酸。較佳地,脫氫酶為麩胺酸鹽脫氫酶。
較佳地,步驟(a)(ii)包含將麩胺酸轉化成β-甲基天冬胺酸鹽及將β-甲基天冬胺酸鹽轉化成甲基反丁烯二酸。較佳地,麩胺酸藉由適合在EC組號5.4.99.1下之變位酶之作用轉化成β-甲基天冬胺酸鹽。較佳地,變位酶為甲基天冬胺酸鹽變位酶。
甲基天冬胺酸鹽變位酶亦可稱為以下名稱中之任一者:β-甲基天冬胺酸鹽-麩胺酸鹽變位酶、麩胺酸鹽異構酶、麩胺酸鹽變位酶、麩胺酸異構酶、麩胺酸變位酶或甲基天冬胺酸變位酶。
較佳地,β-甲基天冬胺酸鹽藉由適合在EC組號4.3.1.2下之解離酶之作用轉化成甲基反丁烯二酸。較佳地,解離酶為β-甲基天冬胺酸鹽
氨解離酶。
視情況,該方法以好氧方式進行,在此情況下該方法適當包含經由氧化檸檬酸循環由麩胺酸產生甲基反丁烯二酸之另外一或多個步驟,該另外一或多個步驟為以下中之任一者。
較佳地,該方法之步驟(a)(i)另外包含將α-酮基戊二酸鹽轉化成麩胺酸。較佳地,α-酮基戊二酸鹽藉由適合在EC組號1.4.1.2下之脫氫酶之作用轉化成麩胺酸。較佳地,脫氫酶為麩胺酸鹽脫氫酶。
較佳地,該方法之步驟(a)(i)另外包含將異檸檬酸鹽轉化成α-酮基戊二酸鹽之步驟。較佳地,異檸檬酸鹽藉由適合在EC組號1.1.1.41下之脫氫酶之作用轉化成α-酮基戊二酸鹽。較佳地,脫氫酶為異檸檬酸鹽脫氫酶(NAD+)。
較佳地,該方法之步驟(a)(i)另外包含將檸檬酸鹽轉化成異檸檬酸鹽之步驟。較佳地,檸檬酸鹽藉由適合在EC組號4.2.1.3下之水合酶之作用轉化成異檸檬酸鹽。較佳地,水合酶為烏頭酸鹽水合酶。
烏頭酸鹽水合酶亦可稱為以下名稱:烏頭酸酶。
較佳地,該方法之步驟(a)(i)另外包含將草醯乙酸鹽及乙醯CoA轉化成檸檬酸鹽之步驟。較佳地,草醯乙酸鹽藉由適合在EC組號2.3.3.1下之合成酶之作用轉化成檸檬酸鹽。較佳地,合成酶為檸檬酸鹽(Si)合成酶。
較佳地,該方法之步驟(a)(i)另外包含將丙酮酸鹽轉化成乙醯CoA之步驟。較佳地,丙酮酸鹽藉由適合在EC組號1.2.4.1、2.3.1.12及1.8.1.4下之脫氫酶之作用轉化為乙醯CoA。較佳地,脫氫酶為由丙酮酸鹽脫氫酶、二氫硫辛醯基轉乙醯基酶及二氫硫辛醯基脫氫酶組成之丙酮酸鹽脫氫酶複合物。
因此,較佳地,產生甲基丙烯酸及/或其衍生物之方法包含以下步驟:
(a)(i)由氧化檸檬酸循環產生麩胺酸;(ii)將麩胺酸轉化成甲基反丁烯二酸;其中步驟(a)(i)或(ii)中之至少一者且較佳兩個步驟係在微生物中進行;(b)使甲基反丁烯二酸脫除羧基形成甲基丙烯酸;其中步驟(b)係在微生物外進行,以此方式避免微生物顯著暴露於甲基丙烯酸及/或其衍生物之毒性下。
視情況,該方法以厭氧方式或在限制氧氣的條件下進行,在此情況下該方法適當包含經由逆向檸檬酸循環由麩胺酸產生甲基反丁烯二酸之另外一或多個步驟,該另外一或多個步驟為以下中之任一者。
較佳地,該方法之步驟(a)另外包含將α-酮基戊二酸鹽轉化成麩胺酸。較佳地,α-酮基戊二酸鹽藉由適合在EC組號1.4.1.2下之脫氫酶之作用轉化成麩胺酸。較佳地,脫氫酶為麩胺酸鹽脫氫酶。
較佳地,該方法之步驟(a)另外包含將琥珀醯CoA轉化成α-酮基戊二酸鹽之步驟。較佳地,琥珀醯CoA藉由適合在EC組號1.2.4.2下之還原酶之作用轉化成α-酮基戊二酸鹽。較佳地,還原酶為酮基戊二酸鹽脫氫酶(轉移琥珀醯)(OGOR)。
較佳地,該方法之步驟(a)另外包含將琥珀酸鹽轉化成琥珀醯CoA之步驟。較佳地,琥珀酸鹽藉由適合在EC組號6.2.1.5下之合成酶之作用轉化成琥珀醯CoA。
較佳地,合成酶為琥珀酸鹽-CoA連接酶(ADP形成)。較佳地,該方法之步驟(a)另外包含將反丁烯二酸鹽轉化成琥珀酸鹽之步驟。較佳地,反丁烯二酸鹽藉由適合在EC組號1.3.1.6下之還原酶之作用轉化成琥珀酸鹽。較佳地,還原酶為反丁烯二酸鹽還原酶(NADH)。
較佳地,該方法之步驟(a)另外包含將蘋果酸鹽轉化成反丁烯二酸鹽之步驟。較佳地,蘋果酸鹽藉由適合在EC組號4.2.1.2下之水合酶
之作用轉化成反丁烯二酸鹽。較佳地,水合酶為反丁烯二酸鹽水合酶。
較佳地,該方法之步驟(a)另外包含將草醯乙酸鹽轉化成蘋果酸鹽之步驟。較佳地,草醯乙酸鹽藉由適合在EC組號1.1.1.37下之脫氫酶之作用轉化成蘋果酸鹽。較佳地,脫氫酶為蘋果酸鹽脫氫酶。
較佳地,該方法之步驟(a)另外包含將檸檬酸鹽轉化成乙醯CoA及草醯乙酸鹽之步驟。較佳地,檸檬酸鹽藉由適合在酶組號2.3.3.1下之解離酶之作用轉化成草醯乙酸鹽及乙醯CoA。較佳地,解離酶為檸檬酸鹽(Si)合成酶。
視情況,該方法之步驟(a)可另外包含將丙酮酸鹽轉化成草醯乙酸鹽之步驟。較佳地,丙酮酸鹽藉由適合在酶組號6.4.1.1下之羧化酶之作用轉化成草醯乙酸鹽。較佳地,羧化酶為丙酮酸鹽羧化酶。
視情況,該方法之步驟(a)可另外包含將磷酸烯醇丙酮酸鹽轉化成草醯乙酸鹽之步驟。較佳地,磷酸烯醇丙酮酸鹽藉由適合在酶組號4.1.1.32下之羧激酶之作用轉化成草醯乙酸鹽。較佳地,羧激酶為磷酸烯醇丙酮酸鹽羧激酶(GTP)。
因此,視情況,該方法之步驟(a)另外包含將乙醯CoA轉化成丙酮酸鹽之步驟。較佳地,乙醯CoA藉由適合在酶組號1.2.7.1下之還原酶轉化成丙酮酸鹽。較佳地,還原酶為丙酮酸鹽氧化還原酶。
因此,較佳地,產生甲基丙烯酸及/或其衍生物之方法包含以下步驟:(a)(i)由逆向檸檬酸循環產生麩胺酸;(ii)將麩胺酸轉化成甲基反丁烯二酸;其中步驟(a)(i)或(ii)中之至少一者且較佳兩個步驟係在微生物中進行;(b)使甲基反丁烯二酸脫除羧基形成甲基丙烯酸;
其中步驟(b)係在微生物外進行,以此方式避免微生物顯著暴露於甲基丙烯酸及/或其衍生物之毒性下。
較佳地,在微生物外進行的上述步驟中之任一者可能或可能不由一或多種化學催化劑及/或藉由溫度及/或壓力之作用催化。
較佳地,上述方法中之任一者中存在之甲基反丁烯二酸及/或甲基順丁烯二酸及/或甲基蘋果酸之脫除羧基步驟係藉由如申請中的專利申請案PCT/GB2011/052271中所述之方法來進行,然而仍可使用任何已知方法。
因此,較佳地,本發明方法之步驟(b)照此且如下文所概述來進行。
因此,較佳地,甲基丙烯酸係藉由鹼催化之脫除羧基由甲基順丁烯二酸或甲基反丁烯二酸或甲基蘋果酸產生,其中該脫除羧基係在小於350℃下進行。
較佳地,甲基反丁烯二酸或甲基順丁烯二酸或甲基蘋果酸(二羧酸)在反應介質中在反應介質呈液相之溫度下脫除羧基。通常,反應介質為水溶液。
較佳地,鹼催化之脫除羧基在小於330℃下、更佳在至多310℃下、最佳在至多300℃下發生。在任何情況下,脫除羧基之較佳較低溫度為100℃。脫除羧基之較佳溫度範圍在100℃與至多349℃之間、更佳在120℃與320℃之間、最佳在140℃與310℃之間、尤其在180℃與290℃之間。
甲基反丁烯二酸或甲基順丁烯二酸或甲基蘋果酸(二羧酸)反應物及鹼催化劑不一定需要為僅存在之化合物。一般使二羧酸連同所存在之任何其他化合物一起溶解於水溶液中以用於鹼催化之熱脫除羧基。
在較低溫度下進行脫除羧基有利地防止產生大量副產物,該等副產物可能難以移除且在工業方法中可能導致其他純化及加工問題。
因此,該方法在此溫度範圍內提供顯著改良之選擇性。此外,較低溫度脫除羧基使用較少能量且因此產生比高溫脫除羧基小之碳足跡。
另一方面,高溫脫除羧基進行得更迅速。
為保持反應物在所有上述溫度條件下呈液相,至少一種二羧酸之脫除羧基反應係在大氣壓或超過大氣壓之適合壓力下進行。在上述溫度範圍中保持反應物呈液相之適合之壓力高於20psia、更適合高於25psia、最適合高於35psia,且在任何情況下在比反應物介質將沸騰之壓力高的壓力下。壓力無上限,但熟習此項技術者將在實用限制及裝置容許度內進行操作,例如在低於10,000psia下,更通常在低於5,000psia下,最通常在低於4000psia下。
較佳地,上述反應在約20psia與10000psia之間的壓力下。更佳地,反應在約25psia與5000psia之間且更佳在約35psia與3000psia之間的壓力下。
在一個較佳實施例中,上述反應在反應介質呈液相之壓力下。
較佳地,反應在反應介質呈液相之溫度及壓力下。
如上文所提及,催化劑為鹼催化劑。
催化劑較佳包含OH-離子之來源。較佳地,鹼催化劑係選自由金屬氧化物、氫氧化物、碳酸鹽、乙酸鹽、醇鹽、碳酸氫鹽;或可分解的二羧酸或三羧酸之鹽;或上述中之一者之第四銨化合物;或一或多種胺;更佳第I族或第II族金屬氧化物、氫氧化物、碳酸鹽、乙酸鹽、醇鹽、碳酸氫鹽或二羧酸或三羧酸或甲基丙烯酸之鹽組成之群。
較佳地,鹼催化劑係選自以下中之一或多者:LiOH、NaOH、KOH、Mg(OH)2、Ca(OH)2、Ba(OH)2、CsOH、Sr(OH)2、RbOH、NH4OH、Li2CO3、Na2CO3、K2CO3、Rb2CO3、Cs2CO3、MgCO3、CaCO3、SrCO3、BaCO3、(NH4)2CO3、LiHCO3、NaHCO3、KHCO3、RbHCO3、CsHCO3、Mg(HCO3)2、Ca(HCO3)2、Sr(HCO3)2、
Ba(HCO3)2、NH4HCO3、Li2O、Na2O、K2O、Rb2O、Cs2O、MgO、CaO、SrO、BaO、Li(OR1)、Na(OR1)、K(OR1)、Rb(OR1)、Cs(OR1)、Mg(OR1)2、Ca(OR1)2、Sr(OR1)2、Ba(OR1)2、NH4(OR1),其中R1為任意C1至C6分支鏈、未分支或環狀烷基,視情況經一或多個官能基取代;NH4(RCO2)、Li(RCO2)、Na(RCO2)、K(RCO2)、Rb(RCO2)、Cs(RCO2)、Mg(RCO2)2、Ca(RCO2)2、Sr(RCO2)2或Ba(RCO2)2,其中RCO2係選自甲基反丁烯二酸根、甲基順丁烯二酸根、衣康酸根、檸檬酸根、草酸根及甲基丙烯酸根;(NH4)2(CO2RCO2)、Li2(CO2RCO2)、Na2(CO2RCO2)、K2(CO2RCO2)、Rb2(CO2RCO2)、Cs2(CO2RCO2)、Mg(CO2RCO2)、Ca(CO2RCO2)、Sr(CO2RCO2)、Ba(CO2RCO2)、(NH4)2(CO2RCO2),其中CO2RCO2係選自甲基反丁烯二酸根、甲基順丁烯二酸根、衣康酸根草酸根;(NH4)3(CO2R(CO2)CO2)、Li3(CO2R(CO2)CO2)、Na3(CO2R(CO2)CO2)、K3(CO2R(CO2)CO2)、Rb3(CO2R(CO2)CO2)、Cs3(CO2R(CO2)CO2)、Mg3(CO2R(CO2)CO2)2、Ca3(CO2R(CO2)CO2)2、Sr3(CO2R(CO2)CO2)2、Ba3(CO2R(CO2)CO2)2、(NH4)3(CO2R(CO2)CO2),其中CO2R(CO2)CO2係選自檸檬酸根、異檸檬酸根及烏頭酸根;甲胺、乙胺、丙胺、丁胺、戊胺、己胺、環己胺、苯胺;及R4NOH,其中R係選自甲基、乙基、丙基、丁基。更佳地,鹼係選自以下中之一或多者:LiOH、NaOH、KOH、Mg(OH)2、Ca(OH)2、Ba(OH)2、CsOH、Sr(OH)2、RbOH、NH4OH、Li2CO3、Na2CO3、K2CO3、Rb2CO3、Cs2CO3、MgCO3、CaCO3、(NH4)2CO3、LiHCO3、NaHCO3、KHCO3、RbHCO3、CsHCO3、Mg(HCO3)2、Ca(HCO3)2、Sr(HCO3)2、Ba(HCO3)2、NH4HCO3、Li2O、Na2O、K2O、Rb2O、Cs2O;NH4(RCO2)、Li(RCO2)、Na(RCO2)、K(RCO2)、Rb(RCO2)、Cs(RCO2)、Mg(RCO2)2、Ca(RCO2)2、Sr(RCO2)2或Ba(RCO2)2,其中RCO2係選自衣康酸根、檸
檬酸根、草酸根、甲基丙烯酸根;(NH4)2(CO2RCO2)、Li2(CO2RCO2)、Na2(CO2RCO2)、K2(CO2RCO2)、Rb2(CO2RCO2)、Cs2(CO2RCO2)、Mg(CO2RCO2)、Ca(CO2RCO2)、Sr(CO2RCO2)、Ba(CO2RCO2)、(NH4)2(CO2RCO2),其中CO2RCO2係選自甲基反丁烯二酸根、甲基順丁烯二酸根、衣康酸根、草酸根;(NH4)3(CO2R(CO2)CO2)、Li3(CO2R(CO2)CO2)、Na3(CO2R(CO2)CO2)、K3(CO2R(CO2)CO2)、Rb3(CO2R(CO2)CO2)、Cs3(CO2R(CO2)CO2)、Mg3(CO2R(CO2)CO2)2、Ca3(CO2R(CO2)CO2)2、Sr3(CO2R(CO2)CO2)2、Ba3(CO2R(CO2)CO2)2、(NH4)3(CO2R(CO2)CO2),其中CO2R(CO2)CO2係選自檸檬酸根、異檸檬酸根;氫氧化四甲基銨及氫氧化四乙基銨。最佳地,鹼係選自以下中之一或多者:NaOH、KOH、Ca(OH)2、CsOH、RbOH、NH4OH、Na2CO3、K2CO3、Rb2CO3、Cs2CO3、MgCO3、CaCO3、(NH4)2CO3、NH4(RCO2)、Na(RCO2)、K(RCO2)、Rb(RCO2)、Cs(RCO2)、Mg(RCO2)2、Ca(RCO2)2、Sr(RCO2)2或Ba(RCO2)2,其中RCO2係選自衣康酸根、檸檬酸根、草酸根、甲基丙烯酸根;(NH4)2(CO2RCO2)、Na2(CO2RCO2)、K2(CO2RCO2)、Rb2(CO2RCO2)、Cs2(CO2RCO2)、Mg(CO2RCO2)、Ca(CO2RCO2)、(NH4)2(CO2RCO2),其中CO2RCO2係選自甲基反丁烯二酸根、甲基順丁烯二酸根、衣康酸根、草酸根;(NH4)3(CO2R(CO2)CO2)、Na3(CO2R(CO2)CO2)、K3(CO2R(CO2)CO2)、Rb3(CO2R(CO2)CO2)、Cs3(CO2R(CO2)CO2)、Mg3(CO2R(CO2)CO2)2、Ca3(CO2R(CO2)CO2)2、(NH4)3(CO2R(CO2)CO2),其中CO2R(CO2)CO2係選自檸檬酸根、異檸檬酸根;及氫氧化四甲基銨。
催化劑可為均質或異質的。在一個實施例中,催化劑可溶解於液體反應相中。然而,催化劑可懸浮於反應相可經過之固體載體上。在此情形下,反應相較佳維持為液相,更佳為含水相。
較佳地,鹼OH-:酸之有效莫耳比為0.001-2:1、更佳0.01-1.2:1、最佳0.1-1:1、尤其0.3-1:1。鹼OH-之有效莫耳比意指來源於所關注化合物之OH-之標稱莫耳含量。
酸意指酸之莫耳數。因此,在一元鹼之情形下,鹼OH-:酸之有效莫耳比將與所關注化合物之彼等有效莫耳比一致,但在二元或三元鹼之情形下,有效莫耳比將與所關注化合物之莫耳比不一致。
特定言之,此可視為一元鹼:二羧酸之莫耳比較佳為0.001-2:1、更佳0.01-1.2:1、最佳0.1-1:1、尤其0.3-1:1。
由於酸去質子化形成鹽在本發明中僅指第一酸去質子化,因此在二元鹼或三元鹼之情形下,上述鹼之莫耳比將相應變化。
較佳地,二羧酸甲基反丁烯二酸及/或甲基順丁烯二酸及/或甲基蘋果酸暴露於脫除羧基反應條件至少80秒之時段。
較佳地,本發明之二羧酸暴露於反應條件適合之時段以實現所需反應,諸如如本文所定義之80秒,但更佳至少100秒之時段、更佳至少約120秒且最佳至少約240秒。
通常,二羧酸暴露於反應條件小於約85000秒、更通常小於約30000秒、更通常小於約10000秒之時段。
較佳地,二羧酸暴露於反應條件約75秒至90000秒、更佳約90秒至35000秒且最佳約120秒至10000秒之時段。
較佳地,二羧酸之濃度為至少0.1M,較佳在其含水來源中;更佳至少約0.2M,較佳在其含水來源中;最佳至少約0.3M,較佳在其含水來源中;尤其至少約0.5M。含水來源一般為水溶液。
較佳地,二羧酸之濃度小於約10M;更佳小於8M,較佳在其含水來源中;更佳小於約5M,較佳在其含水來源中;更佳小於約3M,較佳在其含水來源中。
較佳地,二羧酸之濃度在0.05M-20M、通常0.05M-10M、更佳
0.1M-5M、最佳0.3M-3M之範圍內。
鹼催化劑可溶解於液體介質(可為水)中,或鹼催化劑可為異質的。鹼催化劑可溶解於反應混合物中以便反應藉由使反應物暴露於本文給出之溫度來實現,該等溫度超過發生鹼催化之脫除羧基形成甲基丙烯酸之溫度。催化劑可處於水溶液中。因此,催化劑可為均質或異質的,但通常為均質的。較佳地,反應混合物(包括前酸混合物來源之分解物)中催化劑之濃度為至少0.1M或0.1M以上,較佳在其含水來源中;更佳至少約0.2M,較佳在其含水來源中;更佳至少約0.3M。
較佳地,反應混合物(包括前酸混合物來源之分解物)中催化劑之濃度小於約10M,更佳小於約5M,更佳小於約2M,且在任何情況下較佳小於或等於將相當於在反應溫度及壓力下之飽和溶液之濃度。
脫除羧基反應條件較佳為弱酸性。反應pH值較佳在約2與9之間,更佳在約3與約6之間。
如上文所提及,脫除羧基可均質或異質。此外,脫除羧基可為分批或連續過程。
較佳地,在甲基丙烯酸形成後之任何其他轉化或轉型步驟亦在相關微生物外進行。
在本發明中,甲基反丁烯二酸及/或甲基順丁烯二酸及/或甲基蘋果酸之脫除羧基步驟係離體進行,使得該步驟在可用於以上方法中之任一者中之一或多種微生物外進行。因此,在甲基丙烯酸形成後任何其他步驟亦較佳離體進行。
較佳地,在一或多種微生物中進行之以上步驟中之任一者由一或多種生物學催化劑酶促催化。更佳地,生物學催化劑為酶,但可包括來源於生物學來源之任何催化性結構。
一或多種酶包含在一或多種微生物內。因此,較佳地,一或多
種微生物包含催化相關步驟所必需的一或多種酶。因此,較佳地,相關步驟及任何其他酶促步驟在一或多種微生物內活體內進行。
因此,較佳地,本發明方法之至少步驟(a)由一或多種微生物酶促催化。
較佳地,以上方法中之任一者的任何其他酶促步驟亦由一或多種微生物酶促催化。
更佳地,微生物包含催化該等步驟所必需的一或多種酶,使得酶促步驟在微生物內活體內進行。
一或多種微生物可天然包含一或多種酶,或可經基因工程改造以包含一或多種酶,或可包含天然酶或基因工程改造酶兩者之組合。
因此,根據本發明之另一態樣,提供一種經修飾以增強甲基反丁烯二酸及/或甲基順丁烯二酸及/或甲基蘋果酸之產生的微生物。
在一個實施例中,無論修飾與否,微生物至少包含以下酶:(a)甲基蘋果酸鹽解離酶或(R)-甲基蘋果酸鹽合成酶;及/或(b)(S)-2-甲基蘋果酸鹽脫水酶或(R)-2-甲基蘋果酸鹽脫水酶。
在另一實施例中,無論修飾與否,微生物至少包含以下酶:(a)麩胺酸鹽脫氫酶;及/或(b)甲基天冬胺酸鹽變位酶;及/或(c)β-甲基天冬胺酸鹽氨解離酶。
在另一實施例中,無論修飾與否,微生物至少包含以下酶:(a)甲基蘋果酸鹽解離酶或(R)-甲基蘋果酸鹽合成酶
一或多種微生物可經遺傳修飾以增強或降低該等天然或基因工程改造酶之活性。
較佳地,微生物經基因工程改造以增強甲基反丁烯二酸及/或甲基順丁烯二酸及/或甲基蘋果酸之產生。
增加甲基反丁烯二酸及/或甲基順丁烯二酸及/或甲基蘋果酸之產
生可包括藉由使用此項技術中已知且下文詳述之各種基因工程改造技術對現有細胞代謝過程、核酸及/或蛋白質進行修飾。增加甲基反丁烯二酸及/或甲基順丁烯二酸及/或甲基蘋果酸之產生亦可包括用一或多種基因使微生物轉型。此等基因可包括編碼由基於碳之原料(諸如本文所述之彼等原料)至甲基反丁烯二酸及/或甲基順丁烯二酸及/或甲基蘋果酸之所需路徑之酶的基因,或可包括如下文詳細論述用以直接或間接促進該等路徑中之酶起作用及表現的其他輔助基因。
因此,微生物可另外經一或多種基因轉型以產生甲基反丁烯二酸及/或甲基順丁烯二酸及/或甲基蘋果酸。然而,較佳地,微生物至少另外經修飾以增強甲基反丁烯二酸及/或甲基順丁烯二酸及/或甲基蘋果酸之產生。
可在微生物內經修飾或經轉型進入微生物以增強甲基反丁烯二酸及/或甲基順丁烯二酸之產生的基因包括分別編碼以下酶中之任一者的彼等基因:甲基蘋果酸鹽解離酶或(R)-甲基蘋果酸鹽合成酶,及(S)-2-甲基蘋果酸鹽脫水酶或(R)-2-甲基蘋果酸鹽脫水酶。可在微生物內經修飾或經轉型進入微生物以增強甲基反丁烯二酸之產生的基因另外包括編碼以下酶中之任一者的彼等基因:麩胺酸鹽脫氫酶、甲基天冬胺酸鹽變位酶及/或β-甲基天冬胺酸鹽氨解離酶。可在微生物內經修飾以增強甲基蘋果酸之產生的基因包括編碼以下酶中之任一者的彼等基因:甲基蘋果酸鹽解離酶或(R)-甲基蘋果酸鹽合成酶。
微生物可另外經修飾或經一或多種基因轉型以提高糖酵解路徑及/或β氧化路徑及/或逆向檸檬酸循環製造甲基反丁烯二酸及/或甲基順丁烯二酸及/或甲基蘋果酸之反應的速率,及/或提高氧化及/或還原檸檬酸循環製造甲基反丁烯二酸之反應的速率。
因此,用於以上方法中之微生物可另外包含經修飾中糖酵解及/或β氧化路徑及/或逆向檸檬酸循環以增強甲基反丁烯二酸及/或
甲基順丁烯二酸及/或甲基蘋果酸之產生,及/或經修飾中氧化檸檬酸循環及/或經修飾中還原檸檬酸循環以增強甲基反丁烯二酸之產生。
可在微生物內經修飾或經轉型進入微生物以增強甲基反丁烯二酸及/或甲基順丁烯二酸及/或甲基蘋果酸之產生之糖酵解路徑之一或多種酶的基因包括編碼以下酶中之任一者的彼等基因:丙酮酸鹽激酶;磷酸丙酮酸鹽水合酶;磷酸甘油酸鹽變位酶;磷酸甘油酸鹽激酶;甘油醛磷酸鹽脫氫酶;丙醣磷酸鹽異構酶;果糖二磷酸鹽醛縮酶;6-磷酸果糖激酶;葡萄糖-6-磷酸鹽異構酶;或己糖激酶。
可在微生物內經修飾或經轉型進入微生物以增強甲基反丁烯二酸或甲基順丁烯二酸或甲基蘋果酸之產生之脂肪酸β氧化路徑之一或多種酶的基因包括編碼以下酶中之任一者的彼等基因:醯基CoA脫氫酶;烯醯CoA水合酶;3-羥醯CoA脫氫酶;乙醯CoA C-轉醯基酶或乙醯CoA C轉乙醯基酶;烯醯CoA異構酶;二烯醯CoA異構酶;或2,4-二烯醯CoA還原酶。
可在微生物內經修飾或經轉型進入微生物以增強甲基反丁烯二酸或甲基順丁烯二酸或甲基蘋果酸之產生之還原檸檬酸循環之一或多種酶的基因包括編碼以下酶中之任一者的彼等基因:ATP檸檬酸鹽解離酶;酮基戊二酸鹽脫氫酶(轉移琥珀醯)(OGOR);琥珀醯CoA連接酶;醯基CoA轉移酶;反丁烯二酸鹽還原酶(NADH);反丁烯二酸鹽水合酶;烏頭酸鹽水合酶;異檸檬酸鹽脫氫酶(NAD+);異檸檬酸鹽脫氫酶(NADP+);或反丁烯二酸鹽水合酶。可在宿主微生物內經修飾或經轉型進入微生物以亦增強甲基反丁烯二酸之產生之氧化檸檬酸循環之一或多種酶的基因包括編碼以下酶中之任一者的彼等基因:由丙酮酸鹽脫氫酶、二氫硫辛醯基轉乙醯基酶及二氫硫辛醯基脫氫酶組成之丙酮酸鹽脫氫酶複合物;丙酮酸鹽羧化酶、檸檬酸鹽
(Si)合成酶;烏頭酸鹽水合酶;異檸檬酸鹽脫氫酶;或麩胺酸鹽脫氫酶。
可在宿主微生物內經修飾或經轉型進入宿主微生物以增強甲基反丁烯二酸之產生之還原檸檬酸循環之一或多種酶的基因包括編碼以下酶中之任一者的彼等基因:檸檬酸鹽(Si)合成酶;酮基戊二酸鹽脫氫酶(轉移琥珀醯)(OGOR);琥珀醯CoA合成酶;醯基CoA轉移酶;反丁烯二酸鹽還原酶;蘋果酸鹽脫氫酶;反丁烯二酸鹽水合酶;丙酮酸鹽羧化酶;磷酸烯醇丙酮酸鹽羧激酶(GTP);或丙酮酸鹽氧化還原酶。
用於以上方法中之任一者或如上所述經工程改造或修飾之微生物可選自天然存在或非天然存在之微生物,例如細菌、酵母、真菌或適用於醱酵方法之多種其他微生物中之任一者。
微生物較佳為細菌,適合細菌之實例包括:屬於變形菌門之埃希氏菌屬(Escherichia)、腸桿菌屬(Enterobacter)、泛菌屬(Pantoea)、克雷伯氏菌屬(Klebsiella)、沙雷菌屬(Serratia)、歐文菌屬(Erwinia)、沙門氏菌屬(Salmonella)、摩根氏菌屬(Morganella)或其類似物之腸內菌;屬於短桿菌屬(Brevibacterium)、棒狀桿菌屬(Corynebacterium)或微桿菌屬(Microbacterium)之所謂棒狀菌(coryneform bacteria);及屬於脂環桿菌屬(Alicyclobacillus)、芽孢桿菌屬(Bacillus)、氫桿菌屬(Hydrogenobacter)、甲烷球菌屬(Methanococcus)、醋桿菌屬(Acetobacter)、不動桿菌屬(Acinetobacter)、農桿菌屬(Agrobacterium)、固氮根瘤菌屬(Axorhizobium)、固氮菌屬(Azotobacte)、邊蟲屬(Anaplasma)、擬桿菌屬(Bacteroides)、巴東體屬(Bartonella)、博特氏桿菌屬(Bordetella)、疏螺旋體屬(Borrelia)、布氏桿菌屬(Brucella)、伯克氏菌屬(Burkholderia)、鞘桿菌屬(Calymmatobacterium)、彎麴菌屬(Campuylobacter)、衣原體屬
(Chlamydia)、嗜衣原體屬(Chlamydophila)、梭菌屬(Clostridium)、柯克斯氏體屬(Coxiella)、艾利希體屬(Ehrlichia)、腸球菌屬(Enterococcus)、弗朗西斯氏菌屬(Francisella)、梭桿菌屬(Fusobacterium)、加德納菌屬(Gardnerella)、嗜血桿菌屬(Haemophilus)、螺旋桿菌屬(Helicobacter)、克雷伯氏菌屬(Kelbsiella)、甲烷桿菌屬(Methanobacterium)、微球菌屬(Micrococcus)、莫拉菌屬(Moraxella)、分枝桿菌屬(Mycobacterium)、黴漿菌屬(Mycoplasma)、奈瑟氏菌屬(Neisseria)、巴斯德菌屬(Pasteurella)、消化鏈球菌屬(Peptostreptococcus)、卟啉單胞菌屬(Porphyromonas)、普氏菌屬(Prevotella)、假單胞菌屬(Pseudomonas)、根瘤菌屬(Rhizobium)、立克次體屬(Rickettsia)、羅卡利馬體屬(Rochalimaea)、羅氏菌屬(Rothia)、志賀桿菌屬(Shigella)、葡萄球菌屬(Staphylococcus)、寡養單胞菌屬(Stenotrophomonas)、鏈球菌屬(Streptococcus)、密螺旋體屬(Treponema)、弧菌屬(Vibrio)、沃爾巴克氏體屬(Wolbachia)、耶爾森菌屬(Yersinia)或其類似物之細菌。
例示性細菌包括選自以下之物種:大腸桿菌(Escherichia coli)、產酸克雷伯氏菌(Klebsiella oxytoca)、產琥珀酸厭氧螺菌(Anaerobiospirillum succiniciproducens)、產琥珀酸放線桿菌(Actinobacillus succinogenes)、產琥珀酸曼氏桿菌(Mannheimia succiniciproducens)、埃特里根瘤菌(Rhizobium etli)、枯草桿菌(Bacillus subtilis)、麩胺酸棒狀桿菌、氧化葡糖桿菌(Gluconobacter oxydans)、運動醱酵單胞菌(Zymomonas mobilis)、雷特氏乳球菌(Lactococcus lactis)、胚芽乳桿菌(Lactobacillus plantarum)、天藍色鏈黴菌(Streptomyces coelicolor)、丙酮丁醇梭菌(Clostridium acetobutylicum)、螢光假單胞菌(Pseudomonas fluorescens)、嗜熱產氫桿菌(Hydorgenobacter thermophilus)、詹氏甲烷球菌(Methanococcus jannaschii)及惡臭假單胞菌(Pseudomonas putida)。
例示性酵母或真菌包括屬於酵母屬(Saccharomyces)、裂殖酵母屬(Schizosaccharomyces)、假絲酵母屬(Candida)、克魯維酵母屬(Kluyveromyces)、麴菌屬(Aspergillus)、畢赤酵母屬(Pichia)、隱球菌屬(Crytpococcus)或其類似物之彼等酵母或真菌。例示性酵母或真菌物種包括選自釀酒酵母(Saccharomyces cerevisiae)、粟酒裂殖酵母(Schizosaccharomyces pombe)、乳酸克魯維酵母(Kluyveromyces lactis)、馬克斯克魯維酵母(Kluyveromyces marxianus)、土麴菌(Aspergillus terreus)、黑麴菌(Aspergillus niger)、畢赤酵母(Pichia pastors)或其類似物之彼等酵母或真菌物種。
棒狀桿菌屬物種特別適用作使用氧化檸檬酸循環經由麩胺酸形成甲基反丁烯二酸之途徑的微生物,因為其為在好氧條件下產生麩胺酸之良好表徵微生物體。此等微生物亦以在工業方法中厭氧製造諸如離胺酸及琥珀酸之其他胺基酸及酸為良好表徵。因此,與經由氧化或還原檸檬酸循環產生甲基反丁烯二酸相關之以上方法中之任一者中所用之微生物較佳為棒狀桿菌屬物種。
該等棒狀菌之實例包括以下:嗜醋酸棒狀桿菌(Corynebacterium acetoacidophilum);醋麩酸棒狀桿菌(Corynebacterium acetoglutamicum);解烷棒狀桿菌(Corynebacterium alkanolyticum);帚石南棒狀桿菌(Corynebacterium callunae);麩胺酸棒狀桿菌;百合棒狀桿菌(Corynebacterium lilium);糖蜜棒狀桿菌(Corynebacterium melassecola);嗜熱產氨棒狀桿菌(Corynebacterium thermoaminogenes)(有效棒狀桿菌(Corynebacterium efficiens));力士棒狀桿菌(Corynebacterium herculis);分歧短桿菌(Brevibacterium divaricatum);黃色短桿菌(Brevibacterium flavum);嗜胺短桿菌(Brevibacterium immariophilum);乳糖醱酵短桿菌(Brevibacterium lactofermentum)(麩胺酸棒狀桿菌);玫瑰色短桿菌(Brevibacterium roseum);解糖短桿菌(Brevibacterium saccharolyticum);生硫短桿菌(Brevibacterium thiogenitalis);產氨短桿菌(Brevibacterium ammoniagenes);白色短桿菌(Brevibacterium album);蠟狀短桿菌(Brevibacterium cerinum);嗜氨微桿菌(Microbacterium ammoniaphilum)。
棒狀菌之特定實例如下:嗜醋酸棒狀桿菌ATCC13870;醋麩酸棒狀桿菌ATCC15806;解烷棒狀桿菌ATCC21511;帚石南棒狀桿菌ATCC15991;麩胺酸棒狀桿菌ATCC13020、ATCC13032、ATCC13060;百合棒狀桿菌ATCC15990;糖蜜棒狀桿菌ATCC17965;嗜熱產氨棒狀桿菌AJ12340(FERM BP-1539);力士棒狀桿菌ATCC13868;分歧短桿菌ATCC14020;黃色短桿菌ATCC13826;黃色短桿菌(麩胺酸棒狀桿菌)ATCC14067;黃色短桿菌AJ12418(FERM BP-2205);嗜胺短桿菌(Brevibacterium immariophilum)ATCC14068;乳糖醱酵短桿菌(麩胺酸棒狀桿菌)ATCC13869;玫瑰色短桿菌ATCC13825;解糖短桿菌ATCC14066;生硫短桿菌ATCC19240;產氨短桿菌ATCC6871、ATCC6872;白色短桿菌ATCC15111;蠟狀短桿菌ATCC15112;及嗜氨微桿菌ATCC15354。
較佳地,與經由氧化檸檬酸循環產生甲基反丁烯二酸相關之以上方法中所用之棒狀桿菌屬係選自以下中之一者:麩胺酸棒狀桿菌ATCC13020、ATCC13032、ATCC13060;黃色短桿菌(麩胺酸棒狀桿菌)ATCC14067;或乳糖醱酵短桿菌(麩胺酸棒狀桿菌)ATCC13869,更佳為麩胺酸棒狀桿菌ATCC13020、ATCC13032、ATCC13060,而更佳為麩胺酸棒狀桿菌ATCC13020。
編碼蛋白質、詳言之經轉型進入本發明微生物之酶之基因的編碼核酸來源可包括例如編碼之基因產物能夠催化提及之反應的任何物
種。該等物種包括原核與真核生物體,包括(但不限於)細菌(包括古細菌及真細菌),及真核生物(包括酵母、植物、昆蟲、動物及哺乳動物,包括人類)。該等來源之例示性物種包括例如大腸桿菌、智人(Homo sapiens)、費氏丙酸桿菌(Propionibacterium fredenreichii)、扭脫甲基桿菌(Methylobacterium extorquens)、弗氏志賀菌(Shigella flexneri)、腸道沙門氏菌(Salmonella enterica)、弗氏耶爾森菌(Yersinia frederiksenii)、痤瘡丙酸桿菌(Propionibacterium acnes)、褐家鼠(Rattus norvegicus)、秀麗隱桿線蟲(Caenorhabditis elegans)、蠟狀芽孢桿菌(Bacillus cereus)、醋酸鈣不動桿菌(Acinetobacter calcoaceticus)、貝氏不動桿菌(Acinetobacter baylyi)、不動桿菌屬(Acinetobacter sp.)、克氏梭菌(Clostridium kluyveri)、假單胞菌屬(Pseudomonas sp.)、嗜熱棲熱菌(Thermus thermophilus)、綠膿桿菌(Pseudomonas aeruginosa)、惡臭假單胞菌、穴兔(Oryctolagus cuniculus)、丙酮丁醇梭菌、腸膜狀明串珠菌(Leuconostoc mesenteroides)、巴氏真桿菌(Eubacterium barkeri)、多毛擬桿菌(Bacteroides capillosus)、科利霍米尼斯厭氧乾菌(Anaerotruncus colihominis)、嗜熱鹽鹼厭氧菌(Natranaerobius thermophilus)、空腸彎曲桿菌(Campylobacter jejuni)、擬南芥(Arabidopsis thaliana)、麩胺酸棒狀桿菌、野豬(Sus scrofa)、枯草芽孢桿菌(Bacillus subtilus)、螢光假單胞菌、黏質沙雷氏菌(Serratia marcescens)、天藍色鏈黴菌、嗜石油甲基菌(Methylibium petroleiphilum)、肉桂地鏈黴菌(Strep tomyces cinnamonensis)、阿維鏈黴菌(Strep tomyces avermitilis)、閃爍古生球菌(Archaeoglobus fulgidus)、死海鹽盒菌(Haloarcula marismortui)、好氧火棒菌(Pyrobaculum aerophilum)、釀酒酵母、匙形梭菌(Clostridium cochlearium)、破傷風形梭菌(Clostridium tetanomorphum)、破傷風梭菌(Clostridium tetani)、無丙二酸檸檬酸桿
菌(Citrobacter amalonaticus)、富養羅爾斯通氏菌(Ralstonia eutropha)、小家鼠(Mus musculus)、溫帶牛(Bos taurus)、具核梭桿菌(Fusobacterium nucleatum)、摩氏摩根菌(Morganella morganii)、巴斯德梭菌(Clostridium pasteurianum)、類球紅細菌(Rhodobacter sphaeroides)、自養黃色桿菌(Xanthobacter autotrophicus)、丙酸梭菌(Clostridium propionicum)、埃氏巨型球菌(Megasphaera elsdenii)、土麴菌、假絲酵母屬、托科達硫化葉菌(Sulfolobus tokodaii)、勤奮金屬球菌(Metallosphaera sedula)、橙色綠屈撓菌(Chloroflexus aurantiacus)、糖乙酸多丁醇梭菌(Clostridium saccharoperbutylacetonicum)、醱酵胺基酸球菌(Acidaminococcus fermentans)、幽門螺旋桿菌(Helicobacter pylori),以及本文所揭示或可用作對應基因之來源生物體的其他例示性物種。
應注意,可轉型進入本發明微生物之一或多種編碼酶之基因亦包含編碼該等酶之變體的基因,該等酶之變體為例如在多肽序列中包括一或數個胺基酸之替代、缺失、插入或添加之變異酶且其中該多肽保持未經修飾之酶的活性。該等變異酶亦包括在與未經修飾之酶相比時具有降低的酶活性的變異酶。
本發明另外包含使序列與該等酶之序列在嚴格條件下雜交且仍保持酶活性的轉型作用。
在非天然存在之甲基反丁烯二酸或甲基順丁烯二酸或甲基蘋果酸產生微生物中構築及測試蛋白質表現的方法可例如藉由此項技術中熟知之重組及偵測方法來執行。該等方法可發現描述於例如Sambrook等人,Molecular Cloning:A Laboratory Manual,第三版,Cold Spring Harbor Laboratory,New York(2001);及Ausubel等人,Current Protocols in Molecular Biology,John Wiley and Sons,Baltimore,Md.(1999)中。
用於產生甲基反丁烯二酸或甲基順丁烯二酸或甲基蘋果酸或其形成中間物之路徑中所涉及之外源性核酸序列可使用此項技術中熟知的技術穩定或瞬時引入微生物細胞中,該等技術包括(但不限於)共軛、電穿孔、化學轉型、轉導、轉染及超音波轉型。
轉型方法之實例可包括用氯化鈣處理受體微生物細胞以增加DNA之透過率,其已經報導用於大腸桿菌K-12(Mandel,M.及Higa,A.1970.J.Mol.Biol.53:159-162)及由生長期之細胞製備勝任細胞,接著用DNA轉型,其已經報導用於枯草芽孢桿菌(Duncan,C.H.等人1977.Gene 1:153-167)。或者,亦可採用將DNA受體細胞製成可易於接受重組DNA之原生質體或球形質體,接著將重組DNA引入細胞中之方法,其已知適用於枯草芽孢桿菌、放線菌及酵母(Chang,S.及Choen,S.N.1979.Molec.Gen.Genet.168:111-115;Bibb,M.J.等人1978.Nature,274:398-400;Hinnen,A.等人1978.Proc.Natl.Sci.,USA,75:1929-1933)。此外,亦可藉由電脈衝法進行微生物之轉型(日本專利特許公開第2-207791號)。
對於在大腸桿菌或其他原核微生物細胞中之外源性表現,真核核酸之基因或cDNA中之一些核酸序列可編碼標靶信號,諸如N端粒線體或其他標靶信號,其可視需要在轉型進入原核微生物細胞之前經移除。舉例而言,移除粒線體前導序列使得大腸桿菌中之表現提高(Hoffmeister等人,J.Biol.Chem.280:4329-4338(2005))。對於在酵母或其他真核微生物細胞中之外源性表現,基因可在未添加前導序列的情況下表現於細胞溶質中,或可藉由添加適合之標靶序列,諸如適用於微生物細胞之粒線體標靶或分泌信號而靶向粒線體或其他細胞器或靶向用於分泌。因此,應瞭解,移除或包括標靶序列之對核酸序列之適當修飾可併入外源性核酸序列中以賦予所需特性。此外,可使用此項技術中熟知的技術對基因進行密碼子最佳化以實現蛋白質在微生物
內之最佳化表現。
表現載體或載體可經構築以包括如本文所例示可操作地連接於微生物中起作用之表現控制序列的一或多種生物合成路徑酶編碼核酸。適用於本發明之微生物的表達載體包括例如質體、黏質體、噬菌體載體、病毒載體、游離基因體及人造染色體,其包括可操作用於穩定整合至宿主染色體中之載體及選擇序列或標記。
另外,表現載體可包括一或多種可選標記基因及適當表現控制序列。亦可包括如下可選標記基因,其例如提供對抗生素或毒素、補體營養缺陷型缺乏之抗性,或供應不在培養基中之關鍵營養素。表現控制序列可包括此項技術中熟知之組成性及誘導性啟動子、轉錄增強子、轉錄終止子及其類似物。當兩種或兩種以上外源性編碼核酸經共同表現時,兩種核酸可插入例如單個表現載體或各別表現載體中。對於單一載體表現,編碼核酸可操作地連接於一個共同表現控制序列或連接於不同表現控制序列,諸如一個誘導性啟動子及一個組成性啟動子。
用於轉型之載體可為在微生物細胞中可自主複製之載體。在諸如大腸桿菌之腸內菌科細菌中可自主複製之載體的實例可包括質體載體pEKEx3、pET206、pET216、pUC19、pUC18、pBR322、RSF1010、pHSG299、pHSG298、pHSG399、pHSG398、pSTV28、pSTV29(pHSG及pSTV載體可購自Takara Bio Inc.)、pMW119、pMW118、pMW219、pMW218(pMW載體可購自Nippon Gene Co.,Ltd.)等。此外,用於棒狀菌之載體可包括pAM330(日本專利特許公開第58-67699號)、pHM1519(日本專利特許公開第58-77895號)、pSFK6(日本專利特許公開第2000-262288號)、pVK7(USP2003-0175912A)、pAJ655、pAJ611、pAJ1844(日本專利特許公開第58-192900號)、pCG1(日本專利特許公開第57-134500號)、pCG2(日本專
利特許公開第58-35197號)、pCG4、pCG11(日本專利特許公開第57-183799號)、pHK4(日本專利特許公開第5-7491號)等。此外,若自此等載體切割具有製造在棒狀菌中可自主複製之質體之能力的DNA片段且插入至上述大腸桿菌載體中,其可用作在大腸桿菌及棒狀菌中均可自主複製之所謂穿梭載體。
酶活性之增強可包括藉由用具有適當強度之啟動子置換標靶基因之表現調節序列(諸如基因體DNA或質體上之啟動子)來增強標靶基因之表現。舉例而言,thr啟動子、lac啟動子、trp啟動子、trc啟動子、pL啟動子、tac啟動子等已知作為頻繁使用之啟動子。在諸如棒狀菌之微生物中具有高表現活性之啟動子的實例可包括延伸因子Tu(EF-Tu)基因tuf之啟動子、編碼共伴侶蛋白GroES-伴侶蛋白GroEL、硫氧還原蛋白還原酶、磷酸甘油酸鹽變位酶、甘油醛-3-磷酸鹽脫氫酶等之基因的啟動子(WO2006/028063、EP1697525)。強啟動子及用於評估啟動子強度之方法的實例描述於Goldstein及Doi之文章(Goldstein,M.A.及Doi R.H.1995.Biotechnol.Annu.Rev.1:105-128)等中。
此外,亦有可能替代基因啟動子區中之數個核苷酸,使得啟動子具有適當強度,如國際專利公開案WO 2000/18935中所揭示。表現調節序列之替代可例如以與使用溫度敏感性質體之基因替代相同之方式進行。可用於大腸桿菌或菠蘿泛菌(Pantoea ananatis)之具有溫度敏感性複製源之載體的實例可包括例如國際公開案WO 1999/03988中所述之質體pMAN997、其衍生物等。此外,表現調節序列之替代亦可藉由採用線性DNA之方法來進行,諸如使用λ噬菌體之Red重組酶的稱為「Red驅動整合」的方法(Datsenko,K.A.及Wanner,B.L.2000,Proc.Natl.Acad.Sci.USA,97:6640-6645)、組合Red驅動整合方法及λ噬菌體切除系統之方法(Cho,E.H.等人2002.J.Bacteriol.184:5200-5203)(WO2005/010175)等。表現調節序列之修飾可與增加基因複本
數組合。
此外,已知核糖體結合位點(RBS)與起始密碼子之間的間隔子且特定言之緊接著起始密碼子上游之序列中數個核苷酸之替代極大地影響mRNA可轉譯性。可藉由修飾此等序列增強轉譯。
當標靶基因引入上述質體或染色體時,任何啟動子均可用於基因表現,只要選擇可在所用微生物中起作用之啟動子即可。啟動子可為基因之天然啟動子或經修飾之啟動子。基因之表現亦可藉由適當選擇在所選微生物中發揮強力功能之啟動子,或藉由使啟動子之-35及-10區接近共同序列來控制。藉由上述方法修飾以增強麩胺酸鹽脫氫酶基因表現的微生物描述於國際專利公開案WO00/18935、歐洲專利公開案第1010755號,等等中。
可使用此項技術中熟知之方法確定代謝或合成路徑中所涉及之外源性核酸序列的轉型。該等方法例如包括諸如北方墨點法(Northern blots)或DNA聚合酶鏈反應(PCR)擴增之核酸分析法,或基因產物表現之免疫墨點法,或用於測試所引入核酸序列或其相應基因產物之表現的其他合適分析方法。熟習此項技術者應瞭解,外源性核酸之表現量足以產生所需產物,且另外應瞭解,可使用此項技術中熟知之方法使表現量最佳化以獲得充足表現。
本發明可另外包括藉由在以上提及之生物合成路徑中競爭相同受質及/或中間物來降低或消除催化合成甲基反丁烯二酸或甲基順丁烯二酸或甲基蘋果酸以外之化合物之酶之活性的修飾法。與檸檬酸循環相關之該等酶之實例可包括α-酮基戊二酸鹽脫氫酶、異檸檬酸鹽解離酶、乙酸鹽激酶、乙醯醇酸合成酶、乙醯乳酸鹽合成酶、甲酸鹽C-轉乙醯基酶、L-乳酸鹽脫氫酶、麩胺酸鹽脫接基酶、1-吡咯啉-5-甲酸鹽脫氫酶等中之一或多者。
本發明可另外包含降低或消除代謝甲基反丁烯二酸、代謝甲基
順丁烯二酸或代謝甲基蘋果酸或代謝以上提及之生物合成路徑中之中間物之酶之活性的修飾。與甲基反丁烯二酸或甲基順丁烯二酸或甲基蘋果酸之代謝相關之該等酶之實例可包括(S)-2-甲基蘋果酸鹽脫水酶(4.2.1.34)及3-異丙基蘋果酸鹽脫氫酶(1.1.1.85)中之一或多者。
本發明亦可另外包含降低或消除移除以上提及之生物合成路徑中之中間物之其他細胞功能中所涉及之蛋白質之活性的修飾。該等細胞功能之實例可包括儲存機構,諸如液泡儲存或能夠儲存代謝物之其他胞間體;或轉運機構,諸如能夠導出代謝物之跨膜泵或孔蛋白。
視情況,本發明之以上方法中之任一者中所用之一或多種微生物可另外經修飾以降低或消除參與細胞功能之酶或蛋白質的活性,其:(i)使物質偏離甲基反丁烯二酸或甲基順丁烯二酸或甲基蘋果酸產生路徑;及/或(ii)代謝甲基反丁烯二酸或甲基順丁烯二酸或甲基蘋果酸。
為降低或消除上述酶或蛋白質之活性,可將降低或消除酶或蛋白質之細胞內活性的突變藉由習知突變誘發或基因工程改造技術引入上述酶或蛋白質之基因中。突變誘發之實例可包括例如X射線或紫外線輻射、用諸如N-甲基-N'-硝基-N-亞硝基胍處理等。基因上引入突變之位點可在編碼酶或蛋白質之編碼區或諸如啟動子之表現控制區。基因工程改造技術之實例可包括基因重組、轉導、細胞融合等。
目標酶或蛋白質之細胞內活性的降低或消除及降低程度可藉由量測由候選菌株獲得之細胞提取物或其經純化部分中之酶或蛋白質活性且使其與野生型菌株之酶或蛋白質活性相比來確認。舉例而言,α-酮基戊二酸脫氫酶活性可藉由Reed及Mukherjee(Reed,L.J.及Mukherjee,B.B.1969.Methods in Enzymology 13:55-61)之方法來量測。
作為特定實例,消除或降低埃希氏菌屬細菌中α-酮基戊二酸脫氫酶活性之方法揭示於日本專利特許公開第5-244970號、第7-203980號等中。消除或降低棒狀菌中α-酮基戊二酸脫氫酶活性之方法揭示於國際專利公開案WO95/34672中。此外,用於腸桿菌屬細菌之該等方法揭示於日本專利特許公開第2001-333769號中。
用於賦予或增強甲基反丁烯二酸或甲基順丁烯二酸或甲基蘋果酸產生能力及/或其中間物之其他方法之實例可包括賦予對有機酸類似物、呼吸抑制劑或其類似物之抗性及賦予對細胞壁合成抑制劑之敏感性。此等方法可包括例如賦予單氟乙酸抗性(日本專利特許公開第50-113209號)、賦予腺嘌呤抗性或胸腺嘧啶抗性(日本專利特許公開第57-065198號)、使脲酶衰減(日本專利特許公開第52-038088號)、賦予丙二酸抗性(日本專利特許公開第52-038088號)、賦予對苯并吡喃酮或萘醌之抗性(日本專利特許公開第56-1889號)、賦予HOQNO抗性(日本專利特許公開第56-140895號)、賦予α-酮丙二酸抗性(日本專利特許公開第57-2689號)、賦予胍抗性(日本專利特許公開第56-35981號)、賦予對青黴素之敏感性(日本專利特許公開第4-88994號)等。
該等抗性細菌之實例可包括以下菌株:黃色短桿菌AJ3949(FERM BP-2632,參考日本專利特許公開第50-113209號);麩胺酸棒狀桿菌AJ11628(FERM P-5736,參考日本專利特許公開第57-065198號);黃色短桿菌AJ11355(FERM P-5007,參考日本專利特許公開第56-1889號);麩胺酸棒狀桿菌AJ11368(FERM P-5020,參考日本專利特許公開第56-1889號);黃色短桿菌AJ11217(FERM P-4318,參考日本專利特許公開第57-2689號);麩胺酸棒狀桿菌AJ11218(FERM P-4319,參考日本專利特許公開第57-2689號);黃色短桿菌AJ11564(FERM P-5472,參考日本專利特許公開第56-140895號);黃色短桿菌AJ11439(FERM P-5136,參考日本專利特許公開第56-35981號);麩
胺酸棒狀桿菌H7684(FERM BP-3004,參考日本專利特許公開第04-88994號);乳糖醱酵短桿菌AJ11426(FERM P-5123,參考日本專利特許公開第56-048890號);麩胺酸棒狀桿菌AJ11440(FERM P-5137,參考日本專利特許公開第56-048890號);及乳糖醱酵短桿菌AJ11796(FERM P-6402,參考日本專利特許公開第58-158192號)。
賦予或增強甲基反丁烯二酸或甲基順丁烯二酸或甲基蘋果酸產生能力及/或其中間物之其他方法可包括賦予對下調劑/抑制劑之抗性或賦予對上調劑/活化劑之敏感性。舉例而言,在由氧化檸檬酸循環產生甲基反丁烯二酸的情況下,已知某些反饋迴路起作用。在此情況下,NADH,亦即好氧/氧化檸檬酸循環中除琥珀酸鹽脫氫酶之外的所有脫氫酶的產物抑制丙酮酸鹽脫氫酶複合物之丙酮酸鹽脫氫酶磷酸酶、異檸檬酸鹽脫氫酶、α-酮基戊二酸鹽脫氫酶以及檸檬酸鹽(Si)合成酶之功能。乙醯CoA抑制丙酮酸鹽脫氫酶,而琥珀醯CoA抑制α-酮基戊二酸鹽脫氫酶及檸檬酸鹽(Si)合成酶,且ATP抑制檸檬酸鹽(Si)合成酶及α-酮基戊二酸鹽脫氫酶。另外已知鈣活化丙酮酸鹽脫氫酶、異檸檬酸鹽脫氫酶及α-酮基戊二酸鹽脫氫酶。
因此,為增加經由氧化檸檬酸循環產生甲基反丁烯二酸之通量,較佳修飾包括例如賦予檸檬酸鹽(Si)合成酶、丙酮酸鹽脫氫酶及異檸檬酸鹽脫氫酶對NADH之抗性及增加α-酮基戊二酸鹽脫氫酶對NADH之敏感性。或者,通量增加可藉由例如增加α-酮基戊二酸鹽脫氫酶對琥珀醯CoA之敏感性或增加檸檬酸鹽(Si)合成酶對ATP之抗性,或另外替代地藉由例如增加丙酮酸鹽脫氫酶及異檸檬酸鹽脫氫酶之鈣敏感性。
以上提及之本發明方法包含經由甲基反丁烯二酸或甲基順丁烯二酸或甲基蘋果酸產生甲基丙烯酸之部分酶促程序。酶催化之反應用於生成甲基反丁烯二酸或甲基順丁烯二酸或甲基蘋果酸,此後離體處
理用於生成甲基丙烯酸及其衍生物。如上所述,此等酶促反應較佳藉由一或多種微生物內所包含之酶催化。方法中所用之該/該等微生物在以上相關部分中加以定義。
為離體產生甲基丙烯酸,以上方法之產物甲基反丁烯二酸及/或甲基順丁烯二酸及/或甲基蘋果酸必須存在於該等方法所用之微生物外。
因此,根據本發明之另一態樣,提供一種分泌甲基順丁烯二酸及/或甲基反丁烯二酸及/或甲基蘋果酸之微生物。
較佳地,該/該等微生物經修飾,更佳經基因工程改造以如本文所述增強甲基反丁烯二酸及/或甲基順丁烯二酸及/或甲基蘋果酸之產生。
甲基順丁烯二酸及/或甲基反丁烯二酸及/或甲基蘋果酸之分泌可包括使用微生物之固有/天然能力,或藉由編碼必需細胞轉運機構之蛋白質的一或多種基因或用以直接或間接促進蛋白質在該等轉運機構中起作用及表現之其他輔助基因的修飾或轉型而賦予微生物之經基因工程改造/非天然能力,如下文所詳細論述。
分泌較佳藉由使用微生物之固有/天然能力來實現,因此微生物較佳固有包含分泌甲基順丁烯二酸及/或甲基反丁烯二酸及/或甲基蘋果酸之能力。
或者,分泌係藉由使用微生物之經基因工程改造/非天然能力來實現,因此微生物較佳已經基因工程改造以包含分泌甲基順丁烯二酸及/或甲基反丁烯二酸及/或甲基蘋果酸之能力。
分泌速率較佳增加超過微生物之基本分泌速率,其中該基本分泌速率為在相關微生物之野生型中通常可見之甲基反丁烯二酸及/或甲基順丁烯二酸及/或甲基蘋果酸分泌之速率。若野生型中未發現分泌,基本速率可為0。
分泌速率相對於基本分泌速率較佳增加約5%至10000%,更佳約10%至5000%,更佳約20%至3000%,最佳約30%至1000%。
分泌速率可藉由被動或主動方法增加。分泌速率之被動增加可藉由增加微生物內之甲基順丁烯二酸及/或甲基反丁烯二酸及/或甲基蘋果酸之量或濃度來實現。代謝物之該細胞內增加可驅動分泌機構在增加之速率下或刺激分泌機構本身增加。分泌速率之主動增加可藉由編碼必需細胞轉運機構之蛋白質的一或多種基因或其他輔助基因的修飾或轉型來實現。
分泌速率較佳藉由被動方法,更佳藉由增加微生物內甲基順丁烯二酸及/或甲基反丁烯二酸及/或甲基蘋果酸之量或濃度來增加,其可藉由修飾以增強甲基反丁烯二酸及/或甲基順丁烯二酸及/或甲基蘋果酸之產生來賦予。
可促進甲基反丁烯二酸或甲基順丁烯二酸或甲基蘋果酸分泌之適合之蛋白質包括適用於講該等代謝物轉運穿過相關微生物之細胞膜及/或細胞壁進入周圍培養基之轉運機制中所涉及之任何已知蛋白質。適合之蛋白質可包括例如孔蛋白、泵、轉運體、載體、外來體蛋白等。
細菌為用於以上方法之較佳微生物,如上文所詳述。舉例而言,在細菌中存在四個主要溢出蛋白家族,其為MF(主要易化子)家族、SMR(小多重耐藥)家族、RND(耐藥節結化細胞分化)家族及ABC(ATP結合盒)家族。
MF家族之膜轉運體具有12至14個跨膜域,其實例為:Bcr(大腸桿菌)、EmrB(大腸桿菌)、EmrD(大腸桿菌)、NorA(金黃色葡萄球菌(Staphylococcus aureus))、QacA(金黃色葡萄球菌)及Bmr(枯草芽孢桿菌)。SMR家族之轉運體相當小且通常具有四個跨膜域,其實例為:Smr(或QacC)(金黃色葡萄球菌)、QacE(產氣克雷伯氏菌(Klebsiella aerogenes))及EmrE(大腸桿菌)屬於此家族。RND家族之轉運體由數個次單位(通常三個)組成,且外膜蛋白參與轉運,其實例為:AcrAB(大腸桿菌)及MexAB(綠膿桿菌)。ABC家族之轉運體利用ATP作為能量來源,其實例為:LmrA(雷特氏乳球菌(Lactococcus lactis))及MsrA(金黃色葡萄球菌)。
在一個較佳實施例中,促進甲基反丁烯二酸或甲基順丁烯二酸或甲基蘋果酸分泌之蛋白質為MF家族之一員,更佳為MF家族之多重抗菌藥排出(MATE)蛋白,例如大腸桿菌中發現之Ydhe蛋白或副溶血弧菌(Vibrio parahaemolyticus)中發現之NorM蛋白。
促進甲基反丁烯二酸或甲基順丁烯二酸或甲基蘋果酸分泌之蛋白質最佳為次級轉運機構。轉運機構較佳為主動機構,更佳為對主動離子偶合機構起作用之蛋白質,更佳為陽離子偶合機構,最佳為鈉離子偶合機構。離子偶合機構較佳為同向轉運體。
基因工程改造或修飾微生物之適合之方法闡述於上文,其中任一者可用於修飾或使編碼必需細胞轉運機構之蛋白質的一或多種基因或其他輔助基因轉型。
甲基順丁烯二酸及/或甲基反丁烯二酸及/或甲基蘋果酸適合分泌進入周圍培養基。周圍培養基較佳為醱酵培養基,微生物已較佳培養於其中以產生甲基順丁烯二酸及/或甲基反丁烯二酸及/或甲基蘋果酸。
作為替代或與分泌組合,甲基反丁烯二酸及/或甲基順丁烯二酸及/或甲基蘋果酸可藉由微生物積聚甲基反丁烯二酸或甲基順丁烯二酸或甲基蘋果酸而包含在微生物之細胞內。該方法之所需產物(亦即甲基反丁烯二酸或甲基順丁烯二酸或甲基蘋果酸)可接著藉由例如適當裂解細胞,隨後進行以上方法之步驟(b)來收集。
術語『積聚』可與術語『儲存』或其任何其他等效術語呼喚使
用以意指在微生物內攜帶所需產物甲基反丁烯二酸及/或甲基順丁烯二酸及/或甲基蘋果酸。
該積聚可藉由微生物之固有/天然能力,或藉由編碼必需細胞儲存機構之相關蛋白質的一或多種基因或用以直接或間接促進該等儲存機構中之蛋白質起作用及表現的其他輔助基因的修飾或轉型而賦予微生物之經基因工程改造/非天然能力來實現,如下文所詳細論述。
較佳地,該/該等微生物經修飾,更佳經基因工程改造以如本文所述增強甲基反丁烯二酸及/或甲基順丁烯二酸及/或甲基蘋果酸之產生。
因此,與分泌相關之以上較佳特徵中之任一者亦可應用於積聚甲基反丁烯二酸及/或甲基順丁烯二酸及/或甲基蘋果酸。
可促進甲基反丁烯二酸及/或甲基順丁烯二酸及/或甲基蘋果酸積聚之適合之蛋白質包括適用於將該等代謝物儲存在相關微生物之細胞質或任何細胞器內之儲存機構中所涉及之任何已知蛋白質。適合之蛋白質可包括例如泵、轉運體、載體、內體蛋白、液胞蛋白、伴隨蛋白等。
基因工程改造或修飾微生物之適合之方法闡述於上文,其中任一者可用於修飾或使編碼必需細胞儲存機構之蛋白質的一或多種基因或其他輔助基因轉型。
因此,以上提及之本發明方法可藉由培養能夠產生甲基反丁烯二酸及/或甲基順丁烯二酸及/或甲基蘋果酸之本發明之微生物,較佳在培養基中,以適當產生甲基反丁烯二酸及/或甲基順丁烯二酸及/或甲基蘋果酸來進行。
因此,本發明方法中之任一者可適當另外包含培養一或多種微生物以產生甲基反丁烯二酸及/或甲基順丁烯二酸及/或甲基蘋果酸之步驟。
該培養較佳在醱酵培養基中進行。
因此,根據本發明之另一態樣,提供一種醱酵方法,包含將以上提及之態樣之一或多種微生物培養於醱酵培養基中以產生甲基順丁烯二酸及/或甲基反丁烯二酸及/或甲基蘋果酸。
甲基反丁烯二酸或甲基順丁烯二酸或甲基蘋果酸可存在於醱酵培養基中或微生物之細胞內。
因此,本發明之方法可適當另外包含收集來自醱酵培養基或微生物細胞之甲基反丁烯二酸或甲基順丁烯二酸或甲基蘋果酸及/或其形成中之中間物。
甲基反丁烯二酸或甲基順丁烯二酸或甲基蘋果酸可如上文所描述藉由微生物分泌甲基反丁烯二酸或甲基順丁烯二酸或甲基蘋果酸而存在於醱酵培養基中。
甲基反丁烯二酸或甲基順丁烯二酸或甲基蘋果酸可如上文所描述藉由微生物積聚甲基反丁烯二酸或甲基順丁烯二酸或甲基蘋果酸而存在於微生物細胞中。
較佳地分泌甲基反丁烯二酸及/或甲基順丁烯二酸及/或甲基蘋果酸,較佳進入醱酵培養基中。
或者,甲基反丁烯二酸及/或甲基順丁烯二酸及/或甲基蘋果酸積聚在微生物內,且較佳釋放甲基反丁烯二酸及/或甲基順丁烯二酸及/或甲基蘋果酸,較佳進入醱酵培養基中。
甲基反丁烯二酸及/或甲基順丁烯二酸及/或甲基蘋果酸可以任何適合之形式分泌或積聚,包括酸或一元鹽或二元鹽。甲基反丁烯二酸或其鹽及/或甲基順丁烯二酸或其鹽及/或甲基蘋果酸或其鹽。適合之鹽為銨鹽或二銨鹽、鈉鹽或二鈉鹽、鉀鹽或二鉀鹽。
因此,甲基反丁烯二酸及/或甲基順丁烯二酸及/或甲基蘋果酸或其鹽適當地藉由此項技術中已知的任何方式自醱酵培養基加以收集,
該等方式為諸如:過濾、蒸餾等。因此,本發明之方法可適當包含藉由過濾自周圍培養基收集甲基反丁烯二酸或甲基順丁烯二酸或甲基蘋果酸或其鹽之另一步驟。
視情況,收集甲基反丁烯二酸或甲基順丁烯二酸或甲基蘋果酸或其鹽可另外包含自細胞釋出甲基反丁烯二酸及/或甲基順丁烯二酸及/或甲基蘋果酸或其鹽之步驟,其可藉由此項技術中已知的任何方式來進行,其中較佳使細胞裂解以釋出所需產物,該等方式為諸如:藉由音波處理、離心、酸/鹼處理等,接著為如以上所詳述自醱酵培養基之類似收集方法。因此,本發明之方法可適當包含藉由使細胞裂解及隨後過濾自周圍培養基收集甲基反丁烯二酸或甲基順丁烯二酸或甲基蘋果酸或其鹽之其他步驟。
視情況,甲基反丁烯二酸及/或甲基順丁烯二酸及/或甲基蘋果酸可如上文所詳述以鹽形式自微生物分泌或自微生物釋放。在此情況下,本發明之方法可另外包含甲基反丁烯二酸鹽及/或甲基順丁烯二酸鹽及/或甲基蘋果酸鹽酸化產生原始酸之步驟。此步驟較佳在自醱酵培養基收集甲基反丁烯二酸鹽及/或甲基順丁烯二酸鹽及/或甲基蘋果酸鹽後進行。
培養微生物適當需要基於碳之原料,在該原料上微生物可獲得能量並生長。因此,微生物較佳培養於基於碳之原料上,且本發明之方法可另外包含培養能夠在基於碳之原料上產生甲基反丁烯二酸或甲基順丁烯二酸或甲基蘋果酸之一或多種微生物的步驟。
培養較佳在醱酵培養基中進行,周圍培養基適當包圍微生物,基於碳之原料較佳存在於培養基中,因此培養基較佳包含微生物及基於碳之原料。
因此,根據本發明之另一態樣,提供一種包含以上態樣之一或多種微生物的醱酵培養基。
微生物較佳在超過如上文所解釋之基本速率的增加速率下產生甲基反丁烯二酸或甲基順丁烯二酸或甲基蘋果酸,使得直接分泌或使細胞裂解而存在於培養基中之甲基反丁烯二酸或甲基順丁烯二酸或甲基蘋果酸之濃度較佳在高效價下。
因此,根據本發明之另一態樣,提供一種包含甲基反丁烯二酸及/或甲基順丁烯二酸及/或甲基蘋果酸之醱酵培養基。
醱酵培養基中存在之甲基反丁烯二酸及/或甲基順丁烯二酸及/或甲基蘋果酸之效價較佳為至少5g/L。舉例而言,5、15、25、35、45、55、65、75、85、95、105、115、125、135、145、155g/L,較佳至少大於130g/L。
在甲基反丁烯二酸及/或甲基順丁烯二酸及/或甲基蘋果酸積聚於微生物細胞中之一個實施例中,細胞中存在之甲基反丁烯二酸或甲基順丁烯二酸或甲基蘋果酸及/或其中間物之濃度較佳為至少0.05mM,更佳為至少0.1mM,更佳為至少1mM,更佳為至少2mM,更佳為至少5mM,更佳為至少10mM。細胞中甲基反丁烯二酸及/或甲基順丁烯二酸及/或甲基蘋果酸或其中間物之濃度範圍較佳介於10mM至約300mM,更佳介於約20mM至約200mM,更佳介於約30mM至約100mM,最佳介於約40mM至約70mM。
本發明之微生物可以分批、重複分批、分批進料、重複分批進料或持續培養法形式培養。
培養法適合在培養基中進行,該培養基在本文中另外稱為周圍培養基或醱酵培養基。較佳應用分批進料或重複分批進料法,其中將碳源及/或氮源及/或其他化合物進料至培養法中。更佳將碳及/或氮源進料至培養法中。
培養本發明微生物之醱酵培養基可為適於所述生物需求之任何市購培養基,其限制條件為該生物所必需之相關營養物過量供應。在
採用還原或逆向檸檬酸循環之本發明之上下文中,營養物不為氧氣。
醱酵培養基適當含有如上所述之基於碳之原料及氮源,以及微生物生長及/或甲基反丁烯二酸或甲基順丁烯二酸或甲基蘋果酸形成所必需之其他化合物。
此項技術中已知的適合之基於碳之原料的實例包括葡萄糖、麥芽糖、麥芽糊精、蔗糖、水解澱粉、澱粉、糖蜜及油。基於碳之原料較佳來源於生物質量。
此項技術中已知的適合之氮源的實例包括大豆粉、玉米漿、酵母提取物、氨、銨鹽、硝酸鹽、尿素。
微生物生長所必需之其他化合物之實例包括抗生素、抗真菌劑、抗氧化劑、緩衝劑、磷酸鹽、硫酸鹽、痕量元素及/或維生素。
欲添加至培養基中之基於碳之原料及氮源的總量可視微生物需求及/或培養法之長度而變化。
培養基中基於碳之原料與氮源之間的比率可變化相當大,由此碳與氮之間的最佳比率可藉由產物甲基反丁烯二酸及/或甲基順丁烯二酸及/或甲基蘋果酸之元素組成來確定。
微生物生長及/或甲基反丁烯二酸及/或甲基順丁烯二酸及/或甲基蘋果酸產生所必需的其他化合物,如磷酸鹽、硫酸鹽或痕量元素,可以可在不同種類微生物之間(亦即真菌、酵母與細菌之間)變化的量添加。此外,欲添加之其他化合物之量可藉由是否形成甲基順丁烯二酸及/或甲基反丁烯二酸及/或甲基蘋果酸及其使用何種路徑形成來確定。
通常,微生物生長所必需之醱酵培養基組分之量可相對於培養法所用之基於碳之原料之量加以確定,因為所形成之生物質量之量將主要由所用基於碳之原料之量來確定。
本發明之培養方法較佳以工業規模進行。工業規模方法應理解
成涵蓋在醱酵槽體積規模上之培養法,該醱酵槽體積規模0.01m3,較佳0.1m3,較佳0.5m3,較佳5m3,較佳10m3,更佳25m3,更佳50m3,更佳100m3,最佳200m3。
培養本發明之微生物較佳一般在生物反應器中進行。生物反應器可具有任何尺寸及形式,且可包括用於提供營養物、用於生長之其他化合物、新鮮培養基、基於碳之原料、氣體添加劑,諸如(但不限於)空氣、氮氣、氧氣或二氧化碳之入口。生物反應器亦可包含用於移除培養基之體積以自醱酵培養基本身或自微生物細胞內收集甲基順丁烯二酸及/或甲基反丁烯二酸及/或甲基蘋果酸的出口。生物反應器較佳亦具有用於培養物取樣之出口。生物反應器可一般經組態以例如藉由攪拌、擺動、震盪、倒轉、氣體鼓泡通過培養物等而使醱酵培養基混合。生物反應器為在此項技術中常見及熟知的且實例可見於標準正文中,諸如『Biotechnology:A Textbook of Industrial Microbiology,第二版』(1989)作者:Wulf Cruegar及Annelise Crueger,由Thomas D.翻譯Brock Sinauer Associates,Inc.,Sunderland,MA。
因此,根據本發明之另一態樣,提供一種包含以上態樣之一或多種微生物的生物反應器。
視情況,生物反應器可包含複數個不同的本發明微生物。舉例而言,生物反應器可包含能夠進行經由逆向檸檬酸循環由麩胺酸製造甲基反丁烯二酸之方法的一些微生物,及能夠進行經由糖酵解由丙酮酸鹽及乙醯CoA製造甲基順丁烯二酸或甲基蘋果酸之方法的其他微生物,或本文所述之微生物的任何其他組合。
然而,生物反應器較佳僅包含能夠進行本發明之相同方法的微生物。舉例而言,僅微生物能夠進行經由逆向檸檬酸循環由麩胺酸製造甲基反丁烯二酸之方法或本文所述之其他方法中之任一者。
生物反應器適合僅包含相同物種之微生物,以便可自始至終使
用相同培養條件。
在本發明中,甲基反丁烯二酸及甲基順丁烯二酸及甲基蘋果酸意欲用於製造關鍵化學物質甲基丙烯酸。
甲基丙烯酸(MAA)製造中之一種副產物宜為2-羥基異丁酸(HIB),其在二羧酸甲基反丁烯二酸及甲基順丁烯二酸及甲基蘋果酸分解所用之條件下與產物MAA處於平衡。因此,自分解反應之產物部分或完全分離MAA使平衡自HIB移至MAA,因此在該製程期間或在MAA分離後溶液之後續加工中進一步產生MAA。
甲基丙烯酸可藉由技術人員已知的任何方式與脫除羧基反應介質分離。適合之方法包含將有機溶劑引入含水脫除羧基反應介質以便甲基丙烯酸溶劑萃取至有機相中之步驟。該方法較佳包括添加額外量該等二羧酸中之至少一者至該含水反應介質以增強甲基丙烯酸至有機溶劑中之溶劑萃取。
水相萃取中甲基丙烯酸之濃度較佳為至少0.05mol dm-3,更佳為至少0.1mol dm-3,最佳為至少0.2mol dm-3,尤其至少0.3或0.4mol dm-3。在分批反應中,此濃度在開始萃取時應用於反應介質及在連續法中應用於萃取之起始點。在萃取結束時甲基丙烯酸之濃度將視級數而定,但將較佳低於起始含量之50%、更佳30%、最佳20%。
在此等含量下之甲基丙烯酸之濃度有利地導致萃取至有機相中較佳。
一般,在自含水反應介質萃取甲基丙烯酸期間其中之鹼催化劑莫耳濃度其中總酸濃度mol/mol,更佳地,鹼催化劑莫耳濃度在萃取期間總酸濃度mol/mol之75%,最佳地,在自含水反應介質萃取甲基丙烯酸期間其中之鹼催化劑莫耳濃度非甲基丙烯酸濃度mol/mol,更尤其,在萃取期間非甲基丙烯酸濃度mol/mol之80%。
該至少一種二羧酸之鹼催化劑之莫耳含量較佳維持在相對於在
萃取過程期間其第一酸鹽之形成的低於化學計量之含量下,且因此確定所添加二羧酸之量。
有利地,萃取不需要向水相中添加任何方法外部試劑,以使得水相可容易地且有效地再循環至脫除羧基反應介質中以供在鹼催化條件下進一步脫除羧基,繼而進一步萃取。以此方式無需或需要極少額外鹼使二羧酸進一步加工成甲基丙烯酸。同樣,添加至系統之酸僅為甲基丙烯酸製造中所涉及之彼等二羧酸或製造方法中形成之彼等酸。不需要外部無機酸。
該至少一種二羧酸之鹼催化劑之含量較佳維持在相對於在萃取過程期間其第一酸鹽形成之低於化學計量之含量下。
在含水反應介質中,該至少一種二羧酸之鹼催化劑之相對含量較佳維持在相對於在至少一部分萃取期間其第一酸鹽之形成之低於化學計量之含量下。
較佳地,添加額外量之該等二羧酸中之至少一者至含有該鹼催化之其脫除羧基產物之該含水反應介質中以增強甲基丙烯酸至有機相中之溶劑萃取。
較佳地,本文任何態樣之方法包括在萃取後使有機相與水相分離,繼而隨後處理有機相以使萃取過程中萃取之甲基丙烯酸與有機溶劑分離之步驟。適合之有機相之處理為蒸餾以獲得甲基丙烯酸。
應理解,二羧酸甲基反丁烯二酸及甲基順丁烯二酸及甲基蘋果酸為二元酸,可與鹼形成其第一及第二酸鹽,且術語第一酸鹽應據此理解並不意欲指與二羧酸上之第二或另一酸基之鹽,但僅指形成之第一酸鹽。
有利地,藉由使鹼相對於含水介質/反應介質中二羧酸之含量保持在低於化學計量之第一酸鹽含量下,改良甲基丙烯酸至適合之有機溶劑中之萃取。
較佳地,在用於形成MAA之酸分解之情況下,有機溶劑相對於含水介質/反應介質為外部有機溶劑。
當使用時,有機溶劑可在脫除羧基之前或之後引入含水介質中。
必要時,較佳在藉由所添加之酸實施後反應之後、至少在脫除羧基步驟之後進行之彼部分本文萃取過程中維持低於化學計量之含量。
有利地,根據本發明之一些實施例,亦有可能使該至少一種二羧酸之鹼催化劑之含量維持在相對於在脫除羧基期間其第一酸鹽之形成之低於化學計量之含量下。
適用於甲基丙烯酸萃取之有機溶劑包括烴溶劑或含氧溶劑,特別是C4-C20烴溶劑。烴溶劑可為脂族、芳族或部分芳族,飽和或不飽和,環狀、非環狀或部分環狀,直鏈或分支鏈。含氧溶劑可為酯、醚或酮。適合溶劑包括甲苯、苯、乙基苯、二甲苯、三甲基苯、辛烷、庚烷、己烷、戊烷、環戊烷、環己烷、環庚烷、環辛烷、環己烯、甲基環己烷、甲基乙基酮、甲基丙烯酸甲酯或其混合物。亦可使用不可與水混溶之離子性液體。
用於萃取MAA之較佳溶劑混合物為C4-C20烴溶劑與MMA。適合混合物含有1%至40%之MMA,更通常含有5%至30%之MMA,其餘部分由烴溶劑構成。用於此目的之較佳烴溶劑為甲苯及二甲苯。
然而,較佳僅單獨使用C4-C20烴或使用C4-C20烴與其他烴之混合物作為萃取溶劑。該烴或烴混合物中之各烴在20℃及大氣壓下之相對(靜態)電容率較佳小於20,更佳小於8,最佳小於3。因此,在20℃及大氣壓下具有1.6至20範圍內之相對(靜態)電容率之烴較佳,更佳在1.7至8範圍內,最佳在1.8至3範圍內。
甲基丙烯酸之萃取步驟較佳在低於或等於上文所詳述之脫除羧
基溫度下進行,然而更佳在低於100℃下,最佳在低於80℃下,尤其低於60℃。在任何情況下,用於本發明萃取步驟之較佳較低溫度為-10℃,更佳為0℃。用於本發明萃取步驟之較佳溫度範圍介於-10℃與至多349℃之間,更佳介於-10℃與100℃之間,最佳介於0℃與80℃之間,尤其介於10℃與60℃之間,更尤其為30-50℃。
萃取步驟在有機相及水相處於液相之溫度下進行。
因此,萃取步驟在有機相及含水相處於液相之壓力下進行,萃取一般在大氣壓下進行。
視情況,甲基丙烯酸係藉由純化方法與含水反應介質分離,該純化方法不包括將有機溶劑引入該含水反應介質以便將甲基丙烯酸溶劑萃取至有機相中。
術語將有機溶劑引入該含水反應介質中包括使有機溶劑與含水反應介質接觸。
適合於將甲基丙烯酸與含水反應介質分離之方法可選自蒸餾、分步結晶(此方法可包括游離酸之結晶或該酸之鹽(諸如第I族及第II族金屬鹽,例如鈣鹽)的結晶,隨後酸化以再生游離MAA)。結晶可在適合分離(諸如離子交換層析,例如MAA吸附於鹼性陰離子交換劑(諸如胺離子交換樹脂)上,隨後以強酸(例如HCl)解吸附)之後。另一適合技術為雙極性膜電滲析(BPMED)以例如藉由自甲基丙烯酸鈉形成MAA及NaOH來在結晶之前增加MAA之純度。另一分離技術涉及酯化為烷基酯(諸如甲酯、乙酯或丁酯)以得到MMA、EMA或BMA,隨後進行蒸餾及視情況選用之後續水解以再生MAA。
此外,甲基反丁烯二酸及甲基順丁烯二酸及甲基蘋果酸本身為有用產物,例如用作阻燃劑。
此外,亦設想製造其他有用有機化合物,例如甲基丙烯酸之衍生物,諸如其各種酯。因此,甲基丙烯酸產物可經酯化以產生其酯。
可能之酯可選自C1-C12烷基酯或C2-C12羥基烷基酯、縮水甘油酯、異冰片酯、二甲胺基乙酯、三丙二醇酯。用於形成酯之醇或烯烴最佳可來源於生物來源,例如生物甲醇、生物乙醇、生物丁醇。較佳酯為甲基丙烯酸乙酯、甲基丙烯酸正丁酯、甲基丙烯酸異丁酯、甲基丙烯酸羥基甲酯、甲基丙烯酸羥丙酯或甲基丙烯酸甲酯,最佳為甲基丙烯酸甲酯或甲基丙烯酸丁酯。
甲基丙烯酸較佳藉由酯化反應轉化成甲基丙烯酸烷基脂或甲基丙烯酸羥基烷基脂。適用於該轉化之反應條件為此項技術中所熟知,且與由甲基反丁烯二酸或甲基順丁烯二酸或甲基蘋果酸製造甲基丙烯酸結合描述於PCT/GB2011/052271中。
根據本發明之另一態樣,提供一種製備甲基丙烯酸或甲基丙烯酸酯之聚合物或共聚物的方法,其包含以下步驟:(i)根據本發明製備甲基丙烯酸;(ii)視情況酯化(i)中製備之甲基丙烯酸以產生甲基丙烯酸酯;(iii)使(i)中製備之甲基丙烯酸及/或(ii)中製備之酯視情況與一或多種共聚單體聚合以產生其聚合物或共聚物。
較佳地,上述(ii)之甲基丙烯酸酯係選自C1-C12烷基酯或C2-C12羥基烷基酯、縮水甘油酯、異冰片酯、二甲胺基乙酯、三丙二醇酯,更佳為甲基丙烯酸乙酯、甲基丙烯酸正丁酯、甲基丙烯酸異丁酯、甲基丙烯酸羥基甲酯、甲基丙烯酸羥基丙酯或甲基丙烯酸甲酯,最佳為甲基丙烯酸甲酯、丙烯酸乙酯、甲基丙烯酸丁酯或丙烯酸丁酯。
若並非所有單體殘基均來源於除化石燃料以外之來源,則該等聚合物將有利地具有相當大之部分。
在任何情況下,較佳共聚單體包括例如單乙烯系不飽和羧酸及二羧酸及其衍生物,諸如酯、醯胺及酸酐。
尤其較佳之共聚單體為丙烯酸、丙烯酸甲酯、丙烯酸乙酯、丙
烯酸丙酯、丙烯酸正丁酯、丙烯酸異丁酯、丙烯酸第三丁酯、丙烯酸2-乙基己酯、丙烯酸羥基乙酯、丙烯酸異冰片酯、甲基丙烯酸、甲基丙烯酸甲酯、甲基丙烯酸乙酯、甲基丙烯酸丙酯、甲基丙烯酸正丁酯、甲基丙烯酸異丁酯、甲基丙烯酸第三丁酯、甲基丙烯酸2-乙基己酯、甲基丙烯酸羥基乙酯、甲基丙烯酸月桂酯、甲基丙烯酸縮水甘油酯、甲基丙烯酸羥基丙酯、甲基丙烯酸異冰片酯、甲基丙烯酸二甲胺基乙酯、三丙二醇二丙烯酸酯、苯乙烯、α-甲基苯乙烯、乙酸乙烯酯、異氰酸酯(包括二異氰酸甲苯酯及二異氰酸p,p'-亞甲基二苯酯)、丙烯腈、丁二烯、條件為任何上述共聚單體在(i)中之該酸單體或酯或(ii)中之該酯單體與一或多種共聚單體之任何指定共聚合反應中均並非選自上文(i)或(ii)中之甲基丙烯酸或甲基丙烯酸酯之單體的丁二烯與苯乙烯(MBS)及ABS。
當然,亦可能使用不同共聚單體之混合物。共聚單體本身可藉由或可不藉由與上文(i)或(ii)之單體相同的方法製備。
根據本發明之另一態樣,提供由本文中本發明之另一態樣之方法形成的聚甲基丙烯酸、聚甲基丙烯酸甲酯(PMMA)及聚甲基丙烯酸丁酯均聚物或共聚物。
術語『好氧』係指在氧氣存在下之條件,一般好氧條件係藉由使氧氣鼓泡通過培養基或攪拌培養基來獲得。術語『好氧』在關於檸檬酸循環使用時可係指氧化檸檬酸循環或正向檸檬酸循環,且此等術語可互換使用。
術語『限制氧氣』係指氧氣濃度低於空氣中之濃度。若不進行充氣或攪拌或若降低充氣或攪拌速率,即可達到限制氧氣的條件。
片語『厭氧』係指在氧氣不存在下或在低氧氣含量下之條件,例如氧張力低於約-0.5V之條件。術語『厭氧』在關於檸檬酸循環使用時可係指還原檸檬酸循環或逆向檸檬酸循環,且此等術語可互換使
用。
術語『分泌』在相對於微生物使用時係指將細胞內之相關代謝物轉運或轉移至細胞外,使得相關代謝物接著存在於周圍培養基中。
術語『積聚』在相對於微生物使用時係指相關代謝物在不轉化成任何其他代謝物的情況下在細胞內儲存或累積。
術語『生物反應器』係指可培養一或多種微生物之任何容器。
片語『基於碳之原料』係指可用作微生物能量來源之任何基於碳之物質。
基於碳之原料較佳來源於生物質量。術語『生物質量』在本文中定義為活的或先前活的植物或動物物質,且其可視為意欲如本發明中所描述而使用之廢料物質或物質。
所用生物質量較佳包含大量碳水化合物,尤其較佳為C5或C6糖來源之碳水化合物,較佳為葡萄糖,諸如(但不限於)澱粉、纖維素、肝糖、阿拉伯木聚糖、幾丁質或果膠。
或者,所用生物質量包含大量脂肪,尤其較佳為甘油來源之脂肪或油,特定言之為甘油三酯。適合之甘油三酯包括易於獲自植物或動物來源之任何油或脂肪。該等油及脂肪之實例包括:棕櫚油、亞麻籽油、菜籽油、豬油、黃油、鯡魚油、椰子油、植物油、葵花油、蓖麻油、大豆油、橄欖油、可可脂、酥油、鯨油等。
生物質量可由一或多種不同生物質量來源組成。適合之生物質量來源之實例如下:原木、能量作物、農業殘渣、食物廢料及工業廢料或共產物。
原木生物質量來源可包括(但不限於):木片;樹皮;樹枝;圓木;鋸屑;木屑顆粒或團塊。
能量作物生物質量來源可包括(但不限於):短輪伐期矮林或森林;非木本草,諸如芒草、大麻柳枝稷、蘆葦或黑麥;農業作物,諸
如糖、澱粉或油類作物;或水生植物,諸如微藻類或大型藻類及野草。
農業殘渣可包括(但不限於):外殼;秸稈;玉米秸稈;麵粉;穀物;家禽墊料;糞肥;漿料;或青貯料。
食物廢料可包括(但不限於):皮/皮膚;殼;外殼;核;果仁/果核;動物或魚不可食的部分;來自汁及油萃取之果肉;來自釀造之廢糟或啤酒花;家庭廚房廢料;豬油或油或脂肪。
工業廢料可包括(但不限於):未處理之木材,包括托板;經處理之木材;木材複合材料,包括MDF/OSD、木層壓板、紙漿/碎紙/廢紙;紡織物,包括纖維/紡紗/流出物;或污水污泥。
與本發明方法內之步驟有關之片語『酶促催化』係指使用酶或生物來源之其他催化性結構。
與微生物、某些酶、蛋白質或路徑之活性有關之片語『增強』或等效片語係指插入編碼該酶、蛋白質或路徑之核苷酸序列;增加該酶、蛋白質或路徑之複本數;增加酶、蛋白質或路徑之活性;或添加或增強相關酶、蛋白質或路徑之活化劑或輔因子之含量。舉例而言,2-酮基戊二酸鹽:氧化還原酶需要鐵氧化還原蛋白作為輔因子。為避免疑惑,應注意,增強酶、蛋白質或路徑之活性可包括增加已固有地具有該酶之微生物中該酶、蛋白質或路徑之活性,或藉由用編碼該酶、蛋白質或路徑之相關基因轉型該微生物而賦予不具有該酶之微生物該酶、蛋白質或路徑之活性。
如本文所用之片語『高效價』係指在毫克每公升(mg/L)範圍中之效價。
如本文所用之術語『微生物』係指可為野生型或可能已經基因工程改造以便微生物能夠進行本發明方法中之任一者的一或多個步驟的一或多種微生物,其中術語基因工程改造包括此項技術中已知的基
因工程改造的任何形式,詳言之用核酸轉型微生物及/或內源性或外源性核酸之修飾。術語『微生物』一般係指能夠在培養基中生長之任何細胞系統。該等微生物包括細菌(革蘭氏陽性或革蘭氏陰性)、酵母植物、植物、真菌或哺乳動物或植物細胞株。該等微生物亦包括能夠在培養基中生長之任何人造生物。微生物可具有其天然基因型,或其可經外源性基因轉型或任何其他不同於天然基因型之基因修飾。
術語『工業量』係指能夠在高效價下製造所需化合物之生物體。
術語『嚴格條件』係指形成所謂特異性雜交且不形成非特異性雜交之條件。難以由數值明確定義條件,但其實例可包括具有高同源之核酸彼此雜交及具有低於一定值之同源性的核酸彼此不雜交的條件;且特定言之包括對應於南方雜交之典型洗滌條件的鹽濃度及溫度的條件。例示性高同源性值可包括至少70%、80%、90%及95%同源性。洗滌溫度及鹽濃度之例示性條件可包括60℃,1倍SSC,0.1% SDS;60℃,0.1倍SSC,0.1% SDS;及68℃,0.1倍SSC,0.1% SDS,其中洗滌可進行一次、兩次或三次。
為避免疑惑,術語甲基順丁烯二酸意指以下式(i)化合物
為避免疑惑,術語甲基反丁烯二酸意指以下式(ii)化合物
為避免疑惑,術語甲基蘋果酸意指以下式(iii)化合物
以下縮寫用於本申請案:SSC 生理食鹽水檸檬酸鈉緩衝液;TCA Cycle 三羧酸循環,亦稱為克雷伯氏循環(Kreb's cycle)或檸檬酸循環。
NaOH、甲基丙烯酸、甲基反丁烯二酸、甲基順丁烯二酸及甲基蘋果酸屬於分析級。使用大腸桿菌類型MG1665細胞。LB(豐富)及MSX(基本)培養基合成如下:LB培養基係藉由將粒化LB粉末(25g/L Melford)溶解於dH2O中且高壓蒸汽滅菌(126℃,20min 15psi)來製備。以同樣的方式製備2×濃縮物(50g/L)。
MSX培養基(1L)係藉由使無菌MSA(800ml)與無菌MSB(200ml)及葡萄糖(4g/l)混合來製備。MSA(800ml)含有KH2PO4(6g)、維希尼克痕量元素(Vishniac's trace elements)(2ml)、dH2O(700ml)。藉由添加KOH(1M)使pH值變成7且藉由添加dH2O達到800ml。MSB(200ml)含有NH4Cl(3g)、MgSO4.7H2O(0.4g)。維希尼克痕量元素(1L)係藉由將EDTA二鈉鹽(50g)溶解於dH2O(800ml)中來製備,此舉係藉由添加KOH丸粒直至EDTA溶解來實現。以給定順序向其中添加;ZnSO4(2.2g)、CaCl2(5.54g)、MnCl2.4H2O(5.06g)、FeSO4.7H2O(5g)、(NH4)6Mo7O24.4H2O(1.1g)、CuSO4.5H2O(1.57g)、CoCl2.6H2O
(1.61g)。藉由添加KOH(1M)使pH值變成6,接著添加dH2O至1L之最終體積。將所有溶液高壓蒸汽滅菌(126℃,20min 15psi)且在冷卻時混合。以同樣的方式但每一組分使用兩倍的量來製備MSX培養基之2×濃縮物。
使用蒸餾水得到上述有機酸中之每一者的4×濃縮酸儲備溶液。用NaOH中和儲備溶液至pH 7,隨後1:1稀釋於LB或MSX培養基之2×濃縮物中,得到比待測試之最高濃度再2×濃縮之酸溶液。接著將酸溶液連續稀釋於1ml量之LB及MSX培養基中。接著將100μl酸性培養基之等分試樣分配於96孔板中。
大腸桿菌MG1665之培養物係藉由用大腸桿菌MG1665接種LB或MSX培養基且培育隔夜(20ml,37℃,200rpm),隨後稀釋於LB及MSX培養基中至OD600為0.1來製備。此接著用於將100μl酸性培養基之等分試樣接種於平板中至起始OD600為0.05。此另外稀釋每一酸溶液至所需起始濃度。為保持無菌,用breathe easy film®(Diversified Biotech)密封平板,且在37℃下在Fluostar濁度計中培育。每9.6分鐘自動量測細胞密度,持續16.03小時。
在培育期後,採用其數據計算生長率,此為藉由在指數生長期期間培養所實現的最大代時。由生長率計算EC50值,此為獲得一半最大生長率所需酸之有效濃度。量測滯後時間。此為培養物實現指數生長所耗費的時間。亦量測OD最大值。此為由培養物實現的最高細胞密度。
每一酸之毒性結果展示於下表1中。
表1:甲基丙烯酸、甲基反丁烯二酸、甲基順丁烯二酸及甲基蘋果酸於LB及MSX培養基中之毒性資料的一覽表
參照圖1,圖1展示培養物中之大腸桿菌細胞相對於生長培養基內所含之甲基丙烯酸之濃度的生長率。由大腸桿菌MG1655與各種濃度之MAA於豐富(LB)及基本(MSX)培養基中生長。LB培養基中之生長率(黑色菱形)、LB培養基中之滯後時間(黑色方形)、MSX培養基中之生長率(灰色菱形)、MSX培養基中之滯後時間(灰色方形)。
藉由濁度計自動量測細胞密度之增加,且採用其數據計算生長率及滯後時間。MAA濃度增加對細胞生長具有抑制作用,但在豐富培養基與基本培養基之間觀察到很大毒性差異。LB培養基中,在超過140mM MAA時觀察到少量生長,而在MSX培養基中,在超過24mM則僅有極少量生長。此點反映在兩種培養基之EC50值中。LB培養基中之生長率在87.3mM之MAA濃度下減半,且在MSX培養基中在13.3mM之MAA濃度下減半。
參照圖2,圖2展示培養物中之大腸桿菌細胞相對於生長培養基內所含之甲基反丁烯二酸之濃度的生長率。由大腸桿菌MG1655與各種濃度之甲基反丁烯二酸,於豐富(LB)及基本(MSX)培養基中生長。LB培養基中之生長率(黑色菱形)、LB培養基中之滯後時間(黑色方形)、MSX培養基中之生長率(灰色菱形)、MSX培養基中之滯後時間(灰色方形)。
藉由濁度計自動量測細胞密度之增加,且採用其數據計算生長率及滯後時間。隨著甲基反丁烯二酸濃度增加,生長率降低且滯後時間增加。甲基反丁烯二酸對大腸桿菌之毒性比MAA小。此點顯示在高得多之EC50值。在LB培養基中,此為257mM,且值得注意的是,在MSX培養基中EC50值較高,為348mM。在兩種培養基中,細胞可
耐受500mM甲基反丁烯二酸且仍生長,然而在MSX培養基中,生長率降低83.7%,而相較於LB培養基中則降低64%。
參照圖3,圖3展示培養物中之大腸桿菌細胞相對於生長培養基內所含之甲基順丁烯二酸之濃度的生長率。由大腸桿菌MG1655與各種濃度之甲基順丁烯二酸於豐富(LB)及基本(MSX)培養基中生長。LB培養基中之生長率(黑色菱形)、LB培養基中之滯後時間(黑色方形)、MSX培養基中之生長率(灰色菱形)、MSX培養基中之滯後時間(灰色方形)。
藉由濁度計自動量測細胞密度之增加,且採用其數據計算生長率及滯後時間。隨著甲基順丁烯二酸之濃度增加,生長率降低且滯後時間增加。當大腸桿菌在LB(EC50 338mM)及MSX(EC50 163mM)中生長時,觀察到很大毒性差異。在LB培養基中,大腸桿菌在500mM甲基順丁烯二酸存在下生長而生長率降低76%,在MSX培養基中,當添加300mM甲基順丁烯二酸時,未觀察到生長。雖然如此,甲基順丁烯二酸對大腸桿菌之毒性仍比MAA小。此點顯示在高得多之EC50值上。
參照圖4,圖4展示培養物中之大腸桿菌細胞相對於生長培養基內所含之甲基蘋果酸之濃度的生長率。由大腸桿菌MG1655與各種濃度之甲基蘋果酸於豐富(LB)培養基中生長。LB培養基中之生長率(黑色菱形),LB培養基中之滯後時間(黑色方形)。
藉由濁度計自動量測細胞密度之增加,且採用其數據計算生長率及滯後時間。隨著甲基順丁烯二酸之濃度增加,生長率降低且滯後時間增加。在LB培養基中,培養物中之大腸桿菌可耐受250mM甲基蘋果酸而生長率未減半。甲基蘋果酸對大腸桿菌之毒性比MAA小。此點顯示在高得多之EC50值上。
以下實例顯示使用如上所述之逆向TCA循環經由一系列步驟由葡
萄糖產生甲基反丁烯二酸。所產生之甲基反丁烯二酸可隨後藉由如上所述之化學方法脫除羧基。
使用Datsenko及Wanner PNAS,97,12,6640-6645中公開之基因剔除方法產生大腸桿菌BW25113 △pflB::kanR △ldhA::cmlR(IL2.14.0.0)。由大腸桿菌基因儲存中心(Coli Genetic Stock Centre)獲得大腸桿菌BW25113 △pflB::kanR(菌株名稱JW0886-1)且此菌株使用標準分子生物學技術經pKD46轉型。此菌株接著經對應於側接有對應於ldhA基因5'之40bp DNA及對應於ldhA基因3'之40bp DNA之氯黴素(chloramphenicol)抗性卡匣的PCR產物(用引子ldhA_del5'及ldhA_del3'產生且由pKD3擴增)轉型。在LB/氯黴素上選擇轉型體且藉由使用引子ldhA_flank5'與C1及ldhA_flank3'與C2之菌落PCR確認菌落為BW25113 △pflB::kanR △ldhA::cmlR。經確認之△pflB::kanR △ldhA::cmlR菌株命名為IL2.14.0.0。
ldhA_del5'(SEQ ID No.1):gaaattttgtaaaatatttttagtagcttaaatgtgattcaacatcactggagaaagtcttgtgtaggctggagctgcttc
ldhA_del3'(SEQ ID No.2):ttcgttcgggcaggtttcgcctttttccagattgcttaagttttgcagcgtagtctgagattccggggatccgtcgacc
ldhA_flank5'(SEQ ID No.3):aagttctaccgtgccgacg
ldhA_flank3'(SEQ ID No.4):
cttgtgcaccttctttcagc
C1(SEQ ID No.5):ttatacgcaaggcgacaagg
C2(SEQ ID No.6):gatcttccgtcacaggtagg
在37℃及250rpm下,使大腸桿菌BW25113 △pflB::kanR △ldhA::cmlR菌株在含有30mL LB培養基、50μg/mL康黴素(Kanamycin,kan50)及10μg/mL氯黴素(camp10)之擋板震盪燒瓶中生長16.33小時。含有75mL GM培養基、kan50及camp10之6×500mL檔板震盪燒瓶接種1mL起始培養物且在37℃及250rpm下培育6.75小時。2×75mL(150mL)用於接種醱酵物。
(GM培養基:Na2HPO4.12H2O 15.12g/L、KH2PO4 3g/L、NaCl 0.50g/L、CaCl2 0.011g/L、NH4Cl 1g/L、葡萄糖4.6g/L、MgSO4.7H2O 0.5g/L、FeSO4.7H2O 0.0080g/L、AlCl3.6H2O 0.001g/L、ZnSO4.7H2O 0.0002g/L、CuCl2.2H2O 0.0001g/L、Na2MoO4.2H2O 0.0002g/L、MnSO4.H2O 0.001g/L、CoCl2 0.0004g/L、H3BO3 0.00005g/L、硫胺0.002g/L;H.Wu等人.Appl.Environ.Microbiol.(2007)73:7837-7843)
如由H.Wu等人Appl.Environ.Microbiol.(2007)73:7837-7843所闡明來進行醱酵。使用琥珀酸鹽產生菌株IL2.14.0.0進行兩個單獨醱酵。第一醱酵(SM-FB-1-013-IL2.14.0.0)涉及相繼使用分批葡萄糖及乙酸鹽進料,且在第二醱酵(SM-FB-2-013-IL2.14.0.0)中,相繼使用分批葡萄糖及葡萄糖進料。在37℃、1vvm空氣及連接至600-1200rpm之DO SP=30%下,在由8M NaOH及3M H2SO4控制在pH 7.0下,最初進
行3L容量之分批醱酵,繼而進行分批進料。在以下條件下,在相同醱酵容器中進行生物轉型:斷開乙酸鹽或葡萄糖進料,斷開空氣,最初以0.6L/min、接著0.2L/min通入CO2,斷開RPM SP=200級聯至DO,37℃,pH 7.0(8M NaOH,3M H2SO4),排出氣體斷開。泵吸葡萄糖至20g/L之最終濃度,繼而為NaHCO3,最終濃度為5g/L。在20.08小時生物轉型(兩個醱酵總時間分別為42及39.42小時)後,泵吸第二批葡萄糖至19g/L之最終濃度。在生物轉型期間獲取樣品且藉由HPLC(Agilent Technologies系列1200,來自Phenomenex之Rezex ROA有機酸管柱分析有機酸。
生物轉型培養基包含厭氧BT培養基(0.45% w/v NaCl、0.45% w/v NH4Cl、111mM葡萄糖及200mM NaHCO3)或厭氧SM培養基(Na2HPO4.12H2O 3.78g/L、KH2PO4 0.75g/L、NaCl 0.50g/L、CaCl2 0.011g/L、NH4Cl 7g/L、酵母提取物5g/L、MgSO4.7H2O 0.5g/L、FeSO4.7H2O 0.0080g/L、AlCl3.6H2O 0.001g/L、ZnSO4.7H2O 0.0002g/L、CuCl2.2H2O 0.0001g/L、Na2MoO4.2H2O 0.0002g/L、MnSO4.H2O 0.001g/L、CoCl2 0.0004g/L、H3BO3 0.00005g/L、硫胺0.002g/L、康黴素、氯黴素、119mM NaHCO3及77.7mM葡萄糖)。將來自使用LB或SM培養基之震盪燒瓶培養物之新鮮及冷凍的大腸桿菌BW25113 △pflB::kanR △ldhA::cmlR(IL2.14.0.0)細胞集結粒再懸浮於75mL生物轉型培養基中。在再懸浮後立即且接著每2小時,持續8小時及隨後間隔10小時,持續至多45小時來獲取樣品。準備一式三份生物轉型且藉由HPLC(有機酸分析:Agilent Technologies系列1200,來自Phenomenex之Rezex ROA有機酸管柱,胺基酸分析:Agilent Technologies系列1100,來自Grace之GraceSmart RP 18 5μ管柱分析有機酸及胺基酸。
圖5展示SM-FB-1-013-IL2.14.0.0(大腸桿菌BW25113 △pflB::kanR △ldhA::cmlR)生物轉型樣品藉由HPLC(UV偵測器)之有機酸分析。
圖6展示SM-FB-2-013-IL2.14.0.0(大腸桿菌BW25113 △pflB::kanR △ldhA::cmlR)生物轉型樣品藉由HPLC(UV偵測器)之有機酸分析。
震盪燒瓶規模生物轉型進一步最佳化為就地醱酵隨後生物轉型方法之按比例縮小版本。在此等條件下,最終琥珀酸產量增加至5g/L。
圖7展示在IL2.14.0.0(大腸桿菌BW25113 △pflB::kanR △ldhA::cmlR)之小規模生物轉型開始(T=0h)及結束(T=24h)時之受質及產物組成。
細菌菌株、質體及酶大腸桿菌BW25113 △ldhA:kanR(獲自大腸桿菌基因儲存中心;菌株=JW1375-1)用作表現重組琥珀醯CoA合成酶之宿主菌株。使用專利WO2010/070295中所揭示之方法,藉由DNA2.0合成來自麩胺酸棒狀桿菌之對應於琥珀醯CoA合成酶之基因,且選殖進入pEKEx3穿梭表現載體中。琥珀醯CoA合成酶係作為含有對應於綠硫菌α-酮基戊二酸鹽合成酶之基因的操縱子中之第二基因(藉由DNA2.0合成)來表現。此載體接著用於使用標準分子生物學技術轉型大腸桿菌BW25113 △ldhA:kanR以生成菌株大腸桿菌BW25113 △ldhA:kanR pEKEx3 kgs sucC sucD(IL2.1.1(ANO).0)。
大腸桿菌菌株在37℃下在補充有1mM FeSO4、含有100μg/mL大觀黴素(spectinomycin)之LB培養基中生長。當培養物達到0.6與0.8之
間的OD時,藉由添加1mM IPTG誘導蛋白質表現。在誘導後使培養物生長4小時,且藉由離心收集細胞並儲存在-20℃下。
無細胞提取物係藉由將細胞集結粒以300g/L全細胞當量再懸浮於溶解緩衝液中(50mM Tris HCl(pH 7.5)、1mM EDTA、1mM PMSF、2mg/mL溶菌酶),在冰上培育30分鐘繼而在添加核酸酶後在室溫下培育30分鐘,且在14,000轉下離心5分鐘來製備。溶液及容器在使用之前均用氮氣噴射。
琥珀醯CoA合成酶(SucCD)活性係在25℃下藉由以HPLC(Agilent Technologies系列1100,來自Phenomenex之Luna 5u C18管柱,CoA_GRAD_14AUG方法)量測由琥珀酸鹽形成琥珀醯CoA來確定。反應混合物含有34mM Tris HCl(pH 8.4)、5.8mM琥珀酸鹽、0.89mM輔酶A、1.2mM ATP及3.4mM MgCl2。可購自Megazyme之琥珀醯CoA合成酶(220U/mL)用作陽性對照。反應係藉由添加酶(100μL IL2.1.1(ANO).0或IL2.1.1.0之無細胞提取物或45μL來自Megazyme之10倍稀釋SucCD溶液)來起始。在30分鐘後藉由添加200μL 0.2M甲酸停止反應(1mL總體積)。
圖7展示在9.5min之1mg/mL琥珀醯CoA標準物:琥珀醯CoA峰,在8.5min出現CoA峰歸因於琥珀醯CoA之降解。
圖8展示用表現來自麩胺酸棒狀桿菌之琥珀醯CoA合成酶之大腸桿菌菌株的無細胞提取物進行之酶分析的HPLC跡線。表明琥珀酸鹽轉化成琥珀醯CoA。
表2展示使用不同酶製劑之琥珀醯CoA合成酶催化琥珀酸鹽轉化成琥珀醯CoA之以mM為單位之輔因子及產物的濃度及以%表示之轉化
使用IL2.1.1(ANO).0(大腸桿菌中重組表現之麩胺酸棒狀桿菌SucCD)及IL2.1.1.0(大腸桿菌天然SucCD)之無細胞提取物獲得良好轉化率,表明無需將sucCD基因引入大腸桿菌以產生琥珀醯CoA。
大腸桿菌BL21(DE3)WT用作表現重組α-酮基戊二酸鹽合成酶(Kgs)、鐵氧化還原蛋白-NADP+還原酶(Fdr)及鐵氧化還原蛋白(FdS)之宿主菌株。承載kgs之表現質體pEKEx3 kgs係藉由使用專利WO2010/070295中所揭示之方法在pEKEx3中選殖WT kgs基因(藉由DNA2.0合成)來構築。在選殖過程期間使kgs基因上包括N端His標籤。BL21(DE3)係使用標準分子生物學技術經此質體轉型以生成菌株BL21(DE3)pEKEx3 his-kgs(IL3.0.1(A).0)。
承載fdS-27AA-fdr-his之表現質體pET21b fdS-27AA-fdr-his係藉由使用專利WO2010/070295中所揭示之方法選殖綠硫菌Fds及綠硫菌Fdr(兩者均藉由DNA2.0合成)之融合體(由以下DNA序列:5'-gccggtggaggatccggaggtggaggatccggaggtggaggatccggaggtggaggatccggaggtggaggatccggcggcggc-3'(SEQ ID No.7)連接)來構築。在選殖過程期間使Fdr基因上包括C端His標籤。BL21(DE3)係使用標準分子生物學技
術經此質體轉型以生成菌株大腸桿菌BL21(DE3)pET21b fds-27AA-fdr-his(IL3.0.3(L1-27AA-hZ).0)。
表現重組加his標籤之Kgs及加his標籤之Fdr-FdS融合蛋白之大腸桿菌菌株在37℃下在含有100μg/mL大觀黴素或200μg/mL安比西林(ampicillin)之LB培養基中生長以分別保留質體pEKEx3或pET21b。當培養物達到0.6與0.8之間的OD時,藉由添加1mM IPTG誘導蛋白質表現。在誘導後使培養物生長4小時。藉由離心收集細胞且將集結粒儲存在-20℃下。
藉由使用發現對二硫蘇糖醇及二亞硫磺酸鈉具化學抗性之來自Invitrogen之Ni-NTA瓊脂糖珠粒自大腸桿菌純化重組加his標籤之Kgs及加his標籤之Fdr-FdS融合蛋白。
將冷凍細胞集結粒解凍且以300g/L全細胞當量再懸浮於含有50mM乙酸銨(pH 8.2)、1mM氯化鎂、1mM二亞硫磺酸鈉、1mM EDTA、20mM咪唑、1mM PMSF及30mg溶菌酶之溶解緩衝液中。在冰上培育細胞懸浮液30分鐘,繼而添加核酸酶且在室溫下再培育30分鐘。混合物以1mL等分試樣在先前用氮氣噴射之1.5mL eppendorf管中離心(14,000rpm,5min)。將清液層(無細胞提取物)轉移至新鮮的用氮氣噴射的eppendorf管且儲存在冰上。
Ni-NTA珠粒用含有50mM乙酸銨(pH 8.2)、1mM氯化鎂、1mM二亞硫磺酸鈉、1mM EDTA及20mM咪唑之溶液洗滌三次(500μL Ni-NTA漿料+500μL洗滌溶液,渦旋,離心,移除清液層且使珠粒再懸浮於新鮮洗滌溶液中)。珠粒、容器及所有溶液在使用之前用氮氣脫氣(在0.1L/min下5min)且所有步驟在氮氣覆蓋下進行。在氮氣下,將1mL無細胞提取物(CFE)裝載於經洗滌珠粒(每1mL CFE 500μL Ni-
NTA珠粒漿料)上且在冷室中以最小rpm渦旋一小時。使珠粒集結且移除清液層,亦即結合部分。珠粒用1mL含有50mM乙酸銨(pH 8.2)、1mM氯化鎂、1mM二亞硫磺酸鈉、20mM咪唑之洗滌溶液洗滌兩次。再次離心混合物且移除清液層,亦即洗滌部分。接著使珠粒再懸浮於1mL含有50mM乙酸銨(pH 8.2)、1mM氯化鎂、1mM二亞硫磺酸鈉及250mM咪唑之溶離溶液中。預期此部分含有經純化蛋白。最終用1ml含有50mM乙酸銨(pH 8.2)、1mM氯化鎂、1mM二亞硫磺酸鈉及1M咪唑之第二溶離溶液進行洗滌以自Ni-NTA珠粒移除所有蛋白。
藉由量測在280nm下之吸光度分析純化部分之總蛋白質濃度。藉由SDS PAGE分析每一純化部分以追蹤純化進展及功效。藉由分別使用巴拉刈或細胞色素C分析量測活性分析每一純化部分之Kgs及Fdr-FdS融合蛋白之存在。
Kgs之脫除羧基活性係使用巴拉刈作為電子受體藉由分光光度計(Agilent技術Cary 60)在37℃下記錄在578nm下吸光度之變化來量測。巴拉刈在578nm下之吸收係數為9.78mM-1 cm-1。標準分析混合物包含3mM Tris-HCl(pH 7.5)、10mM α-酮基戊二酸鹽、1mM MgCl2、0.25mM輔酶A、1mM二硫蘇糖醇、5mM巴拉刈及酶。將含有反應混合物之石英槽用螺旋蓋密封且將氮氣注入該槽。藉由添加經純化Kgs起始反應。
經純化部分中Fdr之存在係經由Fdr活性之偵測來確認,Fdr活性係藉由在37℃下在作為最終電子受體之鐵氧化還原蛋白及細胞色素C存在下量測NADPH之氧化來測定。在550nm下監測吸光度變化(Agilent Technologies Cary 60)。標準分析混合物包含50mM Tris-HCl(pH 7.5)、0.2mM NADPH、0.075mM細胞色素C及蛋白質。藉由添加經純化Fdr-FdS融合蛋白起始反應。
藉由Kgs催化之琥珀醯CoA羧化成α-酮基戊二酸鹽視在藉由鐵氧化還原蛋白-NADP+還原酶催化之NADPH氧化後獲得之還原鐵氧化還原蛋白的存在而定,藉由LC-MS(來自Agilent Technologies之1290 Infinity 6140 Quadrupole LC/MS,來自Thermo Scientific之ACCLAIM管柱偵測[13C]標記之碳酸氫鹽併入琥珀醯CoA以產生[13C]標記之α-酮基戊二酸鹽來監測。
標準反應混合物含有50mM Tris HCl(pH 7.8)、1mM MgCl2、1mM二硫蘇糖醇、20mM[13C]標記之NaHCO3、0.25mM輔酶A、10mM NADPH、1mM琥珀醯CoA及必需蛋白(以下條件描述於M.Yamamoto等人.Extremophiles(2010)14:79-85中)。反應混合物預先用氮氣噴射且反應容器中之氣相用氮氣置換。藉由添加琥珀醯CoA起始反應。在37℃下進行反應30分鐘。
經由[13C]標記之碳酸氫鹽併入琥珀醯CoA及經由LC-MS偵測[13C]標記之α-酮基戊二酸鹽監測與Fdr-FdS融合蛋白偶合之藉由Kgs催化之琥珀醯CoA羧化成α-酮基戊二酸鹽。Kgs能夠固定二氧化碳,如質譜中出現[13C]標記之α-酮基戊二酸鹽之質量峰所證明,該質量峰在不存在Kgs的情況下進行反應時並不存在。
圖9展示在以下滯留時間在所有必需蛋白質存在下之羧化反應的層析圖:1.2-1.4min(左)及1.4-1.6min(右)。負性模式中[13C]標記之α-酮基戊二酸鹽之質量為146.0且145.9質量峰在1.2-1.4min可見(紅色箭頭)。
來自強烈火球菌(Pyrococcus furiosus)之麩胺酸鹽脫氫酶(Gdh):
在大腸桿菌中以重組方式表現之來自嗜熱性強烈火球菌之麩胺酸鹽脫氫酶的凍乾樣品購自Wako且以0.05mg/mL之濃度用於分析。
來自牛肝之Gdh:購自Sigma-Aldrich之來自牛肝之麩胺酸鹽脫氫酶的凍乾樣品以如M.Yamamoto等人.Extremophiles(2010)14:79-85所提出之0.1U濃度用於分析。為較佳區分陰性與陽性對照反應,使分析中酶之濃度增加至1U。
如M.Yamamoto等人.Extremophiles(2010)14:79-85所述,藉由在340nm下監測NADPH之還原來分析Gdh酶之活性。分析混合物由5mM α-酮基戊二酸鹽、50mM NH4Cl、0.3mM NADH及10mM MOPS pH 6.8組成。亦在1.0mM及0.5mM之較低受質濃度下監測Gdh活性以確保在Kgs催化之羧化反應預期之低α-酮基戊二酸鹽濃度下具有足夠活性。在70℃下分析來自強烈火球菌之Gdh且在37℃下分析來自牛肝之Gdh。在兩種情況下預先溫熱分析混合物,且藉由添加1mL最終體積之新鮮製備之Gdh儲備溶液起始反應。在340nm下監測吸光度,在讀取中間將光析槽分別置放在70℃或37℃之水浴中。
藉由在340nm下UV吸光度因NADH或NADPH氧化降低監測由Gdh催化之α-酮基戊二酸鹽還原胺化成L-麩胺酸鹽。
來自強烈火球菌之麩胺酸鹽脫氫酶熱穩定高達100℃且因此與來自嗜熱產氫桿菌之Kgs、Ps、Fdr及Fd蛋白相容。來自牛肝之麩胺酸鹽脫氫酶可在至多40℃之溫度下操作且因此更適合與來自綠硫菌之Kgs、Ps、Fdr及Fd蛋白組合。
圖10展示在340nm及37℃下監測NADPH消耗以驗證來自牛肝之麩胺酸鹽脫氫酶(1U)在不同受質濃度(0、0.5、1.0及5.0mM α-酮基戊
二酸鹽)下之活性的分光光度酶分析。在0.0mM α-酮基戊二酸鹽下之反應設置充當陰性對照。
兩種酶均在約1.0U之酶濃度下展示可偵測之活性。受質濃度降低未對來自牛肝之酶的周轉率具有任何顯著影響,甚至使得在由酮基戊二酸鹽合成酶催化之活體內琥珀醯CoA羧化提供之低受質濃度下快速周轉。
大腸桿菌BL21(DE3)用作表現麩胺酸鹽變位酶及甲基天冬胺酸鹽氨解離酶(Maal)之宿主菌株。如由Hao-Ping Chen等人Biochemistry(1997),36(48),14939-14945所述,使用經由胺基酸連接子連接之來自匙形梭菌及破傷風形梭菌之glmE及mutS次單位之融合體構築麩胺酸鹽變位酶。maal基因為來自破傷風形梭菌之WT序列。glmE/mutS融合體及maal基因均由DNA2.0合成。使用專利WO2010/070295中所揭示之方法,將基因排列於操縱子(glmE/mutS繼而maal)中且選殖至pEKEx3(SEQ ID NO.8)及pET21b(SEQ ID NO.9)中。
圖11展示在大腸桿菌及麩胺酸棒狀桿菌中可相容用於雙重表現麩胺酸鹽變位酶(GlmE/MutS)及甲基天冬胺酸鹽氨解離酶(Maal)兩者之pEKEx3 glmE/mutS-maal構築體。RBS=核糖體結合位點,spcR=大觀黴素抗性基因,pMB1=大腸桿菌複製源,pBL1=麩胺酸棒狀桿菌複製源,laclq=lac抑制因子基因。
圖12展示用於在單一大腸桿菌宿主中雙重表現麩胺酸鹽變位酶(GlmE/MutS)及甲基天冬胺酸鹽氨解離酶(Maal)兩者之最終pET21b glmE/mutS-maal構築體。RBS=核糖體結合位點,AmpR=安比西林抗性卡匣,pBR322 ori=pBR322複製源,lacl=lacl抑制因子基因。
在大腸桿菌BL21(DE3)WT中,由單一質體進行麩胺酸鹽變位酶(GlmE/MutS)及甲基天冬胺酸鹽氨解離酶(Maal)之雙重表現。遵循先前用於單一構築體表現之誘導條件(Chen等人Biochemistry(1997),36:14939-14945)。
使用單一轉型體接種隔夜培養物。當使用pEKEx3構築體時,LB培養基含有100μg/ml大觀黴素,或對於pET21b構築體而言,含有200μg/ml安比西林。此培養物用於回稀釋800mL新鮮LB培養基至~0.1之OD600。此培養物在37℃下在攪拌(250rpm)下培育直至OD600達到0.8。此時,藉由添加IPTG至1mM之最終濃度誘導蛋白質表現。在37℃下在攪拌(250rpm)下進行表現4小時。藉由離心(5000g,15min,4℃)收集培養物。使細胞集結粒再懸浮於50mL 10mM Tris-HCl中且在50mL falcon管中再次離心(5000g,15min,4℃)以輔助細胞集結粒回收。集結粒(2.04g)儲存在-20℃下。
蛋白質之無細胞提取物係藉由將細胞集結粒解凍且再懸浮於含有10mM Tris-HCl pH 7.5、5mM PMSF、5μg/mL胃酶抑素A、3mg/mL溶菌酶及250U核酸酶之溶解緩衝液中來產生。細胞懸浮液在冰上培育30分鐘。使混合物離心(5000g,15min,4℃)且使清液層再次離心(16,800g,1min,室溫)並隨後用於酶分析。
使用由H.A.Barker等人The Journal of Biological Chemistry(1964),239(10):3260-3266所述之偶聯酶分析測定GlmE/MutS Maal融合蛋白之活性。供應麩胺酸鹽及鈷醯胺分別作為變位酶之受質及輔因子。甲基反丁烯二酸鹽(由Maal催化之反應的產物)的形成係在240nm下加以分光光度偵測。分析混合物包含50mM Tris-HCl pH 8.2、10
mM氯化鉀、1mM氯化鎂、1mM 2-巰基乙醇、10mM麩胺酸單鈉及6μM鈷胺素。
該分析係藉由合併麩胺酸鹽變位酶及甲基天冬胺酸鹽氨解離酶之個別無細胞提取物(在強T7啟動子控制下之單一基因構築體)以及藉由由共表現之兩種蛋白質組成之單一無細胞提取物(pEKEx3 glmE/mutS maal)來進行。設置包括除輔因子外之所有以上組分的額外陰性對照。
生物轉型係藉由共表現GlmE/MutS及Maal之全細胞來進行。改變全細胞負載、麩胺酸單鈉及鈷醯胺濃度以提供在每一因子高及低含量下之實驗的統計學設計。定期自每一反應獲取樣品且藉由HPLC(胺基酸分析:Agilent Technologies系列1100,來自Grace之GraceSmart RP 18 5μ管柱;有機酸分析:Agilent Technologies系列1200,來自Phenomenex之Rezex ROA有機酸管柱)對麩胺酸鹽、β-甲基天冬胺酸鹽及甲基反丁烯二酸加以分析。
GlmE/MutS及Maal之活性係在大腸桿菌BL21(DE3)WT pEKEx3 glmE/mutS maal及大腸桿菌BL21(DE3)WT pET21b glmE/mutS maal之無細胞提取物中藉由在240nm下分光光度監測甲基反丁烯二酸之形成來測定,甲基反丁烯二酸來源於Maal催化之β-甲基天冬胺酸鹽轉化而β-甲基天冬胺酸鹽來源於變位酶催化之麩胺酸鹽轉化。
圖13展示在大腸桿菌BL21(DE3)WT pEKEx3 glmE/mutS maal之無細胞提取物(CFE)中藉由監測與甲基反丁烯二酸形成相關之在240nm下吸光度之變化來測定變位酶及解離酶活性的分光光度分析,甲基反丁烯二酸形成視由麩胺酸鹽變位酶催化之由麩胺酸鹽形成β-甲基天冬胺酸鹽而定。
在大腸桿菌BL21(DE3)WT pET21b glmE/mutS maal之無細胞提取物中共表現之變位酶及解離酶的活性係藉由在分光光度酶分析期間監測由麩胺酸鹽形成甲基反丁烯二酸來確認。
圖14展示在大腸桿菌BL21(DE3)WT pET21b glmE/mutS maal之無細胞提取物(CFE)中藉由監測與甲基反丁烯二酸形成相關之在240nm下吸光度之變化來測定變位酶及解離酶活性的分光光度分析,甲基反丁烯二酸形成視由麩胺酸鹽變位酶催化之由麩胺酸鹽形成β-甲基天冬胺酸鹽而定。比較使用麩胺酸鹽變位酶及甲基天冬胺酸鹽氨解離酶之個別CFE與含有共表現之兩種蛋白質之單一CFE的反應之間的初始速率。
在生物轉型期間使用不同量之大腸桿菌BL21(DE3)WT pET21b glmE/mutS maal全細胞及改變受質(麩胺酸鹽)及輔因子(鈷醯胺)之濃度監測麩胺酸鹽消耗、β-甲基天冬胺酸鹽及甲基反丁烯二酸鹽形成。
圖15展示使用共表現GlmE/MutS及Maal之菌株的全細胞的八個生物轉型的β-甲基天冬胺酸鹽分析。
圖16展示使用共表現GlmE/MutS及Maal之菌株的全細胞的八個生物轉型的甲基反丁烯二酸分析。
結果展示β-甲基天冬胺酸鹽(<0.15mM)及甲基反丁烯二酸之可偵測含量。初始麩胺酸鹽濃度為100mM之實驗的殘餘麩胺酸濃度均超過此特定分析方法的線性範圍。正如所預期,在較高細胞負載下初始麩胺酸鹽濃度為10mM之實驗與較低細胞負載之實驗相比觀察到的更快速的麩胺酸鹽消耗。所進行之實驗表明兩種酶之活性且因此表明麩胺酸鹽轉化成甲基反丁烯二酸鹽之可行性。
甲基天冬胺酸鹽氨解離酶表現載體係藉由使用專利WO2010/070295中所揭示之方法將對應於破傷風形梭菌之maal基因的基因(藉由DNA2.0合成)選殖於pET21b中來構築。此載體用於使用標準分子生物學技術轉型BL21(DE3)以生成菌株BL21(DE3)WT pET21b maal(L3.0.3(G2).0)。
100μL大腸桿菌BL21(DE3)WT pET21b maal(IL3.0.3(G2).0)細胞庫用於接種1L檔板震盪燒瓶中之200mL含有200μg/mL安比西林之LB培養基。培養物在37℃及250rpm下培育16.5小時。98.3mL在OD600 4.05下之此培養物用101.2mL無菌水注滿且添加至4L LB培養基中以在醱酵開始時獲得0.1之OD600。
在由28%(w/v)NH4OH及2M H2SO4控制之pH 7.0下,在37℃、1vvm空氣及連接至600-1200rpm之DO SP=30%下進行4L容量分批醱酵。在OD600介於0.7-0.9時藉由添加IPTG至1mM之最終濃度來誘導蛋白質表現。在誘導後4小時藉由離心收集細胞(OD600 1.96,濕細胞重量4.92g/L)且將集結粒儲存在-20℃下。
用於生物轉型之無細胞提取物(CFE)之製備:將大腸桿菌BL21(DE3)WT pET21b maal(IL3.0.3(G2).0)及大腸桿菌BL21(DE3)WT pET21b(IL3.0.3.0)集結粒再懸浮於50mM Tris-HCl pH 7.5中至50g/L全細胞當量(WCE)。將再懸浮細胞以接通15秒、關閉45秒超音波處理20分鐘。細胞懸浮液以1mL等分試樣在13,500rpm下離心10分鐘。棄去集結粒且將清液層(無細胞提取物)用於生物轉型。
用於生物轉型之全細胞(WC)之製備:藉由將冷凍細胞集結粒再懸浮於適當體積之50mM Tris-HCL緩衝液(pH 7.5)中而以50g/L全細
胞當量(WCE)製成大腸桿菌BL21(DE3)WT pET21b maal(IL3.0.3(G2).0)及大腸桿菌BL21(DE3)WT pET21b(IL3.0.3.0)之細胞懸浮液。
大腸桿菌BL21(DE3)WT pET21b maal(IL3.0.3(G2).0)之無細胞提取物中甲基天冬胺酸鹽氨解離酶(Maal)之活性係藉由在甲基反丁烯二酸鹽形成後在240nm下監測β-甲基天冬胺酸鹽之脫氨來評估。IL3.0.3.0之無細胞提取物用作陰性對照。標準分析混合物(1mL)含有50mM Tris-HCl pH 8.2、10mM KCl、1mM MgCl2、1mM 2-巰基乙醇、10mM β-甲基天冬胺酸鹽、0.006mM鈷醯胺及50μL無細胞提取物。
β-甲基天冬胺酸鹽係經由使用大腸桿菌BL21(DE3)WT pET21b maal(IL3.0.3(G1).0)之無細胞提取物由甲基反丁烯二酸鹽之酶促轉化來製備。遵循Barker等人Arch.Biochem.Biophys.(1958),78:468-476中所報導之合成方案。
使用Maal由甲基反丁烯二酸鹽製造β-甲基天冬胺酸鹽之小規模評估:反應混合物含有294mM甲基反丁烯二酸、294mM硫酸銨及0.59mM硫酸鎂。使用1M NH4OH將混合物調節至pH 8.0。將0.25mL在200g/L全細胞當量下之無細胞提取物(3.71g細胞再懸浮於18.6mL 50mM Tris HCl pH 8.0中。將以接通15秒、關閉45秒超音波處理20分鐘且隨後在13,000rpm下離心10分鐘)之再懸浮細胞添加至反應混合物,最終體積為17mL。在26℃及100rpm下進行反應。在1、18、24、42及47小時後自反應混合物移出0.1mL等分試樣。將等分試樣加熱至95℃持續5分鐘以終止酶促轉化,且經由HPLC(胺基酸分析:Agilent Technologies系列1100,來自Grace之GraceSmart RP 18 5μ管柱;有機
酸分析:Agilent Technologies系列1200,來自Phenomenex之Rezex ROA有機酸管柱)分析甲基反丁烯二酸及β-甲基天冬胺酸鹽之存在以測定在生物轉型期間甲基反丁烯二酸至β-甲基天冬胺酸鹽之轉化。在47小時後,藉由加熱至95℃持續5分鐘來終止反應。反應混合物運行穿過已用1M H2SO4充裝之含有235g 7320強陽離子交換樹脂之管柱。在殘餘甲基反丁烯二酸已用水溶離後,使用2M NH4OH溶離β-甲基天冬胺酸鹽。使用反相TLC板及1:1:1 1-丁醇:乙酸:水分析溶離份且在UV(對於甲基反丁烯二酸,Rf:0.87)下及使用寧海准(ninhydrin)染料(對於β-甲基天冬胺酸鹽,Rf:0.67)目測。彙集含有β-甲基天冬胺酸鹽之溶離份且凍乾以相對於60%回收產率得到0.51g,3.47mmol β-甲基天冬胺酸鹽。相對於來自Sigma-Aldrich之β-甲基天冬胺酸鹽市售樣品藉由HPLC測定所回收β-甲基天冬胺酸鹽之化學強度且發現為74%。
使用Maal由甲基反丁烯二酸鹽大規模製造β-甲基天冬胺酸鹽:反應混合物含有500mM甲基反丁烯二酸、500mM硫酸銨及1mM硫酸鎂。使用1M NH4OH將混合物調節至pH 8.0。將15mL在200g/L全細胞當量下之無細胞提取物(如上所述之無細胞提取物之製備)添加至反應混合物,最終體積為600mL。在26℃及100rpm下進行反應。在常規間隔下自反應混合物移出0.1mL等分試樣,加熱至95℃持續5分鐘以終止酶促轉化且經由HPLC(胺基酸分析:Agilent Technologies系列1100,來自Grace之GraceSmart RP 18 5μ管柱,有機酸分析:Agilent Technologies系列1200,來自Phenomenex之Rezex ROA有機酸管柱)分析甲基反丁烯二酸及β-甲基天冬胺酸鹽之存在以在生物轉型期間測定甲基反丁烯二酸至β-甲基天冬胺酸鹽之轉化。藉由加熱至95℃持續5分鐘來終止生物轉型。使用7320強陽離子交換樹脂分批純化反應混合物(如上所述)。彙集含有β-甲基天冬胺酸鹽之溶離份且凍乾以得到約
4.75g。相對於來自Sigma-Aldrich之β-甲基天冬胺酸鹽之市售樣品,藉由HPLC測定第一批所回收β-甲基天冬胺酸鹽之化學強度且發現為67.4%。
包含以下表3中之化合物的每一5mL規模的生物轉型係藉由添加無細胞提取物起始且在26℃、250rpm下進行24小時。在0、1、2、16及24小時獲取樣品。
大腸桿菌BL21(DE3)WT pET21b maal(IL3.0.3(G2).0)及大腸桿菌BL21(DE3)WT pET21b(IL3.0.3.0)之全細胞用於此等生物轉型。先前(參見用無細胞提取物之生物轉型)為達到或超出每天>50g/L之目標製造速率所鑑定之關於受質及酶負載之條件用於此組實驗。包含以下化合物(表3)之每一5mL規模生物轉型係藉由添加全細胞起始且在27℃、250rpm下進行24小時。在0、1、2.5、19及24小時獲取樣品。
WCBT-全細胞生物轉型
定期自每一反應獲取200μl樣品。樣品在13,000rpm下減速旋轉且與細胞集結粒分離。清液層及集結粒均儲存在-20℃下。將清液層樣品稀釋100倍,隨後藉由HPLC(有機酸分析:Agilent Technologies系列1200,來自Phenomenex之Rezex ROA有機酸管柱;胺基酸分析:
Agilent Technologies系列1100,來自Grace之GraceSmart RP 18 5μ管柱)對甲基反丁烯二酸鹽及β-甲基天冬胺酸鹽加以分析。
為在生物轉型期間測定細胞成活力,將在生物轉型期間之不同時間點獲取之樣品塗覆於LB瓊脂板上且在37℃下培育隔夜。每一板上獲得之菌落數表示活細胞。為計數LB瓊脂板上之菌落數,時間點樣品必須經稀釋。獲取IL3.0.3(G2).O及IL3.0.3.0之50g/L細胞懸浮液之OD量測值,且製備所有時間點樣品之10倍連續稀釋液。將100μL各稀釋液塗覆於LB瓊脂及含有安比西林之LB瓊脂板上以分別測定細胞成活力及質體保留。
大腸桿菌BL21(DE3)WT pET21b maal(IL3.0.3(G2).0)之無細胞提取物中關於β-甲基天冬胺酸鹽至甲基反丁烯二酸鹽之轉化的Maal活性係藉由監測表明甲基反丁烯二酸鹽形成之在240nm下吸光度之增加來確認,在不存在Maal的情況(大腸桿菌BL21(DE3)WT pET21b之無細胞提取物)下觀察不到在240nm下吸光度之增加。
圖17展示藉由監測與由β-甲基天冬胺酸鹽形成甲基反丁烯二酸相關之在240nm下吸光度之變化測定大腸桿菌BL21(DE3)WT pET21b maal(IL3.0.3(G1).0及IL3.0.3(G2).0)之無細胞提取物(CFE)中甲基天冬胺酸鹽氨解離酶(Maal)活性之分光光度分析。大腸桿菌BL21(DE3)WT pET21b(IL3.0.3.0)之無細胞提取物用於測定背景吸光度(陰性對照)。
藉由Maal催化之由β-甲基天冬胺酸鹽產生每天>50g/L甲基反丁
烯二酸鹽之目標係藉由中間點實驗(MM,生物轉型3)及在高酶負載(LH,HH,生物轉型4及5)下實現。在高酶負載下,>50g/L甲基反丁烯二酸鹽之目標已在生物轉型開始後數分鐘內實現。在不存在Maal的情況下(用大腸桿菌BL21(DE3)WT pET21b之無細胞提取物之對應生物轉型),未觀察到β-甲基天冬胺酸鹽之消耗或甲基反丁烯二酸鹽之形成。
圖18展示在用大腸桿菌BL21(DE3)WT pET21b maal之無細胞提取物之生物轉型期間以g/L為單位之甲基反丁烯二酸鹽之製造速率。在19小時後自最高甲基反丁烯二酸鹽製造量至最低甲基反丁烯二酸鹽製造量,曲線讀取如下:BT5 HH、BT3 MM、BT4 LH、BT2 HL及BT1 LL。
使用大腸桿菌BL21(DE3)WT pET21b maal(IL3.0.3(G2).0)及大腸桿菌BL21(DE3)WT pET21b(IL3.0.3.0)測試β-甲基天冬胺酸鹽至甲基反丁烯二酸鹽之轉化的關於初始受質濃度及細胞負載的三個條件。當所用150g/L β-甲基天冬胺酸鹽及10g/L大腸桿菌BL21(DE3)WT pET21b maal之全細胞(WCBT-1.3)時,超過每天50g/L之初始目標(每天72g/L)。其他兩種生物轉型(WCBT 1.1及1.2)均以每天45g/L產生甲基反丁烯二酸鹽。使用大腸桿菌BL21(DE3)WT pET21b(IL3.0.3.0)全細胞之生物轉型展示無甲基反丁烯二酸鹽產生及β-甲基天冬胺酸鹽含量一致。與使用IL3.0.3(G2).0之無細胞提取物的實驗相比,製得較少甲基反丁烯二酸鹽且反應未完全。
圖19展示在使用大腸桿菌BL21(DE3)WT pET21b maal之全細胞之生物轉型(MM、LH、HH)期間以mM為單位之受質及產物濃度及質量平衡。自在24小時下之最高濃度至在24小時下之最低濃度,曲線讀
取如下:甲基反丁烯二酸鹽及β-甲基天冬胺酸鹽之合併含量(mM)、β-甲基天冬胺酸鹽損失(mM)、甲基反丁烯二酸鹽含量(mM)及β-甲基天冬胺酸鹽含量(mM)。
圖20展示a)在生物轉型開始時在不存在受質的情況下(灰線),b)在使用IL3.0.3(G2).0或IL3.0.3.0之全細胞生物轉型24小時後(藍線)及c)具有保留質體之活細胞(橙線)的活細胞數(細胞數/毫升)。
灰線表示塗覆於LB瓊脂板上之大腸桿菌BL21(DE3)WT pET21b(IL3.0.3.0)之50g/L細胞懸浮液所計數的活細胞數(細胞數/毫升)。藍線表示生物轉型樣品在27℃下培育24小時後所計數之活細胞(細胞數/毫升)。使用IL3.0.3.0之全細胞進行之實驗展示受質(β-甲基天冬胺酸鹽)對於細胞成活力之影響,而使用大腸桿菌BL21(DE3)WT pET21b maal(IL3.0.3(G2).0)之全細胞進行之實驗展示受質及產物(甲基反丁烯二酸鹽)兩者對於細胞成活力之影響。橙線表示使用IL3.0.3(G2).0之全細胞進行之每一生物轉型在27℃下培育24小時後獲取之樣品的質體保留。
資料展示展示最高甲基反丁烯二酸鹽製造量之生物轉型觀察到細胞成活力降低5×105倍。對應陰性對照生物轉型(使用IL3.0.3.0之全細胞)之成活力下降3.6×103倍,意味著產生甲基反丁烯二酸鹽之生物轉型與對應陰性對照相比細胞成活力小約100倍。然而,與甲基丙烯酸製造情況不同,大部分細胞仍為活的。
測試WCBT 1.1、1.2及1.3(使用IL3.0.3(G2).0之全細胞)在生物轉型期間之質體保留。藉由在對應生物轉型條件之間比較LB板上觀察到的生長與LB/Amp板上觀察到的生長,可觀察到質體保留。質體保留在生物轉型WCBT 1.2及1.3中。
以下實例說明藉由如上所述之路徑由葡萄糖製造S及R甲基蘋果
酸及甲基順丁烯二酸。所產生之甲基蘋果酸及甲基順丁烯二酸可接著藉由如上所述之化學方法脫除羧基。
大腸桿菌BL21(DE3)plysS用作表現重組甲基蘋果酸鹽合成酶變異體3.7(CimA3.7)之宿主(Atsumi及Liao 2008,US2010/0209986).用5' ndeI及3' notI限制位點合成(biomatik)CimA3.7之基因且使用習知選殖技術選殖至pET20b(+)載體中。所得質體使用標準技術轉型至大腸桿菌BL21(DE3)plysS中。CimA 3.7 DNA序列展示於SEQ ID NO.10中。
大腸桿菌菌株生長在補充有卡本西林(carbenicillin)(50μg/ml)及氯黴素(34μg/ml)之LB培養基中。當培養物達到OD600nm為1時,藉由添加1mM IPTG誘導蛋白質表現。培養物在誘導後生長4小時且藉由離心(6000rpm,10min 4℃)收集細胞。所收集之細胞集結粒儲存在-80℃下。
將細胞集結粒再懸浮於TES緩衝液(0.1M,pH 7.5,6ml)中且使用Constant Cell Disruption System(Constant Systems;20,000psi,2個通道)裂解。所得粗提取物藉由加熱(60℃持續10min)部分純化且藉由離心(6000rpm,10min 4℃)移除細胞碎片。在Vivaspin 6管柱(GE Healthcare)中過濾無細胞提取物。使用Dc蛋白質分析(Bio-Rad)根據製造商建議方案量測蛋白質濃度。總蛋白質濃度稀釋至1mg/ml於TES緩衝液(0.1M,pH 7.5)中。
使用Howell等人(1999)之方法分析CimA3.7。酶分析物由部分純化之甲基蘋果酸鹽合成酶(200μl,1mg/ml)、乙醯CoA(1mM)、丙酮酸鹽(1mM)及含有MgCl2(5mM)之TES緩衝液(600μl,0.1M,pH 7.5)組成。
在50℃下培育反應混合物且在常規間隔(10min)下獲取樣品(100μl),藉由偵測由CimA對乙醯CoA之作用產生之經釋放輔酶A加以分析。樣品係藉由與含5,5'-二硫基-雙(2-硝基苯甲酸)(DTNB,50μl,10mM)之Tris-HCl(0.1M,pH 8)、Tris-HCl(70μl,1M,pH 8)及dH2O混合至900μl之最終體積來加以分析。量測在412nm下之吸光度並記錄。使用無丙酮酸鹽但含有所有其他上述分析組分之相同反應混合物的空白對照。
來自CimA3.7過度表現之樣品在SDS-PAGE上跑膠以便確認已表現之蛋白質。確認大腸桿菌BL21(DE3)plysS中CimA3.7之表現。
CimA3.7活性係在50℃下藉由監測游離輔酶A之釋放以分光光度法測定。不含丙酮酸鹽或含有煮沸酶提取物之對照與陽性反應在一起進行。圖21展示僅在含有部分純化CimA3.7、乙醯CoA及丙酮酸鹽之反應物中觀察到游離CoA之釋放,表明CimA3.7具有活性。使用乙醯CoA(1mM)及丙酮酸鹽(1mM)(以菱形表示)、具有乙醯CoA(1mM)及丙酮酸鹽(1mM)之煮沸酶提取物(以方形表示)及具有乙醯CoA(1mM)及丙酮酸鹽(1mM)之酶提取物(以叉號表示)進行分析。
大腸桿菌BL21(DE3)plysS用作表現加組胺酸標籤之重組CimA3.7之宿主。使用標準分子生物學技術由pET20b(+)-cimA3.7擴增缺乏終止密碼子之cimA3.7。
所用正向引子為(SEQ ID NO.11):AAATATACATATGATGGTTCGTATCTTCGACACTACCC
反向引子為(SEQ ID NO.12):TTTGCGGCCGCCAGTTTACCAGTAACC
使用標準分子生物學技術將所得缺乏終止密碼子之cimA3.7基因選殖至pET20b(+)中且轉型至大腸桿菌BL21(DE3)plysS中。
大腸桿菌菌株生長在補充有卡本西林(50μg/ml)及氯黴素(34μg/ml)之LB培養基中。當培養物達到OD600nm為1時,藉由添加1mM IPTG誘導蛋白質表現。培養物在誘導後生長4小時且藉由離心(6000rpm,10min 4℃)收集細胞。所收集之細胞集結粒儲存在-80℃下。
將細胞集結粒再懸浮於結合緩衝液(20mM磷酸鈉、500mM NaCl及40mM咪唑,pH 7.4,5ml)中且使用Constant Cell Disruption System(20,000psi,2個通道)裂解。加熱(60℃,10min)粗提取物且離心(6000rpm,10min,4℃)。將所得無細胞提取物過濾(0.2μM過濾器)且裝載於用結合緩衝液預先平衡之HisTrap FF粗Ni sepharoseTM管柱(GE Healthcare)上。使蛋白質結合於管柱且用線性梯度之咪唑(40-500mM)溶離。對含有CimA3.7 6×His之溶離份進行濃縮且如製造商(Sartorius)所述使用Vivaspin 6管柱將緩衝液更換成含有MgCl2(5mM)之磷酸鉀緩衝液(0.1M pH 7.5)。如製造商(Bio-Rad)所述使用Dc蛋白質分析量測蛋白質濃度且藉由稀釋於含有MgCl2(5mM)之磷酸鉀緩衝液(0.1M,pH 7.5)中而調節至1mg/ml。
在Nunc® 96孔板中進行酶分析。各孔含有新鮮製備之經純化甲基蘋果酸鹽合成酶(40μl,1mg/ml)、含DTNB(10mM)之具有MgCl2(5mM)之磷酸鉀緩衝液(0.1M,pH 7.5,11.1μl)及含有MgCl2(5mM)之磷酸鉀緩衝液(108.9μl,0.1M,pH 7.5)。乙醯CoA之濃度係藉由添加25mM儲備液(20μl)設定在2.5mM下,且藉由添加丙酮酸鹽儲備溶液(20μl)使丙酮酸鹽之濃度自0.01mM變成5mM。在設定在2.5mM下之丙酮酸鹽濃度及在0.01mM與5mM之間變化的乙醯CoA濃度下反覆分析。板在37℃下在Fluostar Optima板讀取器中加以培育且每30秒量測在412nm下之吸光度,持續45分鐘。
SDS-PAGE展示已藉由移除大部分污染性天然大腸桿菌蛋白獲得高水準純度。藉由Dc分析估計之總蛋白質含量亦藉由樣品中總蛋白
質之量減少12倍反映出良好純化。樣品中之總活性受到損失,然而,比活性改良再次證實純化為成功的。
板讀取器分析用於以分光光度法量測經純化CimA3.7在37℃下之活性。當與2-巰基乙醇計算量之標準曲線比較時,活性係藉由監測游離CoA之釋放來測定。
丙酮酸鹽之Km經計算為0.961±0.102mM且乙醯CoA之Km經計算為0.267±0.04mM。經純化酶之比活性為1.448±0.122μmol/min/mg蛋白質。
大腸桿菌BW25113 △pflB△ldhA(IL2.13.0.0)係使用由Datsenko及Wanner(2000)公開之基因剔除方法來產生。IL2.13.0.0係使用標準選殖技術經pBAD24-cimA轉型。
pBAD24-cimA係藉由使用標準選殖程序擴增pET20b(+)-cimA之cimA以使其包括在5'端之夏因達爾加諾序列(Shine Dalgarno sequence)及nheI限制位點及在3'端之hindIII限制位點來產生。將cimA基因插入至pBAD24中且使用標準技術轉型至IL2.13.0.0中以產生菌株大腸桿菌BW25113 △pflB△ldhA pBAD24-cimA(IL2.13.13(w).0)
用於PCR之正向引子為(SEQ ID NO.13):AAAGCTAGCAGGAGGAATTCACCATGATGGTTCGTATCTTCG
反向引子為(SEQ ID NO.14):TTTAAGCTTTACAGTTTACCAGTAACCTCACGC
IL 2.13.13(w).0生長在37℃下含有200ml SM生長培養基之1L檔
板震盪燒瓶中。SM生長培養基每公升含有Na2HPO4.12H2O(3.78g)、KH2PO4(0.75g)、NaCl(0.50g)、CaCl2(0.011g)、NH4Cl(7g)、酵母提取物(5g)、MgSO4.7H2O(0.5g)、FeSO4.7H2O(0.0080g)、AlCl3.6H2O(0.001g)、ZnSO4.7H2O(0.0002g)、CuCl2.2H2O(0.0001g)、Na2MoO4.2H2O(0.0002g)、MnSO4.H2O(0.001g)、CoCl2(0.0004g)、H3BO3(0.00005g)、硫胺(0.002g)、安比西林(0.04g)及甘油(15g)。在OD600下藉由添加L-阿拉伯糖(0.2g/l)誘導蛋白質表現且再培育培養物3小時。
藉由離心收集如所述生長的培養物且將集結粒再懸浮於SM厭氧培養基(20ml/75g/l濕細胞重量)中。SM厭氧培養基每公升含有Na2HPO4.12H2O(3.78g)、KH2PO4(0.75g)、NaCl(0.50g)、CaCl2(0.011g)、MgSO4.7H2O(0.5g)、FeSO4.7H2O(0.0080g)、AlCl3.6H2O(0.001g)、ZnSO4.7H2O(0.0002g)、CuCl2.2H2O(0.0001g)、Na2MoO4.2H2O(0.0002g)、MnSO4.H2O(0.001g)、CoCl2(0.0004g)、H3BO3(0.00005g)、硫胺(0.002g)、安比西林(0.04g)、NaHCO3(5g)及葡萄糖(20g)。
再懸浮細胞培育在500ml檔板震盪燒瓶中(37℃,250rpm,24小時)。在0小時及24小時對生物轉型物進行取樣。在相同條件下建立大腸桿菌BW25113 △pflB△ldhA pBAD24空載體之對照。
藉由HPLC Agilent Technologies系列1200、Rezex ROA有機酸管柱(Phenomenex)分析生物轉型樣品之有機酸組成。
生物轉型物之有機酸組成展示於圖22中。甲基蘋果酸作為主要產物由IL2.13.13(w).0產生。對照菌株之主要產物為乙酸。
大腸桿菌BW25113 △pflB△ldhA(IL2.13.0.0)係使用由Datsenko及Wanner(2000)公開之基因剔除方法來產生。IL2.13.0.0係使用標準選
殖技術經pBAD24-cimA轉型。
pBAD24-cimA係藉由使用標準選殖程序擴增pET20b(+)-cimA之cimA以使其包括在5'端之夏因達爾加諾序列及nheI限制位點及在3'端之hindIII限制位點來產生。將cimA基因插入至pBAD24(Guzman等人1995)中且使用標準技術轉型至IL2.13.0.0中以產生菌株大腸桿菌BW25113 △pflB△ldhA pBAD24-cimA(IL2.13.13(w).0)
用於PCR之正向引子為(SEQ ID NO.13):AAAGCTAGCAGGAGGAATTCACCATGATGGTTCGTATCTTCG
反向引子為(SEQ ID NO.14):TTTAAGCTTTACAGTTTACCAGTAACCTCACGC
IL 2.13.13(w).0生長在37℃下含有200ml SM生長培養基之1L檔板震盪燒瓶中。SM生長培養基每公升含有Na2HPO4.12H2O(3.78g)、KH2PO4(0.75g)、NaCl(0.50g)、CaCl2(0.011g)、NH4Cl(7g)、酵母提取物(5g)、MgSO4.7H2O(0.5g)、FeSO4.7H2O(0.0080g)、AlCl3.6H2O(0.001g)、ZnSO4.7H2O(0.0002g)、CuCl2.2H2O(0.0001g)、Na2MoO4.2H2O(0.0002g)、MnSO4.H2O(0.001g)、CoCl2(0.0004g)、H3BO3(0.00005g)、硫胺(0.002g)、安比西林(0.04g)及甘油(15g)。在OD600nm下藉由添加L-阿拉伯糖(0.2g/l)誘導蛋白質表現且再培育培養物3小時。
藉由離心收集如所述生長的培養物且將集結粒再懸浮於SM厭氧培養基(20ml/75g/l濕細胞重量)中。SM厭氧培養基每公升含有Na2HPO4.12H2O(3.78g)、KH2PO4(0.75g)、NaCl(0.50g)、CaCl2(0.011g)、MgSO4.7H2O(0.5g)、FeSO4.7H2O(0.0080g)、AlCl3.6H2O(0.001g)、ZnSO4.7H2O(0.0002g)、CuCl2.2H2O(0.0001g)、Na2MoO4.2H2O(0.0002g)、MnSO4.H2O(0.001g)、CoCl2(0.0004g)、H3BO3(0.00005g)、硫胺(0.002g)、安比西林(0.04g)、NaHCO3(5g)
及葡萄糖(20g)。
將再懸浮細胞轉移至50ml falcon管且用無菌CO2噴射。密封反應物且培育(37℃,250rpm,24小時)。在0小時及24小時對生物轉型物進行取樣。在相同條件下建立大腸桿菌BW25113 △pflB△ldhA pBAD24空載體之對照。
藉由HPLC Agilent Technologies系列1200、來自Phenomenex之Rezex ROA有機酸管柱、Rez_0.5mL等度方法分析生物轉型樣品之有機酸組成。生物轉型物之有機酸組成展示於圖23中。
甲基蘋果酸鹽係由大腸桿菌BW25113 △ldhA△pflB pBAD-cimA3.7而並非由對照菌株大腸桿菌BW25113 △ldhA△pflB pBAD以厭氧方式產生。
大腸桿菌BW25113 △pflB△ldhA(IL2.13.0.0)係使用由Datsenko及Wanner(2000)公開之基因剔除方法來產生。IL2.13.0.0係使用標準選殖技術經pBAD24-cimA轉型。
pBAD24-cimA係藉由使用標準選殖程序擴增pET20b(+)-cimA之cimA以使其包括在5'端之夏因達爾加諾序列及nheI限制位點及在3'端之hindIII限制位點來產生。將cimA基因插入至pBAD24中且使用標準技術轉型至IL2.13.0.0中以產生菌株大腸桿菌BW25113 △pflB△ldhA pBAD24-cimA(IL2.13.13(w).0)
用於PCR之正向引子為(SEQ ID NO.13):AAAGCTAGCAGGAGGAATTCACCATGATGGTTCGTATCTTCG
反向引子為(SEQ ID NO.14):TTTAAGCTTTACAGTTTACCAGTAACCTCACGC
IL2.13.13(w).0在含有100ml醱酵培養基之500ml檔板震盪燒瓶中生長隔夜。醱酵培養基每公升含有(NH4)2SO4(2g)、K2HPO4(14.6
g)、NaH2PO4.2H2O(3.6g)、(NH4)2H-檸檬酸鹽(0.5g)、酵母提取物(5g)、CaCl2.2H2O(0.001g)、FeCl3(0.02g)、ZnSO4.7H2O(0.00036g)、CuSO4.5H2O(0.00032g)、MnSO4.H2O(0.0003g)、CoCl2.6H2O(0.00036g)、Na2EDTA.2H2O(0.0446g)、MgSO4.7H2O(0.49g)、葡萄糖(11.9g)、卡本西林(0.05g)。使用隔夜培養物接種3L容量之分批醱酵液。此後為在37℃、1vvm空氣及連接至600-1200rpm之DO SP=30%下,由8M NaOH及3M H2SO4控制在pH 7.0下進行分批進料。
在相同醱酵容器中,在相同條件下進行好氧生物轉型。將葡萄糖經由外部進料管線泵吸至容器中以達到每75g濕細胞重量20g/l之最終濃度。在整個醱酵過程中使用Accu-chek®葡萄糖儀錶監測葡萄糖含量,且當先前葡萄糖批次已耗盡時,以先前所述葡萄糖劑量饋入另一批葡萄糖。
定期獲取樣品以測定OD、濕細胞重量、乾細胞重量及有機酸組成。藉由HPLC Agilent Technologies系列1200、Rezex ROA有機酸管柱(Phenomenex)分析生物轉型樣品之有機酸組成。
甲基蘋果酸鹽製造量達到115g/L之最終效價。在生物轉型階段期間,166g/L葡萄糖以1.66g/L/h之速率轉化成86g/L甲基蘋果酸鹽。亦藉由HPLC偵測低含量甲基順丁烯二酸(2.2g/L)
大腸桿菌BL21(DE3)用作表現蘋果醯CoA解離酶(Mcl)之宿主菌株。mcl基因為來自類球紅細菌之WT序列(Alber等人2006)。mcl基因係藉由DNA2.0合成。該基因係使用專利WO2010/070295中所揭示之方法選殖至pEKEx3中。Mcl DNA序列展示於SEQ ID NO.15中。
將細胞集結粒再懸浮於含有溶菌酶(2mg/ml)之HEPES緩衝液(200
mM,pH 7.5)中至300g/l之濕細胞重量。其在冰上進行培育(30分鐘)。添加核酸酶DNAse且在室溫下進行培育(20分鐘)。離心細胞懸浮液(14000rpm,5分鐘)且將清液層儲存在冰上。
使大腸桿菌菌株生長在補充有大觀黴素(100μg/ml)之LB培養基中。當培養物達到OD600nm為0.6時,藉由添加1mM IPTG誘導蛋白質表現。培養物在誘導後生長4小時且藉由離心(5000rpm,10min 4℃)收集細胞。所收集之細胞集結粒儲存在-20℃下。
使用由Zarzycki及Kerfeld(2013)所述之Mcl分析的修改版本進行酶分析。進行300μl規模之Mcl分析。分析物含有乙醯CoA(1mM)、丙酮酸鹽(10mM)、MgCl2(5mM)、無細胞提取物(30μl)及HEPES緩衝液(200mM,pH 7.5,180μl)。培育分析物(30℃,30分鐘)且隨後置於冰上。添加甲酸(15μl)以停止反應。藉由LC-MS分析反應產物。
進行含有除丙酮酸鹽外之所有上述分析組分的對照反應。相同分析混合物亦用於含有空pEKEx3載體之菌株。
來自Mcl過度表現之樣品在SDS-PAGE上跑膠以便確認已表現之蛋白質。在35kDa之條帶確認該菌株已表現Mcl。由Mcl分析產生之LC-MS資料的實例展示於圖24中。
分子量898之峰確認Mcl具有產生甲基蘋果醯CoA之活性。在反應混合物不包括丙酮酸鹽或使用空載體菌株之對照反應物中未觀察到該峰。
大腸桿菌BL21(DE3)用作表現蘋果醯CoA解離酶(Mcl)之宿主菌株。mcl基因為來自類球紅細菌之WT序列。mcl基因係藉由DNA2.0合成。該基因係使用專利WO2010/070295中所揭示之方法選殖至pET21b中。
大腸桿菌BL21(DE3)用作表現琥珀酸鹽:甲基蘋果酸鹽CoA轉移酶
(SmtAB)之宿主菌株。smtA及smtB基因為來自橙色綠屈撓菌之WT序列(Friedmann等人2006)。兩種基因係藉由DNA2.0合成。使用專利WO2010/070295中所揭示之方法將基因選殖至pET21b中之操縱子上。smtA DNA序列展示於SEQ ID NO.16中。smtB DNA序列展示於SEQ ID NO.17中。
使大腸桿菌菌株生長在補充有安比西林(200μg/ml)之LB培養基中。當培養物達到OD600nm為0.6時,藉由添加1mM IPTG誘導蛋白質表現。培養物在誘導後生長4小時且藉由離心(5000rpm,10min 4℃)收集細胞。所收集之細胞集結粒儲存在-20℃下。
將細胞集結粒再懸浮於含有溶菌酶(2mg/ml)之HEPES緩衝液(200mM,pH 7.5)中至300g/l之濕細胞重量。其在冰上培育(30分鐘)。添加核酸酶DNAse且在室溫下培育(20分鐘)。離心細胞懸浮液(14000rpm,5分鐘)且將清液層儲存在冰上。
進行300μl規模之偶聯分析。分析物含有乙醯CoA(1mM)、丙酮酸鹽(10mM)、琥珀酸鹽(1mM)、MgCl2(5mM)、大腸桿菌BL21(DE3)pET21b-mcl無細胞提取物(30μl)、大腸桿菌BL21(DE3)pET21b-smtAB無細胞提取物(30μl)及HEPES緩衝液(200mM,pH 7.5,120μl)。培育分析物(37℃,1小時)且隨後置於冰上。添加甲酸(15μl)以停止反應。藉由LC-MS分析反應產物。
建立除含有空載體之大腸桿菌BL21(DE3)之無細胞提取物替代各酶外含有所有上述分析組分之對照反應物。
來自Mcl及SmtAB過度表現之樣品在SDS-PAGE上跑膠以證明蛋白質已表現。在35kDa之條帶確認Mcl之表現。預期44kDa及46kDa之條帶屬於SmtAB,觀察到兩個清楚的條帶,然而尺寸略微偏離預期尺寸。
橙色綠屈撓菌Mcl及SmtAB活性先前已藉由(S)-甲基蘋果酸鹽及
(S)-蘋果酸鹽作為受質用於製造丙酮酸鹽及乙醯CoA或乙醛酸鹽及乙醯CoA而得以反向證明(Friedmann等人2006)。酶活性亦已在用於由乙醛酸鹽及乙醯CoA製造蘋果酸鹽之大腸桿菌中得以證明(Mattozzi等人2013)。關於類球紅細菌及橙色綠屈撓菌之偶聯分析之LC-MS資料的實例展示於圖25中。
147之峰確認(S)-甲基蘋果酸已產生。在用大腸桿菌BL21(DE3)pET21b空載體之粗提取物置換兩種酶中之任一者的任何對照反應物中,未觀察到該峰。
作為甲基丙烯酸前驅體之有機酸,諸如甲基反丁烯二酸及甲基順丁烯二酸及甲基蘋果酸,顯示出對大腸桿菌細胞之毒性小很多且導致少很多的細胞死亡。因此,該等酸在細胞環境內之積聚與甲基丙烯酸本身之積聚不同,可能為可耐受的。
本發明使用此發現,因為其藉由製造前驅體酸而不活體內製造甲基丙烯酸提供諸如大腸桿菌之細胞在製造甲基丙烯酸及其衍生物之方法中之用途。此減少細胞之浪費性毀壞且使得該等方法變成商業可行的持續方法,同時仍保持環保。
H. A. BARKER, V. R. (1964). The Glutamate Mutase System ASSAYS AND PROPERTIES. The Journal of Biologlcal Chemistry, 239(10), 3260-3266.
Hao-Ping Chen, E. N. (1997). Adenosylcobalamin-Dependent Glutamate Mutase: Examination of Substrate and Coenzyme Binding in an Engineered Fusion Protein Possessing Simplified Subunit Structure and Kinetic Properties. Biochemistry, 36 (48), 14939-14945.
Hui Wu, Z.-m. L. (2007). Improved Succinic Acid production in the
anaerobic culture of an E.coli pflB ldhA double mutant as a result of the enhanced anaplerotic activities in the preceding aerobic culture. Appl. Environ. Microbiol., 73(4), 7837-7843.
KI-SEOK YOON, M. I. (1996). Purification and Characterization of 2-Oxoglutarate: Ferredoxin Oxidoreductase from a Thermophilic, Obligately Chemolithoautotrophic Bacterium, Hydrogenobacter thermophilus TK-6. JOURNAL OF BACTERIOLOGY, 178(11), 3365-3368.
Yamamoto, M., Ikeda, T., Arai, H., Ishii, M., & Igarashi, Y. (2010,). Carboxylation reaction catalyzed by 2-oxoglutarate:ferredoxin oxidoreductases from Hydrogenobacter thermophilus. Extremophiles, 14, 79-85.
K. A. Datsenko and B. L. Wanner (2000). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. PNAS, 97, 12, 6640-6645.
Alber, B. E., Spanheimer, R., Ebenau-Jehle, C., & Fuchs, G. (2006). Study of an alternate glyoxylate cycle for acetate assimilation by Rhodobacter sphaeroides. Molecular Microbiology, 61(2), 297-309.
Atsumi, S., & Liao, J. C. (2008). Directed evolution of Methanococcus jannaschii citramalate synthase for biosynthesis of 1-propanol and 1-butanol by Escherichia coli. Applied and Environmental Microbiology, 74(24), 7802-8.
Datsenko, K. A, & Wanner, B. L. (2000). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proceedings of the National Academy of Sciences of the United States of America, 97(12), 6640-5.
Friedmann, S., Steindorf, A., Alber, B. E., & Fuchs, G. (2006).
Properties of Succinyl-Coenzyme A: L -Malate Coenzyme A Transferase and Its Role in the Autotrophic 3-Hydroxypropionate Cycle of Chloroflexus aurantiacus. Journal of Bacteriology, 188(7), 2646-2655.
Guzman, L. M., Belin, D., Carson, M. J., & Beckwith, J. (1995). Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter., 177(14), 4121-4130.
Howell, D. M., Xu, H., & White, R. H. (1999). (R)-citramalate synthase in methanogenic archaea. Journal of Bacteriology, 181(1), 331-3.
Liao, J. C., Atsumi, S., Cann A., F. 2010. Biofuel production by recombinant microorganisms. US patent application 2010/0209986.
Mattozzi, M. D., Ziesack, M., Voges, M. J., Silver, P. A, & Way, J. C. (2013). Expression of the sub-pathways of the Chloroflexus aurantiacus 3-hydroxypropionate carbon fixation bicycle in E. coli: Toward horizontal transfer of autotrophic growth. Metabolic Engineering, 16.
Zarzycki, J., & Kerfeld, C. A. (2013). The crystal structures of the tri-functional Chloroflexus aurantiacus and bi-functional Rhodobacter sphaeroides malyl-CoA lyases and comparison with CitE-like superfamily enzymes and malate synthases. BMC Structural Biology, 13(1), 28.
應注意與本說明書同時或在本說明書之前提出申請的與本申請案有關且與本說明書一起對公眾檢閱開放的所有論文及文件,及所有此等論文及文件之內容,皆以引用的方式併入本文中。
在本說明書(包括任何隨附申請專利範圍、摘要及圖式)中揭示之所有特徵及/或如此揭示之任何方法或製程之所有步驟可以任何組合
形式組合,該等特徵及/或步驟中之至少一些相互排斥之組合除外。
除非另有明確說明,否則本說明書(包括任何隨附申請專利範圍、摘要及圖式)中所揭示之各種特徵可用替代特徵置換,以達成相同、等效或相似目的。因此,除非另有明確說明,否則所揭示之每一特徵僅為一系列通用等效或類似特徵之一個實例。
本發明不受限於先前實施例之詳述。本發明擴展至本說明書(包括任何隨附申請專利範圍、摘要及圖式)中揭示之特徵之任何新穎特製或任何新穎組合,或擴展至如此揭示之任何方法或製程之步驟之任何新穎步驟或任何新穎組合。
本發明現將參考以下非限制性實例及圖來說明,其中:圖1:展示甲基丙烯酸毒性測試
圖2:展示甲基反丁烯二酸毒性測試
圖3:展示甲基順丁烯二酸毒性測試
圖4:展示甲基蘋果酸毒性測試
圖5:展示藉由大腸桿菌生物轉型樣品之HPLC(UV偵測器)分析之琥珀酸製造
圖6:展示藉由大腸桿菌生物轉型樣品之HPLC(UV偵測器)之琥珀酸分析
圖7:展示在用於琥珀酸製造之小規模大腸桿菌生物轉型之開始及結束時的受質及產物組成
圖8:展示用大腸桿菌之無細胞提取物產生琥珀醯CoA所進行之酶分析的HPLC跡線
圖9:展示琥珀醯CoA至α-酮基戊二酸鹽之羧化反應在1.2-1.4min(左)及1.4-1.6min(右)之滯留時間的層析圖
圖10:展示在340nm及37℃下監測NADPH消耗以驗證麩胺酸鹽
脫氫酶用於製造麩胺酸鹽之活性的分光光度酶分析
圖11展示在大腸桿菌及麩胺酸棒狀桿菌中可相容用於雙重表現麩胺酸鹽變位酶(GlmE/MutS)及甲基天冬胺酸鹽氨解離酶(Maal)兩者之pEKEx3 glmE/mutS-maal構築體
圖12展示用於在單一大腸桿菌宿主中雙重表現麩胺酸鹽變位酶(GlmE/MutS)及甲基天冬胺酸鹽氨解離酶(Maal)兩者之pET21b glmE/mutS-maal構築體
圖13展示在包含pEKEx3 glmE/mutS maal質體用於製造甲基反丁烯二酸之大腸桿菌的無細胞提取物(CFE)中測定變位酶及解離酶活性之分光光度分析
圖14展示在包含pET21b glmE/mutS maal質體用於製造甲基反丁烯二酸之大腸桿菌的無細胞提取物(CFE)中測定變位酶及解離酶活性之分光光度分析
圖15展示使用圖13共表現GlmE/MutS及Maal之大腸桿菌菌株之全細胞之生物轉型的β-甲基天冬胺酸鹽分析
圖16展示使用圖14共表現GlmE/MutS及Maal之大腸桿菌菌株之全細胞之生物轉型的甲基反丁烯二酸分析
圖17展示在包含pET21b maal質體用於製造甲基反丁烯二酸之大腸桿菌之無細胞提取物(CFE)中測定甲基天冬胺酸鹽氨解離酶(Maal)活性的分光光度分析
圖18展示在用包含pET21b maal質體之大腸桿菌之無細胞提取物進行生物轉型期間以g/L為單位之甲基反丁烯二酸鹽之製造速率。
圖19展示在使用包含pET21b maal質體之大腸桿菌之全細胞進行生物轉型期間受質及產物濃度及質量平衡
圖20展示在全細胞開始生物轉型時及在24小時生物轉型後在受質不存在下活細胞的數目及具有保留質體之活細胞的數目
圖21展示CimA 3.7酶活性之分光光度測試
圖22展示用於製造R-甲基蘋果酸鹽之大腸桿菌之好氧生物轉型的有機酸組成
圖23展示用於製造R-甲基蘋果酸鹽之大腸桿菌之厭氧生物轉型的有機酸組成
圖24展示由製造甲基蘋果醯CoA之Mcl酶分析產生之LC-MS資料
圖25展示Mcl及SmtAB酶用於製造甲基蘋果酸鹽之偶合分析的LC-MS資料
<110> 英商盧希特國際公司
<120> 製造甲基丙烯酸及其衍生物之方法
<130> P30011GB2
<140> GB1410029.1
<141> 2014-06-05
<150> GB1313904.3
<151> 2013-08-02
<160> 17
<170> PatentIn version 3.5
<210> 1
<211> 81
<212> DNA
<213> 人工序列
<220>
<223> ldhA_del5'寡核苷酸引子
<400> 1
<210> 2
<211> 79
<212> DNA
<213> 人工序列
<220>
<223> ldhA_del3'寡核苷酸引子
<400> 2
<210> 3
<211> 19
<212> DNA
<213> 人工序列
<220>
<223> ldhA_flank5'寡核苷酸引子
<400> 3
<210> 4
<211> 20
<212> DNA
<213> 人工序列
<220>
<223> ldhA_flank3'寡核苷酸引子
<400> 4
<210> 5
<211> 20
<212> DNA
<213> 人工序列
<220>
<223> C1寡核苷酸引子
<400> 5
<210> 6
<211> 20
<212> DNA
<213> 人工序列
<220>
<223> C2寡核苷酸引子
<400> 6
<210> 7
<211> 84
<212> DNA
<213> 人工序列
<220>
<223> 寡核苷酸連接子
<400> 7
<210> 8
<211> 11380
<212> DNA
<213> 人工序列
<220>
<223> peKEx3 glmE/mutS-maal質體構築體
<400> 8
<210> 9
<211> 8493
<212> DNA
<213> 人工序列
<220>
<223> pET21b glmE/mutS-maal質體構築體
<400> 9
<210> 10
<211> 1119
<212> DNA
<213> 人工序列
<220>
<223> CimA3.7序列
<400> 10
<210> 11
<211> 38
<212> DNA
<213> 人工序列
<220>
<223> 寡核苷酸引子
<400> 11
<210> 12
<211> 27
<212> DNA
<213> 人工序列
<220>
<223> 寡核苷酸引子
<400> 12
<210> 13
<211> 42
<212> DNA
<213> 人工序列
<220>
<223> 寡核苷酸引子
<400> 13
<210> 14
<211> 33
<212> DNA
<213> 人工序列
<220>
<223> 寡核苷酸引子
<400> 14
<210> 15
<211> 957
<212> DNA
<213> 類球紅細菌
<400> 15
<210> 16
<211> 1368
<212> DNA
<213> 橙色綠屈撓菌
<400> 16
<210> 17
<211> 1218
<212> DNA
<213> 橙色綠屈撓菌
<400> 17
Claims (39)
- 一種產生甲基丙烯酸及/或其衍生物之方法,其包括以下步驟:(a)在微生物中產生甲基反丁烯二酸或甲基順丁烯二酸或甲基蘋果酸或其鹽;(b)使步驟(a)中產生之甲基反丁烯二酸或甲基順丁烯二酸或甲基蘋果酸或其鹽脫除羧基(如需要,使其脫水),形成甲基丙烯酸及/或其衍生物;其中步驟(b)係在該微生物外進行,以此方式避免該微生物顯著暴露於甲基丙烯酸及/或其衍生物之毒性下。
- 如請求項1之方法,其中步驟(a)係經由檸檬酸循環之酶及組分進行,其中該等酶可對檸檬酸循環之組分產生氧化或還原作用。
- 如請求項1或2之方法,其中步驟(a)包括分別經由丙酮酸鹽及乙醯CoA產生甲基反丁烯二酸或甲基順丁烯二酸或甲基蘋果酸。
- 如請求項3之方法,其中步驟(a)包括將丙酮酸鹽及乙醯CoA轉化成(S)-甲基蘋果酸鹽及將(S)-甲基蘋果酸鹽轉化成甲基反丁烯二酸。
- 如請求項3之方法,其中步驟(a)包括將丙酮酸鹽及乙醯CoA轉化成(R)-甲基蘋果酸鹽及將(R)-甲基蘋果酸鹽轉化成甲基順丁烯二酸。
- 如請求項3之方法,其中步驟(a)包括將丙酮酸鹽及乙醯CoA轉化成(R)-甲基蘋果酸鹽或(S)-甲基蘋果酸鹽。
- 如請求項3之方法,其中該方法係以好氧方式進行。
- 如請求項7之方法,其中該方法包括經由糖酵解產生丙酮酸鹽及/或經由脂肪酸之β氧化作用產生乙醯CoA之另外一或多個步驟。
- 如請求項3之方法,其中該方法係以厭氧方式或在限制氧氣的條 件下進行。
- 如請求項9之方法,其中該方法包括經由還原檸檬酸循環產生乙醯CoA及/或由該乙醯CoA及/或糖酵解產生丙酮酸鹽之另外一或多個步驟。
- 如請求項1或2之方法,其中步驟(a)包括由麩胺酸產生甲基反丁烯二酸。
- 如請求項11之方法,其中步驟(a)包括將麩胺酸轉化成β-甲基天冬胺酸鹽及將β-甲基天冬胺酸鹽轉化成甲基反丁烯二酸。
- 如請求項11之方法,其中步驟(a)另外包含由α-酮基戊二酸鹽產生麩胺酸之步驟。
- 如請求項11之方法,其中該方法係以好氧方式進行。
- 如請求項14之方法,其中步驟(a)包括由氧化檸檬酸循環產生麩胺酸。
- 如請求項11之方法,其中該方法係以厭氧方式或在限制氧氣的條件下進行。
- 如請求項16之方法,其中步驟(a)包括由還原檸檬酸循環產生麩胺酸。
- 如請求項1或2之方法,其中步驟(b)係藉由一或多種化學催化劑及/或藉由溫度及/或壓力之作用來催化。
- 如請求項18之方法,其中步驟(b)之甲基丙烯酸係由甲基順丁烯二酸或甲基反丁烯二酸或甲基蘋果酸藉由鹼催化之脫除羧基反應產生,其中該脫除羧基反應係在低於350℃下進行。
- 如請求項1或2之方法,其中本發明方法之步驟(a)係藉由一或多種微生物進行酶促催化。
- 如請求項20之方法,其中該/該等微生物包含催化該等步驟所必需的該一或多種酶,以便該等酶促步驟係在該/該等微生物內活 體內進行。
- 如請求項20之方法,其中該/該等微生物至少包含以下酶:(a)甲基蘋果酸鹽解離酶或(R)-甲基蘋果酸鹽合成酶;及/或(b)(S)-2-甲基蘋果酸鹽脫水酶或(R)-2-甲基蘋果酸鹽脫水酶。
- 如請求項20之方法,其中該/該等微生物至少包含以下酶:(a)麩胺酸鹽脫氫酶;及/或(b)甲基天冬胺酸鹽變位酶;及/或(c)β-甲基天冬胺酸鹽氨解離酶。
- 如請求項20之方法,其中該/該等微生物至少包含以下酶:(a)甲基蘋果酸鹽解離酶或(R)-甲基蘋果酸鹽合成酶。
- 如請求項20之方法,其中該/該等微生物為選自以下之細菌:屬於變形菌門(proteobacteria)之埃希氏菌屬(Escherichia)、腸桿菌屬(Enterobacter)、泛菌屬(Pantoea)、克雷伯氏菌屬(Klebsiella)、沙雷菌屬(Serratia)、歐文菌屬(Erwinia)、沙門氏菌屬(Salmonella)、摩根氏菌屬(Morganella)之腸內菌;屬於短桿菌屬(Brevibacterium)、棒狀桿菌屬(Corynebacterium)或微桿菌屬(Microbacterium)之棒狀菌(coryneform bacteria);或屬於脂環桿菌屬(Alicyclobacillus)、芽孢桿菌屬(Bacillus)、氫桿菌屬(Hydrogenobacter)、甲烷球菌屬(Methanococcus)、醋桿菌屬(Acetobacter)、不動桿菌屬(Acinetobacter)、農桿菌屬(Agrobacterium)、固氮根瘤菌屬(Axorhizobium)、固氮菌屬(Azotobacte)、邊蟲屬(Anaplasma)、擬桿菌屬(Bacteroides)、巴東體屬(Bartonella)、博特氏桿菌屬(Bordetella)、疏螺旋體屬(Borrelia)、布氏桿菌屬(Brucella)、伯克氏菌屬(Burkholderia)、鞘桿菌屬(Calymmatobacterium)、彎麴菌屬(Campuylobacter)、衣原體屬(Chlamydia)、嗜衣原體屬(Chlamydophila)、梭菌屬 (Clostridium)、柯克斯氏體屬(Coxiella)、艾利希體屬(Ehrlichia)、腸球菌屬(Enterococcus)、弗朗西斯氏菌屬(Francisella)、梭桿菌屬(Fusobacterium)、加德納菌屬(Gardnerella)、嗜血桿菌屬(Haemophilus)、螺旋桿菌屬(Helicobacter)、克雷伯氏菌屬(Kelbsiella)、甲烷桿菌屬(Methanobacterium)、微球菌屬(Micrococcus)、莫拉菌屬(Moraxella)、分枝桿菌屬(Mycobacterium)、黴漿菌屬(Mycoplasma)、奈瑟氏菌屬(Neisseria)、巴斯德菌屬(Pasteurella)、消化鏈球菌屬(Peptostreptococcus)、卟啉單胞菌屬(Porphyromonas)、普氏菌屬(Prevotella)、假單胞菌屬(Pseudomonas)、根瘤菌屬(Rhizobium)、立克次體屬(Rickettsia)、羅卡利馬體屬(Rochalimaea)、羅氏菌屬(Rothia)、志賀桿菌屬(Shigella)、葡萄球菌屬(Staphylococcus)、寡養單胞菌屬(Stenotrophomonas)、鏈球菌屬(Streptococcus)、密螺旋體屬(Treponema)、弧菌屬(Vibrio)、沃爾巴克氏體屬(Wolbachia)、耶爾森菌屬(Yersinia)之細菌。
- 如請求項20之方法,其中該方法另外包括培養一或多種微生物以產生甲基反丁烯二酸及/或甲基順丁烯二酸及/或甲基蘋果酸之步驟。
- 如請求項26之方法,其中該方法另外包括自該/該等微生物細胞收集該甲基反丁烯二酸或甲基順丁烯二酸或甲基蘋果酸及/或其所形成中間物之步驟。
- 一種微生物,其分泌或積聚甲基順丁烯二酸及/或甲基反丁烯二酸及/或甲基蘋果酸。
- 如請求項28之微生物,其中分泌或積聚速率係增加超過該微生物之基本分泌或積聚速率,其中該基本分泌或積聚速率為該相 關微生物之野生型中通常可見之甲基反丁烯二酸及/或甲基順丁烯二酸及/或甲基蘋果酸之分泌或積聚速率。
- 如請求項28之微生物,其中該分泌或積聚速率係增加約5%至10000%。
- 一種醱酵方法,其包括在醱酵培養基中培養一或多種如請求項28至30中任一項之微生物,以產生甲基順丁烯二酸及/或甲基反丁烯二酸及/或甲基蘋果酸。
- 一種醱酵培養基,其包含一或多種如請求項28至30中任一項之微生物。
- 如請求項32之醱酵培養基,其中該醱酵培養基中存在之甲基反丁烯二酸及/或甲基順丁烯二酸及/或甲基蘋果酸之效價為至少5g/L。
- 如請求項32或33之醱酵培養基,其中該/該等微生物之細胞中存在之甲基反丁烯二酸或甲基順丁烯二酸或甲基蘋果酸及/或其中間物之濃度為至少0.05mM。
- 一種生物反應器,其包含一或多種如請求項28至30中任一項之微生物。
- 一種製備甲基丙烯酸或甲基丙烯酸酯之聚合物或共聚物之方法,其包括以下步驟:(i)藉由如請求項1至27中任一項之方法製備甲基丙烯酸;(ii)視情況酯化(i)中製備之甲基丙烯酸,以產生該甲基丙烯酸酯;(iii)使(i)中製備之該甲基丙烯酸及/或(ii)中製備之該酯視情況與一或多種共聚單體聚合,以產生其聚合物或共聚物。
- 如請求項36之方法,其中上述(ii)之該甲基丙烯酸酯係選自C1-C12烷基酯或C2-C12羥基烷基酯、縮水甘油酯、異冰片酯、二甲 胺基乙酯或三丙二醇酯。
- 如請求項36或37之方法,其中步驟(iii)之共聚單體為單乙烯系不飽和羧酸及二羧酸及其衍生物。
- 一種聚甲基丙烯酸、聚甲基丙烯酸甲酯(PMMA)及聚甲基丙烯酸丁酯均聚物或共聚物,其係由如請求項36至38中任一項之方法形成。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB201313904A GB201313904D0 (en) | 2013-08-02 | 2013-08-02 | A process for production of methacrylic acid and derivatives thereof |
GB201410029A GB201410029D0 (en) | 2014-06-05 | 2014-06-05 | A process for production of methacrylic acid and derivatives thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
TW201508064A true TW201508064A (zh) | 2015-03-01 |
Family
ID=51301314
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW103126499A TW201508064A (zh) | 2013-08-02 | 2014-08-01 | 製造甲基丙烯酸及其衍生物之方法 |
Country Status (3)
Country | Link |
---|---|
TW (1) | TW201508064A (zh) |
UY (1) | UY35692A (zh) |
WO (1) | WO2015022496A2 (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017165397A1 (en) * | 2016-03-22 | 2017-09-28 | University Of Georgia Research Foundation, Inc. | Genetically engineered microbes and methods for producing citramalate |
GB201619827D0 (en) * | 2016-11-23 | 2017-01-04 | Lucite Int Uk Ltd | Process for the production of methyl methacrylate |
GB201707034D0 (en) | 2017-05-03 | 2017-06-14 | Gradley Michell Lorraine | Modified microorganisms and methods for production of useful products |
CN118638831A (zh) * | 2024-08-13 | 2024-09-13 | 中国农业科学院北京畜牧兽医研究所 | 具有噬菌体抗性生产甲基苹果酸的大肠杆菌工程菌株、构建及发酵生产方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3173176B2 (ja) * | 1992-10-09 | 2001-06-04 | 三菱化学株式会社 | S(+)−シトラマル酸の製造方法 |
MX2013005510A (es) * | 2010-11-24 | 2013-12-16 | Lucite Int Uk Ltd | Un proceso para la produccion de acido metacrilico y sus derivados y los polimeros producidos a partir de los mismos. |
US9133487B2 (en) * | 2011-04-01 | 2015-09-15 | Genomatica, Inc. | Microorganisms for producing methacrylic acid and methacrylate esters and methods related thereto |
-
2014
- 2014-08-01 TW TW103126499A patent/TW201508064A/zh unknown
- 2014-08-04 UY UY35692A patent/UY35692A/es not_active Application Discontinuation
- 2014-08-04 WO PCT/GB2014/052389 patent/WO2015022496A2/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2015022496A3 (en) | 2015-06-25 |
UY35692A (es) | 2015-02-27 |
WO2015022496A2 (en) | 2015-02-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11753661B2 (en) | Process for the biological production of methacrylic acid and derivatives thereof | |
MX2010013415A (es) | Celula recombinante productora de acido 2-hidroxiisobutirico. | |
US20200080064A1 (en) | Process And Microorganism For Synthesis Of Adipic Acid From Carboxylic Acids | |
TW201508064A (zh) | 製造甲基丙烯酸及其衍生物之方法 | |
JP2023063334A (ja) | メタクリル酸メチルの生産のための方法 | |
MX2015004180A (es) | Microorganismos recombinantes para producir acidos organicos organicos. | |
WO2024033603A1 (en) | Process for the biological production of methacrylic acid and derivatives thereof | |
Osorio‐González et al. | Cellular versus Biochemical Control over Microbial Products | |
Fabarius | Metabolic engineering of Basfia succiniciproducens for the production of carbon-three compounds | |
BR122024008251A2 (pt) | Processo de produzir ácido metacrílico, microorganismo recombinante, processo de fermentação, método para preparar polímeros ou copolímeros de ácido metacrílico ou ésteres do ácido metacrílico | |
BR112017024654B1 (pt) | Processo de produzir ácido metacrílico, microorganismo recombinante, processo de fermentação, e, método para preparar polímeros ou copolímeros de ácido metacrílico ou ésteres do ácido metacrílico |